A Test of the Simulation of Tropical Convective Cloudiness by a Cloud-Resolving Model

Mario A. Lopez, Dennis L. Hartmann, Peter N. Blossey, Robert Wood, Christopher S. Bretherton, and Terence L. Kubar

Department of Atmospheric Sciences
University of Washington
Seattle, Washington 98195

Submitted to J. Climate

September 21, 2007
Revised
June, 2008
October 29, 2008

Corresponding author address: Dennis L. Hartmann, Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640
E-mail: dhartm@washington.edu
Abstract

A methodology is described for testing the simulation of tropical convective clouds by models through comparison with observations of clouds and precipitation from Earth-orbiting satellites. Clouds are divided into categories that represent convective cores, moderately thick anvil clouds and thin high clouds. Fractional abundances of these clouds are computed as a function of rain rate. A three dimensional model is forced with steady forcing characteristic of tropical Pacific convective regions, and the model clouds are compared with satellite observations for the same regions. The model produces a good simulation of the relationship between the precipitation rate and optically thick cold clouds that represent convective cores. The observations show large abundances of anvil cloud with a strong dependence on rain rate, but the model produces too little anvil cloud by a factor of about four and with a very weak dependence on rain rate. The observations also show probability density functions for OLR and albedo with maxima that correspond to extended upper-level cold clouds, whereas the model does not. The sensitivity of the anvil cloud simulation to model parameters is explored using a two-dimensional model. Both cloud physical parameters and mean wind shear effects are investigated. The simulation of anvil cloud can be improved while maintaining a good simulation of optically thick cloud by adjusting the cloud physics parameters in the model to produce more ice cloud and less liquid water cloud.
1. Introduction

The role of clouds remains one of the primary uncertainties in projections of future climates (Bony et al., 2006: IPCC, 2007). Clouds and water vapor have a strong influence on the radiation budget of Earth, and it is unclear how cloud properties respond to global climate change. The Tropics include half of the surface area of Earth, and account for much more than half of the Earth’s greenhouse effect. Tropical deep convection is important in setting the relationship between surface temperature and the radiation balance at the top of the atmosphere (Hartmann et al., 1992). High, cold clouds are particularly interesting because the extended upper level clouds associated with tropical convection greatly influence both longwave emission and absorbed solar radiation, although their effect on the net energy balance is often much less than their individual effects on longwave and solar radiation (Hartmann et al., 2001).

Deep convective cores occupy a very small fraction of the tropical area. Extended upper level clouds that vary from thick stratiform anvil clouds to thin cirrus clouds have more cloud mass and area than the cores of active deep convection and are much more important in the radiative balance of Earth. Anvil clouds associated with intense tropical convective systems are known to have long lifetimes and to cover large areas, accounting for a significant fraction of the precipitation produced by such systems (Leary and Houze, 1980). Large mesoscale convective systems over the Tropical Western Pacific Warm Pool form long lived structures called “super clusters” which can extend for thousands of kilometers and last as long as 2 days (Nakazawa, 1988: Mapes and Houze, 1993: Chen et al., 1996).

The upper level anvil clouds are important not only radiatively, but also in setting the structure of the vertical heating profile in the tropics. Precipitation from the anvils evaporates as it falls through clear air below and this process makes the vertical profiles of heating and vertical
velocity much more top heavy (Houze, 1982). It is reasonable to suppose that the heating profile of organized convection in the tropics shapes the large-scale vertical velocity in the Tropics (Mapes et al., 2006), and if so, this has significant implications for the large scale flow (Hartmann et al., 1982; Lin et al., 2004; Schumacher et al., 2004). The vertical velocity profile is also very important in determining the gross moist stability and other diagnostics of the interaction of convection with large-scale thermodynamics (Back and Bretherton, 2006). The interaction between organized deep convection and large-scale motion is a central issue in tropical meteorology.

Although some climate models have an upper level ice cloud parameterization tied to the convection scheme and can produce reasonable simulations of upper level clouds (Comstock and Jakob, 2004), upper level ice clouds are often deficient in amount or spatial structure (Li et al., 2005), and others show clear deficiencies related to the proper simulation of tropical anvil clouds (Ringer and Allan, 2004). No global climate models currently have a tested parameterization for anvil cloud dynamics, although GCM parameterizations are beginning to consider more explicit incorporation of the effects of mesoscale circulations and anvil cloud formation (Donner et al., 2001). It has been proposed that a way forward is to use much greater spatial resolution, perhaps with cloud-resolving models (CRM) embedded within a more coarsely gridded global climate model (Grabowski, 2001; Randall et al., 2003a). In this manner the interactions between mesoscale circulations, cloud physics and radiation may be incorporated explicitly in a global climate model for a computational cost that is less than a global cloud-resolving model. This is especially important in the Tropics, where large-scale forcing of convection is less dominant than in midlatitudes, and self-organization of convection is critical (Su et al., 2000; Grabowski, 2003c). Wu (2002) performed radiative-convective equilibrium calculations above a mixed layer
SST model and showed a strong dependence of the equilibrium climate on the rate of ice sedimentation. An important step is to verify that CRMs of the type proposed for inclusion in climate models can simulate key processes realistically and produce realistic cloud properties.

Cloud Resolving Models are designed to simulate convection explicitly. They have much finer horizontal resolution than GCMs, with grid size typically 1 to 5 km compared with hundreds of km in GCMs. At higher spatial resolution, the vertical motions of cloud-scale convective plumes are assumed to be resolved using the prognostic equations of motion, so a convective parameterization is not used. Cloud microphysical processes and sub-grid turbulent transport must still be parameterized, however. CRMs can be used to compute radiative-convective equilibrium (Tompkins and Craig (1998)), or they can be driven with specified large-scale dynamical forcing.

CRM validation methodologies have involved comparing the results of both CRMs and Single Column Models (SCMs) to observations. Luo et al. (2005) demonstrate that the UCLA/CSU CRM produces more realistic cirrus cloud properties than the SCM version of the Global Forecast System Model. Using a variety of both CRMs and SCMs to simulate ARM observations, Randall et al. (2003b) demonstrate that CRMs produce smaller biases in vertical profiles of water vapor, temperature, and cloud occurrence than SCMs. Because CRMs perform better than SCMs in radiative convective equilibrium simulations, it has been proposed that GCM simulations may improve if their convective parameterization schemes are replaced with a CRM embedded in each grid cell. These schemes have shown promise in helping models produce realistic Madden-Julian Oscillations (Grabowski, 2003b: Randall et al., 2003b). Ovtchinnikov et al. (2006) show that a GCM using an embedded CRM convective scheme produces too little high cloud compared to observations, however. Wyant et al. (2006b) compare
clouds produced by a GCM using super parameterization to ISCCP data, showing that in different dynamical regimes the model tends to either over-predict or under-predict cloud fraction. Both GCMs with embedded CRMs and global cloud-resolving GCMs are beginning to be used to evaluate climate sensitivity (Miura et al., 2005; Wyant et al., 2006a).

More effort should be devoted to methodologies that compare CRMs with observational data directly, especially their ability to simulate realistic clouds and their relation to the top-of-atmosphere (TOA) radiation balance. Wu et al. (1999) performed a 39-day simulation of the TOGA-COARE period using a 2-D model, and emphasized the importance of the cloud physics parameterizations in simulating observations of surface radiative fluxes. Comparing the Advanced Regional Prediction System/Langley Research Center CRM to satellite observations, Eitzen and Xu (2005) showed differences in probability density functions (PDFs) of albedo and outgoing longwave radiation (OLR) between large cloud objects in the model and in observations. Luo et al. (2007) found that a CRM intended for use as part of a super parameterization tended to underestimate higher albedos. Blossey et al. (2007) compared the System for Atmospheric Modeling (SAM) to KWAJEX observations, and showed persistent biases in albedo and OLR due to an insufficient amount of high clouds during periods of low to moderate precipitation. Zhou et al. (2007) compared a 3-D model with 2-km horizontal grid spacing to observations from satellites and found that the convection tended to form in dense packets with less than the observed amount of anvil cloud.

Here we demonstrate a method of bringing satellite data to bear on testing the simulation of tropical convective cloud structure by a cloud-resolving model. This comparison focuses on the necessity of properly simulating the distribution of optical depth in cold clouds. Hartmann et al. (2001) have shown that the distribution of optical depth within tropical convective systems is
critical to determining the net effect of these clouds on the Earth’s energy budget. We compare the distributions of high clouds produced by the SAM model run in a tropical domain with distributions observed from space by the Moderate Resolution Imaging Spectrometer (MODIS) instrument, using the Advanced Microwave Scanning Radiometer (AMSR) instrument to sort the data by rain rate. Particular attention will be given to simulating the correct distribution of optical depth for cold clouds. PDFs and domain averages of albedo and OLR are also examined to help quantify the relationship between clouds and the TOA energy budget in the model.

Section 2 describes the observational methodology. Sections 3 and 4 present three-dimensional (3-D) simulations and results. Section 5 introduces two-dimensional (2-D) methodology that is used to test how changes to the model may affect anvil cloud amount, and Section 6 details these 2-D experiments. Finally, Section 7 offers discussion and conclusions.

2. Observational Methodology

The goal is to compare cloud-resolving model simulations of tropical convection with satellite observations to test the validity of the model. The observational methodology follows that of Kubar et al. (2007) (hereafter KHW), in which coincident measurements of precipitation from the Advance Microwave Scanning Radiometer (AMSR) (Wilheit et al., 2003) and cloud optical depth and cloud top temperature measurements from the Moderate Resolution Imaging Spectrometer (MODIS) (Platnick et al., 2003) are used to show the relationship of cloud properties to precipitation rate in the Tropics. We use the Version-5 AMSR rain rate data (Remote_Sensing_Systems, 2006), which are available daily for 0.25x0.25-degree region. The validation of AMSR precipitation estimates is ongoing, but previous studies of microwave remote sensing of precipitation suggest biases against independent measurements in oceanic
areas of 10 to 20% (Kummerow et al., 2001; DeMoss and Bowman, 2007). Since our analysis technique involves averages of large samples, it is the bias that is of most concern. MODIS Joint Level 2 cloud data are used, which have a resolution of 5km. Both these data sets are averaged up to 1x1-degree resolution grids and averages are taken over three days to form the basic data set. This averaging in space and time reduces the effect of instantaneous sampling variations of the two data sets, but still captures a wide range of average rain rates and associated cloud properties that can be compared with the variability of the models. The results are not sensitive to the details of the averaging (KHW). All observations are made at 1:30 p.m. local time. The diurnal variation of tropical convection over the oceans inferred from satellite data is small compared to the total variability (Hendon and Woodberry, 1993). More details of the data analysis can be found in KHW.

KHW consider clouds with tops colder than 245K and divide them into groups according to the optical depth. This temperature corresponds to a relative minimum in the distribution of cloud top temperature measured by MODIS. Two optical depth cutoffs were chosen. An optical depth (τ) of 4 approximately separates thin clouds with a positive net cloud radiative forcing from thicker clouds that cause a net reduction in the radiation balance at the top of the atmosphere. KHW defined cold clouds with $\tau < 4$ as thin clouds, cold clouds with $4 < \tau < 32$ to be anvil clouds, and cold clouds with $\tau > 32$ to be thick clouds. KHW found that thick clouds thus defined have a relationship with AMSR precipitation that is the same in the East Pacific and West Pacific (EP and WP), while anvil and thin clouds have a different relationship with precipitation in the EP and WP. High optical depth clouds ($\tau > 32$) are relatively rare in the MODIS observations, but they are an excellent marker for the deep convective cores that initiate
much of the precipitation. Here we use these same definitions of thin, anvil and thick clouds to test the relationship of clouds to precipitation in a cloud-resolving model. The partitioning of cloud types by optical depth is a simplification of previous ISCCP categorizations (Chen et al., 2000: Rossow et al., 2005), but the separation into warming, cooling and heavily precipitating cold clouds is a physically motivated and objective basis for comparing models with data in a way that relates cloud morphology to cloud radiative effects.

Rather than using cloud properties and precipitation derived from satellite observations, one could use the model data to generate expected MODIS and AMSR radiances and compare those, as is done with satellite profiling radiances in modern data assimilation schemes. Such an analysis is well beyond the scope of the current effort, and we choose rather to compare in situ state variables from the model with state variables inferred from satellite observations.

3. Three-Dimensional Modeling Methodology

We employ the System for Atmospheric Modeling (SAM) version 6.3, a three-dimensional CRM developed at Colorado State University (Khairoutdinov and Randall, 2003). The 3-D SAM simulations are set up in a similar manner to those in Blossey et al. (2007). We use a horizontal domain of 256 by 256 km with 1 km grid size. The model has 64 levels in the vertical. Spacing between levels varies from 75 m at the surface to 400 m through most of the troposphere and finally 1 km in the “sponge region” (top 30% of domain). To represent near-equatorial conditions, the Coriolis parameter is set to zero. The model does not use a planetary boundary layer scheme apart from smaller vertical grid spacing near the surface and surface flux parameterizations for momentum, heat and moisture. SST is specified. The model utilizes a Smagorinsky scheme for sub-grid scale turbulent transport and the radiation scheme from CAM
3.0. Insolation is constant with the diurnal average zenith angle and irradiance. A nominal 6-second time step is used. Radiation is computed every 6 minutes.

The prognostic thermodynamic variables in SAM are non-precipitating water, precipitating water, and liquid/ice static energy. Non-precipitating water includes water vapor, cloud liquid, and cloud ice, while precipitating water includes rain, snow, and graupel. Partitioning between hydrometeor species is based on temperature. Supersaturation of water vapor is not allowed. In the CAM 3.0 radiation scheme, water vapor, cloud liquid, and cloud ice are all radiatively active, but precipitating hydrometeors are not. Luo et al. (2003) have shown that the absorption of radiation by snow can be important, but in our model the mass of snow is less than that of cloud ice, even in the base case in which ice falls relatively quickly, and because the particle radius of snow is so much larger than ice, the error in the optical depth caused by neglecting snow is generally less than 10% in these experiments. For the BASE case, the default one-moment bulk microphysical parameterization of SAM is used (Appendix A of Khairoutdinov and Randall (2003)), except that cloud ice fall speed is calculated as a function of ice water content following Heymsfield (2003), replacing the default parameterization in which cloud ice fall speed is fixed at a constant value of 40 cm s⁻¹.

Profiles of zonal wind are specified, and domain-mean zonal winds are nudged to these prescribed values on a 2-hour time scale. To test the influence of wind shear, three mean wind profiles are considered. In the base case the wind decreases from 5 ms⁻¹ at the surface to zero at the tropopause (Shear-5). Additional experiments are performed in which the mean wind varies from 5 ms⁻¹ at the surface to -15 ms⁻¹ at the tropopause, resulting in a quadrupling of the wind shear (Shear-20). The latter case is a good approximation to the maximum climatological wind shear in the Tropics. Finally, the wind profile from TOGA COARE, shown in Wu (2002) is used
(Shear-TC). This profile has a low level wind maximum, relatively weak shear in the mid
troposphere, and strong shear of about 15 ms\(^{-1}\) between 10 km and the tropopause. The surface
meridional wind in this profile is modified to bring the surface wind speed to 5 ms\(^{-1}\) as in the
other two cases, in order to eliminate a change in surface fluxes associated with the mean surface
wind speed.

We wish to compare satellite observations with cloud-resolving model simulations. In
order for this to be useful, we must set up the model in such a way that we might expect it to
produce the observed cloud statistics. Convectively active regions of the Tropical East Pacific
(EP: 7.5-10N, 140-120W) and West Pacific (WP: 5-7.5N, 140-160E) are selected. Large-scale
forcing is applied to the simulation by imposing the temperature and moisture forcing consistent
with vertical advection of the large-scale vertical velocity profiles derived by Back and
Bretherton (2006) from reanalysis data (Fig. 1). Qualitatively, these profiles are described as
“bottom heavy” in the East Pacific and “top heavy” in the West Pacific. Each profile has been
normalized in amplitude to produce a domain-mean rainfall rate of approximately 15 mm/day.
Differences between the clouds in the simulations for the EP and WP regions are thus due to the
profile shape, not the overall domain-mean intensity of convection. This rain rate is higher than
observed in order to produce relatively vigorous convection with steady forcing. We also
perform simulations with the forcing reduced so that the precipitation is close to that observed by
AMSR. SST is fixed at 302.49 K in both simulations to assure that differences between the two
simulations are a result of the imposed vertical motion profiles, rather than differences in SST.
We have done additional simulations in which the SSTs are closer to their observed values in
each region, but the radiative convective equilibrium (RCE) cloud distributions are not very
sensitive to the uniform variations in the SST of 1 or 2 °C (Lau et al., 1994).
The 3-D simulations are run for a total of 10 days, after having been run on a smaller 64 by 64 km domain for 50 days to a state of RCE. Instantaneous fields are output every hour. The final 9 days when the 256x256 km model has equilibrated are used to gather the cloud and precipitation statistics for comparison with the observations. Because thin, anvil and thick cloud fractions are not model output variables, they are calculated from the instantaneous model data, using a column-by-column algorithm. In each layer of every column, visible optical depth is calculated using liquid/ice water path and effective radius:

$$\tau_{\text{layer}} = \frac{3}{2} \frac{LWP}{r_{el}} + \frac{3}{2} \frac{IWP}{r_{ei}},$$ \hspace{1cm} (1)

where liquid water path (LWP) and ice water path (IWP) are in g m^{-2}, and r_{el} and r_{ei} are the effective radii for liquid and ice clouds in microns. The effective radius for cloud liquid water is 14 microns. For cloud ice, effective radius varies from ~6 microns at temperatures below 180 K to ~250 microns at temperatures above 274 K, using a lookup table. These are the same specifications used in the radiative transfer model in the simulations. Total column visible optical depth is then calculated as the cumulative sum of the optical depth in every layer of the column.

Because we desire to determine cloud top temperature using a technique similar to that of the satellite observations with which we will compare the model, cloud top temperature, T_c, for the column is determined as the temperature at the top of the layer where cumulative optical depth from TOA exceeds 0.1, which is intended to mimic the detection threshold for MODIS. Clouds are classified as high, if $T_c < 245^\circ\text{K}$. Cloud fractions for the cold cloud types defined by KHW are determined for blocks of 64 by 64 km, which is approximately the size of the blocks in the satellite data.
We examine high cloud fraction as a function of rain rate. Rain rate is directly related to the latent heating term that drives the tropical circulation, and the relationship between rain rate and cloud amount is a fundamental quantity of importance for climate. For each block, mean rain rate is obtained by averaging the surface rain rate of all the columns within the block. Using instantaneous hourly output fields, an aggregate of cloud fractions and mean rain rates is formed. Percentiles of rain rate are calculated from the mean rain rates, ignoring mean rain rates less than 0.1 mm/day so that the percentiles will better resolve the larger rain rates. We next bin cloud fraction by percentile of rain rate to obtain a relationship between average cloud fraction and rain rate as in KHW.

4. Three-Dimensional Results

Fig. 2 shows the cloud amounts for the EP and WP regions as a function of rain rate for both the 3-D model simulations and for the satellite observations. The baseline 2-D case is also shown and will be described later. The bottom panel shows the relationship of thick cloud \((T_c < 245K, \tau > 32)\) fraction to precipitation rate. The model and the observations fall nearly on the same lines in both the EP and WP regions. The middle panel shows the relationship of anvil cloud fraction \((T_c < 245K, 4 < \tau < 32)\) to precipitation rate. In this case the model shows far too little anvil cloud and the anvil cloud amount does not increase with precipitation rate as observed. The top panel shows the thin cloud \((T_c < 245K, \tau < 4)\) fraction as a function of rain rate. The thin cloud fractions are more similar those observed, the weak dependence of thin cloud on precipitation rate is simulated, and the much larger thin cloud amount in the WP than the EP is also simulated. These results suggest that the thin clouds in both the model and the observations
are not uniquely related to the amount of anvil cloud. Animations of the model simulation suggest that the thin cloud is not connected directly to the anvil cloud, but rather seems to be a result of the uniform cooling imposed at high levels (Fig. 1). Simulations performed for the base case conditions with the shear increased by a factor of 4 to 20 ms⁻¹ between the surface and the tropopause do not produce significantly better agreement with observations than that shown in Fig. 1. Later we will show that when the cloud physics parameterization is modified to produce more ice, the model produces a sensitivity of clouds to shear that is in agreement with observations.

Thin cloud fraction is somewhat independent of rain rate in both the East and West Pacific simulations, but a decrease in thin cloud fraction occurs at the highest rain rates. This decrease at high rain rates is due to convective cores and anvils being the dominant cloud species in places where precipitation is most intense, thus decreasing the space available within the 1°x1° box for thin cloud.

Because the cloud fraction versus rain rate composites only convey information about cloud amount in places where precipitation is occurring, it is possible that our methodology fails to detect some anvil clouds, if they spread to regions where precipitation is extremely light (less than 0.1 mm/day). To eliminate this as a possibility, we examine domain average cloud fraction. Table 1 shows domain average comparisons between the SAM model simulation and the satellite observations for the EP and WP regions derived from MODIS temperature-optical depth histograms. Although the rain rate in these simulations is greater than that in the observations, the anvil cloud fraction is much smaller than observed, confirming that the 3-D simulations do not produce enough anvil cloud. Domain average high thick cloud fraction is also less than expected, given the difference in precipitation rates. The model produces a reasonable amount of
thick cloud per unit of precipitation when divided into a precipitation spectrum, but the scale in Fig. 2 is logarithmic and much of the precipitation comes in a relatively small number of very intense events. Domain average high thin cloud fraction is slightly higher than observations in the East Pacific and nearly agrees with observations in the West Pacific. Although the rain rate composites suggest that the model over-produces high thin cloud in the West Pacific, the unexpected agreement with observations in Table 1 may indicate that high thin clouds in the West Pacific are abundant in non-raining regions, perhaps sustained by gravity waves or the mean rising motion in the upper troposphere. Because domain average rain rate in the simulations is significantly larger than the AMSR observations, the amount of cold cloud per unit of precipitation in the model is very low compared to AMSR/MODIS observations, especially for clouds with intermediate optical depths. Table 1 shows that the anvil to thick cloud fraction in the observations is 5.2-6.6, but in the model is 1.4-1.8.

Table 1 shows large biases in the domain-mean albedo, with the model albedo around 0.25 and the observed albedo nearly 0.4 in both regions. The model OLR is too high by 20Wm⁻² in the EP and nearly 40 Wm⁻² too high in the WP. The model does show a higher OLR in the EP by about 20 Wm⁻², compared to the observed EP-WP difference of 37 Wm⁻². The OLR discrepancy is fractionally less than the albedo discrepancy because the model produces high, thin clouds in reasonable amounts, but far too little cloud with intermediate optical depths (anvil clouds). The thin clouds reduce the OLR, but have little effect on the albedo, for which the anvil clouds are very important.

To further investigate how the lack of anvil clouds significantly affects the TOA energy budget, we examine PDFs of albedo and OLR. The PDFs are constructed from values of albedo and OLR at every point in the domain of the model as well as in the corresponding observational
domain. To construct PDFs from the observations, the radiative transfer model of Fu and Liou (1993) is used to calculate albedo and OLR in the domain of the observations, based upon the MODIS observed cloud property histogram. The cloud properties used in the radiative transfer calculations are based upon pixel level MODIS data (5x5 km), so that they can be directly comparable to the grid point level PDFs obtained from the model. Temperature and humidity profiles from the Atmospheric Infrared Sounder (AIRS) Version 2 data from Jan. 2003 to Dec. 2005 are used in the calculations (Aumann et al., 2003).

In the observations, the PDF of albedo has two modes (Fig. 3). The first mode, centered near 0.1, corresponds to nearly clear skies. A second weak peak appears around 0.7, corresponding to optically thick clouds that are tropical anvil cloud structures and associated convective cores. In the simulations, clear-skies occur more frequently, the PDF of albedo decays rapidly toward higher albedos, and the high albedo peak is absent. The model PDFs of OLR show discrepancies that are consistent with those of the albedo (Fig. 4). Observations show one peak at high OLR corresponding to clear skies and another peak at about 120 Wm$^{-2}$, corresponding to the modal anvil cloud top temperature. The model OLR PDF has a broad peak near the clear-sky value and does not show the observed peak at low OLR values that is associated with anvil clouds. The clear-sky peak in the model also occurs at a lower value of OLR than the PDF calculated from the MODIS/AIRS data. This may be associated with the strong thermal forcing of the model and the correspondingly moist upper troposphere in the simulations.

In the next section we will explore variations in cloud physics parameters within the context of a 2D model. We will see that the simulation of anvil cloud as diagnosed by Fig. 1 can
be improved by increasing the amount of ice cloud while simultaneously decreasing the amount of liquid cloud.

5. Two-Dimensional Mock-Walker Simulations

The methodology we have used to test the 3-D simulations can be applied also in a 2-D context. In contrast to the 3-D experiments, in the 2-D runs the mean vertical velocity is determined internally to the model at all locations. Since we find similar deficiencies in anvil cloud simulation in the 2-D and 3-D simulations, this deficiency of the model is very robust to changes in the model setup. Two-dimensional simulations require less computer resources, and thereby allow easier testing of sensitivity to model parameters.

We begin by examining the base case (BASE), in a 2-D SAM simulation like that described in Bretherton et al. (2006), which uses a horizontal domain size and a grid resolution of 4096 km and 2 km, respectively. SST is fixed as a sinusoidal function of distance, creating a warm pool in the center of the domain with a maximum temperature of 301°C and a minimum temperature of 297°C. The atmosphere organizes into an overturning circulation with convection and upward motion mainly confined to the warm water (Grabowski et al., 2000; Bretherton et al., 2006). Vertical resolution and the parameterizations for microphysics, radiation, and sub-grid turbulent transport remain the same as in the 3-D runs. Although we do not apply large-scale forcing to the atmosphere directly, a large-scale circulation develops in response to the imposed SST gradient, allowing us to examine how high cloud properties depend upon surface precipitation rate in a less constrained environment than was used for the 3-D simulations. In the BASE case domain-mean winds are nudged to zero on a 2-hour time scale to prevent the development of mean shear unrelated to the Walker circulation. We also conduct
simulations with domain-mean winds nudged to linear shears of 5 and 20 ms\(^{-1}\) as described for the 3-D model.

The 2-D model is run for a total of 50 days and results are saved every three hours for the last 20 days of the integration. The same column-by-column algorithm from the 3-D runs is used to determine the abundance of thin, anvil, and thick clouds. A larger horizontal averaging block size of 128 km is used for the 2-D model in order to provide better sampling, and averages are taken over three adjacent time samples.

BASE has too little anvil cloud amount per unit of precipitation to roughly the same degree as the 3-D runs (dotted line in Fig. 2), and the ratio of anvil cloud to thick cloud in BASE is 1.4, very similar to the 3-D results, and far less than observed. Anvil cloud fraction seems to be more strongly dependent on rain rate than in the 3-D runs, however, and anvil cloud fraction approaches 20\% at the highest rain rate, compared to 40\% in the observations. The thick cloud amount increases more quickly with rain rate than observed, however.

Because BASE under-produces anvil cloud by roughly the same degree as the 3-D runs, we use the mock-Walker simulation as a tool for testing the sensitivity of anvil cloud in SAM to adjustments to the physics and resolution of the model. In this spirit, a suite of 2-D mock-Walker simulation experiments is performed using different adjustments to BASE, involving microphysics, resolution, domain size and wind shear. The 2-D experiments are summarized in Table 2. Microphysics experiments include reduction of cloud ice fall speed, decreased and increased rates of autoconversion and accretion, and elimination of graupel formation. In horizontal resolution experiments, resolution is increased from the default value of 2 km to 1 km
and 0.5 km. Vertical resolution experiments use an increased number of levels in the ice cloud layer. Experiments are also conducted with the domain size doubled to 8192 km, twice as large as in BASE. In these experiments the variation in SST has the same magnitude, but occurs over a larger domain.

a. Spatial Resolution

Spatial resolution of the model may affect the physical processes important to anvil cloud formation. To investigate whether finer horizontal grid size than the default 2 km may increase anvil amount, we perform experiments which use horizontal grid sizes of 1 km and 0.5 km, respectively. Also, it is useful to investigate the sensitivity of anvil cloud amount to changes in the vertical resolution of SAM. VERTRES increases vertical resolution by using 200 m spacing between levels throughout the ice cloud layer.

The experiments with higher horizontal and vertical resolution do not significantly affect the relationship between anvil cloud fraction and rain rate, or any of the cloud amounts (not shown). Pauluis and Garner (2006) found that increases in CRM horizontal resolution finer than 4km do not affect the amount of simulated high cloud.

b. Domain Size

A larger domain contains a more realistic SST gradient and gives convection more space to organize. BIG doubles the size of the horizontal domain to 8192 km, creating a warm pool twice as large as the one that exists when using the default domain size. Maximum and minimum SSTs and horizontal and vertical resolutions remain at their values used in BASE. The larger horizontal domain in BIG does not change anvil cloud amount significantly (not shown). A series of experiments was performed with microphysical changes with the doubled domain,
but these results are consistent with the microphysical testing described below and will not be discussed.

c. Microphysics

Changes to microphysics can increase anvil cloud amount, because microphysical processes play a critical role in determining the amount of ice in the atmosphere. Krueger et al. (1995) used microphysical adjustments to increase the extent and ice water content of tropical anvil clouds in a CRM, by making changes to parameterizations of cloud ice growth, snow formation, and graupel. Also, microphysical processes may affect atmospheric circulation. Fu et al. (1995) showed how interactive radiation affects simulated anvil cloud circulations and feeds back to anvil cloud lifetime. By removing cold cloud processes from a 2-D CRM, Grabowski (2003a: 2003c) showed that in the warm-rain only version of the model the mesoscale convective systems have a shorter life cycle and reduced stratiform component. In addition to direct effects on cloud formation and dissipation, cloud ice microphysics play an important role in determining mesoscale circulations that may be important to the dynamics of anvil clouds.

Cloud Ice Fall Speed

In the microphysical parameterizations of SAM, cloud ice is allowed to fall slowly, although it is considered to be a non-precipitating hydrometeor species. We expect that anvil cloud amount will increase if cloud ice fall speed is reduced. In the BASE simulations cloud ice fall speed is parameterized as a function of ice water content, following Heymsfield (2003):

\[v_{ic} = 165(IWC)^{0.24}, \]

(2)

with \(v_{ic} \) in cm/s and IWC in g/m³. In VTHALF, the cloud ice fall speed computed in the preceding formula is multiplied by one half.
VTHALF fails to improve the relationship between anvil cloud fraction and rain rate (Fig. 4). Although anvil cloud fraction increases noticeably, it becomes nearly independent of rain rate and is less than half the observed amount at the highest rain rates. Moreover, thick cloud fractions also increase in VTHALF, so that decreasing the ice fall speed increases the fractional coverage of all cloud types and does not improve the ratio of anvil cloud to thick cloud.

Autoconversion and Accretion

The rate of autoconversion determines how quickly cloud liquid or ice is converted to precipitation by coalescence or aggregation, respectively. By reducing this rate, the onset of precipitation may be delayed, potentially prolonging cloud lifetime. The accretion rate controls the growth of precipitating condensate through the collection of non-precipitating condensate. To examine the effect of changing the rates of autoconversion and accretion, AAHALF, AATWO and AATEN multiply the default rates of autoconversion and accretion for both liquid and ice by factors of 0.5, 2 and 10, respectively.

These experiments have little effect on anvil clouds. The relationship between anvil fraction and rain rate in AAHALF and AATWO is nearly identical to the relationship found in BASE (Fig. 4). AATEN is very similar to AATWO and is not shown. Interestingly, increasing the autoconversion rates as in AATWO reduces the thick cloud fractions so that they compare better with observations at all rain rates than BASE. Increased rates of autoconversion and accretion in AATWO increase precipitation efficiency in convective cores. As a result, high thick cloud fraction decreases because cloud liquid water below the freezing level is rained out
more readily. Consistent with this, AAHALF noticeably overproduces high thick clouds, a bias that becomes quite large at rain rates greater than 10 mm day⁻¹.

We also experimented with changing the autoconversion and accretion rates for ice only. The results of these experiments are indistinguishable from BASE, so we conclude that the response of high cloud fraction in AAHALF and AATEN is due mostly to changes in the liquid autoconversion and accretion rates. Note that while we define high clouds by their cloud top temperature, their albedos are affected by the water and ice content over a deep layer.

Graupel

NOGRAU eliminates the formation of graupel as a precipitating species, but does not improve the relationship between anvil cloud fraction and rain rate (not shown). It is somewhat surprising that high thick cloud fraction remains similar to BASE, because the lack of graupel suggests an increase in the amount of cloud liquid water inside convective cores. Any changes in cloud water produced by the elimination of graupel seem to be offset by the other microphysical processes in the model.

Combinations of Cloud Physics Changes

Cloud physics parameters affect the amount of cloud, but we wish to find a combination of effects that increases the amount of moderate optical depth ice cloud and its dependence on rain rate, and also decreases the amount of liquid water cloud in the convective cores. In this section we describe a combination of cloud physics changes that achieves this result.

Another experiment (NOSED) was undertaken in which cloud ice sedimentation is set to zero and the cloud ice to snow autoconversion threshold is lowered from 1.0 x 10⁻⁴ kg kg⁻¹ to 1.0
x 10^{-6} kg kg$^{-1}$. With these changes, the lack of cloud ice sedimentation is offset to some extent by the lower cloud ice autoconversion threshold. This combination of changes is found to produce TOA radiative fluxes closer to observed values in multi-scale modeling framework GCM runs than the default SAM settings (Khairoutdinov, personal communication).

Incorporating these changes in another 2-D experiment, we find a noticeable increase in the amount of high thin cloud and anvil cloud produced by SAM, and that the relationship between anvil cloud fraction and rain rate varies in a manner similar to the observations (Fig. 5). The amount of high thick cloud becomes excessive at high rain rates, however, as is the case in many of our previous 2-D experiments.

To reduce the amount of thick cloud, we set the ice sedimentation to zero and lower the threshold for autoconversion as in NOSED above, but we also increase the rates of autoconversion and accretion for liquid water by factors of two and five (NOSEDAALIQ2 and NOSEDAALIQ5). The anvil cloud fraction is increased and it has the observed dependence on rain rate as in NOSED, but the amount of thick cloud is also decreased to be much more like the observed amounts, especially for NOSEDAALIQ5 (Fig. 6). We thus have succeeded in tuning the cloud physics parameters to produce a much better simulation of convective cloud optical depth as a function of rain rate. This tuning is not fundamental, as the parameters are not chosen for physical reasons and may be compensating for other errors in the model. Also, it is probable that this tuning is not unique, even within the context of this model. For example, improved results can also be obtained by limiting the sedimentation velocity in (2) to be no more than 30 cm s$^{-1}$, and doubling the liquid autoconversion and accretion rate (W30AALIQ2). Both NOSEDAALIQ5 and W30AALIQ2 produce much better simulations of anvil cloud abundances on precipitation rate than the BASE case (Fig. 6)
d. Shear

Many studies have suggested an important role for shear in generating extended upper level clouds (e.g. Wu 2002, Shie et al. 2003). Lin and Mapes (2004) have used wind and satellite data to examine the relationship of wind shear to tropical clouds and find that shear is associated with changes in OLR of 10-20 Wm\(^{-2}\). We test the sensitivity of the modeled clouds to shear by nudging domain mean winds to three different wind profiles. The BASE case in the 2-D model is relaxed toward zero domain-mean wind at all levels. We have also done experiments in which the wind decreases from 5 ms\(^{-1}\) at the surface to zero at the tropopause (Shear-5) and from 5 ms\(^{-1}\) to -15 ms\(^{-1}\) at the tropopause (Shear-20). The observed mean wind profiles vary greatly over the course of the seasons in the convective regions of the Tropics, but the total wind contrast across the troposphere in the strong shear case is similar to the maximum shears in monthly mean winds, which are observed in the EP region during the months of DJF. Fig. 6 also shows run SHEAR-20 which has the same cloud physics as BASE, but with stronger shear. It can be seen that the cold clouds are slightly reduced, so that strong mean shear does not much influence the abundance of cold clouds when the BASE microphysics is used.

Table 3 shows domain-mean averages for cloud properties for five different 2-D experiments to show the relative importance of shear and cloud physical parameters. The BASE cloud physics is compared with W30AALIQ2, and domain-mean shears of zero, 5 and 20 ms\(^{-2}\) are considered. First, it can be seen that changing mean shear from zero to 20 has little effect on the upper level clouds when the BASE microphysics is used, as already evident from Fig. 6. Changing the microphysics to W30AALIQ2 has a much more significant effect on cold clouds. Because the domain mean surface winds in BASE are zero, changing from BASE to SHEAR-20 increases the mean surface winds, and this increases the amount of low cloud so that stronger
short wave cloud forcing (SWCF) is produced. To remove this effect from a comparison, we do a 2-D simulation in which the mean surface wind speed is 5 ms\(^{-1}\), which then decreases to zero at the tropopause (Shear-5). Comparing the last three columns of Table 3 we can see that much of the low-level cloud increase is associated with the increase in surface wind speed between BASE and Shear-5 or Shear-20. By comparing Shear-5 and Shear-20, which both have 5 ms\(^{-1}\) domain-mean surface wind, we see a substantial increase in cold cloud from 17 to 21\% that is associated with the upper level shear and not influenced by the surface wind speed. We also see a domain-mean change of OLR and LWCF of about 8 Wm\(^{-2}\) between case Shear-5 and Shear-20. This change is similar to the magnitude of tens of Wm\(^{-2}\) change in OLR with shear observed by Lin and Mapes (2004). Note that the numbers in Table 3 are for the domain mean, which includes both the convective region over the warm water and also the subsiding regions without convective cloud.

e. Microphysical and shear effects in the 3-D model

We performed 3-D simulations for the WP forcing in which the microphysical parameters from NOSEDAALIQ5 and W30AALIQ2 were employed, as well as different wind shears. In addition, the effect of reducing the imposed thermal forcing to make the model precipitation agree with AMSR is also illustrated. Comparing the first two columns of Table 4 we see that changing from Shear-5 to Shear-20 for the BASE cloud physics parameters has a very small effect on the cold cloud abundance, although SWCF is more strongly negative by about 10 Wm\(^{-2}\) in the strong shear case. Comparing the BASE Shear-5 case with the same parameters with a decreased precipitation rate shows that the relative abundance of cold clouds is approximately proportional to rain rate, and the upper level cloud fractions are much less than observed, even
for the strong precipitation rate. Changing to either the NOSEDAALIQ5 or the W30AALIQ2 cloud physics parameters greatly increases the high cloud fraction to more than 50%, even for the weaker forcing, in reasonable agreement with ISCCP observations for the WP region (e.g. Hartmann et al. 1992). In addition, the altered cloud physics gives larger LWCF and SWCF than the BASE cloud physics, and LWCF and SWCF are more similar to each other, as is observed for the WP region. The last column of Fig. 4 shows the effect of using the observed wind profile from TOGA COARE {Wu, 2002 #17981}. This wind profile produces cloud distributions that are similar to those for Shear-5 when the W30AALIQ2 cloud physics parameters are used. We conclude from Fig. 6 and Table 4 that shear is not capable of creating realistic anvil clouds, unless we also modify the cloud physics.

7. Conclusion

We have introduced metrics for using satellite data to test the simulation of tropical convection by a cloud-resolving model. Upper level cloudiness is divided into categories corresponding to thin cloud, anvil cloud and deep convective cores that are closely related to precipitation rate. These three categories are chosen to succinctly characterize the relationships among precipitation, cloud structure and the TOA radiation balance in regions of deep convection, and to allow easy comparison with satellite data.

In testing 3-D and 2-D simulations with the SAM model, we have found that the default model parameters give too little anvil cloud per unit of precipitation, although thin clouds and thick clouds are in much better accord with observations. For the default parameters, anvil clouds are not abundant enough and do not show the observed increase with precipitation rate. The PDFs of OLR and albedo for the default simulation do not show the features that are
associated with tropical anvil clouds: a peak in the OLR PDF associated with the anvil cloud top temperature and a broad distribution of high albedos. Our results are in general agreement with the experiments of Blossey et al. (2007) that attempted to simulate the KWJEX data.

The amount of cloud ice can easily be increased by decreasing the ice fall-speed, but this increases all cold cloud amounts, leading to an over-prediction of thin and thick clouds, and so does not improve the ratio of anvil to thick clouds. To produce cloud distributions like those observed, simultaneous changes of several parameters are necessary. Lowering the ice fall speed increases the amount of anvil cloud and improves its dependence on rain rate, but also increases the amount of thick cloud, so that the ratio of anvil to thick cloud is still imperfect. Adding increased rates of autoconversion and accretion for liquid water to a simulation in which the ice fall speed is reduced gives dependences of thick, anvil and thin clouds on rain rate in the 2-D model that are in reasonable agreement with observations. The results are not very sensitive to a factor of 4 increase in model resolution. When these changes in cloud physics are introduced, the model shows a response of OLR to mean wind shear that is in accord with observational analysis by Lin and Mapes (2004).

It is unclear to what extent the changes in bulk microphysical parameters used here to produce better simulations are justified on physical grounds, or rather are compensating for other errors in the model microphysics or dynamics. The relative abundance of water and ice in tropical convective clouds is a fundamental issue, and deeper understanding of the physical processes whereby ice clouds are formed and maintained is crucial. The physics and dynamics controlling ice amounts in tropical clouds are still uncertain, so that more research is needed to know whether tuning simple cloud schemes like the one used here is an effective strategy for climate modeling, whether more sophisticated cloud physics schemes are needed, and what
aspects of current simple bulk models are most in need of improvement. Analysis of observations that allow separation of ice and liquid water effects on cloud properties would shed light on the degree to which current models can simulate the correct ratio of ice to liquid water contributions to cloud properties.
Acknowledgments. This work was supported by NSF Grant ATM 04-09075, NASA Grant NNG05GA19G and NOAA grant NA06OAR4310055. Marat Khairoutdinhov kindly made SAM available to us at UW. Mark Zelinka provided averaged AIRS profiles for the EP and WP regions and processed reanalysis data for mean wind shear information. Marc Michelsen provided computer expertise.
REFERENCES

Appendix: Cloud Data versus Precipitation

Binned AMSR precipitation and MODIS cloud type fractions used in this paper for the selected regions in the Tropical East Pacific (EP: 7.5-10N, 140-120W) and West Pacific (WP: 5-7.5N, 140-160E). Data are sorted into six categories of equally probable precipitation rate, and the average cloud fraction for each category is given. Units of precipitation are mm/day. See text for further details.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP Precip</td>
<td>0.178</td>
<td>0.503</td>
<td>1.77</td>
<td>6.33</td>
<td>18.5</td>
<td>43.4</td>
</tr>
<tr>
<td>EP Precip</td>
<td>0.172</td>
<td>0.582</td>
<td>2.06</td>
<td>7.38</td>
<td>21.1</td>
<td>48.1</td>
</tr>
<tr>
<td>WP Thin Fraction</td>
<td>0.326</td>
<td>0.324</td>
<td>0.278</td>
<td>0.241</td>
<td>0.179</td>
<td>0.148</td>
</tr>
<tr>
<td>EP Thin Fraction</td>
<td>0.141</td>
<td>0.114</td>
<td>0.104</td>
<td>0.0912</td>
<td>0.0700</td>
<td>0.0556</td>
</tr>
<tr>
<td>WP Anvil Fraction</td>
<td>0.166</td>
<td>0.226</td>
<td>0.299</td>
<td>0.375</td>
<td>0.438</td>
<td>0.432</td>
</tr>
<tr>
<td>EP Anvil Fraction</td>
<td>0.0917</td>
<td>0.121</td>
<td>0.200</td>
<td>0.272</td>
<td>0.365</td>
<td>0.394</td>
</tr>
<tr>
<td>WP Thick Fraction</td>
<td>0.00660</td>
<td>0.00978</td>
<td>0.0225</td>
<td>0.0472</td>
<td>0.107</td>
<td>0.157</td>
</tr>
<tr>
<td>EP Thick Fraction</td>
<td>0.00371</td>
<td>0.00681</td>
<td>0.0170</td>
<td>0.0407</td>
<td>0.0922</td>
<td>0.164</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. Profiles of vertical motion in West and East Pacific regions used to compute thermal forcing for the 3-D simulations.

Fig. 2. Average cloud fraction as a function of precipitation rate percentiles for EP (dashed) and WP (solid) regions from observations (thick lines), from the 3-D SAM model for the EP and WP regions (thin lines), and from the BASE simulation of the 2-D SAM model (dotted thin line). The top panel shows fractional coverage of optically thin, cold cloud (T<245K, τ<4), the middle panel shows fractional coverage of anvil clouds (T<245K, 4<τ<32), and the bottom panel shows fractional coverage of thick cloud (T<245K, τ>32).

Fig. 3 PDF of a) albedo and b) OLR for the observations and for the 3-D simulations for the EP and WP regions. Line conventions are as in Fig. 2.

Fig. 4 As in Fig. 2, except that the thin lines are for the 2-D simulations BASE, VTHALF, AAHALF and AATWO. Heavy lines again represent observations for the EP and WP.

Fig. 5 As in Fig. 2, except that the thin lines are for the 2-D simulations NOSED, NOSEDAALIQ2, and NOSEDAALIQ5. Heavy lines again represent observations for the EP and WP.

Fig. 6 As in Fig. 2, except that the thin lines are for the 2-D simulations, BASE, SHEAR-20, NOSEDAALIQ5 and W30AALIQ2.
Fig. 1. Profiles of vertical motion in West and East Pacific regions used to compute thermal forcing the 3-D simulations.
EP Fig. 2. Average cloud fraction as a function of precipitation rate percentiles for EP (dashed) and WP (solid) regions from observations (thick lines), from the 3-D SAM model for the EP and WP regions (thin lines), and from the BASE simulation of the 2-D SAM model (dotted thin line). The top panel shows fractional coverage of optically thin, cold cloud (T<245K, τ<4), the middle panel shows fractional coverage of anvil clouds (T<245K, 4<τ<32), and the bottom panel shows fractional coverage of thick cloud ((T<245K, τ>32).
Fig. 3 PDF of a) albedo and b) OLR for the MODIS/AIRS observations and for the 3-D simulations for the EP and WP regions. Line conventions are as in Fig. 2.
Fig. 4 As in Fig. 2, except that the thin lines are for the 2-D simulations BASE, VTHALF, AAHALF and AATWO. Heavy lines again represent observations for the EP and WP.
Fig. 5 As in Fig. 2, except that the thin lines are for the 2-D simulations NOSED, NOSEDAALIQ2, and NOSEDAALIQ5. Heavy lines again represent observations for the EP and WP.
Fig. 6 As in Fig. 2, except that the thin lines are for the 2-D simulations, BASE, SHEAR-20, NOSEDAALIQ5 and W30AALIQ2.
Table 1. Domain Averages from observations and SAM for the WP and EP.

<table>
<thead>
<tr>
<th></th>
<th>Obs-B WP</th>
<th>SAM WP</th>
<th>Obs-B EP</th>
<th>SAM EP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain Rate (mm/day)</td>
<td>8.2</td>
<td>14.7</td>
<td>8.9</td>
<td>15.0</td>
</tr>
<tr>
<td>High Thin Cloud Fraction</td>
<td>0.29</td>
<td>0.28</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td>Anvil Cloud Fraction</td>
<td>0.31</td>
<td>0.11</td>
<td>0.23</td>
<td>0.09</td>
</tr>
<tr>
<td>High Thick Cloud Fraction</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Anvil to High Thick Ratio</td>
<td>6.6</td>
<td>1.8</td>
<td>5.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Albedo</td>
<td>0.38</td>
<td>0.25</td>
<td>0.39</td>
<td>0.26</td>
</tr>
<tr>
<td>OLR (Wm(^{-2}))</td>
<td>183.</td>
<td>223.</td>
<td>220.</td>
<td>243.</td>
</tr>
</tbody>
</table>

Table 2: Descriptions of 2-D experiments. All changes are relative to BASE.

<table>
<thead>
<tr>
<th>Run</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>Default 2-D simulation: See text.</td>
</tr>
<tr>
<td>VTHALF</td>
<td>Reduce cloud ice fall speed by half.</td>
</tr>
<tr>
<td>AAHALF</td>
<td>Decrease rates of autoconversion and accretion for liquid and ice by half</td>
</tr>
<tr>
<td>AATWO</td>
<td>Increase rates of autoconversion and accretion for liquid and ice by factor of 2</td>
</tr>
<tr>
<td>AATEN</td>
<td>Increase rates of autoconversion and accretion for liquid and ice by factor of 10</td>
</tr>
<tr>
<td>HALFICE</td>
<td>Decrease rates of autoconversion and accretion for ice only by factor of 2</td>
</tr>
<tr>
<td>TWOICE</td>
<td>Increase rates of autoconversion and accretion for ice only by factor of 2</td>
</tr>
<tr>
<td>NOGRAU</td>
<td>Eliminate graupel as a hydrometeor species</td>
</tr>
<tr>
<td>HORRES 1</td>
<td>Increase horizontal resolution to 1 km</td>
</tr>
<tr>
<td>HORRES 0.5</td>
<td>Increase horizontal resolution to 0.5 km</td>
</tr>
<tr>
<td>VERTRES</td>
<td>Use 200 m horizontal resolution throughout the ice cloud layer</td>
</tr>
<tr>
<td>BIG</td>
<td>Double size of horizontal domain to 8192 km.</td>
</tr>
<tr>
<td>NOSED</td>
<td>No ice sedimentation, lower ice autoconversion threshold by factor of 100.</td>
</tr>
<tr>
<td>NOSEDAALIQ5</td>
<td>No ice sedimentation, lower ice autoconversion threshold by factor of 100.</td>
</tr>
<tr>
<td>W30AALIQ2</td>
<td>Constant ice sedimentation of 30cm/s, increase autoconversion and accretion rates for liquid water by a factor of 2.</td>
</tr>
<tr>
<td>SHEAR-5,</td>
<td>Winds start at 5 ms(^{-1}) at the surface and then decrease linearly with height to (\text{-15 ms}^{-1}) (SHEAR-20) at the tropopause.</td>
</tr>
<tr>
<td>SHEAR-20</td>
<td></td>
</tr>
<tr>
<td>SHEAR-TC</td>
<td>Mean wind profile from TOGA COARE as shown in Wu(2002)</td>
</tr>
</tbody>
</table>
Table 3. Domain-mean parameters for 2D simulations with BASE and W30AALIQ2 cloud physics settings and zero, 5 or 20 ms\(^{-2}\) domain-mean shear. Cloud fractions are determined by low (p>700 hPa), mid (400< p <700 hPa), high (p<400 hPa), cold (T\(_{\text{cloud}}\) < 245K).

<table>
<thead>
<tr>
<th>Run</th>
<th>BASE</th>
<th>BASE Shear-20</th>
<th>W30AALIQ2 Shear-20</th>
<th>W30AALIQ2 Shear-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation (mm day(^{-1}))</td>
<td>3.98</td>
<td>4.12</td>
<td>3.44</td>
<td>3.45</td>
</tr>
<tr>
<td>Cloudcover Fraction</td>
<td>0.25</td>
<td>0.40</td>
<td>0.40</td>
<td>0.61</td>
</tr>
<tr>
<td>Precipitable Water (mm)</td>
<td>32.10</td>
<td>36.00</td>
<td>32.03</td>
<td>40.78</td>
</tr>
<tr>
<td>Cloud Water Path (μm)</td>
<td>46.29</td>
<td>63.57</td>
<td>35.86</td>
<td>57.58</td>
</tr>
<tr>
<td>Ice Water Path (μm)</td>
<td>26.7</td>
<td>28.4</td>
<td>34.4</td>
<td>37.3</td>
</tr>
<tr>
<td>Surface Latent Heating</td>
<td>113.1</td>
<td>120.1</td>
<td>99.0</td>
<td>99.8</td>
</tr>
<tr>
<td>Heat Flux into Ocean</td>
<td>63.7</td>
<td>50.8</td>
<td>62.8</td>
<td>57.7</td>
</tr>
<tr>
<td>SWCF (Wm(^{-2}))</td>
<td>-32.8</td>
<td>-53.0</td>
<td>-50.1</td>
<td>-77.5</td>
</tr>
<tr>
<td>LWCF (Wm(^{-2}))</td>
<td>15.4</td>
<td>20.0</td>
<td>35.8</td>
<td>44.2</td>
</tr>
<tr>
<td>OLR (Wm(^{-2}))</td>
<td>281.8</td>
<td>273.0</td>
<td>261.9</td>
<td>242.7</td>
</tr>
<tr>
<td>Albedo</td>
<td>0.16</td>
<td>0.21</td>
<td>0.20</td>
<td>0.27</td>
</tr>
<tr>
<td>Low Cloud Fraction</td>
<td>0.10</td>
<td>0.21</td>
<td>0.14</td>
<td>0.26</td>
</tr>
<tr>
<td>Mid Cloud Fraction</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>High Cloud Fraction</td>
<td>0.07</td>
<td>0.09</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>Cold Cloud Fraction</td>
<td>0.06</td>
<td>0.07</td>
<td>0.17</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Table 4: Table illustrating the effects of cloud physical parameters, mean shear and mean rain rate on cloud properties in 3-D simulations for WP domain.

<table>
<thead>
<tr>
<th>Cloud Physics</th>
<th>BASE</th>
<th>BASE</th>
<th>BASE</th>
<th>NOSED AALIQ5</th>
<th>W30 AALIQ2</th>
<th>W30 AALIQ2</th>
<th>W30 AALIQ2</th>
<th>W30 AALIQ2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shear 5</td>
<td>Shear 20</td>
<td>Shear 5</td>
<td>Shear 5</td>
<td>Shear 5</td>
<td>Shear 5</td>
<td>Shear 5</td>
<td>Shear TC</td>
</tr>
<tr>
<td>Precipitation (mm day⁻¹)</td>
<td>14.65</td>
<td>14.73</td>
<td>9.16</td>
<td>14.58</td>
<td>14.04</td>
<td>14.8</td>
<td>8.32</td>
<td>8.42</td>
</tr>
<tr>
<td>Total cloud fraction</td>
<td>0.6</td>
<td>0.64</td>
<td>0.46</td>
<td>89</td>
<td>0.88</td>
<td>0.92</td>
<td>0.77</td>
<td>0.78</td>
</tr>
<tr>
<td>Precipitable Water (mm)</td>
<td>79.7</td>
<td>84.0</td>
<td>80.2</td>
<td>85.0</td>
<td>83.8</td>
<td>98.1</td>
<td>82.2</td>
<td>85.0</td>
</tr>
<tr>
<td>Cloud Water Path (μm)</td>
<td>95.6</td>
<td>111.9</td>
<td>65.6</td>
<td>38.9</td>
<td>63.5</td>
<td>107.2</td>
<td>42.0</td>
<td>44.9</td>
</tr>
<tr>
<td>Ice Water Path (μm)</td>
<td>88.5</td>
<td>94.2</td>
<td>53.5</td>
<td>82.4</td>
<td>130.4</td>
<td>127.9</td>
<td>78.1</td>
<td>83.2</td>
</tr>
<tr>
<td>Snow Water Path (μm)</td>
<td>53.9</td>
<td>40.4</td>
<td>38.9</td>
<td>35.2</td>
<td>31.5</td>
<td>23.8</td>
<td>20.4</td>
<td>19.3</td>
</tr>
<tr>
<td>Heat into Ocean (Wm⁻²)</td>
<td>102.3</td>
<td>107.4</td>
<td>131</td>
<td>87.3</td>
<td>67.1</td>
<td>88.1</td>
<td>102.3</td>
<td>100.7</td>
</tr>
<tr>
<td>SWCF (Wm⁻²)</td>
<td>-69.0</td>
<td>-79.3</td>
<td>-48.5</td>
<td>-98.5</td>
<td>-118.9</td>
<td>-137.1</td>
<td>-88.3</td>
<td>-94.0</td>
</tr>
<tr>
<td>LWCF (Wm⁻²)</td>
<td>48.4</td>
<td>50.1</td>
<td>31.8</td>
<td>93.1</td>
<td>100.7</td>
<td>100.3</td>
<td>77.1</td>
<td>79.0</td>
</tr>
<tr>
<td>OLR (Wm⁻²)</td>
<td>223.6</td>
<td>221.1</td>
<td>239.7</td>
<td>174.8</td>
<td>168.5</td>
<td>167.5</td>
<td>193.5</td>
<td>191.1</td>
</tr>
<tr>
<td>Albedo</td>
<td>0.25</td>
<td>0.27</td>
<td>0.2</td>
<td>0.32</td>
<td>0.37</td>
<td>0.41</td>
<td>0.29</td>
<td>0.31</td>
</tr>
<tr>
<td>Low Cloud Fraction</td>
<td>0.2</td>
<td>0.22</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.23</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>Middle Cloud Fraction</td>
<td>0.07</td>
<td>0.10</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.23</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>High Cloud Fraction</td>
<td>0.27</td>
<td>0.29</td>
<td>0.17</td>
<td>0.60</td>
<td>0.69</td>
<td>0.71</td>
<td>0.53</td>
<td>0.56</td>
</tr>
<tr>
<td>Cold Cloud Fraction</td>
<td>0.23</td>
<td>0.24</td>
<td>0.15</td>
<td>0.50</td>
<td>0.58</td>
<td>0.56</td>
<td>0.45</td>
<td>0.45</td>
</tr>
</tbody>
</table>