Chapter 2
Basic Statistical Techniques

2.1 Basic statistical quantities: means and other moments

2.1.1 The Mean

The sample mean of a set of N values, x;, where i =1,2,3...N is given by

1 N
X = N;xi. (2.1)

The mean is the first moment about zero and should be distinguished from the median, which is the value
in the center of the population (or the average of the two middle values if N is even).

The sample mean X is an unbiased estimate of the true population mean p. An unbiased estimate implies
that if we draw an infinite number of samples from the same underlying distribution, then the mean of all
of the sample means will be equal to the underlying distribution’s population mean .

In Practice.

m The median is a very useful quantity when the distribution of your dataset is not sym-
metric or contains outliers. For example, in Fig. 2.1, the median may be considered more
representative of the data.

2.1.2 The Variance

The sample variance of a set of values, xi, is given by

x'? = N=1 Z(x'l —x)? (2.2)

where the prime denotes departures from the mean. The variance is the second moment about the mean.
The division by N — 1 instead of the expected N is required for an unbiased estimate of the variance. An
explanation for why this is can be found in any standard statistics textbook, but it basically boils down to
the fact that the sample mean is itself an estimate and comes with its own uncertainties which gives the
sample variance a low bias without the N — 1 correction.
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Figure 2.1 Comparison of the mean vs the median for a highly skewed distribution.

2.1.3 The Standard Deviation

The standard deviation is the square root of the variance and is often denoted as o. The sample standard
deviation of a set of values, xi, is similarly defined as

N
19 1 —
s=Vx?2= HZ(M*X)Q (2.3)
i=1
2.1.4 Higher Moments
We can define an arbitrary moment about the mean as
N
me= g Y (s 24)
i=

so that my is the variance, ms is the skewness, and my is the kurtosis. Written in this way, note that ms is
actually a biased estimate of the variance due to the division by N rather than N — 1.
These m, moments can be standardized (non-dimensionalized) by defining

my
ar =

(2.5)

where o is the standard deviation. The first two standardized moments are zero and 1, but the third and fourth
are the coefficients of skewness and kurtosis, which give information about the shape of the distribution.

The coefficient of skewness, as indicates the degree of asymmetry of the distribution about the mean. If
az > 0 then the distribution is said to be skewed to the right and has a longer tail on the positive side. If
a3 < 0 then the distribution is said to be skewed to the left and has a longer tail on the negative side. Fig.
2.2 shows examples of a positively and negatively skewed distribution.

The coefficient of kurtosis (Greek word for curved or arching), ay4, indicates the degree to which the
distribution is spread about the mean value or the length of the tails. The kurtosis can be thought of as the
“tailedness” of the distribution, and is typically compared with the kurtosis of the Normal distribution which
has a4 = 3. Thus, distributions with excess kurtosis (a4 > 3) are very peaked about the mean with long tails
and are called leptokurtic (Greek for leptos, meaning small or narrow) and distributions with as < 3 are very
flat about the mean with short tails and are called platykurtic (Greek platys, meaning broad or flat).
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Figure 2.2 Examples of distributions with different skewness and kurtosis.

In Practice.

m In many software packages, the calculated kurtosis is actually the excess kurtosis, that is, the
kurtosis minus 3 (a4 —3) since 3 is the kurtosis of the Normal distribution. Thus, platykurtic
distributions will have negative kurtosis, and leptokurtic positive kurtosis.

2.2 Probability Concepts and Theorems

2.2.1 Unions and Intersections of Probability - Venn Diagram

The probability of some event E happening is written as Pr(E). For example, E could be that you roll a die
(a die is a cube with a different number, 1 through 6, on each side) and get a 2. If the die is fair, then

1
Pr(E) = —.
HE) = ¢
The probability of E not happening

Pr(ﬁ) —1— Pr(E) (2.7)
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where E is the event that E does not happen. In the case of rolling the fair die

~ 1 5
Pr(f)=1--="2. 2.8
The probability that either or both of two events, E; and Es, will occur is called the union of the two
probabilities and is given by

P’I"(El U EQ) = P’I"(El) + P’I‘(Eg) — P’l"(El N EQ) (29)

where Pr{E; NEy) is the probability that both events will occur, and is called the intersection. It is the
overlap between the two probabilities and must be subtracted from the sum. This is easily seen via a Venn
diagram in Fig. 2.3. The area inside the two event circles indicates the probability of the two events. The
intersection between them gets counted twice when you add the two areas and so must be subtracted to
calculate the union of the probabilities. If the two events are mutually exclusive (i.e. the circles do not
overlap), then no intersection occurs.

Pr(E1)
Pr(E2)

Figure 2.3 Venn Diagram illustrating the intersection of two probabilities.

Another important concept is conditional probability. We write the probability that Es will occur given
that E; has occurred as
Pr(E; NEy)
Pr(E,)

Moving terms around, one can also obtain a formula for the probability that both events will occur, and this
is called the multiplicative law of probability,

Pr(EsE;) = (2.10)

PT‘(El N Eg) = PT‘(E2|E1) P”'(El) = P’I"(E1|E2) P’I‘(EQ) . (211)

If E; and E5 are independent events, that is, their probabilities do not depend on one another, then

Pr(E,[E2) = Pr(E,) (2.12)
Pr(Ez|Eq) = Pr(Es) (2.13)

and so
P’I’(El N Ez) = P’I”(El) PT(EQ) (214)

(2.14) is the definition of statistical independence.
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Worked Example 2.1.
If the probability of getting heads on a coin flip is 0.5, and one coin flip is independent of every
other coin flip, then, using (2.14), the probability of getting N heads in a row is 0.5™.

Worked Example 2.2.

The probability of it raining on Monday is 60%. But, you know from looking at histori-
cal records that the probability of it raining the day after it rains is 80% (it is more likely
than not to rain the day after it rains). So, whether it rains on Tuesday is dependent on
whether it rains on Monday. What is the probability it will rain Monday and Tuesday?

M = event that it rains Monday (2.15)
T = event that it rains Tuesday (2.16)
Pr(MNT) =Pr(TIM) - Pr(M) =0.8-0.6 = 48% (2.17)

2.2.2 Bayes Theorem

Theorem 2.1 (Bayes Theorem). Let Ei,i=1,2,3..N be a set of N events, each with positive probability,
such that E includes all possibilities in a set S and the events are mutually exclusive. Then, for any event B
defined on S, with Pr(B) > 0,

Pr(B|E;) Pr(E;)

> &L, PrBE) PrEy)
Bayes Theorem may at first appear quite complicated, but in fact, we have already discussed all of the

pieces that go into its derivation. We start with the conditional probability of an event E given that an event
B has occurred:

Pr{E;|B) = (2.18)

Pr(ENB)

Pr(EIB) = Pr{B)

. (2.19)
This can be rearranged as

Pr(ENB) = Pr(E|B) Pr(B). (2.20)
If the E; cover all possible outcomes, with a little thought one can see that the following must be true:

N
Pr(B) = Z Pr(B[E;) Pr(E;). (2.21)

i=1

Plugging (2.21) into the denominator of (2.19) gives us (2.18).

In Practice.

m In general, Bayes Theorem takes information about the Pr(A|B) and turns it into informa-
tion about the Pr(B|A).
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Worked Example 2.3.
You recently started measuring daily precipitation in Argentina to study extreme precipitation
events in the area. Past experience at the site indicates that 5% of the days exhibit what you
consider dangerous amounts of precipitation (e.g. lead to landslides, crop damage, etc.).

You are testing a new rain gauge that measures daily precipitation totals and then logs it into
a computer. Unfortunately, the particular gauge in question has some reliability problems. Your
gauge indicates extreme precipitation on only 95% of the days that extreme downpours actually
occur. Furthermore, your gauge also incorrectly indicates extreme precipitation on 10% of the
days when the actual precipitation was below what you consider extreme.

What is the probability that a day for which the gauge indicated extreme precipitation did
not have extreme precipitation?

If we let E denote the event of extreme precipitation, and M denote the event where the gauge
flags extreme precipitation, then we want to know Pr <E|M) In this case, Bayes Theorem takes

the form of

Pr(M|E> Pr(E)

Pr(ﬁlM) - Pr(zvuﬁ) pr(ﬁ) + Pr(MJE) Pr(E) (222)
0.1-0.95

= 0.1-0.95+0.95-0.05

~ 0.67 (2.23)

Thus, a Bayesian would conclude that there is a 67% chance that the gauge is wrong and that
extreme precipitation did not occur.

2.2.3 Probability philosophies: frequentist vs Bayesian views

While there are a wide range of philosophies on the meaning of probability, two general philosophies are
discussed most frequently: the frequentist viewpoint, and the Bayesian viewpoint.

A frequentist approach takes the following form: If you have some large number of opportunities for an
event to occur, then the number of times that event actually occurs, divided by the number of opportunities
for it to occur is the probability. The probability varies between zero and one. The frequentist view has a
solid foundation in the Weak Law of Large Numbers which states that if you have an event E that occurs Ng
times in N trials, then Ng/N converges to the probability of event E occurring as the number of trials goes
to infinity.

An alternative philosophy is attributed to Rev. Thomas Bayes (1701-1761), who figured that in many
cases one is unlikely to have a large enough sample with which to measure the frequency of occurrence,
and so, one must take a more liberal view. Bayesian inference is given that name for its frequent use of
Bayes Theorem, which it uses to take into account a priori information, that may not be derivable from a
frequentist point of view.

While the frequentist viewpoint is often found in the scientific literature in association with hypothesis
testing and p-values, many recent articles have come out arguing against this approach due its broad misuse
and the prevalence of “p-hacking” (e.g. Nuzzo, 2014; Goodman, 2001). Both the frequentist and the Bayesian
approaches can be valid and useful, if done carefully and objectively. Bayesian analysis can be useful if you
only have a small sample and you have prior information that you feel is reliable. New data can then be
added to improve the estimate of probabilities. A weakness might be that this prior information could be
subjective, and the methods of Bayesian analysis are a bit more complex. The Frequentist approach is simple
to apply and works well if a large amount of data is available. Which approach to choose may depend on
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the problem at hand. In all cases one must be alert to the possibilities of errors in the logic or application of
statistical tests.

Worked Example 2.4.

Sometimes, the frequentist approach and the Bayesian approach can result in different conclu-

sions, as demonstrated by returning to our previous example of the faulty rain gauge.
Frequentist Approach: A frequentist would conclude that the probability that extreme

precipitation did not occur is 10%, since this is the probability that the gauge incorrectly flags

extreme precipitation when none actually occurred.

Bayesian Approach: The Bayesian approach would take into account the background
rate of extreme precipitation and plug everything into Bayes Theorem. Taking this Bayesian
approach, we previously concluded that there is a 67% chance that the gauge is wrong and that
extreme precipitation did not occur.

The reason the two approaches result in such wildly different answers is that the Bayesian
approach took into account information that the frequentist approach did not. Namely, the
frequency with which extreme precipitation actually occurs.

2.3 Probability Distributions
The probability that a randomly selected value of a random variable x falls between the limits a and b is
b
Pra<x<b)= Jf(x)dx (2.24)
a

This expression defines the probability density function (PDF), f(x), in the continuous case. Note that the
probability that x is exactly equal to some value c is exactly zero.
To be a probability density function, f(x) must satisfy the following criteria:

J f(x)dx = 1 (2.25)
f(x} > 0 for all x (2.26)

The moments about the mean of the distribution can be obtained directly from the probability density
function using the following formula,

m, = J (x — )" f(x)dx, (2.27)

where p is the true, population mean.
The cumulative distribution function (CDF), F(x), is defined as the probability that a random variable
assumes a value less than x,

F(x) = J f(t)dt. (2.28)
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The probability density function and the cumulative density function are linked via the fundamental
theorem of calculus and it is straightforward to show that

dF
Fi f(x), (2.29)
and .
Pra<x<b)= Jf(x)dx =F(b) — F(a). (2.30)

In Practice.

m The probability density function and cumulative density function of a finite data set can be
approximated by the smoothed histogram of the data. One common method for smoothing
is called the kernel density estimation, an example of which is given in Fig. 2.4.
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Figure 2.4 Histogram of a data set (blue) along with the kernel estimated probability density function (orange).

2.3.1 The Normal Distribution

The Normal (Gaussian) distribution is one of the most important in nature. Most observables are distributed
normally about their means, or can be transformed in such a way that they become normally distributed.
Because of this tendency for things to be normally distributed, the most common statistical tests assume
normality. Thus, it is very important to verify that your random variable of interest is normally distributed
before using common Gaussian statistics.
The probability density function for a normally distributed random variable x is
1 —(x—)?

f(x) = T (2.31)

The associated cumulative distribution function is
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X

1 —(t—p)?
F(x) = e 202 dt 2.32

—0o0

It is often useful to write the Normal distribution functions in terms of standardized random variables,
that is, a random variable with mean of 0 and standard deviation of 1. Letting z denote such a standardized
random variable,

(2.33)

The probability density function and cumulative density function for a Normally distributed, standardized
random variable z then simplifies to

f(z) = %re’f (2.34)
F(z) = J \/%Te%zdt (2.35)

The probability that a standardized, normally distributed random variable z falls within +1, £2 and +3
standard deviations of its mean is given by

Pr(—1<z<1)= | f(z)dz=68.27% (2.36)
1
2

Pr(—2<2<2) = | f(z)dz = 95.45% (2.37)
)
3

Pr(—3<z<3)= | f(z)dz=99.73% (2.38)
=3

These probabilities can also be visualized as the area under the Gaussian f(x) curve, as shown in Fig.
2.5. There is only a 4.55% probability that a normally distributed variable will fall more than 2 standard
deviations away from its mean. This is a two-tailed probability. The probability that a normal variable will
exceed its mean by more than 2 standard deviations is only half of that, 2.275%, since the normal distribution
is symmetric. This is a one-tailed probability.

probability

95.45%

Figure 2.5 Probability density function of z and the probability that z falls within +10, 20 and +30 (area under the
curve).
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In Practice.

m Standardizing your data using (2.33) comes in handy for comparing particular values with
others who may have normally distributed data with different means and standard deviations,
or those unfamiliar with the units of your data. For example, if I measured the ozone at a
remote site and told you the measurements were normally distributed and today’s level
was 100 parts per billion (ppb), you may not know what to think. But, if T told you the
standardized level was z = 40, you would know that ozone was extremely high today.

m Your data does not need to be Normally distributed to standardize it following (2.33), it
is merely a unit conversion, like going from Celsius to Fahrenheit. When this is done, the
resulting values can still be interpreted as the number of standard deviations about the
sample mean. If the data is not normally distributed, however, the probabilities given in
(2.36)-(2.38) and Fig. 2.5 will not be applicable.

2.3.2 Other Common Distributions

—— Standard Normal
0.6 —— Uniform
Lognormal
0.5
204r
2
©
8
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Figure 2.6 The probability density functions of three well-known distributions.

Uniform Distribution

The wuniform distribution describes a random variable that is equally likely to take any value in the closed
interval [a, b]. Its probability density function is plotted in Fig. 2.6 and given by

s fora<x<b
f(x) _ ) b—a ora X ’ (2.39)
0 forx<aorx>Db
The cumulative distribution function is
0 forx < a
Fix) =< 3=% fora<x<hb, (2.40)

b
1 for x > b
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Lognormal Distribution

A positive random variable x has a lognormal distribution if the natural logarithm (log) of x is normally
distributed. Put another way, x is lognormally distributed if Y = log x is normal. To determine the probability
density function, it is straight-forward to plug logx into (2.31), perform a change of variables, and show that
the lognormal probability density function is

1 —(logx—)?

e 202 , x>0 2.41
X0V 27 ( )

The cumulative density function is more complicated and requires the complementary error function to
be written in full and so we will not do so here. An example lognormal probability density function is shown
in Fig. 2.6.

Gamma Distribution

The Gamma Distribution is a two-parameter family of distributions. It is included here since it can fit
positive-definite highly skewed distributions such as that of precipitation or wind speed. The two parameters
are a shape factor, a > 0, and a scale factor, b > 0. The pdf for the Gamma Distribution is given by

1

= (a=1)g=x/b 2.42
f(x) I"(a)b“x e (2.42)

The probability density functions for the gamma distribution with six sets of parameters are shown in Fig.
2.7. A small shape and large scale factor give a highly skewed distribution peaking near zero, which can be
a good fit to variables like precipitation. A large shape and small scale parameter gives a distribution that
is peaked at a non-zero value and less positively skewed.

0.5

— a=05b=20
— a=1.0,b=20
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Figure 2.7 The probability density functions for gamma distributions with the shape and scale factors indicated in the
legend.

2.4 Central Limit Theorem

Theorem 2.2 (Central Limit Theorem). The arithmetic mean of a sufficiently large number of iterates
of independent random variables, each with a well-defined mean and variance, will be approrimately normally
distributed, with standard deviation o/v/N, where N is the size of each sample.
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In simpler terms, the Central Limit Theorem says that no matter the underlying distribution of your data,
if you take a large enough sample of your data, and compute its average, then take another sample and take
its average, then another, etc., the distribution of these sample means will be normal with mean equal to
the mean of the random variable and standard deviation of o/v/N, where o is the standard deviation of
the underlying distribution of the random variable. This concept is absolutely fundamental to much of the
statistics that we do in the physical sciences, and significantly simplifies the statistics we must master. Let’s
look at two examples.

Worked Example 2.5.
Suppose we know that our data is normally distributed with @ =0 and 0 = 1 (standard normal
distribution). What is the distribution of sample means for sample sizes of N = 257 N = 1007
N = 2007

The Central Limit Theorem says that for a “sufficiently large number”, that is, for sufficiently
large N, the distribution will be normal. But what is “sufficiently large”? It turns out that if the
underlying data is normal, the Central Limit Theorem applies for any N > 1. Thus, the sample
mean will have a normal distribution with the same mean as the underlying distribution,u = 0,
and standard deviation:

ON—25 = 0/VN =1/v/25 =0.2 (2.43)
ON—100 = 0/VN = 1/v/100 = 0.1 (2.44)
ON=200 = G/\/Nzl/m:()()? (245)

To visualize this result, Fig. 2.8 displays the distribution of 10000 sample means of values
drawn from a standard normal distribution. The dashed gray curves denote the theoretical
distribution given in (2.43) - (2.45).

Worked Example 2.6.
In the previous example, the underlying distribution was normal. However, the Central Limit
Theorem applies to all underlying distributions as long as N is large enough.

Fig. 2.9 shows the distributions of 10000 sample means of length N = 25,100,200 drawn
from the three distributions plotted in Fig. 2.6. As in Fig. 2.8, the dashed gray curves denote
the theoretical normal distribution predicted by the Central Limit Theorem. As N increases, the
theoretical estimate and the actual distribution agree more and more. Note how the lognormal
distribution of sample means still does not agree completely with the theoretical estimate, and
this is also the distribution that is most skewed (looks the least like a Gaussian).

2.5 Testing for Significance

Many geophysical variables are approximately normally distributed, furthermore, as we discussed in Section
2.4, if you take a large enough sample, the sample mean of any variable is normally distributed. Thus, we can
often use the theoretical normal probability distribution to calculate the probability of measuring a certain
value. We have so far covered how to determine the probability of drawing a value x; within a range of values,
but what about comparing a sample’s mean to some other value? For example, instead of asking “what is
the probability that this summer’s average temperature will be greater than 80°F”, we might instead want
to ask “was this summer’s average temperature significantly warmer than that of the summer of 19507” As
in this example, many research questions revolve around determining whether two means are different from
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Figure 2.8 Distribution of 10000 sample means drawn from a standard normal distribution for sample sizes of N =
25,100, 200. Dashed gray lines denote the distributions predicted by theory.

one another. To do this we need to know our data’s true population mean and population standard deviation
a priori. Unfortunately, the best that we are likely to have are the sample mean X and the sample standard
deviation s based on a sample of finite length N.

If we know our data are normally distributed, and N is large enough, then we can use X and s to compute
the z-statistic. If N is not sufficiently large, we need to use the Student-t distribution (see Section 2.5.1),
which is appropriate for small sample sizes.

The standard variable used to compare a sample mean to the true mean is:

=2 R_ZTH (2.46)

where we have used the Central Limit Theorem to replace ox with 0/v/N. The z-statistic is thus the number
of standard errors that the sample mean deviates from the true mean. If the variable is normally distributed
about its mean, then z can be converted into a probability statement.

(2.46) needs to be altered only slightly to provide a significance test for differences between two sample
means:

7 = (X1 —%2) — Al,z (2.47)

Here, the sample sizes are allowed to be different, and A; 5 is the hypothesized difference between the two
means, which is often zero in practice.
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Figure 2.9 Distribution of 10000 sample means drawn from a three distributions for sample sizes of N = 25, 100, 200.

2.5.1 Small sampling theory: the t-statistic

When the sample size is smaller than about 30 we cannot use the z-statistic to compare sample means, even
if the underlying distribution is normally distributed. Instead, we must use the Student’s t distribution to
compare sample means, or the chi-squared distribution when comparing sample variances. The key difference
between the z-statistic and the t-statistic is that the z-statistic requires knowledge of the population standard
deviation o while the t-statistic uses the sample standard deviation s. When the sample size is smaller than
30, s is biased low as an estimate of o and thus, we use the t-statistic to account for this.

The Student’s t-distribution is derived in exact analogy with the z-statistic:
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= E_IF (2.48)
NT oUW
. N
= e 2.49
s=s N_1 ( )

If we draw a sample of size N of independent values from a normally distributed population with mean
i, t (as defined by (2.48)) is distributed with the following probability density:

f(t) = %ﬂ (2.50)

(
t2 2
(1 + 7)
where fo(v) is chosen as a normalization factor to make fiooo f(t)dt = 1 and v = N — 1 is the number

of degrees of freedom. The degrees of freedom is defined as the number of independent samples minus the
number of parameters that must be estimated.

In Practice.

m In all cases thus far, it has been assumed that the N values drawn are all independent
samples. Often, however, N samples of a geophysical variable are not independent, that is,
they exhibit either spatial or temporal correlations. For example, geopotential height is highly
auto-correlated so that each day’s value is not independent from the previous day’s. We will
discuss how to deal with non-independence in Section 7.4 autocorrelation and degrees of
freedom.
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Worked Example 2.7.

The Southern Annular Mode (SAM) is the dominant mode of atmospheric variability in the
Southern Hemisphere, and can be quantified by a monthly index which is approximately normally
distributed with © =0 and o = 1.

(a) What is the probability that a particular month’s SAM index is > 0.57
(b) What is the probability that the average monthly SAM index over a 4 year period was > 0.57

(a) We are given that, p =0 and o = 1, and so we can calculate a z-score:

X—p_ 05-0

= 0.5. 2.51
- (251)

7 =

—_

We want to know Pr(z > 0.5) (i.e. the area under the normal probability density curve that
is to the right of 0.5) which can be computed using any software package, and the answer is
31%.

(b) Now, we want to test for the sample mean, with N = 36 months. In this case,

1
X—px  050—0
2= SX = T =80 (2.53)

The Pr(z > 3.0) = 0.1%. Such a low probability implies either a very rare event, or, that the
dynamics of the SAM over those 4 years was different compared to the climatological SAM
variability. Note that in this example we have assumed that each monthly sample is independent,
so that the degrees of freedom of the data set equals the number of samples.

Unlike the z-distribution, the t-distribution depends on the size of the sample. The tails of the distribution
are longer for smaller degrees of freedom (Fig. 2.10). For a large number of degrees of freedom the t-
distribution approaches the z or normal distribution. Note that, although we sometimes speak of the t-
distribution and contrast it with the normal distribution, the t-distribution is merely the probability density
you expect to get when you take a small sample from a normally distributed population.

z
0.4F — t(v=4)
0.3}

8
0.2}
0.1}
0.0 -4 -2 0 2 4

Figure 2.10 Probability density function of z— and t-distribution with v = 4 degrees of freedom.
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In Practice.

m When using the t-statistic, you are making the strong assumption that the underlying distri-
bution is normal. The Central Limit Theorem tells us that for a “large enough” sample size,
the distribution of sample means is normal, no matter the distribution. For small sample
sizes, the Central Limit Theorem does not apply. Thus, if the underlying population is not
normally distributed, and you have a small sample size, you must use other methods.

m Smaller values of N lead to longer tails for the t-statistic, meaning you are more likely to get
a sample mean far from the true value when N is smaller.

m Since the t-distribution approaches the normal distribution for large N, there is no theoretical
reason to use the z-statistic in preference to the t-statistic, although it maybe be more
convenient to do so.

The difference of means for the t-statistic is very similar to that for the z-statistic, but with slight
modifications. Assume two samples of length N; and Ng are drawn from an normally distributed population
with true standard deviations o; = 03, then,

t= % (2.54)

. Nys? + Nos3
_ 2.
o N, + Ny 2 (2.55)

where v = Nj + N3 —2 and A 7 is the hypothesized difference. The pooled variance o?isa weighted average
of the sample variances.

2.5.2 Confidence intervals

Recall from our discussion of cumulative probability density function F, that

b
Pra<x<b)= Jf(x)dx (2.56)
F

(b) —F(a). (2.57)

1) = 68.27% (2.58)
2) = 95.45% (2.59)

These are confidence intervals for z. The first is the 68.27% confidence interval, and the second is the 95.45%
interval.

One can instead first determine a confidence interval of interest, say 95%, and compute the lower-bound a
and upper-bound b such that Pr(a <z < b) = 95%. Often, the confidence interval is discussed in terms of
the parameter «, which is defined as 1 minus the confidence interval. For a 95% confidence interval, oc = 0.05.

To find the 95% confidence interval for z, or o = 0.05, it helps to think in terms of the area under the
standard normal probability distribution function (Fig. 2.11). That is, we want to find the critical z, denoted
Z¢, such that

Pr(zc o <z2<2c1-ay2) =0.95. (2.60)
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Since the normal distribution is symmetric about zero, we can instead write
o4
Pr(z) 2 zc1_qp=1— 5= 0.975. (2.61)
We look for 0.975 because we want the total area to add to 5% (a = 0.05), and so 2.5% comes from the

lower tail and 2.5% comes from the upper tail. Any statistical software can be used to find that for a 95%
confidence interval of a normally distributed variable, z. g.975 = 1.96.

0.4f

0.3

f(z)

0.2f

0.1F
a/2 al2

0.0
Zc,al2 Ze,1-a/2

z

Figure 2.11 Illustration of the relation of the z-statistic probability density function to probability measure o.

The above examples with standardized data, are a relatively straight-forward application of the t-statistic
and z-statistic because we are dealing with standardized data. However, what if your data are not standard-
ized? You have two options: you can standardize your data and then do all of your analysis using standard
normal variables (as above), or, you can use a modified equation for the confidence interval that takes into
consideration the the data’s non-zero mean and non-unity standard deviation as we will now demonstrate.

Plugging the definition of the z-statistic (2.33) into (2.60) leads to the 95% confidence interval for any
sampled guassian variable x:

X—H
—Z¢,0.975 < 5 < Zc,0.975- (2.62)
Following similar steps for the sample mean,
Y —
—Zc,0.975 S LH < Zc,0.975- (2.63)
VN

From this we can deduce that the true mean p falls within the following bounds 95% of the time:

_ o _ o
X — Z¢,0.975 N S U <X+ 2Ze0.975 N (2.64)
In general, confidence limits for population means of symmetric distributions can be represented by
_ o
u:XiZC,17W/2W (2.65)
Confidence intervals for the sample mean t-statistic are defined similarly,
_ s
L=X=* tc,O.Q?Sﬁv (2.66)

where t. is the critical value for t and depends on the significance level desired and the sample size.
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Worked Example 2.8.

You have 5 years of monthly-mean temperature data from the MSU4 satellite. The mean tem-
perature around the 60°N latitude circle during January is —60° C and the standard deviation
is 8° C. What are the 95% confidence limits on the true population mean? You can assume that
monthly-mean temperatures are normally distributed.

t-statistic

Since N = 5, we must use the t-statistic. The critical value is tc 9975 = £2.78 for v=5—1=4.
Thus, the population mean p is expected to lie within

8
—60 £2.78— = —67.0 < u < —53.0 (2.67)

V4

z-statistic
If we had erroneously used the z-statistic, the critical value is z 9.975 = £1.96 and the population
mean W would be expected to lie within

8
—60+1.96— = —71.1 < u < —48.9 (2.68)

V5

Using the t-statistic gives a wider confidence interval than the z-statistic, reflecting the addi-
tional uncertainty associated with small N. If we had erroneously used the z-statistic instead of
the t-statistic we would have underestimated the 95% confidence bounds by 35%.

2.5.3 Chi-Squared Distribution: Tests of Variance

Sometimes we want to test if the sample variances are truly different. For this we cannot use t-statistic or
z-statistic as these are for sample means, but we can use the Chi-Squared distribution. First, define a random
variable x2:

§2

2 _
X' =MN-1)-

(2.69)
This quantity can be used to test if a sample variance s? is different from a population variance 0. Note we
are using a ratio, rather than a difference.

If the underlying distribution from which we draw N values to compute x? is normally distributed with
standard deviation o, then the x? values themselves will be distributed as follows:

f(x?) = fo(v)(x*) # Vexp X', v=N-1 (2.70)

where fy is a normalizati2on factor. This is the Chi-Squared distribution and can be used to estimate the
significance of the ratio >5.
If you wish to determine confidence bounds on the true variance, you can move things around to obtain

the confidence limits given your sample variance:

s2(N—1) 2 ¢ s2(N—1)

<o v=N-1. (2.71)

9

2 2
X¢,0.975 X¢,0.025

Note that the Chi-squared distribution is not symmetric like the normal distribution, and so the lower and
upper critical values )(370_025 and X2)0.975 must both be computed and, like the t-distribution, are functions
of the sample size N.
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In Practice.

m For v 2 30, the Chi-Squared distribution approaches the Normal distribution.

2.6 The Binomial Distribution

2.6.1 Binomzial Distribution

Suppose you have a set of N trials in which the outcome is either “success” or “failure”. The probability of
success in one trial is p = Pr(success in one trial). If X is the total number of successes in N trials, then

Pr(X=k) = (E) Pl —p)NTk = ﬁ pr1—p)NTK k=1,2,3..N. (2.72)

At first, the right-hand-side might look complicated, but note that it is just the probability of k successes
times the probability of the rest being failures with an additional factor in front to account for the order of
occurrence not mattering.

The binomial distribution is helpful in assessing “field significance”, the significance of multiple tests suc-
ceeding when an array of variables are tested against the same hypothesis. An example would be correlating
the sunspot index with a map of pressure at many points over the earth. How many individual “significant”
events do you expect to get by chance in such cases?

As an example, Fig. 2.12 shows for N tries of a test at the p = 0.05 significance level what the binomial
distribution (2.72) says about how many you should get by chance alone.

Note that the probability of getting 5 successes or more in 30 tries is less than 0.05 and getting 10 successes
or more in 100 tries is less than 0.05. That is 16.7% are successes for 30 tries and only 10% are successes
for 100 tries at same probability level. For smaller samples, the fraction of total tries that can succeed by
chance is greater. Even for 100 tries, 10% can succeed by chance, where the probability of each individual
occurrence is p=0.05. The most likely outcome is shown by the peak of the blue line and is what you expect,
about 5% of the chances will succeed. But the chances of getting significantly more than that are quite good,
and 10-15% of the field points could succeed by chance at the 5% level (see also Wilks, 2011; Livezey and
Chen, 1983; Wilks, 2016).

Worked Example 2.9.

Suppose 14 out of 20 different climate models project that Australia will become drier with
increasing greenhouse gas concentrations. What is the probability of getting this result if one
assumes that drying and wetting are actually both equally likely under this scenario? That is
Pr(drying) = Pr(wetting) = 0.57

20

Pr(X=14) = (14

>0.514(1 —0.5)20-1 = 0.037 (2.73)
What is the probability that 14 or more models agree that Australia will become drier if we
assume that drying and wetting are both equally likely?

k

20

20

PrX>14)= ) ( >0.5‘<(1 —0.5)20"% = 0.058 (2.74)
k=14
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Figure 2.12 Probability of a given number of successes in N trials where the probability of a success is p = 0.05.

2.6.2 Normal Approximation to the Binomial

If you did the calculations above by hand you would find it tedious. This gets worse when the sample gets
even larger. To assist in this, we can make use of theorem that allows us to use a Normal approximation
when performing Binomial calculations.

From the central limit theorem, it can be shown that the distribution of sample means approaches the
Normal Distribution, even if the population from which the means are derived is not normally distributed
(see Section 2.4). This is also true for the Binomial distribution, for which values have a probability of
being either zero or one, but nothing else. The distribution of sample means from a binomial population is
nonetheless normally distributed about its mean value of 0.5.

Theorem 2.3 (DeMoivre-Laplace Theorem). Let X denote a binomial variable defined on N independent
trials, each having success probability p. Then, for any numbers a and b,

b
X—N 1
lim Prla< 2P _p|= —J67X2/2dx (2.75)
N—ro0 Np(1 —p) V/27Np(1 —p)
a
This theorem tells us that the statistic z = % follows a normal distribution with 1 = Np and
0 =+/Np(1—p). An approximate two-tailed 95% confidence interval for the number of successes X is then
given by
Np —1.96 - /Np(1 —p) < X < Np1.96 - /Np(1—p) (2.76)

We can use this to simplify the calculation of binomial problems, as illustrated in the examples below.
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In Practice.

m When deciding whether a Normal approximation is appropriate to use for your Binomial
random variable, some good rules-of-thumb are:
— large N

- Np>10
- N(1—-p)=>10

Worked Example 2.10.
An earthquake forecaster has to forecast 200 earthquakes. How many times in 200 tries must she
be successful so we can say with 95% confidence that she has non-zero skill?

The null hypothesis is that she has no skill and the significance level is o« = 0.05. We then

want
200

200

Pr(s > s"|Hg) = 0.025 = ) ( s )(0.5)5(1 —0.5)200-s (2.77)
S=s*

Solving this equation for s > s*, the number of occurrences necessary to leave only a 0.025

probability to the right, is extremely tedious to do by hand. Instead, we can use the Normal

approximation to the Binomial to convert this to the following problem:

~N *_N
Pr(s > s*[Hy) =0.025 = Pp| ——P - 5 — 7P (2.78)
VNp(1—p) = /Np(1—p)
*_N

—pr(z> P (2.79)

Np(1—p

where Pr(Z > 1.96) = 0.025 from the standard normal distribution. So, we want
NP 106, or s*—114 (2.80)
Np(1—p

So, to pass a no-skill test on a sample of this size, the forecaster must be right 57% of the time
or more.

The 95% confidence interval for the number of successes expected if the forecaster has no skill
(i.e. under the null hypothesis) is given by:

Np + 1.96 - /Np(1—0.5) = (2.81)
100 £ 1.96 - V10 - 0.5 = (2.82)

100 + 13.86 (2.83)
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Worked Example 2.11.

Normal Approximation to Binomial: Out of 48 independent climate model simulations,
how many must agree that global temperatures will increase by 2100 so that we can say with 95%
certainty that the models do not agree purely by chance? What is the 95% confidence interval
on the number of models with positive temperature trends under the null hypothesis?

Here, let a success be that the model says global temperatures will increase. Our null hypoth-
esis is that the models randomly guess whether global temperatures will increase - thus, there
is a 50% chance that any one model will predict a temperature increase (p = 0.5). We want to
know k* such that:

Pr(X > k*[Hp) < 0.05 (2.84)

That is, k* is the number of models that must show a temperature increase for us to believe it
is more than chance (that the null hypothesis can be rejected).

& (48
> (k) (0.5)%(1 — 0.5)*%7% < 0.05 (2.85)
k=k*

This would take a long time by hand, however, we can instead use the Normal approximation to
the Binomial:

k* —48 - 0.
pr(z> 805 ) _ 025 (2.86)
/4805 (1-05)
k* —48 - 0.
805 _ g6 (2.87)
/4805 (1-05)
K* > 31. (2.88)

So, at least 31 models must show increasing temperatures to reject the null hypothesis that the
model agreement in a warming trend is due to random chance. As expected, more than half of
the models must show an increase.

The 95% confidence interval under the null hypothesis is:

Np + 1.96 - /Np(1 —p) (2.89)
24 £1.96-/24(1—.5)=24+7 (2.90)

2.7 The Poisson Distribution

The Poisson distribution applies when you are counting the number of objects in a certain interval. The
interval can be in space (volume, area or length) or time. You know the average number of counts per unit
interval, and wish to know the chance of actually observing various numbers of objects or events. We denote
the associated random variable N, since they are actual counts.

N = Poisson(A) (2.91)

There are three necessary and sufficient conditions for a Poisson Distribution.

1. Two or more events cannot occur simultaneously. This means that the events themselves occupy negligible
space (e.g. volume, area, length, time).
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2. Events occur at an average rate of A (per unit e.g. volume, area, length, time). This means that A cannot
be a function of space or time.
3. Events occur independently (i.e. they do not know about each other)

The probability mass function of a Poission is defined by the probability that N = n in a given interval
of magnitude t according to:
(A" ¢

Pr(N=n) = o e A>0,t>0, andn=0,1,... (2.92)

The first and second moments (mean and variance) are given by:
=At ol = At (2.93)

Estimating A from your data is quite straightforward. Let N be the number of observed events in time
t, and assume that N is well-modelled as a Poisson Distribution with unknown rate parameter A (where A
has units of “events per unit time”). The rather obvious formula for estimating the rate parameter is then
simply the number of events divided by the time over which they were observed:

~ N
A=— (2.94)
t
The standard deviation (or standard error) of this estimator is
A
=4/- 2.95
—c (2.05)

Putting these together, the approximate confidence interval for the true parameter A (assuming the Central
Limit Theorem applies, which it does for N > 30 or so) is given by

Pr@ — Zgp05 SAKAH z“/gc;\) (2.96)

Worked Example 2.12.
Poisson rate confidence interval: Let’s say we count 137 events in 44 minutes. Our estimated

rate parameter is
~ N 137
A= — = — = 3.11 events per minute (2.97)
t 44
The approximate standard error for the estimated rate parameter is

VN V137

= 0.27 events per minute (2.98)

and so the approximate 95% confidence interval for the true, but unknown, rate parameter is

A —1.9605 <A <A+ 1.9605 = 2.58 < A < 3.64 (2.99)

It turns out that the Poisson Distribution has a close relationship with the Binomial Distribution. That
is, for n — oo, p — 0, with np — A # 0, the Binomial Distribution converges to the Poisson Distribution
with parameter A. In practice, the Binomial Distribution may be approximated by the Poisson when p < 0.5
and n > 20.

One might be interested in whether the Poisson rates in two samples are different or not. Suppose we
have two rates A; and As drawn from samples of size t; and to. Our null hypothesis is that A; —As = 0. The
pooled-rate test is based on a standard normal statistic defined as follows.
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go MM (2.100)
EVAR! 1
M+2)
where At
3= bt Ay (2.101)
t+to

Worked Example 2.13.
Poisson rate difference test: According to the ERA reanalysis data set, during the 28 years
from 1952 to 1979 there were 14 major stratospheric warmings, and during the 42 years from
1980 to 2021 there were 25 warmings. The rates are thus 0.05 per year and 0.595 per year. Are
these rates different at p=0.057

42 % 0.595 + 28 * 0.5

A= =0. 2.102
A T 0.557 (2.102)

0.595 —0.5
z= =0.52 (2.103)

0.557 (35 + %)

This is much less than the critical z value of 1.96 for a two-tailed test, so we cannot reject the
null hypothesis that the rates of occurrence are the same for the two intervals.

2.8 Non-parametric Statistical Tests

The statistical tests applied above mostly assume that the samples come from populations for which the
statistical distributions are known, or assumed, a priori. We very often assume that the statistics we are
testing are Normally distributed, so we can use the shape of the Normal distribution in our tests. Tests have
also been developed that do not require the assumption of a theoretical distribution. These are called non-
parametric or distribution-free statistical tests.

2.8.1 Signs Test

Suppose we have paired data (xi,yi) and we want to know if the mean of x; is different from the mean of
yi. By paired data, we mean that each x; is uniquely associated with a y;. If we have a suspicion that the
data are not normally distributed, and we do not have enough data to invoke the Central Limit Theorem, we
cannot use the t-test or the z-test. Instead, if we formulate our question in terms of the median (jt), rather
than the mean, our null hypothesis is that the medians of x; and y; are the same, and the alternative is that
they are not:

H() . ﬁl = ﬁg H1 : ﬁl 75 ﬁg (2104)

Let’s reformulate this in terms of a probability that y; is greater than x; (noting that we could as easily

formulate it as less than)
Ho: Pr(y; > xi) =0.5 Hy: Pr(yi >xi) #0.5 (2.105)

To test this null hypothesis, we can use the Signs Test. To perform this test, we simply replace each (x,y)
pair with a signed integer equal to 1 according to the following rule:
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Yi > Xi — +1 (2106)
Yi < Xi — —1 (2107)
(2.108)

The null hypothesis would suggest that there will be a similar number of positive and negative ones (both
are equally probable). With this setup we now have a set of Bernoulli trials with success (+1) and failure
(—1). We know that the number of successes over N trials will be binomially distributed, and so we can use
this distribution to determine whether our actual success rate is outside of what might be expected given
our null hypothesis.

Worked Example 2.14.

Cloud Seeding Experiment: Ten pairs of very similar developing cumulus clouds were iden-
tified. One from each pair was seeded, and the other was not. Then the precipitation falling from
the clouds later was measured with a radar. The data in the following table resulted:

Cloud| x;: Precip. |yi: Precip.

Pair |(untreated)| (treated) |yi > xi?
1 10 12 +1
2 6 8 +1
3 48 10 —1
4 3 7 +1
5 5 6 +1
6 52 4 —1
7 12 14 +1
8 2 8 +1
9 17 29 +1
10 8 9 +1

Using the data above, we get 8 +1 and 2 —1. Are these results inconsistent with the null hypoth-
esis that cloud seeding has no effect on precipitation? Can we confidently say that the median
values of the two samples are different at 95% confidence? We can plug our values into the
binomial distribution to determine the probability of getting 8 successes in 10 tried.

10

10

Pr(k>38) = Z <k>0.5‘<(1 —0.5)197% =0.055 (2.109)
k=8

If things are random (our null hypothesis is true), the chance of getting two or fewer successes
is equally probable as getting 8 or more. Using a two-sided test we find that the probability our
result is p = 0.11, which fails a 95% confidence test. We expect to toss 8 out of ten heads or tails
about 11% of the time.

The Signs Test is one of the simplest non-parametric tests available, but it also has its limitations. For
example, it will not tell you the magnitude of the difference of the medians. There are many other distribution-
free tests that can be used, for example, the Wilcozon signed rank test and the Wilcoxon-Mann- Whitney
test.

2.8.2 Rank Sum Test

Another common and classical non-parametric test is the Rank-Sum Test (or Wilcoxon-Mann-Whitney Test).
Suppose we have two samples S; and Sy of sizes N7 and Ny and we wish to test the null hypothesis that
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they both were sampled from the same distribution (whatever it is). The first step to the Rank-Sum Test
is to combine them into a single sample N = Nj + Ny and rank them from smallest (rank r = 1) to largest
rank r = N). Next, compute the sum of the ranks of each sample S; and Sy and call these Ry and Rs.

Ri1/N; and Ry/Ng should be similar if our null hypothesis is true and the two samples are from the
same underlying distribution. Thinking a little harder, one can see that there are N!/(N71!Ns!) possible
combinations of R; and Rp. Mann-Whitney showed that the U statistic could be used to determine the
probability of a particular combination where

N
u; :Rl—Tl(N;ﬁ—l) (2.110)
N
U, =R2—72(N2+1) (2.111)
where NN
Uy + Uy = —2. (2.112)

The U statistic is approximately Normally distributed with mean and standard deviation

NN
- ;2 (2.113)
1/2
o__<N1NﬂNz;¢“’FU> (2.114)

The statistical significance of U can then be tested with the standard z-score.

2.8.3 Runs Test (Wald- Wolfowitz Test)

The Runs Test is a non-parametric test to check whether a list of values is random or not. For example,
imagine a time series of anomalies as shown below, where “+” denotes a positive anomaly and “-” denotes
a negative anomaly:

tttt———F++ —— F ettt ——— (2.115)
—_—— T~ —  —— —
Runl Run2 Run 3 Run 4 Run 5 Run 6

We now separate this series into runs; there are a total of R = 6 runs, three of which are runs of “4” and
three of which are runs of “-”. The Runs Test tests the null hypothesis that the data set is random. Under this
null hypothesis, the number of runs (R) in a sequence of N elements is a random variable whose conditional
distribution given the observation of N, positive values and N_ negative values (N = N; + N_) has the
following properties:

N, N_

pw=1+ N (2.116)
2N N_(2NL_N_ —N —1 —2
o2 = + N2((N+_1) ) _ (p N)ﬁul ) (2'117)

If N. and N_ are each sufficiently large (say, each greater than 30) then the number of runs R is well
modeled by a Normal distribution with parameters n and o given above. One can then use a typical z-score
to determine the probability of obtaining the number of observed runs R under the null hypothesis that the
data set is random.
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2.8.4 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test (or KS Test) tests the equality of two continuous, one-dimensional probability
distributions. The most standard version tests whether a particular sample distribution is the same as a
specific reference distribution. Because it is a non-parametric test, you do not need to know what the true
distribution of your data is, however, the test will not tell you what distribution your data follows either.
It will only give you information about its similarity to another reference distribution. Finally, the KS Test
is sensitive to both location and shape and thus cannot tell you why the distributions are different (e.g.
is the sample distribution shifted compared to the reference or is the sample distribution wider than the
reference?).
The KS Test works by comparing the cumulative density functions (CDFs) of a sample of length N and
a reference distribution. Specifically, the difference between the two CDFs is computed, and the mazimum
difference, denoted as D, is used as the test statistic. The null hypothesis is rejected at the significance level
o if
VND > Ky (2.118)
where K, is defined as
PrK<Ky=1—«) (2.119)

and the probability density function of K is defined as
PrK<x)=1-2) (—1)i~te 2™ (2.120)
j=1

If you are specifically interested in whether your sample distribution is normal, other tests may be better
suited (e.g. the Shapiro-Wilks or the Anderson-Darling test). In addition, it is important that you do not
estimate the parameters of the reference distribution from the data. The test is not valid if you do. Thus,
if you are comparing to a normal distribution and don’t know the true mean and standard deviation of
your sample population, you should standardize your data first and compare the standardized sample to the
standard normal. Finally, note that the above discussion only applies when you wish to compare a single
sample to some reference distribution. What if instead you wish to compare two sample distributions? For
that, you can use the Two Sample KS-Test which is similar to the standard KS Test and will not be discussed
in detail here.
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Figure 2.13 Comparison of the standard normal with a random variable drawn from a Gamma distribution. D is the

maximum difference between the sample CDF and the reference (normal) CDF and is the test statistic used by the KS-test.
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2.9 Hypothesis Testing

2.9.1 Terminology and symbology

m significance level [«]: the probability of a false positive (Type I error), often reported as (1 — x)%
confidence level

m critical value [t.,z.]: the value that must be exceeded to reject the null hypothesis using a significance
level of a

m p-value: the probability of observing an effect given that the null hypothesis is true (probability of the
actual statistic you calculated from your data given the null hypothesis is true)

2.9.2 Setting-up the problem

Hypothesis testing involves stating a hypothesis (null hypothesis), and then computing statistics to quantify
the extent to which your data set is (or is not) consistent with this hypothesis. The significance level (o) of
a hypothesis test defines the probability of a false positive (i.e. Type I error), that is, stating that your data
set is not consistent with the null hypothesis when in fact it is. This significance level is a choice that should
be made by the scientist.

When performing a statistical hypothesis test there are five basic steps that should be followed in order:

State the significance level (o)
State the null hypothesis Hy and the alternative H;
State the statistic of interest

State the critical region

R ol o S

Evaluate the statistic and state the conclusion

Proper construction of the null hypothesis and its alternative is critical to the meaning of statistical
significance testing. Careful logic must be employed to ensure that the null hypothesis is reasonable and
that its rejection leads uniquely to its alternative. Usually the null hypothesis is a rigorous statement of the
conventional wisdom or a “zero information conclusion”; and its alternative is an interesting conclusion that
follows directly and uniquely from the rejection of the null hypothesis. Usually the null hypothesis and its
alternative are mutually exclusive.

Worked Example 2.15.
Examples of null hypotheses and their alternatives:

Hg: the means of two samples are equal

H;i: the means of two samples are not equal

Hg: the correlation coefficient is zero

H;: the correlation coefficient is not zero
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In Practice.

m Hypothesis testing tends to yield weak statements. All you can do is state whether or not the
data are consistent with the null hypothesis. You cannot state whether the null hypothesis
is true or whether the alternative hypothesis is true, or even whether either is false.

2.9.3 Type I and Type II errors in hypothesis testing

Even though you have applied a test and the test gives you a result, you can still be wrong. The following
table illustrates the two different types of errors that can be made:

m Type I: reject the null hypothesis when it is actually true
m Type II: fail to reject the null hypothesis when it is actually false

Hg is true Hy is false

Fail to Reject Hy| No Error |Type II Error

Reject Hy Type I Error| No Error

The way typical hypothesis tests are set up, a 95% confidence level means you have a 5% chance of making
a Type I Error, that is, you reject the null hypothesis (e.g. think you found something interesting) when you
should not have. It is much more difficult to asses the Type II Error - the probability you “play it safe and
fail to reject Hy when something interesting was there”. For typical hypothesis testing, the probability of a
Type II error can be very large.

In Practice.

m One often cares about the differences between probabilities of Type I and Type II errors.
For example, if Hy is that the bridge will hold-up if 10 semi-trucks cross at the same time,
and H; is that the bridge will not hold-up, you might be happier with a Type I Error, which
requires that you redesign the bridge, rather than a Type II Error, where you think the
bridge will be fine, and it won’t be.

m When performing a hypothesis test, it is good practice to determine « before performing any
calculations. But which « should you choose? The choice of & depends on your risk tolerance,
that is, the risk you are willing to take to have a Type I error - the smaller the «, the lower
the risk. In atmospheric science, « is typically equal to 0.05, 0.01 or sometimes, 0.10, but it
is up to the scientist to decide which value of « is best for the hypothesis being tested.

2.9.4 a priori vs. a posteriori

When performing hypothesis tests it is critical to make the distinction between a priori and a posterior
information.

m a priori: you have reason to expect a particular relationship ahead of time

m a posteriori: you don'’t.
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One place where such a distinction arises is whether to use a one-tailed or two-tailed hypothesis test. If
you have an a priori expectation of the tail of interest, you can use a one-tailed test. Otherwise, you should
use a two-tailed test. Since your a priori expectation might be regarded as subjective by another scientist,
it is generally a better practice to use a two-tailed test.

Another common example is when the same hypothesis test is run many times for similar data sets,
for example, testing the significance of anomalies at every grid point on the globe. If one does not take
into consideration that the test was run hundreds, if not thousands, of times, they will likely be misled
thinking there are more significant anomalies than there really are. In effect, you may be giving your hy-
pothesis many chances to succeed. These concepts are perhaps best illustrated with examples (see below).

Worked Example 2.16.

a priori vs a posteriori: You think that climate change has caused the frequency of severe
weather to increase between the 1980’s and today. You divide the globe into 20 regions and
within each region analyze data for each of the 4 seasons. You test for changes in severe weather
frequency using o« = 0.05 (95% confidence level). How many “significant” changes should you
expect by chance alone? How might you apply a posteriori statistics?

You have no a priori reason to expect a particular region or season should exhibit changes
due to climate change, so you test them all. That is, you perform N = 4 x 20 = 80 different
hypothesis tests with the null hypothesis Hy : the frequency of extreme weather has not changed.
By chance alone, you expect on average 5% of these tests to reject the null hypothesis when it
is in fact true, or, you expect 4 region/season combinations to produce “significant” changes,
purely by chance.

Pr(correctly not reject Hy when it is true for one test) = 0.95
Pr(correctly not reject Hy when it is true for all 80 test) = 0.95%° ~ 1.7%

Thus, your 95% confidence level is really a 1.7% confidence level! In other words, you have a
98.3% chance of finding at least one significant change, even if climate change has no impact.

Using a posterior statistics, we can instead calculate the significance level o for which o® ~
0.95. In this case, alpha = 0.9994. Thus, if we require that severe weather frequency changes for
each region/season combination pass at the 99.94% confidence level, the probability of correctly
not rejecting the null hypothesis for all 80 chances will be 95%. We can also use the Binomial
Distribution to assess the likelihood of getting some number of ”significant” changes above the
expected value of 4.

2.9.5 Field significance and False Discovery Rate

Much of geophysical research involves creating maps of a result, and often, scientists will assess the significance
of each value on the map individually. As discussed above, one should expect a certain fraction of points to
be “significant”, even if the null hypothesis is true. Furthermore, many geophysical variables are spatially
correlated, implying that significant points will likely appear clustered. An example of this is illustrated in
Fig. 2.14. To create this figure, daily January 500 hPa geopotential heights at each latitude/longitude grid
point is correlated with a time series X. Correlations different from zero at 95% confidence are stippled, and
appear to show signals across the globe, with the largest signal in the tropical Pacific. The trick here is that
X is a random Gaussian time series, with absolutely no physical meaning, and yet a large cluster of data
points were found to be significantly correlated. Thus, in many applications, assessing the significance at
each grid point is not enough - rather - one should assess the collective significance, or field significance over
the entire map (Livezey and Chen, 1983).



34 2 Basic Statistical Techniques

Wilks (2016) outlined a straight-forward way to assess field significance by controlling the false discovery
rate (FDR), or, the expected rate of rejected local null hypotheses where the actual null hypothesis is true.
The general idea is that one sorts the list of p-values (across grid points), and then finds which p-value
intersects the line defined by

i
= — 2.121
Yy N XFDR ( )

where 1 is the position of the p-value in the sorted list, N is the total number of grid points, and arpg is
a parameter that is chosen by the user. The p-value at the intersection is then the global p-value that each
grid point must be smaller than to satisfy a particular false detection rate. An illustration of the calculation
of this global p-value threshold is shown in the left panel of Fig. 2.15 for the example plotted in the bottom
panel of Fig. 2.14. There is no intersection of the actual p-values with the FDR criterion line given in
(2.121), and so, none of the stippled points in Fig. 2.14 should be considered globally significant. For a
case where we expect a physical relationship, that is, the correlation of daily January 500 hPa geopotential
heights with the stratospheric zonal winds, an intersection occurs and the new global p —value threshold is
actually 0.066 rather than 0.05 (right panel of Fig. 2.15).
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Figure 2.14 Correlation of daily January 500 hPa geopotential heights (1979-2011) with a random Gaussian time series.
Statistically significant correlations at 95% confidence (o« = 0.05).

2.10 Extreme Value Theory

Extreme events are those that appear in the tails of the probability distribution (Coles, 2001). While rare,
they can have very important impacts, and so understanding their frequency is very important. Design of
physical and financial infrastructure must take into account the most extreme events that are likely to occur
over some defined period of time. Therefore the study of extreme values is very important, particularly
during this time of global change.
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Figure 2.15 Illustration of the false detection rate criterion of Wilks (2016) for (left) correlations with a random time
series as shown in Fig. 2.14, (right) correlations with daily January 100 hPa polar cap zonal winds averaged around the
65° latitude circle. In both panels cxppgr = 0.1.

2.10.1 Fisher-Tippett Theorem and Generalized Extreme Value Distribution

Suppose we have a sample of n independent and identically-distributed random variables [X1, X2, X3, . ., X1,
each of which has the same cumulative distribution function F. Suppose further that there exists two se-
quences of numbers a, > 0 and b, € R such that the following limits converge to a non-degenerate
distribution function G(x).

lim PT(mQX{Xl’ o Xn} = b x) — G(x) (2.122)

n—oo an

which is equivalent to
lim (Flanx+byn))™ = G(x) (2.123)
n—oo
The Generalized Extreme Value (GEV) distribution has three parameters; location = p, scale = ¢ and
shape = &. Using the definition s = (x — p)/o the pdf of the GEV distribution is given by,

f(x|p 0, = é(l—k&s)’%’l expl—(1+£&5s)] (2.124)
For particular values of & the GEV divides into the Gumbel, Fréchet and Weibull families of distributions,
corresponding to the cases & =0, & > 0 and & < 0, respectively . Each of these distributions has a range of
x in which they are supported, which depends on the shape and scale.

In addition, the Generalized Pareto Distribution is often used to describe extreme values. The pdf of the
Pareto distribution is given by,

1 E,X 1

f(xIU,E,):E(l—i—?) 1 xe(0,00) (2.125)

Dennis: Need more detail and examples here. Finish project on Pareto fit to SeaTac Max temps
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2.11 Monte Carlo and Resampling

2.11.1 Monte Carlo Techniques

In the age of computers, sometimes it is easier to let the computer do the work by performing many in-
telligently designed calculations, and then infer a fact or statistical conclusion from the aggregate of these
calculations. These techniques take advantage of the computational power at our fingertips and are incredibly
powerful when data size is not an issue. The name Monte Carlo comes from the famous casino, not from the
inventor of the method. It is a term that has no precise definition and covers a wide variety of techniques,
which share in common the idea expressed in the first sentence.

One famous example is the calculation of 7t - the ratio of the circumference of a circle to its diameter.
Rather than trying to derive it from basic principles, one can instead write a simple computer code to get a
very accurate approximation. Specifically, 7t can be calculated by inscribing a circle within a square, dropping
pebbles randomly on the square, and then counting the ratio of the pebbles in the square to those that fall
within the circle. If the pebbles are dropped randomly, then this ratio should be the ratio of the areas of the
circle to the square, which is 7t/4. If you do this many times you can get an arbitrarily good approximation
to 7.

2.11.2 Resampling via Bootstrapping

Bootstrap Resampling involves constructing a number of random resamples of a dataset of equal size to the
true sample of interest. In this way, you do not need to assume anything about the underlying distribution
of the data since it is already built into the original dataset. In essence, you ask, by random chance, what is
the probability that a particular event (or sample statistic) occurred?

This method is also useful when you are determining statistics other than the mean (e.g. extrema, median,
skewness) when we don’t have simple statistics for these variables.

The advantage of this method is that you don’t have to choose a model PDF and you can evaluate the
number of successes in exceeding the criteria using the binomial distribution.

A question arises of whether one should perform the random sampling with or without replacement. Namely,
should you be able to pick the same value twice for the same random sample? Most often, bootstrapping
resampling is done with replacement as the data set used for sampling is meant to represent an entire
population of possibilities. More practically, if your data set is large enough, with and without replacement
should give nearly identical answers.

The technique is called “bootstrapping” because it almost appears you get something out without putting
something in. This is a phrase often used in computer programming to refer to a small amount of simple
software that can load more complex software that loads more complex software (etc., etc.,) almost as if the
program is “pulling itself up by its bootstraps.”
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Figure 2.16 Estimate of 7t using a Monte Carlo approach.
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Worked Example 2.17.

A frequently used application of the Bootstrapping method is to determine the significance of
some field obtained through compositing (see Chapter 3). For example, say you in think that
full moons have a strong impact on geopotential heights over Fort Collins, CO. You check this
by calculating the average 500 hPa geopotential height on all full moon days (408 between 1979-
2011) and obtain 5689.5m. The average over the entire record is 5696.9m - does this mean that
full moons cause the geopotential heights to decrease?

The issue here is that you don’t know that whether this difference of -7.4m is significant. That
is, could it have just been due to random chance? In this case, our null hypothesis is that full
moons have no effect on geopotential heights over Fort Collins, and so the anomaly of —7.4m is
just due to random chance.

To test this using a bootstrap approach, we randomly draw a sample of geopotential heights
of length 408 from all days between 1979-2011. We then calculate the mean across these 408 days
and save it. We repeat this process 50,000 times. After we are done, we have 50,000 averages of
408 days - all under the null hypothesis. An example is shown in Fig. 2.17, where the gray line
denotes the distribution of the 50,000 averages. Comparing our calculated geopotential heights
under full moons, we see that they fall well within the bootrap samples. This tells us that we
shouldn’t reject the null hypothesis, since our actual results are well within the possibility of
random chance. If our calculated value fell outside of the 95% bounds of the bootstrap samples,
we would instead reject the null hypothesis and investigate further.
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Figure 2.17 Distribution of 50,000 random averages of Fort Collins geopotential heights (N = 408).

2.11.3 Resampling via Jackknife

The jackknife method predates the bootstrap method and is a linear approximation of the bootstrap. It is
a way of getting uncertainty estimates (or measuring the variance) of a particular statistic of your sample.
The way it works is quite simple. You systematically remove one value from your sample (i.e. the ith value),
calculate the statistic of interest (call it s;), then put the value back into the sample and remove the next
value, calculate the statistic of interest...and on and on. In the end, you are left with many estimates of your
statistic of interest, and from these, you can estimate its variance in the following way.
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N-—-1
Var(s) = ——

N (si—50)° (2.126)

N
=1

1

where 5; is the estimate of statistic s leaving out the ith value and 5 is the average estimate of s over all
leave-one-out estimates as given by

5) = E D s (2.127)






