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ABSTRACT

The frequency and intensity of rainfall determine its character and may change with climate. A method-

ology for characterizing the frequency and amount of rainfall as functions of the rain rate is developed. Two

modes of response are defined, one in which the distribution of rainfall increases in equal fraction at all rain

rates and one in which the rainfall shifts to higher or lower rain rates without a change in mean rainfall.

This description of change is applied to the tropical distribution of daily rainfall over ENSO phases in

models and observations. The description fits observations and most models well, although some models

also have an extreme mode in which the frequency increases at extremely high rain rates. The multimodel

mean from phase 5 of the Coupled Model Intercomparison Project (CMIP5) agrees with observations in

showing a very large shift of 14%–15%K21, indicating large increases in the heaviest rain rates associated

with El Niño. Models with an extreme mode response to global warming do not agree as well with ob-
servations of the rainfall response to El Niño.

1. Introduction

The frequency and intensity of rain are expected to

change due to global warming (Trenberth 1999). There

are also indications that they change on shorter time

scales. What is the present day distribution of rain fre-

quency and intensity, and how do the frequency and

intensity of rain change in response to warming?

Rainfall and its changes are often considered from the

perspective of the mean or the extremes (e.g., Allen and

Ingram 2002). We approach the problem by instead

considering the whole distribution and how it changes,

which includes the mean and extremes but also their

context. In preparation for understanding the distribu-

tion of rain, we consider carefully the best way to

quantify it.

A variety of approaches to quantifying the distribu-

tion of rain can be found in the scientific literature, in-

cluding different spatial and temporal resolution, bin

structure, and wet-day threshold. Some potential tem-

poral resolutions include daily rainfall accumulation and

instantaneous, hourly, 6-hourly, 5-day, or monthly data.

Stephens et al. (2010) argue that instantaneous rain rate

is the best variable to consider, while Trenberth et al.

(2003) recommend hourly. Liu and Allan (2012) argue,

however, that averaging of observational data is neces-

sary for purposes of intercomparison. They show that

the distributions of precipitation in satellite data and

gridded analyses agree better when averaged over 5 days

than for daily or instantaneous data. Daily satellite ob-

servations are the average of only two snapshots, while

the daily merged, gridded products have implicit aver-

aging. Other recent studies use monthly-mean data to

look at the distribution of rain (Liu et al. 2012; Lau et al.

2013). This removes all variability on less than monthly

time scales, which is not desirable if one is interested in

possible changes in extremes.

The choice of rain-rate bin structure is fundamental to

all rainfall distribution calculations. Rain rate, even ac-

cumulated over a day, varies by over orders of magni-

tude from day to day and from one location to another.

A wide variety of possible bin structure choices can be

found in the scientific literature. Some studies use line-

arly distributed rain-rate bins, often with 1mmday21

spacing (e.g., Chou et al. 2012). Linear spacing of bins

has the benefit that the bins are related in an obvious
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way, but a substantial drawback is that the bins do not

have reasonable sampling at high rain rates. Other

studies use irregular bin spacing to improve sampling

and capture the entire distribution, but this may make it

intractable to work with the distribution mathemati-

cally. Watterson and Dix (2003) use logarithmically

distributed rain-rate bins. This coordinate makes

mathematical operations tractable and captures the

entire distribution from light to heavy rain with ade-

quate sampling.

Gridded observations and model data represent

a spatial average rather than a single point in space, so

that an objective threshold for when it is raining is not

obvious. Some studies and guidelines define wet days as

having a minimum accumulation of 1mm (Sun et al.

2006; Klein Tank et al. 2009). Other studies extend the

dry threshold to 0.1mmday21 (e.g., Chou et al. 2012).

The area over which averages are taken also influences

the interpretation of rainfall statistics. Some studies (e.g.,

Pall et al. 2007; O’Gorman and Schneider 2009) take

a zonal-mean perspective, in which expected shifts of the

ITCZ and storm tracks are prominent. Watterson and

Dix (2003) look at the changes in distributions at in-

dividual locations. For changes in precipitation at many

locations (and thus for impacts of precipitation change),

geographical shifts in precipitation systems may domi-

nate over thermodynamic effects.

Spatial resolution of precipitation data has been iden-

tified as a contributing factor to disagreements among

observational datasets and between models and obser-

vations (Chen and Knutson 2008; Kopparla et al. 2013).

Both daily gridded data and model data have implicit

spatial averaging, so in this sense they are fundamentally

different from station data, which measure a particular

location.

Extreme precipitation is typically quantified by the

rain rate for some cumulative percentile of the rain

frequency distribution (e.g., Allen and Ingram 2002; Pall

et al. 2007; O’Gorman and Schneider 2009). There are

large differences in the extreme precipitation response

to interannual variability and longer-time-scale climate

changes in models (O’Gorman 2012; Allan et al. 2013).

The goal of this study is to quantify ways the distribu-

tion of rain could change over time. To accomplish this,

we introduce two modes of coherent change of the rain

amount distribution: an increase in rain amount at all rain

rates (the increase mode) and a shift of the rain amount

distribution to higher rain rates (the shift mode). The

increase mode changes the total amount of rain, while

the shift mode does not. We apply these two modes to

the responses ofmodeled and observed distributions over

phases of El Niño–Southern Oscillation (ENSO). In a

companion paper, Pendergrass and Hartmann (2014b),

we explore the response to global warming in climate

model simulations more extensively and discuss the role

that the modes of change play in the energetic and

moisture constraints on precipitation.

In the next three sections, we introduce the GCM and

observational datasets we will use, present our meth-

odology for calculating the rainfall distribution, and

consider the climatological rainfall distributions. In

section 5, we discuss the two modes of change. Then, in

section 6, we fit the modes of change to the rain amount

response to ENSO phases in observations and models

from phase 5 of the Coupled Model Intercomparison

Project (CMIP5) and make comparisons with the re-

sponse to increasing CO2 documented in Pendergrass

and Hartmann (2014b).

2. Daily rainfall data

In this section, we document the GCM simulations

and observational datasets. We analyze daily rainfall

accumulation from models and observations. Daily

gridded data strike a compromise by providing some

temporal averaging but not more than is necessary to

make (gridded) observations comparable with models.

For observational distributions of rainfall and its

response to ENSO phases, we use two gridded ob-

servational datasets that merge data from satellite and

rain gauges. Global Precipitation Climatology Project

(GPCP) One-Degree Daily (1DD) data (Huffman et al.

2001) have global coverage at 18 resolution in latitude

and longitude. We use data from 1997 to 2012. Tropical

Rainfall Measuring Mission (TRMM) 3B42 version 7

(Huffman et al. 2007) covers 508S–508N at 0.258 resolu-
tion from 1998 to 2012.

To determine ENSO phase, we obtain the monthly

time series of SSTs in the Niño-3.4 region (58N–58S, 1708–
1208W) from the National Oceanic and Atmospheric/

Administration Earth System Research Laboratory/

Physical Sciences Division (NOAA/ESRL/PSD;

http://www.esrl.noaa.gov/psd/data/climateindices/list)

and calculate a Niño-3.4 index following Trenberth

(1997). For the warm phase composite, we choose the

months with the highest Niño-3.4 index. We use 50
months for observations and 100 months for Atmo-
spheric Model Intercomparison Project (AMIP) simu-
lations (to make use of the longer model simulations).
Because we cannot remove the seasonal cycle when
calculating the rainfall distribution, it is important to
make sure we use the same months of the year in the
warm and cold phases. To enforce this requirement, we
choose cold months so that the distribution of months is
the same as for the warm months. For example, five of
the warm months over the GPCP period are January, so
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we choose the five coldest Januaries for the cold phase.
We use Hadley Centre/Climatic Research Unit surface
temperature anomalies, version 4 (HadCRUT4; Jones
et al. 2012) to calculate the observed change in tropical

(308S–308N) surface temperature from cold to warm

ENSO phase (0.35K for the GPCP period).

To examine the modeled response to ENSO, we use the

AMIP experiments from the CMIP5 archive (Taylor et al.

2012). (The models used and their resolutions are listed in

Table S1 of the supplemental material.) In AMIP experi-

ments, sea surface temperature (SST) is prescribed from

observations over the historical period, along with pre-

scribed historical forcings. These experiments allow us to

examine the modeled response to ENSO SST forcing de-

spite that not all models have good ENSO responses when

run in coupled mode. We use one ensemble member from

each of the 27 models with archived daily precipitation

data from 1979 to 2007. This time period overlaps with but

is longer than the observational time period.Wenormalize

by each model’s tropical mean surface air temperature

change from cold to warmENSO phase.We choose warm

and cold ENSO months based on the same Niño-3.4
dataset index we use for observational data, which is pos-
sible because the SSTs are prescribed in the models.
To calculate the model precipitation distributions and

their response to CO2 doubling, we use climate model

simulations from the CMIP5 archive. We use simulations

from two experiments: 1%yr21 CO2 increase (1pctCO2)

and representative concentration pathway (RCP) with ra-

diative forcing reaching 8.5Wm22 near 2100 (RCP8.5).

The fully coupled 1pctCO2 scenario provides the response

to CO2 doubling, initialized from a preindustrial base state.

We compare years 1–10 (the start of the simulation) and

years 61–70 (CO2doubles at year 70).Weuse one ensemble

member from each of the 22 models with archived daily

rainfall accumulation and surface air temperature. From the

RCP8.5 simulations, which are initialized from historical

forcing in 2005, we compare 2006–15 with 2090–99.

3. Calculating rain amount and rain frequency

Next, we discuss the methodology for calculating

distributions of rain amount and frequency and their

changes. We use logarithmically distributed rain-rate

bins following Watterson and Dix (2003). In log co-

ordinates, each rain-rate bin is a fixed percentage wider

than the previous one and has a bin center the same

percentage larger. We choose bin spacing of 7% to

balance resolution and sampling. For example, one rain-

rate bin is centered at 10.6mmday21 and has a width of

0.78mmday21, while the next bin is centered at

11.4mmday21 and has a width of 0.84mmday21. The

smallest nonzero bin is centered at 0.03mmday21 and

has a width of 0.0025mmday21, and the largest bin needed

for CMIP5model data is centered at 663mmday21 and has

a width of 49.0mmday21. Bins include all rain rates in the

dataset greater than 0.03mmday21. Because of the loga-

rithmic structure, movement along the rain-rate axis

is expressed as a percentage change in rain rate. A 7% in-

crease in rain rate is simply amovement of one rain-rate bin.

Another specification that must be chosen is the

threshold used to define dry days.We use a dry threshold

of 0.0321mmday21. While most dry days have zero

rainfall, in GPCP 3% of days have rainfall that is non-

zero but below the dry threshold. We miss a negligible

amount of the total rainfall (0.014% in GPCP) by ig-

noring the rain amount below the dry threshold.

Focusing on the global scale allows us to integrate

over spatial shifts in precipitating systems, like the ITCZ

and storm tracks, which occur with climate change. To

address differing spatial resolution of datasets, when

comparing two distributions, we coarsen the higher

spatial-resolution precipitation data using an averaging

scheme that conserves the total amount of rain (Jones

1999) before calculating the distribution. We coarsen

the 0.258 TRMM data to the 18 GPCP grid. Model res-

olution ranges from 0.758 to 2.88 (for models analyzed

from the CO2-increase experiment). We coarsen the

GPCP data to model grids when the model resolution is

coarser than 18 and coarsen neitherGPCP nor themodel

for the two models with resolution finer than 18.
With these decisions about coordinate system, dry

threshold, and spatial averaging made, we calculate the

distribution of rain frequency and amount. At each grid

point, we calculate a rain histogram and normalize by

the number of days to form the rain frequency distri-

bution. We also tabulate the total amount of rain that

falls in each rain-rate bin to form the rain amount dis-

tribution. Then we take the area-weighted average of

the distributions over the globe to obtain global-mean

distributions. A mathematical description of how we

calculate the distributions is presented in the appendix.

We calculate rain amount and rain frequency distri-

butions separately for the first 10 yr of the CO2-doubling

model simulations and the 10yr immediately prior to

doubling (years 61–70) as well as for the warm and cold

phases of ENSO. We report the absolute changes in rain

frequency and rain amount. Some studies report the per-

centage change of rain frequency and amount distributions

(e.g., Sun et al. 2007; Lau et al. 2013), but this has some

undesirable properties. The maximum rain rate in-

creases with warming, so for the highest rain rates

the percent change in the distribution is not defined. The

percentage change will also depend very strongly on the

bin structure used. For these reasons, we look at absolute

changes in the rain frequency and amount distributions.
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Extreme precipitation is typically quantified by the rain

rate for some cumulative percentile of the rain frequency

distribution (e.g., Allen and Ingram 2002; Pall et al. 2007;

O’Gorman and Schneider 2009). Using our global dis-

tribution of rain frequency, we form the cumulative

probability distribution of rainfall. We include both wet

and dry days, following other studies (e.g., O’Gorman

and Schneider 2009). We then interpolate the rain rates

from this cumulative distribution onto a logarithmic

percentile axis to compare the rate rain as a function of

percentile between an initial distribution and a later one.

We report the percent change in rain rate at a given

percentile of the distribution. The large range of rain

rates makes relative change a convenient metric.

Last, we put error bounds on our calculated distributions.

To estimate the error in model simulations, we use the

spread across models as a measure of variability and de-

termine the 95% confidence interval using Student’s t test

assuming each model is independent. This method will

underestimate the true uncertainty since climate models

are not independent (Masson andKnutti 2011; Pennell and

Reichler 2011). To estimate the error of our observed

composites, we calculate the distribution for eachmonth of

the 50 months of data separately and then determine the

95%confidence interval using the difference-of-means test.

4. The rain amount distribution

In this section, we look at similarities and differences

among modeled and observed rain amount and rain

frequency distributions. The global-mean distributions

of rain amount and rain frequency for both GPCP and

the CMIP5 multimodel mean are shown in Fig. 1. The

multimodel mean is taken from the first 10 yr of the

RCP8.5 simulation so that the time period is similar to

(though not exactly the same as) the GPCP time period.

To address potential inconsistency between models and

observations due to their differing resolution, the GPCP

distribution is calculated as follows: The GPCP data are

coarsened to each model’s grid, the distribution of the

coarsened GPCP data at each grid point is calculated,

each distribution of coarsened data is averaged globally,

and then the global distributions are averaged together

to obtain the distributions shown in Fig. 1. The GPCP

and model rain amount distributions agree broadly.

They both peak around 10mmday21 and are in agree-

ment for moderate rain rates. However, the model rain

amount is slightly higher at the highest and lowest rain

rates. The GPCP rain amount distribution is narrower

than the multimodel mean. The area under the rain

amount curve is the global-mean rainfall, which is lower

in GPCP, at 2.7mmday21, than in the models, at

2.9mmday21. Stephens et al. (2012) argued that GPCP

FIG. 1. Global (a) rain amount (mmday21) and (b) rain fre-

quency distribution (%) climatologies in CMIP5models andGPCP

observations of daily rainfall. Dry-day frequency is noted at the top

left of (b), with models (normal) andGPCP (thick). GPCP gridded

observations are coarsened before distributions are calculated.

Gray lines show the 95% confidence interval on the multimodel

mean according to Student’s t test across the model distributions.
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underestimates the total rainfall compared to what is

needed to balance observed atmospheric radiative cooling.

The multimodel-mean rain frequency distribu-

tion agrees relatively well with GPCP above about

10mmday21 (Fig. 1b). At lighter rain rates, between

about 0.1 and 5mmday21, models have a much higher

frequency of rain than GPCP. Modeled rain frequency

peaks at 1.1mmday21, where it is nearly twice as fre-

quent as GPCP, while theGPCP rain frequency peaks at

10.6mmday21. Models and GPCP disagree drastically

on the dry-day frequency. The dry-day frequency is 22%

in the multimodel mean but 41% in GPCP. Extending

the precipitation bins below 1mmday21 heightens the

discrepancy compared to studies that include this light

rain in the dry-day count.

Most models have a shape similar toGPCP (see Fig. S1

in the supplemental material; see also Pendergrass 2013),

with a peak somewhere slightly above 10mmday21.

Some models have an extra feature on the high end of

the distribution, while others have an extra bump at light

rain rates. Many models have distributions that closely

resemble GPCP, including the MPI-ESM models

(Mauritsen et al. 2012).

TRMMandGPCPdatasets agree on the general shape

of the distribution but disagree on many details (Fig. S2

in the supplemental material). TRMM has a broader

distribution of rainfall than GPCP, with more rain at low

and high rain rates, particularly over ocean. The datasets

agree closely on the total amount of precipitation.

Overall, GPCP and TRMM show better agreement on

rain amount than rain frequency, just as GPCP and

models agree better on total amount than frequency.

The rain amount distribution emphasizes higher rain

rates more than the rain frequency distribution does.

Models and observations agree better at higher rain rates

than lower ones, so the modeled rain amount distribution

is more similar to GPCP than the frequency distribution.

The similarity in rain amount despite differences in rain

frequency could be anticipated because rain amount is an

important factor in the energy budget, and models are

roughly in energetic balance. On other side of this coin,

having many or few light rain events makes only a small

difference in terms of latent heating and so are not

strongly constrained by the energy balance.

5. The shift and increase modes of change

We focus our analysis on the change in each distri-

bution relative to its own base state to account for

the differences in climatological distributions among

models and observations. There is no need to assume an

underlying functional form (e.g., gamma or lognormal)

of the distribution for our analysis.

Two modes of change: Shift and increase of rain
amount

In this section, we will formulate some simple modes

of change of the rain amount distribution. Before con-

sidering changes in rain, wemust define some terms. The

rain rate r is in millimeters per day, though we will work

in coordinates of lnr. The cumulative rain amountP(r) is

P(r)5

ðlnr
lnr

min

p(ln _r) d ln _r , (1)

where p(lnr) is the rain amount distribution. Dots in-

dicate placeholder variables over which the integral is

taken. The units of P are millimeters per day, and

p5 dP/d lnr. Then the total rainfall (the global-mean

precipitation) isP5P(‘)5P(rmax). Thedry-day threshold

is rmin, and the maximum daily rainfall in our dataset is

rmax. We assume P(rmin)5 0. The cumulative frequency

distribution of rain F(r) is

F(r)5

ðlnr
2‘

f (ln _r)d ln _r5Fd 1

ðlnr
lnr

min

f (ln _r)d ln _r , (2)

where f (lnr) is the rain frequency distribution, F(‘)5
F(rmax)5 1, and Fd 5F(rmin) is the dry-day frequency.

The rain amount p and rain frequency f distributions are

related by

p(lnr)5 rf (lnr). (3)

We have d lnr5 dr/r, and as long as changes are small,

we can approximate the infinitesimal changes with fi-

nite ones (D lnr5Dr/r), expressed as a percentage.

Changed distributions will be indicated by primes ( f 0,
p0, and F 0

d).

How might the distribution of rain amount and rain

frequency respond to changes in climate? One way rain

could change is that it could become more frequent. The

shape of the distribution of rain when it is raining would

stay the same, but itwould rainmore often, withmore rain

falling at each rain rate.Wewill call thismode the increase

mode. If the rain increases by a fraction a at each rain rate,

p0(lnr)5 (11 a)p(lnr), which also requires (4)

f 0(lnr)5 (11 a)f (lnr) . (5)

The increasemode results in a decreaseddry-day frequency,

F 0
d 5 12 (11 a)(12Fd), and an increase in total rainfall

P0 5 (11 a)P. The increase or decrease in rain must be

balanced by a corresponding increase or decrease in total

atmospheric cooling. We can also have negative a, where

the total precipitation and frequency of rainfall decrease.
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A response consisting of the increase mode alone is un-

likely for several reasons. For example, it does not allow for

an increase in the maximum rain rate. We expect that the

rainfall intensity will increase where convergence occurs or

where air flows over topography by at least 7%K21 be-

cause the specific humidity will increase with temperature.

However, the magnitude of global-mean precipitation in-

crease is limited by energetic constraints to be 1%–2%K21

(e.g., Pendergrass and Hartmann 2014a). For the increase

in global-mean precipitation to occur at a different rate

than events driven by convergence and upward motion,

which are generally the events with the highest rain rates,

the shape of the precipitation distribution must change.

Another possible response is that the rain amount

distribution could shift to higher rain rates. Then, the

same amount of rain would fall, but at higher rain rates.

If the distribution stays the same shape, enclosing the

same total area, then this change will be energetically

neutral, not requiring a change in atmospheric radiative

cooling. If the distribution shifts to the right by b5Dr/r,
then this shift mode is

p0(lnr)5 p(lnr2 b) . (6)

If the same amount of rain falls at higher rain rates, then

less time is spent raining. So, we should expect the rain

frequency to decrease and dry-day frequency to increase

with the shift mode. With some algebra, we obtain the

new frequency distribution,

f 0(lnr)5 e2bf (lnr2b) and (7)

F 0
d5 12

12Fd

eb
. (8)

The total rainfall does not change, so P0 5P. A sche-

matic of the increase and shift modes is shown in Fig. 2.

FIG. 2. Schematic of the modes of change of the rain distribution introduced here: (a),(c) the

increase (purple) and (b),(d) the shift (green) in (a),(b) the rain amount distributions and (c),(d)

the accompanying rain frequency distributions. Initial distributions fromGPCPare shown in black,

and the new distributions resulting from a large (30%) shift or increase are shown in color.
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The modes we have chosen have convenient mathe-

matical forms and focus on key energetic concepts, but

others are possible. For example, one can imagine

a mode where the shape of the rain frequency distribu-

tion and the total frequency of rain do not change, but

rain amount increases when it is raining. This would be

a shift of the rain frequency distribution to higher rain

rates, f 0(lnr)5 f (lnr2D lnr), analogous to the shift of

the rain amount distribution in the shift mode. In fact,

this movement of the rain frequency distribution with no

change in shape is equivalent to the shift and increase

modes simultaneously changing by the same amount,

a5 b (for small changes a, b � 1 when f and p can be

linearized). Because this mode is degenerate with the

sum of the shift mode and the increase mode, we will not

calculate it independently.

We can calculate the magnitudes of the shift and in-

crease modes that produce the closest possible fit to the

modeled or observed response to warming. We will call

their superposition the ‘‘shift plus increase.’’ To opti-

mize the shift plus increase, we make some assumptions.

First, we assume that all changes are small, so changes in

p can be linearized,

p(lnr2 b)’ p(lnr)2 b
dp

d lnr
. (9)

The model distribution and its response are discrete

distributions, so we use a discrete approximation. Next,

we must choose an error metric. We choose the sum

of the square of the difference between the shift plus

increase and the observed or model response, E5
S(Dp2Dpm)2, where Dpm is the model response, Dp5
p0 2 p, and the sum is taken over all r bins.

To fit the magnitude of the increase and shift, a and b,

we find where E has a local minimum with respect to

each of a and b. This produces the following two-

variable linear set of equations,

2
66664

Sp2 2Sp
dp

d lnr

2Sp
dp

d lnr
S
� dp

d lnr

�2

3
77775
�
a

b

�
5

2
64

�pDpm

2� dp

d lnr
Dpm

3
75 .

(10)

The optimal shift plus increase for the multimodel-

mean response to CO2 increase is shown in Fig. 3. The

magnitude of the shift mode is 3.3%K21 and the in-

crease mode is 0.9%K21. Between about 1 and

50mmday21, the shift plus increase falls within the range

of uncertainty in the model response. At the highest rain

rates and at light rain rates, the shift plus increase un-

derestimates the rain amount response, which we discuss

extensively in Pendergrass and Hartmann (2014b). The

sum of squared differences will emphasize the largest

differences, but we are more interested in how much of

the change in rainfall is captured by the response. We

report the error in terms of how much of the pre-

cipitation response it fails to capture,

Error5
SjDp2Dpmj

SjDpmj . (11)

6. Response to ENSO phases in models and
observations

In this section, we ask the following: Do the shift and

increase in the rain amount distribution provide a good

description of observed rainfall change? Gridded daily

observational precipitation datasets only go back to

1997, so at present we would not expect to see statisti-

cally significant global trends in rain frequency or rain

amount in observations. Instead of looking at trends, we

explore the response of tropical rain to ENSO. We look

at changes in tropical (308S–308N) precipitation in the

GPCP 1DD and TRMM 3B42v7 datasets (described in

section 2) composited over warm and cold phases of

FIG. 3. CMIP5 multimodel-mean rain amount response to CO2

doubling normalized by the increase in global-mean surface air

temperature (mmday21K21). The model response (black), in-

crease (purple), shift (green), and shift plus increase (pink) are

shown. Gray lines show 95% confidence interval of the multimodel-

mean response.
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ENSO. The response to ENSO can be studied in both

observations and models. So we can also ask whether

model changes are similar to the observed changes.

Figure 4 shows the difference between warm and

cold ENSO rain amount distributions (along with the

fitted shift and increase modes) for the two sets of ob-

servations as well as the multimodel mean. The dif-

ference in rain amount distribution crosses zero near

the peak of the climatological rain amount distribution,

with a local maximum at high rain rates and minimum

at lower rain rates. This is consistent with Allan and

Soden (2008), though they looked at changes as a func-

tion of percentile of the cumulative frequency distribu-

tion. GPCP and TRMM observational datasets have

qualitatively somewhat different responses. The sharper

response seen in GPCP compared to TRMM is consis-

tent with its steeper climatological distribution (Fig. S2).

Table 1 lists the shift, increase, error, and total rainfall

response for dataset and region. In all cases, the shift-

plus-increase fit the response to ENSO phase within the

uncertainty at most rain rates (Fig. 4 and Figs. S3 and S4

in the supplemental material). Figures 5a,c show the

magnitude of the shift and increase modes over the

whole tropics, sea, and land. Over land, the shift and

increase closely fit the rain amount response in all cases

(Fig. S3). Both observational datasets and the AMIP

models show a large negative increase mode of 25%–

26%K21 over land, which is slightly larger than the

FIG. 4. Rain amount response in the tropics to ENSO phases in (a) GPCP, (b) TRMM, and (c) AMIP models.

Warmminus cold ENSO precipitation fromGPCP 1DD over the tropics (308N–308S) is shown. Gray lines show 95%

confidence interval of the change according to the difference-of-means test on the observations.
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decrease in total rainfall. The datasets also agree on

a shift of rain amount to lighter rain rates, ranging from

23.3% to 25.7%K21. Most of the response to ENSO

phase over land is a decrease in rain amount.

Over the ocean, the observational datasets disagree on

the response in total rainfall (Fig. 5c). Interannual vari-

ability over the ocean in the previous version of TRMM,

version 6, was different from other observational datasets

(bothGPCP and satellite; Liu andAllan 2012). As a result

of the difference in the total rainfall response, the obser-

vational datasets disagree on the sign of the increasemode

over ocean. TRMM has a decrease of 6.1%K21, while

GPCP has an increase of 6.1%K21. AMIP models fall in

between the two, with 1.8%K21 of decrease. The changes

in atmospheric energy balance over ENSO are unlikely to

be the same as in response to CO2 increase because both

the nature of the forcing and the spatial structures of the

changes are different. Energy transport into and out of the

tropics plays an important role in the relationship between

tropical surface temperature and precipitation (Su and

Neelin 2003), unlike in the global average case.

The observational datasets and AMIP models agree on

a shift between 18% and 22%K21 over ocean (Fig. 5a),

despite the disagreement in total rainfall response. The rain

TABLE 1. The shift and increase in response to ENSO phases for GPCP and TRMM observations and AMIP model simulations, along

with the error of the fit and the change in mean precipitation. For the AMIP simulations, both the fit to the multimodel mean (MMM) and

the average of the fit to each model are shown. Temperature changes are taken from tropical average HadCRUT4 for observational

datasets and surface air temperature for models.

Dataset Shift (%K21) Increase (%K21) Error DP (%K21)

Whole tropics

GPCP 14 6.8 0.31 6.1

TRMM 14 27.8 0.21 26.1

AMIP mean of models 15 24.7 0.51 21.8

AMIP MMM 15 25.2 0.49 21.8

Sea

GPCP 20 19 0.21 17

TRMM 18 20.85 0.17 20.92

AMIP mean of models 20 2.0 0.48 3.9

AMIP MMM 22 1.2 0.31 3.8

Land

GPCP 23.6 226 0.30 222

TRMM 25.7 225 0.24 222

AMIP mean of models 23.3 225 0.42 221

AMIP MMM 24.5 224 0.32 221

FIG. 5. (a),(b) The shift and (c),(d) the increase modes fit to (a),(c) the tropical response to ENSO phases in the

CMIP5 multimodel mean and (b),(d) the global response to CO2 increase. Units are percent per kelvin. The total

(black), ocean (blue), and land (brown) are included.
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amount response toENSO is dominatedby a shift to higher

rain rates in both observational datasets and models.

The response toENSOphases differs fromthe response to

increasing CO2 [the response to CO2 increase is explored in

Pendergrass and Hartmann (2014b)]. Figures 5b,d compare

the magnitude of the shift-plus-increase fit to the modeled

responses to CO2 increase and ENSO phases. The differ-

ences between land and ocean in response to CO2 increase

are much smaller than the differences in response to ENSO

phases.Themagnitudeof the shift ismuchbigger in response

to ENSO (15%K21) than in response to CO2 increase

(3.3%K21) for the total area andover theocean. Finally, the

increasemode has a largermagnitude in themodel response

to ENSO phases than in response to CO2 increase.

It is remarkable that the shift and increase fit the rain

amount response to ENSO phases in both observations

and models. Next we consider the implications of the

shift and increase on the extreme events.

a. Extreme events

Nowwe turn to the response of the extreme end of the

frequency distribution: How does observed tropical ex-

treme precipitation respond to ENSO, and do models

capture the observed changes? The response of extreme

precipitation to ENSO phases in both observational

datasets is shown in Fig. 6. All datasets and the fitted

shift plus increases show increases in extreme events

beyond the 99th percentile in the tropical mean. At the

99.99th percentile, the increases are highest in AMIP

models (19%K21), followed by TRMM (12%K21) and

then GPCP (5%K21). At the 99th percentile, GPCP (at

10%K21) has more increase than TRMM (5%K21),

FIG. 6. Extreme precipitation response (%K21) to ENSO phases in (a) GPCP and (b) TRMM observations and

(c) AMIP models.
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while AMIP is similar to GPCP (10%K21). Up to the

99th percentile, the shift plus increase is within the un-

certainty in each observational dataset. At the 99.9th

and 99.99th percentiles, the shift plus increase un-

derestimates the increase for AMIP models.

The change in extreme precipitation over ocean (Fig. S5

in the supplemental material) follows the same pattern as

the whole tropics. GPCP and TRMM responses over land

(Fig. S6) are similar to the AMIP response (Fig. 7b). Un-

like for CO2 doubling, the response of extreme rain rate

over land is very different from the total response (con-

sistent with Allan et al. 2013). The ‘‘shift plus decrease’’

predicts a decrease in rain rate at nearly all percentiles in

both observational datasets and AMIP experiment. The

only exception is that in GPCP, the most extreme per-

centiles do not show significant change. The shift plus in-

crease predicts a larger decrease in rain rate at all

percentiles beyond the 99th in all datasets over land. The

models agree less over land than over ocean, unlike in re-

sponse to CO2 doubling. The standard deviation of the

99.99th-percentile rain-rate response is 16%K21 over

land and 10.8%K21 over ocean. For the entire tropics, the

standard deviation among models is lower than for either

land or ocean, at just 9.0%K21. This is consistent with

shifting of rain (spatially) from land to ocean resulting in

some compensation across models.

The increase in extreme precipitation implied by the

shift plus increase is tightly tied to the magnitude of the

shift mode. The finding that the shift is much greater for

changes during ENSO events than for the response to

CO2 doubling (by a factor of at least 4) is consistent with

the finding that the sensitivity of 99.9th-percentile pre-

cipitation is 2.5 times greater for interannual variability

than for increases expected over the next century in

models (O’Gorman 2012). Allan et al. (2013) also found

muted increase of extreme precipitation for climate

change relative to interannual variability.

Land and ocean could be expected to have different

responses to ENSO or CO2 increase for physical reasons

(Trenberth 2011). Figure 7a shows the multimodel-

mean response to CO2 doubling over land (at all lat-

itudes). It is very similar to the total response, except for

somewhat better agreement among models than for the

global response. The intermodel standard deviation of

99.99th-percentile increase is 7.2%K21 over ocean and

3.9%K21 over land.

b. Sorting models by comparing their response to
ENSO phases with observations

Can we discern whether some models are more con-

sistent with observations than others by comparingAMIP

experiments with observations? O’Gorman (2012)

showed that the responses of interannual variability and

long-term change in each model’s 99.9th-percentile pre-

cipitation response are related and used the modeled re-

lationship between interannual variability and long-term

change to predict the long-term change based on ob-

served variability. For the 14 models analyzed here with

simulations for both RCP8.5 and AMIP experiments, the

99.99th-percentile response due to twenty-first-century

climate forcing and ENSO phase are positively corre-

lated, significant at the 90% (but not 95%) confidence

level. In these models, the shift mode in response to

ENSO phase and RCP8.5 experiments is also correlated

(significant at 95% confidence). If the observed response

to ENSO phase clearly favored some models over others,

FIG. 7. Change in extremes over land inmodels in response to (a) CO2 doubling and (b) ENSOphases inAMIP experiments.
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TABLE 2. CMIP5 models sorted by whether or not their tropical response to ENSO phases in AMIP simulations are consistent with

GPCP and TRMMobserved responses. To be considered consistent, a model’s shift must be within one standard deviation (6.5%K21) of

the observed shift, 14%K21, and its 99.99th-percentile rain-rate response (DR99:99) must also fall with the uncertainty range which spans

from22% to 21%K21. Only models participating in AMIP as well as either CO2-doubling or RCP8.5 experiments are included. Global

responses are shown for CO2-doubling and RCP8.5 experiments.

AMIP 2 3 CO2 RCP8.5

Model Expanded model name

Shift

(%K21)

DR99:99

(%K21)

Shift

(%K21)

DR99:99

(%K21)

Shift

(%K21)

DR99:99

(%K21)

Consistent

BNU-ESM Beijing Normal University–Earth

System Model

12 3.4 2.3 9.0 6 4.7

CMCC-CM Centro Euro-Mediterraneo per I

Cambiamenti Climatici Climate

Model

19 2.6 1.8 8.2 6 3.2

CSIRO Mk3.6.0* Commonwealth Scientific and

Industrial Research Organisation

Mark 3.6.0

9.9 8.5 3.6 5.0 6 2.4

CanAM4 Fourth Generation Canadian Coupled

Atmospheric Global Climate Model

15 14 2.6 8.9 6 2.3 1.9 7.5 6 3.6

FGOALS-g2 Flexible Global Ocean–Atmosphere–

Land System Model, gridpoint

version 2

14 8.3 0.41 1.1 6 1.9

INM-CM4.0 Institute of Numerical Mathematics

Coupled Model, version 4.0

13 9.8 2.8 2.3 6 1.4

IPSL-CM5B-LR* L’Institut Pierre-Simon Laplace Coupled

Model, version 5B, low resolution

18 20 3.7 3.4 6 2.2 4.0 3.2 6 3.5

MPI-ESM-LR Max Planck Institute Earth System

Model, low resolution

19 17 5.7 6.3 6 2.5 4.7 6.8 6 2.9

MPI-ESM-MR Max Planck Institute Earth System

Model, medium resolution

17 9.8 5.6 6.9 6 2.5

Not Consistent

ACCESS1.3 Australian Community Climate and

Earth-System Simulator,

version 1.3

21 0.37 4.0 4.5 6 1.9

BCC-CSM1.1 Beijing Climate Center, Climate System

Model, version 1.1

30 7.9 4.8 5.8 6 0.84 5.2 8.1 6 1.3

CCSM4 Community Climate System Model,

version 4

15 27 4.7 9.7 6 2.6 2.8 14 6 8.7

CNRM-CM5 Centre National de Recherches

Météorologiques Coupled Global
Climate Model, version 5

5.9 21 2.0 7.7 6 3.5

FGOALS-s2 Flexible Global Ocean–Atmosphere–

Land System Model, second spectral

version

25 29 0.18 6.6 6 3.2

GFDL CM3 Geophysical Fluid Dynamics Laboratory

Climate Model, version 3

21 30 2.5 9.4 6 5.5 2.8 13 6 7.6

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled

Model, version 5A, low resolution

4.9 17 2.7 12 6 2.8 2.1 21 6 4.2

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace Coupled

Model, version 5A, mid resolution

0.96 13 2.1 12 6 1.8

MIROC5 Model for Interdisciplinary Research on

Climate, version 5

6.8 11 20.16 4.8 6 2.6 0.77 8.0 6 3.2

MRI-CGCM3 Meteorological Research Institute

Coupled Atmosphere–Ocean General

Circulation Model, version 3

20 31 5.2 16 6 3.1

NorESM1-M Norwegian Earth System Model,

version 1 (intermediate resolution)

14 25 3.7 4.1 6 2.2 3.7 9.0 6 5.3

* Not consistent when rain-rate response criterion is applied at the 99.9th percentile.
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we might take that as an indication that those models

were closer to reality and more heavily weight their

response to global warming. The companion paper,

Pendergrass and Hartmann (2014b), focuses on the re-

sponse to CO2 increase in models. One of the findings

there is that some models have an extreme mode, which

is an increase in rain rate at the highest percentiles of the

distribution, while othermodels’ responses are closely fit

by the shift plus increase.

A challenge with this approach is that the two obser-

vational datasets disagree about many aspects of the re-

sponse toENSO.They disagree about the sign of the total

change in rainfall. They disagree about whether the

heaviest events should increase at rates greater (TRMM)

or less (GPCP) than the shift-plus-increase prediction.

However, they do agree that the magnitude of the shift

mode is 14%K21. They put a wide margin on the mag-

nitude of the increase at the 99.99th percentile, from

23% to 21%K21 (the bottom of the GPCP range

through to the high end of TRMM). We use two mea-

sures to sort the models: first, the 99.99th-percentile

rain-rate response within the error bounds of either ob-

servational dataset (from22%to 21%K21, awide range of

responses) and, second, a shiftwithin one standarddeviation

(6.5%K21) of the observational datasets (8%–20%K21).

The range of acceptable model responses is quite wide,

but half of models do not fall within it. Two more models

are inconsistent when the rain-rate response criterion is

applied at the 99.9th, rather than the 99.99th, percentile.

Table 2 lists the models that do and do not meet the cri-

teria for consistency. Only models that also participated

in the RCP8.5 or CO2-increase experiments are shown.

Models that are consistent with observations according to

this criterion have increases in 99.99th-percentile rain rate

for RCP8.5 or CO2-doubling experiments that are at most

9.0%K21.Furthermore, inPendergrassandHartmann(2014b)

we show that one consistentmodel (MPI-ESM-LR)has a large

initial convective fraction while one inconsistent model

(IPSL-CM5A-LR) has a small initial convective fraction.

Models with large increases in extreme precipitation

participating in the AMIP experiment are inconsistent

with observations according to the criteria used here.

7. Conclusions

We have considered the rain amount and rain fre-

quency distributions of daily precipitation data in

CMIP5 models and in GPCP 1DD and TRMM 3B42

version 7 observational datasets and their changes in

response to warm and cold phases of ENSO. CMIP5

models do a tolerable job of simulating the global dis-

tribution of rain amount by rain rate when compared

to the GPCP 1DD observational dataset. The models

produce a higher frequency of rain falling at light rain

rates compared to observations, but the rain amount

contributed at these light rates is small.

We introduce two modes of coherent change of the

rain amount distribution: an increase in rain amount at

all rain rates (the increase mode) and a shift of the rain

amount distribution to higher rain rates (the shift

mode). The increase changes total rainfall, while the

shift does not. The degree of shift is expressed as a per-

centage change in rain rate, representing a movement of

the rain amount distribution along an axis of the log of

rain rate. The increase is expressed as a percentage

change in rain amount at all rain rates.

We fit the shift and increase modes of the rain amount

distribution to the modeled and observed response to

warm and cold ENSO phases. Observational datasets

disagree with each other about the change inmean rainfall

over ocean in response to ENSO phases. Nonetheless, the

shift plus increase fits much of the change in rain amount

reasonably, reinforcing our confidence in the framework.

Despite disagreement about total rain in the observational

datasets, AMIPmodel simulations and both observational

datasets produce a similar shift, between 14% and 15%

K21 during ENSO events. Models and observations agree

on the differences between land and ocean responses to

ENSO events. The response of the rain frequency as

a function of rain rate and extreme rain rate as a function

of percentile are also included in the framework.
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APPENDIX

Rain Amount and Rain Frequency Distribution
Calculations

We calculate the distribution of rain amount p and

rain frequency f for each dataset, using daily rain ac-

cumulation r from model output or gridded observa-

tions. The Rl
i and Rr

i are left and right bin edges, and

Rc
i 5 (Rl

i 1Rr
i )/2 is bin centers, which we use in trans-

forming the distribution,
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where A represents areas of each grid point and the

total area and Nd is the number of days. The distri-

butions are calculated a bin width D lnR5
(Ri11 2Ri)/Ri 5 7:67%, which gives reasonable sam-

pling across the distribution.
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