MATLAB Function Reference | ![]() ![]() |
BiConjugate Gradients Stabilized method
Syntax
x = bicgstab(A,b) bicgstab(A,b,tol) bicgstab(A,b,tol,maxit) bicgstab(A,b,tol,maxit,M) bicgstab(A,b,tol,maxit,M1,M2) bicgstab(A,b,tol,maxit,M1,M2,x0) bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) [x,flag] = bicgstab(A,b,...) [x,flag,relres] = bicgstab(A,b,...) [x,flag,relres,iter] = bicgstab(A,b,...) [x,flag,relres,iter,resvec] = bicgstab(A,b,...)
Description
x = bicgstab(A,b)
attempts to solve the system of linear equations A*x=b
for x
. The n
-by-n
coefficient matrix A
must be square and the column vector b
must have length n
. A
can be a function afun
such that afun(x)
returns A*x
.
If bicgstab
converges, a message to that effect is displayed. If bicgstab
fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b)
and the iteration number at which the method stopped or failed.
bicgstab(A,b,tol)
specifies the tolerance of the method. If tol
is []
, then bicgstab
uses the default, 1e-6
.
bicgstab(A,b,tol,maxit)
specifies the maximum number of iterations. If maxit
is []
, then bicgstab
uses the default, min(n,20)
.
bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2)
use preconditioner M
or M = M1*M2
and effectively solve the system inv(M)*A*x = inv(M)*b
for x
. If M
is []
then bicgstab
applies no preconditioner. M
can be a function that
returns M\x
.
bicgstab(A,b,tol,maxit,M1,M2,x0)
specifies the initial guess. If x0
is []
, then bicgstab
uses the default, an all zero vector.
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
passes parameters p1,p2,...
to functions afun(x,p1,p2,...)
, m1fun(x,p1,p2,...)
, and m2fun(x,p1,p2,...)
.
[x,flag] = bicgstab(A,b,...)
also returns a convergence flag.
Whenever flag
is not 0
, the solution x
returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag
output is specified.
[x,flag,relres] = bicgstab(A,b,...)
also returns the relative residual norm(b-A*x)/norm(b)
. If flag
is 0
, relres <= tol
.
[x,flag,relres,iter] = bicgstab(A,b,...)
also returns the iteration number at which x
was computed, where 0 <= iter <= maxit
. iter
can be an integer +
0.5, indicating convergence half way through an iteration.
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)
also returns a vector of the residual norms at each half iteration, including norm(b-A*x0)
.
Example
A = gallery('wilk',21); b = sum(A,2); tol = 1e-12; maxit = 15; M1 = diag([10:-1:1 1 1:10]); x = bicgstab(A,b,tol,maxit,M1,[],[]); bicgstab converged at iteration 12.5 to a solution with relative residual 1.2e-014
Alternatively, use this matrix-vector product function
function y = afun(x,n) y = [0; x(1:n-1)] + [((n-1)/2:-1:0)'; (1:(n-1)/2)'] .*x + [x(2:n); 0];
and this preconditioner backsolve function
function y = mfun(r,n) y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];
x1 = bicgstab(@afun,b,tol,maxit,@mfun,[],[],21);
Note that both afun
and mfun
must accept bicgstab
's extra input n=21
.
load west0479; A = west0479; b = sum(A,2); [x,flag] = bicgstab(A,b)
flag
is 1
because bicgstab
does not converge to the default tolerance 1e-6
within the default 20 iterations.
[L1,U1] = luinc(A,1e-5); [x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)
flag1
is 2
because the upper triangular U1
has a zero on its diagonal. This causes bicgstab
to fail in the first iteration when it tries to solve a system such as U1*y = r
using backslash.
[L2,U2] = luinc(A,1e-6); [x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)
flag2
is 0
because bicgstab
converges to the tolerance of 3.1757e-016
(the value of relres2
) at the sixth iteration (the value of iter2
) when preconditioned by the incomplete LU factorization with a drop tolerance of 1e-6
. resvec2(1) = norm(b)
and resvec2(13) = norm(b-A*x2)
. You can follow the progress of bicgstab
by plotting the relative residuals at the halfway point and end of each iteration starting from the initial estimate (iterate number 0).
semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')
See Also
bicg
, cgs
, gmres
, lsqr
, luinc
, minres
, pcg
, qmr
, symmlq
@
(function handle), \
(backslash)
References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
[2] van der Vorst, H. A., "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems", SIAM J. Sci. Stat. Comput., March 1992,Vol. 13, No. 2, pp. 631-644.
![]() | bicg | bin2dec | ![]() |