Chapter 6
Mapping Data to a Grid and Data Assimilation

6.1 Placing data on a regular grid

In dynamical meteorology, oceanography, and numerical prediction one is often presented with the following
problem. Data are available at a number of observation points (usually located near cities or at field stations,
along ship cruise tracks, at moorings, or perhaps located by the observation points of an orbiting satellite)
that are unevenly distributed over the domain of interest (the globe, for example). In order to compute
derivatives of the field variables, as would be required in diagnostic studies or in the initialization of a
numerical model, or simply to perform a sensible averaging process, one often requires values of the variables
at points on a regular grid. Assigning the best values at the grid points, given data at arbitrarily located
stations and perhaps a first guess at regular grid points, is what has traditionally been called objective
analysis when done on a computer rather than graphically by hand.

We will use the example of making weather maps from rawinsonde data as the particular example of the
mapping problem here. In fact the methods described are applicable to any problem where the data you are
given do not fill the domain of interest fully, and/or where the data must be interpolated to a regular grid.
The regridding can be in space, in time, or both. You may also find yourself in the position of wanting to
plot a continuous function of an observation in two parameter dimensions, and have samples at only a few
points. We will proceed through some of the methods in the order that they arose in the history of numerical
weather forecasting. In this way we show the weaknesses of some of the most obvious methods such as
function fitting, to the correction method, and ultimately to statistically optimized correction methods such
as optimum interpolation. Current assimilation schemes in numerical forecast models us a combination of
optimum interpolation and use of the governing equations of the model, which we can call Kalman filtering,
which is discussed in elementary terms in Chapter ?7.

6.1.1 Interpolation with polynomial fits

Let’s say we want to estimate the temperature at a point. However, we don’t have any observations at that
exact location. How might we use our observations to still get an estimate of the temperature at our point?
The answer could be to perform some sort of interpolation. Probably one of the most intuitive methods
for interpolating is to fit some polynomial to all of our station values, and then use that curve to get the
temperature at a location between the observations. For example,

D (x,y) = ap + arx + agx? + boy? + 2coxy + ... (6.1)

It turns out this isn’t a very good method when you have sparse data due to the unstable nature of the
polynomial fit. Removing just one point can wildly change the curve/interpolation in the vicinity of this
point and will impact the values at many other points too. The problem gets worse as the order of the
polynomial is increased. An example of this is depicted in Fig. 6.1. Note how wildly the two curves depart
from each other in the vicinity of the missing point. Such problems can be avoided by stepping away from
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96 6 Mapping Data to a Grid and Data Assimilation

polynomial fits and rather, utilizing a reasonable “first guess”, and then only modifying it when and where
data are available. Also, if the new data departs too wildly from the first guess, one suspects that the data
are faulty.

8
O data RaN
7F ==~ fitusing all data ,l \‘
— =~ fit removing one point / ~=\
/7 e
6r v W
/v
‘0
5 I//
,/
4 mi -4
> — < S
< S P
3 P )
(4
2 [
'/

1 J

/

v

%
of M

0 1 2 3 4 5 6 7 8

Figure 6.1 Ilustration of the unstable nature of polynomial fits when one data point is removed using a 5th order polyno-
mial.

A polynomial fit that actually got adopted by the US National Meteorological Center for its routine
operational products was proposed by Flattery (1971). In this scheme, Hough functions were used as the
interpolating polynomials. These functions are an orthogonal set that are the solutions of the linearized
equations for a resting atmosphere (the tidal equations). The idea was that if you expressed the data in
terms of actual solutions of the dynamical equations, then your fit between the data points would have some
dynamical consistency. The Hough functions are global functions and so all of the observations were used
simultaneously to define the global Hough function coefficients and produce a global map. Only the Hough
functions describing slowly varying rotational modes were used. The gravity wave modes were zeroed out to
produce a well-initialized field. This method replaced Cressman’s correction method (Cressman, 1959) for
global analyses in about 1972 and was replaced by Optimum Interpolation (see Chapter 6.1.2) in 1978.

This method has some dynamical and mathematical appeal, but is in truth just a glorified polynomial fit
and has all of the problems of polynomial fits. First of all, the atmosphere is highly nonlinear and strongly
forced by heating, especially in the tropics. The Hough modes chosen were primarily the free, non-divergent
Rossby modes, which constitute a large, but not dominant, fraction of the variance. Therefore this aspect
of the Flattery method did not buy much. In the tropics, where highly divergent motions forced by heating
are important, the analyses constructed with the Flattery method are very much in error, especially in their
estimates of divergence, which they set to essentially zero. In addition the Hough function fits are wildly
unstable in regions of sparse data, like any polynomial fit. The NMC tropical analyses produced before 1978
are almost totally useless because they were made with the Flattery analysis system. Normal mode fits are
still used in numerical initialization schemes to remove fast gravity waves, but this does not really affect
the slowly changing meteorological flow. Modern reanalysis data products are based on data assimilation
methods that take into account both the data and the model forecast and the uncertainty in both.

6.1.2 Optimum Interpolation

“The interpolation which is linear relative to the initial data and whose root-mean- square error is minimum is called
the optimum interpolation.” - Wiener, 1949

The difference between optimum interpolation and linear regression is that the coefficients are not determined
anew each time. Suppose we consider deviations from some “normal” state. This could be climatology or a



6.1 Placing data on a regular grid 97
first guess, depending upon the application.

d), =¢—bnorm Onorm = 6 or a first guess (6.2)

Then we try to approximate the value of ¢ at a grid point, ¢4, in terms of a linear combination of the values
of ¢ at neighboring station points, ¢s.

N
by =) Pid; (6.3)
i=1

The coeflicients p; are to be determined by minimizing the mean squared error
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We can write the normalized error as
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Differentation with respect to the coefficients leads to the condition of minimization used to determine them.
de A
a—m=72r91+2zpjnj:0 i=1,2,...,N (6.7)
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(6.7) constitutes a system of N linear equations for the N p’s. By substituting the conditions (6.7) into the
expression for the error (6.5), it can be shown that the error obtained after fitting the coefficients is

2
e=1— Z TgiPi (68)
i=1

Note that in this simple example, if one of the observation points, k, coincides with a grid point, then rgy =1,
and we expect the regression procedure to return px = 1 and all the other weights zero. In this case the error
is zero, € = 0, since we have assumed the data are perfect. If the station points are uncorrelated with the
grid point in question, then p; = 0 and € = 1, the climatic norm. That is, the error will equal the standard
deviation, but no worse.

6.1.2.1 Adding measurement error

In what we have done so far the observations have been assumed to be perfect. Let us now consider what
happens if we explicitly take account of the fact that our observations will always contain some error, d;.

by = bia + 8 (6.9)

Let’s assume, as is usually reasonable, that the error is unbiased (zero mean) and ucorrelated with the true
value, that is,

$[ .01 =0 (6.10)

and that the errors at the various stations where we have data are also uncorrelated
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52 for i =j
5.8, =4, ) (6.11)
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In this case, rather than (6.5), we obtain
N N N N
e=1-2) pirgi+) D pipyry+n) pi (6.12)
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where 1y is the correlation between the two points and where 7 is the ratio of the error variance to the
measurement variance - in other words, the signal-to-noise ratio.
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Minimization of the error leads to the condition
N
> riypj+npi=rg fori=1,2,3,...,N (6.14)
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In this case the normalized error is
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6.1.2.2 What is the effect of including noise in the measurements?

In order to see how optimum interpolation treats the a priori information that the measurements include
some error, it is instructive to compare the results (6.14) and (6.15) with the results (6.5) and (6.7)
obtained assuming perfect data. In the case of perfect data, (6.7) gives

TiPj =Tgi OF Pj =Ty Tgi (6.16)
When noise is included we get, rather, the result (6.14), which can be written

{rij +nlijlp; =7gi or pj ={rij +n|ij}71 Tgi (6.17)

where ljj is the unit matrix. Looking at the right-hand member of the pair of equations in (6.17), it is easy
to see that the coeflicients p; will be smaller when the error is large. This is most obvious if we assume
that 1ij is diagonal. Thus we see that the inclusion of error makes the coefficients in (6.3) smaller and that
therefore, by (6.2), the estimate we make will be closer to climatology. If we include error, then Optimum
Interpolation will draw more closely to climatology or the first guess and tend to weight new observations
less heavily. This is desirable. By putting different values of n; along the diagonal, one can put information
on the confidence one has in individual stations into the analysis scheme and weight more heavily those
stations in which one has more confidence.

6.1.2.3 What do we need to make Optimum Interpolation work?

In order to make the above schemes work, we need the correlation matrices ri; and rg4;. The first of these is
easily calculable from observations, but the second is not since it involves correlations between the station
points and the grid points. We do not have data at the grid points, or we would not need an analysis scheme. In
practice, not even the 1i; are calculated in full generality. It is possible to assume that correlations between
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points depend only on the distance between them and not on location or direction (although it would
be possible to include directionally dependent (anisotropic) correlations). In this case the single isotropic
correlation function can be estimated from station data. This is a crude approximation since correlations
between stations depend on the location of the stations and whether longitude or latitude separates them.
An example illustrating the anisotropy of correlation functions in 500 hPa geopotential heights is shown in
Fig. 6.2.
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Figure 5.4. Anisotroic correlation contours, relative to Topeka, Kansas, reated by the
two-dimensional autoregressive correlation model. Solid line ellipses are contours on
which the 500mb geopotential correlations with Topeka have magnitude 0.35. Dashed
line ellise and +’s are loci of correlation magnitude 0.54. After HJ. Thiebeaux.

Figure 6.2 Anisotropic correlation contours, relative to Topeka, Kansas, created by a two-dimensional autoregressive
correlation model. Solid line ellipses are contours on which the 500 hPa geopotential correlations with Topeka have magnitude
0.35. Dashed lines denote the correlation of 0.54 and +’s are loci of correlation magnitude 0.54. After H.J. Thiebeaux.

Libby: stopped at Dennis’ Chapter 5.4






