
Chapter 4
Regression

In this chapter some aspects of linear statistical models or regression models will be reviewed. Topics covered
will include linear least-squares fits of predictands to predictors, correlation coefficients, multiple regression,
and statistical prediction. These are generally techniques for showing linear relationships between variables,
or for modeling one variable (the predictand) in terms of others (the predictors). They are useful in exploring
data and in fitting data. They are also a good introduction to more sophisticated methods of linear statistical
modeling.

4.1 Ordinary linear least-squares regression

4.1.1 Independent variables are known

Suppose we have a collection ofN paired data points (xi,yi) and that we wish to approximate the relationship
between x and y with the expression:

ŷ = a+ b · x+ ϵ (4.1)

where a is called the y-intercept and b is the slope of the line. In what follows, we assume that x is known
with precision, and that we wish to estimate y based on known values of x. The cases where both x and y
contain uncertainties will be discussed next. The error, or residual, ϵ can be minimized in a least-squares
sense by defining an error function Q in the following way:

Q =
1
N

N∑
i=1

ϵ2 =
1
N

N∑
i=1

(ŷi − yi)
2 =

1
N

N∑
i=1

(bxi + a− yi)
2 (4.2)

where the subscript i denotes ith observation. Q is the sum of the squared differences between the data and
our linear fit, and when it is minimized by choosing the parameters a and b we obtain the least-squares
linear fit to the data.

The fact that the error is squared in the definition of Q has several important consequences.

■ Q is positive definite.
■ The minimization of Q (the derivative of Q) results in a linear problem to solve.
■ Large errors are weighted more heavily than small errors.

The first two are very good consequences. The last can be good or bad depending on what you are trying
to do. All the linear regression analysis techniques we will discuss in later chapters (EOF, SVD, PCA, etc.)
share these same properties of linear least squares techniques.

We wish to select the constants a and b such that the error or risk functional Q is minimized. This is
achieved in the usual way by finding the values of these constants that make the derivatives of Q with respect
to them zero. Since the error is always positive and the error function has a parabolic shape, we know that
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these zeros must correspond to minima of the error function

∂Q

∂a
= 0 and ∂Q

∂b
= 0 “The Normal Equations” (4.3)

It is straightforward to show that solutions to these equations results in the following

∂Q

∂a
= 2aN+ 2b

N∑
i=1

xi − 2
N∑
i=1

yi = 0 (4.4)

∂Q

∂b
= 2a

N∑
i=1

xi + 2b
N∑
i=1

x2
i − 2

N∑
i=1

xiyi = 0 (4.5)

Dividing both equations by N and moving the y terms to the left-hand-side results in

y = bx+ a (4.6)
xy = bx2 + ax (4.7)

where (·) denotes the mean across all N observations and (·)′ will denote departures from this mean. This
system of equations can also be written in matrix form,[

1 x
x x2

] [
a

b

]
=

[
y

xy

]
(4.8)

which is especially useful when one moves to multi-linear regression with more than one independent variable.
The solutions for the regression coefficients are:

a = y− bx (4.9)

b =
x ′y ′

x
′2

(4.10)

The term x ′y ′ is given a special name, the covariance of x and y, and is defined as

x ′y ′ =
1
N

N∑
i=1

(xi − x)(yi − y) (4.11)

Thus, we see that a1 is the covariance of x and y normalized by the variance of the independent variable x.
Also, note that a, also known as the y-intercept is zero if the variables x and y have mean zero.

One can show that the minimum value of the error functional obtained via ordinary least-squares regression
is:

Qmin = y′2 −
x ′y ′2

x
′2

= y′2 − b2x′2 (4.12)

Thus, we see that the minimum error is the total variance minus the explained variance, which is related to
the squared slope (b) and the variance of the predictor.

4.1.2 Independent and dependent variables are uncertain

Quite often the first attempt to quantify a relationship between two experimental variables is linear regression
analysis. In many cases one of the variables is a precisely known independent variable, such as time or
distance, and the regression minimizes the root mean square (rms) deviation of the dependent variable from
the line, assuming that the measurements contain some random error. It often happens that both variables
are subject to measurement error or noise, however. In this case, to perform simple linear regression analysis
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one must choose which variables to define as dependent and independent. The two possible regression lines
obtained by regressing y on x or x on y are the same only if the data are exactly collinear.

An alternative to simple regression is to minimize the perpendicular distance of the data points from
the line in a two-dimensional space. This approach has a very long history scattered through the literature
of many scientific disciplines (Adcock 1878; Pearson 1901; Kermack 1950; York 1966). The method can be
elaborated to any degree desired, to take into account the different scales of the two variables in question,
their uncertainty, or even the confidence one has in individual measurements (see Section 4.1.4.1.

One of the better, and more elegant, methods of doing linear fits between two variables is EOF/PC
analysis, which is discussed in a later chapter of these notes. It turns out that, at least in two dimensions,
doing EOF analysis minimizes the perpendicular distance from the regression line and is more elegant
than the methods used by Kermack and Haldane (1950) and York (1966). EOF/PC analysis is also easily
generalized to many dimensions. See Chapter 5.

4.1.3 Uncertainty estimates of ordinary least-squares regression

We want to fit a straight line to a time series of N observations yi taken at time xi. The linear fit is given
by

yi = a+ bxi + ei, i = 1, 2, ...,N (4.13)

where ei represents the residual error of the linear fit at each time xi. From Chapter 4.1.1, we know that
the ordinary least squares solution for parameters a and b are

b̂ =

∑N
i=1(xi − x)(yi − y)∑N

i=1(xi − x)
2

=
x

′
y

′

x
′2

(4.14)

â = y− b̂x (4.15)

and so, the errors of the fit, called the residuals, are

êi = yi − (â+ b̂xi) = yi − ŷi, i = 1, 2, ...,N (4.16)

Now, we would like to assign ranges, or confidence limits, on our estimates of a and b. We start with the
unbiased estimate of the standard error variance of the residuals:

σ̂2
e =

1
N− 2

N∑
i=1

ê2
i =

N

N− 2 (1− r
2
xy)y

′2 (4.17)

where we divide by N − 2 to account for the fact that two degrees of freedom were used to estimate a and
b. The expression that includes the correlation coefficient, rxy, follows from the derivations in Chapter 4.2.

For the time being we will assume that all of these residuals are independent of one another, but if
instead they are autocorrelated, we could use a model of red noise to estimate the true number of degrees of
freedom N∗, and then replace N with N∗ (see Chapter 7 for a discussion of degree of freedom estimates for
autocorrelated data).

From the standard error variance of the residuals, σ̂2
e, we can estimate the standard error variance of the

of slope, σ̂2
b in the following way. First,

σ̂2
b =

σ̂2
e

Nσ2
x

, σ2
x =

1
N

N∑
i=1

(xi − x)
2 (4.18)

where we have assumed that the xi’s are precisely known. Putting the pieces together leads to

σ̂2
b =

1
N−2

∑N
i=1(yi − ŷi)

2∑N
i=1(xi − x)

2
(4.19)
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Looking at this equation, you can see intuitively that it is somewhat like the error in our y estimate divided
by the variance in our x values - sort of like a slope of errors or variances.

Since b̂−b
σ̂b

is distributed like the t-statistic with N− 2 degrees of freedom, we can put limits on the true
slope b in the following way:

b̂− t
N/2
α/2 < b < b̂+ t

N−2
α/2 σ̂b (4.20)

where tN−2
α is the critical value of the t-statistic for confidence level α and degrees of freedom N− 2.

We can apply these techniques to the record of annual mean land temperature from the Goddard Institute
of Space Studies (GISS) for the period 1900-2016, as shown in Fig. 4.1. Note that the lower limits on the
trends are all positive, so we can say that the trends on the intervals are positive at 95% confidence.

Figure 4.1 The GISS global surface temperature timeseries with linear trends (b) and ± 2.5 % uncertainties for various
periods. Estimated degrees of freedom are also given. Units of the trends are Kelvin per decade.

Fig. 4.1 illustrates several aspects of linear fitting to time series. First, the result may depend sensitively
on the end points of the analysis. Note that the procedure described in Section 4.1.3 assigns the shorter
1950-2017 period more degrees of freedom than the longer period from 1900-2017. This is because the longer
period has an S-shape associated with the period of slow change from 1940-1980. As a result, the residuals
from the linear fit for the longer period yield a large autocorrelation. The decades of the 1950’s to 1970’s are
consistently below the line and the decades from 2000-2017 are consistently above the line. The period from
1950-2017 is better fit by a straight line and gives a larger number of degrees of freedom. Despite that the
uncertainty is smaller for the longer period because the variance of the predictor is greater. The statistics
support the notion that the recent trends are greater than the long-term trend at 95% significance. Starting
the trend calculation at 1950 is not objective, since it was chosen by inspecting the time series, but it is true
nonetheless that any starting point after 1950 or so yields the same conclusion that the recent warming is
faster than the estimate for 1900-2017, unless the record is so short that the uncertainty is too great, as is
the case for the 1998-2017 period.

4.1.4 Other least-squares fits

4.1.4.1 Orthogonal-least squares regression

Looking back at our derivations for ordinary least squares, it becomes apparent that the results are not
symmetric for x and y. That is, it matters which variable you call x (the independent variable) and which
you call y (the dependent variable). This can be seen for the example data provided in Fig. 4.2. If you
cannot adequately justify which data should be x and which should be y, or it does not make sense to even
try, orthogonal least squares may instead be what you want.
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Figure 4.2 Three least-squares best fit lines calculated in different ways: (1) ordinary least squares where x is the inde-
pendent variable and y is the dependent variable, (2) ordinary least squares where y is the independent variable and x is
the dependent variable, and (3) using orthogonal least squares.

While ordinary linear least squares minimizes the vertical errors between the data and the best fit line
(i.e. the error in y), orthogonal linear least squares minimizes the orthogonal errors, as shown in Fig. 4.3.
It so happens that EOF analysis (to be discussed in Chapter 5) in two-dimensions provides the orthogonal
least squares fit.

Figure 4.3 Depiction of (left) ordinary least squares regression which defines the errors based on vertical offsets and (right)
orthogonal least squares regression which defines the error based on perpendicular offsets.
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4.1.4.2 Power laws and polynomials

Many other curves besides a straight line can be fit to data using a similar procedure to that outlined for
ordinary least-squares regression. Some common examples are power laws and polynomials such as

y = axb ⇒ lny = lna+ b ln x (4.21)
y = aebx ⇒ lny = lna+ bx (4.22)
y = a0 + a1x+ a

2
x + a3x

3 + ...+ anxn (4.23)

In some cases, like that of power laws (e.g. (4.21), (4.22)), one can use logarithms to turn the problem into
a linear one, in which case, standard linear least squares methods can be used to estimate the parameters.

4.2 Correlation

4.2.1 How good is the linear fit?

How much we believe the computed regression coefficient (b̂) depends on the spread of the dots about the
best fit line. If the dots are closely packed about the regression line, then the fit is good. The spread of the
dots is given by the correlation coefficient r.

Here is one way to derive the correlation coefficient. By definition, the total variance of y(t) is

1
N

N∑
i=1

(yi − y)
2 (4.24)

and by definition, the total variance of the fit of x(t) to y(t) (i.e. the variance of ŷ) is

1
N

N∑
i=1

(ŷi − ŷ)
2 =

1
N

N∑
i=1

(ŷi − y)
2 (4.25)

where we have used the fact that
ŷ = a+ bx = y (4.26)

The percent of the total variance in y explained by the fit ŷ is thus given by the ratio
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r2 =
explained variance

total variance (4.27)

=

∑N
i=1(ŷi − y)

2∑N
i=1(yi − y)

2
(4.28)

=

∑N
i=1(bxi + a− y)2∑N

i=1(y
′2
i )

(4.29)

=

∑N
i=1(bxi + y− bx− y)2∑N

i=1(y
′2
i )

(4.30)

=

∑N
i=1(bx

′

i)
2∑N

i=1(y
′2
i )

(4.31)

=
(x

′
y

′

x
′2

)2 ∑N
i=1(x

′

i)
2∑N

i=1(y
′2
i )

(4.32)

=
(x′
y

′)2 ∑N
i=1(x

′

i)
2

(x′2)2 ∑N
i=1(y

′2
i )

(4.33)

=
(x′
y

′)2 1
N

∑N
i=1(x

′

i)
2

(x′2)2 1
N

∑N
i=1(y

′2
i )

(4.34)

=
(x′
y

′)2 · x′2

(x′2)2 · y′2
(4.35)

=
(x′
y

′)2

x
′2 · y′2

(4.36)

Hence,

r =
x

′
y

′

σ̂xσ̂y
(4.37)

Some important points about the correlation coefficient r:

■ r2 is the fraction of variance explained by the linear least-squares fit between the two variables
■ r varies between -1 and 1 and r2 varies between 0 and 1

Note that if σx = σy = 1 and x = y (that is, both x and y are standardized), then the correlation r is
equal to the regression coefficient b̂. More generally, there is a strong relationship between the regression
line and the correlation coefficient:

b̂ = r
σy

σx
(4.38)

Thus, the regression coefficient can be thought of as the correlation coefficient multiplied by the ratio of the
standard deviations of y and x.
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Worked Example 4.1.
Suppose that the correlation coefficient between sunspots and five-year mean global temperature
is 0.5 (r = 0.5). Then the fraction of the variance of 5-year mean global temperature that is
linearly explained by sunspots is r2 = 0.25. That is, the fraction of unexplained variance is still
75%. The root-mean-square error (RMS error), normalized by the total variance is thus:(

MS Error
Total Variance

)1/2
=
√

1− r2 −
√
0.75 = 0.87 (4.39)

Thus, only a 13% reduction in RMS error results from a correlation coefficient of 0.5. The
implications of this are further illustrated in the following table:

r r2
RMS
error

0.98 .960 20.0%
0.9 .81 43.6%
0.8 .64 60.0%
0.5 .25 86.6%
0.3 .09 95.4%
0.1 .01 99.5%

In Practice.

■ As Worked Example 4.1 illustrates, statistically significant correlations are not necessarily
useful for forecasting. If you have enough data you may be able to show that a measured
r = 0.3 correlation coefficient reflects that the true correlation coefficient is different from
zero at the 99% confidence level, but such a correlation, however real, is often useless for
forecasting. The RMS error would be 96% of the variance. The exception to this statement
about the uselessness of small correlations comes where you have a very large number of
trials or chances. If you have a large volume of business (billions of dollars) spread over a
large number of transactions and you shade your trades properly using the 0.3 correlation
prediction, then you can actually make a lot of money...sometimes.
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In Practice.

■ The correlation will only show the linear relationships clearly. Nonlinear relationships may
exist for which the correlation coefficient will be zero. For example, if the true relationship
is parabolic, and the data are evenly sampled, the correlation coefficient would be close to
zero, even though an exact parabolic relationship may exist between the two data sets.

■ The correlation cannot reveal quadrature relationships (although lagged correlations often
will). For example, meridional wind and geopotential are approximately uncorrelated along
latitudes even though the winds are approximately geostrophic and easily approximated from
the geopotential. They are in quadrature (90 degrees out of phase).

■ The statistical tests (to be described next) apply to independent data. Often the sample data
are not independent. The actual number of degrees of freedom may be much smaller than
the sample size.

■ Watch out for nonsense correlations that may occur even though the two variables have
no direct relation to each other. The correlations may occur by chance or because the two
variables are each related to some third variable. For example, over the past 50 years the
number of books published and professional baseball games played have both increased, so
that they are positively correlated. Does this mean that, if there is a players’ strike, book
publishing will take a nose dive?

■ Fig. 4.4 illustrates some of the problems that can arise when using linear regression and cor-
relation coefficients to describe relationships between two data sets. This set of four examples
is famously known as Anscombe’s Quartet, as each panel has exactly the same correlation
coefficient of r = 0.82.

4.2.2 Sampling Theory of Correlation (Pearson’s correlation)

4.2.2.1 Statistical significance of correlations

The correlation, r, between two time series, x(t) and y(t), gives a measure of how well the two time series
vary linearly with one another (or do not). But how can you tell whether the correlation you calculate
is significantly different from zero? In this section we will review the techniques for testing the statistical
significance of correlation coefficients.

Suppose we have N pairs of values (xi,yi) from which we have calculated a sample correlation coefficient
r. The theoretical true value is denoted by ρ. For now, we will assume that we are sampling x and y from
Normal distributions.

When the true correlation coefficient is zero, that is, when ρ = 0, the distribution of r is symmetric about
zero and we are able to make use of the z- and t-statistic. Namely, the random variable t

t =
r
√
N− 2√
1− r2

(4.40)

will follow the t distribution with degrees of freedom ν = N− 2.
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Figure 4.4 Four sets of data, known as Anscombe’s Quartet where the correlations are all r = 0.82.

Worked Example 4.2.
We have two time series, each of length N = 20, and they are correlated at r = 0.6.
Does this correlation exceed the 95% confidence interval under the null hypothesis that
ρ = 0? You can assume both time series are sampled from underlying normal distri-
butions and that the 20 observations in each data set represent 20 degrees of freedom.
........................................................................................................

We had no prior knowledge (before getting the samples) that the correlation would be positive
or negative, so we will use a two-tailed t-test.
tc = 2.1 for ν = N− 2 = 18, so we want to know if the sample statistic t > 2.1.

t =
0.6

√
20− 2√

1− .62
= 3.18. (4.41)

Since t = 3.18 > 2.1, we can reject the null hypothesis that the true correlation is zero at 95%
confidence.
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In Practice.

■ It turns out that the t-statistic is only applicable for ρ = 0 if the underlying distributions of
the data are both normal, or if N is big enough that the central limit theorem applies. For
well behaved distributions, a good rule of thumb is that an N > 20 should be sufficient for
the central limit theorem to apply and the t-statistic to be appropriate for testing the null
hypothesis that ρ = 0. Examples of the t values obtained from a range of distributions is
given in Fig. 4.5.

Figure 4.5 Three underlying sampling distributions and the resulting distribution of t values (4.40) computed from
correlations obtained using N = 30 and N = 3000. The theoretical t-distribution is denoted by the black dashed line.

When the true correlation coefficient is not expected to be zero (i.e. ρ ̸= 0), we cannot assume that the
sampled correlations r will come from a symmetric, normal distribution. Instead, the distribution will be
skewed due to the fact that correlations cannot exceed -1 or 1. In this instance, we must use the Fisher-Z
Transformation to convert the distribution of r into something that is normally distributed (Z).

Z =
1
2 ln

(
1+ r
1− r

)
(4.42)

The Fisher-Z statistic is then normally distributed with the following mean and standard deviation:

µZ =
1
2 ln

(
1+ ρ
1− ρ

)
σZ =

1√
N− 3

(4.43)
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Thus, the confidence bounds for Z become

Z− tcσZ ⩽ µZ ⩽ Z+ tcσZ (4.44)

If you have µZ and want the corresponding actual correlation ρ, you can use the following handy transfor-
mation

ρ =
e2µZ − 1
e2µZ + 1 =

eµZ − e−µZ

eµZ + e−µZ
= tanh (µZ) (4.45)

Worked Example 4.3.
What are the 95% confidence limits on the true correlation ρ if you
draw 21 samples from a normal distribution and obtain and r = 0.8?
........................................................................................................

Since we want the confidence bounds, we need to employ the Fisher-Z transformation in
(4.42)

Z =
1
2 ln

(
1+ 0.8
1− 0.8

)
= 1.0986 (4.46)

σZ =
1√

21− 3
= .235 (4.47)

Calculating t0.025 = 2.1 (using ν = 21− 3) leads to:

Z− 2.1σZ ⩽ µZ ⩽ Z+ 2.1σZ (4.48)
0.61 ⩽ µZ ⩽ 1.59 (4.49)

While interesting, knowing µZ is not very helpful unless we convert it back to a correlation. So,
plugging the bounds into (4.45) leads to

0.54 ⩽ ρ ⩽ 0.92 (4.50)

Tests for the significance of the difference between two non-zero correlation coefficients are made by
applying the Z statistic using the fact that it is normally distributed. For example, suppose we have two
samples, one of sizeN1 and one of sizeN2, and each produce a correlation coefficient of r1 and r2, respectively.
We test for a significant difference between these correlations by first calculating the Fisher-Z transformations
for each:

Z1 =
1
2 ln

(
1+ r1
1− r1

)
; Z2 =

1
2 ln

(
1+ r2
1− r2

)
(4.51)

From these we can calculate the typical z-score from

z =
Z1 − Z2 − ∆1,2

σ1,2
(4.52)

where
∆1,2 = µ1 − µ2 (4.53)

is the transformed difference you expect (your null hypothesis). If you null hypothesis is that the true
correlations of the two samples are equal (i.e. ρ1 = ρ2), then ∆1,2 = 0. The denominator in (4.52) is given
by

σ1,2 =
√
σ2

1 + σ
2
2 =

√
1

N1 − 3 +
1

N2 − 3 (4.54)
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4.2.2.2 Spearman’s rank correlation

Spearman’s rank correlation is a nonparametric test that determines whether a set of paired data monoton-
ically vary together, but it is not concerned with the actual amplitude of the variations, just the ranks of
the values. Since this is a nonparametric test, no assumption about normality needs to be made.

The idea is very simple, the original paired data xi and yi get converted into ranks (position in a sorted
list) Xi and Yi and Spearman’s rank correlation ρR is given by

ρR =

∑
i(Xi − Xi)(Yi − Yi)√∑
i(Xi − Xi)2(Yi − Yi)2

(4.55)

When computing the ranks, if there are duplicate values the ranks are equal to the average rank/position.
The standard error of Spearman’s rank correlation ρ is given by

σρ =
0.6325

(N− 1)1/2 (4.56)

For significance testing on ρR, one can use the Fisher-Z test or the t-test (when the null hypothesis is that
ρR = 0) as for the standard Pearson correlation.

There are many other nonparametric methods for calculating correlations, for example, Kendall’s Tau
Rank Correlation. We will not delve into these here.

Figure 4.6 Paired data and their Spearman and Pearson correlations.
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Worked Example 4.4.

Given paired data x and y, one can calculate Spearman’s rank correlation using (4.55). For
the paired data in the table below:

Spearman rank correlation: 0.99
Pearson correlation: 0.81

x y rank X rank Y
1.04 1.39 2 1
1.46 6.78 6 5
1.03 2.21 1 2
1.66 13.46 7 8
1.29 6.3 4 4
1.70 11.31 8.5 6
1.27 4.37 3 3
1.70 20.42 8.5 9
1.97 22.22 10 10
1.43 11.81 5 7

4.3 Multiple Linear Regression

4.3.1 Generalized Normal Equations

Multiple regression is the regression of more than two variables. The basic idea is that you wish to use
multiple predictors xi to predict your predictand y. That is, you wish to find the regression coefficients ai
that provide the best guess ŷ for your predictand y

ŷ = a0 + a1x1 + a2x2 + ...+ anxn (4.57)

For a single predictor x, we wanted to minimize the cost function Q, defined as:

Q =

N∑
i

(ŷi − yi)
2 =

N∑
i

(a1xi + a0 − yi)
2 (4.58)

For the multiple predictor case (predictors x1, x2, x3..., xn), we want to minimize

Q =

N∑
i

(ŷi − yi)
2 =

N∑
i

(a0 + a1x1,i + a2x2,i + a3x3,i + ...+ anxn,i − yi)
2 (4.59)

where n is the number of predictors and N is the number of time steps. Thus, x2,i denotes the predictor x2
at time step i.

For n predictors, we have n+ 1 equations derived by setting

∂Q

∂ai
= 0 (4.60)

where i goes from 0 to n.
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y = a0 + a1x1 + a2x2 + ...+ anxn (4.61)
x1y = a0x1 + a1x2

1 + a2x1x2 + ...+ anx1xn (4.62)
x2y = a0x2 + a1x2x1 + a2x2

2 + ...+ anx2xn (4.63)
... (4.64)

xny = a0xn + a1xnx1 + a2xnx2 + ...+ anx2
n (4.65)

If we assume the mean has been removed from every variable, these simplify to n equations and n unknowns
(since we now know that a0 = 0 and so (4.61) is no longer useful).

For the jth equation:

xjy =

n∑
i=1

aixjxi (4.66)

One can write this in matrix form as:
x2

1 x1x2 x1x3 ...
x2x1 x2

2 x2x3 ...
x3x1 x3x2 x2

3 ...
... ... ... ...



a1
a2
a3
...

 =


x1y
x2y
x3y
...

 (4.67)

Since we have removed the means of all variables, the overbarred quantities are actually covariances. These
covariances are closely related to the variance calculations from Chapter 2. If x and y are scalars, then the
covariance Cxy is

Cxy =
1
N

N∑
i=1

(xi − x)(yi − y), (4.68)

so if x = y = 0 then xy = Cxy. The correlation between x and y is computed by dividing the covariance by
the standard deviations of both variables:

rxy =
Cxy

σxσy
(4.69)

All of these manipulations can be done much more neatly in vector/matrix notation, and the extension to
the case where y is a vector is straightforward in that context (see next section).

Using our knowledge of the covariance, we now see that if the means of our variables have been subtracted,
the left-hand-side of (4.67) is a matrix of the covariances (termed the covariance matrix across all of the
xi’s and the right-hand-side is a vector of the covariances between xi and y. In this case, each horizontal line
in (4.67) can be written in matrix notation as

Cxixjaj = Cxiy (4.70)

Since the ultimate goal is to determine the aj coefficients, one can solve for this vector by inverting the
real, symmetric matrix on the left, and multiplying the inverse times the vector on the right, at least in
theory.

Cxixj
−1Cxixjaj = Cxixj

−1Cxiy (4.71)
aj = Cxixj

−1Cxiy (4.72)

However, many of the methods for computing the inverse of the covariance matrix require that Cxixj j be
invertible and not singular. In the following chapters we will discuss how singular value decomposition can be
used to derive a very robust solution for the aj’s that is optimal even when the problem is over-determined
and Cxixj is singular.
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In Practice.

■ if each variables has been standardized (mean of 0 and standard deviation of 1), the left-hand-
side of (4.67) is the correlation matrix of the xj’s, and the right-hand-side is the correlation
vector between the x ′js and y.

■ if the xj’s are time series at different locations in a data set, the covariance matrix yields
information about the structures of the dominate data, and tells you something about the
spatial variability of the different points

■ if the predictors are linearly independent, the off diagonal elements are all 0 and the aj’s can
be found algebraically

4.3.2 Derivation of the Normal Equations using Matrix Notation

Matrix notation is very powerful and compact for doing complex minimization problems and we will need
to use it a lot to do more powerful methods later. As an example, then, let’s derive (4.67) using matrix
algebra. First some definitions.

Let’s think of y and a as row vectors of length N and n, respectively, and the data matrix X as an N×n
matrix, where N is the sample size and n is the number of predictors, xj, as before.

y =
[
y1 y2 y3 ... yN

]
(4.73)

a =
[
a1 a2 a3 ... an

]
(4.74)

X =


x11 x21 x31 ... xN1
x12 x22 x32 ... xN2
x13 x23 x33 ... xN3
... ... ... ... ...
x1n x2n x3n ... xNn

 (4.75)

Now we can express our desired regression equation in a very compact form

ŷ = aX (4.76)

where we get the vector of predicted values of y, ŷ, by multiplying the vector of coefficients a by the data
matrix X.

Our goal is to determine values for the vector of coefficients a, and we do this by minimizing the squared
error of our fit (i.e. the cost function Q). In matrix notation, we compute Q by taking the inner product of
the error vector with itself

Q = (y − aX) (y − aX)T (4.77)

Here, (·)T indicates the transpose of a matrix, and we will utilize the fact that (AB)T = BTAT . Expanding
the right-hand-side of (4.77) leads to

Q = yyT − yXTaT − aXyT + aXXTaT (4.78)

The next step is to differentiate Q with respect to the coefficients aj to obtain an equation for the values of
a that minimize the error. Doing this leads to

∂Q

∂a
= 0− yXT − XyT + XXTaT + aXXT (4.79)

=
(
aXXT − yXT

)
+
(
aXXT − yXT

)T (4.80)
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Note that the right hand side of (4.80) can be organized into two terms that are the transposes of each
other. If a quantity is zero, then its transpose is also zero. Therefore, we can use either of the two forms
above to express the minimization. We will carry along both forms in the next couple of equations, although
they mean the same thing.

We obtain the optimal solution for the aj’s that minimizes the error, Q, by setting the right hand side of
(4.80) equal to zero, or,

aXXT = yXT or XXTaT = XyT (4.81)

from which,
a = yXT

(
XXT

)−1 or aT =
(
XXT

)−1
XyT (4.82)

Looking back at (4.72), we see that it is equivalent to aT =
(
XXT

)−1
XyT since

XXT = NCxixj and XyT = NCxiy (4.83)

Worked Example 4.5.
You may consider Fourier harmonic analysis to be a special case of a multiple linear least-squares
regression model. In this case, the predictors are sines and cosines in sampling dimension z of
length N. For example:

x1 = sin 2πz
L

; x2 = cos 2πz
L

; x3 = sin 4πz
L

; x4 = cos 4πz
L

; ... (4.84)

If you are unfamiliar with Fourier analysis, you may want to come back to this section after
studying the description of Fourier analysis in Chapter 7.

If we take a multiple linear regression approach, this technique will work for unevenly spaced
zi, whereas standard Fourier Transform techniques will not. For evenly spaced data (evenly
spaced zi) and orthogonal predictors, as is the case for these sines and cosines,

aj =
xjy

x2
j

; but x2
j =

1
2 for all N > 0 (4.85)

so that

aj =
2
N

N∑
i=1

yi · xj(zi) (4.86)

for example (4.87)

a1 =
2
N

N∑
i=1

yi · sin
(
2πzi
L

)
(4.88)

and these coefficients are equivalent to what is used in Fourier decomposition, demonstrating
that Fourier analysis is optimal in a least-squares sense.

4.3.3 Multiple Regression - How many predictors should I use?

Multiple regression allows for one to use nearly an infinite number of predictors to predict y. However,
the question is then “how many predictors should I use?”. To make things a bit easier, in this section we
will consider standardized variables, although one should keep in mind that all equations can be rewritten
without this assumption.
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In the case of standardized variables, the normal equations for multiple linear-least-squares regression can
be written in the following way

rxixj
ai = rxjy (4.89)

where once again r represents the correlation. We start with the simplest case of only two predictors

ŷ = a1x1 + a2x2 (4.90)

Then the normal equations can be expanded as

rx1x1a1 + rx1x2a2 = rx1y (4.91)
rx2x1a1 + rx2x2a2 = rx2y (4.92)

or in matrix notation, [
rx1x1 rx1x2

rx2x1 rx2x2

] [
a1
a2

]
=

[
rx1y

rx2y

]
(4.93)

But, since rx1x1 = rx2x2 = 1 and rx1x2 = rx2x1 , this can be rewritten as[
1 rx1x2

rx1x2 1

] [
a1
a2

]
=

[
rx1y

rx2y

]
(4.94)

We solve for a1 and a2 and find that

a1 =
rx1,y − rx1,x2rx2,y

1− r2x1,2
(4.95)

a2 =
rx2,y − rx1,x2rx1,y

1− r2x1,2
(4.96)

If ŷ is the best-fit, then we can write the explained and unexplained variance as

y2 = (yi − ŷ)2 + (ŷ− y)2 (4.97)

Total Variance = Unexplained Variance + Explained Variance

Using the fact that ŷ = a1x1 + a2x2 it can be shown that

1 =
(yi − ŷ)2

y2
+ R2 (4.98)

where the fraction of explained variance R2 is given by

R2 =
r2x1,y + r2x2,y − 2rx1,yrx2,yrx1,x2

1− r2x1,x2

(4.99)

In analogy with the case of simple regression, R can be defined as the multiple correlation coefficient, since
its square is the fraction of explained variance.

It turns out that in multiple regression, if too many predictors are used, then the predictions associated
with the regression will perform badly on independent data—worse than if fewer predictors were used in
the first place. This is because using too many predictors can result in large coefficients for variables that
are not actually highly correlated with the predictand. These coefficients help to fit the dependent data, but
make the application to independent data unstable and potentially wildly in error. That is because you start
to fit the noise, and when the noise changes the prediction is really bad. Also, sometimes these variables
are better correlated with each other than they are with the predictand, which will also produce unstable
predictions when used with independent data. In this case the covariance matrix you formally invert (i.e.
(4.72)) is nearly singular.
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Adding x2 as a predictor does not always increase the explained variance. No benefit is derived from
additional predictors, unless their correlation coefficient with the predictand exceeds the minimum useful
correlation - the critical correlation required for a beneficial effect increases with the number of predictors
used. Unless predictors can be found that are well correlated with the predictand and relatively uncorrelated
with the other predictors, the optimum number of predictors will usually be small. The minimal useful
correlation is defined as the minimum correlation between x2 with y that will allow the addition of x2 to
improve the regression R2. In math, this is,

|rx2y|min useful > |rx1yrx1x2 | (4.100)

We can show this by substituting rx2y = rx2ymin useful = rx1yrx1x2 into the expression for the explained
fraction of the variance in the two-predictor case:

R2 =
r2x1,y + r2x2,y − 2rx1,yrx2,yrx1,x2

1− r2x1,x2

(4.101)

=
r2x1,y + r2x2,y − 2r2x1,yr

2
x1,x2

1− r2x1,x2

(4.102)

= rx1y (4.103)

Thus, we have shown that when rx2y equals the minimum useful correlation, including the second predictor
has no influence on the explained variance. What is not obvious at this point is that including such a useless
predictor can actually have a detrimental effect on the performance of the prediction equation when applied
to independent data, data that were not used in the original regressions. Note that the lower the value of
rx1x2 , that is, the more independent the predictors, the better chance that both predictors will be useful,
assuming that they are both correlated with the predictand. Ideally we would like completely independent
predictors, i.e. rx1x2 = 0. Completely dependent predictors, rx1x2 = 1, are useless since only one of them is
enough (although you can usually reduce the noise by adding them together with some judicious weighting).
The desire for independent predictors is part of the motivation for empirical orthogonal functions (EOFs),
which will be described in Chapter 5.

Similar, but more complicated considerations apply when deciding to use a third predictor. In general,
the more predictors used, the fewer degrees of freedom are inherent in the coefficients aj, the lower the
statistical significance of the “fit” to the data points, and the less likely that the regression equations will
work equally well on independent data. If predictors are added indiscriminately, you come to a point where
adding predictors makes the regression work less well on independent data, even though you are accounting
for more of the variance of the dependent data set. This is because you can over fit the data, in essence, you
will use the predictors to fit the noise rather than the signal. It is a good idea to use as few predictors as
possible, while still getting most of the skill you can. Later we will describe how to pick the optimal set of
predictors.
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Worked Example 4.6.
Say you have two predictors, x1 and x2 and both are correlated with the predictand y at 0.5,
and are correlated with each other at 0.5, that is

r1,y = r2,y = r1,2 = 0.5 (4.104)

Does adding x2 increase your R2 compared to a regression with x1 alone?
........................................................................................................

For the first predictor only, the variance explained is

R2
1 = r21,y = 0.25 (4.105)

Adding a second predictor, x2, leads to

R2
1,2 =

0.52 + 0.52 − 2× 0.5× 0.5× 0.5
1− 0.52 = 0.33 (4.106)

Thus, adding a second predictor helps explain more of the variance of y.
Now let us assume that r2,y = 0.25 and everything else remains the same. Adding the second

predictor leads to

R2
1,2 =

0.52 + 0.252 − 2× 0.5× 0.25× 0.5
1− 0.52 = 0.25 (4.107)

In this case, adding the second predictor does not increase the explained variance!

4.3.3.1 Adjusted R2

In most situations, increasing the number of predictors will always increase the explained variance (R2)
because at some point the predictors will start fitting the noise rather than the signal. This will become
evident when the regression model is applied to independent data - as the model will be worse than a model
with fewer predictors.

How do you know when you are starting to fit the noise and thus should stop adding predictors? One tool
for determining this is the adjusted R2, which attempts to quantify when the additional variance explained
by a new predictor is not enough to warrant its addition in the full model. The adjusted R2 is defined as

R
2
= 1− (1− R2)

n− 1
n− p− 1 (4.108)

where p is the number of predictors (not including a constant term) and n is the sample size.
Unlike R2, R2 only increases with the addition of a new predictor when the increase in R2 is more than

what would be expected by chance. Thus, one can use the adjusted R2 to determine the number of predictors
by plotting R2 for each additional predictor and determining when it reaches a maximum. Beyond this
maximum, additional predictors will likely only degrade the fit when independent data is analyzed.


