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Abstract The change of the Brewer-Dobson circulation (BDC) over the period of 1980-2009 is examined
through a combined analysis of satellite Microwave Sounding Unit (MSU/AMSU) lower stratospheric
temperatures (T, s), ERA-Interim reanalysis data, and observed estimates of changes in ozone, water vapor,
well-mixed greenhouse gases, and stratospheric aerosols. The MSU/AMSU-observed tropical T s trend is
first empirically separated into a dynamic component associated with the BDC changes and a radiative
component due to the atmospheric composition changes. The derived change in the dynamic component
suggests that the annual mean BDC has accelerated in the last 30 years (at the 90% confidence interval),
with most of the change coming from the Southern Hemisphere. The annual mean Northern Hemisphere
contribution to the acceleration is not statistically significant. The radiative component of tropical T, s
trends is independently checked using observed changes in stratospheric composition. It is shown that the
changes in ozone, stratospheric aerosols, well-mixed greenhouse gases, and water vapor make important
contributions to the radiative component of tropical T, s trends. Despite large uncertainties in lower
stratospheric cooling associated with uncertainties in observed ozone and water vapor changes, this
derived radiative component agrees with the empirically inferred radiative component, both in terms of its
average value and small seasonal dependence. By establishing a relationship between tropical residual
vertical velocity at 70 hPa and T, s, we show that the relative strengthening of the annual mean BDC is
about 2.1% per decade for 1980-2009, supporting the results from state-of-the-art chemistry-climate
model simulations.

1. Introduction

The global residual circulation of the stratosphere—the Brewer-Dobson circulation (BDC)—consists of a
meridional cell in each hemisphere, with air rising across the tropical tropopause, moving poleward, and sinking
into the extratropical troposphere [e.g., Holton et al,, 1995; Plumb, 2002]. General circulation models (GCMs) and
chemistry-climate models (CCMs) with detailed representations of the stratosphere predict an acceleration of
the BDC in response to rising greenhouse gas concentrations as well as ozone depletion [e.g., Butchart et al,
2006; Li et al, 2008; Garcia and Randel, 2008; Oman et al, 2009; Butchart et al, 2010; Shepherd and
McLandress, 2011; Lin and Fu, 2013]. The BDC is, however, poorly constrained by observations, and many funda-
mental questions remain [Butchart, 2014]. Since the BDC and its changes have important implications on both
stratospheric and tropospheric climate as well as stratospheric ozone chemistry [e.g., Eyring et al, 2007;
Shepherd, 2008; Li et al., 2009; Lamarque and Solomon, 2010; Birner, 2010; WMO, 2011; Fu, 2013; Manzini et al.,
2014], it is important to assess the simulated BDC changes with observations.

Changes in the strength of the BDC have not been unambiguously detected from observations on the
decadal time scale [WMO, 2011]. Engel et al. [2009] have analyzed balloon-borne measurements of carbon
dioxide (CO,) and sulfur hexafluoride (SFs) over the past 30years to derive possible trends in the mean
age of stratospheric air. They reported a small but insignificant increase of the mean age of air in the
Northern Hemisphere (NH) midlatitude middle stratosphere, in contrast to an expected decrease in the
age of stratospheric air as a result of an accelerated BDC from GCMs and CCMs. The interpretation provided
in Engel et al. [2009], however, has been subject to debate [Waugh, 2009; Garcia et al, 2011]. On the other
hand, observed negative ozone trends in the tropical lower stratosphere indicate increases in upwelling
circulation there [Randel and Thompson, 2011; Sioris et al., 2014].
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Because of a close relationship between the variations of temperatures and residual vertical velocities in the
lower stratosphere [Yulaeva et al., 1994], an accelerated BDC would lead to a cooling of the tropical lower stra-
tosphere but warming in high latitudes. Observational evidence of a long-term BDC strengthening is sug-
gested over both the tropics and high latitudes by consistent changes in lower stratospheric temperatures
[Thompson and Solomon, 2005; Johanson and Fu, 2007; Rosenlof and Reid, 2008; Hu and Fu, 2009; Lin et al.,
2009; Thompson and Solomon, 2009; Fu et al., 2010; Young et al., 2012]. By analyzing the lower stratospheric
temperature (Ts) data from satellite Microwave Sounding Unit (MSU) and advanced MSU (AMSU) for
1980-2008, Fu et al. [2010] found that the BDC is strengthening during June—-November in the Southern
Hemisphere (SH) and during December-February in the NH, but weakening during March-May in the
NH. Using temperatures measured by the MSU/AMSU, Stratospheric Sounding Unit, and radiosondes,
Young et al. [2012] confirmed a significant strengthening of the NH (SH) branch of the BDC during
December (August) and a significant weakening during March in the NH. Osso et al. [2015] revisited the
study by Young et al. [2012] but did not find statistically significant trends in the BDC for given months.
It has still not been clear, however, whether the changes of the annual mean BDC and its NH and SH
branches are statistically significant, which has important implications for the interpretation of observed
changes in the mean age of stratospheric air. In addition, it remains an open question if the empirical
separation of dynamic and radiative components of observed tropical T s trends can be validated using
independently observed changes in atmospheric compositions. Furthermore, it is not clear how BDC
changes as reflected in the tropical upwelling mass flux at 70 hPa, which is associated with the residual ver-
tical velocity, can be related to the dynamic components of the observed T s trends. The former is a direct
measure of the BDC changes, which is about 2.0-3.2% per decade from the CCMs [e.g., Butchart, 2014].

In this study we separate the dynamic component of the T, s trends associated with the BDC changes from the radia-
tive component following Fu et al. [2010]. We perform a comprehensive statistical analysis of the derived trends
based on a Monte Carlo technique. We show that the strengthenings of annual mean BDC and its annual mean
SH branch are statistically significant at the 90% confidence interval in the last 30 years, while the strengthening
of the annual mean NH BDC is smaller and statistically insignificant. The latter implies an insignificant long-term
change of the mean age of stratospheric air in the NH. We also independently estimate tropical radiative cooling
based on observed changes in ozone, water vapor, well-mixed greenhouse gases, and stratospheric aerosols,
which is complementary to the empirically derived radiative cooling. The latter is obtained as the difference
between the observed tropical T, s trend and its dynamical component. The comparison of the radiative contribu-
tions from these two independent methods by month supports the notion that the seasonality of observed
tropical T s trends in the last 30 years is largely a response to changes in the BDC [Fu et al,, 2010]. We further probe
the relationship between tropical mean residual vertical velocity at 70 hPa and T, s so that the dynamic compo-
nent of tropical T s trends can be related to the change of residual vertical velocity. We find that the BDC in the
last 30 years has strengthened by ~2.1% per decade in terms of tropical mean residual vertical velocity at 70 hPa.

This paper is organized as follows. Section 2 describes the suite of data employed. The trend in lower strato-
spheric temperature (T, s) and its dynamic and radiative components are discussed in section 3, and the
statistical analysis of the derived trends is given in section 4. The tropical radiative cooling estimated from
observed changes in stratospheric composition is presented in section 5. The long-term change of the
BDC in terms of tropical vertical velocity based on lower stratospheric temperature trends is then examined
in section 6. The summary and conclusions are given in section 7.

2. Data

We used the MSU/AMSU lower stratospheric temperature (T s) monthly anomalies, in which the mean seaso-
nal cycle for 1980-2009 is removed. They are gridded at 2.5° latitude by 2.5° longitude. The T s weighting
function ranges from ~20 hPa to ~120 hPa and peaks around 60-70 hPa [e.g., Fu and Johanson, 2005], which
therefore represents well the lower stratosphere. The T, s channel has some contribution from the tropical
upper troposphere, and we estimate its impact in section 4. The MSU/AMSU measurements extend to
82.5°N/S. In this study, we define the tropics from 20°S to 20°N and high latitudes from 40°N(S) to 82.5°N(S)
following Fu et al. [2010]. Lin et al. [2009] and Fu et al. [2010] showed that outside the tropics the strongest signal
of T.s changes associated with the BDC is around 65°N/S. Note that our analysis does not require a complementary
division of latitudes, although we obtain similar results by defining the tropics from 30°S to 30°N and high latitudes
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from 30°N(S) to 82.5°N(S) (not shown). Three T, s data sets are available, which are compiled by the University of
Alabama at Huntsville team [Christy et al,, 2003, hereinafter UAH], the Remote Sensing System team [Mears and
Wentz, 2009, hereinafter RSS], and the National Oceanic and Atmospheric Administration team [Zou et al,, 2006,
hereinafter NOAA]. Note that the NOAA team employed a unique inter-satellite calibration algorithm for the
MSU/AMSU instruments using simultaneous nadir overpasses. In this study, we used T s from all three data sets
but present the results obtained with the NOAA data set unless specified.

The eddy heat flux, representing the upward-propagating wave activity, has been used as an index for
the BDC, which has been empirically tested in many previous studies [e.g.,, Newman et al., 2001]. Here the
6-hourly ERA-Interim reanalysis data [Dee et al, 2011] were used to calculate the eddy heat flux, which is
averaged over 3 months including the given month and two previous months, as an index of the strength
of the BDC for a given month [Lin et al., 2009; Fu et al., 2010]. The starting year in this study is 1980 to avoid
the use of reanalysis data prior to the satellite era. We also used the ERA-Interim reanalysis data to establish
the relations between residual vertical velocities at 70 hPa and T, s over the tropics. Seviour et al. [2012] found
that the BDC is well represented by this reanalysis data in terms of its climatology and variability.

We also use a radiative transfer model to directly estimate tropical T, s trends that are radiatively driven by the
changes in stratospheric composition except aerosols (see section 5). We impose the tropical monthly mean
temperature, ozone, and water vapor profiles compiled by Yang et al. [2008] as background atmospheric pro-
files against which perturbations are applied. This background climatology is based on several data sources.
The temperature and ozone profiles at least up to 28 km were obtained from 14 Southern Hemisphere
Additional Ozonesonde [Thompson et al., 2003] stations. The water vapor profiles, measured by the cryogenic
frost-point hygrometer as well as the NOAA/CMDL (now NOAA/ESRL) frost-point hygrometer balloon sound-
ings, were obtained from seven tropical stations. In order to obtain accurate radiative heating rate calcula-
tions in the tropical lower stratosphere, the observed atmospheric profiles are extended up to 0.2 hPa by
blending in the United Kingdom Meteorological Office monthly stratospheric analysis of temperature data
and Halogen Occultation Experiment (HALOE) monthly ozone and water vapor data. We did radiative transfer
calculations using different background profiles, which has little effect on our results.

Observed monthly ozone trend profiles came from three different data sets [see, e.g., discussion of tropical
ozone in Solomon et al, 2012]: Randel and Wu [2007, hereinafter RW], Cionni et al. [2011, hereinafter
SPARC], and Hassler et al. [2009, hereinafter BDBP]. Time-dependent surface concentrations of well-mixed
greenhouse gases including CO,, methane (CH,), nitrous oxide (N,0), and chlorofluorocarbons (CFCs)
observed at the Mauna Loa station were from the NOAA/ESRL Global Monitoring Division archive, which were
imposed for the entire column of the atmosphere. Observed monthly mean stratospheric aerosol optical
depths at 0.55 um were taken from Sato et al. [1993] for the period before 1998 and from Vernier et al.
[2011] afterwards to consider the stratospheric aerosol effects [Solomon et al.,, 2011].

High-quality global satellite observations of stratospheric H,O began in the 1990s, and information on strato-
spheric H,O trends was also available from balloon observations at a single site in Boulder, Colorado, begin-
ning in 1980 [Oltmans et al., 2000]. From these data, a sharp drop in stratospheric H,O was documented after
the year 2000 [Randel et al., 2006], and the lower levels have persisted up to the mid-2009 [Solomon et al.,
2010]; another sharp drop occurred in 2013 [Dessler et al., 2013]. Before the first decrease, the balloon data
suggest a gradual midlatitude increase in lower stratospheric H,O of more than 1 ppmv from 1980 to 2000
and the satellite observations also support increases in lower stratospheric H,O during the 1990s.
Following Solomon et al. [2010], the effects of water vapor changes were estimated by considering two
H,O change scenarios. In the first of these (hereinafter H,0O-l), the H,O change only occurred between
January 2000 and June 2001 and there are no H,O changes before and after this period. The altitude and
latitude distribution of the H,O changes in the stratosphere after 2000 was derived from the HALOE data
[Russell et al., 1993] as the monthly differences between the average from June 2001 to May 2005 and that
from January 1996 through December 1999. In a second scenario (hereinafter H,O-ll), it was assumed that
H,0 had increased uniformly by 1 ppmv at all latitudes and altitudes above 14 km between January 1980
and December 1999 and then followed the changes in H,O-I. The water vapor change is set to be zero at
and below 14 km. Since the data before the mid-1990s are limited in space and/or time, the stratospheric
H,0 trends before 2000 should be considered to be uncertain, whereas the decrease after 2000 is much
better characterized by multiple sensors [Solomon et al., 2010].
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The lower tail of the T, s weighting function can reach as low as 200 hPa [e.g., Fu and Johanson, 2005], and
the Ty s trends might thus be affected by the tropical upper tropospheric warming [Fueglistaler et al.,
2011]. We used tropical tropospheric temperature trend profiles from the Geophysical Fluid Dynamic
Laboratory (GFDL) global High Resolution Atmospheric Model (HiRAM) at ~50 km horizontal grid size
(C180) [Zhao et al., 2009] to estimate the impact of tropospheric changes on T s. The simulations from
GFDL-HIRAM-C180 forced by observed sea surface temperatures (SSTs) and sea ice concentrations
(SICs) for 1979-2008 are available from Phase 5 of the Coupled Model Intercomparison Project archive
[Taylor et al., 2012]. Po-Chedley and Fu [2012] showed that the ratio of tropical upper tropospheric warming
to lower middle tropospheric warming from this model agrees well with satellite MSU/AMSU observations.
We used the simulations from GFDL-HIRAM-C180 for 1979-2008.

To compare our observational estimates with the model-simulated BDC acceleration, we used the model
output from 11 CCMs participating in the Chemistry-Climate Model Validation activity phase 2 (CCMVal-2)
[SPARC CCMVal, 2010]. These are state-of-the-art CCMs that are employed to predict ozone recovery in the
recent ozone assessment [WMO, 2011]. Detailed representations of stratospheric dynamical, radiative, and
chemical processes are included in these models but vary much from model to model. We analyzed simulations
from the REF-B1 scenario for 1980-2004, in which all forcings and SSTs/SICs were taken from the observations.
See Lin and Fu [2013] for more details on the CCM data and analyses.

3. Changes in Lower Stratospheric Temperatures

An approximate linearized form of the transformed Eulerian mean thermodynamic energy equation [Andrews
et al, 1987; Yulaeva et al.,, 1994; Randel et al., 2002; Fueglistaler et al.,, 2011] can be written as

oT /ot = Q — W*S, m

where T, Q, and W* are the zonal mean temperature, radiative heating, and residual vertical velocity,
respectively, and S is a stability parameter. The radiative heating is often approximated by the Newtonian
cooling in a form Q = —kag (T—TE) where Tg is a radiative equilibrium temperature and 1/k..q is the
radiative damping time that is in the order of 30-90days in the lower stratosphere [e.g., Randel et al,
2002; Fueglistaler et al, 2009]. When considering the long-term trends of equation (1), the trend in
temperature tendency is negligible (i.e, 6T/0t~0) so that the trend in diabatic heating is approximately
balanced by the upwelling-induced adiabatic cooling. Therefore, we have

kead (T — Te )= — W*S 2)

Thus, the changes of zonal mean lower stratospheric temperatures are mainly related to the changes in
dynamically forced upwelling w* and changes in radiative equilibrium temperature Tg. The latter is
determined by the atmospheric composition. The overbar can be considered as the area mean over the
tropics and the high latitudes as defined in section 2.

While CO, increases and Oz chemical depletion lead to radiative cooling throughout the stratosphere, an
accelerating BDC leads to a dynamic cooling in the tropical lower stratosphere where air is rising, and warm-
ing in high-latitudes where air is sinking [see equation (2)]. We separated observed high-latitude T, s trends
into a dynamic component due to the change of the BDC and a radiative component following Fu et al.
[2010]. A brief description of the method is given here; see Fu et al. [2010] for more details.

To represent the strength of the BDC responsible for T; s changes for a given month, the 3-month (i.e,, the
month considered and two previous months) mean eddy heat flux averaged over the high latitudes of each
hemisphere (40°S-90°S/40°N-90°N) and vertically averaged between 10 and 50 hPa was used. The time lag
between T, s and wave activities largely comes from the radiative relaxation time [Newman et al.,, 2001]. A
regression of gridded T, s data was performed upon the corresponding eddy heat flux index time series for
each month and over each hemisphere. The attribution of the T s trend to changes in the BDC was derived
by multiplying the regression maps with the linear trend in the eddy heat flux index. The T, s trends due to the
BDC changes were averaged over high latitudes in each hemisphere for each month. The empirically derived
radiative component, averaged over 40-82.5°S(N), is termed the observed total T, s trend minus the dynamic
component, averaged over the same region. Note that although changes of polar planetary waves in terms of

FU ET AL.

BREWER-DOBSON CIRCULATION 10,217



@AG U Journal of Geophysical Research: Atmospheres 10.1002/2015JD023657

—— High Latitude: Dynamic Contri.
Tropics: Total
- = = Tropics: Radiative Contri.

0.1 (b) Tropical annual mean

%‘ ’ dynamical contribution
§ - 0.05
S 3 ob——— + - -
3 g ==
2 S 005
& 2
'_
' T -0
— o
= F -0.15

]

F -02

-0.25 —
-o8lb—
12 3 4 5 6 7 8 9 10 11 12 Total  NH Contri. SH Contri.

Month

Figure 1. MSU/AMSU lower stratospheric temperature (T, s) trends for 1980-2009 (K/decade). (a) The T s trends due to the
change of the Brewer-Dobson circulation (BDC) over combined high latitudes (40°N-82.5°N and 40°5-82.5°S) (blue solid
line) and observed T, 5 trends in the tropics (20°N-20°S) (red solid line) along with its estimated radiative component
(red dashed line), versus month. (b) The annual mean T, s trend due to the change of the BDC in tropics and its contribution
from the Northern Hemisphere (NH) and Southern Hemisphere (SH) cells. The blue lines in Figure 1b indicate the 90% and
95% confidence intervals of the derived trends.

magnitude and/or phase may affect the spatial pattern of the T s trend [Lin et al,, 2009], these have little direct
impact on the trend averaged over the NH/SH high latitudes.

The blue solid line in Figure 1a shows the T s trends due to BDC changes obtained in this manner, averaged
over high latitudes of the two hemispheres combined (i.e., over 40-82.5°S and 40-82.5°N) as a function of
month. The observed T s trends over the tropics are also shown in Figure 1a (red solid line) for a direct
comparison. We see a near-perfect negative correlation between observed tropical T s trends and the high
latitude T, s dynamic components, suggesting that the monthly dependence of observed tropical T, s trend
is largely caused by the BDC changes [Fu et al., 2010]. The observed T, s trends in the tropics (solid red line)
can be separated into two parts as follows:

Tis Tropics = TS, igh-Lat, byn + (TLs Tropics— ATLs, High-Lat, Dyn ) (3)

where a is a coefficient obtained from orthogonal least squares fitting between the red (T s 1ropics) and blue
(Tys, High-Lat, Dyn) solid lines across all months (which displays a correlation of 0.96). The observed T, s trends in
the tropics are thus separated into the BDC change-induced dynamic component [the first term on the right
hand side of equation (3)] and a residual [the second term on the right hand side of equation (3); also see
dashed red line in Figure 1al. The latter obtained as the difference between the observed tropical T g
trend and the dynamical component is here called the empirically derived radiative component of tropical
Tis trends. Note that in the above approach, the radiative component of month-to-month variability that is
correlated with the BDC changes will become part of the dynamic component. We will discuss this in
section 5 in more detail, when we compare the empirically derived radiative component with that directly
derived from the changes of atmospheric compositions.

The observed annual mean T s trends in the tropics are —0.40, —0.34, and —0.4 K/decade for 1980-2009
from UAH, RSS, and NOAA data sets, respectively (Table 1). The corresponding empirically derived radiative
components using these data sets have annual mean trends of —0.29, —0.23, and —0.29 K/decade, all
showing small seasonal dependencies. The derived annual mean dynamic contribution is —0.11 K/decade,
which is independent of the MSU/AMSU data used. Note that we obtain a similar dynamic contribution
(—0.1 K/decade) by considering the tropics from 30°S to 30°N and high latitudes from 30°N(S) to 82.5°N(S).

Critical support for the above results is provided by the fact that the monthly dependencies and annual mean
values of these empirically derived radiative components are consistent with radiatively driven trends
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Table 1. Annual Mean T s Trends (K/decade) Observed From Satellite  estimated using observed changes in
MSU/AMSU for 1980-2009 and Empirically Derived Dynamic and

o _— . stratospheric composition associated
Radiative Contributions (Section 3)

with O3, H,0, well-mixed greenhouse

UAH RSS NOAA X
gases, and stratospheric aerosols (see
Total —0.40 —0.34 —0.40 section 5). Furthermore, the derived
Dyn.an.uc contn.butl.on —0.11 —0.11 —0.11 dynamic component of Ts here is con-
Radiative contribution —0.29 —0.23 —0.29

sistent with that in Fu et al. [2010],
where the NCEP/NCAR reanalysis data
were used. By using the ERA-Interim reanalysis, however, the adjustments in Fu et al. [2010] are not needed
and the derived dynamic contributions are insensitive to the MSU/AMSU data sets used (not shown).

This study indicates that the ERA-Interim eddy heat flux trend, which is used as a measure of the BDC
changes, is reliable and robust. Compared to the reanalyses, we have more confidence on the MSU/AMSU
data in terms of the long-term trends and this is why we employed the MSU/AMSU T s as the main variable.
Our analysis combining the MSU/AMSU T, s and reanalysis eddy heat flux, as well as the consistency check of
the T s trend spatial pattern, monthly dependence, and its radiative and dynamic components, support our
confidence in the reanalysis eddy heat flux trend [Lin et al., 2009; Fu et al., 2010]. The radiative component of
Tis trend derived from an independent approach (section 5) further validates the use of the reanalysis eddy
heat flux trend. Note that the validity of the reanalysis eddy heat flux trend does not, however, guarantee the
validity of the reanalysis w* trend [Seviour et al., 2012].

4. Confidence Interval of Derived T, s Trends

The confidence intervals in the derived trends are determined using a Monte Carlo method. By using the
symbol X to denote MSU T s or eddy heat flux index, the time series of X for a given month, i, can be separated
into a linear trend part X, and its deviation from the trend, Xp, i.e.,

X(i,year) = X, (i,year) + Xp(i, year) (4)
where j=1, ..., 12 and year= 1980, ..., 2009. X| can be written in the form
X, (i, year) = K(i)*(year — year,,q) + A(i) (5)

where K(i) is the trend of X for a given month j, as determined from the least-square fitting, year,;q is 1994.5,
and A(j) is the mean of X for the given month. A synthetic time series X" is then created for each month by
randomly switching the order of year for Xp while keeping X, unchanged, viz,, X'=X, + Xp'. We create such
synthetic time series for T s over the tropics and high latitudes as well as for the eddy heat flux index.
Note that the switched order is the same for T_ s and the eddy heat flux index. We then derive the total,
dynamical, and radiative components of the Ts trends in each synthetic set of time series as in the
original one. The probability distribution function for any selected variable is calculated from results of
10,000 synthetic sets.

The BDC change-induced T, s annual mean trend and the contributions from the NH and SH cells are shown in
Figure 1b for the tropics. The tropical NH and SH contributions to the BDC trends were computed by multi-
plying the corresponding high latitude NH and SH dynamical contributions by the coefficient a in equation
(3). Both 90% and 95% confidence intervals of these trends are shown. We obtain a dynamic cooling in tro-
pical Tis that is significant at the 90% confidence interval, indicating a strengthening of the BDC in the past
three decades. Figure 1b also shows that the annual mean strengthening of the BDC SH (NH) cell is statisti-
cally significant (insignificant) at a 90% confidence interval. This result is consistent with that of Garcia and
Randel [2008], obtained from numerical simulations. The dynamic cooling in tropical T, s is mainly a result
of the BDC strengthening in the SH cell (about three fourths), and a contribution to the BDC strengthening
from the NH cell is small (about one fourth) (Figure 1b).

Figure 2 presents the probability density function of the annual mean dynamic component of tropical T, s trend,
with dark and light shading showing the 90% and 95% confidence intervals, respectively. The probability of a
positive value (i.e, a deceleration of the BDC rather than acceleration) is only about 2.5%. Note that the
probability density function shown in Figure 2 is not a normal distribution.
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Figure 3 shows monthly T s total trends
(left), and their dynamic (middle) and
radiative (right) contributions for SH
high latitudes (upper), NH high lati-
tudes (middle-upper), combined high
latitudes (middle-lower), and tropics
(lower), along with their 90% (red
shade) and 95% (blue shade) confi-
dence intervals. The radiative contribu-
tion is obtained as the residual of the
total minus the dynamic contribution.
The annual mean trend values and
their 90% and 95% confidence inter-
vals are shown on the right in each
chart using red solid circles and red
and blue lines. We obtain a statistically
significant BDC strengthening at the
95% confidence interval for the SH cell
in October (Figure 3b), for the NH cell in
January (Figure 3e), and for the total

BDC in October and November (Figure 3h or Figure 3k). At the 90% confidence interval, the BDC strengthening
is statistically significant for the SH cell from September to November (Figure 3b), for the NH cell in December
and January (Figure 3e), and for the total BDC from September to January (Figure 3h or Figure 3k). Almost
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Figure 3. MSU/AMSU lower stratospheric temperature (T ) trends for 1980-2009 (K/decade) versus month for (left) observed total, (middle) BDC-induced dynamic contri-
butions, and (right) radiative contributions over (upper) SH high latitudes (40°5-82.5°S), (middle-upper) NH high latitudes (40°N-82.5°N), (middle-lower) combined high
latitudes (40°N-82.5°N and 40°5-82.5°S), and (lower) tropics (20°N-20°S). The red and blue shades indicate the 90% and 95% confidence intervals of the derived trends,
respectively. The annual mean values of these trends are shown in solid red circles with the 90% and 95% confidence intervals indicated by the red and blue lines, respectively.
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all radiative contributions are statistically significant except over NH high latitudes from December to
February (Figure 3f).

Osso et al. [2015] examined the BDC trends by analyzing the MSU/AMSU T, s data. Following Young et al.
[2012], they defined a BDC index as BDCI_T=T_extr — T_trop for each month, where T_extr and T_trop are
the extratropical and tropical mean T s monthly anomalies, respectively. Osso et al. [2015] did not find a
statistically significant BDC trend at the 95% confidence interval for October and November as we did
(compare their Figure 5 right lower panel with our Figure 3k). By using the BDCI_T as the BDC index in
Osso et al. [2015], it is assumed that the extratropical radiative component cancels the tropical one. In
contrast, we find that the radiative cooling in the extratropics is often larger than that in the tropics
(Figures 3i and 3l); this is particularly true in October and November, for example, leading to an underestimation
of the BDC trends if radiative terms are assumed to cancel each other out.

Engel et al. [2009] suggested that no annually averaged acceleration has occurred in the BDC over the past
30years, based upon an unchanged mean age of air in the NH middle stratosphere estimated from balloon
observations of SFg and CO, concentrations. Our results suggest that the strengthening of the total BDC need
not be inconsistent with an unchanged mean age of air in the NH midlatitude stratosphere, since only a small,
statistically insignificant annual mean change is obtained in the BDC NH cell (Figure 1b). This small annual
mean change arises in part because the weakening of the BDC in the NH cell in March and April partly cancels
a strengthening in December-February [Fu et al., 2010; Free, 2011] (Figure 3e). Note that although most data
used by Engel et al. [2009] were available between May and October, the change in mean age of the
stratospheric air should largely depend on the annual mean BDC changes since it takes about 4-5 years for
an air parcel to reach there from the tropical tropopause.

5. Radiative Contribution to Tropical T, s Trends

The empirically derived radiative contribution in tropical T, s trends (red dashed line in Figure 1a) has a
small seasonal dependence, with annual mean values of —0.23 to —0.29 K/decade depending on the
MSU/AMSU data sets used (Table 1). Here we compare this quantity to estimates based on observed changes
in well-mixed greenhouse gas concentrations (CO,, CH,4, N,O, and CFCs), Os, and H,O (section 5.1) and
stratospheric aerosols (section 5.2). We also consider the impact of tropical upper tropospheric warming
on T s (section 5.3).

5.1. Well-Mixed Greenhouse Gases (CO,, CH,4, N5O, and CFCs), O3, and H,O

The impact of the changes in well-mixed greenhouse gases, O3, and H,O on tropical T s trends is calculated
with the NASA Langley Fu-Liou radiation model [Fu and Liou, 1992; Rose and Charlock, 2002] and the Rapid
Radiative Transfer Model [Mlawer et al., 1997; Mlawer and Clough, 1998]. Since the results using the two mod-
els are very similar, we show here only those from the Fu-Liou radiation model. We estimate the changes in
Tis using the “Seasonally Evolving Fixed Dynamical Heating” method [Forster and Shine, 1997; Fueglistaler
et al, 2011] where the dynamical heating does not change when the composition is perturbed. A monthly
climatological dynamical heating at each level from the tropical tropopause to 60 km is calculated from
the temperature tendency of the annual cycle minus the radiative heating, which is then fixed when trace
gases are perturbed, leading to the changes in stratospheric temperatures. We do not assume Newtonian
cooling in this framework. Note that the “Fixed Dynamic Heating” method [Forster and Shine, 19971, which does
not consider the temperature annual cycle tendency, yields the same annual mean values of temperature
changes but does not produce an accurate monthly dependence. The calculated stratospheric temperature
profile for each month is converted to T s using the T s weighting function.

The tropical T, s trends that are radiatively driven as a result of changes in well-mixed greenhouse gases, O3,
and H,0 are shown in Figure 4a. The tropical T, s trends due to changes in well-mixed greenhouse gases show
little monthly dependence (green solid line), with an annual mean value of —0.09 K/decade. More than 90%
of this trend is caused by the CO, increase (not shown). The radiative trends caused by O3 changes shown in
Figure 4a (red solid line) are based on the RW O3 data set. They show some monthly dependence, with a
phase delayed by about 2 months relative to that in observed T s total trends (comparing the red solid line
in Figure 4a with the red solid line in Figure 1a). This is because the ozone change is dominated at this altitude
not by chemical depletion but rather by the change of ozone transport associated with the BDC change
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Figure 4. (a) Radiative contributions to T s trends (K/decade) for 1980-2009 in tropics (20°N-20°S) due to the changes of
well-mixed greenhouse gases (green solid line), O3 (red solid line), H,0 (blue solid line), stratospheric aerosols (blue
dashed line), tropical upper tropospheric warming associated with sea surface temperatures (SSTs) (red dashed line),
and the summation of these contributions (black solid line). The total radiative contribution after removing the part that
is correlated with the BDC change is shown as the black dashed line. The empirically derived radiative component from
Figure 1a is also shown (black solid line with x symbol) for comparison. (b) The annual mean tropical temperature trend
profiles that are used to derive the corresponding annual mean T s trend values shown in Figure 4a.

[Lamarque and Solomon, 2010], and the radiative relaxation time in the lower stratosphere is about 30 to
90days [Randel et al., 2002]. The annual mean value of radiative trends caused by the RW O3 changes is
—0.15 K/decade. A similar monthly dependence of these radiative trends is obtained using the SPARC O data
set but with a slightly smaller annual mean value of —0.12 K/decade. The annual mean radiative trend from
the BDBP O3 data set is —0.4 K/decade, which is about three times larger than the RW and SPARC values
[Solomon et al.,, 2012].

The radiative effect of water vapor using H,O-l is shown in Figure 4a (blue solid line); this term has a small
seasonal dependence with a mean value of 0.08 K/decade. The annual mean radiative trend using H,O-Il is
—0.07 K/decade, which has a similar absolute value to H,O-I but an opposite sign. Because of large uncertain-
ties in long-term changes of stratospheric water vapor before 2000 [Fueglistaler and Haynes, 2005], we place
more confidence in the H,O-l radiative effects.

5.2. Stratospheric Aerosol Effect

Stratospheric aerosols due mainly to volcanic eruptions of El Chichon in March 1982 and Pinatubo in June 1991
warmed the lower stratosphere. The warming lasted for about 2years after these eruptions. Since both
eruptions occurred in the first half of the period from 1980 to 2009, such warming would contribute to a
cooling trend in the period considered. To quantify this effect, a regression of the tropical T s time series was
performed upon the tropical stratospheric aerosol optical depth time series, and the trends of resulting T, s time
series were derived (i.e., the regression coefficient times the optical depth time series). The results are shown in
Figure 4a (blue dashed line), which have an annual mean value of —0.13 K/decade.

We also estimate the stratospheric aerosol effect on the T, s trends for 1980-2009 as the difference between the
Tis trends with and without considering the Pinatubo and El Chichon periods (i.e,, 2 years after the eruptions
including the eruption months). We obtain an annual mean value of —0.13 K/decade from the NOAA T, s data,
and —0.12 K/decade from the RSS and UAH data, which agrees with the result from the regression method.

5.3. SST Effect

The increase of tropical SSTs in the last 30 years would lead to an increase of tropical upper tropospheric
temperatures [Fu et al,, 2004; Fu and Johanson, 2005; Fu et al., 2011]. Since the weighting function of tropical
TLs extends to the upper troposphere, the tropical upper troposphere would have a warming effect on Tys.
We estimated this effect by applying the T, s weighting function to tropical tropospheric warming profiles derived
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Table 2. Annual Mean Radiative Contributions (K/decade) to Ty s Trends  from the GFDL-HiRAM-C180 simulations.
for 1980-2009, Calculated Based on the Changes in Stratospheric The effect is small. with an annual mean
Composition Including Well-Mixed Greenhouse Gases (CO,, CH4, N5O, '

and CFCs), O3, and H,0 Using the Fu-Liou Radiation Scheme With the \{alue. of 9'02 K/decade '(see red dashed
“Seasonally Evolving Fixed Dynamical Heating” Method, and the Change line in Figure 4a). This effect would

in Stratospheric Aerosols From a Regression Method (Section 4)° introduce a bias into our empirically
Radiative Contributions ~ derived “radiative” contribution since it
Cases with Various O3 and H,0 Data Sets to Ty s Trends will appear as a residual that is not
Reference —026 associated with the BDC changes.
Reference but SPARC O3 —024 The total radiative trend in T, which is
Reference but BDBP O3 —0.52 th i P tributi £
Reference but H,0O-Il and RW O3 —0.42 € su.mma 1on or contributions from
Reference but H,O-Il and SPARC O3 —0.40 well-mixed greenhouse gases, Oz (RW),
Reference but H,O-ll and BDBP O3 —0.68 H,0 (H,O-l), stratospheric aerosols, and

*The effect of tropical upper tropospheric warming on Tys was also  tropical upper tropospheric warming, is
included. Three ozone data sets of RW, SPARC, and BDBP and two shown in Figure 4a (black solid line). We
water vapor scenarios of H,O-l and H,O-Il were used (section 2). The see a small seasonal dependence with

“Reference” is for the radiative contribution when the RW O3 and
H,O- were used. an annual mean value of —0.26 K/decade.

The case shown in Figure 4a is called the

“Reference” for simplicity of presentation.
Table 2 shows the total radiative trends in T s based on various Oz and H,O data sets along with the contributions
from well-mixed greenhouse gases, stratospheric aerosols, and SSTs. It ranges from —0.24 K/decade (“Reference
but SPARC 0O3") to —0.68 K/decade (“Reference but H,O_ll and BDBP Os"). We might however place more
confidence in radiative trends in T s from “Reference” (—0.26 K/decade) and “Reference but SPARC Os”
(—0.24 K/decade). This is because the radiative trends using BDBP Os (see “Reference but BDBP Os" and
“Reference but H20_Il and BDBP O3” in Table 2) are significantly larger than the observed total T, s trends
(Table 1), and there is a large uncertainty in H,O_ll as discussed above. Therefore, despite large uncertainties
in lower stratospheric cooling associated with uncertainties in observed O3z and H,0 changes there, the radia-
tive component estimate from observed composition changes largely agrees with the empirically inferred
radiative component, both in terms of its average value and small seasonal dependence. The large uncertainties
shown in Table 2, however, indeed show the need to reconcile and improve the current Oz and H,O data sets in
terms of their long-term changes [Hegglin et al,, 2014].

The regression method used to separate the dynamic contribution from the radiative part (section 3) would
include any radiative component that is correlated with the BDC changes in the dynamic contribution. The
radiative trend in T s that is obtained based on the composition changes using the radiative calculations,
however, would still contain this contribution, if any exists. Further, the BDC changes likely have an impact
on the stratospheric composition (e.g., the ozone transported by the BDC trends). In order to have a
consistent comparison, we quantified this effect using a regression between the monthly total radiative
Tis trends (black solid line in Figure 4a) and the dynamic components of T s trends over combined high
latitudes (blue solid line in Figure 1a). It is thus estimated by multiplying the high latitude dynamical com-
ponents by the regression coefficient for each month, which has an annual mean value of —0.01 K/decade.
The total radiative trend after removing the dynamic effects associated with the BDC changes is shown in
Figure 4a (black dashed line), which has an annual mean value of —0.25K/decade. Despite the small
dynamic effects, it is encouraging to see that the monthly dependence of radiative contribution after
removing them (black dashed line) more closely follows the empirically derived radiative component
(black solid line with x symbol in Figure 4a, i.e., red dashed line in Figure 1a). Figure 4b shows the annual
mean tropical temperature trend profiles that are used to derive the corresponding annual mean T, s trend
values shown in Figure 4a.

6. Long-Term Change of the BDC: Tropical Residual Vertical Velocity at 70 hPa

In section 4, we showed that the T s changes attributed to those in the BDC in the last three decades were
significant at a 90% confidence interval. Here we quantify the relationship between tropical residual vertical
velocity (w*) at 70 hPa and T s. We then estimate the relative change of the BDC in terms of w* by converting
the dynamic component of the tropical T s trend to the change of w*.
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Figure 5. Tropical residual vertical velocity (w*) (mm/s) versus T s (K) for (a) detrended monthly anomalies and (b) monthly
climatology from ERA-Interim reanalysis data for the period of 1980-2009. Two years of data after the El Chichon and
Pinatubo eruptions (including eruption months) are excluded.

We calculated w* at 70 hPa from the 6-hourly ERA-Interim reanalysis data [Lin and Fu, 2013]. We averaged w*
over the tropics, weighted by the cosine of latitude. Its climatological mean annual cycle was determined for
1980-2009, and the monthly anomaly time series was then derived for this time period. Two years of data
after the El Chichon and Pinatubo eruptions (including eruption months) were excluded. The monthly
anomaly time series were detrended to avoid the impact of long-term changes. Figures 5a and 5b show
w* versus T s associated with inter-annual and seasonal variability, respectively, along with the linear fits.
We obtain a relation between w* and Tis in a form of Aw*=c*ATs, where c is —0.069 mm/s/K from the
inter-annual variability and —0.044 mm/s/K from the seasonal variation. The difference in the coefficient ¢ from
the inter-annual and seasonal variations is statistically significant at the 95% confidence interval (Table 3).

The difference in the coefficients between Figures 5a and 5b could be related to the different mechanisms
involved in driving the changes of vertical velocity and T, s in tropical lower stratosphere. The seasonal varia-
tion of w* and T is the result of stronger extratropical wave activity in the winter hemisphere [Rosenlof,
1995]. The inter-annual variability of w* and Tis is related to the quasi-biennial oscillation [Randel et al.,
1999; Yang et al., 2008] and the El Nino-Southern Oscillation [e.g., Sassi et al., 2004; Lin et al., 2012], as well
as a result of the nonlinear dynamics of the atmosphere [Garfinkel and Hartmann, 2007]. The change of the
BDC driven by extratropical wave activities could be different from that driven by tropical/subtropical waves
in terms of its vertical structure [Lin and Fu, 2013] and thus its effect on T s. The difference in the coefficients

Table 3. The Coefficient ¢ (mm/s/K) in Aw* = c*AT, s From the Inter-annual and Annual Variations and Its Range in the
95% and 90% Confidence Intervals®

Mean 95% Interval 90% Interval Mean 95% Interval 90% Interval
Inter-annual Annual
¢ (mm/s/K) —0.069 —0.073, —0.065 —0.072, —0.066 —0.044 —0.056, —0.037 —0.054, —0.038
w* trend (%/decade) 261 —0.13,5.95 0.28,5.34 1.68 —0.10, 3.94 0.17, 3.51

®The w* relative trend (%/decade) and its range in the 95% and 90% confidence intervals for 1980-2009. The latter are
derived with Aw*=c*AT s by considering the probability density function (pdf) of the T s dynamic component
(Figure 2) and the pdf of the coefficient ¢, based on the Monte Carlo method. The annual mean w* at 70 hPa over the
tropics is set to be 0.288 mm/s.
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could also be due to the fact that transience plays a significant role in the annual cycle but less so in inter-
annual variations [Randel et al., 2002]. Furthermore, the radiative damping time as well as the stability para-
meter [see equation (2)] depends on the atmospheric vertical structure [e.g., Hartmann et al., 2001]. Although
detailed mechanisms of the long-term BDC changes are still not fully understood [SPARC CCMVal, 2010;
Butchart, 2014], the coefficients of —0.069 and —0.044 mm/s/K, corresponding to the BDC changes driven
by extratropical and tropical wave activities, would cover a reasonable range.

Therefore, for a dynamic component of —0.11 K/decade in tropical T, s trend, the corresponding change in
w* is 0.0076 and 0.0048 mm/s/decade, respectively, using the coefficients of —0.069 and —0.044 mm/s/K.
The annual mean w* at 70 hPa over the tropics is 0.288 mm/s from the ERA-Interim reanalysis. Thus, the
relative strengthening of the BDC in terms of tropical residual vertical velocity at 70 hPa is estimated to
be 2.6% and 1.7% per decade in the last 30years (Table 3). By considering both the probability density
function (pdf) of the T.s dynamic component (Figure 2) and the pdf of the coefficient ¢, we can derive the
pdf of w* trend using the Monte Carlo method. Table 3 gives the range of w* relative trend at the 95% and
90% confidence intervals using the ¢ based on both inter-annual and seasonal variations. We see that the
strengthening of the BDC is statistically significant at the 90% confidence interval. By averaging the results
from the ¢ based on inter-annual and seasonal variations, we have a w* relative trend of ~2.1% decade ™" with
the range of —0.1% to 5.0% decade™' at 95% confidence interval and 0.2% to 4.5% decade™' at 90%
confidence interval.

An acceleration of the BDC in response to rising greenhouse gas concentrations and ozone depletion has
been well documented in GCM and CCM simulations [e.g., Ramaswamy et al, 1996; Eichelberger and
Hartmann, 2005; Butchart et al., 2006; Li et al., 2008; Garcia and Randel, 2008; Butchart et al., 2010; Lin and
Fu, 2013]. In order to have a direct comparison of simulated BDC changes with our observational analysis,
we used the residual vertical velocity w* at 70 hPa archived in the CCMVal-2 database. The monthly anomaly
time series of w* at 70 hPa, averaged over the tropics, from 1980 to 2004 were derived for the 11 CCMs. The
mean relative increase of tropical w* at 70 hPa is 1.9% per decade, ranging from —0.1% to 6%, for the 11
CCMs, which agrees well with our observational results (see Table 3).

7. Summary and Conclusions

The change of the BDC during the period of 1980-2009 was examined through a combined analysis of
satellite MSU/AMSU Ts, observed evolutions of well-mixed greenhouse gases, Oz, H,0, as well as
stratospheric aerosols, and reanalysis data. The MSU/AMSU-observed tropical T, s trend is first empirically
separated into a dynamic component associated with the BDC changes and a radiative component due
to the atmospheric composition changes. A statistical analysis of these derived trends was performed, with
uncertainties based on a Monte Carlo technique. The data suggest that the annual mean BDC has
accelerated in the last 30 years with 90% confidence and that the acceleration of the SH annual mean
BDC cell is statistically significant, while the changes are not significant in the NH. The insignificant long-
term change of the NH BDC cell implies that we should expect an insignificant long-term change of mean
age of stratospheric air in the NH.

The radiative component of tropical T s trends was also examined based on observed changes in strato-
spheric composition. The changes in O, stratospheric aerosols, well-mixed greenhouse gases, and H,0 all
make significant contributions to the radiative component of tropical T, s trends for 1980-2009. Despite large
uncertainties in lower stratospheric cooling associated with uncertainties in the observed O3 and H,0
changes there, the derived radiative component agrees with the empirically inferred value and supports
the view that the radiative component of tropical T, s trends has small seasonal dependence.

We have further established an empirical relationship between tropical residual vertical velocity at 70 hPa
and T s so that the dynamic component of tropical T s trends can be used to estimate the change in tropical
residual vertical velocity. The relative acceleration of the annual mean BDC in terms of tropical residual
vertical velocity at 70 hPa was estimated to be ~2.1% decade™" with the range of —0.1% to 5.0% decade™
at 95% confidence interval and 0.2% to 4.5% decade™" at 90% confidence interval, for 1980-2009 on this
basis. The relative acceleration of the annual mean BDC from 11 CCMs gives a mean value of 1.9% per decade,
ranging from —0.1% to 6% per decade, which agrees well with our observational analysis.
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