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ABSTRACT

The relationship between climate modes and Antarctic sea ice is explored by separating the variability into

intraseasonal, interannual, and decadal time scales. Cross-spectral analysis shows that geopotential height and

Antarctic sea ice extent are most coherent at periods between about 20 and 40 days (the intraseasonal time

scale). In this period range, where the atmospheric circulation and the sea ice extent are most tightly coupled,

sea ice variability responds strongly to Rossby waves with the structure of the Pacific–South American (PSA)

pattern. The PSA pattern in this time scale is not directly related to El Niño–SouthernOscillation (ENSO) or

the southern annular mode (SAM), which have received much attention for explaining Antarctic sea ice

variability. On the interannual time scale, ENSO and SAM are important, but a large fraction of sea ice

variance can also be explained by Rossby wave–like structures in the Drake Passage region. After regressing

out the sea ice extent variability associated with ENSO, the observed positive sea ice trends in Ross Sea and

IndianOcean during the satellite era become statistically insignificant. Regressing out SAMmakes the sea ice

trend in the Indian Ocean insignificant. Thus, the positive trends in sea ice in the Ross Sea and the Indian

Ocean sectors may be explained by the variability and decadal trends of known interannual climate modes.

1. Introduction

Sea ice near the poles plays an integral part in Earth’s

climate system, including hindering the thermal interac-

tion between atmosphere and ocean and modulating the

Earth surface albedo (e.g., Parkinson andCavalieri 2012).

Its variability also has large impacts on local ecosystems

(Ainley et al. 2003). The mechanisms controlling the sea

ice extent (SIE) time series, shown in Fig. 1, are not yet

fully understood.Many previous studies have pointed out

that sea ice variability can be caused by fluctuations of the

atmospheric circulation associated with intraseasonal

(e.g.,Renwick et al. 2012), interannual, and decadal climate

variability, such as the southern annularmode (SAM) (e.g.,

Hall and Visbeck 2002; Lefebvre et al. 2004; Stammerjohn

et al. 2008; Simpkins et al. 2012), El Niño–Southern Os-

cillation (ENSO) (Simmonds and Jacka 1995; Yuan 2004;

Stammerjohn et al. 2008; Simpkins et al. 2012), and the

Atlantic multidecadal oscillation (AMO) (Li et al.

2014). Despite these extensive research efforts, there

has been less comprehensive research to assess the rel-

ative importance of these weather and climate in-

fluences for Antarctic sea ice variability.

It is important to appreciate that atmospheric vari-

ability behaves differently for different time scales.

Figure 2 shows the dominant structures of atmospheric

variability in the Southern Hemisphere in the form of

empirical orthogonal functions (EOFs) of 500-hPa ge-

opotential height (Z). Unfiltered atmospheric variability

(Fig. 2a) exhibits different structures from daily or

weekly variability (Fig. 2b), which are dominated by

weather disturbances associatedwith eastward-propagating

Rossby waves. Another example is SAM, which is impor-

tant on the interannual time scale (Fig. 2c), but not for the

intraseasonal time scale. Teleconnections from the tropics,

such as ENSO variability, are detectable on interannual

time scales, but not on intraseasonal time scales. This is

because tropical sea surface temperature (SST) is highly

persistent, yet much extratropical variability occurs on

shorter time scales.

We expect the atmospheric patterns that can effec-

tively modulate sea ice to be different for different time

scales. Figure 3 shows maps of Z regressed onto SIE
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time series in each longitudinal sector for different time

scales. Unfiltered data show that dipole patterns of Z

modulate SIE in particular longitudinal sectors (Fig. 3a).

Specifically, the dipole pattern consists of a low anomaly

prevalent in the eastern half of the sector and a high

anomaly in the west. Considering the geostrophic re-

lationship, this means that the SIE increase is associated

with cold southerly wind anomalies, and vice versa,

which is consistent with previous studies (e.g., Lefebvre

andGoosse 2005; Renwick et al. 2012; Holland andKwok

2012). Figures 3b and 3c suggest, however, that the height

patterns that yield sea ice increases depend on the time

scale. Intraseasonal variability involves local weather

disturbances, whereas interannual sea ice variability

seems to be associated with more global structures. Here,

we examine the role of climate modes for explaining

Antarctic sea ice variability on different time scales.

In this study, we provide a comprehensive analysis of

the effects of weather and climate variability upon

Antarctic sea ice, on various time and space scales. The

data used in this study are described in the following

section. Next, we introduce cross-spectral analysis in

section 3 to demonstrate that meteorology has the

strongest linear relationship with sea ice variability for

the intraseasonal time scale. In section 4, we explore

some dominant modes of intraseasonal variability in the

atmosphere and compare their importances for Ant-

arctic sea ice modulation. Then, in section 5, we extend

our analysis to the interannual time scale. Section 6 gives

some possible implications of our study for the observed

increasing trend of Antarctic sea ice extent. Conclusions

are given in section 7.

2. Data and methods

a. Data

The time span of the record analyzed in this study is

from 1979 through 2012. Because the SIE dataset de-

scribed in the next paragraph is given with only 2-day time

resolution until the middle of 1987, we have used 2-day or

monthly data unless noted otherwise. In addition, the sea

ice concentration data aremissing at the beginning of 1988.

The analysis performed with once-daily data is thus based

on the time span from 1989 through 2012.

The daily and monthly SIE data used in this study

are from Antarctic sea ice time series calculated by Na-

tional Aeronautics and Space Administration (NASA)

Cryosphere Science Laboratory (Parkinson andCavalieri

FIG. 1. (a) Climatology of the Southern Hemispheric sea ice extent (SIE) in two-day resolution. Definitions of

each season used in this study are indicated below the panel. (b) Geographical description of longitudinal sectors

for SIE data. Stereographic projection is used with the center at the South Pole and the 08 meridian on the right.

(c) SIE anomaly (i.e., deviation from climatology) time series for each sector in 2-day resolution.
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2012), available online at http://neptune.gsfc.nasa.gov/

csb/index.php?section559. The time series are available

for six different Antarctic sectors including the Weddell

Sea (WS; 608W–208E), Indian Ocean (IO; 208–908E),
western Pacific Ocean (WP; 908–1608E), Ross Sea (RS;

1608E–1308W), Bellingshausen–Amundsen Seas (BA;

1308–608W), and Southern Hemisphere (SH; all longi-

tudes) as shown in Fig. 1b.

The daily and monthly reanalysis data including geo-

potential at 500 and 1000hPa, meridional wind (y)

and temperature (T) at 1000hPa, and SST are from the

four-times-daily ERA-Interim reanalysis data (Dee

FIG. 2. (a) Regression maps of unfiltered 500-hPa geopotential height (m) onto its standardized PC1, PC2, and

PC3 time series calculated for the region south of 308S for all months. Daily climatology and linear trend are

removed by regression beforehand. Contour interval is 10m. Zero contours are omitted, and positive (negative)

localmaxima are shaded orange (blue). Variance contributions are indicated on top right. (b)As in (a), but for high-

pass filtered 500-hPa Z for periods shorter than 30 days in period, calculated using a second-order Butterworth

filter. (c) As in (b), but for low-pass filtered 500-hPa Z.

15 JANUARY 2016 KOHYAMA AND HARTMANN 723

http://neptune.gsfc.nasa.gov/csb/index.php?section=59
http://neptune.gsfc.nasa.gov/csb/index.php?section=59


et al. 2011) produced by the European Centre for

Medium-RangeWeather Forecasts (ECMWF), available

online at http://apps.ecmwf.int/datasets/. We have used

4.58 resolution in both zonal and meridional directions.

Geopotential height is calculated by dividing geo-

potential by standard gravity. The Madden–Julian oscil-

lation (MJO) indices are from Adames and Wallace

(2014), who used the first and second EOFs of the dif-

ference between the velocity potential fields at 850 and

150hPa calculated using the ERA-Interim wind fields.

The daily sea ice concentration (S) data are from the

National Oceanic and Atmospheric Administration

(NOAA)/National Snow and Ice Data Center (NSIDC)

Climate Data Record of Passive Microwave Sea Ice

Concentration, version 2 (Peng et al. 2013), available

online at http://nsidc.org/data/g02202. We have used

75-km resolution in both longitude and latitude. The

variable used in this study is the merged version of sea

ice concentration data created by the Goddard NASA

Team algorithm and the Goddard bootstrap. For more

information, see Meier et al. (2013). The daily sea ice

concentration change (dS/dt) was calculated by sub-

tracting S of the (n2 1)th day of the record from those of

the nth day at each grid box, where n is an integer to

designate a particular day.

b. Data processing

Daily climatology is calculated as an average over the

years for each calendar day in a year. Then, this seasonal

cycle is removed from all the daily data by subtracting

the daily climatology from the original data. For

monthly data, the same operations are performed but

for each month. The linear trend is also removed, except

when the trend is discussed.

For the analysis of the intraseasonal time scale using

daily data, the outcomes are almost identical whether

ENSO is removed or not. This is simply because the

ENSO signal has little power in this time scale. For

monthly data (except for the ENSO-related analysis),

we remove the ENSO signal by linear regression as we

shall describe later. When necessary, we analyze the

data by binning it into four different seasons: May–

July (MJJ; ice growing), August–October (ASO; ice

maximum), November–January (NDJ; ice melting),

and February–April (FMA; ice minimum) as shown

in Fig. 1a.

FIG. 3. As in Fig. 2, but regressed onto standardized SIE anomalies for each sector. SIE lags 500-hPa Z by 4 days. Contour interval 3m.

Geographical boundaries of each sector are indicated using blue lines.
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c. Analysis methods

1) CROSS-SPECTRAL ANALYSIS

(i) Formulas

Cross-spectral analysis allows one to reveal linear re-

lationships between two demeaned and detrended time

series, A(t) and B(t), by decomposing covariance be-

tween A(t) and B(t) into different frequencies. Specifi-

cally, we first define a cross-spectral function, PAB(v),

which is the Fourier transform of cross-covariance func-

tion RAB(m) between two time series:

P
AB

(v)[ �
‘

m52‘
R

AB
(m) exp(2ivm) , (1)

where v is angular frequency and m is time lag. Here,

RAB(m) is defined as

R
AB

(m)[A(t1m)B(t) , (2)

inwhich theoverbar denotes a temporalmean.Note thatPAA

andPBB are the power spectra ofA(t) andB(t), respectively.

The real part of PAB(v) is called the cospectrum,

CO
AB

(v)[Re[P
AB

(v)] , (3)

and the imaginary part of PAB(v) is called the quadra-

ture spectrum,

Q
AB

(v)[ Im[P
AB

(v)] . (4)

The cospectrum can be interpreted as the simultaneous

covariance between A(t) and B(t) at each frequency v,

and the quadrature spectrum is the covariance between

A(t) andB(t) lagged by p/2 at each frequency v. We can

also define the phase spectrum:

F
AB

(v)[ arctan

�
Q

AB
(v)

CO
AB

(v)

�
, (5)

which gives the phase lag between A(t) and B(t) at each

frequencyv. UsingF(v), we can rewritePAB(v) in polar

form:

P
AB

(v)5 jP
AB

(v)jexp[iF
AB

(v)] . (6)

The combinations of these spectral sets [COAB(v) and

QAB(v), or jPAB(v)j and FAB(v)] define any lagged

linear relationship between A(t) and B(t).

Last, we define coherence squared, using the above

spectra:

Coh2(v)[
jP

AB
(v)j2

P
AA

(v)P
BB

(v)
5

CO2
AB(v)1Q2

AB(v)

P
AA

(v)P
BB

(v)
. (7)

If we compare this definition with the definition of

correlation squared (simultaneous),

r2 [
[A(t)B(t)]2

A(t)2 B(t)2
, (8)

which can be viewed as the fraction of variance of A(t)

explained by simultaneous B(t), we can regard Coh2(v)

as being a fraction of variance ofA(t) explained by B(t),

decomposed into each frequency v, but also including

any out-of-phase lagged correlation between them de-

scribed by the quadrature spectrum. The relationship

between the correlation squared and the cospectrum can

be written as

r2 5
�
‘

v50

CO2
AB(v)

�
‘

v50

P
AA

(v) �
‘

v50

P
BB

(v)

. (9)

(ii) Application to the data

As described in the data subsection, we use the data

from 1979 through 2012 with 2-day time resolution. This

means we have time series with length of 12 418 days,

and 6209 time steps. When we perform cross-spectral

analysis, we first divide the time series equally into

8 1 7 5 15 overlapped segments (overlap 50%) con-

sisting of 6209/85 776 time steps. Then, we zero-pad the

segments into length of 210 5 1024 time steps by adding

124 zeros to the start and end of each of the 776-member

time series sections to make the fast Fourier transform

(FFT) processmost efficient. Next, we apply aHamming

window with the same length as the zero-padded seg-

ments (i.e., 1024 time steps) as a weighting function. This

process minimizes artificial effects due to the use of

finite data records.

Then, we calculate the power spectra, cospectra, and

quadrature spectra for each segment, and average over

all the 15 segments. Last, when we calculate Coh2(v)

and phase spectra, we further average the power spectra,

cospectra, and quadrature spectra over 64 adjacent fre-

quencies to smooth out the resulting spectra and to in-

crease the degrees of freedom. For example, the sets of

64 frequencies for averaging are chosen as follows: the

lowest set is taken from the lowest through the 64th

lowest frequency, the second lowest set are taken from

the 65th through the 128th lowest, and so on. If we use

smaller number of frequency for averaging, we obtain

qualitatively the same results, but the spectra become

noisier. On the other hand, if we average over larger

number of frequencies, the frequency resolution of each

spectrum becomes too coarse to see the detailed struc-

ture. When drawing spatial maps, we have averaged
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over 128 adjacent frequencies (i.e., .32.0, 16.0–32.0,

10.7–16.0, and 8.0–10.7 days in period) for simplicity.

This averaging does not affect our qualitative results.

2) MONTE CARLO ESTIMATION

The basic idea of this paper is to estimate the relative

importance of climate modes for sea ice by calculating

squared-correlation coefficients between various climate

indices and SIE time series so that we can compare the

SIE variance explained by each orthogonal climatemode.

The results of this analysis may depend on the particular

period of record, which is relatively short. Therefore, to

estimate the true correlation coefficients and their un-

certainty more rigorously, we perform the following

Monte Carlo procedure when appropriate:

(i) Choose 17 years out of 34 years (1979–2012) ran-

domly. For reference, the number of possible com-

binations is about 2.3 3 109.

(ii) Calculate correlation coefficients using the ran-

domly chosen 17-yr subset of the data.

(iii) Repeat steps (i) and (ii) for 1000 times.

(iv) Calculate the 5th percentile, mean, and 95th per-

centile of the obtained 1000 correlation coefficients.

3) STATISTICAL DEGREES OF FREEDOM

We use a formula given by Bretherton et al. (1999) to

calculate the temporal degrees of freedom N* to use in

statistical tests for the regression/correlation and EOF/

principal component (PC) analysis:

N*5N
12 r

1
r
2

11 r
1
r
2

, (10)

where N is the original sample size, and r1 and r2 are

lag-1 autocorrelations of the two time series. Note that

r1 5 r2 for calculating the variance (i.e., for EOF/PC

analysis), and r1 5 1 for calculating the temporal trend.

4) UNCERTAINTY IN TRUE TRENDS

When discussing the linear trend c of a variable y, (i.e.,

y; ct1 d, where ; denotes least squares best fit), we

estimate the uncertainty in the true trend slope c using a

sample trend ĉ and its standard deviation approximated

as follows (e.g., Sveshnikov 1968):

ŝ
c
5

ŝ
effiffiffiffiffiffiffi

N*
p

s
t

. (11)

Here, ŝe is the unbiased standard deviation of the re-

siduals unexplained by least squares best fit, and st is the

standard deviation of the sampling time. Then, the

variable

C5
ĉ2 c

ŝ
c

(12)

is distributed like a t statistic with N*2 2 degrees of

freedom. Hence, we can put limits on the true slope c:

ĉ2 tN*22
a ŝ

c
, c, ĉ1 tN*22

a ŝ
c
, (13)

where tN*22
a is the critical value of the t statistic for

confidence level a and degrees of freedom N*2 2.

3. Coherent frequency bands between geopotential
height and sea ice extent

Our first goal is to find the time scale for which the

atmosphere explains the largest fraction of sea ice var-

iance. To achieve this, we use cross-spectral analysis. In

this particular analysis, we use Z at 500 hPa to represent

meteorology and SIE for sea ice, and perform cross-

spectral analysis betweenZ at each grid point and SIE at

each sector.

The power spectra for Z and SIE are denoted as

PZ(v;l, f) and PSIE(v; i), respectively, where v is an-

gular frequency, l is longitude, f is latitude, i is an index

to denote sectors (i5WS, IO, WP, RS, or BA), and the

overbars denote the average over different realizations

(see the method section). Both of the power spectra ex-

hibit typical features of red noise without any statistically

significant periodicity that would reject a null hypothesis

that the time series are red noise at 95% confidence (not

shown). Next, we have calculated coherence squared

[Coh2(v; l, f; i)] at each grid as follows:

Coh2(v; l,f; i)5
CO

Z,SIE
(v;l,f; i)2 1Q

Z,SIE
(v; l,f; i)2

P
Z
(v; l,f)P

SIE
(v; i)

,

(14)

where CO is the cospectrum and Q is the quadrature

spectrum. As described in the method section, Coh2

serves as the squared-correlation coefficient decom-

posed into different Fourier modes, giving the fraction

of the variance of SIE explained by Z in percent at each

frequency.

Figure 4a shows the Coh2 maps for four different

frequency bands calculated for SIE of each sector. We

note that the degrees of freedom are the same for all four

frequency bands so that the statistical significance ofCoh2

also remains fixed. For all sectors, the maximum Coh2 is

associated with a similar spatial pattern in the Z field

across all time scales. The magnitude of Coh2 fluctuates

substantially depending on the time scale, however.

We then look at the Coh2 spectra at the grid point

where Z shows maximum coherence with the SIE time
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series of each sector (shown as black crosses in the

second column of Fig. 4a). The representative grid

points used in this analysis are (608S, 108E) for the WS

and IO sector, (608S, 1508E) for the WP sector, (608S,
1308W) for the RS sector, and (608S, 608W) for the BA

sector. The upper panel of Fig. 4b shows that the Coh2

reaches its maximum for frequencies around 0.02–

0.05 day21, or in the period range, ;20–40 days, for all

the longitudinal sectors. For reference, 95% significance

level for coherency with 125 degrees of freedom is 2.4%

(Amos and Koopmans 1963): this means, at virtually all

frequencies shown here, the coherence is significant at

95%.Across this range of periods, the phase lag between

Z and SIE remains relatively stable at about 408–708
(not shown).

From this analysis, we can conclude that Z and SIE

are most coherent at periods between about 20 and

40 days in Southern Hemisphere. One might wonder

how to reconcile this result with Fig. 3, which clearly

shows that variability on time scales .30 days have a

larger projection onto unfiltered Z than those on time

scales,30 days. It is important, however, to remember

that coherence is a measure of covariance normalized

by a product of variance, just like correlation, but de-

composed into each frequency. Therefore, large co-

herence between Z and SIE means that a large fraction

of SIE variance is explained by Z at a particular fre-

quency but there is not information about the actual

amount of variance, or amplitude, explained at the

frequency. Because both Z and SIE are typical red

noise time series, the actual amount of SIE variance

explained by Z is larger for interannual time scale: that

is why .30-day variability has a larger projection in

Fig. 3.

4. Intraseasonal time scale

In this section, we focus on the intraseasonal time

scale (20–40 days) for which Z and SIE are most co-

herent. Although the contribution of this time scale to

the total SIE variance is small, it is important to learn

the dynamics of the covariability between sea ice and

Z by investigating the time scale for which atmosphere

and sea ice are most tightly coupled. Then we estimate

the relative importance of various forms of atmo-

spheric variability for Antarctic sea ice. The estimation

FIG. 4. (a) Coh2 maps betweenZ at 500 hPa and SIE time series for each sector (rows) and for each frequency band (columns). Contour

interval is 5%, but drawn for 10% and larger. Blue lines indicate geographical boundaries of each sector, and crosses in the second column

indicate the most coherent grids for each sector. (b) Coh2 spectra betweenZ at the 500 hPa and SIE time series at the most coherent grids

shown in (a). (c) Filter responses for two different filters.
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is based on several uncorrelated climatological indices

obtained from the following procedure.

a. EOF/PC analysis for the hemispheric domain

First, to exploit the signal in the most coherent fre-

quency band, we construct a bandpass filter shown in the

lower panel of Fig. 4b, and apply it toZ at 500 hPa. Then,

to find the most dominant intraseasonal meteorological

modes of variability, we perform EOF/PC analysis to

calculate the EOFs of Z south of 308S. The first five

EOFs are statistically well separated from the rest of the

EOFs by the criterion of North et al. (1982). The EOFs

give us a general idea about the ‘‘preferred’’ spatial

patterns in the atmosphere. PC time series serve as cli-

mate indices associated with each EOF spatial pattern.

PC1 explains the largest variance in theZ data, and each

following PC is not correlated with any other. We

hereafter call each of EOFn spatial patterns (shown in

the form of regression maps onto PCn) and its corre-

sponding PCn time series the ‘‘nth EOF mode.’’

The first and secondEOFmodes in Fig. 5a are not well

separated from each other by the North et al. (1982)

criterion, and it is found that PC2 leads PC1 by 4–6 days

by lag correlation analysis (not shown). The spatial and

temporal patterns of these two modes are in quadrature.

These two modes together form a wave train that

propagates eastward following the background flow. In

the meteorological community, these waves are well

known and are called quasi-stationary Rossby waves

(e.g., Hoskins et al. 1977; Hoskins and Karoly 1981).

They are excited by many sources, such as orography,

heat sources, instabilities, and other waves or eddies

(e.g., Holton and Hakim 2012). The pattern explained

by EOF1 and EOF2 is similar to what is often referred

to as the Pacific–South American (PSA) pattern (e.g.,

Mo and Higgins 1998), which is known to arise naturally

in this region through atmospheric dynamics as well as

in response to heating. We also use this nomenclature in

this particular study, because our EOF1 and EOF2

presumably have many common features with PSA. We

note, however, that our PSA mode is derived only for

intraseasonal time scales, so it may also have different

features from the ‘‘canonical’’ PSA.

From a more local perspective, the PSA mode could

be viewed as the bandpass-filtered Amundsen Sea low

(ASL) variability (e.g., Turner et al. 2013). To check the

variability directly associated with ASL, Hosking et al.

(2013) defined an index called the ‘‘ASL relative central

pressure’’ index. They showed, however, that the index

cannot capture the sea ice modulation very well, mainly

because the index has only amplitude information and

does not give any information about the position of the

low. In this sense, our definition of PSA index (i.e., PC1

and PC2) is an improved version of ASL relative central

pressure index, because we can capture information

about both amplitude and position of the low.

FIG. 5. (a) As in Fig. 2, but for bandpass filtered Z at 500 hPa for the time scale where Z is most coherent with SIE. (b) As in (a), but for

unfiltered Z at 500 hPa. The first three EOFs are identical with Fig. 2a.
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The third EOF mode in Fig. 5a shows a relatively

zonally symmetric pattern that oscillates coherently

around the South Pole. This mode, which we refer to as

south polar variability (SPV), is significantly correlated

at 95% confidence with bandpass-filtered SAM index,

and it explains about 25% of the variance of the filtered

SAM index. The fourth and fifth EOF modes again

compose a Rossby mode, whose lag correlation re-

lationship is almost the same as the PSA. This mode

exhibits Rossby wave signals in the Atlantic and Indian

Ocean sectors, so we call this Rossby mode the Atlantic–

Indian (AI) pattern. Kidson (1999) considered a similar

pattern in the intraseasonal (10–50 day) 300-hPa

streamfunction variability.

We note that the abovemodes (Fig. 5a), especially the

Rossby wave patterns, also emerge from PC analysis of

unfiltered Z anomalies in noisier forms (Fig. 5b). This

confirms that the structures shown in EOFs of bandpass

filtered data are based on solely atmospheric variability,

and that the patterns do not owe their existence to sta-

tistical covariability with sea ice.

One of the main ideas of this paper is that these

Rossby modes deserve more attention in the context

of understanding sea ice variability, particularly since

Rossby waves are one of the most dominant atmospheric

modes of variability. It is also worth pointing out that,

even though theRossbymodes shares some variancewith

SAM, the spatial structures of the Rossby modes are not

similar to SAM. This means that, at least for the intra-

seasonal time scale, it is essential to look at Rossby wave

structures, rather than looking only at the SAM itself,

which has received much attention for explaining sea ice

modulation. We also note that these Rossby modes are

not related to ENSO, simply because ENSO does not

have much power in this time scale. Removing the in-

fluence of the MJO from Z data by linear regression

yields no major changes in the present results. This is

because the teleconnection signal of theMJO is too small

in the Southern Ocean, compared to those of other

climate modes.

b. EOF/PC analysis for the local domain

Because EOF/PC analysis seeks spatial patterns that

explain the largest variance in a prescribed domain,

local weather disturbances are not well captured by

EOFs of the hemispheric domain as computed in the

previous subsection. Therefore, we further perform

EOF/PC analysis for local longitudinal sectors shown in

Fig. 1 after removing the hemispheric EOF modes by

regression. This procedure gives us indices for localized

weather modes that are not correlated with each other

or with the hemispheric modes. We can check whether

local meteorology shares some variance with SIE using

these modes, but each mode should not be interpreted

as having any unique physical identity.

c. Relative importance of the different climate modes
for sea ice variability

We have prepared various climate indices that are not

correlated with each other. In this subsection, we cal-

culate r2 between these climate indices and SIE time

series [r2 can be viewed as the fraction of variance of

SIE explained by a climate index; see Eqs. (8) and (9)]

and compare the magnitude among the climate modes.

We can also sum the r2 of the climate modes and find the

total variance explained by them, because these climate

indices are uncorrelated. If a mode consists of two in-

dices (e.g., PSA mode consists of PC1 and PC2), we can

simply add the fraction of variance to find the explained

variance by the mode. For example, if correlations be-

tween SIE and PC1 (PC2) are 0.5 (0.8), the explained

variance by PC1 and 2 is 0:52 1 0:82 5 0:895 89%. The

sum never surpasses 100% as long as PC1 and PC2 are

temporally uncorrelated.

When calculating r2, we use a lag of 4 days (meteo-

rology leads sea ice), because spectral analysis shows that

meteorology leading by about 4 days explains the largest

total variance of sea ice for this time scale. The results do

not change much if we use slightly different lags,

however. We shall further investigate this issue using lag

regression analysis in the next subsection.

A caveat for this analysis is that we use the spatial

pattern derived from all the month to explain the sea-

sonal SIE variability. This is mainly because the EOF/

PC modes for seasonal data are not distinct according

to the North et al. (1982) criteria, presumably due to the

more limited sample size. Therefore, here we use the

EOF/PC patterns derived from all 12 months, which

works reasonably well. For reference, Fig. S1 (see the

supplementalmaterial) compares the seasonal PSAmodes

with the all-month PSA shown in Fig. 5a. The seasonal

patterns are noisier, but they are qualitatively not too

different from the structures obtained using all themonths,

since the seasonal cycle in extratropical winds and tem-

perature is relatively weak in the Southern Hemisphere.

Figure 6 shows r2 between the sectorial SIE and the

various climate modes for each season. These results

support the notion that a large portion of the intraseasonal

variability can be explained by Rossby modes, especially

in the MJJ and ASO seasons. It is also notable that about

45% of the intraseasonal sea ice variability in the BA and

RS sectors can be explained by the PSA mode. On the

other hand, a large fraction of SIE variability in the IO

sector is associated with more local weather. We note

that ENSO does not have an intraseasonal component

in its variance spectrum.
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The total explained variances in NDJ and FMA are

about a half or less of those in MJJ and ASO. This result

suggests that it is more difficult to predict intraseasonal

sea ice variability by meteorological variables during

austral summer. This might be due to the fact that the

variance of sea ice is smaller in austral summer because

there is much less sea ice, and therefore the signal-to-

noise ratio becomes smaller. It is also possible, however,

that the annual mean meteorological patterns better

represent the MJJ and ASO seasons.

d. Themechanism of howRossby wavesmodulate sea
ice

To confirm that Rossby waves play a dominant part in

modulating SIE, and to clarify the mechanism of how

Rossby waves modulate Antarctic sea ice, we perform

lag regression analysis of five variables (dailyZ, y, and T

at 1000hPa, and dS/dt and S; bandpass filtered) onto

standardized SIE. Figure 7 shows the lag regression maps

of the five variables on the reference SIE time series of

BA sector. The patterns in Z and y show a robust geo-

strophic relationship, suggesting typical features of Rossby

waves whose phase propagates eastward. The y pattern

corresponds to the T and dS/dt patterns in the way ex-

pected to produce positive anomalies in S.

Southerly anomalies presumably yield cold advection,

so that sea ice grows, and vice versa. These dynamical

and thermodynamical effects of meridional wind in the

Southern Ocean are already well investigated for many

different time scales (e.g., Lefebvre and Goosse 2005;

Renwick et al. 2012; Holland and Kwok 2012). The

anomalous meteorological signal is largest when SIE

FIG. 6. Explained variance (%) of SIE time series in five longitudinal sectors by various intraseasonal (bandpass filtered) climate modes

shown in Fig. 5a. SIE lags Z by 4 days. Each climate index is not correlated with each other. Blue bars show the mean of 1000 squared-

correlation coefficients calculated for randomly chosen 17 years out of 34 years, repeated 1000 times (see method section). Red error bars

show the 5th and 95th percentile value of the 1000 coefficients. Local variability is defined as the first five EOFs of the local domains

(see section 4b).

730 JOURNAL OF CL IMATE VOLUME 29



lags meteorology by 4 days, as documented by Renwick

et al. (2012).

One might be confused about how to reconcile the

lag of 4 days and the period of 20–40 days. As we

mentioned in the previous section, the phase differ-

ence between meteorology and SIE stays constant

about 408–708 across the intraseasonal time scale. If

the phase lag between meteorology and SIE is 608,
then the time lag is 608/3608 of one period (i.e., me-

teorology generally leads sea ice by one-sixth of the

period). Therefore, the lag of 608 yields the lag of

4 days between meteorology and SIE if we look at the

Fourier mode of 24 days in period. It is thus consistent

that the lag between meteorology and sea ice is about

four days, with its uncertainty depending on which

Fourier period in 20–40 days is most coherent at each

longitude.

5. Interannual time scale

In this section, we perform the same analysis as the

previous section but for unfiltered monthly mean

FIG. 7. Lag regressionmaps of dailyZ, y, T, dS/dt, and S (Z, y, and T are at the 1000-hPa level) on the standardized daily SIE time series

of BA sector. The numbers of days of lags are indicated above the maps, where positive (negative) number indicates SIE leads (lags) the

other variables. Contour intervals 5m forZ, 0.4 m s21 for y, and 0.25K for T. Zero contours are omitted. Positive (negative) local maxima

are shaded orange (blue).
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anomalies, which represent interannual time scales.

Even thoughZ and SIE are less coherent, this time scale

is important because the magnitude of sea ice variance

(i.e., not the fraction of variance) explained by Z is still

much larger than that of the intraseasonal time scale.

This is due to the long persistence of sea ice anomalies.

We have removed the atmospheric variations that are

related to tropical SST by regressing out two modes of

variability associated with the ENSO patterns in Fig. 8,

except in those cases where we specifically investigate

the influence of ENSO. The ENSO modes are obtained

as the first two modes from EOF/PC analysis performed

on the global SST. The first mode is well-known ENSO,

and the second mode is called the North Pacific mode

(NPM) (Hartmann 2015). This mode shares about a half

of its total variance with so-called ENSOModoki (Ashok

et al. 2007) or central Pacific (CP) ENSO (Kao and Yu

2009). The teleconnection patterns for these modes are

shown inFig. 8, right, (global view) andFig. 9a (polar view).

Figure 9b shows the first three EOFs of unfiltered

monthly Z after removing the ENSO signal. For this

time scale, the first mode captures SAM, and the second

and third modes capture the Rossby wave–like structure

prevalent across the Drake Passage (DPR). For this

time scale, PC2 and PC3 do not show any lag correla-

tions, meaning that monthly data do not resolve the

propagation of the waves, but rather more stationary

anomalies. One possible ultimate cause for this mode

could still be signals coming from the Pacific, which may

remain even after removing the two leading EOFmodes

of tropical SST by simultaneous linear regression. This

mode could also be generated through interaction

among eddies, jets, and topography in the extratropics.

The analysis of relative importance for sea ice vari-

ability (Fig. 10) shows somewhat different features from

the intraseasonal time scale. We did not employ any lags

for the interannual time scale, because the simultaneous

squared correlations are larger than with any other lag.

In each sector, sea ice is modulated by different phe-

nomena. Sea ice in the IO sector is modulated by SAM

and ENSO, in the WP sector by local meteorology, in

the RS sector by ENSO and DPR, and in the BA sector

by DPR. SIE in the WS sector is less well explained by

these climate modes. Major features shown here are

independent of season, except for the IO sector; SIE in

the IO sector is mainly explained by SAM in MJJ, but

ENSO becomes of more importance in NDJ and FMA.

The influences from ENSO and SAM appear impor-

tant for the interannual time scale, but the DPR modes

also explain SIE variance comparable to that explained

by ENSO and SAM. Investigating the ultimate cause of

the DPR modes is beyond the scope of this study, but

this result supports the notion that linear analyses of

ENSO and SAM are not sufficient to understand in-

terannual sea ice variability.

6. Trends of interannual climate modes and its
implications for the sea ice trends during the
satellite era

The extent of Antarctic sea ice is known to have ex-

panded during the satellite era (Parkinson and Cavalieri

FIG. 8. (left) Regression maps of monthly global sea surface temperature (SST; 8C) onto its standardized PC1

(ENSO) and PC2 (NPM) time series for all months. Monthly climatology and the linear trend are removed be-

forehand. Variance contributions are indicated on top right. (right) Regression maps of Z at 500 hPa onto the PC1

(ENSO) and PC2 (NPM). Contour interval is 5m. Zero contours are omitted, and positive (negative) local maxima

are shaded orange (blue).
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2012). We have much observational and modeling evi-

dence that these trends are driven by atmospheric (e.g.,

Holland and Kwok 2012) or oceanic (e.g., Zhang 2007)

modulation, but the ultimate cause of the atmospheric/

oceanic variability that forces sea ice to increase still

remains unexplained. Anthropogenic forcings such as

ozone depletion have also received much attention as

one of the root causes (e.g., Turner et al. 2009), but other

studies suggest otherwise (Bitz and Polvani 2012).

Polvani and Smith (2013) argued that the observed trend

in Antarctic sea ice falls within the natural variability

exhibited by phase 5 of the Coupled Model In-

tercomparison Project (CMIP5) models.

In this section, we investigate the implications of the

ENSO, NPM, SAM, and DPR modes for the sea ice

trend during the period 1979–2012. Even though these

are interannual climate modes, some of them have had a

nonnegligible trend during the satellite era. For exam-

ple, the eastern equatorial Pacific Ocean is known to

have a cooling trend during the satellite era (Fig. 11a),

and therefore, the trend pattern in Z (Fig. 11b) has a

large projection onto our ENSO mode (Fig. 9a). Conse-

quently, ourENSOmode has a negative (i.e., so-called La

Niña like) trend during the satellite era (Fig. 11c, top).

Observed trends in the Southern Hemispheric atmo-

spheric circulation during the satellite era in late spring

and early summer have received much attention in re-

lation to ozone depletion (e.g., Polvani et al. 2011). The

associated trend is also evident in Fig. 11b, and therefore,

it projects onto our SAM mode (Fig. 9b), yielding a

positive SAM trend (Fig. 11c, bottom).

Our main goal in this section is to explore the influ-

ence of these climatological trends on Antarctic sea ice

trends during the past 34 years. Our analysis below is

based on pure statistical analyses for the observational

data of the satellite era. We acknowledge that obtaining

statistical results is not the ultimate goal of the research

community. Statistical results, however, could poten-

tially serve as strong tools to provide evidence for the

underlining physical processes and mechanisms.

a. Method

The idea of our analysis is to use linear regression to

isolate the sea ice trends associated with the interannual

climate modes. Specifically, the method includes the

following steps:

1) Obtain a ‘‘with trend’’ climate index, by projecting

the nondetrended Z data onto the spatial pattern

associated with the interannual climate mode shown

inFig. 9, which have been identified in detrended data.

2) Take annual averages of the obtained climate index

and SIE time series, which gives two sets of 34 data

points of 1979–2012.

3) Remove the sea ice modulations associated with the

climate index from the SIE time series, by using the

regression coefficient calculated between the de-

trended climate indices and SIE with 34 points each

(Fig. 12). When calculating the regression coefficient,

the trends of both time series are removed so that only

nontrend variability affects the regression coefficients.

4) Check whether the ‘‘residual SIE time series’’ still

has a significant trend at 95%. The statistical un-

certainty of the trend is estimated using the method

described in section 2c(4).

5) Seasonal analysis: Repeat steps 2 through 4 using

data sorted into seasonal bins.

Unlike the previous section, the with-trend indices

obtained in step 1 are no longer temporally orthogonal

with each other. For instance, the indices between

‘‘with-trend ENSO’’ and ‘‘with-trend SAM’’ share 38%

of variance with each other (Fig. 11c). This means the

ENSO trend may influence the SAM trend, and vice

versa. Therefore, with-trend ENSO should not be viewed

FIG. 9. (a) As in Fig. 8 (right), but for SH polar stereographic projection. (b) As in Fig. 2, but for unfiltered monthly data. The climate

modes shown in (a) are removed by linear regression beforehand.
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as an independent component from SAM or other cli-

mate modes. Rather, each with-trend index represents

different perspectives of how to define the climatemodes.

Figure 12a shows the scatterplots based on annual

mean data showing the linear relationship between

sectorial SIE and ENSO used in step 3. As shown in the

previous section, SIE variations are best explained by

ENSO in the RS sector, with the IO sector being second

best. Correlations between ENSO and SIE in the WP

and BA sectors are insignificant. The same analysis for

SAM is summarized in the Fig. 12b. SAM explains sea

ice in the IO sector relatively well, but the other sectors

are not well explained by SAM. This is also consistent

with the results shown in the previous section. We cal-

culate these regression coefficients using detrended data

so that the regression coefficient depends only on the

year-to-year variability and not the trend. The robustness

of this regression coefficient is extremely important, be-

cause the estimated trend associated with each climate

mode is sensitive to this coefficient.

One might suspect we should also investigate the

AMO or Pacific decadal oscillation (PDO), which are

two dominant decadal modes of variability on Earth. In

principle, the answer is yes. In practice, however, it is

hard to investigate multidecadal modes with an avail-

able record of 34 years because of the lack of enough

statistical degrees of freedom. Therefore, the results

shown here may be affected by decadal variability, such

as the AMO and PDO. Even though it is beyond the

scope of this study, it is possible to investigate the de-

cadal variability with a help of model results. Li et al.

(2014) proposed a physical explanation of the trend by

theAMO. They argued that Atlantic warming generates

deep convection, and the resulting stationary Rossby

FIG. 10. As in Fig. 6, but for unfiltered monthly data without any lags. Each mode is shown in Fig. 9. Local variability is defined as the first

three EOFs of the local domains (see section 4b).
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wave trains deepen the Amundsen Sea low, and thus

redistributes the sea ice concentration between the RS

and BA sectors through thermal advection and me-

chanical forcing. The teleconnection between Atlantic

warming and Southern Hemisphere atmospheric cir-

culation changes are well supported by a hierarchy of

climate model simulations (Li et al. 2015a,b; Simpkins

et al. 2014), while the interactions between local circula-

tion changes and sea ice concentration changes are in-

vestigated by several recent studies (e.g., Holland and

Kwok 2012). A caveat of these studies, however, is that

the AMO’s variance contribution to the Amundsen Sea

low and corresponding RS and BA sea ice responses

await further observational verification using data with a

longer time span than the past three decades.

b. Results

1) ENSO

Figure 13a shows the SIE time series before and after

regressing out the sea ice modulation associated with

ENSO. In this figure, we highlight the RS sector because

we have an a priori expectation that ENSO influences

the sea ice in the RS sector most efficiently (Figs. 10 and

12a). After regressing out ENSO, the slope of the trend

during the satellite era is reduced in the RS sector. In

fact, after removing the effect of ENSO, the positive

trend of SIE for the RS sector is no longer significant

at the 95% confidence level. This means that, even

though the ‘‘sample trend’’ for this particular time span

is still positive, the ‘‘true trend’’ might be zero except for

the influence of ENSO. In other words, if we prepare

a random time series with the same degrees of freedom

and standard deviation as the residual SIE time series,

we have a very good chance to obtain a positive trend

with the same magnitude purely by chance.

Antarctic sea ice is expanding, which is contrary to

what we have observed in the Arctic, and contrary to

climate model predictions of the response to global

warming. However, if the standard deviation of sea ice

time series is large enough, and if the time span is short

enough, it is likely that the positive trends could appear

by chance. In this sense, it is less puzzling if the positive

trend is statistically insignificant, because we have a very

good chance (i.e., more than 5%) to obtain the observed

magnitude of the trend simply by stochastic variability

FIG. 11. (a) Linear trends of SST (8C decade21) from 1979 through 2012 calculated at each grid. (b) As in (a), but for Z at 500 hPa.

Contour interval 2m decade21. Zero contours are omitted, and positive (negative) local maxima are shaded orange (blue). (c)With-trend

climate indices calculated by projecting the nondetrended Z data onto the spatial patterns of ENSO and SAM shown in Fig. 9. Dashed

lines are calculated by least squares fitting, and shaded areas show the uncertainty of the slopes at the 95% confidence level.
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rather than by some deterministic causes. Here, ‘‘sto-

chastic’’ variability refers to variability that originates

from internally generated variability whose statistics are

stationary, rather than from a true secular trend. This

view is encouraged by the result that the sea ice trend

in the past 34 years loses its statistical significance at

95% after removing the influence of one particular cli-

mate mode, in this case ENSO.

The same conclusion as the RS sector stands for the

IO sector, where the increasing trend becomes barely

insignificant at the 95% confidence level. Conversely,

the sea ice trend in the WS sector becomes significant

after regressing out ENSO. This result is also novel,

because it means the positive WS trend has partly been

masked by ENSO variability. Because of this counter-

action among SIE in the RS, IO, and WS sectors, the

trend of the hemispheric SIE time series remains sig-

nificant at 95% confidence level even after regressing

out ENSO (Fig. S2a in the supplemental material). This

is consistent with the notion that there may be other

factors favoring an increase of the hemispheric extent of

Antarctic sea ice.

As expected from the results shown in Fig. 12a, the

SIE trends in the WP and BA sectors are not correlated

with ENSO variability. This evidence that the SIE in the

BA sector is not influenced by ENSO is of particular

importance, because the trend here is large, negative,

and significant at 95%.Onemay speculate that it is due to

global warming, because sea ice in the BA sector is not

sensitive to ENSO. We do not, however, have enough

evidence to verify this conjecture for the following two

reasons. First, it is likely that the decreasing trend is at

least partly enhanced by other kinds of natural variability,

so this needs to be investigated. Second, the low corre-

lation between the ENSO index and SIE in the BA sector

presumably does not directly mean that sea ice in the BA

sector is physically insensitive to ENSO. According to

many previous studies (e.g., Simpkins et al. 2012), BA

sector sea ice appears to be indeed modulated by ENSO,

but when averaged over the sector, variations in the east

and west halves cancel each other.

Because the relationship between ENSO and SIE

changes with season (Fig. 10), the seasonal trends of SIE

are also of interest. Figure S3 in the supplemental ma-

terial shows the results for the same analysis but for four

different seasons. The trend slope in the RS sector

during the satellite era has decreased in all four seasons

after regressing out ENSO variability. The ENSO re-

moval produces the largest reduction in the trend for the

NDJ season, when the trend has lost the significance as

in the annual-mean analysis. This result is consistent

with observational evidence that the ENSO variability is

largest in austral summer. The ENSO signal in the IO

sector is seen in every season except for ASO, and the

FIG. 12. (a) Scatterplots showing the relationship between SIE time series for each sector and the ENSO index shown in Fig. 11c, but

both time series are detrended. Blue lines are calculated by least squares fitting. Correlations r and their significance at the 95% confidence

level are shown on bottom in each panel. (b) As in (a), but for SAM.
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ENSO signal in the WS sector originates mostly from

the NDJ season, but the trend in that season is not sig-

nificant, with or without the ENSO effect included.

2) SAM

Figure 13b shows the results for SAM. We highlight

the IO sector because the SIE in the IO sector exhibits

the largest correlation with SAM. After regressing out

SAM, the slope declines and is no longer significant at

95%. On the other hand, the positive sea ice trend in the

WS sector becomes stronger after regressing out SAM,

and nearly becomes significant. The other three sectors

are relatively insensitive to SAM variability. As is the

case with ENSO, the positive trend of the hemispheric

SIE time series retains its significance after regressing

out SAM (Fig. S2b). This supports the analysis result of

Simpkins et al. (2012) that the trends in sea ice over

1980–2008 are not significantly related to trends in SAM.

The seasonal analysis shown in Fig. S4 of the supple-

mental material suggests that the SAM signals in the IO

sector mostly originate from the MJJ season, which is

early winter. Therefore, this result should not be inter-

preted as being related to the observed SAM trend in

late spring and early summer (e.g., Polvani et al. 2011),

which has frequently received attention. We have fur-

ther sorted the MJJ data into monthly bins and

FIG. 13. (a) SIE time series for each sector before (after) regressing out the SIE variability associated with ENSO using the linear

relationships shown in Fig. 12, shown in black (red) curves. Dashed lines are calculated by least squares fitting, and shaded areas show the

uncertainty of the slopes at the 95% confidence level. (b) As in (a), but for SAM.
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performed the same analysis (Fig. S5 in the supplemental

material). The result suggests that the SAM signal in the

IO sector comes mostly from May. Hence, the SAM

trend in May deserves further attention in this context.

Our results for SAM are based on the spatial pattern

shown in Fig. 9, but nearly identical results are obtained

even if we use the pattern extracted as the first EOF

mode of unfiltered Z at 500hPa (Fig. 2a), which is nor-

mally referred to as SAM index.

3) NPM AND DPR

We have performed the same analysis but for NPM

andDPR (not shown). The sea ice responses toNPMare

qualitatively similar to those of ENSO, but the influence

of NPM on sea ice is weaker. The trends of annual mean

sea ice in all five sectors are changed very little by

regressing out either of the two indices that comprise the

DPR mode. Therefore, we do not perform further ana-

lyses on NPM and DPR in this study.

c. Comparison with Holland and Kwok

Holland and Kwok (2012) showed that the trends in

meteorology, especially local winds associated with sea

level pressure anomalies, have expanded Antarctic sea ice

during 1992–2010. We can also reproduce their trend

pattern using 500-hPa Z during their time span (1992–

2010; April–June) (Fig. 14a). To focus on the relationship

between the trend pattern and the Rossbymodes, we have

repeated the same analysis as in the intraseasonal section

but for strongly low-pass filtered (Fig. 4b)April–June data.

In this analysis, the ENSO influence is removed using the

Niño-3.4 index (i.e., the average SST anomaly over 58S–
58N, 1708–1208W) for computational efficiency.

As in the previous section, the first EOF mode is the

SAM pattern, and the second and third modes are

Rossby wave–like modes. Figure 14b shows the second

and third EOFwith similar color scale and orientation to

Fig. 3 of Holland and Kwok (2012). These EOF modes

are calculated after removing the climatology, trend, and

ENSO. Since the first mode of EOF is the SAM pattern,

the Rossby modes are also not correlated with SAM.

The explained variance of these two Rossby wave–

like modes are not separated by the North et al. (1982)

criterion, so any linear combination of these two modes

can be equally important. Therefore, in Fig. 14c, we

show the trend patterns that are reconstructed from

EOFs 2 and 3. Considering the similarity between

Figs. 14a and 14c (spatial correlation 5 0.69), the trend

pattern shown in Holland and Kwok (2012) appears to

be a 19-yr trend associated with Rossby wave–like

modes that are orthogonal to ENSO or SAM.

Also important is that the PC time series associated

with this Rossby mode does not show a significant trend

at 95% in the 34-yr record (Fig. 14d). Therefore, it is

reasonable to assert that Holland and Kwok (2012)

captured a fluctuation in the low-frequency variability

associated with atmospheric Rossby wave–like distur-

bances. Even though the ultimate causes of the low-

frequency modulation are equivocal, this supports the

notion that the expanding Antarctic sea ice in some

sectors may have resulted from stochastic variability of

Earth’s climate system, rather than from a long-term

deterministic trend possibly resulting from climate

forcing.

7. Conclusions

Our results provide a comprehensive analysis of various

time and space scales of weather and climate variability and

their effect on Antarctic sea ice. The main conclusions are

summarized as follows.

a. Sea ice extent shows the largest coherence with
geopotential height at 500hPa at intraseasonal time
scales with periods of 20–40 days

Our first motivation presented in this paper is to find

whether there exists a particular time scale where me-

teorology and sea ice are most coherent. Cross-spectral

analysis clearly shows that the answer is yes: the intra-

seasonal time scale, between about 20 and 40 days in

period, is a ‘‘sweet spot’’ where Z at 500 hPa explains a

larger fraction of SIE variance than any other time scale.

This preferred time scale is most prominent in the RS

and BA sectors, but is observed at all longitudes.

b. Rossby waves, especially with the PSA pattern,
explain a large fraction of the intraseasonal
variability of the Antarctic sea ice

To more closely examine intraseasonal variability, we

have constructed a bandpass filter to focus only on the

time scale for which meteorology and sea ice are most

coherent. First, we perform EOF/PC analysis for band-

pass filteredZ at 500hPa to identify the spatial structure

of atmospheric variability for this particular time scale.

The analysis shows that quasi-stationary Rossby waves

are the key phenomena in the Southern Hemisphere on

this time scale.

An important point is that the Rossby modes isolated

by our analysis procedure are not indicative of either

ENSO or SAM, which have received much attention in

the context of explaining Antarctic sea ice variability.

Our analysis suggest that about 50%of the intraseasonal

Antarctic SIE variance during MJJ (ice growing season)

and ASO (ice maximum season) is explained by Rossby

waves (especially the so-called PSA pattern) in the

RS and BA sectors. During the rest of the year, Rossby
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waves explain about 20%, in general. Even though the

SAM is not orthogonal with the Rossby modes, the

spatial maps do not look like the SAM. Therefore,

Rossby wave structures should receivemore attention in

future studies, rather than the SAM itself, at least in the

intraseasonal time scale. ENSO does not influence SIE

on intraseasonal time scales, because ENSO has little

power in this time scale.

c. For interannual time scales, a large amount of SIE
variance is unexplained by linear relationships to
ENSO and SAM, but is rather explained by a
Rossby wave–like mode

If we perform the same analysis for interannual time

scales using unfiltered monthly mean data, the relative

importance of climate modes on sea ice is different than

that for intraseasonal variability. ENSO and SAM be-

come more important on the interannual time scale. This

is becauseENSOhasmore power on the interannual time

scale, and SAM becomes a more dominant mode of at-

mospheric variability. We note, however, that SIE time

series cannot be explained well by a simultaneous SAM

index except for Indian Ocean sector inMJJ (ice growing

season). Instead, theDrake PassageRossby (DPR)mode

explains a lot of variance in this time scale. DPR indices

(PC2 and PC3) are not correlated with our ENSO nor

SAM indices.

d. In some sectors, the statistical significance of the
increasing sea ice trends during the satellite era
disappears after regressing out the influence of one
prominent climate mode

During the most recent three decades, some in-

terannual climate modes have nonnegligible trends, and

therefore have some implications for the increasing sea

ice trend in that period. In the RS and IO sectors, if we

remove the sea ice modulation associated with ENSO,

then the increasing trend becomes weaker, and the sta-

tistical significance of the increasing SIE trend falls below

95%. This suggests that, at least in some sectors, after the

ENSO forcing is removed, stochastic variability might be

enough to explain increasing sea ice.

If the effect of SAM is removed, only the IO sectorial

trend loses its significance, and the signals appear to

originate mostly from May. Because both ENSO and

SAM trends affect sea ice differently in different sectors,

the counteraction among the WS, IO, and RS sectors

makes it difficult for ENSO and SAM to explain the

FIG. 14. (a) Linear trends of Z at 500 hPa in April–June of 1992–2010. The Greenwich meridian located on the top. (b) As in Fig. 3 but

for PC2 and PC3 of strong low-pass filtered detrended data in April–June of 1979–2012. (c) Linear trends ofZ at 500 hPa in April–June of

1992–2010 reconstructed by EOF2 and EOF3. (d) The time series obtained by projecting nondetrended Z onto the EOF2 and EOF3

shown in (b). Black (red) dashed line shows the least squares fitting calculated with the data of 1979–2012 (1992–2010).
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increasing trend of the hemispheric total SIE during the

satellite era. Since the above results are based on sta-

tistical analysis only, further physical process studies

from both observational and modeling perspectives

are needed.
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