The Nature and Extent of Optically-Thin Low Clouds

Robert Wood, Louise Leahy, Bob Charlson, Peter Blossey
University of Washington
Chris Hostetler, Ray Rogers, Mark Vaughan, Dave Winker
NASA Langley Research Center

Photo, Bjorn Stevens, RICO
Why study optically-thin low clouds?

Marine low clouds according to MODIS

Cumulative fraction

Cloud Optical Depth

0.1 1 10 100

0.0 0.2 0.4 0.6 0.8 1.0

90 m CALIOP receiver footprint

MODIS pixel 1 km

fraction of pixels

fraction of cloud albedo

? 10 year cdf of cloud optical thickness
Clouds of all sizes contribute significantly to cloud cover

Each decade contributes equally

\[\frac{dn}{dx} \times \left(\frac{N_{cl,0}}{N_{cl,0}} \right) \]

\[\beta = 2 \]

…..implies that very small clouds contribute importantly to global cloud cover

…..what about albedo?

See also Wood and Field (2011)
CALIOP Data

- Use CALIOP Vertical Feature Mask (VFM) at highest resolution (90 m FOV, 330 m spacing)
- Only low clouds ($z_{top} < 3$ km) included
- An optically-thin cloud is defined as a cloud detected at full-resolution that does not fully attenuate the lidar signal such that the surface is also detected in the same profile
- For a cloud uniform across the FOV, this would corresponding to cloud optical depth (τ_{cld}) less than 3
- Clouds broken at the FOV scale are also classified as optically thin
Integrated attenuated backscatter

\[\gamma'_{532 \text{ nm}} = \int_{z_1}^{z_2} \beta'(z) \, dz \]
Optically-thin low cloud ubiquitous

Low Cloud Cover

\(f_{\text{cld}} \quad 0.50 (0.25) \)

Optically-thin Low-Cloud Cover

\(f_{\text{thin}} \quad 0.23 (0.09) \)

Optically-thin fraction of Low Cloud

\(f_{\text{thin,cld}} \quad 0.45 (0.28) \)
Optically thin fraction decreases with cloud cover
Optically thin low clouds are small

- Clouds with >90% optically thin profiles are termed “majority optically thin”
- Clouds with >90% optically thick profiles are termed “majority optically thick”
- Most clouds smaller than a few km consist primarily of optically thin shots
- Clouds > 100 km in length are mainly optically thick
Cloud Length at Median Cloud Cover (L_{50})

- **Most** optically thin low clouds in any given region are significantly smaller than optically thick clouds in that region.
Comparison with Higher Resolution Lidar

- NASA’s airborne High Spectral Resolution Lidar (HSRL).
- 4 spatially and temporally matched HSRL underflights of CALIOP over the tropical and subtropical western Atlantic.
- Temporal coincidence within ± 15 minutes
- HSRL footprint 8 x 60 m, contiguous FOVs
Optically-Thin Fraction as a Function of Scale

Cloud length distribution alone explains three-quarters of the variance in $f_{\text{thin, cld}}$:

$r^2 = 0.73$ domain-wide
$r^2 = 0.77$ over the Tropics

Implies that knowledge of how the marine cloud length distribution varies, is sufficient to predict geographical variation in $f_{\text{thin, cld}}$ across most of the ocean!

$$\tilde{f}_{\text{thin, cld}} = \frac{1}{\int_{L_{\text{min}}}^{L_{\text{max}}} L \, n(L) \, dL} \int_{L_{\text{min}}}^{L_{\text{max}}} f_{\text{thin, cld}}^L \, L \, n(L) \, dL$$
Cloud top heights

Stratocumulus Region

Sc–Cu Region

Cumulus Region

$f_{cld} = 0.78$
$f_{thin,cld} = 0.36$

$f_{cld} = 0.70$
$f_{thin,cld} = 0.37$

$f_{cld} = 0.26$
$f_{thin,cld} = 0.84$
Large Eddy Model

CGILS: CFMIP/GCSS Intercomparison
S6: Trade cumulus regime
6 day runs
(Δx=100m, Δz=40m)
Contribution to albedo

Cumulative contribution to cloud albedo

$\tau=3$

Liquid water path [g m$^{-2}$]
Land and Ocean contrasts

Ocean shows tight coupling between low cloud cover and optically thin fraction of low clouds, whereas land does not.
The Scale of Optically-Thin Clouds

Daytime L_{50}

Nighttime L_{50}

The Scale of Optically-Thin Clouds

Daytime L_{50}

Nighttime L_{50}

The Scale of Optically-Thin Clouds

Daytime L_{50}

Nighttime L_{50}

The Scale of Optically-Thin Clouds

Daytime L_{50}

Nighttime L_{50}
Conclusions

• Over the non-polar oceans, optically-thin clouds comprise 45% of marine low clouds with cloud top height below 3 km.

• The optically-thin fraction of marine low cloud varies inversely with marine low-cloud cover, and reaches a maximum (> 0.80) in trade wind regions.

• Optically-thin marine low clouds are predominantly small clouds, with many smaller than CALIOP field of view.

• The cloud length distribution of all low clouds explains 3/4 of the geographical variance in the optically-thin fraction of marine low clouds.

• The largest optically-thin clouds are found over land regions, despite lower cloud cover over land.