The Pre-VOCA Model Assessment

Matt Wyant
Roberto Mechoso
Rob Wood
Chris Bretherton

with help from
participating modeling groups,
Dave Leon (U Wyo), Rhea George (UW)
Southeast Pacific Climate - A Modeling Challenge

World’s most persistent subtropical low cloud regime.

The Southeast Pacific Climate System

SST, clouds poorly simulated by GCMs

Cloud-aerosol interaction

MODIS cloud droplet conc.
PreVOCA

GOAL: Assess the forecast skill and biases of global/regional model simulations of SE Pacific boundary-layer clouds and aerosols on diurnal and longer timescales.

WHAT? Daily hindcasts for October 2006 over the SE Pacific.

WHY? Learn how to optimally use REx, satellite and cruise data for model assessment and improvement.

WHO? 14 modeling groups using regional and global models, including climate models run in forecast mode.

WHEN? Data submission is complete; analysis in progress, journal submission early 2009.

www.atmos.washington.edu/~robwood/PreVOCA/index.html
<table>
<thead>
<tr>
<th>Model</th>
<th>Levels</th>
<th>Resolution [km] (inner domain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRL COAMPS</td>
<td>42</td>
<td>81 (27)</td>
</tr>
<tr>
<td>COLA RSM</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>IPRC Reg_CM (IRAM)</td>
<td>28</td>
<td>~25</td>
</tr>
<tr>
<td>LMDZ</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>PNNL (WRF-Chem)</td>
<td>44</td>
<td>45 (15)</td>
</tr>
<tr>
<td>UCLA (WRF)</td>
<td>34</td>
<td>45 (15)</td>
</tr>
<tr>
<td>U. Chile (WRF)</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>ECMWF oper. 3-12h forecast</td>
<td>91</td>
<td>~25</td>
</tr>
<tr>
<td>ECMWF 5-day forecast</td>
<td>91</td>
<td>~40</td>
</tr>
<tr>
<td>ECMWF coupled fcst ensemble</td>
<td>62</td>
<td>~125</td>
</tr>
<tr>
<td>GMAO GEOS-5 DAS</td>
<td>72</td>
<td>~56</td>
</tr>
<tr>
<td>JMA 24-30h forecast</td>
<td>60</td>
<td>~60</td>
</tr>
<tr>
<td>NCEP oper. 12-36h forecast</td>
<td>64</td>
<td>~38</td>
</tr>
<tr>
<td>UKMO oper. 12-36h forecast</td>
<td>50</td>
<td>~40</td>
</tr>
<tr>
<td>NCAR CAM3.5/6</td>
<td>26/30</td>
<td>250</td>
</tr>
<tr>
<td>GFDL</td>
<td>24</td>
<td>250</td>
</tr>
</tbody>
</table>
PreVOCA observational data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISCCP FD</td>
<td>Radiative fluxes at surface, TOA</td>
</tr>
<tr>
<td>TMI</td>
<td>LWP, WVP</td>
</tr>
<tr>
<td>AMSR</td>
<td>LWP, WVP</td>
</tr>
<tr>
<td>MODIS</td>
<td>Cloud fraction, optical depth, droplet size, cloud-top height</td>
</tr>
<tr>
<td>NOAA ESRL Stratus Cruises</td>
<td>Temperature, moisture soundings, surface fluxes, drizzle properties, aerosols</td>
</tr>
<tr>
<td>QuikSCAT</td>
<td>Ocean surface winds</td>
</tr>
<tr>
<td>NCEP Reanalysis</td>
<td>Vertical velocity</td>
</tr>
<tr>
<td>CALIPSO</td>
<td>Cloud top height</td>
</tr>
<tr>
<td>COSMIC</td>
<td>Temperature soundings</td>
</tr>
<tr>
<td>CloudSat</td>
<td>Drizzle properties</td>
</tr>
</tbody>
</table>
Analysis

PreVOCA analysis focus:
Cloud/PBL structure and their dynamical setting.

Shown here: Monthly mean
Also analyzed: Diurnal cycle, subsidence waves
Soon: Synoptic variability
Oct 2006 10 m vector wind (m s$^{-1}$) - models agree fairly well
Omega at 850 hPa (Pa s\(^{-1}\)) - also not too bad
Liquid Water Path (g m$^{-2}$)

- TMI Observed
- COAMPS
- IPRC
- ECMWF OPER
- GFDL
20S 85W sounding comparisons

Regional

Global forecast

Climate

θ

q_v
Mean Boundary Layer Depth Along 20S
C130 RF03 (21 Oct 2008) - ‘typical’

Sloped inversion: 1000m (70W) -1600m (85W), solid Sc
UKMO global forecast model performance

...does a creditable job at representing the Sc.
Conclusions from PreVOCA

• Much scatter in PBL/Sc properties, esp. among the regional models: an issue for aerosol-cloud interaction?
• UKMO and ECMWF models perform best overall, correctly capturing most geographic variations in PBL depth/structure and cloud cover.
• Sharpness of inversion challenges even the highest-resolution models.
• Cloud variability and aerosol feedbacks are cutting-edge challenges to the best global and regional models.
• VOCALS SE Pacific datasets are wonderful tools for assessing and improving cloud and aerosol simulations.
From PreVOCA to VOCA...

• VOCA: Similar protocol to preVOCA using REx observations from 15 Oct -15 Nov 2008

• More focus on chemical transport, aerosol concentrations and r_{eff} vs. in-situ and CALIPSO data.

• We will send out a detailed protocol early this year. All modeling groups are welcome (with or without chemical transport modeling capability).
Extra Slides
VOCALS

The VAMOS Ocean-Cloud-Atmosphere-Land Study

- A multiyear study of boundary layer cloud, aerosol, and upper ocean heat/constituent transport
- Annual instrumented cruises in austral spring (starting with EPIC 2001 stratocumulus cruise).
- Regional Experiment (REx) in Oct.-Nov. 2008, including 4 aircraft based in northern Chile, two ships, coastal site: PI: Rob Wood (UW).
- Satellite data analysis of cloud properties
- Atmosphere and ocean modeling (LES to global).
Data from REx for Model Assessment

- ~35 days of Ron Brown ship observations near 20S (cloud radar, scanning 5 cm radar, lidar, sondes, surface met/fluxes, aerosols, sulfur chemistry, oceanography)
- Numerous night/day flights sampling 20S along 70-85W (aerosols, chemistry, cloud radar, dropsondes).
Great cloud radar, microphysics, aerosol data

RF03

Courtesy Dave Leon

RF03 outbound PCASP and cloud droplet concentration

PCASP

Altitude (feet)

0 2000 4000 6000 8000 10000

Longitude

-86 -84 -82 -80 -78 -76 -74 -72 -70

PCASP

Nd

dBZ

0 100 200 300 400 500

-28 -16 -4 8 20

0 2000 4000 6000 8000 10000