Spline Toolbox    

Index


Numerics 

1-column matrix
1-row matrix

almost block-diagonal <1> <2> <3> <4>
appropriate knot sequence <1> <2>
aptknt
augknt <1> <2> <3> <4> <5> <6> <7> <8>
augmented knot sequence
aveknt <1> <2> <3> <4>

B in B-spline
banded <1> <2>
basic interval <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12> <13>
for the B-form
for the pp-form <1> <2>
of a pp <1> <2>
of a spline <1> <2>
basis
bell-shaped
best interpolant
B-form <1> <2> <3> <4> <5>
bias
bicubic spline <1> <2>
bivariate
bkbrk <1> <2>
boundary layer
break <1> <2> <3> <4>
interior
break sequence <1> <2> <3>
breaks <1> <2>
breaks vs knots <1> <2>
B-representation
brk2knt
bspligui
B-spline <1> <2> <3> <4> <5> <6>
coefficients
in CAGD
normalized
of order k
some sample figures
support of
bspline <1> <2>

CAGD
center of a shifted power form
centripetal
chbpnt
chebdem
Chebyshev polynomial
Chebyshev spline
circle, spline approximation to
clamped end condition
collocation <1> <2>
matrix <1> <2> <3>
column-vector
composing function with a matrix
constructive approach to splines
control point <1> <2>
control polygon <1> <2> <3>
conventions in our documentation (table)
conversion <1> <2>
coordinates with respect to a basis
csape 2-18
csapi <1> <2>
csaps
cscvn <1> <2>
cubic <1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12>
Hermite
smoothing spline
spline
Curry-Schoenberg Theorem
curvature
curve <1> <2> <3> <4> <5> <6> <7> <8> <9> <10>

data point
multiplicity <1> <2>
data site
data value
degrees of freedom
derivative of a rational spline
differential equation <1> <2>
differentiation <1> <2>
discrete
in the pp sense
dimension
discrete
differentiation
least-squares approximation
domain of a function
draftsman's spline
dual functional <1> <2>
d-vector

end conditions
clamped
complete
curved
Lagrange
natural
not-a-knot
other
variational <1> <2>
equidistribute
error measure <1> <2> <3> <4>
error weight
evaluation <1> <2> <3>
of tensor product spline
extension beyond basic interval <1> <2>

fn2fm <1> <2>
fnbrk <1> <2> <3>
fncmb <1> <2> <3> <4>
fnder <1> <2> <3> <4>
fndir
fnint <1> <2> <3> <4>
fnjmp
fnplt <1> <2> <3> <4> <5> <6> <7> <8>
fnrfn <1> <2>
fntlr
fnval <1> <2> <3> <4> <5> <6>
franke
Franke function <1> <2>
function
functional
dual

Gauss points
getcurve
good interpolation sites <1> <2>
graphic accuracy
Greville site
gridded data <1> <2> <3>

Hermite
cubics
Hermite interpolation

implicit
integral
definite
indefinite
integral equation
integration
interior break <1> <2>
interior knot
interpolate
interpolation <1> <2> <3> <4> <5> <6>
Hermite <1> <2>
interpolation points, good

jump <1> <2> <3> <4>
in derivative

knot
average <1> <2>
insertion <1> <2> <3>
interior
multiplicity
at endpoints <1> <2>
sequence <1> <2> <3> <4>
appropriate
improved
simple <1> <2> <3>
knots vs breaks <1> <2>
knt2brk
knt2mlt

Lagrange end condition
least-squares <1> <2>
least-squares approximation <1> <2>
discrete <1> <2>
limit from the left <1> <2> <3>
limit from the right
linear combination of functions
linear dependence
linear operations
linear space
local polynomial coefficients
local power form <1> <2> <3>

matrix
banded
mesh
meshgrid
minimize
Moebius
multiplicity <1> <2> <3> <4> <5>
of a data point
of a knot <1> <2>
smoothness conditions
multivariate <1> <2> <3> <4> <5> <6>
m-variate

Naming conventions
natural <1> <2> <3>
nested multiplication
newknt <1> <2>
Newton's method <1> <2>
noise
noisy
nonlinear system <1> <2>
normalized B-spline
not-a-knot <1> <2>
not-a-knot end condition <1> <2> <3> <4>
NURBS

of a pp-form
of the pp-form
optimal interpolation <1> <2>
optknt
order
of a polynomial
of a pp
of a spline
osculatory

parabolic
parabolic spline
parametric <1> <2>
parametrization
parametrization, chord-length
parametrized <1> <2>
perfect spline
periodic
PGS
piecewise-polynomial <1> <2>
placeholder notation
plotting <1> <2>
polygon
polyval
power form
pp
ppbrk <1> <2>
ppform <1> <2> <3> <4> <5> <6> <7>
of a B-spline
ppmak <1> <2> <3>
pp-representation

QR factorization <1> <2> <3>
quadratic convergence
quartic

range of a function
rational spline <1> <2> <3>
rBform
recovery scheme
recurrence relation <1> <2> <3>
Remez algorithm
restriction to an interval
roughness measure <1> <2> <3> <4>
roughness weight
row-vector
rpform
rpmak
rsmak

scalar-valued
scaling of a function
Schoenberg
Schoenberg-Whitney
conditions <1> <2> <3> <4>
theorem <1> <2>
secant method
shifted power form
side conditions
simple knot <1> <2> <3> <4>
site
slvblk <1> <2> <3> <4> <5> <6> <7>
smoothing
smoothing parameter <1> <2> <3> <4>
smoothing spline
smoothness
across breaks
across knot
condition <1> <2> <3>
multiplicity of
sort
sorted
sp2pp <1> <2> <3>
spap2 <1> <2> <3> <4> <5> <6>
spapi <1> <2> <3> <4>
spaps
sparse
sparse matrix
spbrk <1> <2> <3> <4> <5> <6> <7> <8>
spcol <1> <2> <3> <4> <5> <6> <7> <8> <9>
spcrv <1> <2>
sphere <1> <2> <3>
spline <1> <2> <3>
draftsman's
spline approximation to a circle
splinetool
splpp
spmak <1> <2> <3> <4> <5> <6> <7> <8> <9>
sprpp
staircase shape
subdivision
support of a B-spline
surface <1> <2>

target
Taylor series
tensor product <1> <2> <3> <4> <5> <6> <7>
trivariate
truncated
tspdem

uniform knot sequence <1> <2>
uniform mesh
unimodal
unique spline
uniqueness of B-form
unit circle
univariate

value outside basic interval
variational
approach to splines
vector <1> <2> <3>
curve
is always a column matrix
scaling
-valued <1> <2> <3> <4>
splines

weight

Glossary