DRIZZLE and CLOUD STRUCTURE in SE PACIFIC STRATOCUMULUS

R. Wood, K. Comstock, P. Caldwell, C. S. Bretherton, and S. E. Yuter
University of Washington, Seattle, WA 98195, USA
robwood@atmos.washington.edu www.atmos.washington.edu/~robwood

MOTIVATION:
- Cold SST (right) and warm, subsiding air aloft make the SE Paciﬁc the most
effective region of marine stratocumulus cloud in the world.
- Little is known about the structure and dynamic role of drizzle in
 marine stratocumulus.

THE EPIC 2001 STRATOCUMULUS CRUISE:
- NOAA/NSF sponsored a cruise with the NOAA ship Ronald H Brown to the
 SE Paciﬁc stratocumulus region (Bretherton et al. 2004, see maps to right)
- Instrumentation included scanning (C-band, 5–10 cm) and vertically pointing
 millimeter (Mm): 3.8–8.9 mm) radars, ceilometer, microwave radiometer,
 8 x daily sondes, surface meteorology, turbulent and radiative ﬂuxes

KEY QUESTIONS:
1. What are the cloud-base and surface drizzle
 rates during the EPIC cruise? What factors control
 these rates?
2. What are the structural properties of drizzle?
3. Does drizzle inﬂuence cloud macropysical dynamics?

1. EPIC 2001 DRIZZLE RATES and CONTROLLING FACTORS
- Time series of cloud base and surface drizzle rates (right) show that:
 (a) drizzle rates are signiﬁcant (1 mm day −1, 30-50 m s −1)
 (b) Mean cloud base drizzle rate during EPIC is 0.7 mm day −1
 (c) Most drizzle evaporates before reaching the surface
 (d) There is a strong diurnal cycle of both cloud liquid water path (LWP)
 and cloud base precipitation rate
 (e) Periods of heavy drizzle tend to be associated with high LWP and/or low
 cloud droplet concentration N 0

Diurnal cycle (left):
- Composite diurnal cycle of cloud and drizzle properties from EPIC shows
 a strong diurnal cycle in divergence and cloud top height, a much weaker cycle
 in cloud base height, a strong diurnal cycle in LWP, and a strong diurnal cycle
 of cloud base drizzle rate.

What controls the drizzle rate?
- Drizzle rate is modulated by both cloud LWP (or equivalently cloud thickness)
 and by N 0 (right). Over the EPIC period, these two parameters explain
 about equal amounts of variance in the drizzle rate.

Rain rate at the cloud base R 0, can be parameterized as a function of LWP N 0,

Note: N 0₀ is inferred from combinations of LWP measured using microwave radiometer and cloud optical thickness from surface
sounding/remote detection radiometry (SARG and MUR). For an adiabatic cloud, N₀ is proportional to C(T₀);

2. DRIZZLE STRUCTURE
- C-band radar allows an unprecedented examination of structural properties of drizzle in stratocumulus.
- Below (left) is the cloud liquid precipitation rate and the total accumulation (shading), during EPIC (below right). The total accumulation corresponds to the stratiﬁcation of the layer, for example, 1/10 the total accumulation from the stratiﬁcation of the layer, 1/10 the total accumulation from the stratiﬁcation of the layer, 1/10 the total accumulation from the stratiﬁcation of the layer.

3. INFLUENCE OF DRIZZLE on CLOUD DYNAMICS
- EPIC dataset allowed estimation of all terms contributing to the mixed layer
 budgets of energy and moisture. This allows estimation of the buoyancy
 ﬂux of 0.1 µm, recent large eddy simulations (Steinbuck 2009) suggest that
 the MBL begins to decouple when the subcloud
 buoyancy ﬂux (0.1 µm) becomes strong.

Drizzle is highly intermittent (over 50% of drizzle falls from only 5% of the drizzling area). DRIZZLE images provide evidence for
 DRIZZLE:
- Mixed layer framework shows that latent
 heating in cloud and subcloud evaporation cooling from drizzle is important during EPIC 2001, and may
 initiate MBL decoupling.

CONCLUSIONS
- The tendency for decoupling during EPIC is
 crucially dependent upon drizzle production. This suggests that the cloud macropysical structure be tied to the microphysics of drizzle.

REFERENCES
- Acknowledgments: To the staff at NOAA ETI, particularly Chris Fasenda, Peppe Spalding, Pedro Holman, Drue Harrison, and Tarek Zaidi for their work in collecting and synopsing the data used in this study. Funding for this work was provided by grants from NSF (OCE-0534946 and NASA ATP 05-33455). We thank the staff and students of the Meteorological Research Flight for their assistance in collecting the aircraft data.