Why is Longwave Cloud Feedback Positive?

Mark D. Zelinka and Dennis L. Hartmann

Department of Atmospheric Sciences

University of Washington, Seattle, Washington, USA.

Corresponding Author: Mark D. Zelinka, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, Washington 98195, USA. (mzelinka@atmos.washington.edu)
Abstract.

Global climate models predict a longwave cloud feedback that is systematically positive and nearly the same magnitude across all models. Here it is shown that this robust positive longwave cloud feedback is caused in large part by the tendency for tropical high clouds to remain at nearly the same temperature as the climate warms. Furthermore, it is shown that such a cloud response to a warming climate is consistent with well-known physics, specifically the requirement that, in equilibrium, tropospheric heating by convection can only be large in the altitude range where radiative cooling is efficient, following the fixed anvil temperature hypothesis of [Hartmann and Larson, 2002].

Estimates of longwave cloud feedback assuming clouds remain at fixed pressure as the climate warms under predict the model feedback by about 1 W m$^{-2}$ K$^{-1}$, highlighting the large contribution from nearly-constant cloud top temperature to the robustly positive longwave cloud feedback. The convergence profile computed from clear-sky radiative cooling warms slightly as the climate warms in the AR4 models. Longwave cloud feedback computed assuming that the high cloud temperatures follow the upper tropospheric convergence-weighted temperature gives an excellent prediction of the longwave cloud feedback in the models.
1. Introduction

In the present climate, clouds strongly cool the planet, reducing the net downwelling radiation at the top of the atmosphere by about 20 W m$^{-2}$. Comparing this number with the radiative forcing associated with a doubling of CO$_2$, 4 W m$^{-2}$, it is clear that even tiny changes in clouds can have dramatic effects on the climate and can act as a positive or negative feedback on climate change. It is for this reason that understanding how clouds respond to a warming planet is of vital importance for accurately predicting how the climate will change.

Cess et al. [1990], Colman [2003], Soden and Held [2006], and Webb et al. [2006] show that the largest uncertainty in global climate model (GCM) projections of future climate change is caused by the responses of clouds to a warming climate. Whereas other feedbacks are similar among the models, the cloud feedback varies between 0.14 and 1.18 W m$^{-2}$ K$^{-1}$ (*Soden and Held [2006]*) and little progress has been made in reducing this spread. *Bony et al. [2006]* point out several reasons why progress has been slow in evaluating cloud feedbacks and narrowing this range. It is difficult to use observations to evaluate cloud feedback because observable climate variations are not good analogues for climate change due to increasing greenhouse gases and because it is nearly impossible to isolate the unambiguous role of clouds in causing a change in net radiation at the top of atmosphere. Additionally, the radiative impact of clouds is large, so even subtle changes to their characteristics (height, amount, thickness, etc.) can have dramatic effects on the climate. Finally, clouds are not actually resolved in GCMs but are instead parameterized; thus a
variety of plausible and self-consistent cloud responses to global warming can be produced in models.

Though estimates of cloud feedback vary significantly among the AR4 models (Soden and Held [2006]), this large spread is primarily due to the shortwave component, which can be attributed to uncertainties in simulations of the response of marine boundary layer clouds to changing conditions (Bony and Dufresne [2005]). Generally speaking, the models which predict a reduction in low cloud fraction exhibit greater 21st Century warming because the reduction in the area of such clouds with large negative net cloud forcing represents a strong positive cloud feedback. Conversely the models that predict increases in low clouds have very low climate sensitivity.

Whereas estimates of shortwave cloud feedback vary considerably such that even the sign is uncertain, estimates of longwave cloud feedback are systematically positive in all AR4 models and exhibit half as much spread (B. J. Soden, personal communication, 2009). In this study we address the question of why all the AR4 models exhibit positive longwave cloud feedbacks. We show that the robust positive longwave cloud feedback is largely due to tropical high clouds, which remain at approximately the same temperature as the climate warms. Furthermore, we show that this cloud response should be expected from basic physics and is therefore fundamental to Earth’s climate.

We demonstrate this by making use of the clear-sky energy budget, which requires balance between subsidence warming and radiative cooling. Because radiative cooling by water vapor becomes very inefficient very low temperatures, subsidence rapidly decreases with decreasing pressure in the tropical upper troposphere. This causes large convergence into the clear-sky upper troposphere, which, by mass conservation, implies large convective
detrainment and abundant high cloudiness at that level. Thus the implied clear-sky upper tropospheric convergence calculated from clear-sky mass and energy balance provides a convenient marker for the level of high clouds and a diagnostic tool for understanding how that level changes as the climate warms.

As described in the fixed anvil temperature or FAT hypothesis of Hartmann and Larson [2002], this level should remain at the approximately the same temperature as the climate warms because it is a fundamental result of radiative convective equilibrium: The troposphere can only be heated by convection where it is being sufficiently cooled by radiation, resulting in an equilibrium near neutral stability. Because the altitude range of sufficient radiative cooling by water vapor is primarily determined by temperature through the Clausius-Clapeyron relation, the temperature that marks the top of the convective cloudiness should remain approximately constant as the climate warms.

In the cloud resolving model simulations of Kuang and Hartmann [2007], high clouds migrate upward for higher values of SST, but do so in such a way as to remain at the same temperature. The clear-sky upper tropospheric diabatic convergence calculated from the clear-sky energy balance as described above shows an identical constancy in temperature for all simulations. Recent work by Eitzen et al. [2009] shows, using observations from the CERES instrument on the TRMM satellite, that the distribution of tropical cloud top temperatures for clouds with tops greater than 10 km remains approximately constant as SSTs vary over the seasonal cycle, lending further observational support to the FAT hypothesis.

Here we show that, as in observations and cloud resolving models, clouds in the AR4 GCMs remain at approximately the same temperature as the climate warms, and that this
feature is well-diagnosed by the clear-sky energy budget explained above. This is perhaps unsurprising given that it is a result that arises directly from tropical radiative-convective equilibrium that GCMs must approximately maintain, regardless of the details of their individual convective and cloud parameterizations. What is less appreciated is that this important result gives rise to a robustly positive longwave cloud feedback that can be explained from fundamental principles.

In the first part of the paper, we assess the degree to which the model cloud fields are in agreement with the basic physics described above, both in the mean sense and as the climate warms. In the second part, we decompose the LW cloud feedback into its individual components to show that the systematic tendency for GCMs to maintain nearly-constant tropical high cloud temperature causes a robust positive LW cloud feedback.

2. Data

We make use of monthly mean model diagnostics from the IPCC SRES A2 scenario simulations that are archived at the Program for Climate Model Diagnosis and Intercomparison (PCMDI). We calculate decadal-mean quantities between the years 2000 and 2100, but maintain the monthly mean resolution such that the radiative calculations are more accurate. LW and SW radiative fluxes at both the surface and top of atmosphere and for both clear and all-sky conditions are used, as well as profiles of temperature (T), specific humidity (q), and cloud amount. We interpolate all quantities onto the same latitude, longitude, and pressure grid as that of the radiative kernels of Soden et al. [2008].

Unfortunately cloud optical thickness or effective cloud top T as would be seen from satellites are not standard model diagnostics available in the PCMDI archive. Only a small number of modeling centers have participated in the Climate Feedback Model In-
tercomparison Project (CFMIP), in which ISCCP-simulators are run in the models to better compare with observations, and no SRES scenarios were run. We instead make use of the basic cloud field that all modeling centers are required to output, the height-resolved cloud fraction within each pressure bin. This gross cloud field may include cloud types that are not relevant to this study (e.g., subvisible tropopause cirrus) as well as clouds that are not directly influencing the OLR (e.g., interior of clouds rather than cloud tops). Nevertheless, the cloud changes in this study are quite coherent in the sense that the entire cloud profile tends to shift to higher altitudes as the climate warms rather than exhibiting a fundamental change in shape. Thus we can make reasonable assumptions about the cloud top properties without actually making use of optical depth or cloud top information.

3. Methodology

Before assessing how realistically high clouds are being simulated in the models, we first demonstrate a method of calculating the altitudes of convective detrainment and implied abundant cloudiness using the tropospheric mass and energy budget equations. We adopt the same one-dimensional diagnostic model employed by Minschwaner and Dessler [2004], Folkins and Martin [2005], Kuang and Hartmann [2007], and Kubar et al. [2007]. The tropical atmosphere is divided into a convective domain and a clear-sky domain. The cloudy domain is assumed to cover a small fraction of the Tropics (as active convection does in reality), with the majority of the Tropics being convection-free. We shall refer interchangeably to the convective (nonconvective) region as the cloudy (clear-sky) region, though these are used very loosely simply to distinguish between regions that are undergoing active deep convection and those that are not. Most likely there are
boundary layer clouds and/or high clouds that are disconnected from deep convection in
the clear-sky region.

One can write the dry static energy \(s = c_p T + gz \) budget of the troposphere as

\[
\frac{\partial s}{\partial t} = -\nabla \cdot (s \mathbf{U}) + c_p Q_R + SH + LP,
\]

where \(c_p \) is the specific heat of air at constant pressure, \(Q_R \) is the net (longwave plus
shortwave) radiative heating of the atmosphere, \(SH \) is the surface sensible heat flux, \(L \)
is the latent heat of vaporization, and \(P \) is the precipitation rate. We calculate \(Q_R \) using
the Fu and Liou [1993] delta-four-stream, k-distribution scheme, with each model’s \(T \)
and \(q \) profiles as input. Although we use \(T \) and \(q \) profiles from regions that are both
cloudy and clear, the radiative transfer calculation is performed assuming no clouds.
Because the presence of clouds alters cooling rates substantially, it is preferable to take
into account clouds in the nonconvective regions, however it is very difficult to do this,
both because there is inadequate cloud property information provided by the modeling
centers (e.g., particle size, phase, ice water content), and because a \(Q_R \) profile would need
to be calculated for every scene at every timestep, which is computationally unrealistic.

Considering only regions of the free-troposphere that are not actively convecting (such
that we can ignore \(SH \) and \(LP \)), and assuming no tendency or horizontal transport gives

\[
\omega = -\frac{Q_R}{\sigma}
\]

where \(\sigma \) is the static stability, having various equivalent forms, including

\[
\sigma = -\frac{T \partial \theta}{\theta \partial p} = \frac{\kappa T}{p} - \frac{\partial T}{\partial p} = \frac{\Gamma_d - \Gamma}{\rho g},
\]

where \(\theta \) is potential temperature, \(\kappa = R_d/c_p \), \(\Gamma_d \) is the dry adiabatic lapse rate, and \(\Gamma \) is the
lapse rate. We will refer to \(\omega \) as the diabatic vertical velocity (positive downward). From
Equation 2, we see that Q_R is balanced by diabatic subsidence in the clear-sky regions of the tropical free-troposphere. The stronger the radiative cooling or the weaker the static stability, the larger the diabatic subsidence that is required to maintain energy balance. The energy equivalent of this diabatic subsidence is provided by convective heating.

Assuming mass continuity, the diabatic convergence profile in the clear-sky region is calculated by

$$-\nabla_H \cdot \mathbf{U} = \frac{\partial \omega}{\partial p}$$ \hspace{1cm} (4)

where $-\nabla_H \cdot \mathbf{U}$ is the horizontal diabatic convergence, hereafter referred to as conv. Assuming a closed mass budget between convective and nonconvective regions, convergence into the nonconvective region is balanced at the same altitudes by divergence out of the convective region, and vice versa. Note that using this system of equations we can calculate the implied convective detrainment simply from mass and energy conservation without invoking any complex moist physics or assumptions about parcel entrainment. This is a simple and elegant method for diagnosing the level of detrainment and abundant high clouds in the model and for understanding the changes in high clouds that accompany climate change.

Rather than computing Q_R profiles corresponding to 24 solar zenith angles for each latitude and longitude in every month in every model, we instead linearize the computation about a mean Q_R profile to increase efficiency. A mean Q_R profile is calculated at each latitude and month using the ensemble-mean, monthly-mean, zonal-mean T and q profiles averaged over the first decade of the 21st Century. Then, perturbed Q_R profiles are calculated at each latitude and month for small perturbations at each pressure level of the T and q fields. The perturbations are as in Soden et al. [2008], namely, a T increase...
of 1 K and an increase of \(q \) equal to that which is necessary to maintain constant RH in the presence of a 1 K increase in \(T \). The actual \(T \) and \(q \) fields at any location and time within any model are then multiplied by the appropriate \(T \)- and \(q \)-perturbed \(Q_R \) profiles and summed to calculate the actual \(Q_R \) profile for that location. A sample of randomly-selected \(Q_R \) profiles calculated using this procedure are nearly identical to those calculated by running the Fu-Liou code.

4. Results

The tropical-mean ensemble-mean \(q \), \(T \), radiative heating, \(\sigma \), and diabatic \(\omega \) profiles are plotted as functions of pressure in Figure 1 for averages over three decades, 2000-2010, 2060-2070, and 2090-2100. Here, ensemble mean refers to the average over the 15 models that run the A2 scenario. Note that \(q \) is plotted on a logarithmic scale.

Tropospheric temperatures are nearly moist adiabatic ([Xu and Emanuel [1989]], decreasing modestly with decreasing pressure in the lower troposphere, then decreasing more dramatically with decreasing pressure in the mid and upper troposphere (not shown). Water vapor concentrations are fundamentally limited by temperature through the Clausius-Clapeyron relation, thus \(q \) decreases exponentially with decreasing pressure throughout the troposphere (Figure 1a). Because temperature decreases with decreasing pressure and \(q \) falls off exponentially, \(Q_R \) is approximately constant with pressure throughout most of the troposphere at about 1.5 K dy\(^{-1}\) (Figure 1b). At the very low temperatures characteristic of the upper troposphere, water vapor concentrations become so low that \(Q_R \) dramatically falls off until reaching a level of zero radiative heating. Consistent with the sharp drop in water vapor radiative cooling, [Hartmann et al. [2001]] show that the radiative relaxation time sharply increases near 200 hPa, implying a dramatic reduction in the
ability of water vapor to radiate away any temperature perturbations. Above this level, radiative processes provide net warming to the atmosphere. It is important to note that Q_R falls off to zero well below the cold-point tropopause.

Static stability is small and nearly constant throughout most of the well-mixed troposphere as the T profile closely follows the moist adiabat (Figure 1c). At pressures below about 200 hPa, the T profile becomes increasingly more stable than the moist adiabat as radiative cooling by water vapor becomes increasingly less efficient. Additionally, the inverse pressure-dependence of σ (Equation 3) becomes especially pronounced at these low pressures. Diabatic ω, which is directly proportional to Q_R and inversely proportional to σ, very closely mimics the Q_R profile. It is nearly constant with pressure at about 25 hPa dy$^{-1}$ throughout the troposphere, then falls off rapidly to zero in the region where Q_R falls off rapidly and σ increases rapidly (Figure 1d). Because the diabatic ω is nearly constant with pressure above and below the range of altitudes where it falls off rapidly with decreasing pressure, $conv$ (vertical derivative of ω) exhibits a clear peak in the upper troposphere around about 200 hPa (Figure 2). It is in this region of large upper tropospheric $conv$ that net convective detrainment and its associated cloudiness should be maximum. Indeed, the ensemble-mean cloud amounts also exhibit a peak at the same altitude as the $conv$ peak (Figure 2). We interpret this peak in the cloud field as due to the abundance of high clouds detrained from deep convection near the top of the region of efficient radiative cooling. The same correspondence between $conv$ and cloud fraction is verified in MODIS observations (Kubar et al. [2007]) and in a cloud resolving model (Kuang and Hartmann [2007]).
One may question why we do not diagnose the level of abundant high clouds based on where boundary layer parcels reach neutral buoyancy in the models. In order to do this, one would have to assume details about the entrainment profile during parcel ascent. Indeed, air parcels undergoing convective ascent will eventually detrain at their level of neutral buoyancy, and the level at which the majority of parcels reach neutral buoyancy must be consistent with the level at which conv peaks (Folkins and Martin [2005]). Using the clear-sky mass and energy budget, however, requires no a priori assumptions about how entrainment rates affect parcel buoyancy. It also does not require a priori assumptions about how entrainment rates will change or not change with a warming climate.

In 3 we plot the fractional change in these quantities between the beginning and end of the 21st Century. Overlaid in light lines are the average profiles for 2000-2010 and 2090-2100. Water vapor mixing ratios increase at all levels in step with the warming climate so as to retain nearly constant relative humidity through the 21st Century (Figure 3a). Associated with the warming planet is an increase in the Q_R. The level at which Q_R falls off rapidly in the upper troposphere rises over the course of the century because T and q increase at all pressure levels (Figure 3c).

Static stability increases throughout most of the troposphere through the 21st century due to the nearly moist adiabatic temperature structure of the Tropics (Frierson [2006]), but this increase is confined below about 200 hPa (Figure 3d). Likewise, the warmer and more moist atmosphere emits more to space and so the Q_R also increases in time (Figure 3c). There are important differences in the vertical structures of their fractional changes. Whereas Q_R increases everywhere throughout the mid- and upper-troposphere,
the change in σ is positive at pressures greater than 200 hPa and negative at pressures less than 200 hPa.

The amplification of warming aloft where water vapor concentrations are very low results in large fractional increases of q and thus very large fractional increases in Q_R between 200 hPa and the tropopause, peaking at 100 hPa. This is essentially an upward shift in the Q_R profile as the climate warms, as expected from the FAT hypothesis.

The fractional change in σ changes sign at about 200 hPa (Figure 3d). At pressures greater than 200 hPa, convection keeps the T profile close to the moist adiabat. Thus, the warming profile is accompanied by increases in σ. At pressures less than 200 hPa, radiative convective equilibrium is no longer the dominant balance, as Q_R becomes small and dynamically-forced ascent becomes more relevant. At these altitudes, the T profile is much more stable than the moist adiabat, but σ decreases in time because the moistening makes longwave cooling more efficient (a destabilizing effect).

Where the fractional increase in σ exceeds that of Q_R (i.e., at pressures greater than about 250 hPa), the diabatic ω is reduced (Figure 3e). This reduction in clear-sky ω is consistent with several other studies that have pointed out the robust slow-down of the tropical circulation in a warmer climate (Knutson and Manabe [1995], Held and Soden [2006], Vecchi and Soden [2007], Gastineau et al. [2009]). Because the fractional increase in σ is larger than that of Q_R at these altitudes, less ω is required in the clear-sky atmosphere to balance the enhanced Q_R. In other words, a given descent rate achieves greater warming in the presence of enhanced σ.

At pressures less than 200 hPa, the reduction in σ and increase in Q_R result in an enhancement in the diabatic ω, or an upward shift in the ω profile. The combination of
enhanced ω above due to enhanced Q_R and diminished ω below due to increased σ reduces the vertical gradient of diabatic ω in the warmer climate, and thus causes a reduction in the upper tropospheric $conv$ (Figure 3f). In the end, the $conv$ profile shifts upward along with the Q_R profile and becomes smaller in magnitude due to the competing changes in the Q_R and σ profiles.

In summary, the warming climate is associated with two main changes to $conv$ and implied convective detrainment. First, the location of peak $conv$ shifts toward lower pressure. The upward shift of peak $conv$ is consistent with upward shift in Q_R because the T is sufficiently “high” that there is appreciable Q_R from water vapor. As will be shown below, the upward shift is nearly isothermal, but the peak $conv$ level warms slightly due to the significantly increased σ. Secondly, the upper tropospheric $conv$ systematically decreases at all but the lowest pressures in association with the decrease in the tropical overturning circulation. Because the ω falls off to zero less dramatically with decreasing pressure in the warmer climate as explained above, the implied upper tropospheric $conv$ also decreases. Clearly, both the reduction in total $conv$ and the shift towards higher altitude of peak $conv$ are mimicked in the cloud fractions.

The quantities plotted in Figure 1 are plotted again in Figure 4, but now as a function of T. The three water vapor mixing ratio curves now lie on top of one another throughout most of the troposphere, indicating an essentially unchanged relative humidity as the climate warms (Figure 4a). Associated with this nearly unchanged relative humidity is a nearly unchanged Q_R profile, when plotted in T coordinates (Figure 4b). This clearly indicates the strong and fundamental dependence of Q_R on T through its exponential limit on the water vapor concentrations. Static stability, on the other hand, is a function
of pressure and the vertical gradient of T rather than its absolute value. Thus, as the climate warms and the T profile remains locked to the moist adiabat, the σ at a given T increases (Figure 4c). Furthermore, σ is inversely dependent on pressure (Equation 3), so at a fixed temperature it increases dramatically simply because the isotherms move towards lower pressure in the warming climate. For example, the tropical-mean 230 K isotherm moves from 245 hPa to 220 hPa over the century. Taken alone, this inverse pressure dependence causes a 50% increase in σ at 230 K.

The shift towards higher σ at all T levels results in a systematic decrease in diabatic ω at all T levels as the climate warms (Figure 4d). Although the level of peak conv shifts upward in space, it does not do so in such a way as to remain at fixed temperature. Rather, the level gets slightly warmer due to the strong increase in σ generated by the models (Figure 5). Similarly, the level of abundant high clouds shifts towards slightly warmer temperatures rather than staying fixed in T as would be expected from FAT (Figure 5). The change in cloud T is consistent with that predicted from conv. The reason that conv and clouds in models do not exhibit a strict FAT response is because of the strong increase in σ relative to Q_R that is not explicitly accounted for in the FAT mechanism. It is important to note that the clouds warm only slightly, and certainly much less than the upper troposphere. This near-constancy of cloud T is largely the cause of the positive longwave cloud feedback, as will be shown below.

Trenberth and Fasullo [2009] assert that the main warming in AR4 models comes from the increase in absorbed solar radiation due to decreases in tropical cloud cover. In the Tropics, the cloud fraction reduction is most evident in high clouds (their Figure 3). Here we offer an explanation for the decrease in cloud cover, namely, the decrease
in upper tropospheric $conv$ due to the competing effects of enhanced clear-sky Q_R and
enhanced upper tropospheric σ. If the mechanism explained above is the cause for the
decrease in high cloudiness, then one would expect models with greater upper tropospheric
warming (i.e., those models with large negative lapse rate feedback) to also be models with
larger decreases in tropical high clouds. Furthermore, if a portion of the shortwave cloud
feedback is due to changes in tropical high cloud coverage, one would expect that portion
of shortwave cloud feedback to be well correlated with the lapse rate feedback: the larger
the upper tropospheric warming, the larger the reduction in high cloud amount, and the
smaller in magnitude the (negative) shortwave cloud forcing. This would allow one to
define a combined lapse-rate shortwave cloud feedback that would have less inter-model
spread than the two taken separately, in a similar way to the combined lapse rate - water
vapor feedback.

In Figure 6 we show tropical mean $conv$ and cloud fraction profiles as a function of T
for the three decades 2000-2010, 2060-2070, and 2090-2100 for each of the 15 models used
in this study. Here we assess the degree to which the models exhibit a correspondence
between their high cloud fractions and the location of peak upper tropospheric $conv$. This
is difficult because the model output available in the PCMDI archive is only the cloud
fraction in the model vertical bins, with no information about optical depth or cloud top
information similar to what a satellite sensor would retrieve in reality. It is also probable
that each modeling center defines clouds differently from each other. Thus a lack of perfect
 correspondence between cloud fraction and upper tropospheric $conv$ is not necessarily an
indication that our diagnosis technique is flawed, nor is perfect correspondence a validation
of our diagnosis technique.
Nonetheless, the models collectively produce a peak in high cloud amount that is consistent with the level diagnosed from the clear-sky energy and mass balance. Notable exceptions are the miroc_medres model, where a large peak in cloud amount appears at the tropopause, most likely very thin tropopause cirrus that is disconnected from deep convection, and the mri_cgcm model, whose cloud fraction exhibits a very broad upper tropospheric peak that is rather different from its much sharper conv peak. In general, conv peaks are sharper and located at a slightly lower pressure than the cloud fraction peaks. It is reasonable that a plot of cloud tops would exhibit a peak that is both sharper and located at lower pressures than the peak shown here for cloud amount, so it is likely that a better correspondence exists between the level of abundant conv and the level of abundant high cloud tops.

Additionally, it is clear that all models produce cloud and conv profiles that remain nearly fixed in temperature. The models generally exhibit a slight decrease in upper tropospheric conv and cloud amount, though it appears as though the signal is larger in the conv profile.

To assess the degree to which the upward migration of model clouds agrees with the upward migration of calculated conv in each model, we calculate the high cloud-weighted pressure and upper tropospheric clear-sky diabatic convergence-weighted pressure as

\[
\left[p_{\text{hi}} \right] = \frac{\sum p_{\text{at}} T=270K \ f \ p}{\sum p_{\text{at}} T=270K \ f},
\]

and

\[
\left[p_{\text{conv}} \right] = \frac{\sum p_{\text{at}} T=270K \ CONV \ f \ p}{\sum p_{\text{at}} T=270K \ CONV},
\]
where f is the cloud fraction at each pressure. Scatterplots of decadal-mean tropical-mean p_{conv} and p_{hiacd} are shown for each model and for the ensemble mean in Figure 7. While the degree of correspondence between the location of abundant high cloud amount and upper tropospheric conv varies from model to model (Figure 6), the correspondence between the shift in p_{conv} and the shift in upper tropospheric p_{hiacd} as the climate warms is remarkably consistent from model to model, closely following a one-to-one relationship. In general, the decrease in p_{hiacd} is slightly larger than the decrease in conv weighted pressure. In other words, the clouds migrate slightly more than conv does.

High cloud weighted-temperature and upper tropospheric clear-sky diabatic convergence-weighted temperature are calculated as

$$T_{\text{hiacd}} = \frac{\sum_p \text{at } T=270\text{K} \ f \ T} {\sum_p \text{at } T=270\text{K} \ f}$$

(7)

and

$$T_{\text{conv}} = \frac{\sum_p \text{at } T=270\text{K} \ \text{CONV} \ T} {\sum_p \text{at } T=270\text{K} \ \text{CONV}}.$$

(8)

Scatterplots of decadal-mean tropical-mean upper tropospheric T_{conv} and T_{hiacd} are shown for each model and for the ensemble mean in Figure 8. Each number in the plot represents its respective decadal mean.

As in the previous figure, the dashed line has slope one but nonzero y-intercept. In T space, the shift in T_{conv} and T_{hiacd} is very small (on the order of a degree) indicating that both the high clouds and the upper tropospheric conv shift upward in altitude as the climate warms, but do so in such a way that they remain at approximately the same T. Because the conv profile migrates upward slightly less than the cloud profile, there is slightly greater warming of the T_{conv} than that of the T_{hiacd}. This is especially the case
in the GFDL models, whose T_{hicld}s remains remarkably constant in the face of relatively large increase of their T_{conv}s. Overall, the very slight shift towards warmer T_{hicld} and T_{conv} is related to the increase in σ as the climate warms, as explained above. In summary, all models in the IPCC AR4 archive exhibit a clear shift in high cloud amount towards lower pressures that is remarkably well-explained by the upper tropospheric $conv$ inferred from radiative cooling. The shift occurs nearly isothermally, as expected from the FAT hypothesis.

Figure 9, which plots the ensemble mean T_{conv}, T_{hicld}, and the T at 200 hPa as a function of surface T over the course of the 21st Century, nicely illustrates the main conclusions from the first part of this paper. Whereas the tropical upper troposphere warms 6 K, approximately twice as much as the mean tropical surface T (lapse rate feedback), the T_{hicld} and T_{conv} warm only about 1 K. Tropical high clouds much more closely follow the isotherms rather than the isobars, as expected from the FAT hypothesis. This represents a strong positive feedback because the clouds are not warming in step with the surface or atmosphere; in other words the planet cannot radiate away heat as easily as it could if the high clouds warmed along with the upper troposphere. In the following section we make a quantitative estimate of the contribution of this nearly-fixed T_{hicld} to the total longwave cloud feedback.

5. Estimating Model and Hypothetical Cloud Feedbacks

Though the tendency for clouds to shift upward as the climate warms has been noted in several previous studies (e.g., Wetherald and Manabe [1988], Mitchell and Ingram [1992], Senior and Mitchell [1993]), no study has explicitly shown to what extent this effect is giving rise to the positive longwave cloud feedback. Here we make an estimate of the
contribution to longwave cloud feedback of the nearly constant $T_{h,cld}$. We first decompose the change in longwave cloud forcing into its components, then calculate longwave cloud feedback using the radiative kernel technique of Soden et al. [2008].

The outgoing longwave radiation (OLR) can be written as the sum of contributions from the clear and cloudy regions, denoted by the subscripts cld and clr, respectively:

$$OLR = f_{tot} OLR_{cld} + (1 - f_{tot}) OLR_{clr}$$

(9)

where f_{tot} is the total cloud fraction output by the model. Note that this cloud fraction is the total (i.e., vertically integrated with overlap assumptions) cloud fraction to be distinguished from f which is the cloud fraction in each vertical bin. Because OLR, OLR_{clr}, and f_{tot} are model diagnostics, OLR_{cld} is calculated using this equation. Note that OLR_{cld} is the LW radiation that is emerging from only the cloudy portion of the scene whereas OLR is the LW emerging from the entire scene including cloudy and clear sub-scenes. This allows us to define the $LWCF$ as

$$LWCF = OLR_{clr} - OLR = f_{tot} (OLR_{clr} - OLR_{cld}).$$

(10)

The change in $LWCF$, which we calculate as the difference between the 2090-2100 mean and the 2000-2010 mean, can be written as

$$\Delta LWCF = \Delta f_{tot} (OLR_{clr} - OLR_{cld}) + f_{tot} \Delta OLR_{clr} - f_{tot} \Delta OLR_{cld} + C.$$

(11)

The first term on the right hand side is the contribution from the change in cloud fraction assuming no change in clear minus cloudy OLR. This term is negative in the ensemble mean because cloud fraction decreases slightly. The second term is the change in clear sky OLR assuming no change in cloud fraction. In the ensemble mean, this term is generally positive in the extratropics and negative in the Tropics, as the atmosphere
becomes more opaque to longwave radiation. The third term is the change in cloudy sky OLR assuming no change in cloud fraction. In the ensemble mean this term is strongly positive throughout most of the tropical oceans and negative elsewhere. That this term is so strongly positive throughout much of the Tropics implies that the cloudy sky OLR decreases dramatically in many regions as the climate warms. However, upon close inspection of the regions that show large values of ΔOLR_{cld}, it is clear that the large changes are caused not by clouds cooling or warming but simply by increases or decreases in the relative amount of high versus low clouds. Because of this, we perform a slightly different decomposition below. The fourth term, C, is a covariance term, equal to $\Delta f_{tot} \Delta OLR_{clr} - \Delta f_{tot} \Delta OLR_{cld}$. It is negative on average throughout the Tropics.

To better assess the relative roles of high and low clouds in affecting $\Delta LWCF$, we decompose OLR_{cld} into components due to high and low clouds in the Tropics:

$$f_{tot} OLR_{cld} = f_{hi} OLR_{hi} + f_{lo} OLR_{lo},$$ \hspace{1cm} (12)

where

$$f_{hi} + f_{lo} = f_{tot}$$ \hspace{1cm} (13)

Rather than attempting to calculate the high and low cloud fractions from the cloud amount profiles, we assume that the high cloud weighted temperature ($T_{hi,cld}$) is a reasonable estimate of the high cloud emission T and that the cloud is a blackbody such that

$$OLR_{hi} = \sigma T_{hi,cld}^4.$$ \hspace{1cm} (14)
We also assume that the low cloud OLR is the same as the clear-sky OLR, $\text{OLR}_{lo} = \text{OLR}_{clr}$. This allows us to calculate f_{hi} as

$$f_{hi} = f_{tot} \frac{\text{OLR}_{cld} - \text{OLR}_{lo}}{\text{OLR}_{hi} - \text{OLR}_{lo}} = f_{tot} \frac{\text{OLR}_{cld} - \text{OLR}_{clr}}{\text{OLR}_{hi} - \text{OLR}_{clr}}.$$ \hspace{1cm} (15)

The decomposition of the change in longwave cloud forcing is now

$$\Delta \text{LWCF} = \Delta f_{hi}(\text{OLR}_{clr} - \text{OLR}_{hi}) - f_{hi}\Delta \text{OLR}_{hi} + f_{hi}\Delta \text{OLR}_{clr} + C. \hspace{1cm} (16)$$

Thus the change in LWCF is due to the change in f_{hi} assuming a constant difference between clear-sky OLR and high cloud OLR, the change in high cloud OLR and clear sky OLR assuming no change in f_{hi}, and the covariance between changes in f_{hi}, high cloud OLR, and clear sky OLR. ΔLWCF calculated here is exactly equal to that calculated directly.

In Figure 10 we show the contribution of each of these components to the change in ensemble-mean LWCF. Note that the color scale varies among the panels to make the features more apparent. Henceforth, ensemble-mean refers to the average over the 12 models that run the A2 scenario and that archived enough information to compute cloud feedbacks. (Three of the models used previously do not output enough clear-sky diagnostics to compute cloud feedbacks.) Large regional changes in f_{hi} occur as the tropical circulation changes over the course of the century. Most notably, f_{hi} increases along the equatorial Pacific and Indian Oceans are nearly compensated by f_{hi} decreases in the subtropics and over tropical land masses (Figure 10a). Maps of both the mean and change in f_{hi} are very similar to maps of the mean and change in precipitation (not shown), lending credence to our method of extracting the f_{hi} using Equation 15. Overall, the redistribution of tropical high clouds tends to increase the LWCF in the
Tropics (Figure 10a). Interestingly, the tropical-mean change in f_{hi} is slightly negative (not shown), indicating an overall contraction of high cloudiness that is consistent with the decrease in upper tropospheric conv.

In the Tropics, clear-sky OLR decreases between the beginning and end of the century as the atmosphere becomes more opaque (Figure 10b). This is especially true in convective regions that are moist in the free troposphere like over the Western Pacific warm pool, resulting in a largely negative $f_{hi}\Delta \text{OLR}_{clr}$ term. Because high cloud temperatures do not stay perfectly constant with climate change as explained above, the $-f_{hi}\Delta \text{OLR}_{hi}$ term is negative over most of the Tropics (Figure 10c). This is especially pronounced over the West Pacific warm pool and Indian Ocean. Taken together, the terms in panels (b) and (c) represent a decrease in the difference between clear and cloudy OLR as the cloud tops warm slightly and the clear-sky OLR decreases slightly; thus they contribute to a decrease in ΔLWCF.

Both covariance terms (Figure 10d and e) are very small (note the color scale range) and systematically negative throughout the Tropics. These are due to the concurrent increase in f_{hi} in regions where both the high clouds are warming slightly and the clear-sky OLR is decreasing slightly.

ΔLWCF is negative throughout most of the Tropics, with two main regions of positive change, namely, the equatorial Pacific and off the east coast of Africa (Figure 10f). These two regions exhibit large increases in f_{hi} that outweigh the other terms contributing to ΔLWCF. Over the maritime continent, the increase in high cloud OLR and decrease in clear-sky OLR result in a decrease in LWCF. Over the tropical continents, the main cause of the decrease in LWCF is due to the decrease in f_{hi} as the climate warms.
The change in LWCF is not equal to the longwave cloud feedback, though they are correlated \cite[Soden et al. (2004), Soden and Held (2006)]. Whereas ΔLWCF is equal to the change in clear- minus all-sky OLR, the longwave cloud feedback is the change in OLR due to clouds alone. If clouds fraction remained perfectly constant at all levels as the climate warmed, ΔLWCF would be negative because the clouds would be warming and emitting more and the clear-sky atmosphere would become more opaque, causing a reduction in the contrast between clear and cloudy OLR. However, the longwave cloud feedback would – by definition – be zero because the change in OLR due to changes in clouds alone would be zero. Similarly, if total cloud fraction remained unchanged but the cloud profile shifted upward such that it exactly compensated the change in clear-sky emission temperature, ΔLWCF would be zero. However, because the clouds rose to a higher altitude, the reduction in OLR due to clouds alone (the longwave cloud feedback) would be positive. Thus, ΔLWCF must be adjusted to calculate the longwave cloud feedback. We do so using the radiative kernel technique \cite[Soden et al. (2008)], as described below.

5.1. From ΔLWCF to LW Cloud Feedback: Applying the Radiative Kernels

Briefly, radiative kernels represent the net radiative response at top of atmosphere to small perturbations of given variables at each latitude, longitude, pressure, and time. They are matrices containing the partial derivative of net radiation at the top of the atmosphere with respect to T, humidity, or surface albedo perturbations. Feedback magnitude is calculated by convolving the kernel with the response of T, q, or albedo to a change in surface T. This technique is especially useful because one can calculate feedbacks using model output without having to run a radiative transfer model or perform
several simulations, as in the partial radiative perturbation method. Because the radiative transfer calculation is already performed in the construction of the kernel, it also can be convolved with observational humidity or T changes to estimate feedbacks (Dessler et al. [2008]). The kernels are also useful in their own right for illustrating the regions of the atmosphere that are especially important for feedbacks (e.g., the tropical upper troposphere for water vapor feedback).

There is no cloud radiative kernel because the linearity assumptions that are required for the technique are invalid for perturbations to cloud fields. However, one can estimate cloud feedback by adjusting the change in cloud forcing by the magnitude of cloud masking in the T, q, and albedo feedbacks. The cloud masking terms are calculated by differencing the clear-sky radiative responses and all-sky radiative responses (Eqn. 25 of Soden et al. [2008]).

For each model we calculate the clear and all-sky feedbacks due to T, q, and surface albedo by convolving the appropriate radiative kernels with the change in T, q, and surface albedo between the first and last decade of the 21st century. The cloud masking is calculated by differencing the clear- and all-sky feedbacks and adding a term due to the cloud masking of the change in radiative forcing in the A2 scenario. If we assume the same proportionality of cloud masking occurs in the SRES A2 scenario as in the A1B scenario (Soden et al. [2008]) and sum the A2 radiative forcing terms given in Tables 6.14 and 6.15 of the IPCC Third Assessment Report (Ramaswamy et al. [2001]), this term is 1.03 W m^{-2}.

5.2. Three Hypothetical LW Cloud Feedback Cases: FAT, FAP, and PHAT

Here we compare three hypothetical scenarios to the model $\Delta LWCF$ to illustrate the contribution of nearly-fixed high cloud temperatures to the longwave cloud feedback. We consider two cases that can be thought of as upper and lower bounds on $\Delta LWCF$, the fixed anvil temperature (FAT) and the fixed anvil pressure (FAP) cases, respectively. We also consider an intermediate case, the proportionately higher anvil T (PHAT) case, in which the change in $T_{hi,cld}$ is set equal to the change in upper tropospheric T_{conv}. As will be shown, PHAT does the best job of matching the longwave cloud feedback in the models.

Note that we use the term “anvil” very loosely to include all tropical high clouds, simply to maintain consistent terminology with Hartmann and Larson [2002].

The change in $LWCF$ assuming FAT is given by

$$\Delta LWCF_{FAT} = \Delta f_{hi}(OLR_{clr} - OLR_{hi}) + f_{hi}\Delta OLR_{clr} + C,$$

(17)

where the ΔOLR_{hi} term in Equation 16 is neglected because $T_{hi,cld}$ is assumed fixed. The change in $LWCF$ assuming FAP is given by

$$\Delta LWCF_{FAP} = \Delta f_{hi}(OLR_{clr} - OLR_{hi}) - f_{hi}\Delta OLR_{hi}^{FAP} + f_{hi}\Delta OLR_{clr} + C,$$

(18)

where ΔOLR_{hi}^{FAP} is the change in high cloud OLR assuming the clouds remain at the same pressure – the initial high cloud weighted pressure – as the climate warms. The change in $LWCF$ assuming PHAT is given by

$$\Delta LWCF_{PHAT} = \Delta f_{hi}(OLR_{clr} - OLR_{hi}) - f_{hi}\Delta OLR_{hi}^{PHAT} + f_{hi}\Delta OLR_{clr} + C,$$

(19)

where ΔOLR_{hi}^{PHAT} is the change in high cloud OLR assuming the change in $T_{hi,cld}$ is equal to the change in tropical-mean T_{conv}. As we have seen, the change in T_{conv} is small but generally positive, so it represents a small but important correction to the
Fat assumption. For all three cases, we compute $\Delta LWCF$, then apply the cloud mask corrections described above to calculate longwave cloud feedback.

In Figure 11 we plot the $LWCF$ estimated for each case, along with the difference between the model $LWCF$ and that computed for each case. Note that the decomposition of $\Delta LWCF$ was only done for the Tropics, where it is easier to separate high and low clouds; thus the FAT, FAP, and PHAT assumptions only differ in the Tropics, due to the $f_{hi} \Delta OLR_{hi}$ term. This is why a sharp discontinuity is clear at 30°N and 30°S, especially in the FAP feedback map.

Unlike $\Delta LWCF$ maps, the longwave cloud feedback is positive throughout the Tropics, except in the FAP case where it is only positive over the equatorial Pacific and off the east coast of Africa where large increases in high clouds occur (Figure 11c). In the FAP feedback, the large increase in $T_{hi,cd}$ results in a large negative contribution due to the change in OLR_{hi}. The FAP feedback is essentially that which would occur if the cloud profile did not shift upward as the climate warmed. Thus, the difference between the model feedback and the FAP feedback shown in Figure 11d gives the contribution of changing cloud height to the longwave cloud feedback. Equivalently, this difference is the contribution to longwave cloud feedback of the tendency for clouds not to warm as much as the upper troposphere. It is about $1 \text{ W m}^{-2} \text{ K}^{-1}$ in the tropical-mean. Without this nearly constant high cloud contribution, the tropical-mean longwave cloud feedback would be negative, as shown in the FAP case.

The FAT feedback is slightly larger than the model feedback because tropical high clouds do not stay at a fixed T as the climate warms (Figures 11a and b). Thus, a slight overestimate of the feedback occurs in all regions that have climatologically abundant
In the tropical mean, the FAT assumption overestimates the model longwave cloud feedback by 0.28 W m\(^{-2}\) K\(^{-1}\).

Allowing the tropical high clouds to warm slightly in proportion to the amount that the tropical-mean \(T_{conv}\) warms (i.e., the PHAT assumption) predicts a tropical-mean longwave cloud feedback that is only slightly greater than the model feedback by 0.04 W m\(^{-2}\) K\(^{-1}\) (Figure 11f). Because we apply a spatially-invariant tropical-mean warming to the high clouds in the PHAT assumption, there are some regions where we underestimate the feedback (i.e., over the continents and in the subtropics) and some regions where we overestimate the feedback (i.e., over the west Pacific warm pool and Indian Ocean). Where we overestimate the feedback, the high clouds warm more than does the tropical-mean upper tropospheric \(T_{conv}\). Nevertheless, the feedback calculated assuming PHAT agrees quite well with the model longwave cloud feedback, and properly accounts for the physics that govern the shift in the high cloud profile.

In Figure 12, we show a bar plot of the model, FAT, FAP, and PHAT tropical-mean longwave cloud feedback for each model and for the ensemble mean. Clearly the feedback calculated assuming clouds remain at fixed pressure (the FAP feedback) greatly underestimates the longwave cloud feedback in every model. As expected, it is nearly zero in all models, with the spread being caused by differences the other terms in the decomposition, most notably the change in \(f_{hi}\). For nearly every model, the difference between FAP and model feedback magnitude is near 1 W m\(^{-2}\) K\(^{-1}\). This is entirely due to the fact that clouds do not stay at fixed pressure as the climate warms, but rather rise nearly isothermally.
On the other hand, the feedback calculated assuming T_{hielld} does not change (the FAT feedback) slightly overestimates the longwave cloud feedback in every model. The magnitude of overestimation varies from model to model depending on the degree to which the shift in cloud profile deviates from isothermal. FAT remains a considerably better approximation to the model cloud feedback than FAP.

The feedback calculated assuming that T_{hielld} increases in a manner proportional to the tropical-mean upper tropospheric T_{conv} (the PHAT feedback) very closely tracks the model longwave cloud feedback in all the models. Depending on the degree to which each model’s T_{conv} changes, the feedback calculated assuming PHAT can over- or underestimate the model longwave cloud feedback. In the ensemble mean, it is a slight over-estimation, but is remarkably close to the model value. The PHAT feedback is always positive, as there is a large contribution from the fact that the clouds do not warm nearly as much as if they stayed at fixed pressure. PHAT is a slightly better predictor of the longwave cloud feedback magnitude than FAT because it accounts for the slight increase of T_{hielld}. The PHAT assumption works better because it incorporates the change in σ that accompanies modeled climate change, which is ignored in the FAT hypothesis. Thus we have a physically consistent and robust predictor of each model’s longwave cloud feedback, and therefore high confidence that the systematically positive longwave cloud feedback produced by the models is indeed correct.

6. Conclusions

We have shown that tropical high clouds in models shift upward as the climate warms over the 21st Century and that this upward shift is accompanied by a very modest increase in cloud top temperature. Because the clouds are not warming in step with the surface
temperature, the warming Tropics become less efficient at radiating away heat and thus
the clouds are acting as a positive feedback on climate.

The negligible temperature response of tropical high clouds to climate change can be
understood through the principles of the fixed anvil temperature (FAT) hypothesis of
Hartmann and Larson [2002]. The essential physics are simply that the troposphere can
only be heated by convection where it is being cooled by radiation. Thus clouds are
only abundant in altitude ranges where the temperatures are high enough for appreciable
water vapor to radiatively cool to space. If the entire troposphere warms, the tropical-
mean cloud tops will be located at a higher altitude that is now warm enough to support
sufficient water vapor and Q_R.

Separating the Tropics into convective and non-convective regions and assuming a mass-
conserving circulation connecting them, the altitude of convective detrainment and abun-
dant high cloud amount must be co-located with the altitude of upper tropospheric $conv$.
One can calculate the $conv$ profile in a relatively straightforward manner by computing
the vertical gradient of the diabatic ω required to balance Q_R. Because of the rapid
fall-off of Q_R with decreasing pressure and rapid increase of σ with decreasing pressure,
diabatic ω decreases rapidly with decreasing pressure in the upper troposphere, creating
a region of enhanced $conv$. We have shown good qualitative agreement between this level
of enhanced upper tropospheric $conv$ and the high cloud amount in each model. This
method of diagnosing the level of high cloud amount is preferred over that which calcu-
lates the level of neutral buoyancy for a rising boundary layer parcel because it requires
no assumptions about parcel entrainment, which is poorly constrained.
As the climate warms over the course of the 21st Century, the p_{conv} and p_{hiecl} decrease in a nearly one-to-one fashion, and do so in such a way as to remain at approximately the same T. Because the vertical structure of changes to the Q_R profile differs from that of the σ profile, the diabatic ω decreases below and increases above the level of peak conv, causing a decrease in conv that is mimicked by slight decreases the upper tropospheric cloud fraction. Both the clouds and conv tend to warm slightly over the course of the century, and this is due to an increase in σ that prevents the clouds from rising isothermally.

To assess the contribution of nearly constant cloud top temperatures to the longwave cloud feedback, we first decomposed the change in LWCF into components. This allowed us to create three cases, one in which the contribution due to changing high cloud OLR is zero (FAT), one in which the T_{hiecl} increases in proportion to the T at a fixed pressure level (FAP), and one in which the T_{hiecl} increases in proportion to the amount that the tropical-mean upper tropospheric T_{conv} increases (PHAT).

Assuming that clouds do not rise as the climate warms (i.e., FAP) results in a near-zero tropical longwave cloud feedback in every model (by definition). The model longwave cloud feedback is about 1 W m$^{-2}$ K$^{-1}$ larger than that calculated assuming FAP, and this is entirely because the clouds rise in such a way as to warm only slightly. That calculated assuming FAT slightly overestimates the model longwave cloud feedback because the T_{hiecl} does increase slightly over the course of the century. That calculated assuming PHAT is very close to the model longwave cloud feedback in the models, and represents an improved estimate over FAT because it allows for the slight increase in T_{hiecl} due to the increase in σ. Thus, we show that the robust positive longwave cloud feedback can be well-explained by
the fundamental physics of FAT, with a slight modification (PHAT) to take into account the modeled \(\sigma \) changes. Tropical high clouds are fundamentally constrained to emit at approximately the same \(T \) as the climate warms, and we have shown here that this results in a longwave cloud feedback that is robustly positive in climate models.

Acknowledgments. This research was supported by NASA Earth and Space Science Fellowship NNX06AF69H and NASA Grant NNX09AH73G. We acknowledge the international modeling groups for providing their data for analysis and the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data. We thank Chris Bretherton and Rob Wood for useful discussion and suggestions for improvement, as well as Marc Michelsen for computer support.

References

Gastineau, G., L. Li, and H. L. Treut (2009), The hadley and walker circulation changes in global warming conditions described by idealized atmospheric simulations, J. Clim., 22, 3993–4013.

Figure 1. Tropical-mean ensemble-mean specific humidity (a), radiative cooling (b), static stability (c), and diabatic subsidence (d) for 2000-2010 (thin solid), 2060-2070 (thick dashed), and 2090-2100 (thick solid). Ensemble-mean refers to the average over the 15 models that run the A2 scenario. Note that the specific humidity is plotted on a logarithmic scale.
Figure 2. Tropical-mean ensemble-mean clear-sky diabatic convergence (black) and cloud amount (gray) for 2000-2010 (thin solid), 2060-2070 (thick dashed), and 2090-2100 (thick solid). Ensemble-mean refers to the average over the 15 models that run the A2 scenario.
Figure 3. Tropical-mean ensemble-mean change in specific humidity (a), temperature (b), radiative cooling (c), static stability (d), diabatic subsidence (e), and clear-sky diabatic convergence (f) calculated as a percentage difference between the 2000-2010 mean and the 2090-2100 mean. Overlain in each panel are the 2000-2010 mean (light dashed line) and 2090-2100 mean (light solid line). Ensemble-mean refers to the average over the 15 models that run the A2 scenario. Note that the mean specific humidity is plotted on a logarithmic scale and that the x-axis limits on percentage changes vary from panel to panel.
Figure 4. Tropical-mean ensemble-mean specific humidity (a), radiative cooling (b), static stability (c), and diabatic subsidence (d) for 2000-2010 (thin solid), 2060-2070 (thick dashed), and 2090-2100 (thick solid) as a function of temperature. Ensemble-mean refers to the average over the 15 models that run the A2 scenario. Note that the specific humidity is plotted on a logarithmic scale and that temperature increases downward in each panel.
Figure 5. Tropical-mean ensemble-mean clear-sky diabatic convergence (black, bottom axis) and cloud amount (gray, top axis) for 2000-2010 (thin solid), 2060-2070 (thick dashed), and 2090-2100 (thick solid) as a function of temperature. Ensemble-mean refers to the average over the 15 models that run the A2 scenario. Note that temperature increases downward.
Figure 6. Tropical-mean clear-sky diabatic convergence (black, bottom axis) and cloud amount (gray, top axis) for 2000-2010 (thin solid), 2060-2070 (thick dashed), and 2090-2100 (thick solid) for the 15 IPCC AR4 models used in this study. The units for convergence are day$^{-1}$ and for cloud amount are %. Note that temperature increases downward in each panel.
Figure 7. Scatterplots of tropical-mean decadal-mean upper tropospheric clear-sky diabatic convergence-weighted pressure and high cloud-weighted pressure for the 15 IPCC AR4 models used in this study as well as the ensemble mean. Each number identifies the respective decade within the 21st Century. Note that pressure increases downward and to the left. The dashed line is a 1:1 line with a nonzero y-intercept passing through the mean of both quantities.
Figure 8. Scatterplots of tropical-mean decadal-mean upper tropospheric clear-sky diabatic convergence-weighted temperature and high cloud-weighted temperature for the 15 IPCC AR4 models used in this study as well as the ensemble mean. Each cross represents one decadal mean within the 21st Century. Note that temperature increases downward and to the left. The dashed line is a 1:1 line with a nonzero y-intercept passing through the mean of both quantities.
Figure 9. Tropical-mean ensemble-mean high cloud-weighted temperature (thick solid line), upper tropospheric clear-sky diabatic convergence-weighted temperature (thick dashed line), and 200 hPa temperature (thin solid line) plotted against tropical-mean ensemble-mean surface temperature for the 21st Century. Ensemble-mean refers to the average over the 15 models that run the A2 scenario.
Figure 10. Terms contributing to the change in ensemble-mean LWCF: $\Delta f_{hi}(OLR_{clr} - OLR_{hi})$ (a), $f_{hi} \Delta OLR_{clr}$ (b), $-f_{hi} \Delta OLR_{hi}$ (c), $\Delta f_{hi} \Delta OLR_{clr}$ (d), $-f_{hi} \Delta OLR_{hi}$ (e), and the sum of all terms, including the contribution from the extratropical terms that are not shown (f). Ensemble-mean refers to the average over the 12 models that run the A2 scenario and that archived enough information to compute cloud feedbacks. Note that the color scale varies from panel to panel.
Figure 11. Ensemble-mean longwave cloud feedback for three cases, FAT, FAP, and PHAT (left column) as well as the difference between the model LW cloud feedback and the three cases (right column). Ensemble-mean refers to the average over the 12 models that run the A2 scenario and that archived enough information to compute cloud feedbacks. Note the different color scales between columns.
Figure 12. Estimates of tropical-mean longwave cloud feedback for the three cases FAP, FAT, and PHAT, as well as the model longwave cloud feedback for each model and for the ensemble mean.