Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing

D. Chand¹, T. L. Anderson¹, R. Wood¹, R. J. Charlson¹, Y. Hu², Z. Liu³, M. Vaughan²

¹. Atmospheric Science Department, University of Washington, Seattle, WA, USA.
². NASA Langley Research Center, Hampton, VA, USA.
³. Center for Atmospheric Sciences, Hampton University, Hampton, VA, USA.

* Corresponding author (duli@atmos.washington.edu Fax: +1 206 685 9302)

AGU Index Terms: 0305, 0321, 0360, 1640

Short Title: Quantify aerosol optical depth
Abstract

Estimates of global-mean direct climate forcing by absorbing aerosols located above boundary layer clouds are large, uncertain, and almost entirely unconstrained by observations. Spaceborne lidar offers a new opportunity for global constraints. Here we examine techniques for using liquid water clouds as lidar targets, allowing aerosol optical depth and Ångström exponent to be deduced directly from aerosol effects on light transmission. Two such techniques are examined using data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The first is a previously reported method based on measurements of cloud depolarization ratio (DR) at 532 nm wavelength. The second is a new method using measurements of cloud color ratio (CR), which is the ratio of the signal from the cloud at 1064 nm to that at 532 nm. Optical depth retrievals from these two methods compare favorably over the eastern tropical Atlantic Ocean during August, 2006, when biomass burning aerosols are frequently advected over marine stratiform clouds. The CR technique is mainly sensitive to fine-mode aerosols and essentially insensitive to clouds and coarse-mode dust. Because anthropogenic aerosol is predominantly found in the fine mode, the CR technique can be used to help identify situations where anthropogenic cloudy-sky direct radiative forcing is occurring. We demonstrate this capability using six months data from the eastern tropical Atlantic Ocean.
1. Introduction

Following the usage in recent review articles (e.g. Yu et al. [2005]), we define direct climate forcing (DCF) as the change in radiative flux at the top-of-atmosphere caused by anthropogenic aerosols when considering only the direct interactions between radiation and aerosol particles. (Indirect forcing involves aerosol-induced changes in clouds and will not be considered here.) DCF is dominated by interactions in the shortwave due to the typically small sizes of atmospheric aerosol particles [Haywood and Shine 1997] and its global and regional magnitude is poorly constrained [IPCC 2007, Schultz et al. 2006]. Historically, DCF has been divided into clear-sky and cloudy-sky portions [e.g., Boucher and Anderson, 1995; Haywood et al., 1997]. Aerosol retrievals from ground-based radiometers and passive satellite sensors have helped to constrain clear-sky DCF, as summarized by Yu et al. [2005]. These same sensors are of limited use for constraining cloudy-sky DCF, and this paucity of empirical constraints is reflected in the uncertainty of current estimates. A recent comparison of nine global models [Schulz et al., 2006] found no agreement even as to the sign of the cloudy-sky DCF, with global-annual-mean values ranging from -0.16 to +0.34 W/m2.

Whether the direct effect of aerosols causes heating or cooling of the Earth system depends primarily on the aerosol backscatter coefficient, the aerosol absorption coefficient, and the albedo of the underlying surface [Charlson and Pilat, 1969; Ensor et al., 1971; Chylek and Coakley, 1974]. Based on this understanding, Haywood et al. [1997] pointed out that the most important cloudy-sky forcing mechanism is the warming effect of absorbing aerosols located within or above highly reflective boundary layer clouds. This mechanism in turn, is most prominently displayed (in those models that exhibit a positive cloudy-sky DCF) over the Southeast Atlantic where light-absorbing aerosols from African biomass burning activities are advected over marine stratiform clouds. A positive cloudy DCF in this region has been inferred from airborne measurements of aerosol and cloud properties by Keil and Haywood [2003]. The maximum effect occurs around 0-20ºS, extending off the coast for 20º or more over the Southeast Atlantic Ocean, downwind of the biomass burning areas. However, the calculations by Keil and Haywood [2003] are sensitive to assumptions about aerosol optical thickness and the albedo of the underlying cloud, both of which were set to the maximum values observed during the campaign. The modeling study by Schulz et al. [2006] further emphasizes the uncertainty of cloudy-sky DCF for this region. The various models show annual-mean cloudy-sky DCF values in the Southeast Atlantic that range from slightly negative to greater than +5 W/m2. Unraveling these uncertainties will require accurate constraints not only on the optical thickness and radiative properties of the advecting aerosol layers, but also on the radiative properties of the underlying cloud and the extent to which the aerosol and cloud are actually superposed.

Active sensing by spaceborne lidar offers a new opportunity for developing empirical constraints on cloudy-sky DCF. Lidar profiles of attenuated backscatter (e.g. Figure 1) provide unambiguous evidence of aerosol layers located above boundary layer clouds and can be used to quantify some aspects of the problem such as frequency of occurrence and vertical separation. Here we examine two novel techniques for using the 3-channel lidar data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) to provide much stronger constraints on above-cloud aerosols.

Both methods use the underlying cloud as a reflectivity target. Figure 2 illustrates the distribution of low level clouds judged to be suitable cloud targets by our selection criteria (Section 2.4) for two different 16-day periods. Evidently, such clouds are routinely detected by
CALIPSO over the entire subtropical and eastern tropical Atlantic Ocean. Thus low clouds over this region provide ample targets for studying elevated aerosol layers.

The depolarization ratio (DR) technique uses polarization information to deduce the optical depth of the overlying atmosphere, as described by Hu et al. [2007a]. The color ratio (CR) technique, reported here for the first time, uses dual wavelength information to identify fine-mode aerosols (i.e. aerosols that are likely to be anthropogenic in origin) and to provide an alternate method of deducing optical depth. The goals of this study is to develop practical methodologies for exploiting these promising new techniques and to examine their strengths and limitations in order to facilitate their use in improved global quantification of cloudy-sky DCF.

2. Methods

2.1 CALIOP basics

The CALIPSO satellite was launched April 28, 2006 for a nominal three-year mission as part of the A-Train constellation of satellites [Stephens et al., 2002]. Winker et al. [2002] provide a detailed description of the CALIPSO instruments and Winker et al. [2007] assess instrument performance over the first year of operation.

The primary CALIPSO instrument is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). CALIOP's laser transmits linearly polarized light simultaneously at 532 nm and 1064 nm at a pulse rate of 20.16 Hz and its receiver measures backscatter intensity at 1064 nm and 532 nm, with the latter divided into two orthogonally polarized components, giving a total of three channels. CALIOP observes both clouds and aerosols at high spatial resolution as shown, for example, in Figure 1. Level-1 CALIOP data consist of calibrated, geolocated, vertical profiles of total attenuated backscatter at 532 nm, β_{532}, perpendicularly polarized attenuated backscatter at 532 nm, $\beta_{p,532}$, and total attenuated backscatter at 1064 nm, β_{1064}. From the surface to eight km, the vertical resolution is 30 m and the horizontal resolution is 1/3 km. (More specifically, laser pulses with a footprint of ~70 m at sea level are spaced 333 m apart.) The β_{532} channel is calibrated by examining molecular scattering returns from the mid-stratosphere, assumed to be particle-free, at night. The other two channels are calibrated with respect to β_{532}. Calibration of $\beta_{p,532}$ uses an on-board depolarizer periodically inserted upstream of the polarization beam splitter. Calibration of β_{1064} uses returns from optically thick cirrus clouds that are sufficiently high that the beam does not pass through aerosol layers above them. Such cirrus are assumed to backscatter with equal efficiency at the two wavelengths in accordance with surface lidar observations [Beyerle et al. 2001]. Data quality is considerably better at night because there is no background noise from scattered solar radiation and because the primary calibration of the β_{532} channel is continually updated. Calibration accuracy of all channels under all conditions is being assessed through ongoing validation activities including this study (e.g. the CALIPSO-CloudSat Validation Experiment, CC-VEX, during July and August 2006 [McCubbin et al., 2006].)

Level-2 data files provide the location and properties of atmospheric "features", identified at averaging scales corresponding to horizontal resolutions from 1/3 km to 80 km. A feature (or layer) is identified as a detectable departure from the expected profile for pure molecular backscattering (CALIPSO Level-2 Algorithm Theoretical Basis Document1, NASA, henceforth ATBD, 2007). In addition to vertical and horizontal location, CALIOP provides three fundamental pieces of information for each identified layer, corresponding to the vertical

1 Available at http://www-calipso.larc.nasa.gov/resources/project_documentation.php
integrals (over the layer) of each lidar channel. As discussed below, it is useful to express these
three basic measurements as layer-integrated values of β'_{532}, depolarization ratio, and color ratio
(see section 2.3 for definitions of these latter two quantities). In contrast to these directly
measured quantities, advanced products like layer optical depth require additional, often assumed
information and a retrieval algorithm. In order to introduce the retrieval methods discussed
herein, we now discuss two distinct approaches to the retrieval of optical depth.

2.2 Optical depth by forward iteration vs transmission methods

Layer optical depth, τ_{layer}, is a Level-2 CALIPSO product provided for each identified
feature. The standard retrieval method is an iterative, forward calculation that requires
knowledge of the extinction-to-backscatter ratio, S, of the scattering material within the layer
[ATBD, 2007]. Because S is, in general, uncertain and because the standard retrieval is highly
sensitive to errors in S (see, e.g., Stephens et al., [2001]), a preferred retrieval method is to use a
target of known reflectivity on the under side of the layer. In that case, the signal from this target
is reduced in direct proportion to the two-way transmissivity of laser light through the
intervening atmosphere. Such "transmission" methods [Young, 1995] tend to be simpler and
more accurate, largely because they do not require knowledge of S. Unfortunately, suitable lidar
targets are hard to find. The only established technique uses "clear air" - that is, portions of the
lidar profile assumed to be free of particles. For spaceborne lidar, this requires that a region of
particle-free air can be identified beneath the aerosol or cloud layer to be analyzed - a fairly
unusual situation except for thin cirrus. Moreover, 180° backscattering by air molecules is rather
weak at the mid-visible CALIOP wavelength (532 nm) and is much too weak to be useful at the
near-infrared wavelength (1064 nm). Optical depths obtained by the clear-air transmission
method will be included among the CALIOP Level-2 data products and, when available, these
will provide a valuable comparison to optical depths obtained by the standard forward iteration.
However, these data are too sparse to be used for constructing regional climatologies of lower
tropospheric clouds or aerosols.

Thus, a transmission technique that used a bright and commonly available lidar target
would be extremely useful. This paper examines two possible ways of using horizontally
extensive liquid water clouds for this purpose. Such clouds are common in the boundary layer.
The annual mean global low cloud coverage is approximately 40% [e.g. Rossow and Schiffer,
1999] and these clouds provide an enormous lidar signal at both CALIOP wavelengths.
Moreover, successful application of such techniques would provide data of direct relevance to
the problem of cloudy-sky DCF.

2.3 Transmission techniques using liquid water clouds

We describe these techniques in terms of products available in the CALIOP Level-2 files.
As mentioned above, Level-2 products include the altitude range and three directly measured
quantities for each layer. These consist of three extensive properties, corresponding to the three
lidar channels. It is convenient to represent these as one extensive property and two ratios - that
is, (i) layer integrated attenuated backscatter at 532 nm, γ'_{532}, (ii) layer integrated attenuated
depolarization ratio at 532 nm, δ'_{532}, which is the ratio of the perpendicular to the parallel
components of γ'_{532}, and (iii) layer integrated attenuated color ratio, χ', which is the ratio of
integrated attenuated backscatter at 1064 nm (γ'_{1064}) to 532 nm (γ'_{532}). The two ratios, δ'_{532} and

\[\text{Note, however, that retrievals of } \tau_{\text{layer}} \text{ are not provided in the version 1 data products used herein.}\]
χ', form the basis of the two retrieval techniques. Note that throughout this manuscript, and in accordance with the CALIPSO ATBD, primed quantities indicate that the property being considered has not been corrected for attenuation by any aerosol or cloud particles that might be present above the layer in question.

2.3.1 Depolarization ratio (DR) method

Hu et al. [2007a] showed that the values of γ' _532_ and δ' _532_ obtained for opaque water clouds can be used to deduce the optical depth (τ_{op,DR}) of overlying aerosol and/or cloud layers. As an initial test, Hu et al. [2007a] examined a case of thin cirrus overlying thick, marine boundary layer stratus and showed that τ_{op,DR} retrievals were consistent with retrievals from the traditional transmission technique in which particle-free air beneath the cirrus was used as the lidar target. This section reviews the nomenclature and physics of the DR technique.

An “opaque” cloud or aerosol layer is one that fully attenuates the lidar beam. For Nd:YAG-based backscatter lidars similar to CALIOP, complete attenuation of the signal occurs at single-scattering optical depths of ~3 [McGill et al. 2002]. Boundary layer clouds frequently exceed this optical depth such that opaque, low-level clouds are common in the CALIPSO data set. Let γ' _water_ represent, γ' _532_ for an opaque liquid water cloud and let γ' _water,unobstructed_ represent the theoretical value of γ' _water_ if it were viewed by CALIOP through an atmosphere with negligible non-molecular attenuation. (Level-2 layer products are corrected for clear-air molecular attenuation above the layer.) In addition, let γ' _water,SS_ represent the theoretical, single-scattering value of γ' _water_ - that is, the value that would be measured by a lidar with an infinitely narrow field of view such that only 180º backscattered photons, and no multiply-scattered photons, were detected. The relationship between these quantities was deduced by Platt et al. [1999] as follows,

\[
\begin{align*}
γ'_{\text{water,SS}} &= γ'_{\text{water}} \eta_c \\
γ'_{\text{water,SS,unobstructed}} &= γ'_{\text{water,unobstructed}} \eta_c = (2S_c)^{-1}
\end{align*}
\]

where \(\eta_c (\leq 1) \) is the cloud multiple scatter factor (which depends upon both cloud properties and lidar field of view) and \(S_c \) is the cloud extinction-to-backscatter ratio.

For liquid water clouds with droplets smaller than about 50 μm, \(S_c \) is well known and narrowly constrained to about 19 sr [Pinnick et al., 1983; O’Connor et al., 2004; Hu et al., 2006] at a wavelength of 532 nm, and O’Connor et al [2004] show negligible differences between \(S_c \) at 532 and 1064 nm. Recently, Hu et al. [2006; 2007b] used three-dimensional radiative transfer calculations to show that, for the geometry of a spaceborne lidar like CALIOP, the multiple scattering factor, \(\eta_c \), is strongly related to the cloud depolarization ratio, \(δ'_\text{water} \). This relationship can be approximated by,

\[
\eta_c \approx \left(\frac{1 - δ'_\text{water}}{1 + δ'_\text{water}} \right)^2
\]

A required assumption of the DR method is that \(δ'_\text{water} \) is negligibly affected by whatever aerosol or thin cloud layers lie between the liquid water cloud and the lidar instrument. If so, then the CALIOP data provide a measurement of \(γ'_{\text{water,SS}} \) (via Equations 1a and 2) which can be compared to either a theoretically or empirically determined value of \(γ'_{\text{water,SS,unobstructed}} \) (via Equation 1b) in order to deduce the amount of attenuation caused by the intervening atmosphere. Making use of the Beer-Lambert law governing transmission of light through an attenuating medium, we have:
\[\frac{\gamma_{\text{water,SS}}}{\gamma'_{\text{water,SS,unobstructed}}} = T^2 = \exp(-2\tau_{\text{top,DR}}) \]

where \(T^2 \) is the two-way transmittance of the non-molecular atmosphere above the cloud. Solving for optical depth gives,

\[\tau_{\text{top,DR}} = -\frac{1}{2} \ln \left(\frac{\gamma'_{\text{water,SS}}}{\gamma'_{\text{water,SS,unobstructed}}} \right) \]

Rearranging terms, we can express the DR formula for above-cloud optical depth (at 532 nm) in terms of CALIOP Level-2 products as follows,

\[\tau_{\text{top,DR}} = -\frac{1}{2} \ln \left(\frac{1 - \delta'_{\text{water}}}{1 + \delta'_{\text{water}}} \right) \]

\[= -\frac{1}{2} \ln \left(2S_c \gamma'_{\text{water}} \frac{1 - \delta'_{\text{water}}}{1 + \delta'_{\text{water}}} \right) \]

Note that \(\gamma'_{\text{water,SS,unobstructed}} \) acts as a calibration constant for the DR method. The theoretical or expected value of this constant, as shown by Equations (1b) and (5b), is \((2S_c)^{-1}\), or 0.026 sr\(^{-1}\) if we set \(S_c \) to its observed value of 19 sr (see Table 1). Using this value to retrieve \(\tau_{\text{top,DR}} \), as in Equation (5b), relies on (i) the physical accuracy of the Platt relationship (Eqn 1b) and of the assumed value of \(S_c \), (ii) the accuracy of the lidar calibration at 532 nm (both the parallel and perpendicular channels), and (iii) the accurate correction for molecular attenuation above the cloud in the Level-2 cloud layer products. Alternately, \(\gamma'_{\text{water,SS,unobstructed}} \) can be determined empirically, as described in Section 2.5.2, by assembling data from opaque, liquid water clouds with no overlying clouds or aerosols.

2.3.2 Color ratio (CR) method

We introduce a new method for identifying and quantifying fine-mode aerosol layers overlying liquid water clouds. Because it uses data on the attenuated color ratio, \(\chi' \), we dub this the CR method. In this section we present the nomenclature and physical basis of this method.

The size distribution of aerosol mass in the atmosphere generally consists of two modes - a mechanically produced coarse mode and a fine mode produced by combustion and/or gas-to-particle conversion [Whitby et al., 1972]. Over the visible to near-IR wavelength region, fine-mode aerosols exhibit optical extinction that is strongly wavelength dependent, whereas coarse-mode aerosols and cloud particles exhibit little or no wavelength dependence [van de Hulst, 1981]. To represent this optical behavior, we define an Ångström exponent [Ångström, 1929], \(\hat{\alpha} \), in terms of the two CALIOP wavelengths, i.e.

\[\hat{\alpha} = -\ln \left(\frac{\tau_{532}}{\tau_{1064}} \right) \]
where \(\tau \) represents optical depth at wavelength \(i \). For fine-mode aerosols, which typically have volume equivalent diameters in the range 100-400 nm, \(\alpha \) is in the range 1.5-3 (e.g. Seinfeld and Pandis [1998]).

Let \(\chi' \) represent \(\chi' \) for a liquid water cloud and let \(\chi'_{\text{water,unobstructed}} \) represent the value of \(\chi'_{\text{water}} \) if viewed by CALIOP through an atmosphere with negligible non-molecular attenuation. From the above discussion it follows that the presence of fine-mode aerosol overlying a cloud will cause stronger attenuation of the reflected laser light at 532 nm than at 1064 nm which, in turn, will cause an increase in \(\chi'_{\text{water}} \). In contrast, thin clouds or coarse-mode aerosol above the cloud will cause little or no change in \(\chi'_{\text{water}} \). Therefore, \(\chi'_{\text{water}} \) can be used to identify the presence of fine-mode aerosol above clouds.

The increase in \(\chi'_{\text{water}} \) caused by overlying aerosol is a function of the aerosol optical depth and the aerosol Ångström exponent. For each of the two wavelengths, the signal from the cloud in terms of integrated attenuated backscatter, \(\gamma'_{\text{water}} \), will be reduced by the two-way transmittance of the atmosphere (\(T_{532} \) and \(T_{1064} \) for the two CALIOP wavelengths). Therefore, invoking the Beer-Lambert law as in Eqn (3), we see that the observed cloud color ratio divided by the unobstructed cloud color ratio will be,

\[
\frac{\chi'_{\text{water}}}{\chi'_{\text{water,unobstructed}}} = \left(\frac{T_{1064}}{T_{532}} \right)^2 \frac{\exp(-2\tau_{\text{top,1064}})}{\exp(-2\tau_{\text{top,532}})}
\]

Solving for \(\tau_{\text{top,532}} \) and renaming this \(\tau_{\text{top,CR}} \) for consistency with Equation (4) leads to the formula for overlying optical depth at 532 nm from the CR method:

\[
\tau_{\text{top,CR}} = \frac{1}{2} \ln \left(\frac{\chi'_{\text{water}}}{\chi'_{\text{water,unobstructed}}} \right) = \frac{1}{1 - 2^{-\alpha}}
\]

Just as \(\gamma'_{\text{water,SS,unobstructed}} \) acts as a calibration constant for the DR method, \(\chi'_{\text{water,unobstructed}} \) is a calibration constant for the CR method. The theoretical value of this constant is 1. Using this value to retrieve \(\tau_{\text{top,CR}} \) relies on (i) the physical assumption that both 180° backscattering and multiple scattering exhibit no wavelength dependence for liquid water clouds, (ii) the accuracy of the lidar calibration (1064 nm calibration with respect to that at 532 nm), and (iii) the accurate correction for molecular attenuation above the cloud in the Level-2 cloud layer products.

Alternately, these assumptions can be circumvented by determining \(\chi'_{\text{water,unobstructed}} \) empirically, as described in Section 2.5.2.

2.3.3 Combination of the DR and CR method to estimate Ångström exponent

To recap, the DR method requires opaque target clouds, responds to a reduction in \(\gamma'_{\text{water,SS}} \) compared to the value for unobstructed clouds, and retrieves above-cloud optical depth regardless of the nature of the overlying material. The CR method does not necessarily require opaque clouds, responds to an increase in \(\chi'_{\text{water}} \) compared to the value for unobstructed clouds, and is primarily sensitivity to fine-mode aerosols.

To retrieve above-cloud optical depth, the CR method requires a priori knowledge of \(\alpha \). In situations where the aerosol type is well known (e.g. the African biomass burning cases considered here), \(\alpha \) may be well constrained. In general, however, this is not the case, especially where the aerosol consists of an unknown mixture of fine and coarse components. Thus, it may be useful to combine the two techniques wherein the CR method identifies the presence of fine-

3 Note that the CR method does not necessarily require opaque clouds, as does the DR method.
mode aerosol, the DR method determines aerosol optical depth, and, using this as an input, the CR method determines the wavelength dependence of aerosol optical depth. Rearranging Equation (8), the expression for \hat{a} is,

$$
\hat{a} = -\frac{1}{\ln(2)} \ln \left(\frac{1}{2\tau_{\text{top},\text{DR}}} \ln \left[\frac{\chi'_{\text{water}}}{\chi'_{\text{water,unobstructed}}} \right] \right)
$$

(9)

Section 3.2 describes application of Eqn. 9 for determination of the Ångström exponent using the combination of the DR and CR methods.

2.4 Data selection

Our analysis is based on daytime and nighttime CALIOP Level-2, Version 1, 5-km resolution cloud layer products over the eastern Atlantic Ocean (30°S-30°N, 40°W-40°E) during the six month period from June-November 2006. Version 1 is the first public release of Level-2 data and does not yet contain advanced retrieval products such as aerosol or cloud optical depth. It does contain basic retrievals of layer top and bottom altitudes, vertical integrals of the three lidar channels, and layer categorization as either cloud or aerosol. We select lower tropospheric clouds (cloud top below 3 km) and confine our analysis to the Tropics in order to assure that all target clouds are composed of liquid water.

To investigate the properties of unobstructed cloud layers, we select a subset of the above data from a region (20-30°S, 0-10°E) and time (November 2006) when little or no overlying aerosol is expected, and we remove all cases in which the Level-2 data indicate overlying cloud layers. This "pristine" data subset is used to develop empirical estimates of the calibration constants - $\chi'_{\text{water,unobstructed}}$ and $\gamma'_{\text{water,SS,unobstructed}}$ - and their uncertainties, as described in Section 2.5.2.

To compare the two methods of retrieving τ_{top}, we focus on a region (5-15°S, 0-10°E) and time (August, 2006) when maximum biomass burning aerosol was observed within our study area. According to Klein and Hartmann [1993], mean low cloud cover for this region in August ranges from 60 to 75%. Results from this "polluted" data subset are presented in Section 3.1.

Implementing either the CR or DR method requires the identification of suitable cloud targets. Thin or patchy clouds, for example, would violate a basic assumption of the DR method and might cause problems for the CR method as well. These can be effectively identified and removed using Level-1 data; however, incorporating Level-1 data into our regional- and seasonal-scale analysis would require approximately 50 times the computational resources we have currently dedicated to this project. Therefore, we have developed screening criteria that use 5-km Level-2 data only. Application of these criteria to unobstructed clouds (Section 2.5.2) allows us to evaluate their effectiveness. Screening criteria available in the Level-2 product files include the Cloud-Aerosol-Discrimination (CAD) Score and the reported uncertainties in the three basic layer properties: γ_{water}, δ_{water}, and χ_{water}.

The CAD algorithm [ATBD, 2007; Liu et al. 2004] separates clouds and aerosols based on empirically determined, altitude-dependent histograms of their optical properties (backscatter intensity and its spectral dependence). If the observed properties of a layer fall in a region of parameter space where the histograms overlap, the more likely classification is selected and the CAD Score indicates the probability that the classification is correct. Many layers fall outside this overlap region and, thus, receive a CAD Score of magnitude 100 (complete confidence). In this study cloud layers are selected as reflectivity targets only when the reported CAD score is 90 or higher. These target clouds are used to deduce overlying optical depth such that our method
does not involve the Level-2 aerosol layer products. Note that the CAD score in Version 1 is not necessarily an accurate confidence estimate since the histograms of cloud and aerosol properties are based on pre-launch data from airborne lidar. These are currently being revised in light of experience with actual CALIOP data.

Level-2 reported uncertainties in γ_{water}, δ_{water}, and χ_{water} reflect random shot noise estimated for each 5-km retrieval block, as described by Liu et al. [2006]. We select target clouds only if the relative uncertainty in all three parameters is less than a threshold. For convenience, we define this threshold in terms of Signal-to-Noise (SNR) - the inverse of relative uncertainty. We find that the relative uncertainty of δ_{water} is almost always the largest of the three such that the screening criterion primarily operates on this parameter. Results are highly sensitive to this threshold (see Sections 2.5.2 and 3.1), as will be shown by compare results for SNR thresholds of 2 (weak screening) and 5 (more strict screening).

2.5 Algorithm parameter estimation and uncertainties

Uncertainties are estimated using the standard method of propagation of errors:

$$
\delta F = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial F}{\partial x_i} \delta x_i \right)^2}
$$

(10)

where, F represents $\tau_{\text{top,DR}}$, $\tau_{\text{top,CR}}$ or $\hat{\alpha}$ derived from Eqns. (5), (8) and (9) respectively, x_i is the i^{th} independent variable of the function F, and n is the number of variables. In this study all uncertainties are given at the 1-σ level.

Each method of retrieving τ_{top} and its uncertainty requires knowledge of three parameters and their uncertainties. As shown in Table 1, these parameters divide into three categories: CALIOP Level-2 data, empirically determined calibration constants, and the Ångström exponent, $\hat{\alpha}$, which appears in the CR method as an a priori constant. (The calibration constants can also be determined a priori; however, that is not our approach.) Reported uncertainties in Level-2 data involve random error and are discussed in Section 2.5.1. Uncertainties in calibration constants and $\hat{\alpha}$ involve systematic error and are discussed in Section 2.5.2.

2.5.1. Level-2 data and random error

The DR method (Equation 5) involves two Level-2 CALIOP variables γ_{water} and δ_{water} while the CR method involves just one, χ_{water}. In all three cases, parameter uncertainties are provided in the data files. The reported uncertainties are calculated subsequent to averaging the 15-shots within each 5-km retrieval block and, therefore, do not provide information on sub-5km variability. What they do provide are estimates of random, shot-noise error specific to each 5-km block [Liu et al., 2006]. Because the source of uncertainty is random error, it can be reduced by further averaging.

To determine the random error in $\tau_{\text{top,DR}}$ we propagate uncertainties in γ_{water} and δ_{water} using Eqn. (10) applied to Eqn. (5a); similarly, to determine random error in $\tau_{\text{top,CR}}$, we propagate uncertainties in χ_{water} using Eqn. (10) applied to Eqn. (8). For the month (August, 2006) and region (5-15° S, 0-10° E) of maximum biomass burning influence, the median random error in $\tau_{\text{top,DR}}$ is 0.08 during the night and 0.12 during the day. Uncertainties in both γ_{water} and δ_{water} contribute significantly to these errors but in general (and for both day and night) the error contribution from the polarization ratio δ_{water} outweighs that from γ_{water} by roughly a factor of two. For the same month and region, the median random error in $\tau_{\text{top,CR}}$ is 0.05 during the night.
and 0.08 during the day. Thus, the random errors for the CR method are seen to be similar, but smaller by a factor of about two-thirds. This reflects the common error source associated with the 532 nm channel and the fact that the 1064 nm channel has much smaller random error than the depolarization channel.

2.5.2. Calibration constants and systematic error

Unobstructed low clouds can be found on almost every orbit and are readily identified by the CALIOP feature-finder. They offer an attractive approach to determining the calibration constants required in the retrieval of τ_{top} for two reasons. First, this approach should largely compensate for any errors in the calibration of the three CALIOP channels. Second, it provides an empirical means of assessing the detection limit and the systematic error of the optical depth retrievals.

To generate a large sample of unobstructed clouds, we select a month of data from a remote 10° x 10° region and we screen these data for the occurrence of high clouds. The resulting statistics on the calibration constants for each method are shown in Table 2 and Figure 3. We use this exercise as well to test the effect of two different noise-based screening criteria for target clouds - a relatively weak criterion (SNR > 2, corresponding to relative error < 0.5) and a stronger criterion (SNR > 5, or relative error < 0.2). (See Section 2.4 for further details.)

Day versus Night: Table 2 shows that the mean values of both calibration constants differ substantially between day and night. These differences likely indicate uncorrected drift in lidar calibration during the day associated with solar heating of the instrument. Improving the daytime calibration of all three CALIOP channels is an ongoing priority for the CALIPSO mission. For present purposes, we accept these differences as real and thereby apply separate daytime and nighttime calibration constants to estimate τ_{top}.

SNR test: More stringent data screening (SNR 5 versus SNR 2) causes a 6% reduction of sample number at night (from 1223 to 1155) and a 23% reduction during the day (from 645 to 498), indicating that the daytime data as a whole is much closer to the noise threshold. More stringent screening does not cause a dramatic shift in the mean values of any of the calibration constants, nor does it cause a substantial change in variability or detection limit for the CR method. On the other hand, there is a dramatic effect on both variability and detection limit for the DR method, especially during the day. The detection limit (DL) presented in Table 2 is the minimum optical depth, τ_{top}, that can be detected with 99% confidence at 5-km resolution given the observed variability for unobstructed clouds on the assumption that this variability is normally distributed. (For the CR method, calculating DL requires an assumed value of σ, which was taken as 2.0.) More stringent screening causes a substantial reduction in the standard deviation of $\gamma'_{\text{water,SS,unobstructed}}$ (DR method), which translates into a substantially lower DL. Specifically, DL for $\tau_{\text{top,DR}}$ drops from 0.25 to 0.15 at night and from 0.31 to 0.11 during the day.

The DR method is much more sensitive to noise-based screening for two reasons. First, the depolarization parameter, δ'_{water}, has the highest noise level (in a relative sense) of the three parameters used in the retrievals. Second, high noise levels appear to be associated in many cases with thin and/or patchy clouds. Such clouds, in turn, give approximately the same color ratio as thick, continuous clouds but give a systematically lower value of $\gamma'_{\text{water,SS}}$. Note in Figure 3 that the DR distributions are strongly skewed to the left of the mean and that this tail is much more pronounced for the lower SNR threshold. Thus, the effect on DR calibration of admitting higher-noise samples is to cause a slight downward bias in the mean and a large increase in variability, which, in turn, effects the detection limit. This issue of noise-based screening will be
discussed further in relation to the optical depth comparison (Figure 4 and Section 3.1). For now, we note that the DR method, when based on 5-km Level-2 CALIOP data as herein, could be substantially improved if there were Level-2 parameters that provided explicit information on sub-5-km cloud variability.

DR versus CR: As shown in Table 2, detection limits for the CR method are lower than for the DR method under all conditions and are much less affected by the choice of noise-based screening. In this sense, the CR method appears to be a more sensitive and robust retrieval technique. However, this statement applies only to the retrieval of fine-mode aerosol optical depth, since the CR method (unlike the DR method) has little or no sensitivity to coarse-mode aerosol or to overlying cloud layers.

Ångström exponent: The final issue concerning systematic error involves the value of α which must be assumed a priori in the retrieval of $\tau_{\text{top,CR}}$ (Eq. 8). Based on sunphotometer and in-situ measurements of biomass burning aerosols over Southern Africa and South America [Eck et al. 1999, 2001, 2003, Holben et al. 2001, Chand et al., 2006], we assume a best-guess value of 2.0 with an uncertainty of +/-0.4, as shown in Table 1. This assumption will be tested in two ways (see Section 3): by comparing optical depths derived from the DR and CR methods and by using the combined approach to estimate, rather than assume, α.

3. Results

3.1 Comparison of CR and DR aerosol optical depths

Figure 4 shows a comparison of $\tau_{\text{top,DR}}$ and $\tau_{\text{top,CR}}$ for the most polluted region (5-15°S, 0-10°E) and month (August 2006) of our study domain. Error bars represent 1-sigma uncertainties, calculated as described in Section 2.5. For clarity, error bars are shown for every 30th data point. The left and right panels on Figure 4 show nighttime and daytime data, respectively. The top and bottom panels show results for data screening at SNR>2 and SNR>5, respectively, as discussed in Sections 2.4 and 2.5.2. Data where either the DR or CR method indicates values below the detection limit (see Section 2.5.2 and Table 2) are not shown. The dashed lines show lines of constant Ångström exponent, which is a unique function of the ratio $\tau_{\text{top,CR}}/\tau_{\text{top,DR}}$ as seen by substitution of Eqn 8 for $\tau_{\text{top,CR}}$ into (9), i.e.

$$
\alpha = \frac{1}{\ln(2)} \ln \left(1 - \frac{3\tau_{\text{top,CR}}}{4\tau_{\text{top,DR}}} \right)
$$

(11)

Figure 4 demonstrates substantial differences between the two methods in terms of the effects of data screening. When the weaker, SNR>2 screening threshold is used (top panels), the detection limit for the DR method becomes quite high (around 0.3) such that a great many points at low optical depth are excluded. On the other hand, when the stronger, SNR>5 screening threshold is used (bottom panels), nearly all the retrievals at high optical depth (greater than about 0.7) are excluded. This second observation is also attributable to the DR method, although it requires some explanation. Light attenuation associated with a thick, overlying aerosol layer causes a large reduction in the magnitude of γ_{water}. As a result, the signal for the DR method becomes much smaller relative to the noise. With strong SNR screening, these high optical depth points are then excluded. The effect on the CR signal is much less pronounced.

In all four panels, most of the data points are located close to the line indicative of $\alpha = 2$. This tends to justify our choice of $\alpha = 2$ in the CR method and indicates good overall agreement for determining the optical depth of biomass burning aerosol. The upper panels, however, show a few cases where $\tau_{\text{top,DR}}$ is much higher than $\tau_{\text{top,CR}}$. There are two possible causes for these points. On the one hand, they could represent overlying layers exhibiting similar attenuation at
532 nm and 1064 nm - for example, optically thin cloud or dust particles. On the other hand, as noted in Section 2.5.2, thin or broken target clouds tend to produce a positive artifact in the DR method and the weaker screening threshold tends to accept more of this type of cloud target. Thus, the outlier points in the top panels could also represent artificially amplified DR retrievals associated with thin or broken clouds. A screening criterion based explicitly on sub-5-km variability would likely resolve this problem, and a diagnostic parameter containing this information would make a very useful addition to the set of Level-2 products.

Overall, the comparison shown in Figure 4 confirms previous suggestions that substantial aerosol optical depths (i.e. greater than 0.3) occur quite commonly over marine stratiform clouds off the coast of Southern Africa during the biomass burning season. Indeed, the CALIPSO observations indicate that above-cloud aerosol optical depths in this region frequently exceed 0.6. In the next subsection we examine the geographical and seasonal distribution of such elevated aerosol layers.

3.2 Seasonal and geographical distribution of elevated aerosol layers

Figure 5 displays the geographic distribution and optical thickness of optically thick fine-mode aerosol layers ($\tau_{\text{top,CR}} > 0.3$) detected using the CR method over the entire eastern Atlantic Ocean for each of the six months from June to November 2006. Keeping in mind that adjacent orbit tracks are days or even weeks apart in time, these maps highlight the considerable temporal variability in the optical properties at any location, underscoring the importance of meteorological variability in determining the location and thickness of aerosol layers over the ocean to the west of Southern Africa. Nevertheless, they show the seasonal cycle of Southern African biomass burning [Ito et al., 2007] in that there is a much greater prevalence of optically thick, above-cloud aerosol layers during August and September than during other months. It is also impressive that these layers can be seen to extend over 4000 km downstream of the source regions. Detecting these extensive layers using clear-sky algorithms from passive satellite sensors would be hampered by the persistent cloud cover in this region and by the difficulties associated with screening out cloudy pixels.

Figure 6 shows the Ångström exponent, α, for each suitable CALIPSO overpass during August 2006. The map indicates that $\alpha = 2.0$ is a reasonable first approximation, especially for the region of most intense biomass burning aerosol, but that lower Ångström exponents (indicating larger particles) are found along an equatorial belt stretching across most of the domain. The cause of this apparent geographical variation in Ångström exponent is not presently known, but may be indicative of Saharan dust influence or cirrus clouds.

4. Conclusions and Recommendations

A new approach that uses color ratio (CR) from spaceborne lidar is applied to the detection and characterization of aerosol layers overlying low clouds. The optical depth retrievals from this approach are compared with a previous method (the depolarization ratio method DR, Hu et al., [2007a]), using CALIPSO Level-2 data off the coast of Southern Africa, where biomass burning aerosols were frequently advected over marine stratiform clouds. Results indicate good agreement within estimated uncertainties. The CR method is most sensitive to fine-mode aerosols and essentially insensitive to thin clouds and coarse-mode dust. Because anthropogenic aerosol is predominantly found in the fine mode, the CR method can be used to identify situations where cloudy-sky anthropogenic forcing may be occurring. A combination of the DR and CR methods is shown to yield important information on the aerosol size (Ångström
exponent). We demonstrate the capability of the CR method to detect elevated aerosol layers associated with biomass burning using six months of data from the Southeast Atlantic. Layers with aerosol optical depth greater than 0.3 are commonly observed up to several thousand kilometers away from the source region over the Atlantic Ocean. The most geographically extensive and highest aerosol optical depths are observed during August and September 2006, with very few layers detected during November, 2006.

The prevalence and optical thickness of these aerosol layers above low marine boundary layer clouds have important implications for the regional radiation budget over the subtropical and tropical eastern Atlantic Ocean. Additionally, given that these aerosols are strongly absorbing [Leahy et al. 2007] there are potentially important consequences for the atmospheric heating rates and lower atmospheric stability which may impact the formation of low clouds. Such layers present a challenge as they cannot be detected using conventional retrieval methods such as those using surface-based sensors, or those using clear sky passive satellite retrievals.

Future studies are needed (1) to study how the calibration of the two methods vary with season and latitude and for land vs ocean and (2) to combine these retrievals with MODIS-based estimates of the underlying cloud albedo and in-situ derived single scattering albedo in order to estimate the cloudy-sky DCF over the Southeast Atlantic. Such estimates ought to provide a useful constraint for the evaluation of DCF in climate models.

Quantitative implementation of these retrieval methods based on Level 2, 5-km products could be improved if the data files included information on horizontal homogeneity of the cloud layer. For example, providing information on cloud fraction at 1 km and at single-shot resolution would allow patchy clouds to be identified and eliminated. This, in turn, would improve the ability to screen for suitable cloud targets, which is a problem in our current approach, especially for the DR method.

We have demonstrated that both methods can be "self-calibrated" using observations from unobstructed target clouds. Our analysis of one month of data from a remote oceanic region found substantially different calibration constants during the daytime and nighttime. One can anticipate that future implementations would benefit from studying orbit-to-orbit variations in the calibration constants and even latitudinal variations within individual orbits. Such studies should be possible given the prevalence of unobstructed low clouds around the globe and the ability of the CALIOP feature-finder to identify these calibration targets.

Acknowledgment This work was supported by University of Washington startup funds, NASA's CALIPSO Mission (contract NAS1-99105), the National Science Foundation (grants ATM-0601177 and ATM-0205198), and the NASA Goddard Earth Sciences and Technology Program.
References

Ångström, A. (1929), On the atmospheric transmission of Sun radiation and on dust in the air, Geogr. Ann., 11, 156 - 166.

Table 1. Data symbols, sources and uncertainties for parameters used to retrieve τ_{top} by both CR and DR methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameter</th>
<th>Source</th>
<th>Value and Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR Method</td>
<td>γ^*_{water}</td>
<td>Level-2 data</td>
<td>variable</td>
</tr>
<tr>
<td>DR Method</td>
<td>d^*_{water}</td>
<td>Level-2 data</td>
<td>Variable</td>
</tr>
<tr>
<td>DR Method</td>
<td>$[\gamma^*_{\text{water,SS,unobstructed}}]^1$</td>
<td>[a priori]2</td>
<td>[0.026 ± 0.0015]</td>
</tr>
<tr>
<td>DR Method</td>
<td>$\gamma^*_{\text{water,SS,unobstructed}}$</td>
<td>Empirical3</td>
<td>see Table 2</td>
</tr>
<tr>
<td>DR Method</td>
<td>χ^*_{water}</td>
<td>Level-2 data</td>
<td>Variable</td>
</tr>
<tr>
<td>DR Method</td>
<td>$[\chi^*_{\text{water,unobstructed}}]^1$</td>
<td>[a priori]4</td>
<td>[1.0 ± 0.15]</td>
</tr>
<tr>
<td>DR Method</td>
<td>$\chi^*_{\text{water,unobstructed}}$</td>
<td>Empirical3</td>
<td>see Table 2</td>
</tr>
<tr>
<td>DR Method</td>
<td>$[\hat{a}]$</td>
<td>[a priori]</td>
<td>[2.0 ± 0.4]</td>
</tr>
</tbody>
</table>

1. Not used in this study, but included for completeness
2. See Section 2.3.1
3. This work
4. See Section 2.3.2
Table 2: Key parameters in the DR and CR methods determined using unobstructed low clouds (tops < 3 km) over a pristine region of the eastern Atlantic Ocean (30-20°S, 0-10°E) for the month of November 2006. The calculations are made using signal to noise ratio (SNR=2, 5) of unobstructed χ_{water}, γ_{water} and δ_{water}. Means, percentiles (5th, 50th and 95th) and standard deviations (SD) of the distributions of unobstructed attenuated backscatter $\gamma'_{\text{water,SS,unobstructed}}$ and unobstructed color ratio $\chi'_{\text{water,unobstructed}}$ are given for day and night separately. Based upon the distributions of unobstructed properties, a detection limit (DL) can be determined for the DR and CR methods. The DL is the critical value of $\gamma'_{\text{water,SS}}$ or χ'_{water} for which we reject the hypothesis (at the 99% level) that the air above the cloud contains no aerosol layer. The MDL is calculated assuming normal statistics as $DL_{DR} = \bar{x} - 2.33\sigma$ (DR method) and $DL_{CR} = \bar{x} + 2.33\sigma$ (CR method) where 2.33 represents the critical t-value for the respective degrees of freedom during day and night ($N_{\text{day_SNR2}} = 645; N_{\text{night_SNR2}} = 1223; N_{\text{day_SNR5}} = 498; N_{\text{night_SNR5}} = 1155$). Thus, for the DR method, if $\gamma'_{\text{water,SS}} < DL_{DR}$ we classify the cloud as having an elevated aerosol layer above (for the CR method χ'_{water} must exceed DL_{CR}). The corresponding MD of AOD (τ) is also given for both methods.

<table>
<thead>
<tr>
<th>Time</th>
<th>$\gamma'_{\text{water,SS,unobstructed}}$</th>
<th>$\chi'_{\text{water,unobstructed}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (5th, 50th, 95th%)</td>
<td>SD</td>
</tr>
<tr>
<td>SNR=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>0.019 (0.008, 0.02, 0.023)</td>
<td>0.004</td>
</tr>
<tr>
<td>Night</td>
<td>0.029 (0.016, 0.03, 0.034)</td>
<td>0.005</td>
</tr>
<tr>
<td>SNR=5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>0.021 (0.018, 0.021, 0.023)</td>
<td>0.002</td>
</tr>
<tr>
<td>Night</td>
<td>0.030 (0.023, 0.030, 0.034)</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1 CALIOP total attenuated backscattered signal at 532 nm (units sr$^{-1}$ km$^{-1}$) observed from 01:17:53.3652 UTC to 01:31:12.3412 UTC on August 13th, 2006. Geographical locations of the observation are shown by the altitude, latitude (Lat) and longitude (Lon). Strong backscattering (>0.001 sr$^{-1}$ km$^{-1}$) is associated with aerosol and/or cloud layers (as indicated by arrows). Low level clouds (tops 1-1.5 km altitude) are covered by an extensive aerosol layer from approximately 2-18°S. The aerosol layer extends up to almost 5 km altitude. Such a situation occurs very frequently during the biomass burning season (particularly August and September) over the west coast of Africa between the equator and 20°S.

Figure 2 Map showing locations where CALIOP observes low level (< 3 km) clouds as determined by the Level-2 cloud mask (CAD score > 90, SNR>2) for 1-16 August, 2006 (left) and 16-30 November 2006 (right). The color indicates the height of the top of the cloud layers. The CALIPSO repeat the ground track sampling approximately in 16 days so that the map serves as a qualitative demonstration of the prevalence of low clouds over the eastern Atlantic Ocean.

Figure 3 Histograms showing the distribution of $\gamma'_{water,SS,unobstructed}$ (panels a, c, e and g) and $\chi'_{water,unobstructed}$ (panels b, d, f, and h) as determined using low cloud layers (tops < 3 km) unobstructed by cloud layers above 3 km in a relatively pristine region (20-30°S, 0-10°E) during November 2006. The upper and lower four panels are for SNR>2 and SNR>5, respectively. Similarly, the left and right four panels are for night and day time, respectively. Layers with a CAD score ≤ 90 are excluded (see text). For more details and a statistical summary of these distributions see Table 1 and Table 2.
Figure 4: Comparison of aerosol optical thickness calculated using CR method ($\tau_{\text{top,CR}}$) with that from the DR method ($\tau_{\text{top,DR}}$) for nighttime (left) and daytime (right) CALIOP observations for the region 5-15°S, 0-10°E during August 2006. Using the signal to noise ratio (SNR) of unobstructed χ'_{water}, γ'_{water} and δ'_{water}, the top two and bottom two panels are made when SNR>2 and SNR>5, respectively. The error bars show the 1-σ uncertainties for the respective methods, which for clarity reasons are plotted only for a randomly-selected 3% of the data points. Data where either the DR or CR method indicates values below the detection limit (see Sections 2.5.1 and 2.5.2) are not shown. The dashed lines show the Ångström exponent α from Eqn. 11.

Figure 5: Maps showing the geographical distribution and optical thickness (colors) $\tau_{\text{top,CR}}$ of optically thick ($\tau_{\text{top,CR}} > 0.3$) aerosol layers overlying clouds from the CR method for the months of June-November 2006. All available day and night time data (CAD>90, SNR>2) are used as per Table 2.

Figure 6: Map showing the Ångström exponent α (colors), derived using Eqn. 9, of elevated aerosol layers above low clouds during August, 2006. Both day and night time data are used in this plot. The box shows the area with highest $\tau_{\text{top,CR}}$ and α just downwind of the major biomass burning region.
Figure 1

[Image of a map showing aerosols and clouds with labeled axes for latitude and longitude, and altitude.]
Figure 2

August 1-16, 2006

November 16-30, 2006
Figure 3

(a) Number of occurrence
(b) Number of occurrence
(c) Number of occurrence
(d) Number of occurrence

(e) Number of occurrence
(f) Number of occurrence
(g) Number of occurrence
(h) Number of occurrence
Figure 4
Figure 5

(a) June (b) July (c) August
(d) September (e) October (f) November

Longitude Latitude

-40 -30 -20 0 20 30

-30 -20 -10 0 10 20 30
Figure 6: