Changes in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954-2008

Ryan Eastman
Stephen G. Warren

University of Washington
May, 2011
Clouds and the Environment

- Clouds can warm or cool the surface
- Depends upon:
 - Cloud type
 - Cloud height
 - Surface characteristics (albedo)
 - Time of day
- Surface feeds back on cloud characteristics
Clouds and Sunlight
Clouds and Infrared Radiation (IR)

\[T(\text{cloud}) \approx T(\text{surface}) \]
Low Clouds and Sea Surface Temperature

Cool SST

Warm SST
Cloud Data

- To better understand and relate cloud cover to atmospheric processes and changes we need:
 - Cloud types
 - Cloud levels (low vs. high)
 - Separate day vs. night cloud amounts
 - Long period of record
- Surface observations provide all of this information with the longest continuous period of record
Surface Observed Cloud Climatology

- Ocean data spans 1954-2008
 - Based on data from ICOADS
 - Data from ships (and drifting stations on sea ice)

 - From fixed weather stations on land
 - Using new source after 1996 (ISH, from NCDC)
Day & Night Observations

- We select only observations made under specified conditions
- Night trends and variations are similar to day
- For this study, only daytime observations are used
Surface Observed Cloud Climatology

- Total of 9 cloud groups plus total cloud cover and clear-sky frequency
 - Low level clouds:
 - Stratocumulus, Stratus, Fog, Cumulus, Cumulonimbus
 - Mid level clouds:
 - Altostratus, Altocumulus, Nimbostratus
 - High cloud (cirriform)
- Cloud Amount as well as Frequency of Occurrence
- Though synoptic observations allow for 27 cloud types (9 at each level), reporting differences between nationalities requires averaging sub-types into this structure.
Data Available at Weather Stations or on a Grid
Data Products: Monthly & Seasonal Averages
Data Products: Monthly & Seasonal Averages

- **Total Cloud Cover (%)**

Month: J F M A M J J A S O N D J

- **Southwest India**
- **Northern Australia**
Data Products: Diurnal Cycle – Every 3 Hours

Honduras & Nicaragua, Summer

Cloud Amount (%)

Local Time

Cumulonimbus
Cumulus
Data Products: Year-Year Variations

North Pacific

Stratiform Cloud

Sea Surface Temperature (°C)

Stratiform Cloud Amount (%)

Year

SST
Quality Control & Averaging (Land Stations)

- Stations are evaluated first by analyzing relative frequency of reported cloud amounts

- Good frequency count
- Done by human observer in the synoptic code

- Bad count
- Likely an automated observer (ASOS)
Quality Control & Averaging

- Good ship reports are averaged within 10° lat/lon grid boxes
 - Average cloud amounts are formed per season, per box with a minimum of 25 observations per season
- Global average time series calculated using seasonal anomalies
 - Individual boxes require 30 years in record, each decade (1954-2008) represented by 3 or more years – to contribute to global averaging
 - Seasonal box values averaged based on relative box size & ocean area
 - Eliminates most bias due to unequal # of observations between boxes, different box size/ocean area
Global & Zonal Time Series

- After quality control and averaging, global time series are computed
 - Long-period variation, coherent between latitude bands (zones) seen in time series
 - Variation is seen for most cloud types
Global & Zonal Time Series

- No trade-off between types is seen
- No proxy data shows agreeing variation (that we have found)
Global & Zonal Time Series

- Possible explanation 1:
 - Variations in fraction of ships from different countries
 - Testing was done by Joel Norris
 - Attempted to simulate changes in nationalities over time
 - Did not produce the same variations
Global & Zonal Time Series

- Possible explanation 2:
 - Subtle changes in observing procedure over time
 - No changes have been documented
Global & Zonal Time Series

- Long-term variations from ship observations have been compared to those taken on islands in the central Pacific Ocean.
 - Little agreement is seen on the long-term scale, while agreement IS seen at shorter time scales (year-year).
 - Therefore, these variations are assumed to be spurious, must be removed.

![Low Cloud Amount Graph](image)
Removing Spurious Variation

- Long-term, global variation is approximated using a low-pass filter (blue curve)
Removing Spurious Variation

- In each box, filtered time series is scaled to mean cloud amount then subtracted
- Assumes no global trend, so our focus is on regional variation
Correlation of Low Cloud Cover with SST

- SST and cloud time series filtered locally (in each box)
Correlation of Low Cloud Cover with SST

- Low clouds break up as SST warms
 - Stratiform clouds become patchy
 - Cumulus clouds prevail
 - Warming SST reduces overlying low clouds
- Positive feedback
- Low cloud changes?
Linear Trends in Total Cloud Cover

- Trends are generally small (Less than 2% / Decade)

![Map showing linear trends in total cloud cover](image)
Linear Trends in Stratiform Cloud Cover

- Stratiform cloud cover shows a noteworthy pattern
Linear Trends in Cloud Cover

- In regions where Stratiform clouds and SST correlate, stratiform clouds are decreasing.
- SST is seen to be increasing in the same areas.
- Evidence of a positive feedback to warming sea surface.
- Expect an increase in Cumulus clouds.
Linear Trends in Cumulus Cloud Cover

- Corresponding increases in Cu are seen, but small
Conclusions

- A cloud climatology from surface observations is available over land and ocean areas
 - Land – 1971-1996 (being updated through 2009)
 - Ocean – 1954-2008
- Mysterious long-term variation is seen in the ocean data
 - We have not seen other 'proxy' data that substantiates the validity of this variation, so it is assumed to be spurious
 - The source of the variation remains unknown
 - Variation can be removed using a low-pass filter
Conclusions

- After long-term variation is removed, cloud cover correlates well with SST
 - Especially low stratiform clouds in eastern subtropical ocean basins (regions of strong inversions and persistent stratus cloud)
- In these same regions, filtered time series of stratiform clouds shows a declining trend
 - An increase in SST is also observed
 - Compensating trends in Cumulus are smaller
Extra Slides 1 – Criteria for Choosing Minobs

(a) DJF 1954-1997
Daytime, Ocean

(b) DJF 1954-1997

Avg Trend Uncertainty

Boxes Available

Number of Years Used to Calculate Trend

○ ○ minobs = 50
× × minobs = 25

Day, minobs 25
Night, minobs 25
Day, minobs 50
Night, minobs 50
Extra 2 – Total Cloud Cover & ENSO - DJF

Code for Correlation Coefficient (r)
Extra 3 – Total Cloud Cover & ENSO - JJA
Extra 4 – Stratiform Clouds & ENSO - SON

Code for Correlation Coefficient (r)

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1
Extra 5 – Cumulus Clouds & ENSO - SON

SON, Cu & ENSO

Code for Correlation Coefficient (r)