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ABSTRACT

This study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as

a joint function of cloud-top pressure (CTP) and optical depth (t). These histograms were generated by the

International Satellite Cloud Climatology Project (ISCCP) simulator that was incorporated into doubled-

CO2 simulations from 11 global climate models in the Cloud Feedback Model Intercomparison Project. The

authors use a radiative transfer model to compute top of atmosphere flux sensitivities to cloud fraction

perturbations in each bin of the histogram for each month and latitude. Multiplying these cloud radiative

kernels with histograms of modeled cloud fraction changes at each grid point per unit of global warming

produces an estimate of cloud feedback. Spatial structures and globally integrated cloud feedbacks computed

in this manner agree remarkably well with the adjusted change in cloud radiative forcing. The global and

annual mean model-simulated cloud feedback is dominated by contributions from medium thickness (3.6 , t #

23) cloud changes, but thick (t . 23) cloud changes cause the rapid transition of cloud feedback values from

positive in midlatitudes to negative poleward of 508S and 708N. High (CTP # 440 hPa) cloud changes are the

dominant contributor to longwave (LW) cloud feedback, but because their LW and shortwave (SW) impacts

are in opposition, they contribute less to the net cloud feedback than do the positive contributions from low

(CTP . 680 hPa) cloud changes. Midlevel (440 , CTP # 680 hPa) cloud changes cause positive SW cloud

feedbacks that are 80% as large as those due to low clouds. Finally, high cloud changes induce wider ranges of

LW and SW cloud feedbacks across models than do low clouds.

1. Introduction

Clouds are fundamentally important to the energy

budget of the planet owing to their high albedo, large

emissivity, and location at colder temperatures than the

surface. Relative to a hypothetical cloudless but other-

wise identical planet, the global and annual mean effect

of clouds at the top of atmosphere (TOA) is to increase

the amount of reflected shortwave (SW) radiation by

about 48 W m22 and to reduce the amount of emitted

longwave (LW) radiation by about 28 W m22 (Allan

2011). Thus the net effect of clouds is to cool the planet

by about 20 W m22.

An important unanswered question of climate science

is how cloud radiative effects will change as the planet

warms because of long-lived greenhouse gases. Any

systematic change in clouds that accompanies warming

will induce TOA radiation anomalies that feedback

on (i.e., amplify or dampen) those caused by increased

greenhouse gas concentrations. In all current global

climate models (GCMs), cloud feedbacks are positive

(Soden and Held 2006), indicating that modeled clouds
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change in such a way as to cool the planet less as the

planet warms. However, the intermodel spread in cloud

feedback is larger than for any other radiative feedback

process and is the primary contributor to the large range

of climate sensitivity produced by the models (e.g., Cess

et al. 1990; Soden and Held 2006; Ringer et al. 2006).

Intermodel spread in cloud feedback must be reduced

if the range of possible future climates simulated by

models is to be narrowed. To do so, it is necessary to

identify the nature of cloud changes that give rise to

cloud feedbacks within models, with an eye toward

identifying those aspects that are robust from those that

are not robust. Only then can physical processes that are

well understood, better constrained, and/or consistently

modeled be distinguished from those that are not. Such

an approach requires accurate methods to quantify cloud

feedback that can be applied across models using the

available diagnostics archived by the modeling centers.

Three primary methods have been used previously to

attribute modeled cloud feedbacks to the cloud changes

from which they arise. In all cases, the cloud feedback

is quantified as the change in cloud radiative forcing

per unit change in global mean surface air temperature,

where cloud radiative forcing is defined as the difference

between clear- and all-sky TOA fluxes (e.g., Charlock

and Ramanathan 1985). First, Bony et al. (2004), Bony

and Dufresne (2005), and Wyant et al. (2006) used

500-hPa vertical motion as a proxy for large-scale circu-

lation to separate the response of tropical clouds to an

imposed climate change into two components: a ther-

modynamic component due to intrinsic temperature de-

pendence of cloud radiative properties and a dynamic

component due to changes in circulation. Second, Webb

et al. (2006) compared the magnitude of the change in

LW cloud forcing relative to the change in SW cloud

forcing at each grid point to infer which types of cloud

changes could plausibly be responsible for each local

value of cloud feedback. Finally, Williams and Tselioudis

(2007) and Williams and Webb (2009) employed a clus-

tering technique to define several primary cloud regimes

from International Satellite Cloud Climatology Project

(ISCCP) simulator output (described below) and as-

sessed the contributions to cloud feedback from changes

in the relative frequency of occurrence of each regime

and from changes in the cloud radiative forcing within

each regime. All of these studies found a dominant role

for low clouds in driving the intermodel spread in net cloud

feedback. However, two important ambiguities remain.

First, Soden et al. (2004) have demonstrated that the

change in cloud forcing may not be an accurate measure

of the magnitude or even the sign of the cloud feedback

because it includes noncloud-induced changes in fluxes

that are irrelevant for cloud feedback. [Shell et al. (2008)

and Soden et al. (2008) proposed the method discussed

below to compute cloud feedbacks that accounts for

and attempts to remove the effect of clear-sky changes

on the change in cloud forcing.]

The second important ambiguity in these studies is

that—even if clear-sky effects are accounted for—the

use of such an integrated quantity as the change in ra-

diation at the TOA does not allow for clear identifi-

cation of the nature of cloud changes from which the

radiative changes arise. For example, at a location in

which the change in both SW and LW cloud forcing is

positive (i.e., one given the H classification of Webb

et al. (2006)), the implied cloud response is ‘‘less/thinner

low and more/higher/thicker high thin cloud.’’ Clearly

a number of plausible cloud responses can give rise to

a particular combination of LW and SW cloud-forcing

changes. A similarly vague finding that is common to

these studies is the small role of high clouds in contrib-

uting to both the mean and intermodel spread in cloud

feedback. Is this because high clouds exhibit little change,

and do so similarly across models, or because there are

large but compensating changes in high clouds (e.g.,

large upward shifts and large reductions in coverage)

that occur consistently across models? Such integrated

measures potentially mask competing effects of cloud

changes, which may give a false indication of robustness

or deemphasize the importance of a particular type of

cloud change. Therefore it is preferable to devise an al-

ternative method in which the cloud changes that cause

the cloud feedback can be determined directly.

In this paper we propose a different technique for

attributing the contributions of specific types of cloud

changes to cloud feedback that makes use of histograms

of cloud fraction partitioned by cloud top pressure (CTP)

and visible optical depth (t), along with corresponding

TOA radiative flux sensitivities to cloud fraction changes.

The CTP–t histograms of cloud fraction we use are

generated by the ISCCP simulator (Klein and Jakob

1999; Webb et al. 2001) that was run inline in GCMs as

part of the experiments performed for the first phase

of the Cloud Feedback Model Intercomparison Project

(CFMIP1; McAvaney and Le Treut 2003). The simula-

tor provides a plausible distribution of cloud-top frac-

tions by employing the same cloud property retrieval

techniques to the model atmosphere that are used by

the ISCCP passive satellite sensors observing the real

atmosphere (Rossow and Schiffer 1999). Because the

cloud-top fractions are individually ‘‘visible’’ from space

and are therefore individually impacting the TOA radi-

ative fluxes, it is possible to compute a cloud radiative

kernel that describes the TOA flux sensitivity to cloud-

top fraction changes in the histogram. We note that the

simulator is essential as our technique cannot be applied
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to conventional GCM output because of the invalidity of

the assumption that TOA flux sensitivities to cloud amount

perturbations in individual layers can be added linearly

to compute the net TOA flux anomaly (Shell et al. 2008;

Soden et al. 2008). By providing a decomposition of the

full cloud field into its individual radiatively relevant

components, the ISCCP simulator removes the uncer-

tainties associated with overlap assumptions and cloud

radiative properties that preclude the construction of a

cloud radiative kernel from conventional GCM output.

In the first part of this paper we document the method

of computing the TOA radiative impact of cloud fraction

perturbations in each bin of the CTP- and t-partitioned

histogram as a function of latitude, month, and surface

albedo using a radiative transfer code. We will refer to

this as a cloud radiative kernel. Then, multiplying the

cloud radiative kernel with the change in cloud fraction

histogram per unit of global mean surface air tempera-

ture change between a control and doubled-CO2 cli-

mate, we compute the cloud feedbacks in the CFMIP

simulations. To build confidence in our method, we

demonstrate that the feedback computed from ISCCP

simulator output compares remarkably well with that

computed by the current benchmark of adjusting the

change in cloud forcing for noncloud effects (Shell et al.

2008; Soden et al. 2008), both in the global mean sense

and on a point-by-point basis. The advantage of this

technique over Shell et al. (2008) and Soden et al.

(2008), however, is that it allows for unambiguous quan-

titative attribution of the cloud types that contribute to

the feedback at every location across models. We do not

infer the cloud responses that are consistent with the

change in cloud forcing at each location but rather

compute the cloud feedback directly from the change in

cloud distribution. Finally, we finish with a brief survey

of results related to the partitioning of cloud feedbacks

at different altitude levels and different optical depths

followed by the main conclusions of this first paper.

In Part II of this work (Zelinka et al. 2012, hereafter

referred to as Part II), we propose a simple method of

decomposing the change in cloud fraction histogram

that allows us to quantify cloud feedbacks arising from

three types of cloud changes: the change in cloud

amount holding the vertical and optical depth distri-

bution fixed, the change in vertical distribution holding

the optical depth distribution and total cloud amount

fixed, and the change in optical depth distribution holding

the vertical distribution and total cloud amount fixed.

This partitioning will facilitate attribution of cloud feed-

backs to specific types of processes that change clouds.

2. Data

We make use of output from slab ocean simulations

performed in 12 models as part of the CFMIP1 experi-

ments (McAvaney and Le Treut 2003) and submitted to

the Coupled Model Intercomparison Project phase 3

(CMIP3) archive (Table 1). Experiments are separately

run to equilibrium for a control climate with preindustrial

CO2 and a perturbed climate with doubled CO2. We

compute monthly mean annual cycles of surface albedo,

surface air temperature, clear- and all-sky LW and SW

fluxes at the TOA, profiles of atmospheric specific hu-

midity and temperature, and ISCCP simulator–produced

cloud fraction histograms (described below) from the

last 20 years of each run. The difference of each field’s

TABLE 1. Global climate models used in this study that took part in the Cloud Feedback Model Intercomparison Project, phase 1.

Asterisks denote models for which profiles of atmospheric temperature and specific humidity were not provided. The MPI ECHAM5

model was excluded from all calculations because of incorrect implementation of the ISCCP simulator (see appendix A).

No. Abbreviation Modeling center Country

1 HadSM4 Hadley Centre for Climate Prediction and Research/Met Office United Kingdom

2 HadSM3 Hadley Centre for Climate Prediction and Research/Met Office United Kingdom

3 HadGSM1 Hadley Centre for Climate Prediction and Research/Met Office United Kingdom

4 UIUC University of Illinois at Urbana–Champaign United States

5 MIROC(lowres) Center for Climate System Research (The University of Tokyo),

National Institute for Environmental Studies, and Frontier

Research Center for Global Change

Japan

6 AGCM4.0 Canadian Centre for Climate Modeling and Analysis Canada

7 BMRC1* Bureau of Meteorology Research Centre Australia

8 GFDL MLM2.1* U.S. Dept. of Commerce/National Oceanic and Atmospheric

Administration (NOAA)/Geophysical Fluid Dynamics Laboratory

United States

9 IPSL CM4* Institut Pierre Simon Laplace France

10 MIROC(hires)* Center for Climate System Research (The University of Tokyo),

National Institute for Environmental Studies, and Frontier

Research Center for Global Change

Japan

11 CCSM3.0* National Center for Atmospheric Research United States

12 MPI ECHAM5* Max Planck Institute for Meteorology Germany
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annual cycle between the control and doubled CO2 runs

are used in the feedback calculations. The Bureau of

Meteorology Research Centre model (BMRC1), Geo-

physical Fluid Dynamics Laboratory Mixed Layer Model,

version 2.1 (GFDL MLM2.1), L’Institut Pierre-Simon

Laplace Coupled Model, version 4 (IPSL CM4), Model for

Interdisciplinary Research on Climate, high-resolution

version [MIROC(hires)], Max Planck Institute (MPI)

ECHAM5, and the National Center for Atmospheric

Research (NCAR) Community Climate System Model,

version 3.0 (CCSM3.0) models did not archive specific

humidity and/or temperature, making it impossible to

compute cloud feedbacks from the adjusted change in

cloud radiative forcing of Shell et al. (2008) and Soden

et al. (2008). For the models in which it is possible to

calculate the adjusted change in cloud radiative forc-

ing, we use the values given in Fig. 1a of Webb et al.

(2006) for the radiative forcing due to doubling CO2:

3.75 W m22 K21 for the Met Office (UKMO) Hadley

Centre Slab Model, version 4 (HadSM4), HadSM3, and the

Hadley Centre Global Slab Model, version 1 (HadGSM1)

models, 3.6 W m22 K21 for the University of Illinois,

Urbana–Champaign (UIUC) model, 3.1 W m22 K21

for the MIROC(lowres) model, and the mean of these

three values for the Canadian Centre for Climate

Modelling and Analysis (CCCma) Atmospheric General

Circulation Model, version 4.0 (AGCM4.0) model. The

cloud masking of the CO2 forcing is assumed to be 16%,

as in Soden et al. (2008), and no forcing is assumed to

be present in the SW. For comparisons with the CAM-

derived (Shell et al. 2008) radiative kernels, we use the

clear- and all-sky CO2 forcing kernels to determine cloud

masking of the radiative forcing.

In all of the CFMIP models, the ISCCP simulator

(Klein and Jakob 1999; Webb et al. 2001) is run inline

during integration. The simulator takes the algorithm

used in the ISCCP cloud retrieval (Rossow and Schiffer

1999) and applies it to the model atmosphere to de-

termine a distribution of cloud tops partitioned by CTP

and t at every sunlit grid point and time step. It takes

into account the limitations and biases that exist in

ISCCP retrievals of cloud properties, such as the ability

to observe these distributions only in sunlit conditions,

the ability to observe only the highest cloud top in the

case of multilayered clouds, and the tendency for ISCCP

retrievals to overestimate CTP for very thin clouds over-

lying thicker clouds. To estimate the total cloud fraction

in each CTP and t bin, the simulator makes use of each

model’s cloud overlap assumption to compute a subgrid-

scale cloud distribution from which one can determine

what fraction of clouds underlying higher clouds are

‘‘visible’’ from space. This is important because it pro-

vides a distribution of cloud tops as a function of CTP

and t that is consistent with how clouds impact TOA

radiative fluxes and with the computation of total cloud

fraction in each model. Thus, the ISCCP simulator

provides a distribution of ‘‘radiatively-relevant’’ (from

a TOA perspective) cloud tops that is consistently de-

fined across models, unlike the cloud amount diagnostics

that are defined according to each model’s cloud pa-

rameterization. These features are essential for com-

puting cloud feedbacks across an ensemble of models

using the technique outlined below. (Note that incon-

sistencies were found in the implementation of the

simulator by some modeling groups; our methods of cor-

rection and rationale for excluding the MPI ECHAM5

model are described in appendix A.) We will refer to the

cloud fraction as a function of CTP and t within the his-

togram as C and its change under CO2 doubling as DC.

While this technique is a significant advance in our

ability to diagnose cloud feedbacks from models, one

must acknowledge the limitations of using ISCCP sim-

ulator output to diagnose cloud feedbacks. Known lim-

itations include the finite resolution of the ISCCP

histograms (CTP bin edges at 50, 180, 310, 440, 560, 680,

800, and 1000 hPa and t bin edges at 0, 0.3, 1.3, 3.6, 9.4,

23, 60, and 380), the lack of diagnosis of cloud property

changes from the dark half of the planet which might

affect the LW cloud feedback, and the fact that the re-

ported cloud changes may be due to clouds at signifi-

cantly lower levels than the reported cloud-top pressure

of the highest cloud in the column. These limitations can

be expected to play some role in our ability to partition

cloud feedback by cloud types; however, they are not

likely to substantially negate the value of these calcu-

lations nor the fact that the ISCCP simulator remains

the only credible way to quantify feedbacks from cloud

property changes in the CFMIP1 archive.

3. Computation of cloud radiative kernels

To quantify the role of changes in histogram-

partitioned cloud fraction (DC) on the TOA radiative

fluxes, we first compute the overcast-sky cloud radiative

forcing corresponding to each bin of the histogram in

a manner similar to that described in Hartmann et al.

(2001) and Kubar et al. (2007). ‘‘Overcast’’ refers to the

fact that the cloud forcing is calculated assuming a single

cloud covers 100% of the area of the column in the ra-

diation code. We use zonal and monthly mean annual

cycles of temperature and water vapor profiles computed

from the last two decades of the control runs of models 1–

6 (the only models for which these fields were available)

averaged together as input to the Fu–Liou radiation

code (Fu and Liou 1992). Our results are very insensitive

to whether the model-mean or any single model’s
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temperature and humidity fields are used as input to the

radiation code, as quantified in appendix B. We assume

a spatially invariant surface emissivity of 0.99, uniform

CO2, CH4, and N2O mixing ratios of 330, 1.6, and 0.28

ppmv, respectively, a standard profile of ozone mixing

ratio, and a solar constant of 1366 W m22. Calculations

are performed over a range of surface albedos and solar

zenith angles, as described below.

The first step in computing an overcast-sky cloud

forcing matrix for any given latitude and month is to

calculate clear-sky TOA LW and SW fluxes using the

Fu–Liou code. ‘‘Clear sky’’ simply means we set liquid

water content and ice water content to zero throughout

the column in the radiative transfer model. Then, at that

same latitude and month, the Fu–Liou code is run re-

peatedly, each time placing a synthetic cloud in the

column with a specified CTP and t (discussed in greater

detail below). For each CTP–t bin, TOA fluxes are

computed separately for four synthetic clouds located at

each corner of the bin. These four TOA fluxes are av-

eraged together to compute one TOA flux value for each

bin, and then subtracted from the clear-sky flux to com-

pute the overcast-sky cloud forcing matrix representing

the impact of each cloud type on the TOA radiative fluxes

relative to clear skies. Sensitivity of our cloud feedback

estimates to the assumed representative cloud properties

of a given bin are quantified in appendix B.

Single-layer clouds are inserted into the atmospheric

column of the radiative transfer model by setting liquid

or ice water content to nonzero values at the level closest

to the specified CTP. Clouds with tops warmer than

263 K are assumed to be liquid, with a liquid water con-

tent in the cloud layer equal to the liquid water path di-

vided by the layer’s geometric thickness. We compute

the liquid water path using t and Eq. (1) of Slingo (1989)

assuming an effective radius of 10 mm. For clouds with

tops colder than 263 K, we compute ice water content

using the parameterization of optical depth per unit

of cloud geometric thickness given in Eq. (3.9a) of Fu

(1996). The generalized effective ice crystal size used in

this computation is determined using Eq. (3.12) of Fu

(1996) with an assumed effective radius of 30 mm.

To accurately capture the diurnal range of incident

solar radiation, SW TOA fluxes with and without clouds

are computed for the zenith angles for each of the 24

hours of a day and then averaged before being differ-

enced. We use the 24 zenith angles appropriate for each

month and latitude, using a day in the middle of each

month. Though our use of zonal mean profiles of tem-

perature and humidity does not allow us to take into

account any longitude dependence that may impact TOA

fluxes, we do account for spatial differences in surface

albedo by performing every calculation three times, at

surface albedos of 0.0, 0.5, and 1.0. This is necessary

because the sensitivity of SW fluxes to changes in cloud

fraction depends strongly on underlying albedo (e.g.,

an increase in cloud fraction over a dark surface will

increase the SW radiation reflected from that grid point

more than will the same increase over a bright surface).

In sum, we generate a matrix of LW and SW overcast-

sky cloud forcings for every latitude and month, and for

three values of surface albedo.

Because the computation of cloud forcing for each bin

of the histogram is performed using a single atmospheric

column with only that cloud type present, the value in

each element of the matrix is the overcast-sky cloud

forcing. Dividing this matrix by 100 expresses the values

in units of W m22 %21. This computed cloud radiative

kernel (K) gives the sensitivity of TOA fluxes (R) to per-

turbations in cloud fraction as functions of CTP and t.

K [
›R

›C
. (1)

As in the case of the standard temperature and water

vapor radiative kernels of Shell et al. (2008) and Soden

et al. (2008), the cloud radiative kernel depends on lat-

itude and month. It is slightly different in that we did not

compute a kernel for each longitude but we did compute

a separate kernel for each of three values of surface

albedo. Additionally, whereas Shell et al. (2008) and

Soden et al. (2008) called the GFDL, CAM, and BMRC

models’ radiation codes 8 times daily at every location

on the planet for each perturbation level and feedback

variable for a 1-yr simulation, we input climatological

zonal and monthly mean thermodynamic profiles av-

eraged across six models into the Fu–Liou code.

Before using the cloud radiative kernels to compute

cloud feedback, they are mapped by linear interpola-

tion from their native latitude–albedo space to latitude–

longitude space using the clear-sky surface albedo at

each location and month in each model’s control cli-

mate. Note that this feature of the kernel technique

implies that some of the intermodel spread in SW cloud

feedback will arise simply from differences in control

climate clear-sky surface albedo across models, but we

find that this is a small effect (see appendix B).

In Fig. 1, we show the global and annual mean cloud

radiative kernels. The LW cloud radiative kernel is pos-

itive for all cloud types, indicating that increases in cloud

fraction result in decreases in outgoing longwave radia-

tion (OLR), and vice versa. The magnitude of the kernel

is sensitive to both t and CTP. For thin clouds (t , 3.6),

OLR is sensitive to changes in both their optical depth

and their vertical distribution, but for clouds with t . 3.6,

the sensitivity of OLR to changes in the optical depth

distribution becomes saturated and OLR is solely
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impacted by changes in the vertical distribution. Con-

versely, the SW cloud radiative kernel is negative for all

cloud types, indicating that increases in cloud fraction

result in increases in SW reflection to space and vice

versa. The impact of cloud fraction changes on SW

fluxes is much greater for thick clouds but does not de-

pend strongly on CTP. The small dependence on CTP

exhibited in the SW cloud radiative kernels is most likely

due to the decreasing attenuation of SW radiation by

above-cloud gaseous absorption with decreasing CTP.

Generally, a shift in the cloud distribution to-

ward higher and thinner categories results in a positive

(warming) impact on net TOA fluxes. However, note

that the largest positive net flux sensitivity is for in-

creases in high cloud fraction for t between 1.3 and 3.6

(see also Fig. 13b of Ackerman et al. 1988). A shift in the

distribution toward lower and thicker clouds makes the

net TOA fluxes more negative because of increased SW

reflection (due to the larger optical depth) and increased

LW emission (due to the lower height).

4. Computation of cloud feedback using cloud
radiative kernels

Multiplying the cloud radiative kernel (K) by the

change in cloud fraction histogram (DC) expressed in

percent gives an estimate of the contribution of each

cloud type to the change in TOA radiation associated

with climate change (in this case, a doubling of CO2):

DR 5 KDC. (2)

For a given grid point and month, DC is multiplied by the

cloud radiative kernel that corresponds to the control

climate’s clear-sky surface albedo for that location and

month. Because the kernel is computed using the atmo-

spheric and surface conditions from the control climate,

the change in TOA fluxes computed in this manner is

due solely to the change in clouds (i.e., no clear sky flux

changes are included), which is the quantity relevant for

cloud feedback. Dividing this response by the change in

global mean surface air temperature (DT
s
) provides an

estimate of the cloud feedback ( f) due to changes in the

amount of each cloud type:

f 5
DR

DTs

. (3)

Note that f and DR are both functions of CTP, t, latitude,

longitude, and month. Summing f over all cloud types

produces an estimate of the local contribution to the

cloud feedback, which can then be averaged over the

entire planet and over all months to compute the global

and annual mean cloud feedback.1 Unless otherwise

FIG. 1. Global, annual, and ensemble mean (a) LW, (b) SW, and

(c) net cloud radiative kernels. In each model, the kernels have

been mapped to the control climate’s clear-sky surface albedo

distribution before averaging in space; thus, the average kernels are

weighted by the actual global distribution of clear-sky surface

albedo in each model.

1 Hereafter we refer to the radiative perturbations brought

about by cloud changes as cloud feedback, with the implicit as-

sumption that the simulated changes in clouds evolve with the

change in global mean surface temperature. Gregory and Webb

(2008) have provided evidence that a portion of the cloud-induced

radiation response that is typically considered cloud feedback ac-

tually occurs due to very rapid tropospheric adjustment following

a step change in CO2 concentration, and that the portion due to

cloud changes that evolve with temperature (i.e., the true cloud

feedback) may be smaller in magnitude and even opposite in sign.

CFMIP1 data do not permit us to distinguish between these two

types of cloud changes; thus, what we refer to as cloud feedback

may be a combination of these effects.
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noted, all results hereafter are for annual mean quan-

tities.

In the left column of Fig. 2 we show histograms of

(Fig. 2a) 1 3 CO2 and (Fig. 2b) 2 3 CO2 global mean

cloud fraction for the average of all models except MPI

ECHAM5, along with (Fig. 2c) the difference in the

cloud fraction expressed per unit change in each model’s

global mean surface air temperature between the two

states. Bins containing an ‘‘3’’ indicate those in which

$75% of the models (i.e., 9 out of 11) agree on the sign

of the field plotted. The MPI ECHAM5 model is ex-

cluded for reasons discussed in appendix A. Global

mean cloud fraction decreases by 0.46% K21 in the en-

semble average, with individual models having decreases

ranging from 0.02 to 0.91% K21. Robust reductions in

cloud fraction occur in a majority of CTP and t bins.

Large reductions in cloud fraction occur in the highest

CTP bin (i.e., the lowest clouds) in the 0.3 , t # 9.4

range. Cloud fraction robustly increases in the lowest

CTP bin (i.e., the highest clouds) at all optical depths

except for t between 0 and 0.3. Cloud fraction also in-

creases in the 680–1000 hPa CTP bins for t greater than

23 and in the 180–310 hPa CTP bin for t greater than 3.6.

That nearly every bin of (Fig. 2c) contains an ‘‘3’’ in-

dicates that this distribution of global mean cloud fraction

anomalies is quite robust across models.

Multiplying DC with the LW, SW, and net K matrices

shown in Fig. 1 produces the contribution of each cloud

FIG. 2. Global, annual, and ensemble mean cloud fraction for the (a) 1 3 CO2 and (b) 2 3 CO2 runs, along with (c)

the average difference expressed per unit change in each model’s global mean surface air temperature between the

two states. Matrix resulting from multiplying the change in cloud fraction at each location and month with the

collocated (d) LW, (e) SW, and (f) net cloud radiative kernels, then taking the global, annual, and ensemble mean.

The sum of each matrix is shown in each title. Bins containing an ‘‘3’’ indicate those in which $75% of the models

agree on the sign of the field plotted.
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type to the respective feedbacks (Figs. 2d,e,f). Note that

the multiplication occurs for each location, month, and

model and is then averaged for this figure. Because the

ISCCP simulator produces cloud fields only during sunlit

months, a potential bias exists in the LW cloud feedback

computed by this multiplication, but we find that it is

small (appendix B).

The large increases in cloud fraction in the upper-

troposphere project strongly onto the LW cloud radia-

tive kernel, which is most sensitive to cloud fraction

changes in the lowest CTP bins. The contribution to the

LW cloud feedback is positive for bins in which cloud

fraction increases and negative for bins in which cloud

fraction decreases. Cloud fraction increases, primarily

those occurring in the lowest CTP bin (i.e., the highest

clouds), contribute 0.56 W m22 K21 to the LW cloud

feedback, while cloud fraction decreases oppose this by

0.36 W m22 K21, resulting in a global and ensemble mean

LW cloud feedback due to all cloud fraction changes of

0.21 W m22 K21. Across models, the global mean LW

cloud feedback ranges from 20.13 to 0.69 W m22 K21.

In contrast to the LW cloud feedback, cloud changes

throughout the depth of the troposphere contribute to

the SW cloud feedback, which is 0.37 W m22 K21 in the

global and ensemble mean. Large positive contributions

come from bins in which cloud fractions decrease, and

large negative contributions come from bins in which

cloud fractions increase. Cloud fraction changes project

more strongly onto the SW cloud radiative kernel if they

occur at higher optical depths; thus the effect of cloud

fraction changes in the lowest t bins—though system-

atically positive across models—are small and less rel-

evant for the SW cloud feedback. Across models, the

global mean SW cloud feedback ranges from 20.18 to

0.93 W m22 K21.

The net cloud feedback matrix shares features of

both the LW and SW matrices but is largely dominated

by the positive SW cloud feedback for all pressures

greater than about 310 hPa due to reductions in low and

midlevel cloud fraction where the LW kernel is small. At

pressures less than 310 hPa, LW and SW cloud feedback

components compete against each other. The increase in

cloud fraction in the lowest CTP bin contributes more

strongly to the positive LW cloud feedback than to the

negative SW cloud feedback for intermediate optical

depths, but the opposite is true for thick high clouds.

In the end, large reductions in middle- and low-level

clouds, which strongly reduce the amount of reflected

radiation, coupled with increases in high level clouds,

which strongly reduce the amount of emitted LW radi-

ation result in a net cloud feedback of 0.57 W m22 K21.

Across models, the global mean net cloud feedback

ranges from 0.16 to 0.94 W m22 K21. For comparison,

the global and ensemble mean combined water vapor

plus lapse rate feedback we compute using the radiative

kernels of Soden et al. (2008) ranges from 1.18 to 1.42

W m22 K21.

5. Effectiveness of the cloud radiative kernel
method in computing cloud feedback

In this section we compare the cloud feedback com-

puted using the cloud radiative kernels applied to ISCCP

simulator output with the cloud feedback computed

according to Shell et al. (2008) and Soden et al. (2008).

The latter technique involves adjusting the change in

cloud radiative forcing by the amount of cloud masking

that occurs in the other feedbacks and in the radiative

forcing. Only the HadSM4, HadSM3, HadGSM1, UIUC,

MIROC(lowres), and AGCM4.0 models archived enough

data to compute the adjusted change in cloud radiative

forcing; thus, we can only compare the two methods for

those models.

In Fig. 3 we show a point-by-point comparison of the

LW and SW cloud feedbacks computed using cloud ra-

diative kernels with those computed by the adjusted

change in cloud radiative forcing method. Each point

represents the feedback computed for a single month

at a single location in the model, and locations in which

the magnitude of the change in clear-sky surface albedo

exceeds the 90th percentile have been removed (for

reasons discussed below). Values of both LW and SW

cloud feedback computed using the cloud radiative kernels

developed here compare remarkably well on a point-

by-point basis with values computed by adjusting the

change in cloud radiative forcing. The regression slopes

lie within 5% of the one-to-one line for the SW (except

for the UIUC model) and within 15% in the LW [ex-

cept for the MIROC(lowres) model]. Here, R2 values

greater than 75% for all but the MIROC(lowres) model

indicate that these two measures are highly correlated,

though LW correlations are systematically lower than

SW correlations in every model. In all but the AGCM4.0

model, the cloud radiative kernel–derived magnitude of

the local LW cloud feedback value is less than the local

adjusted change in LW cloud radiative forcing magni-

tude (i.e., the kernel value is less positive where the

feedback is positive and less negative where the feed-

back is negative; thus, the slopes in Figs. 3a–e are all ,1).

Three prominent discrepancies between the two es-

timates of cloud feedback appear in this figure. First, the

slopes between the two estimates of cloud feedbacks

in the UIUC model deviate substantially from unity

(Figs. 3d,j), especially in the SW. The cause of this

discrepancy may reflect differences between the radi-

ative transfer model used in the UIUC model and the

3722 J O U R N A L O F C L I M A T E VOLUME 25



Fu–Liou model used in generating the kernels. Second,

the slope between the two estimates of LW cloud

feedback in the MIROC(lowres) model is much less

than 1, and the two estimates of LW and SW cloud

feedbacks are less well-correlated than for the other

models (Figs. 3e,k). This may arise in part because rel-

evant diagnostics are archived for nonoverlapping time

periods in the MIROC(lowres) model, so the adjusted

change in cloud forcing is computed using differences

between two climate states that are different from the

two climate states used to perform the cloud radiative

kernel computation. Furthermore, whereas 20-yr mean

cloud fraction histograms are differenced in the other

models to compute cloud feedbacks, the ISCCP simulator

output is archived for only a brief 5-yr period for both

runs of this model, likely worsening the signal-to-noise

ratio in its cloud radiative kernel–derived cloud feed-

backs relative to those of other models. Third, the slope

between the two LW cloud feedback estimates in the

AGCM4.0 model (Fig. 3f) is much greater than 1. In this

model, cloud optical depths passed to the radiation code

are scaled relative to those passed to the ISCCP simulator;

thus, we scaled both the LW and SW kernels in a man-

ner consistent with how this model’s clouds are scaled for

SW radiative calculations (see appendix A). The some-

what larger slope in Fig. 3f likely reflects our choice to

scale the LW kernel in the same manner as the SW kernel

even though a different scaling of cloud optical depths

(one that cannot be generally applied) was used for LW

fluxes in this model.

Our comparisons between the two methods indicate

poor agreement in some models over regions in which

FIG. 3. Point-by-point comparison of (a)–(f) LW and (g)–(l) SW cloud feedbacks estimated from adjusting the change in cloud radiative

forcing using kernels computed in Soden et al. (2008) (x axis) plotted against those estimated using the cloud radiative kernels developed

here ( y axis). Locations in which the magnitude of the change in clear-sky surface albedo exceeds the 90th percentile have been removed.

The thin line is the one-to-one line, and the thick line is the linear least squares fit to the data. The slope and 2s range of uncertainty of this

regression line along with the fraction of variance explained by the fit are provided in each panel. The uncertainty is calculated from

a bootstrapping method in which the residuals from the regression slope are resampled with replacement 1000 times to compute a dis-

tribution of possible regression coefficients.

1 JUNE 2012 Z E L I N K A E T A L . 3723



clear-sky surface albedo changes significantly between

the two climate states (e.g., over the Himalayas). Visual

inspection of feedback maps (not shown) indicates that

a large percentage of these points come from regions

with high surface albedo in the 1 3 CO2 climate, where

the adjusted change in cloud forcing method produces

anomalous SW cloud feedbacks surrounded by regions

with oppositely signed SW cloud feedbacks. The cloud

radiative kernel–derived feedback values, on the other

hand, exhibit a relatively ‘‘smooth’’ geographic distri-

bution in these regions that is arguably more realistic.

Whereas the cloud radiative kernel method computes

cloud feedback directly from the change in cloud frac-

tion with no influence from noncloud fields, the method

of Shell et al. (2008) and Soden et al. (2008) requires

adjusting the change in cloud forcing by the cloud

masking of noncloud feedbacks, which may be prob-

lematic where surface albedo changes are large and the

amount of cloud masking may vary considerably among

models. Thus, we argue that the cloud radiative kernels

developed here are more accurate in regions where

surface albedo changes significantly, and we exclude

from Fig. 3 locations in which the magnitude of the

change in clear-sky surface albedo exceeds the 90th

percentile.

In Fig. 4 we show the cloud radiative kernel–derived

computation of global mean LW, SW, and net cloud

feedbacks scattered against the estimates derived using

the adjusted change in cloud radiative forcing method.

We compare against estimates of adjusted change in

cloud forcing derived using both the GFDL-based (Soden

et al. (2008)) and CAM-based (Shell et al. 2008) radiative

kernels to indicate some measure of the uncertainty in

that method. In the global mean, cloud radiative kernel–

derived estimates of both LW and SW cloud feedbacks

are smaller than the adjusted change in LW and SW

cloud radiative forcing (DLWCF and DSWCF, respec-

tively) in five out of six models. For LW cloud feedback

estimates, closer agreement is found with the Shell et al.

(2008) kernels than with the Soden et al. (2008) kernels,

but the opposite is true in the SW. Excluding the UIUC

model, it is clear that global mean LW and SW cloud

feedbacks calculated using the two techniques are well

correlated, but the net cloud feedbacks computed with

the cloud radiative kernels tend to be less than the

adjusted DNetCF cloud feedback, and this is primarily

caused by discrepancies in the LW term.

Cloud feedback estimates for the UIUC model stand

out as particularly anomalous in this comparison. It

is noteworthy, however, that this model only appears

anomalous when its cloud radiative kernel-computed

feedbacks are compared with the adjusted change in

cloud radiative forcing, not when they are compared

with the cloud radiative kernel–computed feedbacks

of the other models. Cloud feedbacks computed using

the cloud radiative kernels (which rely on a standard

radiative transfer code and a standard definition of cloud)

are in better agreement across models than feedbacks

computed from adjusting the change in cloud forcing

(which relies in part on the cloud radiative forcing com-

puted in each model’s radiative transfer scheme). This

suggests that the discrepancy arises because of anom-

alous features in the way that the UIUC model’s radi-

ative transfer scheme calculates the radiative impact of

a cloud with a given value of CTP and t relative to that

of other models and to that of the Fu–Liou scheme used

in generating our kernel. Indeed, Tsushima et al. (2006)

FIG. 4. Global and annual mean (a) LW, (b) SW, and (c) net

cloud feedbacks for the (1) HadSM4, (2) HadSM3, (3) HadGSM1,

(4) UIUC, (5) MIROC(lowres), and (6) AGCM4.0 models esti-

mated using the cloud radiative kernels developed here ( y axis)

plotted against estimates from adjusting the change in cloud radi-

ative forcing using the radiative kernels developed by (blue) Soden

et al. (2008) and (red) Shell et al. (2008) (x axis). The dashed line is

the one-to-one line. Note that the x axis and y axis limits vary from

panel to panel, but all span a range of 1 W m22 K21.
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noted that this model has the lowest cloud albedo forcing

despite having the largest total water content among the

five models they analyzed. Considering that the adjusted

change in cloud forcing estimate is constrained by the

actual TOA flux anomalies produced by the model, it is

likely that it gives the more accurate value of cloud

feedback within a particular model (though we find that

the clear-sky LW and SW TOA flux anomalies produced

by these models differ from those estimated by summing

the Shell et al. (2008) and Soden et al. (2008) kernel-

derived fluxes by amounts of roughly 15% and 7%, re-

spectively). However, the results shown in Fig. 4 for the

UIUC model highlight an important advantage of the

cloud radiative kernel method: The intermodel spread

in this technique can unambiguously be attributed to

differences in cloud responses (aside from the small

spread arising from different mean-state surface albedos

discussed in appendix B). In contrast, the spread in ad-

justed change in cloud forcing estimates includes inter-

model differences in radiation schemes. (Note that this

is not true for the noncloud feedbacks computed using

that technique.)

In Fig. 5 we show the spatial structure of the ensemble

mean cloud feedbacks computed with the cloud radia-

tive kernels (left column) and computed by adjusting

the change in cloud forcing (middle column) with the

Soden et al. (2008) kernels averaged across the HadSM4,

HadSM3, HadGSM1, MIROC(lowres), and AGCM4.0

models. The difference maps are also provided in the

right column. The UIUC model is excluded from

the ensemble means plotted in this figure because of the

anomalous behavior identified above.

The net cloud feedback is generally positive between

508S and 608N, exceptions being just south of the equa-

tor in the eastern Pacific, in the subtropical Atlantic, and

over the Tibetan Plateau. The low-latitude signal is

dominated by the SW cloud feedback, but the positive

LW cloud feedback on the equator in the Pacific con-

tributes significantly to the positive net cloud feedback

there. Large positive SW cloud feedback outweighs

large negative LW cloud feedback over the Amazon, in

the South Pacific Convergence Zone and over southern

Africa. Negative SW cloud feedback outweighs positive

LW cloud feedback in the Southern Ocean region.

FIG. 5. Estimates of annual and ensemble mean (top) LW, (middle) SW, and (bottom) net cloud feedback derived using (left) cloud

radiative kernels and (middle) the adjusted change in cloud forcing derived with kernels computed in Soden et al. (2008), along with

(right) the difference between the two estimates. The ensemble refers to models in which the standard kernel calculation is possible but

excluding the UIUC model. The root-mean-squared error is computed by differencing the maps of the two feedback estimates for each

month in each model, squaring the values, averaging in space and across months and models, then taking the square root.
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It is clear that both techniques produce global feed-

back patterns that are very similar and it is difficult

to visually discern differences in the patterns between

the left and middle columns. Global and ensemble mean

SW cloud feedback estimates are in better agreement

between the two techniques than those in the LW, but

RMS differences are larger in the SW. Cloud radia-

tive kernel–derived estimates of both LW and SW cloud

feedbacks are less than the adjusted change in cloud

forcing estimates in the global and ensemble mean,

leading to a net difference of 20.20 W m22 K21. When

the CAM-based kernels (Shell et al. 2008) are used in

place of the GFDL-based kernels (Soden et al. (2008)),

the LW difference is reduced, the SW and net differ-

ences are increased, and all RMSE values increase. In-

clusion of the UIUC model in the ensemble mean reduces

the global mean differences but increases the root mean

squared difference between the two estimates of LW,

SW, and net cloud feedback.

In light of all the results presented in this section, we

argue that as long as a model does not have a radiation

code that calculates cloud radiative effects drastically

different from the Fu–Liou code used to generate the

kernels, and as long as the ISCCP simulator is imple-

mented properly, the cloud radiative kernel technique

works remarkably well in computing cloud feedback.

To the extent that a given model’s radiation code varies

from Fu–Liou, the cloud feedback computed with this

technique will not be the exact cloud feedback ‘‘felt’’ in

that model, and if one seeks highly accurate diagnosis

of that true cloud feedback, other methods may be more

appropriate. If one seeks to perform an intercomparison

of cloud feedbacks where the spread is unambiguously

attributable to differences in the response of clouds, the

method proposed here is superior. Finally, if one seeks

to quantify across different models the contributions of

different cloud types to cloud feedback (as we demon-

strate in the following section), this technique is the only

choice.

6. Partitioning cloud feedback by cloud types

Cloud radiative kernels allow one to directly attribute

the contributions of specific cloud types to the cloud

feedback at each location. Rather than documenting the

feedbacks due to each of the 49 cloud types, hereafter we

will consider the feedbacks due to cloud changes within

the commonly-used ISCCP cloud-type classifications of

Rossow and Schiffer (1999)—namely low: 680 , CTP #

1000 hPa; middle: 440 , CTP # 680 hPa; high: 50 ,

CTP # 440 hPa; thin: t ,5 3.6; medium: 3.6 , t # 23;

and thick: t . 23. Although some information is lost, it

makes figures less unwieldy, and it better characterizes

the overall effect of changes in the major cloud types by

summing over compensating changes within regions

of the histogram (e.g., small changes in clouds moving

among the bins, but remaining within certain major

cloud types). Thus, feedbacks partitioned in this manner

provide information about which representative cloud

types contribute to the feedback, but not about the

nature of the cloud changes occurring within that cloud

type. Partitioning of cloud feedbacks into contributions

from changing cloud-top altitude, optical depth, and total

amount is performed in the companion paper to this

study.

In Fig. 6 we show the zonal mean contribution of high,

middle, and low clouds to the LW, SW, and net cloud

feedbacks averaged across the ensemble of models.

Henceforth, the ensemble refers to all models except

the MPI ECHAM5 model, which is excluded for rea-

sons discussed in appendix A. As expected based on the

fact that the LW cloud radiative kernel magnitude in-

creases with decreasing CTP, the LW cloud feedback is

dominated at all latitudes by the response of high

clouds (Fig. 6a). However, fewer than 75% of the

models agree on the sign of the high cloud contribution

to the LW cloud feedback at most tropical latitudes,

as indicated by the dashed lines in these regions. As will

be shown in Part II, this is primarily because of two

robust but opposing effects: increases in high cloud

altitude (a positive effect) and decreases in high cloud

fraction (a negative effect). In the extratropics, the high

cloud contribution is systematically positive across

models. Low cloud changes are irrelevant at all lati-

tudes, but middle-level cloud changes robustly act to

slightly reduce the LW cloud feedback in the mid-

latitudes.

In contrast, cloud changes at all altitudes are rele-

vant for SW cloud feedback at all latitudes (Fig. 6b).

With the exception of the high latitudes, changes in low

and middle level clouds contribute to a positive SW

cloud feedback. High cloud changes contribute nega-

tively to the SW cloud feedback in the global mean, but

most prominently in the deep tropics (due mainly to

large increases in high cloud fraction over the Equa-

torial Pacific) and poleward of about 408 in both

hemispheres, the latter feature being more robust. The

effect of changes in high clouds in the deep tropics

strongly opposes the effect of changes in the other

cloud types, producing a local minimum in the zonal

mean SW cloud feedback. Positive SW cloud feed-

backs from the middle level cloud response are

roughly 80% as large as those from the low level cloud

response in the global mean and are larger in the

middle and high latitudes, a result that is not generally

acknowledged and is frequently overshadowed by the

3726 J O U R N A L O F C L I M A T E VOLUME 25



focus on feedback spread arising from subtropical low

cloud changes.2

Cloud changes in every height category contribute

positively to the net cloud feedback (Fig. 6c), and the

zonal mean net cloud feedback is robustly positive be-

tween about 508S and 608N. Because of their largely

compensatory effects on the SW and LW cloud feed-

backs, high cloud changes contribute less than low cloud

changes to the net cloud feedback at all latitudes. Mid-

level cloud changes, which primarily contribute to the SW

cloud feedback, contribute roughly the same amount to

the global net cloud feedback as high cloud changes

and have a very similar latitudinal distribution, except

in high southern latitudes. Middle- and high-level cloud

changes together are responsible for more than half of

the global and ensemble mean net cloud feedback.

In Fig. 7 we show the ensemble mean zonal mean

contribution of thin, medium, and thick cloud changes to

the LW, SW, and net cloud feedbacks. In the global

mean sense, thick cloud changes dominate the LW cloud

feedback, particularly at high latitudes (Fig. 7a). In the

ensemble mean, cloud changes in all three thickness

categories contribute equally to the large positive LW

cloud feedback in the deep tropics (7.58S–158N), but the

sign of this feature is not robust across models. Pole-

ward of about 508 in either hemisphere, the robustly

positive contribution from thick cloud changes is only

slightly opposed by thin cloud changes, making the LW

cloud feedback large and robustly positive.

In the global mean, the positive SW cloud feedback

arises primarily because of medium thickness cloud

changes, which contribute positively everywhere but

over the poles (though the sign of this contribution is not

robust between about 208S and 108N; Fig. 7b). Although

they make a robustly positive contribution at high lati-

tudes, thin cloud changes contribute minimally to the

SW cloud feedback. Thick cloud changes are at least as

important at most latitudes as medium thickness cloud

changes and with greater robustness. However, whereas

medium thickness cloud changes contribute positively

almost everywhere, the thick cloud contribution is pos-

itive equatorward of about 458 and strongly negative

elsewhere, such that thick cloud changes make almost

no contribution to the global mean SW cloud feed-

back. The sharp decrease in the SW cloud feedback

with latitude in the midlatitudes is entirely caused by

changes in thick clouds and is generally opposed by

smaller cloud fraction changes in the other t categories.

Particularly striking is the negative feedback in the

Southern Ocean region, which reaches a peak value of

21.5 W m22 K21, with thick cloud changes alone con-

tributing 22.1 W m22 K21. This feature will be discussed

in greater detail in Part II.

Cloud fraction changes in all optical depth categories

contribute positively to the global mean net cloud feed-

back, with the medium thickness cloud changes domi-

nating due to their uniformly positive contributions

(Fig. 7c). Equatorward of about 408, thick and medium

thickness cloud changes contribute about equally to the

net cloud feedback, with thick cloud changes primarily

causing the abrupt latitudinal transition from positive to

negative cloud feedback in the midlatitudes.

In Fig. 8 we show ensemble mean global mean cloud

feedback estimates and their partitioning among high,

middle, low, thin, medium, and thick cloud changes.

Note that the total cloud feedback given in the left-most

column is equal to both the sum of the high, middle, and

low cloud feedbacks and the sum of the thin, medium,

and thick cloud feedbacks. Cloud feedbacks partitioned

by altitude ranges should not be summed with those

partitioned by optical depth ranges because double-

counting would occur. In this ensemble of 11 models,

65% of the net cloud feedback comes from the SW cloud

feedback and 35% from the LW. For both the global

mean SW and LW cloud feedbacks, only one model has

negative values (not the same model). Considerable

spread is evident in both the LW and SW components of

cloud feedback, though the spread is larger in the SW.

Anticorrelation between LW and SW cloud feedback

estimates across models results in the net cloud feed-

back having less intermodel spread than that of SW

cloud feedback, and no models exhibit a negative net

cloud feedback.

As mentioned previously, LW cloud feedback is dom-

inated by the response of high clouds, with middle and

low clouds making small negative contributions. Cloud

changes at all vertical levels contribute to the SW cloud

feedback, with high cloud changes generally contributing

negatively and middle and low cloud changes contributing

2 A well-known tendency of the ISCCP retrieval algorithm that

is purposely built into the simulator is to identify a single cloud with

a CTP at midlevels for scenes in which thin high clouds overlap

low clouds (e.g., Jin and Rossow 1997; Stubenrauch et al. 1999).

Motivated by a concern that the significant midlevel cloud feed-

back we have inferred may arise partly due to clouds that are not

actually at midlevels, we compared high, middle, and low cloud

amounts derived from the histogram and from the model-level

cloud fraction diagnostic provided by seven modeling centers. We

found that the sign of midlevel cloud changes defined by both di-

agnostics is consistent for 86% of all points, which is comparable

to the 87% for high clouds and 83% for low clouds. Furthermore,

for the small number of grid points in which the signs differ, the

number of positive histogram-derived midlevel cloud fraction

anomalies is roughly equal to the number that are negative, implying

no systematic disagreement. Although this is a crude comparison, it

shows that, over the vast majority of grid points, middle-level cloud

changes are indeed causing midlevel cloud feedbacks.
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positively, in agreement with the results of Yokohata

et al. (2010) from two perturbed physics ensembles of

the MIROC3.2 and HadSM3 models. Considerable in-

termodel spread is evident in the contributions of clouds

at all heights to the SW cloud feedback. Contributions

of high, middle, and low cloud changes to the net cloud

feedback exhibit appreciable spread, but are systemati-

cally positive. The spread is largest for low clouds, a re-

sult consistent with many previous studies (e.g., Bony

and Dufresne 2005).

An important and generally unappreciated result

shown in Fig. 8 is that the high cloud contribution to the

intermodel spread in net cloud feedback is smaller than

the contribution from low clouds not because the re-

sponse of high clouds is small and/or consistent across

models. Rather, the intermodel spread in the response

of high clouds contributes substantial spread to

both LW and SW cloud feedbacks. Specifically, the

contributions of high cloud changes to LW and SW

cloud feedbacks each span a range of about 1 W m22

K21, whereas the contribution of low cloud changes to

SW cloud feedback spans a range of only 0.6 W m22

K21. Because the spread in high cloud–induced LW and

SW components is partially compensatory, however,

the spread in net cloud feedback induced by high

cloud changes is smaller than that induced by low

cloud changes, for which no such compensation oc-

curs.

Thin cloud changes generally make a small contribu-

tion to the feedback in all models. Thick cloud changes

make a larger contribution to the positive LW cloud

feedback than do medium thickness cloud changes, but

the multimodel mean SW cloud feedback is dominated

by medium thickness cloud reductions. Interestingly,

all models exhibit a positive contribution to SW cloud

feedback from medium-thickness cloud changes, whereas

FIG. 6. Zonal, annual, and ensemble mean (a) LW, (b) SW, and (c) net cloud feedbacks

partitioned into contributions from high, middle, and low cloud changes. Global mean values of

each contribution are shown in the legend. Lines are solid where $75% of the models agree on

the sign of the field plotted, dashed elsewhere.

3728 J O U R N A L O F C L I M A T E VOLUME 25



roughly an equal number of models exhibit positive and

negative SW cloud feedback contributions from thick

cloud changes. Conversely, all models exhibit positive

contribution to LW cloud feedback from thick cloud

changes, whereas roughly an equal number of models

exhibit positive and negative LW cloud feedback con-

tributions from medium-thickness cloud changes. These

features can be explained simply by the spatial structure

of these feedback components: feedbacks whose global

mean value is the smaller residual of large and opposing

values (i.e., LW medium, SW thick) are sensitive to

the relative sizes of the areas of negative and positive

feedback whereas those in which the feedback has a

consistent sign in space (i.e., LW thick, SW medium) will

have a robust sign across models. A clear example is the

SW cloud feedback due to thick cloud changes, for which

the lower latitude contribution is nearly exactly com-

pensated by the higher-latitude contribution (Fig. 7b).

Models in which the latitude of the transition from

positive to negative contributions occur farther

equatorward (poleward) than in the ensemble mean

have negative (positive) global mean SW thick cloud

feedbacks.

The spread in SW cloud feedback due to both medium

and thick cloud types is large, but because the SW cloud

feedback is systematically positive for medium thickness

clouds, it represents the largest positive contribution to

the ensemble mean cloud feedback of all thickness

categories. Indeed, medium-thickness cloud changes

represent the single most important contributor to the

ensemble mean positive net cloud feedback.

7. Conclusions

In this paper we demonstrated a new method of

computing cloud feedbacks in models that output simu-

lated cloud fractions as functions of cloud-top pressure

and cloud optical depth. ISCCP simulator–produced

cloud fields have a distinct advantage over the stan-

dard cloud fraction profile diagnostic in that they are

FIG. 7. As in Fig. 6, but partitioned into contributions from thin, medium, and thick

cloud changes.
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defined consistently across models and represent the

‘‘radiatively-relevant’’ cloud tops that are directly im-

pacting TOA fluxes. The latter property allows us to

compute TOA flux sensitivities for cloud fraction fluc-

tuations within each CTP and t bin in the ISCCP his-

togram. To do so, we generate cloud radiative kernels by

differencing overcast- and clear-sky TOA fluxes pro-

duced by the Fu-Liou radiative transfer model run with

and without synthetic cloud condensate profiles appro-

priate for each CTP–t bin.

Cloud feedback is computed using the kernels in a

similar manner to the computation of standard feedbacks

as in Shell et al. (2008) and Soden et al. (2008). Specifi-

cally, at every location in the model, the change in cloud

fraction in each CTP–t bin between the doubled-CO2 run

and control run is multiplied by the corresponding cloud

radiative kernel for that bin. The feedback is computed

by summing over all CTP and t bins and dividing by the

global mean surface air temperature change.

Several appealing aspects of this technique are worth

highlighting. First, cloud feedbacks are computed di-

rectly from the change in cloud fields, which means the

contributions to the feedback from specific cloud types

are computed rather than inferred. Second, cloud feed-

backs are computed using the same kernel across models,

which isolates the role of cloud changes in driving in-

termodel differences in feedback values, without any

model-to-model variation in how a radiative transfer

code computes the radiative effects of a given cloud.

Third, only monthly mean ISCCP simulator output is

needed to compute the feedback, which makes it a very

straightforward calculation, one that does not require

extracting instantaneous cloud output to implement the

partial radiative perturbation technique (Wetherald and

Manabe 1980) or adjusting the change in cloud forcing

by the amount of masking in all other feedbacks. Finally,

our technique cleanly removes clear-sky changes that

are irrelevant for cloud feedback but may be difficult to

remove using other techniques, resulting in TOA flux

anomalies that are solely due to changes in the cloud

fraction histogram.

We have demonstrated that cloud feedbacks com-

puted with the cloud radiative kernels compare favor-

ably with values computed by adjusting the change in

cloud radiative forcing (Shell et al. 2008; Soden et al.

2008). On a point-by-point basis, cloud feedbacks com-

puted using the two methods lie within 5% of the one-to-

one line for the SW (except for the UIUC model) and

within 15% in the LW [except for the MIROC(lowres)

model]. Furthermore, R2 values are greater than 75%

in every model except the MIROC(lowres) model. Al-

though the ensemble (five-model) mean cloud feedback

spatial patterns are very similar, global mean cloud feed-

backs estimated using cloud radiative kernels are slightly

smaller in magnitude than those estimated by adjusting

the change in cloud forcing, especially in the LW.

We find that changes in high clouds make the largest

contribution of any cloud type to the LW cloud feedback

at all latitudes in the 11-model ensemble mean, espe-

cially in the deep tropics. This is consistent with the

structure of the LW cloud radiative kernel, which in-

dicates that the sensitivity of OLR to cloud fraction

changes increases with decreasing cloud-top pressure.

However, because high cloud increases contribute nega-

tively to the SW cloud feedback, their contribution to the

net cloud feedback is considerably reduced. In contrast,

low cloud changes, which only impact the SW cloud

feedback, make a larger contribution to the net cloud

feedback than cloud fraction changes at other altitudes.

However, it is important to bear in mind that even for the

global mean net cloud feedback, the positive contribution

from the sum of middle- and high-level topped clouds

slightly exceeds the contribution from low level clouds.

Cloud changes in all optical thickness categories con-

tribute positively to the net cloud feedback, and increases

in thick clouds at high latitudes in either hemisphere

cause the large negative SW and net cloud feedbacks at

latitudes poleward of about 508. Although they exhibit

considerable intermodel spread, contributions to SW and

net cloud feedback from medium thickness clouds are

systematically positive across models, making medium-

thickness cloud changes the single most important con-

tributor to the net cloud feedback.

In agreement with previous studies, we find that

the spread in net cloud feedback is dominated by the

contribution from low clouds. However, this result should

FIG. 8. Global and annual mean (red) LW, (black) net, and

(blue) SW cloud feedback estimates and the contribution to the

cloud feedbacks from changes in high, middle, low, thin, medium,

and thick clouds. Each model is represented by a dot and the en-

semble mean is represented by the height of the vertical bar.

3730 J O U R N A L O F C L I M A T E VOLUME 25



not be taken as evidence that high cloud changes have

either a small or consistent impact on radiative fluxes

across models. Rather, high cloud changes induce an

even wider range of contributions to SW and LW cloud

feedbacks than do low cloud changes, but partial com-

pensation between the LW and SW impacts of high cloud

changes reduces their contribution to the spread in net

cloud feedback relative to that of low cloud changes.

In the companion to this paper, we propose a tech-

nique to decompose the change in cloud fraction within

the ISCCP simulator histograms in such a way as to iso-

late the contributions to cloud feedback from changes

in total cloud amount holding the vertical and optical

depth distribution fixed, changes in altitude holding the

optical depth distribution and total cloud amount fixed,

and changes in optical depth holding the vertical distri-

bution and total cloud amount fixed. This decomposition

is performed to highlight the nature of cloud changes that

give rise to cloud feedbacks and provides an indication

of the physical processes that are important for both the

mean and spread in cloud feedback across models.

Acknowledgments. We acknowledge the international

modeling groups, the Program for Climate Model Di-

agnosis and Intercomparison (PCMDI), and the WCRP’s

Working Group on Coupled Modelling (WGCM) for

their roles in making available the WCRP CFMIP multi-

model dataset. Support of this dataset is provided by

the Office of Science, U.S. Department of Energy. We

thank Karen Shell and one anonymous reviewer for

detailed critiques of this manuscript, Brian Soden and

Karen Shell for providing radiative kernels, Rick Hemler

for providing additional gfdl_mlm2_1 model output,

Rob Wood, Chris Bretherton, and Robert Pincus for

useful discussion and suggestions for improvement, and

Marc Michelsen for computer support. This research was

supported by the Regional and Global Climate Modeling

Program of the Office of Science at the U. S. Depart-

ment of Energy and by NASA Grant NNX09AH73G

at the University of Washington. This work was per-

formed under the auspices of the U.S. Department of

Energy by Lawrence Livermore National Laboratory

under Contract DE-AC52-07NA27344.

APPENDIX A

Verification of Proper ISCCP Simulator
Implementation

a. Consistency between measures of total cloud
fraction

To ensure proper implementation of the ISCCP simu-

lator, modeling centers are expected to verify that the

total cloud fraction computed by summing the CTP–t

histogram is the same as the total cloud fraction di-

agnostic computed by the GCM cloud scheme. Here we

perform this test using output from the CFMIP1 archive.

In two models [BMRC1 and MIROC(hires)], the total

cloud fraction diagnostic is not reported, so no compari-

son could be made. Since the cloud feedbacks computed

for these two models also cannot be ‘‘ground-truthed’’

against the adjusted change in cloud forcing method, we

cannot verify that the simulator is implemented prop-

erly in these models. However, in an effort to keep

a reasonably-sized ensemble of models in our analysis,

we take on faith that they have properly implemented

the simulator. It is somewhat reassuring that their cloud

fraction histograms are not anomalous relative to the

ensemble mean.

RMS differences in the two measures of total cloud

fraction are 8% in the IPSL CM4 model, 4% in the

CCSM3.0 model, and less than 2% in the HadSM4,

HadSM3, HadGSM1, UIUC, and AGCM4.0 models.

Because these models had less than 10% RMS differ-

ence, we consider them to have satisfactorily imple-

mented the simulator. We additionally wish to note

that the 4% RMS difference in the CCSM3.0 model

reflects the presence of ‘‘empty clouds’’ that are recor-

ded by the model’s cloud amount diagnostic but not by

the simulator (B. Medeiros 2011, personal communica-

tion). Such ‘‘clouds’’ contain zero liquid water but are

present due to the diagnostic cloud fraction being com-

puted separately from the prognostic cloud water in

CAM (Hannay et al. 2009). In these situations, the sim-

ulator is providing the true radiatively relevant clouds.

In the GFDL MLM2.1model, the total cloud fraction

computed by summing the CTP–t histogram greatly

underestimates (by about 25% absolute) the total cloud

fraction diagnostic, and global mean RMS differences

between the two fields are 24%. We found that the

CTP–t histogram for this model archived in the CFMIP1

database had not been divided by the fraction of radi-

ation time steps with sunlit conditions. Dividing by the

fraction of calls to the simulator in each month with

sunlit conditions (data field provided by R. Hemler)

brought the total cloud fractions into agreement, with

an RMS difference of roughly 1%.

In the MIROC(lowres) model, the total cloud frac-

tion computed by summing the CTP–t histogram greatly

overestimates (by about 25% absolute) the total cloud

fraction diagnostic, and global mean RMS differences

between the two fields are 29%. This is because this

model’s total cloud fraction diagnostic excludes clouds

with t less than 0.3 (Y. Tsushima, personal communi-

cation, 2011) that happen to have the greatest frac-

tional coverage in this model. Summing the histogram
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but excluding the clouds in the thinnest t bin brought

the two estimates of total cloud fraction into very close

agreement, with an RMS difference of roughly 2%.

Finally, we have chosen to exclude the MPI ECHAM5

model from our analysis based on two considerations.

First, the total cloud fraction as computed by summing

its CTP–t histogram is rarely less than 80% at any lo-

cation on the planet, which is significantly different

from the total cloud fraction diagnostic, with an RMS

difference of 30.5%. The global mean total cloud frac-

tion as computed from summing the histogram is a

highly suspect 92%. Second, the RMS difference be-

tween this model’s CTP-t histogram and the ensemble

mean histogram is larger than for any other model in the

ensemble, with values exceeding 10% in several bins.

Williams and Webb (2009) have also noted that among

the ten models they analyzed, the MPI ECHAM5

model’s histogram has the largest Euclidean distance to

ISCCP observations in several cloud regimes.

b. Consistency between clouds and radiation

Unlike the typical implementation of the ISCCP sim-

ulator in which the cloud fields reported in the histo-

gram represent those for which the radiative transfer

calculations are performed, in the AGCM4.0 model,

the cloud fields reported in the ISCCP simulator his-

togram are different from those used by the model’s

radiation code (J. Cole, personal communication, 2011).

In this model’s radiation calculations, cloud visible op-

tical depths are scaled down according to Eq. (12) of Li

et al. (2005) to account for subgrid-scale inhomogeneity

in the cloud fields that strongly impacts scattering (Li

2000; Li and Barker 2002). Because the ISCCP simulator

is called prior to this scaling, the cloud fields reported

in the histogram do not represent the same clouds as

seen by that model’s radiation code. Thus, the GCM-

produced radiative fluxes are guaranteed to be incon-

sistent with those computed using the cloud radiative

kernels applied to ISCCP simulator output because the

kernels assume the clouds in the histogram are those

seen by the radiation. To partially circumvent this prob-

lem, for this model only we take the values of the cloud

radiative kernels defined at the midpoints of the optical

depth bins of the ISCCP simulator and log-linearly in-

terpolate them to scaled optical depths defined according

to Eq. (12) of Li et al. (2005). Applying this scaling re-

duced the slope shown in Fig. 3l from 1.43 to 0.97, sig-

nificantly improving the agreement between the SW

cloud feedback calculated with the cloud radiative ker-

nel and that calculated by adjusting the change in SWCF.

In the LW, a different scaling was applied in the ra-

diative transfer code of the AGCM4.0 model. Although

the code does take into account the effect of horizontal

variability in cloud fields on LW radiative transfer, it is

not a simple modification of the optical thickness since

the inhomogeneity was developed right into the radia-

tive transfer solution (J. Cole, personal communication,

2011). Nevertheless, we scale the LW cloud radiative

kernel in the same manner as the SW radiative kernel.

This modestly improved the agreement between the

cloud radiative kernel and adjusted change in LW cloud

forcing-computed feedbacks, with the slope shown in

Fig. 3f decreasing from 1.25 to 1.14.

APPENDIX B

Sensitivity Studies

Cloud feedbacks computed using cloud radiative

kernels are sensitive to a number of assumptions made

TABLE A1. Global mean LW and SW cloud feedbacks computed with the adjusted change in cloud forcing technique using the Shell

et al. (2008) and Soden et al. (2008) kernels, and with the cloud radiative kernels developed in this study. The ‘‘Standard’’ column refers to

values computed using the standard cloud radiative kernels (i.e., those in which the fluxes at all four corners of each CTP–t bin are

averaged before multiplication). ‘‘Min’’ and ‘‘Max’’ refer to the extreme values computed using four sets of kernels, each defined by fluxes

computed at corners of each CTP-t bin.

Adjusted DLWCF LW cloud radiative kernel Adjusted DSWCF SW cloud radiative kernel

Model Shell Soden Standard Min Max Shell Soden Standard Min Max

HadSM4 0.19 0.22 0.10 0.01 0.19 0.52 0.44 0.37 0.27 0.46

HadSM3 0.40 0.41 0.24 0.17 0.29 0.43 0.35 0.29 0.23 0.35

HadGSM1 0.31 0.38 0.18 0.13 0.25 0.52 0.38 0.43 0.30 0.56

UIUC 0.09 0.09 0.32 0.28 0.34 0.18 0.10 0.36 0.26 0.47

MIROC(lowres) 0.20 0.25 0.01 20.14 0.13 0.75 0.62 0.63 0.46 0.82

AGCM4.0 0.51 0.54 0.50 0.44 0.57 0.28 0.17 0.06 0.02 0.11

BMRC1 N/A N/A 20.13 20.25 20.03 N/A N/A 0.29 0.17 0.40

GFDL MLM2.1 N/A N/A 0.69 0.63 0.77 N/A N/A 20.18 20.26 20.09

IPSL CM4 N/A N/A 0.00 20.13 0.13 N/A N/A 0.78 0.56 1.01

MIROC(hires) N/A N/A 0.00 20.15 0.14 N/A N/A 0.93 0.74 1.12

CCSM3.0 N/A N/A 0.34 0.30 0.39 N/A N/A 0.14 0.10 0.17
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in the construction of the kernels and in their imple-

mentation across models. Here we quantify the sensi-

tivity of global mean cloud feedback estimates to several

of these assumptions to better understand the un-

certainties in our method.

a. Sensitivity of feedback estimates to the temperature
and humidity profile used as input to the Fu–Liou
radiation code

We have assessed this sensitivity by recalculating the

kernels six times, each time using one of the six models’

temperature and humidity profiles as input to the radi-

ation code. These kernels vary slightly from each other

(primarily in the LW) because of the slight differences

in the models’ temperature structures. However, these

variations have very little effect on the global mean cloud

feedback estimates; averaged across the 11 models, the

range (max minus min) of possible values of LW cloud

feedback computed using kernels derived using 6 dif-

ferent models’ temperature and humidity profiles is

0.029 W m22 K21, with no model’s range exceeding

0.039 W m22 K21. In the SW, the average range is

0.005 W m22 K21, with no model’s range exceeding

0.006 W m22 K21.

b. Sensitivity of feedback estimates to the finite bin
size of the ISCCP simulator histogram

The finite bin size of the ISCCP simulator histogram

causes two main sources of uncertainty. The first, to

which we can assess the sensitivity of our results, is un-

certainty in the cloud radiative kernel calculation due to

the choice of representative cloud properties for each

bin. If the cloud distribution within a bin is skewed such

that its properties are different from those at the CTP

and t midpoints, then a kernel generated assuming cloud

properties of the midpoints will yield a less accurate

estimate of the feedback than a kernel generated as-

suming more representative cloud properties.

In Table A1 we attempt to quantify the uncertainty

in kernel-calculated feedbacks due to uncertainty in the

representative cloud properties of each bin used to gen-

erate the kernels. In the ‘‘Standard’’ column are feed-

backs computed using the standard kernel calculation in

which TOA fluxes computed for clouds having proper-

ties determined by the four corners of each bin of the

histogram are averaged together to compute one kernel

value for each bin. The ‘‘min’’ and ‘‘max’’ columns rep-

resent the minimum and maximum of the four possible

cloud feedbacks computed using the kernels correspond-

ing to cloud properties defined at the corners of each bin

(i.e., small t and CTP, large t and CTP, small t and large

CTP, and large t and small CTP). Clearly, both LW

and SW cloud feedback estimates depend sensitively

on which within-bin cloud properties are chosen when

generating the kernel. For both LW and SW cloud feed-

backs, the biggest difference in magnitudes are between

those calculated with kernels defined at the thin, low

corner and at the thick, high corner (not shown). LW

cloud feedback estimates range by 0.17 W m22 K21,

on average, and tend to be more sensitive to whether

the minimum or maximum of each CTP bin edge is

used (not shown). SW cloud feedback estimates range

by 0.23 W m22 K21, on average, and tend to be more

sensitive to whether the minimum or maximum of each

t bin is used (not shown). It is highly unlikely that the

radiative properties of a cloud whose CTP and t cor-

respond to the corner of a bin are representative of the

average radiative properties of clouds located within

that bin. Thus, we consider the extrema of global mean

cloud feedback estimates provided in Table A1 to be

very conservative bounds on the true cloud feedback.

Note that this feature of the radiative kernel technique

only arises because the kernels are matched to the broad

bins of the ISCCP simulator. Kernels generated to

match higher-resolution cloud fraction histograms (like

in Zelinka and Hartmann 2011) will be less prone to

such uncertainties.

The second source of uncertainty arising from the fi-

nite bin size is the inability to capture within-bin changes

in clouds that impact radiation. This is because cloud

fraction within a given bin of the histogram can stay

constant while the optical depth and vertical distribution

of clouds within that bin changes. For example, a hypo-

thetical distribution of clouds with optical depth 4 lo-

cated at 300 hPa that shift to an optical depth of 8 at

200 hPa remain within the same CTP–t classification.

Since this would not appear as a cloud fraction change,

its impact on radiation would not be recorded using the

cloud radiative kernel technique. Although we cannot

quantify the sensitivity to this issue with the available

data, we note that cloud changes are coherent across

bins such that shifts occurring within bins are manifested

in the broader cloud distribution. As shown in Ockert-

Bell and Hartmann (1992), covariance between differ-

ent cloud types means that greater than 80% of the

fluctuations in both OLR and TOA albedo can be ex-

plained by considering only 5–7 representative cloud

types. That such correlation exists between cloud frac-

tion changes occurring among different cloud types

makes it likely that subsampling their fraction in CTP-

and t-space can still capture the relevant changes. It is

also unlikely that the good agreement between cloud

feedbacks computed using our cloud radiative kernels

and those computed using the adjusted change in cloud

forcing method of Shell et al. (2008) and Soden et al.
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(2008) would have resulted if within-bin cloud changes

were radiatively dominant.

c. Sensitivity of intermodel spread in SW cloud
feedback to differences in mean-state clear-sky
surface albedo

Before using the cloud radiative kernels to compute

cloud feedback, they are mapped by linear interpola-

tion from their native latitude–albedo space to latitude–

longitude space using the clear-sky surface albedo at

each location and month in the control climate. This

feature of the kernel technique implies that some of

the intermodel spread in SW cloud feedback will arise

simply from differences in control climate clear-sky

surface albedo across models. To assess this effect, we

computed hypothetical SW feedbacks in each model by

mapping the SW cloud radiative kernels to clear-sky

albedos from different models’ control climates. In each

case, the cloud changes were the same as in the correct

calculation, but the underlying albedo was taken from

a different model. Within a given model, the hypothet-

ical SW cloud feedbacks computed using other models’

control climate surface albedos deviate from the true

feedback by not more than 0.05 W m22 K21 on average.

The range of SW cloud feedbacks across the 11-model

ensemble, which is 1.11 W m22 K21 for the base cal-

culation, varies only slightly from if only one model’s

control climate clear-sky surface albedo is used in all

calculations. The end-members are the calculations us-

ing only the IPSL CM4 and HadSM3 models’ albedo

fields, for which the intermodel spread becomes 1.03 and

1.13 W m22 K21, respectively. Using all possible com-

binations of cloud changes and mean-state albedos, the

intermodel spread ranges from 1.03 to 1.16 W m22 K21.

Clearly the intermodel spread in control climate clear-

sky surface albedo has a small impact on the intermodel

spread in SW cloud feedback.

d. Sensitivity of feedback estimates to the restriction
of the technique to sunlit points

Simulated cloud fields are only present for sunlit

months in which a passive satellite sensor would retrieve

visible optical depths (and are undefined otherwise).

Only the sunlit portion of the diurnal cycle of cloudi-

ness is sampled by the ISCCP simulator, and in polar

regions, entire months are devoid of cloud information

when the sun does not rise above the horizon. This is

potentially problematic for diagnosing LW cloud feed-

back because cloud fields impact LW radiation at all

times, not just when the sun is up. Thus, if the change in

cloud properties between the 2 3 CO2 climate and the

1 3 CO2 climate is systematically different between

night and day or between dark and sunlit seasons, this

technique will be biased, capturing only the cloud changes

that occur for sunlit months. We find that in the annual

mean, the adjusted change in LW cloud forcing at high

latitudes agrees to within 0.1 W m22 K21 of the value

computed when only sunlit months are sampled, sug-

gesting that this is not a major issue. Cloud changes oc-

curring when the sun is down do not impact SW radiative

fluxes; however, because the simulator-derived cloud

fraction at these locations and months is undefined, we

artificially set the SW cloud feedback to zero. This en-

sures that a correct annual mean SW cloud feedback is

computed (i.e., it includes zeros and is therefore not

biased toward larger magnitudes). Thus the restriction

of simulator application to sunlit months has no effect

on SW cloud feedback estimates.
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Scott, 1999: Clouds as seen by satellite sounders (3I) and

imagers (ISCCP). Part I: Evaluation of cloud parameters.

J. Climate, 12, 2189–2213.

Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase

cloud distribution in the control climate for assessing the re-

sponse of clouds to carbon dioxide increase: A multi-model

study. Climate Dyn., 27, 113–126.

Webb, M., C. Senior, S. Bony, and J. J. Morcrette, 2001: Combining

ERBE and ISCCP data to assess clouds in the Hadley Centre,

ECMWF and LMD atmospheric climate models. Climate

Dyn., 17, 905–922.

——, and Coauthors, 2006: On the contribution of local feedback

mechanisms to the range of climate sensitivity in two GCM

ensembles. Climate Dyn., 27, 17–38.

Wetherald, R. T., and S. Manabe, 1980: Cloud cover and climate

sensitivity. J. Atmos. Sci., 37, 1485–1510.

Williams, K., and G. Tselioudis, 2007: GCM intercomparison of

global cloud regimes: Present-day evaluation and climate

change response. Climate Dyn., 29, 231–250.

——, and M. Webb, 2009: A quantitative performance assessment

of cloud regimes in climate models. Climate Dyn., 33, 141–

157.

Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M.

Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006: A com-

parison of low-latitude cloud properties and responses in

AGCMs sorted into regimes using mid-tropospheric vertical

velocity. Climate Dyn., 27, 261–279.

Yokohata, T., M. J. Webb, M. Collins, K. D. Williams, M. Yoshimori,

J. C. Hargreaves, and J. D. Annan, 2010: Structural similarities

and differences in climate responses to CO2 increase between

two perturbed physics ensembles. J. Climate, 23, 1392–1410.

Zelinka, M. D., and D. L. Hartmann, 2011: The observed sensi-

tivity of high clouds to mean surface temperature anomalies

in the tropics. J. Geophys. Res., 116, D23103, doi:10.1029/

2011JD016459.

——, S. A. Klein, and D. L. Hartmann, 2012: Computing and

partitioning cloud feedbacks using cloud property histograms.

Part II: Attribution to Changes in Cloud Amount, Altitude,

and Optical Depth. J. Climate, 25, 3736–3754.

1 JUNE 2012 Z E L I N K A E T A L . 3735


