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ABSTRACT

Changes in the frequency and intensity of rainfall are an important potential impact of climate change. Two

modes of change, a shift and an increase, are applied to simulations of global warmingwithmodels from phase

5 of the Coupled Model Intercomparison Project (CMIP5). The response to CO2 doubling in the multimodel

mean of CMIP5 daily rainfall is characterized by an increase of 1% K21 at all rain rates and a shift to higher

rain rates of 3.3% K21. In addition to these increase and shift modes of change, some models also show

a substantial increase in rainfall at the highest rain rates called the extreme mode of response to warming. In

some models, this extreme mode can be shown to be associated with increases in grid-scale condensation or

gridpoint storms.

1. Introduction

Rain responds to global warming in climate models in

two robust ways: the total amount of rainfall increases,

and the rain rates of the heaviest events increase more.

The rate of increase of global-mean rainfall is con-

strained by energetics to roughly 2%K21 (Held and

Soden 2006), while the intensity of extreme events is

driven by increases in moisture (specifically moisture

convergence) and increases by at least 5.5%K21

(O’Gorman and Schneider 2009) but possibly much

more (Allan et al. 2010). Trenberth (1999) explained

that this disparity implies a change in the frequency

distribution of rainfall toward more heavy rain, as well

as a decrease in rain frequency.

The energetic constraint limits changes in global-

mean precipitation in models (Mitchell et al. 1987;

Allen and Ingram 2002) to a rate less than the increase

in water vapor with warming (Held and Soden 2006).

The increase in precipitation must be less than the in-

crease in moisture due to the radiative properties of

water vapor (Stephens and Ellis 2008). The clear-sky

radiative cooling response to warming, moistening, and

CO2 increase is closely related to the rate of increase of

precipitation in models from phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Pendergrass

and Hartmann 2014a).

Extreme precipitation events should be driven by

moisture and its convergence, which increase with

warming (Trenberth 1999). Rain rates at the highest

percentiles of the distribution increase at about the same

rate as water vapor in simulations from oneGCM (Allen

and Ingram 2002; Pall et al. 2007).Moisture convergence

can be decomposed into moisture and vertical velocity

(Emori and Brown 2005; Chou et al. 2012). The rate

of increase of the 99.9th percentile of daily rain rate in

GCMs scales with vertical moisture advection in the ex-

tratropics, but this scaling works less well in the tropics

(O’Gorman and Schneider 2009; Sugiyama et al. 2010).

The rate of increase of extreme precipitation eventsmay be

even greater than the increase in moisture because addi-

tional latent heating could invigorate convection, further

increasing rain rates (Allan et al. 2010; Trenberth 2011).

The rest of the rain distribution also changes with

warming. While the heaviest events become more fre-

quent with warming, less-heavy events become less

frequent (e.g., Sun et al. 2007; Chou et al. 2012; Lau et al.

2013). This pattern is suggestive of a shift frommoderate

to higher rain rates. In model simulations of global

warming, the total wet-day frequency decreases while
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total intensity increases, but by only 2%K21 (Sun et al.

2007). There is disagreement about whether the fre-

quency of light rain events increases (Lau et al. 2013) or

decreases (Chou et al. 2012) in GCM simulations.

We approach the response of the rainfall distribution

from the energetic perspective. Because it is the latent

heat imparted by rain rather than rain frequency that is

energetically constrained, we focus on the distribution

of rain amount. Energetics also motivates us to take

a global perspective and integrate over large areas that

will average over shifts of precipitating systems in space.

This large-scale perspective also ensures that we capture

the entire distribution of rain, without missing the

heaviest events, which make substantial contributions to

rain amount.

Atmospheric cooling is smoother in space and time

than precipitation, sowe expect the increased atmospheric

cooling to affect the entire precipitation distribution. We

anticipate coherent modes of change, where changes

at any rain rate are related to those at other rain rates,

so we formulate modes of response of the distribution.

The goals of this study are to describe the character of

the changes in precipitation that balance increased at-

mospheric cooling and to quantify ways the distribution of

rain could change, in order to understand how the con-

straints of energy and moisture are simultaneously met.

In an accompanying paper (Pendergrass and Hartmann

2014b), we introduce two modes of coherent change of

the rain amount distribution: an increase in rain amount

at all rain rates (the increase mode) and a shift of the

rain amount distribution to higher rain rates (the shift

mode). The increase mode changes the total amount of

rain, while the shift mode is energetically neutral. An

extensive description of the methodology for calculating

the rain amount and rain frequency distributions is

presented in Pendergrass and Hartmann (2014b).

Here, we apply these twomodes to theGCM response

to CO2 increase. In addition to the coherent modes of

response, some models show an isolated response at

heavy rain rates, which we call the extreme mode.

In the next section, we introduce the GCM dataset we

will use. Then, we fit the modes of change to the rain

amount response to CO2 increase in these GCMs, con-

sider the implications for the change in frequency dis-

tribution (particularly extreme events), and examine the

differing responses across models.

2. Data and methods

In this section, we document the GCM simulations

and observational datasets, and briefly describe our

methodology. See the companion paper, Pendergrass

and Hartmann (2014b), for a detailed description of

how we calculate the distributions. We analyze daily

rainfall accumulation from models and observations.

a. Daily rainfall data

To calculate the model precipitation distributions and

their response to CO2 doubling, we use climate model

simulations from the CMIP5 archive (Taylor et al. 2012).

We use simulations from two experiments: 1%yr21 CO2

increase (1pctCO2) and representative concentration

pathway (RCP) with radiative forcing reaching 8.5Wm22

in about 2100 (RCP8.5). The fully coupled 1pctCO2

scenario provides the response to CO2 doubling, starting

from a preindustrial control base state. We compare

years 1–10 (the start of the simulation) and years 61–70

(CO2 doubles at year 70).We use one ensemblemember

from each of the 22 models with archived daily rainfall

accumulation and surface air temperature. The RCP8.5

experiment, which is also fully coupled, is a high emis-

sions scenario, which also includes aerosol forcing and

starts from historical simulations with greenhouse gas

and aerosol forcing from 2005. From the RCP8.5 simu-

lations, we compare 2006–15 with 2090–99. For models

and scenarios where convective and large-scale pre-

cipitation are separately reported, we perform a sepa-

rate analysis of these types of model precipitation.

For observational distributions of rainfall, we use

a gridded observational dataset that merges data from

satellite and rain gauges. Global Precipitation Climatol-

ogy Project (GPCP) One-Degree Daily (1DD) data

(Huffman et al. 2001) has global coverage at 18 resolution
in latitude and longitude. We use data from 1997 to 2012.

b. Convective rain amount and rain frequency

Climate models calculate rain in two different ways:

when a grid cell reaches saturation, they create large-scale

(or resolved) precipitation, while a convective parame-

terization produces rain that represents events unresolved

at the grid scale.We calculate two additional distributions

using daily convective rainfall data. The first is the con-

vective precipitation fraction in each bin of total rain rate.

The second is the amount of convective precipitation

falling in each total rain-rate bin. These are described in

the appendix. We calculate rain amount and rain fre-

quency distributions separately for the first 10 yr of the

CO2-doubling model simulations and the 10 yr immedi-

ately prior to doubling (years 61–70).

3. Modeled response to CO2 doubling

a. The rain amount response

In this section we compare the response across CMIP5

models to CO2 doubling using our modes of change as

metrics. Water vapor increases at around 7%K21, and
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previous work discussed in section 1 established that

rate as a reasonable estimate of the change in extreme

precipitation. What would the response of the rain distri-

bution to a 7% increase or shift mode look like? Figure 1

shows the changes in terms of the rain amount, rain fre-

quency, and the extreme precipitation response, along

with the CMIP5 multimodel-mean response to CO2 dou-

bling. The shift and increase modes are introduced in the

companion paper, Pendergrass and Hartmann (2014b).

To calculate the CMIP5 multimodel-mean response,

the globally averaged rain amount and rain frequency

distribution for each model are calculated for the first

10 yr of the simulation and for the 10 yr immediately

prior to CO2 doubling. The model distributions are

averaged together to get the initial and doubled-CO2

distributions. Finally, the initial rain amount and rain

frequency distributions are subtracted from the doubled-

CO2 distributions, normalizing the change for eachmodel

by its increase in global-mean surface air temperature, to

produce change estimates.

First, focus on the change in rain amount distribution in

Figs. 1a,b. The CMIP5multimodel-mean response has an

increase at heavy rain rates and a decrease at moderate

rain rates, though the total area under the change curve is

positive (indicating increased total rainfall). The shift

mode resembles the rain amount distribution change

most closely, both in the amount of the change that it

captures and in overall shape. Recall from section 1 that

other studies have found an increase at high rain rates and

decrease at moderate rain rates, reminiscent of this shift.

The zero-crossing line of this shift occurs at the peak of

the rain amount distribution, around 10mmday21.

Now turn to the response in rain frequency distribu-

tion (Figs. 1c,d). The model response shows slight in-

creases at heavy rain rates and decreases at moderate

rain rates (consistent with the change in rain amount). It

also has a slight increase at light rain rates, which play

a negligible role in the rain amount distribution. Finally,

dry-day frequency increases modestly. This pattern is

consistent with Lau et al. (2013).

Both the increase and shift modes show some agree-

ment with the change in frequency at high rain rates, but

these make up only a small portion of the change in rain

frequency (in contrast with rain amount). The model

response has a small increase in dry-day frequency,

consistent with the shift. Both the increase and shift

of 7%K21 drastically overestimate the comparatively

modest changes in rain frequency.

Finally, focus on the extreme precipitation response

(Figs. 1e,f). The model response is modestly negative

below the 80th percentile, and increases with percentile

steadily, reaching 7%K21 at about the 99.99th percen-

tile. The shift mode comes closest to matching the shape

of the modeled extreme precipitation response, but it

underestimates the response at the highest and lowest

rain rates and overestimates it at moderate rain rates. In

contrast, the increase mode has increases at all percen-

tiles, which decrease with rain rate. It has dramatic in-

creases in rain rate at moderate percentiles and more

modest increases at the highest percentiles. If we were to

add the increase and shift modes, the rain rate would

increase by 7% at all percentiles. This would be con-

sistent with the response at the 99.99th percentile, but

it would overestimate the response in the rest of the

distribution.

Instead of arbitrarily choosing the magnitude of the

shift and increase modes, we can calculate the magni-

tudes that most closely fit the modeled response. The

methodology for finding the optimal shift plus increase is

described in Pendergrass and Hartmann (2014b).

The optimal shift plus increase for the multimodel-

mean response is shown in Fig. 2. The magnitude of

the shift mode is 3.3%K21 and the increase mode is

0.9%K21. Between about 1 and 50mmday21, the

shift plus increase falls within the range of uncertainty

in the model response. At the highest rain rates and

at light rain rates, the shift plus increase underesti-

mates the rain amount response. The error of the

shift plus increase is 0.33 (33%), indicating that the shift

plus increase captures all but a third of the modeled

response.

The change in total rainfall captured by the shift plus

increase is the same as the increase portion itself, 0.9%K21.

The model response of total rainfall is 1.5%K21, which

is larger. The missing rainfall occurs at heavy and light

rain rates. Of the total error, 52% comes from the

missing rain falling at rates of at least 40mmday21, and

25% comes from the missing rain falling at rates below

2.5mmday21.

We can also calculate the optimal shift plus increase

for eachmodel’s response to CO2 forcing. The responses

for three models, along with their fitted shift plus in-

crease, are shown in Fig. 3 (all models are shown in

Fig. S1 of the supplemental material). Most but not all

models share the increase in rain amount at high rain

rates and decrease at lower rain rates. For some models,

the shift plus increase fits the response quite closely,

while for other models some aspects of the model re-

sponse are captured but others are not (and, in two

models, the shift plus increase does not resemble the

model response at all).

We focus on just three models to illustrate the dif-

ferent types of extreme rain-rate response: Max

Planck Institute Earth System Model, low resolu-

tion (MPI-ESM-LR; Giorgetta et al. 2013); L’Institut

Pierre-Simon Laplace Coupled Model, version 5A, low
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FIG. 1. The change in daily (a),(b) rain amount, (c),(d) rain frequency, and (e),(f) extreme rain in the CMIP5

multimodel-mean CO2-doubling experiment (black) and the changes resulting from (left) an increase (purple) and

(right) a shift (green) of the CMIP5 multimodel mean by 7%. The change in dry-day frequency of the CMIP5

multimodel mean (black) and each mode (color) is noted at the top left of (c),(d).
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resolution (IPSL-CM5A-LR; Dufresne et al. 2013); and

Geophysical Fluid Dynamics Laboratory Earth System

Model with Generalized Ocean Layer Dynamics compo-

nent (GFDL-ESM2G; Dunne et al. 2012). We chose these

models because they are clear examples, and most other

models fall in between them. The model response that is

best fit by the shift plus increase is MPI-ESM-LR

(Fig. 3a). This model also has one of the two largest

shifts. The shift-plus-increase fit to the MPI-ESM-LR

precipitation change captures both the decrease in rain

amount at moderate rain rates and the increase at the

heaviest rates. In contrast, the shift plus increase fits the

IPSL-CM5A-LR (Fig. 3b) and GFDL-ESM2G (Fig. 3c)

models less closely. The modeled responses and shift plus

increase for both models have a resemblance, especially

at the primary peak at high rain rates and dip at moderate

rain rates. However, the shift plus increase does not

capture an additional increase at the heaviest rain rates in

either model. Models with larger shifts have smaller error

(Fig. 4).Across all models, the increasemode ranges from

0.3% to 2.4%K21. The shift mode ranges from 5.8% to

20.16%K21. Errors of the fit range from 14% to 93%.

The averages of the model responses, along with the

multimodel mean, are listed in Table 1.

Instead of fitting the increase, we can simply use the

percentage change in total rainfall as the increase. This

forces the entire increase in rainfall to occur evenly

across the distribution. Then, we can do a one-parameter

fit of only the shift. This makes no qualitative differ-

ence on the magnitude of the shift, but increases the

error of the multimodel-mean fit and most of the model

fits.

For all but two models, the fitted increase is smaller

than the model’s total rainfall change (Fig. 4). One ex-

planation is that only some of the change in total rainfall is

captured by a uniform increase of the mean distribution.

FIG. 2. CMIP5 multimodel-mean global rain amount response

to CO2 doubling (mmday21K21). The model response (black),

increase (purple), shift (green), and shift plus increase (pink)

are shown. Gray lines show 95% confidence interval of the

multimodel-mean response.

FIG. 3. Rain amount response to CO2 doubling (black) for three of the CMIP5 models and their fitted shift plus increase (pink).
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The rest occurs as a change isolated at light or heavy

rain rates, and unrelated to the changes across the rest

of the distribution. We will return to this missing

rainfall below.

Tropical and extratropical precipitation distributions

could respond differently. Studies of extreme precipitation

find that extratropical precipitation change is more readily

decomposed into thermodynamic and dynamic compo-

nents than tropical precipitation (e.g., O’Gorman and

Schneider 2009). Table 1 shows fits of both shift and in-

crease parameters to the tropical and extratropical regions

in each model (split at 308). The fit has lower error in the

extratropics than the tropics. The extratropics generally

have a bigger increase (1.3%K21) and bigger shift

(4.0%K21), while the tropics have a smaller increase

(0.6%K21) and shift (2.9%K21). Unlike the differences

between tropics and extratropics, the differences between

land and sea are modest. The land has a slightly larger

shift (3.5%K21) than sea (3.1%K21), while both have

an increase of 0.9%K21. This is in sharp contrast to pre-

cipitation changes during El Niño events, for which changes
over land and ocean are very different (Pendergrass and

Hartmann 2014b).

So far we have shown that in the multimodel mean for

CMIP5 models forced by CO2 doubling, the distribution

of rain amount shifts to higher rain rates by 3.3%K21

and increases by 0.9%K21. This reasonably fits the

change in much of the distribution of rain amount. Next,

we will discuss how the increase and shift modes fit the

rain frequency response.

b. Implications for the frequency distribution

Figure 5 shows the change in rain frequency in theCMIP5

multimodel mean, along with the fitted shift and increase

modes and the shift plus increase. In the model response,

the decrease in rain frequency is largest at moderate rain

FIG. 4. (a)Magnitude of shift mode (%K21) vs error of the fit (unitless fraction). The correlation is at the top right.

(b) Global-mean precipitation increase vs magnitude of the increase mode for each model (%K21). The gray line in

(b) shows the 1:1 relationship.

TABLE 1. The shift and increase in response to CO2 doubling in CMIP5 model simulations, along with the error of the fit. Fit to the

multimodel-mean response is on the left and average of the fits to eachmodel’s response is on the right. Shifts, increases, andDP have units

of percent per kelvin, where changes are normalized by the global-mean surface air temperature change. The error is the absolute value of

the difference in rain amount normalized by the target change in rain amount.

Change in model mean Mean of model changes Actual

Region Shift (%K21) Increase (%K21) Error Shift (%K21) Increase (%K21) Error DP (%K21)

Global 3.3 0.94 0.33 3.3 1.1 0.49 1.5

Sea 3.1 0.94 0.36 3.1 1.0 0.52 1.4

Land 3.5 0.86 0.49 3.7 0.99 0.53 1.8

Extratropics 4.0 1.3 0.34 3.9 1.3 0.36 1.9

Tropics 2.9 0.56 0.43 3.1 0.78 0.50 1.2
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rates. Themultimodel-mean change in dry-day frequency in

models is 0.26%6 0.17%K21.

The fitted shift plus increase is not as close as it is for rain

amount. The shift mode has the largest decreases in fre-

quency at light rain rates around 1mmday21. But instead of

a large decrease in the frequency of light rain, the models

have an increase, which occurs entirely over ocean

(Pendergrass 2013). This light rain mode accounts for some

of the total rainfall increase that is not present in the shift plus

increase. But, as is discussed in Pendergrass and Hartmann

(2014b), light rainmakes up only a small fraction of the total

rainfall, andmodels havemuchmore frequent light rain than

observations.The shift plus increase has a 1.6%K21 increase

in dry-day frequency. The difference in dry-day frequency

response between models and the shift plus increase is

probably related in part to the increase in frequency of light

rain. Because the integral over the frequency distribution

must sum to one, differences in frequency response at one

rain ratemust bebalancedbydifferencesof theopposite sign

at another rain rate. The larger increase in dry-day frequency

of the shift plus increase compared to the model response is

balanced by the large decrease at light rain rates (which is

due to the light rain mode).

c. Extreme events

Now, we take a closer look at changes in extreme

precipitation. Figure 6 shows the percent change in rain

rate as a function of percentile of the cumulative

frequency distribution for the multimodel-mean response

to increased CO2. As inAllen and Ingram (2002) and Pall

et al. (2007), we find a decrease in rain rate below the 90th

percentile and increase above the 90th percentile in the

multimodel-mean response to CO2 doubling. The per-

centage increase in rain rate goes up with the percentile.

At the 99.9th percentile, the increase is 4.9%K21, con-

sistent withO’Gorman and Schneider (2009), though they

looked at zonal-mean changes in CMIP3 models. At the

99.99th percentile, the increase in rain rate is 6.9%K21.

The shift plus increase, which was fit to the rain amount

distribution, has some similarities to and also some differ-

ences from the modeled response. The shift plus increase is

the sumof the increase and shiftmodes (the shapes ofwhich

are shown in Figs. 1e,f). Below the 90th percentile, the shift

plus increase crosses from negative to positive. These neg-

ative changes indicate a decrease in the rate of light rain

events, which is due to the shift. Between the 90th and 99th

percentiles, the shift plus increase flattens with continued

increase in percentile.All events beyond the 99th percentile

increase between 3% and 4%K21, in contrast to the con-

tinued increase with percentile of the model response. The

shape of this part of the shift plus increase depends on the

relativemagnitude of the shift and increasemodes aswell as

the shape of the initial rain frequency distribution.

The right panels of Fig. 7 show three models’ change

in rain rate as a function of percentile along with their

fitted shift plus increase for the RCP8.5 experiment (all

models are shown for the CO2-increase experiment

in Fig. S2 of the supplemental material; we use RPC8.5

here because more models archive convective pre-

cipitation for RCP8.5 than for the CO2-increase experi-

ment). There are two types of model responses: those that

increase by a similar percentage for all extreme pre-

cipitation (beyond the 99th percentile) and those that in-

creasemost at themost extremepercentiles. The responses

with similar increases for all extreme percentiles are well

captured by the shift plus increase. In contrast, responses

that increase most at the most extreme percentiles are not

captured. We will call this uncaptured response the ex-

treme mode. Other studies have also shown the model

responses fall into two camps. Sugiyama et al. (2010) found

that extreme precipitation increased by more than water

vapor in half of CMIP3 model simulations.

The tropics have a slightly larger increase in rain rate

at the 99.99th percentile, 8.7%K21, than the extra-

tropics, 6.5%K21. However, models agree much more

closely on the extratropical response than on the tropical

response (Figs. S3, S4 in the supplemental material). In

the tropics, the standard deviation of the 99.99th-

percentile rain-rate response across models is 6.3%K21,

while in the extratropics it is just 1.7%K21. Previously,

O’Gorman and Schneider (2009) found that extratropical

FIG. 5. Rain frequency response to CO2 doubling in CMIP5

models (%K21), with change in dry-day frequency noted at the top

left. The multimodel-mean response (black), increase (purple),

shift (green), and shift plus increase (pink) are shown.
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extreme precipitation change follows the moisture con-

vergence scaling law more closely than tropical change. In

Table 1, we saw that, in the extratropics, the shiftmodewas

bigger and the error of the shift plus increase was smaller

than in the tropics. The difference in shift mode, error, and

extreme rain are consistent with a bigger extreme mode

response in the tropics than in the extratropics. We will

consider the differences across models next.

d. Differences across models: Resolved and
unresolved rain events

Why does the extreme rain-rate response to CO2

doubling follow the shift plus increase so closely in some

models, but increasemuchmore in other models? In this

section, we focus on a subset of models to explore the

extreme mode behavior in more detail.

Convective parameterizations are an important dif-

ference between models, and they are important for

modeled rainfall. Climate models form rain in two ways.

When the grid-scale environment is saturated, the

model produces large-scale precipitation. Whether or

not a grid box is saturated, the convective parameteri-

zation produces precipitation, which represents the rain

coming from unresolved motions.

Neither large-scale nor convective precipitation is

obviously more realistic than the other. As model res-

olution increases, more motions are resolved, so more

precipitation should be large-scale and less should be

convective. Increasing model resolution decreased the

bias in extreme precipitation over land compared to

observations (Kopparla et al. 2013). Large-scale and con-

vective precipitation arenot independent.Whenconvective

precipitation is inhibited, large-scale precipitation increases

to compensate (Lin et al. 2013). Large-scale and convective

precipitation do not correspond to the classification of ob-

served stratiform and convective precipitation types (Held

et al. 2007). Mesoscale organization relevant to realistic

heavy precipitation is not represented in climate models

(Rossow et al. 2013). While large-scale and convective

events are comparably realistic (or unrealistic), this division

of precipitation is an artifact of modeling, rather than a re-

alistic description of two types of precipitating systems.

Heavy, predominantly large-scale rain events are found

in models, and the extent to which they are realistic is

unclear. Held et al. (2007) called these events gridpoint

storms. They showed, with idealized simulations of

a model related to the GFDL-ESM atmospheric model,

that gridpoint storms appear above a threshold temper-

ature, and with further warming the amount of rain from

gridpoint storms increases. The threshold temperature,

but not the overall behavior, depends on resolution.

We would like to investigate how resolved (large scale)

and unresolved (convective) precipitation play a role in the

model-dependent extreme precipitation response we see.

Daily convective precipitation data are available for just

eight of the models in the CO2-doubling experiment. Un-

fortunately, all of themodels with available daily convective

precipitation data for this experiment have increases in ex-

treme rain rate that are much greater than the prediction

from the shift plus increase, so that the models without this

feature are not available with daily convective precipitation

data. More modeling groups archive both total and con-

vective precipitation at daily time scales for the realistic-

forcingRCP8.5 scenario than for the CO2-increase scenario.

In themodelswe examine here, the rain amount distribution

response is similar between the RCP8.5 and CO2-increase

experiments, so we will investigate the RCP8.5 simulations.

Figure 7 shows key aspects of the three models’ rain

amount distributions and responses to realistic forcing in

the RCP8.5 experiment: the rain amount distribution

compared to coarsened GPCP, the climatological con-

vective fraction as a function of cumulative frequency

distribution, the rain amount response to warming (total

change simulated by the models, convective precipitation

contribution to the total, and the fit by the shift plus in-

crease), and the extreme precipitation response.

The MPI-ESM-LR rain amount response to warming

is captured most closely of all the models by the shift

plus increase (Fig. S1 in the supplemental material). Its

change in rain amount looks like the ideal shift and in-

crease illustrated partially in Fig. 1. It has one of the

FIG. 6. Extreme precipitation response (%K21) for CMIP5

multimodel-mean CO2 doubling (black) and the shift plus increase

(pink): percent change in rain rate per kelvin warming as a function

of the percentile of the cumulative frequency distribution. Gray

lines show 95% confidence of the multimodel-mean response.
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largest shifts of any model in the CO2-increase experi-

ment, 5.7%K21 (only MPI-ESM-P is higher at 5.8%K21;

Fig. S1). For the CO2-doubling simulation, its extreme

precipitation response is captured very well by the shift

plus increase. Its extreme precipitation response in

RCP8.5 is captured almost as closely. Furthermore, the

shape of the rain amount distribution of MPI-ESM-LR

matches the coarsened GPCP rain amount distribution

very closely compared to most other models.

IPSL-CM5A-LR and GFDL-ESM2G contrast with

the MPI response. The shift plus increase only partially

captures their response to warming, with errors of 67%

and 74% (Fig. 7). In both models, the shift plus increase

captures a dip in rain amount at moderate rain rates and

the increase at rain rates just above this. However, it fails

to capture increases in rain amount at the highest rain

rates in these twomodels. In both cases, these additional

increases in rain amount look like extra rain has been

added to the high side of the distribution (in contrast to the

MPI-ESM-LR response). The extreme rain-rate response

also differs from the shift plus increase in these models.

GFDL-ESM2Ghas the largest 99.99th-percentile rain-rate

increase of any model, and the IPSL-CM5A-LR response

is among the largest. The shift fit to both of these responses

is lower than it is for many models, around 2%K21 (it is

greater for both models in the CO2-doubling experiments;

Fig. S1), but their increases in extreme rainfall are much

greater even than models with large shifts.

How much of the rain amount response is convective

rainfall, and how much is large scale? Measures of

FIG. 7. Global (a)MPI-ESM-LR, (b) IPSL-CM5A-LR, and (c) GFDL-ESM2Gmodel responses in the RCP8.5 scenario. (left) The rain

amount climatology, the ith model distribution (solid black) shown along with coarsenedGPCP (dashed). (left center) The climatological

convective fraction, shown alone (orange). (right center) The change in rain amount distribution, with themodel change (black), shift plus

increase (pink), and convective precipitation change (orange) shown. The error e, shift s, and increase i magnitudes are included. (right)

The change in extreme rain rate, with the model change (black) and shift plus increase (pink) shown.
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convective rainfall were described in section 2 and are

shown in the appendix. The change in the amount of

convective precipitation in each rain-rate bin is shown in

orange in Fig. 7. In MPI-ESM-LR, the majority of the

change in rain amount is convective. There is just a small

difference between convective and total precipitation near

the peak of the increase, which is an increase in large-scale

precipitation. In contrast, the IPSL-CM5A-LR change

in convective rain amount is very small, indicating that

most of the change in rain amount is large-scale pre-

cipitation.While some of this increase is captured by the

shift plus increase, much of it is not. The increases at the

highest rain rates, which are not captured by the shift

plus increase, are changes in large-scale precipitation. In

GFDL-ESM2G, there are two peaks at the high end of

the rain amount response. The highest peak, at moderate

rain rates near 10mmday21, is mostly convective rainfall

and is captured by the shift plus increase. The smaller

peak, which is at higher rain rates, is mostly large-scale

precipitation and is not captured by the shift plus in-

crease. As in the case of the IPSL-CM5A-LRmodel, this

uncaptured large-scale increase in rain amount accounts

for the large increase in rain rate at the highest cumula-

tive probabilities.

Held et al. (2007) suggested that the sensitivity of

gridpoint storms in any particular model might be related

to the fraction of convective precipitation in the model.

Motivated by this, we calculate the climatological fraction

of convective precipitation as a function of cumulative

probability distribution in each of the models. In MPI-

ESM-LR, rainfall at the 99.99th percentile at the begin-

ning of the twenty-first century is about 75% convective

andonly 25% large scale. In IPSL-CM5A-LR, about 30%

of 99.99th-percentile precipitation is convective, with

more large-scale than convective precipitation above the

99th percentile. In GFDL-ESM2G, less than 20% of the

99.99th-percentile rainfall is convective and large-scale

precipitation makes up 80% of the rainfall above the

99.9th percentile. The divergence of the extreme rain-rate

response from the shift-plus-increase fit in these models

occurs around the percentile where large-scale rain fall

begins to constitute a majority. The driver of the differ-

ences in extreme rain-rate response across models is the

fraction of the events that occur as large-scale precipitation

in the climatological distribution, suggesting a strong role

for gridpoint storms in producing these extremes.

When the analysis is repeated for the extratropics

alone (Fig. S3 in the supplemental material), model re-

sponses deviate much less from the shift plus increase

than in the global distribution. In most models, there is

a small increase in the model response beyond the

multimodel mean, but this difference is similar in all

models and much more modest than the extreme mode

seen globally. In contrast, when the analysis is restricted

to the tropics (Fig. S4), the variations across models in

the extreme mode are dramatic. Taken together, these

additional analyses indicate that the extreme mode oc-

curs mainly in the tropics, rather than in the extratropics.

Gridpoint storms as a driver of extreme precipitation

in some but not all models may provide an explanation

for the nonlinear response of the tropical extreme pre-

cipitation (in terms of changing vertical velocity and

moisture gradient) found in previous studies. The model

whose 99.9th-percentile rain response was least captured

by the precipitation extremes scaling in O’Gorman and

Schneider (2009) was GFDL Climate Model, version 2.0

(CM2.0); the atmospheric model in GFDL-ESM2G is

similar to CM2.1 (Dunne et al. 2012). This scaling as-

sumes that changes in precipitation are linearly related to

changes in moisture and vertical velocity, whereas grid-

point storms may not respond in this fashion.

4. Discussion

a. Summary of changes in the distribution of rain

With the analysis above,we are in a position to describe

three components of the rain amount response to CO2

doubling. First, the rain amount distribution shifts to

higher rain rates, and this is captured by the shift plus

increase. For CO2 doubling, the shift of 3.3%K21 in the

multimodel mean indicates that the same amount of rain

falls at 3.3%K21 higher rain rates, with fewer total

events. Simultaneously, the rain frequency and amount

distributions increase by 0.9%K21. The error of this fit is

0.3, and the increase accounts for 0.9 of 1.5%K21; both of

which indicate that the shift plus increase describes about

two-thirds of the change in rain distribution in response to

CO2 doubling.

The rest of the increase in rain amount comes as de-

viations from this coherent response.A small contribution

comes as an increase in light rain over ocean, unrelated to

changes in the distribution. Observations disagree with

models on the climatological frequency of light rain. Both

models and observations contain uncertainty, so it is not

clear whether modeled light rain and its response are

realistic.

The final contribution to the rainfall increase that is not

captured by the shift plus increase is an increase at the

highest rain rates occurring in some but not all models,

which we have argued is due to an increase in gridpoint

storms. (Two examples of the evolution of a 99.99th-

percentile event are shown in Figs. S6 and S7 of the sup-

plemental material.) These gridpoint storms contribute

most of the remaining third of the increase in total rainfall

in the multimodel mean in response to CO2 doubling.
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Furthermore, as warming increases, more of the pre-

cipitation increase comes as an increase in gridpoint

storms and less comes as a coherent shift and increase of

the rain amount distribution (Table S1 and Fig. S8 in the

supplemental material). Gridpoint storms are likely

model artifacts. The large sensitivity of extreme rain re-

sponse shown here demonstrates the need for improved

representation of extreme rain events in climate models.

b. Reconciling energetic and moisture constraints

We are also in a position to articulate how energetic

and moisture constraints can be simultaneously met.

First, the energetic constraint is met by the total increase

in rain amount. Above, we saw that this consists pri-

marily of the increase mode, and secondarily the ex-

treme mode.

However, moisture andmoisture convergence increase

much more than the total rainfall. How can the apparent

discrepancy between the large increase in moisture and

the smaller increase in rain rate be accounted for? Our

analysis suggests two possibilities. First, consider models

like MPI-ESM-LR with no extreme mode, in which the

extreme precipitation change follows closely the shift

plus increase. The increase mode results in a change in

rain rate of just 1.3%K21 for the heaviest events, not

enough to account for the increased moisture conver-

gence. To make up the difference, the energetically

neutral shift mode provides a mechanism for further

increases in the heaviest rain rates. The same amount of

rain falls at heavier rain rates, so that increasedmoisture

convergence can be accommodated without violating

the energetic constraint or requiring further increases in

atmospheric radiative cooling. In this scenario, there

would be fewer events governed by moisture conver-

gence, because the shift mode decreases the frequency

of rain events, implying an increase in dry-day frequency

(the MPI models have the biggest increase in dry-day

frequency).

On the other hand, consider models with an extreme

mode, like the IPSL andGFDLmodels. In thesemodels,

the extreme rain-rate response and the moisture con-

straint are met by the extreme mode instead of the shift

mode. These large increases of extreme rain rate are not

accompanied by changes in the rest of the distribution,

such as increases in dry-day frequency, since they con-

tribute little to the total frequency.

5. Conclusions

We have considered the change in rain amount and

rain frequency distribution of daily precipitation

data in response to CO2 increase in CMIP5 models. In

the shift mode of the distribution of rain, the same

amount of rain falls at rain rates a fixed percentage

higher. In the increase mode, a fixed percentage more

rain falls at every rain rate. We fit the shift and increase

modes of the rain amount distribution to the modeled

response to CO2 increase and considered the coherent

response as well as the deviations from it. In response

to CO2 doubling in CMIP5 models, the rain amount

distribution shifts by 3.3%K21 and increases by

about 1%K21.

In response to CO2 doubling, some of themodels have

increases of extreme precipitation (greater than the 99th

percentile) that closely follow the shift plus increase

fitted to each model’s change in rain amount distribu-

tion. Other models produce much bigger increases in

extreme precipitation than the shift plus increase, which

we call the extreme mode, indicating that extreme pre-

cipitation change is not tied to the change in the rest of

the rain amount distribution in these models. We attri-

bute these additional increases in very heavy rain rate to

changes in large-scale precipitation probably related to

gridpoint storms.

These results indicate that with warming, rainfall

shifts to higher rain rates, as argued byTrenberth (1999),

but the rate of change is smaller than the increase in

moisture and extreme events. The very high rate of in-

crease of extreme precipitation found in some studies

(e.g., Allen and Ingram 2002; Sugiyama et al. 2010;

O’Gorman 2012) is not associated with changes in the

rest of the distribution of rain.
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APPENDIX

Convective Rain Amount and Rain Frequency
Distribution Calculations

We use the daily convective rainfall accumulation

rconv to calculate the distribution of convective rain

amount pconv and convective precipitation fraction f conv

in each bin of total daily rain accumulation r,

pconvi (Rc
i )5

1

D lnR
�

gridpts

rconv(R
l
i # r#Rr

i )
Agridpt

Atotal

and

(A1)
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f convi (Rc
i )5

1

D lnR
�

gridpts

rconv
r

(Rl
i # r#Rr

i )
Agridpt

Atotal

,

(A2)

where Rl
i and Rr

i are left and right bin edges, Rc
i 5

(Rl
i 1Rr

i )/2 is bin centers, andA indicates the area of each

grid point and the total area.

REFERENCES

Allan,R. P., B. J. Soden,V.O. John,W. Ingram, and P.Good, 2010:

Current changes in tropical precipitation. Environ. Res. Lett.,

5, 025205, doi:10.1088/1748-9326/5/2/025205.

Allen,M.R., andW. J. Ingram, 2002: Constraints on future changes

in climate and the hydrologic cycle. Nature, 419, 224–232,

doi:10.1038/nature01092.

Chou,C.,C.-A.Chen, P.-H.Tan, andK.T.Chen, 2012:Mechanisms for

global warming impacts on precipitation frequency and intensity.

J. Climate, 25, 3291–3306, doi:10.1175/JCLI-D-11-00239.1.

Dufresne, J.-L., and Coauthors, 2013: Climate change projections us-

ing the IPSL-CM5 Earth systemmodel: FromCMIP3 to CMIP5.

Climate Dyn., 40, 2123–2165, doi:10.1007/s00382-012-1636-1.
Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled

climate–carbon Earth system models. Part I: Physical formu-

lation and baseline simulation characteristics. J. Climate, 25,
6646–6665, doi:10.1175/JCLI-D-11-00560.1.

Emori, S., and S. Brown, 2005: Dynamic and thermodynamic changes

in mean and extreme precipitation under changed climate.

Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle

changes from 1850 to 2100 in MPI-ESM simulations for the

Coupled Model Intercomparison Project phase 5. J. Adv.

Model. Earth Syst., 5, 572–597, doi:10.1002/jame.20038.

Held, I. M., and B. J. Soden, 2006: Robust responses of the hy-

drological cycle to global warming. J. Climate, 19, 5686–5699,

doi:10.1175/JCLI3990.1.

——, M. Zhao, and B. Wyman, 2007: Dynamic radiative–

convective equilibria using GCM column physics. J. Atmos.

Sci., 64, 228–238, doi:10.1175/JAS3825.11.

Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin,

S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001:

Global precipitation at one-degree daily resolution from

multisatellite observations. J. Hydrometeor., 2, 36–50,

doi:10.1175/1525-7541(2001)002,0036:GPAODD.2.0.CO;2.

Kopparla, P., E. Fischer, C. Hannay, andR.Knutti, 2013: Improved

simulation of extreme precipitation in a high resolution at-

mosphere model. Geophys. Res. Lett., 40, 5803–5808,

doi:10.1002/2013GL057866.

Lau, W. K.-M., H.-T. Wu, and K.-M. Kim, 2013: A canonical re-

sponse of precipitation characteristics to global warming from

CMIP5 models. Geophys. Res. Lett., 40, 3163–3169,

doi:10.1002/grl.50420.

Lin, Y., M. Zhao, Y. Ming, J.-C. Golaz, L. J. Donner, S. A. Klein,

V. Ramaswamy, and S. Xie, 2013: Precipitation partitioning,

tropical clouds, and intraseasonal variability in GFDL AM2.

J. Climate, 26, 5453–5466, doi:10.1175/JCLI-D-12-00442.1.

Mitchell, J. F. B., C. A.Wilson, andW.M. Cunnington, 1987: On

CO2 climate sensitivity and model dependence of results.

Quart. J. Roy. Meteor. Soc., 113, 293–322, doi:10.1256/

smsqj.47516.

O’Gorman, P. A., 2012: Sensitivity of tropical precipitation ex-

tremes to climate change.Nat. Geosci., 5, 697–700, doi:10.1038/

ngeo1568.

——, and T. Schneider, 2009: The physical basis for increases in

precipitation extremes in simulations of 21st-century climate

change. Proc. Natl. Acad. Sci. USA, 106, 14 773–14 777,

doi:10.1073/pnas.0907610106.

Pall, P., M. Allen, and D. Stone, 2007: Testing the Clausius–Clapeyron

constraint on changes in extreme precipitation under CO2 warm-

ing. Climate Dyn., 28, 351–363, doi:10.1007/s00382-006-0180-2.

Pendergrass, A., 2013: The atmospheric energy constraint on pre-

cipitation change. Ph.D. dissertation, University ofWashington,

134 pp.

——, and D. L. Hartmann, 2014a: The atmospheric energy con-

straint on global-mean precipitation change. J. Climate, 27, 757–

768, doi:10.1175/JCLI-D-13-00163.1.

——, and ——, 2014b: Two modes of change of the distribution of

rain. J. Climate, 27, 8357–8371, doi:10.1175/JCLI-D-14-00182.1.

Rossow, W. B., A. Mekonnen, C. Pearl, and W. Goncalves, 2013:

Tropical precipitation extremes. J. Climate, 26, 1457–1466,

doi:10.1175/JCLI-D-11-00725.1.

Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean

precipitation increases in global warming GCM experiments.

J. Climate, 21, 6141–6155, doi:10.1175/2008JCLI2144.1.

Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation

extreme changes exceeding moisture content increases in

MIROC and IPCC climate models. Proc. Natl. Acad. Sci.

USA, 107, 571–575, doi:10.1073/pnas.0903186107.

Sun, Y., S. Solomon, A. Dai, and R.W. Portmann, 2007: How often

will it rain? J. Climate, 20, 4801–4818, doi:10.1175/JCLI4263.1.

Taylor, K. E., R. J. Stouffer, andG.A.Meehl, 2012: An overview of

CMIP5 and the experiment design. Bull. Amer. Meteor. Soc.,

93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

Trenberth, K. E., 1999: Conceptual framework for changes of ex-

tremes of the hydrological cycle with climate change. Climatic

Change, 42, 327–339, doi:10.1023/A:1005488920935.

——, 2011: Changes in precipitation with climate change. Climate

Res., 47, 123–138, doi:10.3354/cr00953.

15 NOVEMBER 2014 P ENDERGRAS S AND HARTMANN 8383

http://dx.doi.org/10.1088/1748-9326/5/2/025205
http://dx.doi.org/10.1038/nature01092
http://dx.doi.org/10.1175/JCLI-D-11-00239.1
http://dx.doi.org/10.1007/s00382-012-1636-1
http://dx.doi.org/10.1175/JCLI-D-11-00560.1
http://dx.doi.org/10.1029/2005GL023272
http://dx.doi.org/10.1002/jame.20038
http://dx.doi.org/10.1175/JCLI3990.1
http://dx.doi.org/10.1175/JAS3825.11
http://dx.doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
http://dx.doi.org/10.1002/2013GL057866
http://dx.doi.org/10.1002/grl.50420
http://dx.doi.org/10.1175/JCLI-D-12-00442.1
http://dx.doi.org/10.1256/smsqj.47516
http://dx.doi.org/10.1256/smsqj.47516
http://dx.doi.org/10.1038/ngeo1568
http://dx.doi.org/10.1038/ngeo1568
http://dx.doi.org/10.1073/pnas.0907610106
http://dx.doi.org/10.1007/s00382-006-0180-2
http://dx.doi.org/10.1175/JCLI-D-13-00163.1
http://dx.doi.org/10.1175/JCLI-D-14-00182.1
http://dx.doi.org/10.1175/JCLI-D-11-00725.1
http://dx.doi.org/10.1175/2008JCLI2144.1
http://dx.doi.org/10.1073/pnas.0903186107
http://dx.doi.org/10.1175/JCLI4263.1
http://dx.doi.org/10.1175/BAMS-D-11-00094
http://dx.doi.org/10.1023/A:1005488920935
http://dx.doi.org/10.3354/cr00953

