Signal Processing Toolbox    
arburg

Compute an estimate of AR model parameters using the Burg method.

Syntax

Description

a = arburg(x,p) uses the Burg method to fit a pth order autoregressive (AR) model to the input signal, x, by minimizing (least squares) the forward and backward prediction errors while constraining the AR parameters to satisfy the Levinson-Durbin recursion. x is assumed to be the output of an AR system driven by white noise. Vector a contains the normalized estimate of the AR system parameters, A(z), in descending powers of z.

Since the method characterizes the input data using an all-pole model, the correct choice of the model order p is important.

[a,e] = arburg(x,p) returns the variance estimate, e, of the white noise input to the AR model.

[a,e,k] = arburg(x,p) returns a vector, k, of reflection coefficients.

See Also

arcov
Compute an estimate of AR model parameters using the covariance method.
armcov
Compute an estimate of AR model parameters using the modified covariance method.
aryule
Compute an estimate of AR model parameters using the Yule-Walker method.
lpc
Compute linear predictive recursion coefficients.
pburg
Compute the power spectrum estimate using the Burg method.
prony
Prony's method for time-domain IIR filter design.


 angle arcov