active constraints <1> <2> <3>
active set method <1> <2> <3> <4> <5>
arguments, additional
attainment factor
axis crossing. See zero of a function

banana function
BFGS formula <1> <2> <3>
bisection search
bound constraints, large-scale
box constraints. See bound constraints

centering parameter
CG. See conjugate gradients
code
    updating to Version 2 syntax
complementarity conditions
complex values
complex variables <1> <2>
conjugate gradients
constrained minimization
    large-scale example <1> <2>
    medium-scale example
constraints
    linear <1> <2> <3>
    positive
continuous function and gradient methods
conventions in our documentation (table)
convex problem
cubic interpolation
curve-fitting
    categories
    functions that apply

data-fitting
    categories
    functions that apply
dense columns, constraint matrix
DFP formula
direction of negative curvature
discontinuities <1> <2>
discontinuous problems <1> <2>
discrete variables
dual problem
duality gap

-constraint method
equality constraints
    dense columns
    medium-scale example
equality constraints inconsistent warning, quadprog
equality constraints, linear
    large-scale
equation solving
    categories
    functions that apply
error, Out of memory.

feasibility conditions
feasible point, finding
fgoalattain
    example
fixed variables
fixed-step ODE solver
fminbnd
fmincon
    large-scale example <1> <2>
    medium-scale example
fminimax
    example
fminsearch
fminunc
    large-scale example
    medium-scale example
    warning messages
fseminf
fsolve
    large-scale example
    medium-scale example
function arguments
function discontinuities
functions
    grouped by type of optimization
    updating to Version 2
fzero

Gauss-Newton
Gauss-Newton method <1> <2> <3> <4> <5> <6>
global minimum
global variables
goal attainment <1> <2>
    example
goaldemo
golden section search
gradient checking, analytic
gradient examples
gradient function
gradient methods

Hessian modified message
Hessian modified twice message
Hessian sparsity structure
Hessian update <1> <2>

inconsistent constraints
indefinite problems
infeasible message
infeasible problems
infeasible solution warning
    linprog
    quadprog
infinite loop
inline objects
input arguments
integer variables
interior-point linear programming
introduction to optimization
iterative display

Jacobian examples
Jacobian sparsity pattern

Kuhn-Tucker equations

Lagrange multipliers
    large-scale linear programming
large-scale functionality coverage
large-scale methods
    demos
    examples
least squares
    categories
    functions that apply
Levenberg-Marquardt method <1> <2> <3> <4> <5>
line search <1> <2> <3> <4> <5>
line search strategy
linear constraints <1> <2> <3>
linear equations solve
linear least squares
    constrained
    large-scale algorithm
    large-scale example
    nonnegative
    unconstrained
linear programming
    implementation
    large-scale algorithm
    large-scale example <1> <2>
    problem
linprog
    large-scale example <1> <2>
LIPSOL
lower bounds
lsqcurvefit
lsqlin
    large-scale example
lsqnonlin
    convergence
    large-scale example
    medium-scale example
lsqnonneg

maximization
medium-scale methods
    demos
Mehrotra's predictor-corrector algorithm <1> <2>
merit function
minimax examples
minimax problem, solving
minimization
    categories
    functions that apply
multiobjective optimization <1> <2>
    examples

NCD. See Nonlinear Control Design
negative curvature direction <1> <2>
negative definite problems
Nelder and Mead
Newton direction
    approximate
Newton's method
no update message
nonconvex problems
noninferior solution
Nonlinear Control Design (NCD) Blockset
nonlinear data-fitting
nonlinear equations, solving
nonlinear least squares <1> <2> <3>
    large-scale algorithm
    large-scale example
nonlinear programming
nonlinear system of equations, large-scale example
normal equations <1> <2>

objective function
objective function, undefined values
optimality conditions linear programming
optimget
optimization
    functions for each type
    introduction
optimization parameters structure <1> <2> <3>
optimset
options parameters
    descriptions
    possible values
    utility functions
Out of memory. error
output arguments
output display
output headings
    large-scale algorithms
    medium-scale algorithms

PCG. See preconditioned conjugate gradients
preconditioned conjugate gradients <1> <2> <3>
    algorithm
preconditioner <1> <2>
    banded
predictor-corrector algorithm
preprocessing
    linear programming <1> <2>
primal problem
primal-dual algorithm
primal-dual interior-point
projection method <1> <2>

quadprog
    large-scale example
quadratic interpolation
quadratic programming <1> <2> <3>
    large-scale algorithm
    large-scale example
quasi-Newton method <1> <2> <3>

reflective line search
reflective steps <1> <2>
residual
Rosenbrock's function

sampling interval
secular equation
semi-infinite constraints
Sherman-Morrison formula
signal processing example
simple bounds
simplex search <1> <2>
Simulink, multiobjective example
singleton rows
sparsity pattern Jacobian
sparsity structure, Hessian
SQP method <1> <2> <3>
steepest descent
stopping criteria, large-scale linear programming
structural rank
subspace
    determination of
subspace, two-dimensional
syntax
    updating to Version 2
system of equations, solving

trust region
two-dimensional subspace
typographical conventions

unbounded solutions warning
    linprog
    quadprog
unconstrained minimization <1> <2>
    large-scale example
    medium-scale example
    one dimensional
unconstrained optimization
updating code to Version 2 syntax
upper bounds

variable-step ODE solver
Version 2
    changes to calling sequence
    converting Version 1.5 code

warning
    equality constraints inconsistent, quadprog
    infeasible solution, linprog
    infeasible solution, quadprog
    stuck at minimum, fsolve
    unbounded solutions, linprog
    unbounded solutions, quadprog
warnings displayed
weighted sum strategy

zero curvature direction
zero finding
zero of a function, finding