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ABSTRACT

Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken

during austral summer over the Southern Ocean are used to study relationships between clouds and large-

scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the midtropo-

sphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature

advection, and sea surface temperature. These relationships are quantified. An index for the meteorological

anomalies associated withmidlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to

the meteorology within the warm and cold sectors of cyclones.

The observed relationships between clouds and meteorology are compared to those in the Community

Atmosphere Model, version 5 (CAM5), using satellite simulators. Low clouds simulated by CAM5 are too

few, are too bright, and contain too much ice. In the cold sector of cyclones, the low clouds are also too

sensitive to variations in the meteorology. When CAM5 is coupled with an updated boundary layer pa-

rameterization known as Cloud Layers Unified by Binormals (CLUBB), bias in the ice content of low clouds

is dramatically reduced. More generally, this study demonstrates that examining the instantaneous time scale

is a powerful approach to understanding the physical processes that control clouds and how they are repre-

sented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias

under various meteorological conditions.

1. Introduction

Clouds play a fundamental role in Earth’s energy

budget. They reflect incoming shortwave (SW) radia-

tion and reduce the emission of longwave (LW) radi-

ation to space. Because of the strong radiative impact

of clouds, and because of their complexity, cloud

feedback is the largest source of uncertainty in model

projections of global climate change (e.g., Cess et al.

1990; Boucher et al. 2013). Describing clouds in the

observational record is important for understanding

the energy budget in the present climate and an im-

portant first step toward constraining climate change

projections.

Clouds and their radiative effects are often poorly

simulated by global climatemodels (GCMs)—especially

over the Southern Ocean. Model bias in absorbed SW

radiation can be as large as 630Wm22 over the

Southern Ocean, with most models absorbing too much

SW radiation (Trenberth and Fasullo 2010; Ceppi et al.

2012). These cloud biases cause large-scale heat trans-

port and circulation biases, both in the atmosphere and

in the ocean and both locally and in the tropics (Ceppi

et al. 2012; Hwang and Frierson 2013; Kay et al. 2016).

Additionally, most models simulate brighter Southern

Ocean clouds in response to anthropogenic climate

change (Zelinka and Hartmann 2012), and this cloud

feedback is thought to drive the large-scale atmospheric

circulation response in the Southern Hemisphere ex-

tratropics (Voigt and Shaw 2015; Ceppi and Hartmann

2016). Since Southern Ocean clouds are poorly simu-

lated by GCMs, and since they have far-reaching im-

pacts on the climatology and climate change response in

GCMs, better understanding of Southern Ocean clouds

is needed.
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The characteristics of Southern Ocean clouds and

their connections to the large-scale meteorology can be

illuminated by focusing on the instantaneous time scale.

The instantaneous time scale is key because time aver-

aging can blend different cloud and meteorological re-

gimes together, thereby obscuring the physical processes

that control clouds. Time averaging can also mask

compensating model biases, which could cause a model

to have a realistic time-mean cloud radiative effect but

not necessarily a realistic cloud feedback under an-

thropogenic forcing. Examining cloud variability on the

instantaneous time scale provides a more stringent

evaluation of models. For such an evaluation, models

performwell only if they simulate realistic cloud regimes

with realistic radiative properties, and under the right

meteorological conditions.

One common approach to characterize cloud vari-

ability and connections to the large-scale meteorology

on short time scales is classifying clouds into regimes.

This is often done using cluster analysis of observations

from the International Satellite Cloud Climatology

Project (ISCCP; Rossow and Schiffer 1991) (e.g., Jakob

and Tselioudis 2003; Jakob et al. 2005; Rossow et al.

2005; Oreopoulos and Rossow 2011). Using this tech-

nique, Gordon and Norris (2010) identified seven cloud

regimes over midlatitude oceans that occur in distinct

large-scale meteorological conditions. Haynes et al.

(2011) quantified the radiative effects of cloud regimes

over the Southern Ocean and found that, because they

are so common, the low-cloud regimes make the largest

contribution to the SW cloud radiative effect. Bodas-

Salcedo et al. (2014) quantified climate model bias in

reflected SW radiation for the various cloud regimes.

Another approach to characterize cloud variability

and connections to the large-scale meteorology on short

time scales involves compositing observations based on

proximity to the center of midlatitude cyclones (e.g.,

Lau and Crane 1995, 1997; Norris and Iacobellis 2005;

Catto 2016, and references therein). Using this ap-

proach, Field and Wood (2007) highlighted the distinct

cloud types that exist in cyclones and examined the

sensitivity of cloud properties to variations in cyclone

strength and atmospheric moisture. Naud et al. (2010)

and Govekar et al. (2011) described the vertical distri-

bution of clouds around midlatitude cyclones using ac-

tive, satellite-based retrievals. Bodas-Salcedo et al.

(2014) found that, over the Southern Ocean, climate

model bias in reflected SW radiation is dominated by

clouds in the cold sector of cyclones.

Cloud regime classification and cyclone compositing

have led to major advances in our understanding of

Southern Ocean clouds, but both techniques have limi-

tations. Cloud regime classification is limited by the

quality of the ISCCP observations, since ISCCP suffers

from errors common to passive retrievals. ISCCP per-

forms poorly when multilayered clouds are present and

often reports a cloud-top pressure between the multiple

cloud layers (Marchand et al. 2010). This is problematic

over the Southern Ocean where multilayered clouds are

present in roughly one-third of cloudy scenes (Haynes

et al. 2011). As a result, layered clouds are often mis-

classified into ‘‘midlevel’’ cloud regimes (Bodas-Salcedo

et al. 2014; Mason et al. 2014). Additionally, cyclone

compositing has limitations that result from averaging

different cyclones together. Cyclones evolve rapidly and

are highly variable in their structure and features.

Therefore, averaging across different cyclones at dif-

ferent stages of development can result in the loss of

information about the large-scale meteorological con-

ditions and their influence on clouds.

In this work we aim to build on the insights from

previous studies and further characterize instantaneous

linkages between Southern Ocean clouds and the large-

scale meteorology. We examine the sensitivity of clouds

to variations in four predictors derived from the large-

scalemeteorology: sea surface temperature (SST), vertical

motion in the middle troposphere, estimated inversion

strength (Wood and Bretherton 2006), and low-level

temperature advection. Each predictor is a proxy for a

physical process that impacts clouds. Sea surface temper-

ature is closely related to the surface latent heat flux, and

as a result, cooler temperatures favor a shallow and well-

mixed boundary layer while warmer temperatures favor a

decoupled boundary layer (Bretherton and Wyant 1997).

Vertical motion is strongly related to the advective

tendency of cloud water mixing ratio. Inversion

strength is a proxy for entrainment efficiency: weaker

inversions allow for stronger entrainment of dry air

from the free troposphere into the boundary layer.

Finally, low-level temperature advection influences the

stratification and mixing within the boundary layer.

Cold advection causes weak stratification and enhanced

turbulent mixing, and vice versa. We examine the sensi-

tivity of clouds to each of these processes individually and

examine how these processes and clouds vary within

midlatitude cyclones.

Our approach provides new insight for two reasons:

1) We use high-quality satellite observations of clouds

and radiation from multiple instruments. We use a

combination of passive and active retrievals and take

advantage of the strengths of each. 2) We composite

observations by various meteorological predictors

rather than by location with respect to the cyclone

center. When compared to cyclone compositing, our

approach retains more information about the large-scale

meteorological conditions and their influence on clouds.
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This study is organized as follows: observational

datasets, model simulations, and statistical methods are

described in section 2; instantaneous linkages between

large-scale meteorological conditions and cloud prop-

erties are described in section 3; and conclusions and a

summary of the findings are presented in section 4.

2. Data and methods

a. Observational data

We use satellite observations of cloud properties

and radiation from the combined CERES-CloudSat-

CALIPSO-MODIS (CCCM) dataset, version RelB1

(Kato et al. 2010; Loeb et al. 2016). This dataset is a

collection of instantaneous, coincident, footprint-level

measurements from four instruments based on satellites

flying in theA-Train constellation (Stephens et al. 2002).

The CERES (Wielicki et al. 1996) instrument retrieves

top-of-atmosphere radiative fluxes (Loeb et al. 2005).

The Cloud Profiling Radar (CPR; Stephens et al. 2008)

on board the CloudSat satellite and the Cloud–Aerosol

Lidar with Orthogonal Polarization (CALIOP; Winker

et al. 2007) on board the Cloud-Aerosol lidar and In-

frared Pathfinder Satellite Observations (CALIPSO)

satellite are both active instruments that retrieve the

vertical distribution of clouds. The Moderate Resolu-

tion Imaging Spectroradiometer (MODIS; [Minnis et al.

2011a]) instrument is a passive imager that retrieves

vertically integrated and cloud-top properties. We use

observations from all four instruments and take advan-

tage of the strengths of each.

Since the CERES, CPR, CALIOP, and MODIS in-

struments have different footprint sizes and viewing

angles, a minimal amount of averaging and subsetting is

done to get the data on a common grid. First, since CPR

and CALIOP are nadir-viewing instruments, only near-

nadir scenes from CERES and MODIS are used. Sec-

ond, because CERES has the largest footprint of the

four instruments—about 20-km horizontal resolution at

nadir—all measurements from other instruments are

horizontally averaged across the CERES footprint. A

typical CERES footprint contains about 1200 MODIS

pixels, 100 CALIOP profiles, and 30 CPR profiles. The

MODIS measurements cover nearly the entire CERES

footprint, while the CPR andCALIOP instruments view

only a ‘‘stripe’’ through the middle of the CERES

footprint. Finally, CPR and CALIOP profiles are

merged to a common vertical grid with 240-m resolution.

We use observations of the vertical profile of cloud

fraction from the merged CALIOP–CPR product; al-

bedo and outgoing LW radiation at the top of the at-

mosphere from CERES; and horizontal cloud fraction

and in-cloud (i.e., computed using cloudy pixels only)

optical depth, liquid water path (LWP), and ice water

path (IWP) from MODIS. Liquid water path is defined

as the total mass of cloud liquid water above a unit area

of Earth’s surface, and similarly for ice water path. The

cloud fraction observed by MODIS is a measure of the

horizontal coverage of clouds, while the cloud fraction

from the CALIOP–CPR product is a measure of the

vertical distribution of clouds. We analyze data from

December 2006 through February 2011 and restrict our

study to latitudes between 408 and 608S and to the

summer months of December, January, and February—

months when the absorbed SW bias in climate models is

largest. The albedo, optical depth, liquid water path, and

ice water path measurements are only available for

sunlit scenes. The CCCM variables used in this study are

listed in Table 1.

b. Reanalysis data

We also use meteorological variables from the Euro-

pean Centre for Medium-Range Weather Forecasts in-

terim reanalysis (ERA-Interim; Dee et al. 2011;

ECMWF 2015). SST, vertical pressure velocity at

500 hPa (v500), estimated inversion strength (EIS; Wood

and Bretherton 2006), and low-level temperature ad-

vection are used as meteorological predictor vari-

ables. Low-level temperature advection is defined as

2u1000 hPa � =SST, where u1000 hPa is the horizontal wind at

1000hPa. A negative sign is used in this definition so that

positive values of low-level temperature advection cor-

respond to warm advection, and vice versa. We also use

vertical profiles of temperature, wind, and horizontal

temperature advection, which is defined similarly to low-

level temperature advection but computed throughout

the troposphere. The dataset includes instantaneous re-

alizations of themeteorological fields every six hourswith

0:7583 0:758 horizontal resolution. Meteorological vari-

ables are linearly interpolated to the location and time of

each satellite footprint.

c. Observational uncertainties

Webegin by discussing sampling limitations. Since the

A-Train follows a sun-synchronous orbit, and since only

near-nadir scenes are included in the CCCM dataset, all

scenes from latitude bands are sampled at about the

same local time. This has two important consequences.

First, all sunlit scenes have solar zenith angles less than

608 and hence are not affected by retrieval biases that

occur at large solar zenith angles (Grosvenor andWood

2014). Second, the diurnal cycle is poorly sampled in the

CCCM dataset. Fortunately, the diurnal cycles of cloud

fraction and optical depth are small over extratropical

oceans (Warren et al. 1988; Rossow and Schiffer 1999),
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so the sampling of CCCM is representative of the cli-

mate over the Southern Ocean.

Additionally, each instrument has unique strengths

and weaknesses. The main strength of the active in-

struments is their ability to accurately measure cloud

vertical distribution for a wide variety of cloud types.

CALIOP can detect thin clouds with optical depths as

low as 0.01 (McGill et al. 2007) but becomes fully at-

tenuated at optical depths of about 3 (Winker et al.

2007). As a result, CALIOP often only views the top

portion of clouds (Cesana et al. 2016). Compared to

CALIOP, the CPR instrument can view deeper into

clouds but misses optically thin clouds. The CPR signal

can also become fully attenuated during heavy pre-

cipitation. The combined CALIOP–CPR cloud fraction

is computed using only the scenes where at least one of

the instruments made a valid retrieval; when the signal

from both instruments is fully attenuated at a certain

level, then that measurement is treated as missing data

and is excluded from the calculation of cloud fraction.

The CPR andCALIOP instruments work synergistically

to provide the best global-scale view of cloud vertical

structure that is currently available.

Strengths of the CERES instrument include very

stable performance over the period of study (Corbett

and Loeb 2015) and the ability to make highly accurate

retrievals of emitted and reflected radiative fluxes. CERES

measures broadband radiances at the top of the atmo-

sphere and uses these measurements to estimate radiative

fluxes. Biases introduced in the radiance-to-flux conver-

sion are small and are independent of cloud properties.

CERES retrievals of radiative fluxes are consistent

across satellite platforms and with independent retrievals

from geostationary satellites, lending to their credibility

(Loeb et al. 2003).

Uncertainty in cloud properties retrieved by MODIS

deserves special attention. MODIS retrieves cloud

thermodynamic phase, particle size, and optical depth

and then computes the liquid or ice water path from

these quantities (Minnis et al. 2011a). MODIS retrievals

of cloud-top thermodynamic phase over the Southern

Ocean agree quite well with coincident retrievals from

CALIOP (Huang et al. 2016), so cloud-top phase de-

termination is not the main source of uncertainty in the

MODIS cloud retrievals. Rather, the main source of

uncertainty is due to the fact thatMODIS views only the

highest clouds. The retrieved cloud phase and particle

size reflect conditions near the top of the highest clouds

(Nakajima and King 1990) but are assumed to be uni-

form throughout the cloud. This is especially problem-

atic for liquid clouds, since MODIS cannot detect liquid

cloud below moderately thick ice cloud. As a result,

TABLE 1. Variables from the CCCM dataset and satellite simulators used in this study. The CCCM dataset also includes variables from

the CERES single scanner footprint (SSF) dataset. SSF-81, SSF-83, SSF-89, and SSF-91 are MODIS-observed cloud properties averaged

over the entire CERES footprint (referred to as ‘‘full footprint’’ in CCCM).

CCCM dataset (observations)

Variable Name

SSF-1 Time of observation

SSF-6 Colatitude of subsatellite point at surface at observation

SSF-7 Longitude of subsatellite point at surface at observation

SSF-21 CERES solar zenith at surface

SSF-25 Surface type index

SSF-38 CERES SW TOA flux—upward

SSF-38a CERES SW TOA flux—downward

SSF-39 CERES LW TOA flux—upward

SSF-81 Clear/layer/overlap percent coverages

SSF-83 Mean visible optical depth for cloud layer

SSF-89 Mean liquid water path for cloud layer (3.7)

SSF-91 Mean ice water path for cloud layer (3.7)

CCCM-52 Cloud fraction profile

CCCM-73 CloudSat cloud type histogram

COSP Satellite Simulators

Variable Description

CFAD_DBZE94_CS CloudSat radar reflectivity factor

CLD_CAL CALIPSO lidar cloud fraction

CLTMODIS MODIS total cloud fraction

IWPMODIS MODIS cloud ice water path

LWPMODIS MODIS cloud liquid water path

TAUTMODIS MODIS total cloud optical thickness
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when thick or layered clouds are present, liquid cloud

properties are usually not retrieved. This is a serious

limitation.

To assess the uncertainty in liquid water path re-

trieved byMODIS, we comparedMODIS data to liquid

water path retrieved by the Advanced Microwave

Scanning Radiometer for EOS (AMSR-E; Wentz and

Meissner 2004). AMSR-E also flies in the A-Train, but

its retrieval is based on independent physics, uses

measurements at different wavelengths, and provides

an independent estimate of liquid water path. We

examined three months of instantaneous, footprint-

level measurements taken over the Southern Ocean

by the two instruments and conditionally sampled the

data based on vertical motion in the middle tropo-

sphere. Differences between AMSR-E and MODIS

estimates of liquid water path are small (10 gm22 or

less) during large-scale subsidence and large (up to

100 gm22) during large-scale ascent (not shown).

Both the AMSR-E and MODIS retrievals have large

uncertainties when measuring deep, precipitating

clouds, so disagreement between the retrievals is ex-

pected (Lebsock and Su 2014). From the MODIS and

AMSR-E comparison, we conclude that liquid water

path retrievals fromMODIS are reliable during large-

scale subsidence and very uncertain during strong

large-scale ascent.

Additionally, Minnis et al. (2011b) compared the

MODIS cloud retrievals to measurements from sev-

eral independent satellite- and surface-based instru-

ments. They generally find good agreement between

MODIS and the various datasets. One exception is

that optical depth of thin cirrus tends to be under-

estimated by MODIS compared to surface-based ra-

dar retrievals.

d. CAM5

We run simulations with the Community Atmosphere

Model, version 5 (CAM5; Neale et al. 2011)—the at-

mosphere component of a global climate model. CAM5

is run in default configuration and with an updated

boundary layer parameterization called Cloud Layers

Unified by Binormals (CLUBB; Golaz et al. 2002).

These configurations will be referred to as ‘‘CAM5’’ and

‘‘CAM5 1 CLUBB,’’ respectively. CAM5 uses several

parameterizations to represent cloud processes, in-

cluding cloud microphysics (Morrison and Gettelman

2008), cloud macrophysics (Park et al. 2014), shallow

convection (Park and Bretherton 2009), deep convec-

tion (Zhang andMcFarlane 1995), and turbulent mixing

(Bretherton and Park 2009). In CAM5 1 CLUBB, the

cloud macrophysics, shallow convection, and turbulent

mixing schemes are replaced by CLUBB, which treats

these processes in a unified and consistent framework.

CLUBB predicts the distribution of turbulent updrafts

and downdrafts, allowing it to simulate a wide range of

cloud regimes from stratiform clouds, which occur when

the distribution is symmetric, to shallow cumulus clouds,

which occur when the distribution is highly skewed.

Preliminary evaluations show that CLUBB substantially

improves subtropical low clouds simulated by the

Community Atmosphere Model (Bogenschutz et al.

2012, 2013). We will continue the evaluation of clouds

in CAM5 1 CLUBB and examine clouds over the

Southern Ocean.

Model simulations are run with sea ice concentration

and sea surface temperature prescribed to observed

values following the Atmosphere Model Intercomparison

Project (AMIP) protocol (Gates 1992), and instantaneous

model fields are produced every six hours. We run simu-

lations from 2000 to 2005 and compare the output with

observations from 2006 to 2011. Differences between

model output and observations are mostly due to model

bias rather than differences in the surface boundary

conditions or internal variability between the two pe-

riods. We checked this by computing instantaneous

relationships between clouds and large-scale meteo-

rology for each summer season individually. In both the

model and the observations, year-to-year differences

in cloud–meteorology relationships are small compared

to the difference between the model and observations

(not shown).

In the model simulations we use the Cloud Feedback

Model Intercomparison Project Observation Simulator

Package (COSP) (Bodas-Salcedo et al. 2011), which

simulates satellite retrievals. We briefly describe the

COSP method here, but detailed descriptions of the

MODIS, CPR, and CALIOP simulators can be found in

Pincus et al. (2012), Haynes et al. (2007), and Chepfer

et al. (2008), respectively. At each time step and for each

model column, COSP stochastically generates multiple

subgrid-scale profiles called ‘‘subcolumns’’ (Klein and

Jakob 1999; Webb et al. 2001). The number of sub-

columns is sufficiently large to statistically represent the

subgrid-scale variability, and subcolumn clouds are

consistent with the model’s cloud overlap assumption.

Each cloudy subcolumn is then used to estimate what

the CPR, CALIOP, and MODIS instruments would

retrieve if they were orbiting above. Statistics of these

simulated retrievals are aggregated and can be com-

pared to similar statistics from satellite observations.

The COSP satellite simulators overcome differences in

scale between observations and model output and ac-

count for limitations in the observations, thus allowing

for a direct statistical comparison of observations and

model output.
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While satellite simulators account for most limitations

in satellite observations, like all models, they are im-

perfect. For example, satellite simulators do not account

for errors in the retrieval of partly cloudy pixels, which is

problematic for evaluating broken clouds. Satellite

simulators are also unable to account for bias in the

observations that occurs when the solar zenith angle is

large, but since all sunlit scenes in the CCCM observa-

tions have solar zenith angles that are small enough to

avoid the solar zenith angle bias, this limitation does not

affect our analysis. Limitations of satellite simulators are

discussed in detail by Pincus et al. (2012). Despite their

imperfections, satellite simulators have proven useful

for comparing climate model output to observations in a

consistent way.

COSP variables used in this study are listed in Table 1.

MODIS cloud optical depth, liquid water path, and ice

water path are divided by MODIS cloud fraction to

convert the gridbox-average values to in-cloud values

(the average over cloudy scenes only). Using in-cloud

values allows us to separate biases due to the frequency

of occurrence of clouds from biases due to cloud prop-

erties when clouds are seen. Additionally, we compute

albedo similarly to the CERES observations. Because

the solar zenith angle is 608 or less for the sunlit scenes in
the CCCM observations, model albedo is calculated

only for grid points where the solar zenith angle is less

than 608.

e. Statistical methods

Our goal is to describe the sensitivity of clouds to

variations in the four meteorological predictors men-

tioned above: SST, v500, EIS, and low-level temperature

advection. We also use principal component analysis to

identify common patterns of variability of these mete-

orological predictors, and we describe the sensitivity of

clouds to variations in the leading principal component.

Three steps are taken to prepare the data for principal

component analysis. Starting with the gridded dataset of

the four meteorological predictors, the seasonal cycle is

removed by subtracting the monthly mean climatology.

Anomalies of the meteorological fields are then linearly

interpolated to the time and location of each satellite

footprint. Next, the resulting meteorological fields are

standardized to have unit variance and amean of zero so

that each variable contributes equally to the principal

component analysis. Our use of principal component

analysis is different than common practice in geo-

physical sciences. Principal component analysis is com-

monly applied to datasets that have a space and a time

dimension, with the goal of finding spatial patterns in the

data and how strongly they are expressed as a function of

time. Here, instead of a space dimension we have a list of

the four meteorological predictors, and instead of a time

dimension, each entry corresponds to a different satel-

lite footprint. Our goal is to find common patterns of the

four meteorological predictors that vary across satellite

footprints.

Throughout this study, we composite the cloud and

radiation observations based on the various meteoro-

logical predictors and average the data. This approach

illuminates the sensitivity of clouds to variations in

large-scale meteorology, and, importantly, it does not

assume linearity of the cloud data. For a given bin,

random error of the mean is determined assuming a

Gaussian distribution and computing the standard error

of the mean (SE):

SE5
s
ffiffiffiffi

N
p .

Here, s is the sample standard deviation and N is the

effective degrees of freedom. The valueN is determined

using the CloudSat vertical feature mask (Sassen and

Wang 2008), which classifies clouds into eight types

based on cloud and precipitation vertical structure. In a

string of consecutive satellite footprints, two neighboring

footprints are considered independent only if the pre-

dominant cloud type in the two footprints is different.

The 95% confidence interval for the mean, shown in the

error bars throughout this study, is 61:96SE. Note that

this confidence interval does not account for systematic

error in the retrievals. However, since the systematic er-

rors in the observations are reproduced by the satellite

simulators, this confidence interval can be used to test

whether or not a model bias is statistically significant.

3. Results

a. Observed linkages between clouds and large-scale
meteorology

We begin by describing the climatology of clouds and

meteorology over the Southern Ocean during austral

summer. Figure 1 shows the climatology of four mete-

orological predictor variables used in this study: v500,

SST, low-level temperature advection, and EIS. Mean

large-scale subsidence is seen over the subtropical

oceans off the west coast of South America, Australia,

and Africa, while mean large-scale ascent is seen near

the southern end of South America. The gradient in SST

is largest between 408 and 608S, in the latitude band

containing the Antarctic Circumpolar Current. The

magnitude of low-level temperature advection is maxi-

mized near the largest SST gradients—coinciding with

the storm-track regions. Estimated inversion strength is

generally maximized between 408 and 608S. Although
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evidence of synoptic wave activity is seen in the low-

level temperature advection map, low clouds are still

muchmore common thanmiddle or high clouds over the

Southern Ocean (Fig. 1e).

We now describe cloud variability by compositing

the data based on various meteorological predictors.

Figure 2 shows cloud properties and radiation as a

function of SST. Colder SST is associated with enhanced

low-cloud cover, as can be seen in the vertical profile of

cloud fraction. Colder SST is also associated with

greater horizontal cloud fraction, greater albedo, and

lower OLR. Regression coefficients for these relation-

ships are presented in Table 2. Because SST is correlated

with latitude, this figure closely resembles the zonal-

mean cloud properties plotted as a function of latitude.

Figure 3 shows cloud properties and radiation as a

function of v500. Deep clouds are seen during periods of

strong ascent, and low clouds are seen during periods of

subsidence. During periods of large-scale ascent

(v500 , 0), horizontal cloud fraction, in-cloud optical

depth, and albedo all increase with the strength of as-

cent. OLR decreases with stronger ascent, as stronger

ascent is associated with higher cloud tops. The deepest

and brightest clouds with nearly complete horizontal

coverage are seen during periods of strong ascent in the

midtroposphere. Same-sign, but weaker, relationships

are seen during periods of subsidence: stronger sub-

sidence is associated with smaller horizontal cloud

fraction and lower albedo. Regression coefficients for

both large-scale subsidence and ascent conditions are

presented in Table 2.

The large-scale subsidence regime, which sup-

ports low clouds, is further explored in Fig. 4. Cloud

properties are plotted as a function of EIS in Fig. 4. For

weak inversions (e.g., EIS’ 08C), the top of low clouds

is slightly above 2km on average. The top of the low-

cloud layer becomes lower as the inversion strengthens,

reaching about 1km for very strong inversions (e.g.,

EIS’ 158C). The in-cloud optical depth, horizontal

cloud fraction, and albedo all increase with a stronger

inversion. During periods of large-scale subsidence,

stronger inversions are associated with low-cloud layers

that are brighter, shallower, and more horizontally ex-

tensive (Table 2).

Figure 5 shows cloud properties and radiation as a

function of low-level temperature advection. Like Fig. 4,

only large-scale subsidence conditions are shown. Cold

advection is associated with low clouds, while warm

advection supports more middle and high clouds. Al-

bedo and horizontal cloud fraction both decrease with

temperature advection; strong cold-advection produces

low clouds that cover about 90% of the surface and have

an albedo of around 0.3, while warm advection produces

clouds with smaller horizontal coverage and albedo.

When both large-scale ascent and subsidence conditions

are considered together, the strength of low-level tem-

perature advection has a relatively weak influence on

optical depth, albedo, and horizontal cloud fraction (not

shown). This is because middle and high clouds are most

common during warm advection conditions and offset

the reduction in low clouds. Nonetheless, low-level

temperature advection significantly influences low-

cloud properties.

Some of the cloud variability in Figs. 2–5 is associated

with spatial variations in the climatology of the meteo-

rological variables, and some is associated with natural

FIG. 1. Summertime climatology of (a) vertical pressure velocity at 500 hPa, (b) sea surface temperature, (c) low-level temperature

advection, and (d) estimated inversion strength. (e) Vertical profile of mean cloud fraction from CloudSat and CALIPSO observations.
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variations in the meteorology. To isolate the contribu-

tion from natural variability, the climatology of cloud

properties was computed on a 18 latitude by 58 longitude
grid, and then the compositing was repeated with the

climatology removed from the cloud and meteorology

data. The relationship between cloud and SST anoma-

lies is weak or insignificant (not shown), suggesting that

most of the sensitivity of clouds to SST variations seen in

Fig. 2 results from spatial variations in the climatological

SST pattern. However, the weak relationship between

cloud and SST anomalies could also be due to the fact

that day-to-day variability in SST is relatively small. In

contrast, the relationships between cloud anomalies and

anomalies in low-level temperature advection, EIS, and

v500 are similar to those in Figs. 3–5, indicating that most

of the cloud variability driven by these variables results

from their natural variations.

The composites shown in Figs. 2–5 illuminate the

sensitivity of Southern Ocean clouds to variations in

four meteorological variables. Next we use principal

component analysis to combine those four meteoro-

logical predictors into a single variable that represents a

common pattern of atmospheric variability. The leading

principal component (PC1), which is associated with the

pattern that explains the most combined variance of the

four meteorological predictors, is described in Table 3.

FIG. 2. Cloud properties and radiation plotted as a function of SST. (top) Vertical profile of

cloud fraction observed byCALIPSO andCloudSat. (middle)Horizontal cloud fraction and in-

cloud optical depth observed byMODIS. (bottom) Top-of-atmosphere outgoing LW radiation

(OLR) and albedo observed by CERES. Data are binned by SST and averaged, and the error

bars show the 95% confidence interval of the mean. The box plot in (bottom) shows the 5th,

25th, 50th, 75th, and 95th percentiles of SST.
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Positive values of PC1 are associated with midtropo-

spheric ascent, warm low-level temperature advection,

and large EIS. PC1 is also uncorrelated with SST. The

pattern associated with PC1 explains 37% of the com-

bined variance of the four meteorological variables.

However, because there are only four meteorological

variables, and therefore only four patterns and four

principal components, PC1 must explain at least 25% of

the combined variance. Nonetheless, PC1 is distinct

from the second principal component at the 95% con-

fidence level according to the test proposed by North

et al. (1982), so it may correspond to a ‘‘real’’ mode of

atmospheric variability.

To help interpret the mode of atmospheric variabil-

ity associated with PC1, vertical profiles of tempera-

ture, wind, and temperature advection are considered.

Anomalies of these quantities are plotted as a function

of PC1 in Fig. 6. Positive values of PC1 are associated

with warm anomalies, warm advection anomalies, and

poleward flow throughout the troposphere, as well as an

elevated tropopause: conditions associated with the

warm sector of midlatitude cyclones. Similarly, negative

values of PC1 are associated with the cold sector of cy-

clones. Therefore, PC1 can be used as a metric for the

strength of the meteorological anomalies associated

with midlatitude cyclones. Compared to v500 or low-

level temperature advection alone, PC1 is a better

overall predictor of the meteorological anomalies asso-

ciated with cyclones and is therefore useful for identi-

fying cyclones.

At first glance it may seem unusual that positive

values of PC1 are associated with both large EIS and

ascent in themidtroposphere. Recall that positive values

of PC1 are also associated with warm advection. During

warm advection events the ocean regulates the tem-

perature of the boundary layer, causing weaker warm

anomalies in the boundary layer than in the free tro-

posphere (Fig. 6a). Since EIS is a measure of the tem-

perature difference between the free troposphere and

the boundary layer, EIS tends to be larger under warm

advection than under cold advection. As a check, we

repeated the principal component analysis without EIS

as a predictor variable. The leading principal component

is very similar with and without EIS included in the

analysis (correlation of r5 0:87).

An example of the principal component analysis

technique for identifying cyclones is shown in Fig. 7.

This image shows a mature cyclone that was measured

by the A-Train. The A-Train ground track transects the

cyclone near its center, sampling both the warm and cold

sectors in one pass. The maximum value of PC1 is

around 1.9 and is found in the warm-sector, the minimum

value is around 22.6 and is found in the cold-sector, and
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PC1 smoothly transitions between these values. It is

helpful to keep this example inmindwhen interpreting the

results that follow.

Cloud properties and radiation as a function of PC1

are shown in Fig. 8. In the cyclone warm sector (PC1

positive), clouds are deep, high topped, bright, and have

horizontal coverage of 85% or more. In the cyclone cold

sector (PC1 negative), low clouds with lower albedo,

optical depth, and horizontal cloud fraction are seen.

The strength of the cyclone, as indexed by PC1, affects

cloud properties differently in the warm and the cold

sectors. In the cold sector, MODIS-observed cloud

fraction and optical depth and CERES-observed albedo

are nearly constant for PC1 less than21. In other words,

in the cyclone cold sector, cloud properties are weakly

sensitive to variations in the large-scale meteorology. In

contrast to the cold sector, warm-sector clouds are much

more sensitive to the strength of the meteorological

anomalies.

b. Evaluation of CAM5 and CAM5 1 CLUBB

COSP satellite simulator software allows for a direct

comparison between the observations presented above

and output from global climatemodels.Wewill evaluate

the models based on their ability to reproduce the ob-

served cloud properties under different meteorological

FIG. 3. Cloud properties and radiation as a function of vertical wind in the middle tropo-

sphere. (top) Vertical profile of cloud fraction observed by CALIPSO and CloudSat. (middle)

Horizontal cloud fraction and in-cloud optical depth observed by MODIS. (bottom) Top-of-

atmosphere OLR and albedo observed by CERES. Data are binned by v500 and averaged, and

the error bars show the 95% confidence interval of the mean. The box plot in (bottom) shows

the 5th, 25th, 50th, 75th, and 95th percentiles of v500.

9464 JOURNAL OF CL IMATE VOLUME 30



conditions. Because model bias in absorbed SW radia-

tion over the Southern Ocean is especially large and

problematic, we focus on the summer season and eval-

uate cloud properties related to SW reflection.

Our evaluation includes MODIS-retrieved liquid and

ice water path, but it is important to keep two things in

mind when interpreting these values. First, MODIS

liquid water path retrievals are highly uncertain during

large-scale ascent (section 2c). These conditions are

shown for completeness, but caution should be used

when comparing observations to model output. Second,

since the MODIS simulator is designed to capture the

imperfections of theMODIS retrieval, it can produce ice

water path values that are very different than those

simulated by the model. The MODIS simulator iden-

tifies the cloud phase from the topmost portion of the

highest clouds, and it computes optical depth from the

entire column, including the contributions from liquid

cloud, ice cloud, and—in this particular model—snow

(Kay et al. 2012). The MODIS simulator then assumes a

cloud of uniform phase and uses the optical depth value

to compute the liquid or ice water path (Pincus et al.

2012). This means that if any liquid cloud is present

beneath moderately thick ice cloud, then the MODIS

FIG. 4. Cloud properties and radiation during periods of large-scale subsidence, plotted as

a function of estimated inversion strength (EIS). (top) Vertical profile of cloud fraction ob-

served by CALIPSO and CloudSat. (middle) Horizontal cloud fraction and in-cloud optical

depth observed by MODIS. (bottom) Top-of-atmosphere OLR and albedo observed by

CERES. Data are binned by EIS and averaged, and the error bars show the 95% confidence

interval of the mean. The box plot in (bottom) shows the 5th, 25th, 50th, 75th, and 95th

percentiles of EIS.
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simulator will treat it as ice. The actual ice water path

simulated by the models is generally less than the ice

water path computed by the MODIS simulator

(not shown).

Figure 9 shows observed and modeled cloud proper-

ties related to SW reflection. In the average of all scenes,

albedo in CAM5 and CAM5 1 CLUBB are in agree-

ment with the observations. However, in both model

configurations, MODIS-observed cloud fraction is too

small, in-cloud optical depth is too large, and in-cloud

liquid water path is too small. CAM5 also overestimates

in-cloud ice water path. Stratifying the data by v500

reveals the origin of the cloud biases. First, note that

albedo in both model configurations agrees well with

observations for a wide range of conditions. However,

under large-scale subsidence (v500 . 0), both model

configurations underestimate MODIS cloud fraction by

around 0.1–0.3 and overestimate MODIS in-cloud op-

tical depth by around 5. In other words, low clouds are

too few and too bright. Under large-scale subsidence, in-

cloud liquid and ice water path biases are dramatically

reduced in CAM5 1 CLUBB. The in-cloud optical

depth bias in CAM51 CLUBB appears to be the result

of an underestimate of cloud droplet effective radius

FIG. 5. Cloud properties and radiation during large-scale subsidence, plotted as a function of

low-level temperature advection. (top) Vertical profile of cloud fraction observed byCALIPSO

and CloudSat. (middle) Horizontal cloud fraction and in-cloud optical depth observed by

MODIS. (bottom) Top-of-atmosphere OLR and albedo observed by CERES. Data are binned

by low-level temperature advection and averaged, and the error bars show the 95% confidence

interval of the mean. The box plot in (bottom) shows the 5th, 25th, 50th, 75th, and 95th per-

centiles of low-level temperature advection.
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rather than an overestimate of condensed water path

(not shown). However, differences in snow properties

could also play a role since snow substantially contrib-

utes to the values predicted by the MODIS simulator in

CAM5 (Kay et al. 2012). Under large-scale ascent

(v500 , 0), the cloud fraction and optical depth biases

are smaller, but very large biases in cloud ice water path

on the order of several hundred grams per square meter

are seen. Model clouds contain far too much ice com-

pared to observations. We also checked that these re-

sults hold for the actual liquid and ice water paths

simulated by the model. When CLUBB is used, clouds

contain more liquid and less ice, and the total condensed

water path is slightly reduced (not shown).

Furthermore, midlatitude cyclones and their associ-

ated clouds in CAM5 and CAM5 1 CLUBB can be

compared to those observed in nature. To accomplish

this, principal component analysis is performed on

model output in a similar fashion to the analysis of the

observations that is described in section 2e. The leading

principal component from the modeled fields is nearly

identical to the leading principal component of the

observations, both in the correlation with the meteoro-

logical predictors and in the fraction of variance ex-

plained (Table 3). In both model configurations, the

leading principal component is distinct from the second

principal component based on the test of North et al.

(1982). Therefore, PC1 can be used to separate warm-

and cold-sector clouds in the model simulations in a

similar fashion to the observations and thus to facilitate

an evaluation of clouds in midlatitude cyclones.

Modeled and observed cloud properties stratified by

PC1 are shown in Fig. 10. Figures 10a and 10b show a

comparison of vertical cloud and hydrometeor occur-

rence from the active sensors; Fig. 10a shows the ob-

served vertical cloud fraction, while Fig. 10b shows a

crude estimate of the vertical profile of hydrometeor

occurrence in CAM5. The reason for this discrepancy is

that in the observations, the CPR cloud mask algorithm

is applied to convert radar reflectivity into an estimate of

cloud fraction, while in the model, the cloud mask al-

gorithm is not applied to the simulated radar reflectivity.

Thus, for the model data, we follow Bodas-Salcedo et al.

(2011) and assume a radar reflectivity of 225dBZ or

TABLE 3. Description of the two leading principal components of the four meteorological predictors: v500, SST, low-level temperature

advection, and EIS. The table includes the fraction of variance explained by the principal components and the correlation coefficient

between the principal components and each of the four meteorological predictor variables.

Principal component Fraction of variance explained

Correlation coefficient

v500 SST Low-level temperature advection EIS

Observations

PC1 0.37 20.67 20.10 0.78 0.64

PC2 0.27 0.30 20.88 20.20 0.42

CAM5 1 CLUBB

PC1 0.42 20.77 20.14 0.83 0.61

PC2 0.27 0.29 20.88 20.20 0.42

CAM5

PC1 0.41 20.76 20.15 0.82 0.60

PC2 0.27 0.30 20.87 20.20 0.44

FIG. 6. Vertical profile of (a) temperature, (b) horizontal temperature advection, and (c) meridional wind

anomalies plotted as a function of PC1. Note that positive values of PC1 are associated with conditions found in the

warm sector of midlatitude cyclones, including warm anomalies, poleward flow, warm advection, and an elevated

tropopause. Similarly, negative values of PC1 are associated with conditions found in the cold sector.
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more indicates the presence of hydrometeors as de-

tected by the CPR. For each vertical grid box, we then

estimate the hydrometeor fraction as the maximum of

the CALIOP cloud fraction and the CPR hydrometeor

fraction. Although Figs. 10a and 10b are not quantita-

tively comparable, they reveal that the vertical distri-

bution of clouds in the cyclone warm and cold sectors

are qualitatively in agreement between CAM5 and the

observations. Deep and high clouds are seen in the warm

sector and low clouds are seen in the cold sector, and

these clouds are located at about the right elevations

in CAM5.

Figures 10c–g show observed and simulated cloud

properties stratified by PC1. Albedo in the model

simulations is in close agreement with observa-

tions both in the warm and cold sectors of cyclones.

However, compensating ‘‘too few, too bright’’ biases

are pronounced in the cold sector. In CAM5, in-cloud

liquid water path is underestimated in the warm sector

and overestimated in the cold sector, and in-cloud ice

water path is overestimated in both. The ice water path

biases are especially large and can be several hundred

grams per square meter. Similar liquid and ice water

path biases are seen in CAM5 1 CLUBB in the warm

sector, but remarkable improvements are seen in the

cold sector. Finally, in the cyclone cold sector in CAM5

simulations, in-cloud liquid and ice water path have a

strong dependence on the strength of cold advection,

which is not seen in the observations. This bias is not

seen in CAM5 1 CLUBB.

Generally, the use of CLUBB in CAM5 appears to

greatly improve the liquid and ice water content of low

clouds. It is challenging to attribute these improvements

to any one part of the CLUBB scheme since CLUBB

and default CAM5 have very different treatments of low

clouds. However, two qualities of CLUBB are probably

responsible for much of the improvement. First, since

CLUBB predicts the distribution of turbulent updrafts,

it can simulate a wide range of cloud regimes. This

flexibility makes CLUBB well suited for modeling low

clouds in the diverse meteorological conditions found

over the Southern Ocean. Second, CLUBB has a more

realistic treatment of the phase partitioning of conden-

sate produced by shallow convection. In CAM5, the

shallow convection scheme uses a highly simplified

treatment of cloud microphysics to determine conden-

sate phase: detrained condensate is partitioned into

liquid and ice based on a simple function of temperature

(Park and Bretherton 2009; Park et al. 2014). Mean-

while, in CLUBB, shallow convective clouds are cou-

pled with the full Morrison and Gettelman (2008) cloud

microphysics scheme. This is important because shallow

convection is the primary source of low-cloud conden-

sate over the Southern Ocean in CAM5, and it

produces a substantial amount of ice cloud (Kay et al.

2016). Therefore, an improved treatment of phase par-

titioning in shallow convective clouds likely contributes

to the improvements in liquid and ice water path. While

other processes could also contribute to the improve-

ment in the simulated low clouds over the Southern

Ocean, these two qualities of CLUBB are likely the

main sources of improvement.

c. Our results framed in the context of the existing
literature

Many studies have used cyclone compositing tech-

niques to achieve a process-level understanding of the

relationships between clouds and large-scale meteorol-

ogy (e.g., Lau and Crane 1995, 1997; Field and Wood

2007; Naud et al. 2010; Govekar et al. 2011; Catto 2016).

These techniques involve compositing observations

based on location with respect to the cyclone center.

This approach has proven useful for separating the dif-

ferent cloud types and meteorological conditions found

in cyclones, and it provides a broad picture of the cloud

types that are problematic in climate models (Bodas-

Salcedo et al. 2014). Our method achieves a similar

separation of warm- and cold-sector clouds, but it also

retains quantitative information about the strength of

the meteorological anomalies associated with cyclones

FIG. 7. Example of the cyclone identification technique. This

three-colorMODIS imagewas collected on 1045UTC30December

2009. The line shows the A-Train ground track, and its color shows

the value of PC1 at each location along the track.
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and their influence on clouds. Like cyclone compositing,

our method can be used to evaluate climate models.

However, it provides an even more stringent test: the

sensitivity of clouds to the meteorology within the dif-

ferent sectors of midlatitude cyclones can be evaluated.

Our results are also consistent with the findings of

Norris and Iacobellis (2005). They study the North Pa-

cific, use passive cloud observations from ISCCP and

from surface observers, and conditionally sample based

on midlevel vertical motion and low-level temperature

advection. They find that clouds tend to be high and

bright during synoptic ascent and low during synoptic

subsidence. The low clouds found during synoptic sub-

sidence are moderately bright during cold advection and

have small coverage during warm advection. Observa-

tions from surface observers reveal that summertime fog

is common during warm advection, while stratus, stra-

tocumulus, and cumulus clouds are common during cold

advection. Our work builds on these findings using the

diverse and high-quality observations from the A-Train

and demonstrates the usefulness of these relationships

for climate model evaluation.

Finally, several studies have found that GCMs com-

monly simulate subtropical low clouds that are too few

FIG. 8. Cloud properties and radiation plotted as a function of PC1, the first principal

component of the four meteorological predictors. Recall that positive values of PC1 are as-

sociated with the warm sector of midlatitude cyclones, while negative values of PC1 are as-

sociatedwith the cold sector. (top)Vertical profile of cloud fraction observed byCALIPSO and

CloudSat. (middle) Horizontal cloud fraction and in-cloud optical depth observed by MODIS.

(bottom) Top-of-atmosphere OLR and albedo observed by CERES. Data are binned by PC1

and averaged, and the error bars show the 95% confidence interval of themean. The box plot in

(bottom) shows the 5th, 25th, 50th, 75th, and 95th percentiles of PC1.
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and too bright (e.g., Weare 2004; Karlsson et al. 2008;

Nam et al. 2012; Cesana andChepfer 2012). Because low

clouds in the midlatitudes are embedded within tran-

sient weather systems, their biases are more difficult to

identify.We use instantaneous data to isolate low clouds

over the Southern Ocean and find that they are also too

few and too bright in CAM5. This result suggests that

the ‘‘too few, too bright’’ bias could extend into the

extratropics in other models as well.

4. Discussion and conclusions

In this study, relationships between cloud properties and

four meteorological predictor variables over the Southern

Ocean are quantified on the instantaneous time scale.

Clouds are sensitive to the strength of vertical motion in

the midtroposphere, and low clouds are sensitive to sea

surface temperature, estimated inversion strength, and

low-level temperature advection. We also examine cloud

FIG. 9. Comparison of cloud properties related to SW reflection in models and observations.

CERES-observed albedo and MODIS-observed cloud fraction, in-cloud optical depth, in-

cloudLWP and in-cloud IWP are shown. (left)Data stratified byv500, and (right) the average of

all scenes. The box plots at the bottom show the 5th, 25th, 50th, 75th, and 95th percentiles of

v500. Error bars show the 95% confidence interval for the mean. In the LWP plot, a dashed line

indicates conditions in which the retrieval has very large uncertainty (see section 2c).
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properties as a function of the meteorological anoma-

lies associated with midlatitude cyclones. The deepest,

brightest clouds are found in the cyclone warm sector,

while low clouds with lower albedo are found in the cold

sector. These observations are compared to clouds simu-

lated by the Community Atmosphere Model, version 5,

run in default configuration and coupled with the CLUBB

boundary layer scheme. In default CAM5, we find that

cold-sector clouds are too few and too bright, contain too

much ice, and are too sensitive to the strength of meteo-

rological anomalies.UsingCLUBB substantially improves

the last two biases.

The model evaluation in this study has two important

implications. First, we demonstrated that instantaneous

observations from the A-Train can be compared to out-

put from global climate models with COSP satellite

simulator software for a powerful evaluation of clouds in

global climate models. This approach goes beyond eval-

uating the cloud climatology and reveals cloud biases that

occur under different meteorological conditions. We also

present an index that facilitates the evaluation of cyclone

warm- and cold-sector clouds. This index is only useful for

model evaluation if the model reasonably simulates the

large-scale meteorological features of midlatitude cy-

clones. This is the case for CAM5, and is likely the case

for other models, since midlatitude cyclones are typi-

cally well resolved in global climate models. (A typical

horizontal length scale for midlatitude cyclones is on

the order of several thousand kilometers—an order of

magnitude larger than the typical horizontal resolu-

tion of global climate models.) It would be insightful if

other modeling groups performed similar evaluations

and considered regions other than the Southern

Ocean.

Second, we demonstrated that the default version of

CAM5 substantially overestimates in-cloud ice water

path. When CLUBB is coupled with CAM5, the liq-

uid and ice water content in low clouds is greatly

FIG. 10. Cloud properties stratified by PC1 in observations, CAM5, and CAM5 1 CLUBB. Recall that positive PC1 values are asso-

ciated with the warm sector of midlatitude cyclones, and negative values are associated with the cold sector. (a) Vertical profile of cloud

fraction from radar and lidar observations. (b) Vertical profile of hydrometeor fraction from the radar and lidar simulators in CAM5.Note

that (a) and (b) should be compared qualitatively but not quantitatively (see text). (c) Albedo and MODIS-observed (d) cloud fraction,

(e) in-cloud optical depth, (f) in-cloud LWP, and (g) in-cloud IWP. (h) Box plots show the 5th, 25th, 50th, 75th, and 95th percentiles

of PC1.
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improved—probably because the flexibility of CLUBB

allows it to better simulate turbulence in the diverse me-

teorological conditions found over the Southern Ocean

and because CLUBB has a more realistic treatment of

the phase partitioning of condensate formed by shallow

convection. This improvement in low clouds very likely

has important implications for cloud feedback simulated by

the model. Many have argued that the dominant cloud

feedback atmidlatitudes results fromwarmer temperatures

causing clouds to favor the liquid phase over ice. Since

liquid clouds are typically more reflective than ice clouds,

replacing cloud ice with liquid results in optically thicker

clouds, and therefore a negative feedback (Mitchell et al.

1989; Senior and Mitchell 1993; Tsushima et al. 2006;

Zelinka et al. 2012; McCoy et al. 2015; Storelvmo et al.

2015; Wall and Hartmann 2015; Ceppi et al. 2016). Over-

estimating the ice content of low clouds in the current cli-

mate could cause this optical depth feedback to be too

negative in climate models. Indeed, in current climate

models, cloud optical depth in the midlatitudes is too sen-

sitive to temperature variations, suggesting that the optical

depth feedback is likely too negative (Gordon and Klein

2014; Terai et al. 2016). Since the climatology of the liquid

and ice water content of low clouds are more realistic in

CAM5 1 CLUBB than default CAM5, the cloud optical

depth feedback in the midlatitudes in CAM51 CLUBB is

likely more realistic as well. CLUBBwill probably be used

in future versions of the Community Atmosphere Model,

and possibly adopted by other models, so the cloud optical

depth feedback in the midlatitudes could be more realistic

in the next generation of global climate models.

Acknowledgments. C. J. Wall and D. L. Hartmann

were supported by the Regional and Global Climate

Modeling Program of the Office of Science of the U.S.

Department of Energy (DE-SC0012580). P.-L. Ma ac-

knowledges support from the U.S. Department of En-

ergy, Office of Science (BER), Regional and Global

Climate Modeling program, and internal support from

the Pacific Northwest National Laboratory, which is op-

erated for the Department of Energy by Battelle Me-

morial Institute under Contract DE-AC05-76RL01830.

We are grateful to Jay Mace, two anonymous re-

viewers, and the editor (S. A. Klein) for their very

helpful comments. We also thank Roger Marchand for

helpful discussion and JenKay for guidance on running the

Community Atmosphere Model with the COSP satellite

simulator package.

REFERENCES

Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simula-

tion software for model assessment. Bull. Amer. Meteor. Soc.,

92, 1023–1043, doi:10.1175/2011BAMS2856.1.

——, and Coauthors, 2014: Origins of the solar radiation biases

over the Southern Ocean in CFMIP2 models. J. Climate, 27,

41–56, doi:10.1175/JCLI-D-13-00169.1.

Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson,

D. P. Schanen, N. R. Meyer, and C. Craig, 2012: Unified

parameterization of the planetary boundary layer and shallow

convection with a higher-order turbulence closure in the Com-

munityAtmosphereModel: Single-column experiments.Geosci.

Model Dev., 5, 1407–1423, doi:10.5194/gmd-5-1407-2012.

——, ——, ——, ——, C. Craig, and D. P. Schanen, 2013: Higher-

order turbulence closure and its impact on climate simulations

in the Community Atmosphere Model. J. Climate, 26, 9655–

9676, doi:10.1175/JCLI-D-13-00075.1.

Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate

Change 2013: The Physical Science Basis, T. F. Stocker et al.,

Eds., Cambridge University Press, 571–657.

Bretherton, C. S., and S. Park, 2009: A new moist turbulence pa-

rameterization in the Community Atmosphere Model.

J. Climate, 22, 3422–3448, doi:10.1175/2008JCLI2556.1.

——, and M. C. Wyant, 1997: Moisture transport, lower-

tropospheric stability, and decoupling of cloud-topped

boundary layers. J. Atmos. Sci., 54, 148–167, doi:10.1175/

1520-0469(1997)054,0148:MTLTSA.2.0.CO;2.

Catto, J. L., 2016: Extratropical cyclone classification and its use in

climate studies. Rev. Geophys., 54, 486–520, doi:10.1002/

2016RG000519.

Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric

circulation response to warming. J. Climate, 29, 783–799,

doi:10.1175/JCLI-D-15-0394.1.

——, Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012:

Southern Hemisphere jet latitude biases in CMIP5 models

linked to shortwave cloud forcing. Geophys. Res. Lett., 39,

L19708, doi:10.1029/2012GL053115.

——, D. T. McCoy, and D. L. Hartmann, 2016: Observational ev-

idence for a negative shortwave cloud feedback in middle to

high latitudes.Geophys. Res. Lett., 43, 1331–1339, doi:10.1002/

2015GL067499.

Cesana, G., and H. Chepfer, 2012: How well do climate models

simulate cloud vertical structure? A comparison between

CALIPSO-GOCCP satellite observations andCMIP5models.

Geophys. Res. Lett., 39, L20803, doi:10.1029/2012GL053153.

——, and Coauthors, 2016: Using in situ airborne measurements to

evaluate three cloud phase products derived from CALIPSO.

J. Geophys. Res. Atmos., 121, 5788–5808, doi:10.1002/

2015JD024334.

Cess, R. D., and Coauthors, 1990: Intercomparison and in-

terpretation of climate feedback processes in 19 atmospheric

general circulation models. J. Geophys. Res., 95, 16 601–

16 615, doi:10.1029/JD095iD10p16601.

Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne, and

G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate

the cloudiness simulated by a climate model. Geophys. Res.

Lett., 35, L15704, doi:10.1029/2008GL034207.

Corbett, J. G., and N. G. Loeb, 2015: On the relative stability of

CERES reflected shortwave and MISR and MODIS visible radi-

ance measurements during the terra satellite mission. J. Geophys.

Res. Atmos., 120, 11 608–11 616, doi:10.1002/2015JD023484.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis:

Configuration and performance of the data assimilation system.

Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

ECMWF, 2015: ERA-Interim project. Subset: 6-hourly, December

2006–February 2011. ECMWF, accessed 22 July 2016, http://

apps.ecmwf.int/datasets/.

9472 JOURNAL OF CL IMATE VOLUME 30

http://dx.doi.org/10.1175/2011BAMS2856.1
http://dx.doi.org/10.1175/JCLI-D-13-00169.1
http://dx.doi.org/10.5194/gmd-5-1407-2012
http://dx.doi.org/10.1175/JCLI-D-13-00075.1
http://dx.doi.org/10.1175/2008JCLI2556.1
http://dx.doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2
http://dx.doi.org/10.1002/2016RG000519
http://dx.doi.org/10.1002/2016RG000519
http://dx.doi.org/10.1175/JCLI-D-15-0394.1
http://dx.doi.org/10.1029/2012GL053115
http://dx.doi.org/10.1002/2015GL067499
http://dx.doi.org/10.1002/2015GL067499
http://dx.doi.org/10.1029/2012GL053153
http://dx.doi.org/10.1002/2015JD024334
http://dx.doi.org/10.1002/2015JD024334
http://dx.doi.org/10.1029/JD095iD10p16601
http://dx.doi.org/10.1029/2008GL034207
http://dx.doi.org/10.1002/2015JD023484
http://dx.doi.org/10.1002/qj.828
http://apps.ecmwf.int/datasets/
http://apps.ecmwf.int/datasets/


Field, P. R., and R. Wood, 2007: Precipitation and cloud structure

in midlatitude cyclones. J. Climate, 20, 233–254, doi:10.1175/

JCLI3998.1.

Gates, W. L., 1992: AMIP: TheAtmosphericModel Intercomparison

Project. Bull. Amer. Meteor. Soc., 73, 1962–1970, doi:10.1175/

1520-0477(1992)073,1962:ATAMIP.2.0.CO;2.

Golaz, J. C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based

model for boundary layer clouds. Part I: Method and model

description. J. Atmos. Sci., 59, 3540–3551, doi:10.1175/

1520-0469(2002)059,3540:APBMFB.2.0.CO;2.

Gordon, N. D., and J. R. Norris, 2010: Cluster analysis of mid-

latitude oceanic cloud regimes: Mean properties and temper-

ature sensitivity. Atmos. Chem. Phys., 10, 6435–6459,

doi:10.5194/acp-10-6435-2010.

——, and S. A. Klein, 2014: Low-cloud optical depth feedback in

climate models. J. Geophys. Res. Atmos., 119, 6052–6065,

doi:10.1002/2013JD021052.

Govekar, P. D., C. Jakob, M. J. Reeder, and J. Haynes, 2011: The

three-dimensional distribution of clouds around Southern

Hemisphere extratropical cyclones. Geophys. Res. Lett., 38,

L21805, doi:10.1029/2011GL049091.

Grosvenor, D. P., and R. Wood, 2014: The effect of solar zenith

angle on MODIS cloud optical and microphysical retrievals

within marine liquid water clouds. Atmos. Chem. Phys., 14,

7291–7321, doi:10.5194/acp-14-7291-2014.

Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and

G. L. Stephens, 2007: A multipurpose radar simulation pack-

age: Quickbeam. Bull. Amer. Meteor. Soc., 88, 1723–1727,

doi:10.1175/BAMS-88-11-1723.

——, C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown, 2011:

Major characteristics of Southern Ocean cloud regimes and

their effects on the energy budget. J. Climate, 24, 5061–5080,

doi:10.1175/2011JCLI4052.1.

Huang, Y., S. T. Siems, M. J. Manton, D. Rosenfeld, R. Marchand,

G.M.McFarquhar, andA. Protat, 2016:What is the role of sea

surface temperature in modulating cloud and precipitation

properties over the Southern Ocean? J. Climate, 29, 7453–

7476, doi:10.1175/JCLI-D-15-0768.1.

Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the

double-intertropical convergence zone problem and cloud

biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA,

110, 4935–4940, doi:10.1073/pnas.1213302110.

Jakob, C., andG. Tselioudis, 2003: Objective identification of cloud

regimes in the tropical western Pacific.Geophys. Res. Lett., 30,

2082, doi:10.1029/2003GL018367.

——, ——, and T. Hume, 2005: The radiative, cloud and ther-

modynamic properties of the major tropical western Pacific

cloud regimes. J. Climate, 18, 1203–1215, doi:10.1175/

JCLI3326.1.

Karlsson, J., G. Svensson, and H. Rodhe, 2008: Cloud radiative

forcing of subtropical low level clouds in global models. Cli-

mate Dyn., 30, 779–788, doi:10.1007/s00382-007-0322-1.

Kato, S., and Coauthors, 2010: Variable descriptions of the A-train

integrated CALIPSO, CloudSat, CERES, and MODIS

merged product (CCCMor C3M). NASA, https://eosweb.larc.

nasa.gov/project/ceres/readme/c3m_variables_B1_v2.pdf.

Kay, J., and Coauthors, 2012: Exposing global cloud biases in the

Community Atmosphere Model (CAM) using satellite ob-

servations and their corresponding instrument simulators.

J. Climate, 25, 5190–5207, doi:10.1175/JCLI-D-11-00469.1.

——, C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell,

and C. Bitz, 2016: Global climate impacts of fixing the

Southern Ocean shortwave radiation bias in the Community

Earth System Model (CESM). J. Climate, 29, 4617–4636,

doi:10.1175/JCLI-D-15-0358.1.

Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of

frontal clouds simulated by the ECMWF model. Mon. Wea.

Rev., 127, 2514–2531, doi:10.1175/1520-0493(1999)127,2514:

VASOFC.2.0.CO;2.

Lau, N. C., andM.W. Crane, 1995: A satellite view of the synoptic-

scale organization of cloud cover in midlatitude and tropical

circulation systems.Mon.Wea. Rev., 123, 1984–2006, doi:10.1175/

1520-0493(1995)123,1984:ASVOTS.2.0.CO;2.

——, and ——, 1997: Comparing satellite and surface obser-

vations of cloud patterns in synoptic-scale circulation

systems. Mon. Wea. Rev., 125, 3172–3189, doi:10.1175/

1520-0493(1997)125,3172:CSASOO.2.0.CO;2.

Lebsock, M., and H. Su, 2014: Application of active spaceborne

remote sensing for understanding biases between passive

cloud water path retrievals. J. Geophys. Res. Atmos., 119,

8962–8979, doi:10.1002/2014JD021568.

Loeb, N. G., and Coauthors, 2003: Angular distribution models

for top-of-atmosphere radiative flux estimation from the

Clouds and the Earth’s Radiant Energy System instrument

on the Tropical Rainfall Measuring Mission satellite. Part II:

Validation. J. Appl. Meteor., 42, 240–265, doi:10.1175/

1520-0450(2003)042,0240:ADMFTO.2.0.CO;2.

——, S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular

distribution models for top-of-atmosphere radiative flux esti-

mation from the Clouds and the Earth’s Radiant Energy System

instrument on the Terra satellite. Part I: Methodology. J. Atmos.

Oceanic Technol., 22, 338–351, doi:10.1175/JTECH1712.1.

——, andCoauthors, 2016: CERESCCCM, versionRelB1. Subset:

December 2006–February 2011. NASA Langley Research

Center, accessed 22 July 2016, https://ceres.larc.nasa.gov/

products.php?product5CCCM.

Marchand, R., T. Ackerman,M. Smyth, andW. B. Rossow, 2010: A

review of cloud top height and optical depth histograms from

MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206,

doi:10.1029/2009JD013422.

Mason, S., C. Jakob, A. Protat, and J. Delanoë, 2014: Character-
izing observed midtopped cloud regimes associated with

Southern Ocean shortwave radiation biases. J. Climate, 27,

6189–6203, doi:10.1175/JCLI-D-14-00139.1.

McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P.

Grosvenor, 2015: Mixed-phase cloud physics and Southern

Ocean cloud feedback in climate models. J. Geophys. Res.

Atmos., 120, 9539–9554, doi:10.1002/2015JD023603.

McGill, M. J., M. A. Vaughan, C. R. Trepte, W. D. Hart, D. L.

Hlavka, D. M. Winker, and R. Kuehn, 2007: Airborne vali-

dation of spatial properties measured by the CALIPSO lidar.

J. Geophys. Res., 112, D20201, doi:10.1029/2007JD008768.

Minnis, P., and Coauthors, 2011a: CERES edition-2 cloud property

retrievals using TRMM VIRS and Terra and Aqua MODIS

data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens.,

49, 4374–4400, doi:10.1109/TGRS.2011.2144601.

——, and Coauthors, 2011b: CERES edition-2 cloud property re-

trievals using TRMM VIRS and Terra and Aqua MODIS

data—Part II: Examples of average results and comparisons

with other data. IEEE Trans. Geosci. Remote Sens., 49, 4401–

4430, doi:10.1109/TGRS.2011.2144602.

Mitchell, J. F. B., C. A. Senior, and W. J. Ingram, 1989: CO2 and

climate—a missing feedback? Nature, 341, 132–134,

doi:10.1038/341132a0.

Morrison, H., and A. Gettelman, 2008: A new two-moment bulk

stratiform cloud microphysics scheme in the Community

1 DECEMBER 2017 WALL ET AL . 9473

http://dx.doi.org/10.1175/JCLI3998.1
http://dx.doi.org/10.1175/JCLI3998.1
http://dx.doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2
http://dx.doi.org/10.5194/acp-10-6435-2010
http://dx.doi.org/10.1002/2013JD021052
http://dx.doi.org/10.1029/2011GL049091
http://dx.doi.org/10.5194/acp-14-7291-2014
http://dx.doi.org/10.1175/BAMS-88-11-1723
http://dx.doi.org/10.1175/2011JCLI4052.1
http://dx.doi.org/10.1175/JCLI-D-15-0768.1
http://dx.doi.org/10.1073/pnas.1213302110
http://dx.doi.org/10.1029/2003GL018367
http://dx.doi.org/10.1175/JCLI3326.1
http://dx.doi.org/10.1175/JCLI3326.1
http://dx.doi.org/10.1007/s00382-007-0322-1
https://eosweb.larc.nasa.gov/project/ceres/readme/c3m_variables_B1_v2.pdf
https://eosweb.larc.nasa.gov/project/ceres/readme/c3m_variables_B1_v2.pdf
http://dx.doi.org/10.1175/JCLI-D-11-00469.1
http://dx.doi.org/10.1175/JCLI-D-15-0358.1
http://dx.doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1995)123<1984:ASVOTS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1995)123<1984:ASVOTS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1997)125<3172:CSASOO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1997)125<3172:CSASOO>2.0.CO;2
http://dx.doi.org/10.1002/2014JD021568
http://dx.doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2
http://dx.doi.org/10.1175/JTECH1712.1
https://ceres.larc.nasa.gov/products.php?product=CCCM
https://ceres.larc.nasa.gov/products.php?product=CCCM
http://dx.doi.org/10.1029/2009JD013422
http://dx.doi.org/10.1175/JCLI-D-14-00139.1
http://dx.doi.org/10.1002/2015JD023603
http://dx.doi.org/10.1029/2007JD008768
http://dx.doi.org/10.1109/TGRS.2011.2144601
http://dx.doi.org/10.1109/TGRS.2011.2144602
http://dx.doi.org/10.1038/341132a0


Atmosphere Model, version 3 (CAM3). Part I: Description

and numerical tests. J. Climate, 21, 3642–3659, doi:10.1175/

2008JCLI2105.1.

Nakajima, T., and M. D. King, 1990: Determination of the op-

tical thickness and effective particle radius of clouds from

reflected solar radiation measurements. Part I: Theory.

J.Atmos.Sci.,47, 1878–1893, doi:10.1175/1520-0469(1990)047,1878:

DOTOTA.2.0.CO;2.

Nam, C., S. Bony, J. L. Dufresne, and H. Chepfer, 2012: The too

few, too bright tropical low-cloud problem in CMIP5 models.

Geophys. Res. Lett., 39, L21801, doi:10.1029/2012GL053421.

Naud, C. M., A. D. Del Genio, M. Bauer, and W. Kovari, 2010:

Cloud vertical distribution across warm and cold fronts in

CloudSat–CALIPSO data and a general circulation model.

J. Climate, 23, 3397–3415, doi:10.1175/2010JCLI3282.1.
Neale, R. B., and Coauthors, 2011: Description of the NCAR

Community Atmosphere Model (CAM5). NCAR Tech. Note

NCAR/TN-4861STR, 268 pp., http://www.cesm.ucar.edu/

models/cesm1.0/cam/docs/description/cam5_desc.pdf.

Norris, J. R., and S. F. Iacobellis, 2005:North Pacific cloud feedbacks

inferred from synoptic-scale dynamic and thermodynamic re-

lationships. J. Climate, 18, 4862–4878, doi:10.1175/JCLI3558.1.

North, G.R., T. L. Bell, andR. F. Cahalan, 1982: Sampling errors in

the estimation of empirical orthogonal functions. Mon. Wea.

Rev., 110, 699–706, doi:10.1175/1520-0493(1982)110,0699:

SEITEO.2.0.CO;2.

Oreopoulos, L., andW.B.Rossow, 2011: The cloud radiative effects of

International Satellite Cloud Climatology Project weather states.

J. Geophys. Res., 116, D12202, doi:10.1029/2010JD015472.

Park, S., and C. S. Bretherton, 2009: The University of Washington

shallow convection and moist turbulence schemes and

their impact on climate simulations with the Community At-

mosphere Model. J. Climate, 22, 3449–3469, doi:10.1175/

2008JCLI2557.1.

——,——, and P. J. Rasch, 2014: Integrating cloud processes in the

Community Atmosphere Model, version 5. J. Climate, 27,

6821–6856, doi:10.1175/JCLI-D-14-00087.1.

Pincus, R., S. Platnick, S.A.Ackerman, R. S. Hemler, andR. J. Patrick

Hofmann, 2012: Reconciling simulated and observed views of

clouds: MODIS, ISCCP, and the limits of instrument simulators.

J. Climate, 25, 4699–4720, doi:10.1175/JCLI-D-11-00267.1.

Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data

products. Bull. Amer. Meteor. Soc., 72, 2–20, doi:10.1175/

1520-0477(1991)072,0002:ICDP.2.0.CO;2.

——, and ——, 1999: Advances in understanding clouds from

ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287, doi:10.1175/

1520-0477(1999)080,2261:AIUCFI.2.0.CO;2.

——, G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate

described as a distribution of weather states indicated by dis-

tinct mesoscale cloud property mixtures. Geophys. Res. Lett.,

32, L21812, doi:10.1029/2005GL024584.

Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe

with the CloudSat radar: 1-year of results.Geophys. Res. Lett.,

35, L04805, doi:10.1029/2007GL032591.

Senior, C. A., and J. F. B. Mitchell, 1993: Carbon dioxide and climate:

The impact of cloud parameterization. J. Climate, 6, 393–418,
doi:10.1175/1520-0442(1993)006,0393:CDACTI.2.0.CO;2.

Stephens, G. L., and Coauthors, 2002: The CloudSat mission and

the A-Train. Bull. Amer. Meteor. Soc., 83, 1771–1790,

doi:10.1175/BAMS-83-12-1771.

——, and Coauthors, 2008: CloudSat mission: Performance and

early science after the first year of operation. J. Geophys. Res.,

114, D00A18, doi:10.1029/2008JD009982.

Storelvmo, T., I. Tan, and A. V. Korolev, 2015: Cloud phase

changes induced by CO2 warming—a powerful yet poorly

constrained cloud-climate feedback. Curr. Climate Change

Rep., 1, 288–296, doi:10.1007/s40641-015-0026-2.
Terai, C. R., S. A. Klein, andM. D. Zelinka, 2016: Constraining the

low-cloud optical depth feedback at middle and high latitudes

using satellite observations. J. Geophys. Res. Atmos., 121,

9696–9716, doi:10.1002/2016JD025233.

Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day

and twenty-first-century energy budgets of the southern

oceans. J. Climate, 23, 440–454, doi:10.1175/2009JCLI3152.1.

Tsushima, Y., and Coauthors, 2006: Importance of the mixed-

phase cloud distribution in the control climate for assessing

the response of clouds to carbon dioxide increase: A multi-

model study. Climate Dyn., 27, 113–126, doi:10.1007/

s00382-006-0127-7.

Voigt, A., and T. A. Shaw, 2015: Circulation response to warming

shaped by radiative changes of clouds and water vapour. Nat.

Geosci., 8, 102–106, doi:10.1038/ngeo2345.
Wall, C. J., and D. L. Hartmann, 2015: On the influence of pole-

ward jet shift on shortwave cloud feedback in global climate

models. J. Adv. Model. Earth Syst., 7, 2044–2059, doi:10.1002/

2015MS000520.

Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L.

Jenne, 1988: Global distribution of total cloud cover and cloud

type amounts over the ocean. NCAR Tech. Note NCAR/

TN-3171STR, 170 pp., doi:10.5065/D6QC01D1.

Weare, B., 2004: A comparison of AMIP II model cloud layer

properties with ISCCP D2 estimates. Climate Dyn., 22, 281–

292, doi:10.1007/s00382-003-0374-9.

Webb,M., C. Senior, S. Bony, and J. J. Morcrette, 2001: Combining

ERBE and ISCCP data to assess clouds in the Hadley Centre,

ECMWF and LMD atmospheric climate models. Climate

Dyn., 17, 905–922, doi:10.1007/s003820100157.
Wentz, F. J., and T. Meissner, 2004: AMSR-E/Aqua L2B global

swath ocean products derived from Wentz algorithm, ver-

sion 2. Subset used: 1 December 2006–28 February 2007.

NASA National Snow and Ice Data Center Distributed

Active Archive Center, accessed 1 June 2017, doi:10.5067/

AMSR-E/AE_OCEAN.002.

Wielicki, B., and Coauthors, 1996: Clouds and the Earth’s Radiant

Energy System (CERES): An Earth observing system exper-

iment. Bull. Amer. Meteor. Soc., 77, 853–868, https://doi.org/

10.1175/1520-0477(1996)077,0853:CATERE.2.0.CO;2.

Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial per-

formance assessment of CALIOP. Geophys. Res. Lett., 34,

L19803 , doi:10.1029/2007GL030135.

Wood, R., and C. S. Bretherton, 2006: On the relationship between

stratiform low cloud cover and lower-tropospheric stability.

J. Climate, 19, 6425–6432, doi:10.1175/JCLI3988.1.

Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and

their implications for poleward energy flux changes in a

warming climate. J. Climate, 25, 608–624, doi:10.1175/

JCLI-D-11-00096.1.

——, S. A. Klein, and D. L. Hartmann, 2012: Computing and

partitioning cloud feedbacks using cloud property histo-

grams. Part II: Attribution to changes in cloud amount,

altitude, and optical depth. J. Climate, 25, 3736–3754,

doi:10.1175/JCLI-D-11-00249.1.

Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate

simulations to the parameterization of cumulus convection

in the Canadian Climate Centre General Circulation Model.

Atmos.–Ocean, 33, 407–446, doi:10.1080/07055900.1995.9649539.

9474 JOURNAL OF CL IMATE VOLUME 30

http://dx.doi.org/10.1175/2008JCLI2105.1
http://dx.doi.org/10.1175/2008JCLI2105.1
http://dx.doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
http://dx.doi.org/10.1029/2012GL053421
http://dx.doi.org/10.1175/2010JCLI3282.1
http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf
http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf
http://dx.doi.org/10.1175/JCLI3558.1
http://dx.doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
http://dx.doi.org/10.1029/2010JD015472
http://dx.doi.org/10.1175/2008JCLI2557.1
http://dx.doi.org/10.1175/2008JCLI2557.1
http://dx.doi.org/10.1175/JCLI-D-14-00087.1
http://dx.doi.org/10.1175/JCLI-D-11-00267.1
http://dx.doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
http://dx.doi.org/10.1029/2005GL024584
http://dx.doi.org/10.1029/2007GL032591
http://dx.doi.org/10.1175/1520-0442(1993)006<0393:CDACTI>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-83-12-1771
http://dx.doi.org/10.1029/2008JD009982
http://dx.doi.org/10.1007/s40641-015-0026-2
http://dx.doi.org/10.1002/2016JD025233
http://dx.doi.org/10.1175/2009JCLI3152.1
http://dx.doi.org/10.1007/s00382-006-0127-7
http://dx.doi.org/10.1007/s00382-006-0127-7
http://dx.doi.org/10.1038/ngeo2345
http://dx.doi.org/10.1002/2015MS000520
http://dx.doi.org/10.1002/2015MS000520
http://dx.doi.org/10.5065/D6QC01D1
http://dx.doi.org/10.1007/s00382-003-0374-9
http://dx.doi.org/10.1007/s003820100157
http://dx.doi.org/10.5067/AMSR-E/AE_OCEAN.002
http://dx.doi.org/10.5067/AMSR-E/AE_OCEAN.002
https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE2.0.CO;2
http://dx.doi.org/10.1029/2007GL030135
http://dx.doi.org/10.1175/JCLI3988.1
http://dx.doi.org/10.1175/JCLI-D-11-00096.1
http://dx.doi.org/10.1175/JCLI-D-11-00096.1
http://dx.doi.org/10.1175/JCLI-D-11-00249.1
http://dx.doi.org/10.1080/07055900.1995.9649539

