The Global Climate Response to Lowering Surface Orography of Antarctica

and the Importance of Atmosphere-Ocean Coupling

Hansi KA Singh*, Cecilia M Bitz, and Dargan MW Frierson

Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA

*Corresponding author address: Hansi Singh, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle WA 98195.

E-mail: hansi@atmos.washington.edu
ABSTRACT

We use a global climate model to study the effect of flattening the orography of the Antarctic Ice Sheet on climate. A general result is that the Antarctic continent and the atmosphere aloft warm, while there is modest cooling globally. The large local warming over Antarctica leads to increased outgoing longwave radiation, which drives anomalous southward energy transport towards the continent and cooling elsewhere. Atmosphere and ocean both anomalously transport energy southward in the Southern Hemisphere. Near Antarctica, poleward energy and momentum transport by baroclinic eddies strengthens. Anomalous southward cross-equatorial energy transport is associated with a northward shift of the inter-tropical convergence zone. In the ocean, anomalous southward energy transport arises from a slowdown of the upper cell of the oceanic meridional overturning circulation and a weakening of the horizontal ocean gyres, causing sea ice in the Northern Hemisphere to expand and the Arctic to cool. Comparison with a slab ocean simulation confirms the importance of ocean dynamics in determining the climate system response to Antarctic orography. We conclude by briefly discussing the relevance of these results to climates of the past and to future climate scenarios.
1. Introduction

Antarctica is among the largest plateaus on Earth, and its ice cover (and, consequently, surface orography) has fluctuated dramatically even while it has occupied its polar position. In this study, we investigate how the orography of the Antarctic Ice Sheet (AIS) influences the Earth’s climate system. We use a coupled atmosphere, ocean, land, and sea ice model (i.e., fully-coupled) to study how local and remote responses to orography removal are facilitated through energy balance requirements and global teleconnections.

While the Antarctic continent assumed its polar position nearly 100 million years before present (mya), the initial glaciation of Antarctica occurred over the Eocene-Oligocene boundary (34 mya, see Lear et al. 2000; Zachos et al. 2001). This glaciation was concurrent with the isolation of the continent as the Drake passage opened and circumpolar ocean flow commenced (Kennett 1977), suggesting a strong association between ocean circulation and the AIS from the start. On the other hand, others have contested the role of Drake passage opening in initiating Antarctic glaciation (Zhang et al. 2011; Goldner et al. 2014). A decrease in atmospheric CO$_2$ levels and changes in orbital parameters that favored cooler Southern Hemisphere (SH) summers are other factors that may have contributed to this initial glaciation (DeConto and Pollard 2003). Over the past 5 million years, paleoclimatological proxy evidence (Scherer 1991; Lisiecki and Raymo 2005) and modeling studies (Pollard and DeConto 2009) suggest that the West Antarctic Ice Sheet has been particularly sensitive to changes in orbital parameters and fluctuations in atmospheric greenhouse gas concentrations (see also the review by de Q. Robin 1988, and references therein).

In general, surface orography can affect the local angular momentum balance of the atmosphere, altering the winds at the surface and aloft, the jet and mid-latitude storm track, and climate variability. Steering by orography affects the position of major atmospheric features, including arid
zones and monsoonal circulations (Manabe and Terpstra 1974; Hahn and Manabe 1975; Manabe and Broccoli 1990). Following the pioneering study of Manabe and Terpstra (1974), many ensuing studies have further investigated climate responses to midlatitude orography, including that due to the Andes (Ehlers and Poulsen 2009; Sepulchre et al. 2009; Poulsen et al. 2010; Feng and Poulsen 2014), Himalayas (Ruddiman and Kutzbach 1989; Boos and Kuang 2010; Kitoh et al. 2010; Xu et al. 2010), and Rockies (Ruddiman and Kutzbach 1989; Seager et al. 2002; Takahashi and Battisti 2007). The climate impact of the orography from the Laurentide and Fennoscandian Ice Sheets at the Last Glacial Maximum has also been studied extensively, starting with Manabe and Broccoli (1985).

Many modeling studies have simulated past (and future) climates in which the orography of the AIS has been (or is projected to be) substantially lower than at present. Goldner et al. (2014) used a coupled GCM with an Oligocene-Eocene configuration of continents, sea level, and solar insolation to study the initial glaciation of Antarctica 34 mya. They found that a modest decline of CO$_2$ that, in turn, initiated the expansion of land ice over Antarctica (thereby raising both orography and albedo), was sufficient to invigorate the ocean circulation and cause the dramatic changes in ocean hydrography, surface winds, and deep water formation as seen in paleo-proxy data. Opening of the Drake Passage or Tasman Gateway, on the other hand, did not produce such a similar rapid reorganization of the ocean circulation and hydrography. Knorr and Lohmann (2014) used GCM time-slice experiments to study the Middle Miocene transition 13 mya, which was characterized by global cooling and expansion of the AIS to nearly its present-day volume. They found that on 100,000-year timescales, the response of their model’s winds, surface temperature, sea ice, and ocean circulation due to AIS expansion alone was consistent with paleo-proxy data. Only on million-year timescales and longer was atmospheric CO$_2$ drawdown necessary in their model to cause the global cooling seen in paleo-proxy data.
These and other paleoclimate modeling studies provide interesting insights on the impact of AIS orography on the Earth climate system, and suggest that AIS orography may affect the ocean circulation. Nevertheless, while these studies do isolate the effect of lowered orography on the climate system, they do so in climate states that are vastly different from that of the present-day, particularly in terms of continental geography, ocean basin configurations, orbital parameters, and greenhouse gas concentrations.

On the other hand, a few studies have considered the impact of AIS orography on global climate in atmosphere-only GCMs (AGCMs) without such confounding factors. Several of these found enhanced poleward energy transport with lowered AIS orography (Mechoso 1981; Parish et al. 1994; Walsh et al. 2000; Ogura and Abe-Ouchi 2001), enhanced poleward momentum transport (Mechoso 1980, 1981; Parish et al. 1994; Simmonds and Law 1995; Walsh et al. 2000), decreased cyclogenesis over the Southern Ocean (Mechoso 1980, 1981; Simmonds and Law 1995; Walsh et al. 2000), and a weakening and poleward shift of the region of maximum baroclinicity (Mechoso 1980, 1981; Parish et al. 1994; Simmonds and Law 1995; Quintanar and Mechoso 1995; Walsh et al. 2000). While most of these studies used prescribed SSTs, Ogura and Abe-Ouchi (2001) showed that the local atmospheric circulation response to removing Antarctic orography tends to be similar but weaker when an AGCM is coupled to a mixed-layer ocean compared with the same AGCM run with prescribed SSTs. Further, the significant surface wind response found in all of these experiments, given the sensitivity of Southern Ocean circulation and Antarctic sea ice to surface wind forcing, motivates further study of this problem using models that can capture dynamical coupling with the ocean.

As far as we know, Justino et al. (2014) is the only study that has isolated the climate impact of AIS orography in a fully-coupled GCM in a climate state similar to that of the present-day. However, the results of Justino et al. (2014) are surprising. Unlike many previous studies that have
linked increased poleward energy transport with flattening of the AIS (e.g. Mechoso 1981; Parish et al. 1994; Walsh et al. 2000; Ogura and Abe-Ouchi 2001), Justino et al. (2014) found that the poleward energy transport in the SH decreased when the AIS was lowered by 25%. It is unclear whether this major discrepancy can be attributed to the use of a fully-coupled GCM by Justino et al. (2014), or if this difference is due to the greater topography retained in Justino et al. (2014) compared to previous studies.

In this study, we isolate the climate impact of lowering AIS orography in both a fully-coupled GCM and a companion model with a mixed-layer only (slab) ocean. Our strategy allows us to investigate the important role of ocean dynamics on the climate response to lowering the AIS.

As expected, we find that lowering the AIS (while leaving the surface albedo unchanged) results in local surface warming of Antarctica. In addition, we find a range of remote effects on winds at the surface and aloft, equatorial precipitation, the ocean’s meridional overturning and surface gyre circulations, and sea ice in both hemispheres. We find that the scope of these global changes can be understood in terms of energy balances maintained by oceanic and atmospheric energy transports.

2. Experimental Setup

To explore the climate impact of lowering AIS orography, we performed a fully-coupled simulation using the Community Climate System Model 4.0, CCSM4 (Gent et al. 2011). The atmosphere component has a finite-volume dynamical core, a horizontal resolution of $1.9^\circ \times 2.5^\circ$, and 26 vertical levels. The horizontal grid of the land component is the same as that of the atmosphere. The ocean and sea ice lie on a nominally 1° resolution displaced-pole grid, with the north pole singularity centered within Greenland. The ocean eddy parameterization is a Gent and McWilliams (GM) form (Gent and Mcwilliams 1990), with the GM coefficient varying in space and time (Dan-
abasoglu et al. 2012). The sea ice is fully thermodynamic and dynamic (Hunke and Lipscomb 2008).

As a baseline for comparison, we use a pre-industrial control simulation with the CCSM4 run at the same resolution (hereafter referred to as C) in which ozone, carbon dioxide and other greenhouse gases, volcanic constituents, and solar insolation are all held fixed at pre-industrial levels (see Table 1). The experimental Flat Antarctic run (hereafter referred to as FA) was branched from C at year 700 and had all parameters set as in C, but with the orography of Antarctica replaced by one in which the elevation is 10% of the original (present-day) value (see Figure 1 for the elevation anomaly). Surface albedo and orography standard deviation are unchanged. We ran FA for 230 years to near equilibrium such that upper and deep ocean temperature trends in FA were statistically indistinguishable from those in C (referred to hereafter as quasi-equilibrium). Results are presented as annual climatologies of the final 30 years of the simulations (years 900–929 for C and 200–229 for FA). The net annual top-of-atmosphere flux imbalance in the climatologies is 0.13 W/m2 for FA and 0.05 W/m2 for C. All quantities are annual means, unless otherwise noted.

Statistical significance of the difference in climatologically averaged quantities in FA and C is computed using the student’s T-test with 29 degrees of freedom. The variance is estimated from a 300-year time series of C.

We isolate the role of ocean dynamics in the climate response to lowering the AIS by comparing results from fully-coupled C and FA simulations to results from a pair of runs where we replace the ocean GCM with a slab ocean model (known hereafter as SOM). All other model components are otherwise identical. The control and flat Antarctic experiments with the SOM (known hereafter as CSOM and FASOM, respectively) differ from one another only in their AIS surface orography, with the same surface orography anomaly in FASOM as in FA. In both SOM runs, the ocean energy transport flux convergence field (often called q-flux) was prescribed to be annually periodic but
spatially heterogeneous from a monthly climatology derived from C (Bitz et al. 2012). Results are presented as climatologies of the final 30 years of 60-year runs, which can be considered to be at equilibrium.

We present the response to lowering AIS as the anomaly FA minus C in §3a through §3e. The role of ocean dynamics is investigated by comparing FA minus C with FASOM minus CSOM in §3f.

3. Results

a. Temperature Response and Energy Balance

The local response to lowering AIS orography is a strong surface warming over most of East Antarctica and a mixed pattern of warming and cooling over West Antarctica. Remote surface cooling away from the AIS dominates the global mean surface temperature, however, which decreases by 0.3 °C (see Figures 2a and 2b). In the zonal mean, the atmosphere above the AIS warms from the troposphere to the stratosphere, while cooling over the Southern Ocean and in the Northern Hemisphere (NH) high latitudes remains confined to the surface and mid-troposphere (Figure 2c).

At top-of-atmosphere (TOA), the outgoing longwave radiation (OLR) increases substantially over the AIS (Figure 3a), driven by a temperature increase at the effective radiating level; this result is similar to that described by Ogura and Abe-Ouchi (2001). Although the AIS surface albedo is prescribed as that for a glaciated surface irrespective of elevation, the TOA absorbed shortwave (ASW) increases over the AIS because the warmer and deeper (by way of greatly increased surface pressure) atmosphere has much more precipitable water (not shown). Overall, the OLR increase wins out, and a larger amount of energy is lost to space over the AIS in FA. Partitioning the
energetic fluxes between clear-sky and all-sky conditions shows that the TOA radiation anomalies
over the AIS are predominantly clear-sky. While an increase in low clouds plays a minor role in
enhancing the OLR anomaly and diminishing the ASW anomaly, the TOA net radiative response
due to clouds is modest ($< 10\%$ of the total anomaly in the zonal mean). The enhanced energy
loss to space over the continent implies that there must be anomalous southward energy transport
(as shown in Figure 4a).

The increased greenhouse effect of the warmer and deeper atmosphere increases the down-
welling longwave (LW) radiation over the AIS (south of 60° S). The warming at the surface is
unable to offset this effect and the net upward LW radiation decreases sharply (Figure 3b). The
surface ASW decreases, though by a smaller amount, due to increased atmospheric absorption.
An increase in the (upward) sensible heat flux balances these surface radiative changes.

Enhanced cooling to space over the AIS in FA drives anomalous southward energy transport in
both atmosphere and ocean in the SH (Figure 4a). This increase in southward energy transport
near 60° S is a source of dynamical warming that augments the simple adiabatic warming due to
lowering the AIS. The positive slope of the total energy transport anomaly from 60° S to 40° N
(Figure 4a) implies dynamical cooling throughout these latitudes.

The partitioning of the total energy transport anomaly between the ocean and atmosphere varies
with latitude. In the SH high and middle latitudes, the atmosphere dominates, while the ocean
transports most of the energy northward of 20° S. The direction of the atmospheric energy transport
anomaly reverses around 20° N. Note that atmospheric and total energy transports are calculated
implicitly, with total energy transport computed from integrating (in latitude) the net TOA energy
fluxes, and atmospheric energy transport computed by integrating the difference between the TOA
and surface energy fluxes. The oceanic energy transport is computed directly as a global integral
of $V\theta$, where V is the meridional ocean velocity and θ is the potential temperature.
Southward atmospheric energy transport increases primarily due to increasing southward dry static energy (DSE) transport at all latitudes south of 20° N, with latent heat (LH) transport weakly opposing the atmospheric energy transport anomaly at most latitudes (Figure 4b). LH transport is northward from 65° S to 45° S, and from 20° S to 10° N; the former suggests both a northward shift in the midlatitude storm track and a decrease in poleward eddy moisture transport (due to decreased specific humidity with cooler temperatures), while the latter suggests a northward shift in the rising branch of the Hadley circulation. Indeed, the response of the SH storm track and Hadley circulation is also evident in the global precipitation response (Figure 10), which we address further in §3e.

b. Atmospheric Circulation Response

Lowering the AIS alters the SH atmospheric circulation, which is evident in the zonal wind field (Figure 5a). In FA, both the polar vortex and eddy-driven jet (at 65° S and 55° S in C, respectively) weaken on their poleward sides, the low-level easterly winds south of 65° S de-accelerate, and the surface and mid-tropospheric westerlies from 60° to 65° S accelerate slightly. These upper level zonal wind responses are particularly strong in austral winter. At the surface, westerly winds decrease to the north and increase to the south of 60° S (Figure 5b), decreasing the wind stress curl over the Southern Ocean.

Eddy-driving of zonal wind changes are assessed using the transformed Eulerian mean framework, where the effect of eddies on the mean flow is analyzed using the spherical form of the quasi-geostrophic Eliassen-Palm (E-P) flux \vec{F} (see Edmon et al. 1980) given by

$$\vec{F} = a \cos(\phi) \left(-\vec{u} \cdot \vec{v}, \frac{f \vec{v} \cdot \vec{T}^l}{\partial \theta / \partial p} \right),$$

(1)
where \(u'v' \) is the meridional flux of zonal momentum by transient eddies, \(v'T' \) is the meridional flux of sensible heat by transient eddies, \(f \) is the (latitude-dependent) Coriolis parameter, \(\partial \Theta / \partial p \) is the change in potential temperature with pressure, \(a \) is the radius of the Earth, and \(\phi \) is the latitude.

Figure 5c shows the effect of lowering the AIS on the E-P flux vectors, and Figure 5d shows the effect on the horizontal component of the E-P flux (i.e., the meridional flux of zonal momentum by eddies). A strong increase in the E-P flux convergence is evident at the poleward edge of the eddy-driven jet (near 60° S), consistent with its weakening (Figure 5c). Figure 5d suggests that much of this decrease in the E-P flux convergence is due to a decrease in the meridional eddy momentum flux convergence. Similarly, the increase in the E-P flux divergence south of 65° S is mostly due to a decrease in the meridional eddy momentum flux divergence; since the E-P flux divergence is negative here in C (not shown), eddies cannot decelerate the mean flow in this region in FA, consistent with a modest increase in the westerly winds here (Figure 5a).

The absence of katabatic flow in FA helps weaken the SH eddy-driven jet. When the AIS is high, katabatic winds over Antarctica are down-slope (gravity-driven) flows that arise from strong pressure gradients created by surface radiative cooling; the easterly component arises from the need to balance surface drag with the Coriolis force (Parish and Waight 1987). When the AIS is lowered, katabatic flow ceases (Figure 5a), and the accompanying westerly momentum transfer from the solid earth to atmosphere above the AIS halts. As a result, northward momentum transport by atmospheric eddies near Antarctica is no longer required to balance the atmosphere’s angular momentum budget (Figure 5d), and the SH eddy-driven jet weakens on its poleward side.

The absence of katabatic flow in FA also explains the mixed pattern of warming and cooling over West Antarctica in FA (Figure 6a). We define a temperature tendency due to katabatic winds
as

$$\frac{dT}{dt} \equiv \vec{V} \cdot \nabla p \overline{\rho_0 R},$$ \hspace{1cm} (2)$$

where \(\vec{V} \) is the surface velocity, \(\nabla p \) is the climatological surface pressure gradient, \(\rho_0 \) is reference air density, and \(R \) is the gas constant for dry air. This katabatic tendency results from adiabatic compression of air parcels transported by the surface wind in the direction of the surface pressure gradient. Equation (2) describes a cooling tendency in FA (compared to C) that is strongest near the AIS edge where the gradient of the orography is largest (Figure 6b). The competing effect is warming with elevation loss at the dry adiabatic lapse rate (Figure 6c). Adiabatic warming dominates everywhere except over low-lying regions in West Antarctica where the difference in elevation between FA and C is small but where katabatic flows in C are substantial.

c. Decomposing the Atmospheric Dynamical Response

To understand why southward atmospheric energy transport increases in the SH with lowering of the AIS, we evaluate changes in atmospheric transient eddy activity. In FA, eddy kinetic energy (EKE) increases in the troposphere south of 30° S (Figure 7a). The largest increase in eddy activity is over the Antarctic continent (south of 65° S), a finding which agrees with the results of Mechoso (1981), Parish et al. (1994), Simmonds and Law (1995), and Walsh et al. (2000): while lowering the AIS decreases the rate of cyclogenesis over the Southern Ocean, it permits storms to form and intensify over the Antarctic continent itself and increases the average lifetime of storms at all latitudes (Mechoso 1981; Walsh et al. 2000). The latter effects dominate over the former, and poleward energy transport by atmospheric eddies increases, as seen in FA.

Enhanced cyclogenesis over the continent is made possible by enhanced baroclinic instability. Walsh et al. (2000) re-formulated the baroclinic instability criterion of the two-layer quasigeostrophic model (see Holton 1992) from pressure levels to sigma levels in order to compare
baroclinicity in experiments with varying AIS orography. On sigma levels, the criterion for baro-
clinicity can be written as

\[B \equiv \frac{2\lambda^2 U_T}{\beta} > 1 , \] (3)

where \(U_T \) is the vertical wind shear, \(\beta \) is the rate of change of the Coriolis parameter with latitude
(with a correction for sigma coordinate conversion), and \(\lambda \) is the characteristic eddy wavelength
as determined by the static stability,

\[\lambda^2 \sim \frac{\theta}{\partial \theta / \partial \sigma} . \] (4)

The wind shear and the characteristic eddy wavelength are both evaluated at the \(\sigma = 0.5 \) vertical
level. For further details on the quasi-geostrophic two-layer model and derivation of the instability
criterion on \(\sigma \)-levels, see Holton (1992) and Walsh et al. (2000).

Figure 7b shows that \(B \) increases over the AIS, particularly over East Antarctica, and decreases
over the Southern Ocean, particularly over the marginal ice zone around the continent. Neverthe-
less, regions in which \(B \) decreases in FA are also regions in which \(B \) is already large, and such
decreases in \(B \) are not substantial enough to suppress instability. Overall, a larger area satisfies the
baroclinic instability criterion \(B > 1 \) in FA.

As expected from increased baroclinicity over much of the AIS, Figure 7c shows that the south-
ward sensible heat flux by atmospheric eddies (\(\bar{v} \bar{T}' \)) increases in FA. The increase is most pro-
nounced on the southern flank of the climatological storm track, where \(\bar{v} \bar{T}' \) doubles in FA, com-
pared to C. Overall, the southward sensible heat flux by eddies increases at all latitudes south
of 30° S. In Figure 7c, we show the change in eddy heat transport on sigma coordinate levels
(\(\sigma = p/p_s \)) in order to highlight how surface-focused this anomaly is. We speculate that the
greater surface pressure in FA than in C permits eddies to transport energy more efficiently as
there is more atmospheric mass at the surface through which baroclinic instability can act, explaining the surface-enhanced $\sqrt{T'}$ response in the high southern latitudes.

While EKE increases in the SH troposphere, EKE decreases in the stratosphere at the poleward edge of the polar vortex (Figure 7a), suggesting that both decreased stratospheric wave driving and increased diabatic heating play a role in weakening the polar vortex (Haynes et al. 1991). Deceleration of the polar vortex in FA is consistent with a decreased pole-to-equator temperature gradient (recall Figure 2c) since vertical wind shear must decrease by thermal wind balance.

d. Ocean Circulation and Sea Ice Response

Significant changes in surface winds in FA (Figure 5b) suggest that AIS orography may be influential in shaping the ocean circulation and its energy transport. In fact, changes in surface wind stress account for changes in the wind-driven gyre circulation in FA that weaken northward energy transport by the ocean (Figure 4a). Over the Atlantic, anomalous surface winds (not evident in the zonal mean winds shown in 5a and 5b) cause the upper branch of the subtropical gyre to move southward, the Gulf Stream to weaken, and the subpolar gyre to weaken (Figure 8a), resulting in an equator-ward shift of the North Atlantic Drift and a decrease in ocean energy transport into the North Atlantic (Figure 8c).

The global oceanic meridional overturning circulation (MOC), whose streamfunction is shown in Figure 8b, also transports less energy northward in FA (Figure 8c). The upper cell of the MOC weakens over most latitudes and depths while the deep cell strengthens below 1500 m (see Marshall and Speer 2012, for a review of the upper and lower cells), consistent with less cross-equatorial energy transport by the ocean (and in agreement with Figure 4). As a consequence, the NH mid- and high- latitudes cool, and Arctic sea ice, which depends sensitively on ocean energy transport (see Bitz et al. 2005), expands.
Sea ice, in fact, expands in both hemispheres (shown for the SH and NH in Figure 9a and 9c, respectively), although the effect is larger and more ubiquitous in the NH than the SH. In the SH, the sea ice thins and expands non-uniformly about Antarctica, with the sole region of contraction in the Weddell sector. In the NH, the sea ice expands into the Greenland Sea, Bering Sea, Barents Sea, and south of Greenland. The decrease in ocean energy transport into the northern North Atlantic is dominated by weakening of the Atlantic meridional overturning circulation.

The surface westerly winds strengthen south of 60° S over the sea ice in the Southern Ocean (Figure 5b). The resulting enhanced westerly momentum transfer to the ocean causes northward Ekman transport around the Antarctic margin; in such an ice-covered region, this momentum transfer also results in northward and eastward Ekman drift of sea ice (the turning angle of sea ice is approximately 45° relative to the direction of the wind, as described by Lepparanta 2011). As a consequence, Antarctic sea ice expands in most sectors (Figure 9a) (Hall and Visbeck 2002).

Although sea ice expands and surface buoyancy loss increases, the deep cell weakens (above 1500 m) because the wind stress curl over the Southern Ocean decreases (Figure 5a), inhibiting Ekman suction of deep waters at the $\sigma = 27.6 \text{ kg cm}^{-3}$ isopycnal (Marshall and Speer 2012).

e. Precipitation Response

Figures 10a and 10b show that precipitation increases over the AIS while it decreases over the Southern Ocean, the latter a result of the mid-latitude storm track shifting northward. The Inter-Tropical Convergence Zone (ITCZ) also shifts northward (Figure 10a), which may be surprising given the decrease in temperature difference between the NH and SH (called the “interhemispheric temperature anomaly” in Friedman et al. 2013). However, the ITCZ shift is consistent with the need to balance TOA radiative energy loss over the AIS. Similar explanations that emphasize energetics driving ITCZ shifts have been offered by Chiang and Bitz (2005), Cheng et al. (2007),
Kang et al. (2008), and Frierson and Hwang (2012). The northward ITCZ shift in our study is associated with an anomalous southward cross-equatorial flow in the upper troposphere, which facilitates anomalous southward cross-equatorial energy transport by the atmosphere.

The ITCZ shift also introduces a small, but significant, anomalous freshwater flux into the Atlantic north of 30° S of 0.01 Sv (shown in Figure 10b), slowing the upper cell of the MOC (shown in Figure 8b) and facilitating anomalous southward energy transport by the ocean (a mechanism described by Rahmstorf 1996). The shifting SH midlatitude storm track and its associated precipitation anomaly, on the other hand, are too far south and too weak to contribute significantly to slowing the MOC.

f. Isolating the Role of Ocean Dynamics

In order to understand the role of ocean dynamics in the climate response to lowering the AIS, we compare the response in FASOM to that in FA. In FASOM, no adjustment of ocean energy transport is permitted, so only the atmospheric energy transport may respond to TOA energy perturbations. Nonetheless, the local climate response to lowering AIS orography is similar in FA and FASOM, with strong warming over the AIS and mild cooling over the Southern Ocean. The remote response, on the other hand, particularly that at the equator and the NH high latitudes, is significantly different in FA and FASOM, which we describe below.

Because the SOM cases were run to equilibrium, there can be no difference between the annual mean net surface heat flux in FASOM and CSOM. As a result, the anomalous atmospheric energy transport anomaly in FASOM is also the total energy transport anomaly. This transport anomaly resembles the total energy transport anomaly in FA, but is smaller in magnitude from 60° N to 60° S (Figure 4a). As for FA, the total energy transport response in FASOM offsets the TOA radiative cooling over the AIS, resulting in a warmer troposphere above Antarctica but a cooler one globally.
The southward energy transport anomaly in FASOM is significantly greater than the atmospheric component of the energy transport anomaly in FA from 30° N to 30° S, which corresponds to greater precipitation anomalies in the subtropics and tropics over all three ocean basins (see Figure 10a through 10c, and Figure 4b). The total cross-equatorial atmospheric energy transport anomaly, which is associated with the ITCZ shift and altered Hadley circulation, is about twice as large in FASOM as in FA. The magnitude of the tropical and subtropical atmospheric response must be larger in FASOM to satisfy global energy balance in the absence of ocean energy transport anomalies. The larger ITCZ shift in FASOM relative to FA is also consistent with a larger northward shift in the equatorial SST maximum in FASOM (see Figure 2b).

Long-range teleconnections between the lowered AIS and the NH high latitudes are also mediated by ocean dynamics. In the Arctic, surface temperature cooling in FA is greater than 2°C in the zonal average, while it is less than 1°C in FASOM (see Figure 2b). The larger surface temperature response in FA is due to expanding sea ice (Figure 9c); in FASOM, where the sea ice does not expand (Figure 9d), the surface temperature response is muted significantly. Sea ice expansion in FA is driven by decreased ocean energy transport into the northern high latitudes due to decreased transport by horizontal gyre and (especially) overturning circulations (Figure 8). In FASOM, where oceanic energy transport is held fixed, NH sea ice expansion and cooling do not occur as they do in FA.

4. Discussion

In undertaking this work, our objectives have been two-fold: (1) to understand how the global climate responds to lowering the AIS, and (2) to understand how incorporating ocean dynamics impacts this global climate response. By studying these climate impacts using a fully-coupled GCM, we have been able to capture the global extent of how the climate system responds to
lowering the AIS; by comparing the response in a fully-coupled GCM to one in a GCM with a slab ocean, we have been able to pinpoint how coupling between the ocean and atmosphere shapes the way the global climate system responds.

We have shown that lowering the orography of the AIS has both local and global climatic consequences. While the surface and atmospheric column above the AIS warm, there is modest cooling over the Southern Ocean and globally. These temperature changes accompany a cessation of katabatic winds over the AIS, a weaker polar vortex, a slower jet, an equator-ward shift of the mid-latitude storm track, an expansion of the sea ice in both hemispheres, and a northward shift of the ITCZ. In the NH, northward energy transport by the oceanic MOC and wind-driven gyres decreases, and the Arctic cools. Globally, an increase in southward energy transport offsets higher TOA energy loss over the warmed AIS.

Figure 11 summarizes some of the energetic mechanisms at play in FA and FASOM, and illustrates the importance of atmosphere-ocean coupling in determining the cross-equatorial energy transport response to lowering the AIS. In both FA and FASOM, an increase in the OLR over the AIS prompts a net southward energy transport anomaly, which is of similar magnitude in the SH mid- and high- latitudes. The slowing of the global MOC in FA causes anomalous southward cross-equatorial energy transport by the ocean, which permits less anomalous southward cross-equatorial energy transport by the atmosphere, leading to a significantly weaker ITCZ shift in the case with a dynamical ocean response.

In the FA case the ocean response provides some of the southward energy transport needed to offset the higher TOA energy loss over the AIS. Thus, the atmospheric energy transport in FA responds not only to the TOA radiative cooling over the AIS, but it also “compensates” for the ocean energy transport anomaly. Compensation is seen in a variety of GCMs (e.g., Frierson et al. 2007; Enderton and Marshall 2009), and is an expected result since the meridional distribution of
TOA fluxes depends only weakly on the climate state (Stone 1978). However, the compensation is imperfect in our study since the total energy transport is different between the FA and FASOM cases; specifically, the total energy transport anomaly is more southward at all latitudes in FA compared to FASOM.

The deviations from perfect compensation can be understood by considering the atmospheric energy transport anomaly spreading the TOA and surface energy flux anomalies to other regions, a framework that has been used to explain energy transport changes with global warming in midlatitudes (Hwang and Frierson 2010) and high latitudes (Hwang et al. 2011). The weakened oceanic MOC in the FA simulation causes an anomalous surface heat flux into the atmosphere between 60°S and 20°S, while there is an anomalous surface heat flux into the ocean between 50°N and 70°N (shown in Figure 3b). The atmosphere responds by transporting much of the energy away, but radiates some to space locally. The latter leads to the lack of perfect compensation. Furthermore, some of the surface heat flux anomaly is due to vertical mixing and diffusion (in either the atmosphere or ocean) that is unrelated to horizontal energy transport, which also results in imperfect compensation.

Overall, our results agree with other AGCM and paleoclimate studies that have explored how the climate system responds to lowering the AIS. Ogura and Abe-Ouchi (2001) showed that flattening AIS orography causes remote dynamical cooling; similarly, Knorr and Lohmann (2014) found remote dynamical warming when AIS elevation was increased. Other AGCM studies have found enhanced poleward energy and momentum transports when the AIS is flattened (e.g., Mechoso 1981; Simmonds and Law 1995; Quintanar and Mechoso 1995; Walsh et al. 2000).

Enhanced southward energy transport when the AIS is lowered is a common result in AGCM studies with prescribed SSTs or slab oceans, including those of Mechoso (1981), Quintanar and Mechoso (1995), Simmonds and Law (1995), Walsh et al. (2000), and Ogura and Abe-Ouchi.
(2001). As shown by Ogura and Abe-Ouchi (2001), this anomalous energy transport arises to accommodate the greater TOA energy loss over the AIS. Indeed, the magnitude of the increase in southward energy transport associated with removing AIS topography reported by Ogura and Abe-Ouchi (2001) is approximately 0.25 PW, which is nearly identical to that in our FASOM experiment. All of these studies concur that the enhanced southward energy transport is accomplished by baroclinic eddies.

We have also shown that the most remote response to lowering the AIS, the cooling of the Arctic and expansion of sea ice therein, is mediated by decreased ocean energy transport into the northern high latitudes. Neither the ocean cross-equatorial energetic response nor the cooling of the Arctic are possible in the results of Mechoso (1981), Parish et al. (1994), Simmonds and Law (1995), Quintanar and Mechoso (1995), and Ogura and Abe-Ouchi (2001) because these modeling studies do not incorporate ocean and sea ice dynamics. While the results of these earlier studies are not incorrect, they are incomplete because they do not take into account the ocean’s ability to transport energy differently in response to changes in surface energy balance brought about by the dynamic atmosphere response.

Why do SH eddies transport more energy poleward when the AIS is lowered, despite the reduction in the SH meridional temperature gradient and vertical wind shear? In our study, we find that the static stability \((d\theta/dz) \) decreases over the AIS, and that this decrease has a greater impact on baroclinicity than the decrease in wind shear. As a result, a greater area over the AIS satisfies the baroclinic instability criterion, permitting atmospheric eddies to grow and persist closer to the pole. These findings are similar to those of Walsh et al. (2000), who also found that baroclinically unstable regions expanded over the AIS when orography was removed. Furthermore, we note that SH atmospheric eddies are much more effective at transporting DSE poleward when the AIS is lowered since the surface pressure is much higher. Overall, eddies have a deeper atmospheric
column through which to transport energy when the AIS is lowered; as a result, more energy is fluxed southward towards the AIS, offsetting the increase in OLR there and satisfying the required energy balance.

While our findings qualitatively agree with those of earlier AGCM and paleoclimate studies, they are at odds with those of Justino et al. (2014), the only other study to have considered the impact of AIS orography reduction in a fully-coupled model without confounding factors. Justino et al. (2014) found that southward atmospheric energy transport decreased when the AIS was lowered by 25%. In their case, an increase in high clouds over the lower AIS decreased TOA OLR and decreased overall cooling over the AIS. None of the earlier AGCM studies found such an increase in high clouds to counteract enhanced radiative cooling over the warmer AIS. Furthermore, we find the cloud response in our experiments has only a minor impact on the TOA radiative flux anomaly. While we cannot rule out the increase in high clouds found by Justino et al. (2014), there is also no compelling reason to expect it should dominate the outcome.

Our findings suggest that lowering the AIS, in the absence of changes in greenhouse gases or other parameters, could result in modest global cooling, a counter-intuitive result. The lowering of the AIS could act as a negative (stabilizing) feedback on anthropogenic climate change. Similarly, Knorr and Lohmann (2014) found that growth of the AIS acts as a negative feedback on its own expansion through wind and ocean circulation changes that tended to result in modest global warming. We find that the magnitude of the negative feedback associated with AIS collapse, however, is modest, and would likely be difficult to detect against the background of changes required to cause such a catastrophic loss of the AIS (as well as the concurrent meltwater flux associated with such a loss).

The purpose of this study is to isolate the effect of flattening AIS orography on climate from the effect of other major changes (such as decreased albedo over the AIS, increased freshwater
fluxes into the Southern Ocean, and global sea level rise) that would doubtlessly accompany it.

We do not aim to replicate climates of the past or future, and, as such, this is not a paleoclimate study; instead, we aim to isolate and study a single element of these climates, the impact of a negative orographic anomaly over the Antarctic continent, and, by doing so, to gain insight into the workings of the climate system.

Finally, it is important to note the limitations of this study. First, while our fully-coupled experimental run may be considered to be near equilibrium, we point out that the deep ocean requires thousands of years to adjust fully to a perturbation, and it is possible that the equilibrium response to AIS lowering may differ significantly from that analyzed here. For example, Danabasoglu and Gent (2009) show that for CO_2-doubling in a fully-coupled model, the surface flux imbalance is still at 0.75 W m^{-2} at year two hundred, approximately one-fifth of the total flux imbalance introduced by the CO_2 forcing. While the TOA flux imbalance in FA is only 0.13 W m^{-2} at year two hundred, we cannot rule out further changes in the ocean circulation and energy partitioning that alter the atmospheric response. On the other hand, while we have considered the quasi-equilibrium response to lowering the AIS, the transient response is also of interest and is left for future work.

Furthermore, we have neither accounted for the different continental margins that would result if the AIS were to melt, nor accounted for the effects of meltwater on sea surface height and oceanic static stability, nor the decreased surface albedo over the AIS with melting. We speculate that decreased surface albedo over the AIS and an anomalously positive freshwater flux over the Southern Ocean would likely increase the importance of the dynamical mechanisms we have described in this study. A lower albedo over Antarctica would enhance warming at the surface and aloft locally, while increased freshwater input into the Southern Ocean would augment remote cooling by enhancing SH sea ice growth (via increased stability of the ocean mixed layer, which would decrease the entrainment and upwelling of warmer waters from below). Despite these caveats, the
results presented herein are significant to the study of climate dynamics and the response of the climate system to high latitude orography. Our study also elucidates the dynamics of past climates in which the AIS was lower or absent, and may be relevant to future climates with a lower AIS.

5. Conclusions

In this study, we have explored how AIS orography impacts the climate system. The high AIS orography of the present climate keeps Antarctica very cold and dry, and decreases TOA cooling; removing AIS orography, conversely, warms Antarctica at the surface and aloft, increases OLR over the continent, and enhances TOA cooling. As a result, southward energy transport towards Antarctica increases, with dynamical warming in the vicinity of the AIS but dynamical cooling over the rest of the globe.

Both atmospheric and oceanic processes contribute to increased southward energy transport. In the vicinity of the lowered AIS, the atmosphere is deep and permits baroclinic instability over a larger area, so eddies transport more DSE and zonal momentum southward. At the equator, more energy is transported southward cross-equatorially by a northward shift in the rising branch of the Hadley Cell and a weakened oceanic MOC. In the NH high latitudes, decreased northward energy transport by the ocean cools the Arctic and allows sea ice to expand into the North Atlantic and Pacific. Comparing the results from a fully-coupled experiment to those from a slab ocean experiment showed that atmosphere-ocean coupling is particularly important in determining the magnitude of the equatorial precipitation shift and the cooling of the Arctic.

In summary, we have detailed how the global climate system responds when AIS orography is reduced in the absence of confounding factors, and have identified the dynamic mechanisms involved in this response. We have studied this problem in a fully-coupled GCM, and have isolated the role of ocean energy transport. Overall, the results of this study are relevant to understanding
how the climate system adjusts to a perturbation, and, in particular, how the atmosphere and ocean dynamically interact to produce a new quasi-equilibrium climate state.

Acknowledgments. We wish to acknowledge the US DOE Computational Science Graduate Fellowship for funding HKAS, and NSF PLR-1341497 for funding CMB and DMWF. Thanks to Marc Michelson for computing support at the UW Department of Atmospheric Sciences. And thanks to Kat Huybers, Nathan Steiger, Ana Ordoñez, and Dennis Hartmann for helpful discussions and collaboration.

References

LIST OF TABLES

Table 1. Summary of preindustrial settings (solar insolation, greenhouse gas concentrations, and aerosol forcing) used in all simulations. 32
TABLE 1. Summary of preindustrial settings (solar insolation, greenhouse gas concentrations, and aerosol forcing) used in all simulations.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentration or Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Solar Irradiance</td>
<td>1360.9 W/m²</td>
<td>mean of 1844 to 1856 irradiance</td>
</tr>
<tr>
<td>CO₂</td>
<td>284.7 ppm</td>
<td></td>
</tr>
<tr>
<td>N₂O</td>
<td>275.7 ppb</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>791.6 ppb</td>
<td></td>
</tr>
<tr>
<td>Aerosol Forcing</td>
<td>-0.033 W/m²</td>
<td>equivalent aerosol forcing</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Fig. 1. Elevation anomaly, in meters, imposed over Antarctica in the FA and FASOM experiments, expressed as the difference FA - C. Contours are drawn from 500 m to 3000 m at intervals of 500 m. 35

Fig. 2. Temperature response to lowering the AIS: (a) surface temperature in FA - C; (b) zonally-averaged surface temperature in FA - C and FASOM - CSOM; (c) zonally-averaged atmospheric temperature in FA - C. Stippled areas in the top and bottom panels indicate regions where the temperature anomaly is not statistically significant at \(p < 0.05 \). Note that positive and negative anomalies have been scaled asymmetrically to make negative anomalies more discernible. 36

Fig. 3. Energetic response to lowering the AIS, expressed as the anomaly FA - C: (a) clear-sky (cs) and all-sky outgoing longwave radiation (OLR), absorbed shortwave radiation (ASW), and net incoming radiation at top-of-atmosphere; and (b) net upward longwave radiation (net up LW), net absorbed shortwave radiation (net abs SW), upward sensible heat flux (up SH), upward latent heat flux (up LH), and net downward energy flux at the surface. Note that all fluxes are reckoned positive upward except the SW and net anomalies. 37

Fig. 4. Energy transport response to lowering the AIS (in PW), expressed as the anomaly FA - C or FASOM - CSOM: (a) total, atmospheric, and oceanic northward energy transport response; and (b) breakdown of atmospheric northward energy transport response into dry static energy transport (DSE T) and latent heat transport (LHT). 38

Fig. 5. Annually- and zonally-averaged momentum and zonal wind response to lowering the AIS: (a) zonal wind (in m/s); (b) surface winds in FA - C and FASOM - CSOM; (c) E-P fluxes (in m^2 s^-2, arrows) in FA - C, with zonal winds (contours) in C; and (d) eddy momentum flux \(U'V' \) (in m^2 s^-2). In panels (a) and (d), the contours depict the mean state C (with the zero contour thickened and negative contours dashed) and colors depict the anomaly FA - C. In panel (a), stippled areas indicate regions where the anomaly is not statistically significant at \(p < 0.05 \). 39

Fig. 6. Surface temperature response in the vicinity of the AIS in FA - C: (a) surface temperature (in K); (b) temperature tendency due to katabatic winds (in K day^-1); and (c) temperature change (in K) expected from the elevation change alone, assuming a dry adiabatic lapse rate. 40

Fig. 7. Atmospheric eddy response to lowering the AIS: (a) annually-averaged eddy kinetic energy (EKE) (in m^2 s^-2); (b) baroclinic instability criterion \(B \) as described in equation (3); and (c) eddy sensible heat transport, \(V'T' \) (in K m s^-1), computed on sigma levels. In all panels, contours depict the mean state in C, and the anomaly FA - C is shown in colors. 41

Fig. 8. Ocean dynamic response to lowering the AIS, with labelled contours depicting the mean state in C and colors depicting the anomaly FA - C: (a) annually averaged barotropic streamfunction in Sv; and (b) annually-averaged global ocean meridional overturning streamfunction in Sv, shown as a function of depth; isopycnal flow has been removed by computing the streamfunction in potential density coordinates (\(\sigma \)) and converting to depth coordinates. The stippled areas in panel (a) indicate regions where the anomaly is not statistically significant at \(p < 0.05 \). In panel (b), the anomaly is statistically significant at \(p < 0.05 \) over more than 90% of the depth-latitude transect shown. Panel (c) displays the total change in Atlantic basin energy transport, and the partitioning of this transport into gyre and mean meridional circulation (MMC) contributions. 42
Fig. 9. Annually averaged sea ice response to lowering the AIS: (a) southern hemispheric sea ice fraction in FA, expressed as FA - C; (b) southern hemispheric sea ice fraction in FASOM, expressed as FASOM - CSOM; (c) northern hemispheric sea ice fraction in FA, expressed as FA - C; and (d) northern hemispheric sea ice fraction in FASOM, expressed as FASOM - CSOM.

Fig. 10. Annually averaged precipitation response (in mm/day) to lowering the AIS: (a) zonal mean, where circles (hatches) indicate latitudes where the precipitation anomaly in FA (FASOM) is statistically significant ($p < 0.05$); (b) FA - C, with stippled areas indicating regions where the anomaly is not statistically significant at $p < 0.05$; and (c) as in (b) but for FASOM - CSOM.

Fig. 11. Schematics summarizing the global energetic response to lowering the orography of Antarctica. (a) In the case of the fully-coupled atmosphere and ocean (FA simulation), both the atmosphere and ocean energy transport processes respond to the enhanced outgoing long-wave radiation over Antarctica by increasing southward energy transport. Cross-equatorial energy transport is accomplished by a northward shift in the ITCZ and decreased transport by the upper cell of the oceanic MOC. (b) In the case of the (uncoupled) atmosphere and slab ocean (FASOM simulation), the atmosphere must accomplish all the southward cross-equatorial energy transport by shifting the ITCZ and the rising branch of the Hadley circulation northward more than it does in the coupled case.
FIG. 1. Elevation anomaly, in meters, imposed over Antarctica in the FA and FASOM experiments, expressed as the difference FA - C. Contours are drawn from 500 m to 3000 m at intervals of 500 m.
FIG. 2. Temperature response to lowering the AIS: (a) surface temperature in FA - C; (b) zonally-averaged surface temperature in FA - C and FASOM - CSOM; (c) zonally-averaged atmospheric temperature in FA - C. Stippled areas in the top and bottom panels indicate regions where the temperature anomaly is not statistically significant at $p < 0.05$. Note that positive and negative anomalies have been scaled asymmetrically to make negative anomalies more discernible.
Fig. 3. Energetic response to lowering the AIS, expressed as the anomaly FA - C: (a) clear-sky (cs) and all-sky outgoing longwave radiation (OLR), absorbed shortwave radiation (ASW), and net incoming radiation at top-of-atmosphere; and (b) net upward longwave radiation (net up LW), net absorbed shortwave radiation (net abs SW), upward sensible heat flux (up SH), upward latent heat flux (up LH), and net downward energy flux at the surface. Note that all fluxes are reckoned positive upward except the SW and net anomalies.
FIG. 4. Energy transport response to lowering the AIS (in PW), expressed as the anomaly FA - C or FASOM - CSOM: (a) total, atmospheric, and oceanic northward energy transport response; and (b) breakdown of atmospheric northward energy transport response into dry static energy transport (DSE T) and latent heat transport (LHT).
FIG. 5. Annually- and zonally-averaged momentum and zonal wind response to lowering the AIS: (a) zonal wind (in m/s); (b) surface winds in FA-C and FASOM-CSOM; (c) E-P fluxes (in m2 s$^{-2}$, arrows) in FA-C, with zonal winds (contours) in C; and (d) eddy momentum flux $\overline{u'v'}$ (in m2 s$^{-2}$). In panels (a) and (d), the contours depict the mean state C (with the zero contour thickened and negative contours dashed) and colors depict the anomaly FA-C. In panel (a), stippled areas indicate regions where the anomaly is not statistically significant at $p < 0.05$.
FIG. 6. Surface temperature response in the vicinity of the AIS in FA - C: (a) surface temperature (in K); (b) temperature tendency due to katabatic winds (in K day$^{-1}$); and (c) temperature change (in K) expected from the elevation change alone, assuming a dry adiabatic lapse rate.
FIG. 7. Atmospheric eddy response to lowering the AIS: (a) annually-averaged eddy kinetic energy (EKE) (in \(m^2 \text{s}^{-2}\)); (b) baroclinic instability criterion \(B\) as described in equation (3); and (c) eddy sensible heat transport, \(\overline{\nabla' T'}\) (in K m s\(^{-1}\)), computed on sigma levels. In all panels, contours depict the mean state in C, and the anomaly FA - C is shown in colors.
FIG. 8. Ocean dynamic response to lowering the AIS, with labelled contours depicting the mean state in C and colors depicting the anomaly FA - C: (a) annually averaged barotropic streamfunction in Sv; and (b) annually-averaged global ocean meridional overturning streamfunction in Sv, shown as a function of depth; isopycnal flow has been removed by computing the streamfunction in potential density coordinates (σ) and converting to depth coordinates. The stippled areas in panel (a) indicate regions where the anomaly is not statistically significant at $p < 0.05$. In panel (b), the anomaly is statistically significant at $p < 0.05$ over more than 90% of the depth-latitude transect shown. Panel (c) displays the total change in Atlantic basin energy transport, and the partitioning of this transport into gyre and mean meridional circulation (MMC) contributions.
Fig. 9. Annually averaged sea ice response to lowering the AIS: (a) southern hemispheric sea ice fraction in FA, expressed as FA - C; (b) southern hemispheric sea ice fraction in FASOM, expressed as FASOM - CSOM; (c) northern hemispheric sea ice fraction in FA, expressed as FA - C; and (d) northern hemispheric sea ice fraction in FASOM, expressed as FASOM - CSOM.
FIG. 10. Annually averaged precipitation response (in mm/day) to lowering the AIS: (a) zonal mean, where circles (hatches) indicate latitudes where the precipitation anomaly in FA (FASOM) is statistically significant \((p < 0.05) \); (b) FA - C, with stippled areas indicating regions where the anomaly is not statistically significant at \(p < 0.05 \); and (c) as in (b) but for FASOM - CSOM.
FIG. 11. Schematics summarizing the global energetic response to lowering the orography of Antarctica. (a) In the case of the fully-coupled atmosphere and ocean (FA simulation), both the atmosphere and ocean energy transport processes respond to the enhanced outgoing longwave radiation over Antarctica by increasing southward energy transport. Cross-equatorial energy transport is accomplished by a northward shift in the ITCZ and decreased transport by the upper cell of the oceanic MOC. (b) In the case of the (uncoupled) atmosphere and slab ocean (FASOM simulation), the atmosphere must accomplish all the southward cross-equatorial energy transport by shifting the ITCZ and the rising branch of the Hadley circulation northward more than it does in the coupled case.