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ABSTRACT

An eigenvalue analysis of a divergent barotropic model on a sphere is extended to the formulation of a global
optimization problem, whose solution selects an initial perturbation that evolves into the most energetic structure
at a finite time interval, 7. The evolution of this perturbation is obtained from companion linear and nonlinear
global spectral time-dependent models, and the optimization prediction of perturbation size at time 7 is verified.
Two zonally asymmetric flows defined by time-mean ECMWF global 300-mb analyses during winter 1985/86
are used to illustrate the application and insights provided by the optimization problem.

The dependence of the optimal perturbations on the parameter 7 is examined. The optimal perturbations
become increasingly localized as 7 is decreased to periods on the order of three days. The initial growth rates
of these perturbations greatly exceed that of the most unstable normal mode, and also exceed the growth rate
of a disturbance with maximum projection onto the most unstable mode (i.e., the adjoint structure ). Furthermore,
the development of the optimal perturbations in the nonlinear model is in reasonable agreement with the
available observations. The optimal perturbations may thus be more important than either the eigenmode or
adjoint structure for determining the stability and expected behavior of anomalies to some time-mean flows.
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1. Introduction

Long-duration, high-amplitude anomalies in the
midlatitude flow field are a practically important and
scientifically challenging meteorological problem. Be-
cause the amplitude and duration of these anomalies
are at the extremes of normal weather variability, they
can produce extreme weather events. The importance
of these extreme events is amplified because they tend
to remain geographically fixed, thus subjecting fixed
areas to prolonged periods of extreme temperatures or
precipitation. Rex (1950a,b) described the phenome-
non of blocking, which emphasizes the development
of an extreme high pressure anomaly in the westerlies.
Other ways of describing low-frequency anomalies with
time scales between 10 and 90 days are teleconnections
in low-pass filtered data (Wallace and Gutzler 1981)
and persistent anomalies (Dole and Gordon 1983).
The structure of these disturbances is often very nearly
that of a quasi-stationary barotropic Rossby wave
group.

It is known that the wave energy released during the
growth of transient baroclinic waves will quickly evolve
to a nearly barotropic structure (Gall 1976; Simmons
and Hoskins 1980), and that through nonlinear dy-
namics this energy will migrate toward larger spatial
scales (Fjortoft 1953) and eventually collect on the

Corresponding author address: Dr. Mark D. Borges, University of
Washington, Department of Atmospheric Sciences AK-40, Seattle,
WA 98195.

© 1992 American Meteorological Society

zonal mean flow or in quasi-stationary Rossby waves
(Rhines 1975). For these reasons low-frequency vari-
ability can be produced in an atmosphere with no sta-
tionary wave forcing (e.g., Hendon and Hartmann
1985). Nonetheless, because of large-amplitude sta-
tionary zonal asymmetries forced by topography and
surface heating, the low-frequency variability in the
Northern Hemisphere has well-defined spatial struc-
tures and tends to occur in preferred geographical re-
gions., One method of understanding these spatial
structures is to consider a linearization about a zonally
varying time-mean state and examine the structures
associated with the barotropic (Simmons et al. 1983,
hereafter referred to as SWB) or baroclinic ( Frederiksen
1983) instabilities of this mean state. These and related
studies reveal that barotropic instability associated with
east—west variations in jet intensity can give rise to
structures that resemble teleconnection patterns and
the observed low-frequency variability. Therefore, it
appears that barotropic wave propagation and insta-
bility within the context of a zonally varying time-mean
flow form an important part of the explanation for
low-frequency anomalies and a guide to their potential
predictability.

The use of unstable modes as a tool for interpreting
the development of persistent anomalies presents sev-
eral problems. The growth rate and structure of the
unstable modes is very sensitive to the mean structure
on which they develop. In nature, the mean field
evolves on a time scale that is comparable to the e-
folding time of the unstable modes. One is faced with
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the reality that atmospheric flow is fundamentally
nonlinear. Moreover, often several modes can exist
with different structure and similar growth rates. The
structures tend to be global in nature, and it is difficult
to associate a particular unstable mode with a local
high-amplitude event. Some of these difficulties can be
avoided by applying some additional constraints to the
instability problem, and by considering mean states
defined on a shorter time interval than a month or a
season (e.g., Frederiksen 1989). Observational studies
suggest that low-frequency circulation anomalies de-
velop quickly, with consistent precursor events iden-
tifiable in composites at most about five days before
the event matures (Dole 1986; Dole and Black 1990;
Nakamura and Wallace 1990). This time is short
compared to the e-folding times of the quasi-stationary
modes most often associated with low-frequency
anomalies, although SWB showed that local apparent
growth rates can be much greater than that of the global
structure associated with the mode. From this per-
spective, then, it might be better to seek structures that
achieve maximum growth rate over a finite period of
time, rather than the infinite period of time allowed
for unstable normal modes in a traditional instability
analysis.

Farrell (1989a) has argued that initial perturbations
selected to achieve the maximum growth after a finite
time interval provide a guide to understanding wave
development that improves upon traditional analysis
of unstable modes and is more applicable to observed
developments of synoptic disturbances. As Farrell
(1982) and Boyd (1983) showed, properly configured
initial disturbances can exhibit rapid initial growth rates
even on a mean state that is stable to small perturba-
tions, although this growth rate is not sustained. It is
this initial growth rate that is of greatest importance,
since it is only during this period that the linear theory
is valid. Once the large anomaly is established, it may
be sustained by nonlinear processes (e.g., Illari and
Marshall 1983; Haines and Marshall 1987; Holopainen
and Fortelius 1987).

In this study we investigate the unstable modes and
optimal initial perturbations of the global 300-mb flow.
The dynamics of low-frequency variability has been
frequently studied with a barotropic model (e.g., Hos-
kins et al. 1977) and is usually justified by the equiv-
alent barotropic structure of the features under study.
In our study we will use a variant of the barotropic
model as a tool to investigate the rapid development
of persistent anomalies. As noted by Dole (1986), the
precursors of his PAC persistent anomaly pattern are
most easily defined near 300 mb and possess a westward
tilt with height along the 45°N latitude circle. We cer-
tainly cannot and do not discount the possible impor-
tance of baroclinic processes during this early stage of
the anomaly’s life cycle. Our aim is to focus attention
on the barotropic aspects of the anomaly that may pre-
viously have been overlooked, To the extent that vortex

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 49, No. 4

tube stretching by the perturbation is negligible, this
model is an adequate first approximation of the vor-
ticity dynamics at upper tropospheric levels. Freder-
iksen and Bell (1990) studied the instability of instan-
taneous flow states and found stationary modes dom-
inated by barotropic instability growth mechanisms
with growth rates comparable to those of baroclinic
cyclogenesis modes in some cases.

The optimal initial perturbation is formed from the
complete set of linear modes associated with the mean
state and model resolution. Damped and neutral modes
are as important as the growing modes in the formation
of this initial state, and allow the initial condition to
have a localized structure, in contrast to the global
structure of the individual modes. When the period
allowed for growth is limited to a few days, the optimal
initial perturbation tends to be highly localized, thereby
identifying the critical location for initial growth. The
technique is applied to time means for specific 16-day
periods. We have chosen 16 days to have a separation
between the time scales present in the mean state and
the phenomena we wish to explain using the lineariza-
tion. Though the choice is somewhat arbitrary, we feel
a 16-day average is an appropriate mean state for this
problem. The optimal initial states evolve into large-
amplitude flow anomalies that closely resemble the
observed anomalies for the periods studied. Nonlinear
integrations from the optimal initial conditions also
provide realistic predictions of the observed anomaly
development.

The following section summarizes some previous
stability studies and their application to explain ob-
served low-frequency anomalies. The motivation for
this study and model governing equations are also pre-
sented and defined there. Section 3 discusses some per-
tinent concepts concerning stability analyses of zonally
asymmetric basic flows, and is followed in the next
section by a formulation of the global optimization
problem for nonzonal flows. The results of the appli-
cation of the method to two particular time-mean 300-
mb flows are discussed in section 5. The final section
summarizes our results and conclusions.

2. Traditional stability analyses

The decomposition of geophysical flows into a zonal
mean and departures therefrom has proven to be a
valuable framework for the study of flow instability.
By considering an idealized basic flow with vertical
shear alone, Charney (1947) and Eady (1949) isolated
the baroclinic instability mechanism and showed that
the zonal mean component of realistic midlatitude
tropospheric flows is unstable. The resulting exponen-
tially amplifying perturbation structure (i.e., a “nor-
mal” mode) has length and time scales similar to ob-
served atmospheric cyclogenesis, and thus provides one
explanation of day-to-day weather.

One can also consider an idealized flow with hori-
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zontal shear alone to isolate the barotropic instability
mechanism (Kuo 1949). When the zonal mean com-
ponent of observed tropospheric flows is analyzed for
barotropic instability, however, the general result has
been that such flows are stable to perturbations of nor-
mal-mode form (Lorenz 1972; see Zhang 1988 for a
recent calculation). Consequently, the relevance of
barotropic instability to atmospheric variability re-
ceived little attention prior to the 1970s. In a pioneering
paper on planetary wave stability, Lorenz (1972) re-
examined the barotropic instability mechanism, but
with zonal variation added to the basic flow in the form
of a single Rossby wave. He was able to analytically
show that this two-dimensional flow is strongly unstable
and suggested its implications for extended-range pre-
dictability. Further analytic study of more general zon-
ally inhomogeneous flows was hindered by the added
complexity such flows introduce. Moreover, the non-
zonal flow one would typically like to study (e.g., a
time-mean flow) is not a solution to the steady-state
barotropic vorticity equation; an external forcing field
is usually required to render the nonzonal basic flow
a stationary solution. This external forcing, which may
be viewed as representative of the effects of transient
eddies, topography, or diabatic effects on the basic flow,
is assumed constant in its simplest form. The linearized
perturbation equation is then autonomous; that is, the
forcing that maintains the time-mean flow is not per-
mitted to interact with or otherwise influence the de-
veloping perturbations. As computing power increased,
many numerical studies of the instability of zonally
asymmetric flows were carried out using this paradigm
(e.g., Branstator 1982; Fredericksen 1982, 1983, 1989;
Simmons 1982; SWB; Branstator 1985; Zhang 1988).
A brief review of the results obtained applying this
method to low-frequency variability follows.

Simmons (1982) was one of the first to investigate
the behavior of perturbations placed in a nonzonal flow
derived from climatology. He found a much larger
forced response in a nonlinear barotropic time-depen-
dent model by using a nonzonal basic flow instead of
the zonal mean. The geographic location of the en-
hanced response was found to be remarkably close to
regions of maximum observed low-frequency vari-
ability, namely, the North Pacific and North Atlantic.
Furthermore, Simmons was able to demonstrate a
strong sensitivity to the location of the specified per-
turbation forcing in the model, with the largest re-
sponses in the North Pacific occurring when the forcing
was located on the equatorward flank of the subtropical
Asian jet.

Later, Branstator (1982) and SWB found the be-
havior to be consistent with the most rapidly growing
normal mode associated with barotropic instability of
the climatological January mean flow used by Sim-
mons. The inviscid e-folding growth rate of about a
week and period of 45 days for the fastest-growing
mode agreed well with companion initial-value sim-
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ulations. Through an energetics analysis, they deter-
mined that zonally elongated structures straddling the
jet exit region could extract energy more efficiently
from the mean flow, and from this argued that those
finite-amplitude anomaly patterns that resembled such
normal modes were in a more energetically favorable
position, and hence more likely to appear in low-pass
filtered statistics. The relevance of barotropic instability
to low-frequency variability was strongly suggested.

Branstator (1985) and Zhang (1988) have shown
that the response of the fastest-growing barotropic
mode to forcing in specific geographic locations is re-
lated to the structure of its adjoint. As discussed later
(see the Appendix and section 3), the projection onto
the adjoint determines the spectral characteristics of a
particular structure. It turns out that the adjoint of the
fastest-growing mode of the January climatology has
most of its amplitude concentrated in the subtropical
latitudes, south of the Asian jet (Zhang 1988; Ferranti
etal. 1990). Therefore, knowledge of the adjoint mode
structure helps to answer the question of how best to
excite a particular eigenfunction; if this mode domi-
nates the response (e.g., as in SWB) the model atmo-
sphere will exhibit strong sensitivity to forcing in this
region. This result was also obtained by Simmons
(1982) through a less direct method.

One of the remaining problems acknowledged by
SWB was whether these relatively slowly growing
modes' can compete with baroclinic instability or even
exist in more general flows with vertical shear. Fred-
eriksen and Bell (1990) have recently studied aspects
of blocking by conducting an eigenanalysis of a five-
level quasigeostrophic model linearized about instan-
taneous Northern Hemisphere flow fields. As in earlier
work (see the review article of Fredericksen and Web-
ster 1988 and references therein ), they bin the normal
modes according to period into classes such as “mono-
pole cyclogenesis,” “onset-of-blocking,” and “mature
anomaly.” By using instantaneous flows the structures
of the latter two classes appear more localized and have
larger e-folding times (on the order of two days) com-
pared to a parallel analysis of climatological flows.
Further, they assert the mature anomaly modes are
initiated by the onset modes, which they find to be
eastward-propagating dipoles with westward tilts with
height and that this combined baroclinic-barotropic
instability is more relevant than pure barotropic insta-~
bility for events such as the onset of blocking. We feel
some caution should be exercised in interpreting these
results, however, as the use of an instantaneous basic
state is formally valid only when the time tendency of
the basic state is small compared to the tendencies of

! As compared to barotropic instability growth rates. Using in-
stantaneous 300-mb flow patterns, Branstator (1982) found fastest
mode e-folding times on the order of two days. Their structure, how-
ever was not shown.
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the unstable modes. It is not obvious that this condition
is satisfied for the modes in question.

There are two aspects of the traditional eigenanalysis
of zonally asymmetric basic flows that should concern
the investigator. The first, as alluded to before, deals
with how the basic state is specified and maintained.
The second aspect is more philosophical and coiicerns
the interpretation of the eigenmodes as distinct physical
entities.

Regarding the first concern, Andrews (1984 ) has ar-
gued that the mathematical form the forcing takes is
crucial to the resulting stability problem. As an ex-
ample, Andrews shows that if the external forcing takes
the form usually thought to mimic topographic forcing
in a S-plane barotropic model, the resulting linearized
perturbation equation is not autonomous. Further-
more, the perturbation forcing that arises can act to
stabilize perturbations to a mean flow that would oth-
erwise be considered unstable without the forcing.
Zhang (1988) has found a similar effect of decreasing
growth rates in a global barotropic model by using an
equivalent mountain forcing to maintain the basic state
as compared to the constant forcing artifice.

An alternative to the topographically forced baro-
tropic model that sidesteps the artificial forcing device
is the “divergent barotropic model” discussed by Sar-
deshmukh and Hoskins (1988 ). This model arises from
consideration of an upper tropospheric vorticity bal-
ance, where modeling and observational evidence sug-
gests that vertical advection and twisting terms are of
secondary importance, at least in the tropics (Sardesh-
mukh and Held 1984; Sardeshmukh and Hoskins
1985). This balance may be expressed,

KbV (VE+ 1) = Fa= (Gt 75
or,
a
AR IRE)

= Fs— (Ca+ W)= {V-(V(E+ N} (1)

Here, F; represents an external forcing or a simple
parameterization of the neglected vertical advection
and twisting terms and the total wind has been decom-
posed into its irrotational, Vy, and nondivergent, V,,
parts. Linear damping and diffusion are included in
the form of a constant Rayleigh damping coeflicient
C, and fourth-order diffusivity, ». Other symbols have
their usual meaning. In all cases to be considered » has
been set to provide a damping time scale of 1/4 day for
spatial scales of total wavenumber 42, the same value
used in many other studies (e.g., Branstator 1982;
Simmons 1982; Branstator 1985; SWB; Hoskins and
Sardeshmukh 1987).
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The steady-state balance of (1) is,
Vo V(E+S) = Fy— (Ca+ w4
= {VAVL+ NI+ VAV (2)

where the overbar represents a time average and a
prime the departure therefrom. The linearized equation
governing small perturbations to the time-mean basic
flow is,

o’

—67+V(0-V(§’+f)+V¢-V§"=F’d—-(C¢+uV4)§"

—{V- (V) + V- IVR(E+ N1} 3)

If we ignore the terms in braces in (1)-(3) and define
F;= F,;by (2), we obtain the set of equations studied
by SWB. The consistent linearization of this model for
initial-value simulations would make F; = 0 in (3).
The advection of absolute vorticity by the time-mean
divergent wind in (2) contributes to the maintenance
of the time-mean basic state, and leads to an additional
term in (3) that will affect the perturbations. In fact,
one could set ;= 0 in (2) and solve for V, given V,,
and the transient vorticity flux (the X problem solved
by Sardeshmukh and Hoskins 1987), thus eliminating
F, altogether. In the linear equation (3) inclusion of
the mean divergent wind acts like a time-dependent
forcing on the perturbation. One could also specify a
perturbation divergent wind, V% (e.g., to represent
tropical intraseasonal variability as in Ferranti et al.
1990), to obtain the final perturbation forcing term
in (3).

For this study we will use the ECMWF analyzed Vo
and define F; = F; as a residual of (2) after neglecting
the transient vorticity flux, that is:

Fy= V- V(§+ )+ (Ca+vWhH)§
+{V [VLE+ N1}, (D)

Equation (1) with V, = V, and F, defined by (4) is
the nonlinear governing equation of the model adopted
for this study. For nonlinear initial-value simulations
a Rayleigh damping coefficient C; = (10 days)™! is
included. The corresponding linearized equation is (3)
with F; = Vi = C;= 0, namely,
a§ ' ’ = ¥, ’

Et__l_ Vi - V(+/)+V,-V¢

+ oV + V(W) =0 (5)

so that the mean divergent wind, which helps maintain
the basic state, is also felt by the developing pertur-
bations via the last term in (5).

The model equations are expanded in spherical har-
monics using the spectral-transform technique in the
manner of Bourke (1972). The resulting ordinary dif-
ferential equations for vorticity are time differenced
using a third-order Adams-Bashforth method that
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eliminates the need for a time filter (Durran 1991).
For all cases to be discussed a triangular truncation
retaining 31 wavenumbers (T31) was used to obtain
the final results.

The second area of concern deals with the interpre-
tation of the eigenmodes themselves. Since an eigen-
analysis of an N-component system in general produces
N different normal modes, one might ask whether con-
sideration of each of these modes in isolation has any
physical significance. In zonally symmetric problems
with latitudinal shear we know some of these modes
will be discrete, while the remainder approximate the
continuum (Yanai and Nitta 1968; Kasahara 1980).
Attention has generally been focused on the discrete
modes, on the basis that the continuum modes must
asymptotically decay as 2 (Orr 1907; Case 1960).
Farrell (1982) and Boyd (1983) show, however, that
the continuum spectrum in simple linear shear flow
problems (where no normal modes can exist) allows
some perturbations to grow significantly before decay-
ing. Here we investigate whether the same potential
for transient growth exists in zonally asymmetric un-
stable flows by searching for favorably configured ( op-
timal ) perturbations.

Farrell (1988, 1989a) formulated two problems to
determine the structure of the optimal perturbations
that will 1) most efficiently excite a particular linear
mode, and 2) have the largest ‘“size” at the end of a
fixed time interval. He chose norms representing
streamfunction amplitude and energy as measures of
perturbation size, and showed the solution dependence:
on the particular measure used. Farrell (1988) solved
the optimization problems for a barotropic S-plane
channel model linearized about a constant shear basic
flow, while Farrell (1989a) solved the optimization
problems for a quasigeostrophic 8-plane model with a
linear height-dependent basic flow that allowed for un-
stable modes. The solution of the energy optimization
problem in this latter work indicated that a structure
tilting against the vertical shear would grow most rap-
idly, and was in broad agreement with common pre-
cursors of cyclogenesis. Farrell (1989a) found that these
optimal perturbations can exhibit growth rates that,
initially, greatly exceed those of exponentially unstable
modes (see also Lacarra and Talagrand 1988; Mak and
Cai 1989) and argued that even in unstable flows the
optimal perturbations are likely to limit short-term and
medium-range forecasts.

The solution of the optimization problem for these
idealized basic flows provides a direct, objective way
to find the most rapidly growing structures ( for a fixed
time interval), without any constraint on their time
behavior. By using observed zonally asymmetric flows
we hope the method will provide similar insights for
studies of low-frequency variability. During the course
of this work, we became aware that Frederiksen and
Bell (1990) have recently done a similar calculation.
They found the optimal perturbation that maximizes

BORGES AND HARTMANN

339

the initial instantaneous growth in the squared stream-
function amplitude (L, norm squared) for their R15
five-level quasigeostrophic model linearized about in-
stantaneous synoptic flows. They discovered that the
optimal structure had largest amplitude at the surface
and was localized in the blocking region. Its growth in
a linear model was not sustained and by day 10 had
an order of magnitude smaller amplitude and two or-
ders of magnitude smaller kinetic energy than the ad-
joint to the most unstable eigenmode initial condition.
From this they concluded that the adjoint to the ei-
genmode, not the optimal initial state, was most rele-
vant. Our study presents a range of optimizing intervals,
7, in a barotropic model with higher horizontal reso-
lution, which we feel is necessary to adequately capture
both the adjoint and optimal initial condition struc-
tures.

3. Nonself-adjoint systems and projectability

A full derivation of the eigenvalue problem for zon-
ally asymmetric basic states, formulated using a spher-
ical harmonic expansion, may be found in Branstator
(1982), SWB, and more recently Zhang (1988). Bran-
stator (1985) and Zhang (1988) have also discussed
the concept of “projectability” and its importance in
general linear systems. Our formulation of the eigen-
value problem associated with (5) follows Branstator
(1985). Schematically, we write

A g

dt Ly =0
where ¥ is a complex vector of spectral streamfunction
coefficients and .£ denotes a spectral-space linear op-
erator that includes advective terms and vortex tube
stretching by the mean divergent wind acting on the
perturbation vorticity field. We truncate the spherical
harmonic expansion of (6) triangularly at total wave-
number 31 (T31) and refer to the resulting matrix of
order 1023 by L. As shown in the Appendix, the non-
self-adjoint matrix, L, is associated with an adjoint
matrix, M, whose eigenvectors {y, } are biorthogonal
to the eigenvectors {x;}, of L, that is,

(Yo, %) =0, if o;# N €]

where o; is an eigenvalue of L, M is the complex con-
jugate of an eigenvalue of M, and (-, ) denotes an
inner product operator.

The biorthogonality has important consequences for
the spectral representation of an arbitrary field, G, in
the space spanned by the eigenvectors. For example,
consider the spectral expansion of G,

(6)

N
G = 2 & X;.

J=1

(8)

To determine the projection coeflicients, { g;}, we pro-
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ceed in the usual manner by forming the inner product
and, using (A7), find that

&k = (Y, G )¥k- (9)

The projection coefficients in general linear systems
depend on the structure’s projection onto the adjoint,
not the eigenmode. The quantity vx = {yi, X )7',
termed the “projectability” by Zhang (1988), acts as
an amplification factor. The important result is that
even though G may have a weak projection onto the
kth adjoint structure, its modal expansion coefficient,
8k, may be large if the kth mode has a large projecta-
bility. The projectability is a measure of the degree of
orthogonality of the normal modes; a large vx means
that x; is nearly parallel to the hyperplane defined by
{x;};#« in phase space. This is clearly favorable for
putting a large spectral amplitude in a particular mode
under constrained conditions. For instance, suppose
that G must be of unit size. One can think of putting
large amplitude in the desired mode, then masking its
amplitude by using the other, nearly parallel modes to
“cover” it up. We note that setting G equal to the ad-
joint structure, Yy, will give the maximum projection
onto a particular mode.

These ideas have recently been applied in a study
by Ferranti et al. (1990). In that investigation the ad-
joint mode (defined by the barotropic global kinetic
energy inner product) for a particular time-mean flow
(the January climatology used by SWB) was found to
be very similar to the vorticity forcing thought to be
associated with the tropical 30-60-day oscillation. They
found that the extratropical response to this forcing in
a simple barotropic model matched the observed low-
frequency anomalies reasonably well and suggested that
this interaction may play a role in the observed mid-
latitude intraseasonal variability.

4. The optimization problem for the global spectral
barotropic model

Following Farrell (1988, 1989a), the general solution
process consists of performing a traditional stability
analysis of the flow to determine a set of eigenfunctions.
Assuming that distinct eigenvalues exist, the eigen-
functions form a complete basis set in which to expand
an arbitrary disturbance. The evolution of the distur-
bance can then be determined by merely advancing
the amplitude and phase of each eigenfunction ac-
cording to its respective eigenvalue. Using this frame-
work an optimization problem can be formulated and
solved for the spectral expansion coeflicients. Note that
this method of superposing normal-mode solutions is
essentially equivalent to a Laplace (or Fourier) trans-
form method (Tung 1983). Since we are actually solv-
ing the initial-value problem in this manner, the pres-
ence of continuum modes and their algebraic time de-
pendence requires the use of many exponential
functions to adequately capture the time evolution.
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To be specific, we want to determine the initial con-
dition of fixed energy that will evolve into the most
energetic structure after a specified time interval, 7.
That is, we seek to maximize K(7) subject to the con-
straint that K(0) = 1, where K(t) is the global mean
kinetic energy associated with the rotational part of the
flow at time ¢. This problem is equivalent to maxi-
mizing the “auxiliary” function, ¢ (Hildebrand 1963,
pp. 352-355),

¢ =K(r)+ MK(0)-1) (10)

with no constraints, A being a Lagrange multiplier. If-
¢ = ¢(x) we can find the extrema in the usual way by
setting d/dx = 0. With this in mind we now proceed
to find the functional form for K(¢).

The global mean kinetic energy is

(1) = (w(®), w(t) )xe = 5 (WD)~ (11)

where @y is a (complex) vector of spherical harmonic
expansion coefficients for the streamfunction, Dy is
a real positive-definite diagonal matrix defining the
energy norm, and ( )" denotes the Hermitian. As-
suming the eigenvalue problem (6) provides a complete
set of eigenvectors, {x;}, we can expand the stream-
function,

Y (t=0)=Xa (12)
where Xy is @ matrix with the eigenvectors as col-
umns and ay is a vector of projection coefficients. Sub-

stituting (12)in (11), the matrix expression for kinetic
energy becomes,

K (1 =0)=Xa)’D(Xa) = a?(X*DX)a. (13)
The eigenvectors will of course evolve in time ac-
cording to xje%’ so that at any particular time y(?)
= XA, and
K(t) = a?(NFXIDXA,)a (14)
where Ayyy is a diagonal matrix with e as elements.
For brevity, we define:

A, = X¥DX (15)
A, = AJ(XPDX)A, (16)

and note that A so defined is positive definite and Her-
mitian. Using (13), (14), (15), (16), the auxiliary
function (10) may be written in the form,

¢ = a’A.a + NafAja — 1) =¢(a). (17)

As a is not an analytic function of a, perhaps the
simplest way to proceed at this point is to set

p=¢top (18)

in (17) and search for those a that make ¢ = O for
any éa. Substituting (18) into (17) we obtain after some
algebraic manipulation the condition for ¢ = 0:

a=a+ éaq,
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(A; + MAg)a = 0. (19)

The projection coeflicients we seek are also the eigen-
vectors of a generalized eigenvalue problem with the
Lagrange multiplier, A, serving as the eigenvalue.
We also see that this eigenvalue, A, represents the frac-
tional increase in kinetic energy at time 7, that is,
\ = K(7)/K(0).

To avoid confusion with the eigenvalues of the orig-
inal problem, the set of A arising from the solution to
the eigenvalue problem (19) will be referred to as op-
timal values hereafter. Because of the properties of the
matrix A, the set of optimal initial states are orthogonal
to each other under the chosen inner product.

5. Results

The methodology outlined above has been applied
to the analysis of time-mean 300-mb flows derived from
daily 1200 UTC global ECMWF initialized analyses
in the following manner. After bicubic spline inter-
polation to a T42 Gaussian grid,? the 300-mb wind
components were Fourier analyzed along each latitude
circle. These Fourier coefficients were then used to ob-
tain spectral forms of vorticity and divergence via
Gaussian quadrature. Following Sardeshmukh and
Hoskins (1984 ), the spectral vorticity and divergence
were then spatially smoothed to retain scales larger than
total wavenumber 24, and various time averages taken.
These time-mean spectral vorticity and divergence
coefficients are the required input to both the eigen-
analysis and time-dependent barotropic models.

As an example of the application of the method, we
focus on a particular season. The Northern Hemisphere
winter of 1985/86 was notable for its strong low-fre-
quency anomalous behavior. Beginning in the last week
of January 1986, an episode of persistent negative
height anomalies occurred in the North Pacific (Dole
and Black 1990) leading to an anomalous zonal ex-
tension of the Asian jet and enhanced ridging over the
west coast of North America. The flow was also highly
unusual in the eastern Atlantic sector. Temperatures
in England changed abruptly form mild to extremely
cold between January and February, a change that was
unparalleled in the previous 249 years (Ratcliffe 1986 ).
Furthermore, the skill of ECMWEF forecasts was below
average during this transitional period (Hoskins and
Sardeshmukh 1987).

The period 1 January-28 February 1986 was divided
into several 16-day time-mean flows to study its sta-
bility. Sixteen-day means were chosen as a compromise
to reduce the synoptic-scale signal in the data and yet
retain the separate character of the two flow regimes

2 The T42 grid consists of 128 equally spaced longitudes and 64
Gaussian latitudes giving an effective resolution nearly equal to the
original ECMWF 2.5° X 2.5° grid.
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during this period. This choice of averaging interval is
by no means unique, and it is of interest to examine
the dependence of the analysis on this interval. Nev-
ertheless, the results for two basic flows defined by the
periods 1-16 January 1986 and 24 January-8 February

January 1 - 16 1986
0

180

F1G. 1. Observed 300-mb mean flow for the period 1-16 January
1986: (a) streamfunction (contour interval 7.5 X 10¢ m?s~'); (b)
absolute vorticity (contour interval 107° s™'). The zero contour is
omitted in this and all succeeding figures. All map projections are
polar stereographic, the bounding circle is the equator, and grid lines
are drawn every 30 degrees.
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1986 will serve as a useful illustration for the method.
In the next two subsections, a brief discussion of the
T31 eigenanalysis for each flow is followed by the re-
sults of the optimization problem. The linear evolution
of the optimal perturbation as revealed by its kinetic
energy and streamfunction is presented, followed by
some results of the behavior of the optimal anomaly
in a nonlinear model.

a. Mean flow for 1-16 January 1986

The first flow to be considered is the time average
for the period 1-16 January 1986 (Fig. 1). There are
local regions of negative absolute vorticity gradient in
the Northern Hemisphere, but the Rayleigh~Kuo nec-
essary condition for instability of the zonal mean flow
is satisfied only in the Southern Hemisphere.

An eigenanalysis of the complete flow produces 2.
unstable modes, as revealed in the plot of growth rate
versus frequency shown in Fig. 2a. As noted by Bran-
stator (1985), the shape of the eigenvalue scatter in
such a plot is related to the scale-selective diffusion,
with high-frequency, small-scale modes being prefer-
entially damped. The effects of diffusion on the large-
scale unstable modes, however, is negligible. Figure 2b
indicates that the decaying modes have the largest pro-

jectabilities, so we should be aware that these modes
may have significant spectral amplitudes in an eigen-
basis expansion. The most unstable mode is stationary
with an e-folding time of 4.5 days (Fig. 3a). Most of
its amplitude is north of 60°N, not in the north-central

a)

3
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0 5 1.0 1.5
Frequency (days ")

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoOL. 49, No. 4

Pacific region where low-frequency anomalies subse-
quently develop in the latter half of the month. The
adjoint (Fig. 3b) also has a global-scale structure with
considerable amplitude in both the north polar region
and the subtropical latitudes. This suggests that forcing
(or perturbations) from subtropical latitudes may
asymptotically lead to a response with the most unsta-
ble mode signature, consistent with the previous work
of Simmons (1982), SWB, Branstator (1985), and
more recently Ferranti et al. (1990).

To find the structure that leads to the greatest pos-
sible increase in global mean kinetic energy at a spec-
ified time, 7, we solve the optimization problem for
representative values of 7 = |, 3, 6, and 20 days. The
spectrum of optimal values (the fractional increase in
kinetic energy at ¢t = 7) is shown in Figs. 4a,b. There
are many amplifying perturbations, on the order of
150 for 7 = 3. This number is of course a function of
7, and must equal the number of unstable eigenmodes
as 7 =» o0. The number of perturbations that amplify
significantly is much less, and is shown more clearly
in Fig. 4b. For instance, only 22 of the possible 1023
perturbations have more than twice the energy of the
eigenmode at 1 = 7 = 3 days. The optimal anomalies
to the 1-16 January 1986 mean flow are able to extract
energy more quickly than those for the 24 January-8
February 1986 mean flow. At 7 = 3 days the maximum
kinetic energy growth in the latter is ~20% smaller
than in the former.

Figure 5 shows the projection of the optimal per-
turbation for 7 = 3 days onto each of the eigenmodes.
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FIG. 2. The eigenvalue spectrum for the 1-16 January 1986 total mean flow: (a) growth rate
vs frequency in units of days™"; (b) log, projectability vs growth rate in units of days™. The
abscissa in (a) spans a portion of the total range of eigenfrequencies, whose highest frequency is

2.85 cycles day™!.
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FIG. 3. The most unstable mode of the zonally asymmetric time-
mean flow for 1-16 January 1986: (a) the stationary eigenmode; (b)
the adjoint of the eigenmode. Contour interval 3 X 10° m? s~!. Both
the eigenmode and the adjoint are normalized such that the global
mean kinetic energy is 0.5 m? s~2,

It is apparent that there are significant projections onto
many modes. In fact, as one might anticipate from Fig.
2b, the largest projection is onto a mode that is highly
damped, with a decay time scale of 2.5 days and pro-
jectability of 67. If one were to calculate the optimum
based on only a subset of the eigenmodes (say, the
near-neutral and unstable modes), there would be little
hope of obtaining the correct structure. The nonor-
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FI1G. 4. (a) The “optimal value” spectrum for 1-16 January 1986
for two values of the optimizing interval, 7. The ordinate is the ratio
of the kinetic energy at ¢ = 7 to the initial kinetic energy. (b) The
first 25 optimal values for the 1-16 January 1986 and 24 January-
8 February 1986 mean flows. The open circles and crosses denote
the 7 = 6 and 7 = 3 day optima, respectively, for 1-16 January 1986.
Plus symbols and squares denote the 7 = 6 and 7 = 3 day optima,
respectively, for 24 January-8 February 1986.
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FIG. 5. The initial amplitude of the streamfunction spectral ex-
pansion coefficients for the first 7 = 3 day optimal perturbation to
the 1-16 January 1986 mean flow as a function of the eigenmode
growth rate, in units of days ~'. The amplitude values are normalized
su;:h tzhat the total kinetic energy of the initial disturbance is 0.5
m?s™%,
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thogonality of the system dictates that a complete set the length of this time scale determines the importance
of modes be used. As the flow evolves, of course, the of the unstable modes in the real atmosphere.
unstable modes increasingly dominate the solution, and The dependence of the optimum on the interval, 7,

a) y'(t=1d,K/Ky=8.3) b) v (t=3d,K/K=53.1)
0

F1G. 6. Streamfunction of the first optimal perturbations as a function of the optimizing interval 7: (a) = = 1 day; (b) 7 = 3 days; (¢) 7
= 6 days; (d) 7 = 20 days. The global mean kinetic energy associated with each pattern is 0.5 m? s~2, and the ratio of the kinetic energy at
time ¢ = 7 to the initial kinetic energy is noted above each figure. Contour interval is 4 X 10° m? s~! (zero contour suppressed ) throughout.
The 1-16 January 1986 time-mean zonal wind, contoured every 15 m s™', beginning at 30 m s~ is superposed in thick contours for
reference.
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is illustrated in Fig. 6. As the optimizing interval is
increased it becomes more advantageous to put greater
amplitude into the unstable modes, and the optimal
perturbation becomes increasingly similar to the most
unstable mode’s adjoint. Of course, as 7 = o0 we re-
cover this adjoint structure exactly. At 7 = 1 day, the
optimum assumes the simple and energetically favor-
able form of a structure tilted against the shear of the
Asian jet entrance region. As 7 increases, the tilt of this
main feature becomes more severe, and more structures
are added upstream on the equatorward flank of the
jet axis. Figure 6 indicates that the crucial feature of
the perturbation for its initial growth is its tilt in the
Asian jet region, a feature that is present in the adjoint
structure but certainly not prominent.

The time dependence of the global mean kinetic en-
ergy for several initial states in the linear model is dis-
played in Fig. 7. The added complexity of the optimal
perturbation when r increases from three to six days
does not become important from an energetics stand-
point until after day 4. At day 3 the kinetic energy of
the 7 = 3 day optimum initial condition is an order of
magnitude larger than that of the eigenmode initial
condition and over twice that of the adjoint mode initial

0 5 10 15
time (days)
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condition. It is not until after day 5 that the kinetic
energy of the adjoint mode initial condition exceeds
that of the r = 3 day optimum. The initial growth of
the optimal perturbations is quasi exponential with a
time scale on the order of 1.5 days. It appears that this
rapid growth is associated with the shear component
of the basic flow, although further analysis is warranted.
Farrell (1989b) points out that properly configured
disturbances in regions of diffluence and confluence
may also exhibit substantial growth.

Having verified that optimal perturbations do in fact
develop into the most energetic structures at a finite
time, we now investigate whether these structures re-
semble observed anomalous features in the atmosphere.
Figure 8 shows the time development of the 7 = 3 day
optimal perturbation for a period of six days as gov-
erned by the linear equation (5). During the first three
days of rapid growth the perturbation gains energy as
it becomes sheared over and propagates along the jet
axis. In a baroclinic model some of this early growth
could be attributed to baroclinic processes. After this
time the growth rate decreases and the primary feature
is a dipole structure near 120°W. Integrations with the
7 = 6 day optimal perturbation (not shown) reveal a

b)
4.0

3.5

5 10 15
time (days)

FiG. 7. The global-mean perturbation kinetic energy in the linear model as a function of time on a
semilogarithmic (base 10) plot, for various initial conditions using (a) 1-16 January 1986 mean flow and
(b) 24 January-8 February 1986 mean flow. The initial conditions in (a) are identified by the following
line patterns: most unstable eigenmode (dot-dash); most unstable eigenmode’s adjoint (dotted); first 7 = 6
day optimum (dash); first 7 = 3 day optimum (solid); first 7 = 1 day optimum (short dash). The initial
conditions in (b) are identified by the following line patterns: most unstable eigenmode (dot-dash); most
unstable eigenmode’s adjoint (dotted); first + = 3 day optimum (solid); third r = 3 day optimum (dash).
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FIG. 8. (a-f) The linear evolution of the first 7 = 3 day optimal perturbation at one-day intervals, as represented by the
perturbation streamfunction. The basic state is the 1-16 January 1986 time-mean flow. The ratio of the kinetic energy to the
initial kinetic energy is noted above each figure; the contour interval is arbitrary and changes throughout. In (a) the time-
mean zonal wind, contoured every 15 m s~ beginning at 30 m s ', is superposed in thick contours for reference.
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similar development through day 3, but afterward a
more zonally elongated and persistent dipole structure
near 120°W develops.

The nonlinear behavior of the optimal anomaly is
summarized in Figs. 9 and 10. Figure 9a shows the
departure of the global mean kinetic energy from the
basic-state value (i.e., the “perturbation” in the non-
linear model) as a function of time. The initial ampli-
tude of the perturbation is scaled to be 0.25% of the
total basic flow kinetic energy (~1 m? s2). This pro-
vides maximum zonal wind anomalies on the order of
5 m s~! on the equatorward flank of the jet entrance
region. Dole and Black (1990) show that the zonal
wind anomalies prior to their composite onset appear
to be most significant near the jet’s entrance region
and its poleward flank over the Asian continent, with
a composite amplitude of 5-10 m s™'.

Some intriguing patterns developed during the first
few days of the nonlinear integrations. As an example,
we show the total streamfunction for the first six days
using the 7 = 3 day optimal perturbation initial con-
dition in the nonlinear model (Fig. 10). Although the
observed zonal extension of the Asian jet is poorly cap-
tured by the model, the pronounced ridging that was
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observed over the west coast of North America during
the latter half of January (Dole and Black 1990) does
in fact occur by day 3 and persists through day 6 with
little phase propagation.

b. Mean flow for 24 January-8 February 1986

Because of the anomalous zonal extension of the
Asian jet, the Northern Hemisphere mean 300-mb flow
for the period 24 January-8 February 1986 (Fig. 11)
satisfies the Rayleigh-Kuo necessary condition for
normal-mode barotropic instability; the meridional
gradient of zonal mean absolute vorticity changes sign
at 50°N (not shown). On this basis, one might expect
it to be more unstable than the 1-16 January 1986
mean flow.

An eigenanalysis of the complete asymmetric flow,
however, shows it to be more stable to perturbations
of normal-mode form than the previous flow. This
suggests again that the instability associated with the
zonally asymmetric portion of the flow dominates. The
fastest growing of the 17 unstable modes is again sta-
tionary, but with a longer e-folding time scale of 6.3
days (Fig. 12a). Although this eigenmode bears some
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FIG. 9. The global-mean perturbation kinetic energy (defined as the departure from that of the initial
basic flow) in the nonlinear model as a function of time on a semilogarithmic (base 2) plot, for various
initial conditions using (a) 1-16 January 1986 initial basic flow and (b) 24 January-8 February 1986 initial
basic flow. The initial conditions are constructed by adding an initial anomaly with 0.25% of the global-
mean basic state kinetic energy to each basic flow. The anomalies in (a) are identified by the following line
patterns: most unstable eigenmode (dot-dash ); most unstable eigenmode’s adjoint (dotted); first 7 = 3 day
optimum (solid). The anomalies in (b) are identified by the following line patterns: most unstable eigenmode
(dot-dash); most unstable eigenmode’s adjoint (dotted); first 7 = 3 day optimum (solid); third = = 3 day
optimum (long dash). The two curves plotted in each line pattern are for opposite polarity initial anomalies.
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F1G. 10. (a~f) The nonlinear evolution of the first = 3 day optimal perturbation at one-day intervals from day 1 to day
6. The initial condition is the 1-16 January 1986 time-mean flow plus the optimal perturbation with kinetic energy of 0.25%
of the global-mean basic state kinetic energy. The contour interval is 7.5 X 10 m?s~!.
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January 24 - February 8 1986 stable normal mode is not particularly sensitive to the
region bounded by 10°S-30°N, 90°W-45°W, an area
0 Hoskins and Sardeshmukh ( 1987) suggest played a role

in the development of the Atlantic block.
Compared to some of the optimal initial states, the
complicated global structure of the adjoint does not
60W result in greater perturbation kinetic energy in the linear

a)y
60E /

a) \V‘eig(Teﬂ=6.3d,Tper=°°1Y=5'3)

120E

-

FiG. 11. As in Fig. 1 but for the period
24 January-8 February 1986.

resemblance to the streamfunction anomalies shown
by Hoskins and Sardeshmukh (1987), its relevance
remains unclear. The mode is not well separated from :
the rest of the spectrum (the second most unstable :
mode has an e-folding time of 6.5 days) and its pro- 180
jectability (v = 5.3) is not particularly large. In addi- FIG. 12. As in Fig. 3 but for the period
tion, the adjoint (Fig. 12b) suggests that the most un- 24 January-8 February 1986.
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model until after day 5 (Fig. 7b). From Fig. 9b we see, condition integrations reach one third to one half of
however, that nonlinear effects cannot be completely these values. Even though the optimization problem
ignored beyond day 5. Furthermore, the adjoint and indicates the third r = 3 day optimum can extract only
first three 7 = 3 day optimal initial states reach com- half the energy the first optimum can (Fig. 4b), this
parable global-mean perturbation kinetic-energy finite  third optimal initial state seems equally important in
amplitudes of 32 m? 572, while the eigenmode initial the nonlinear model.

January 1 - 16 1986 January16 - 31 1986

120NN S2ow 120EN\\| D Froow
720 | 180
February 1 - 16 1986 February 14 - 28 1986

c) ° d) 9

180

FG. 14. ECMWF analyzed mean 300-mb flows for the period 1 January-28 February 1986: (a) 1-16 January;
(b) 17-31 January; (c) 1-16 February; (3) 14-28 February. Contour interval 10" m*s™!.
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In contrast to the adjoint structure, the optimal ini-
tial states show a more localized character. The first
two optimal initial states for 7 = 3 days are similar to
the corresponding 1-16 January 1986 first optimum,;
most of their amplitude is concentrated in subtropical
latitudes south of the Asian jet. The subsequent linear
evolution in both cases, however, is characterized more
by wave propagation than the quasi-stationary dipole
feature found using the 1-16 January 1986 basic flow
(not shown).

The third 7 = 3-day optimal initial state emphasizes
the region north of 30°N, in particular the poleward
flank of the North American jet exit region near 60°N,
30°W. It is similar to the mid- and high-latitude struc-
ture of the adjoint, but with virtually zero amplitude
south of 30°N. The nonlinear evolution of this initial
state is shown in Fig. 13. During the early stages of
rapid initial growth (through day 6) the streamfunction
field develops a blocking ridge in the North Atlantic
(~60°N, 30°W) as well as an enhanced ridge along
the 130°W meridian. Comparison to the ECMWF an-
alyzed 300-mb streamfunction pattern averaged over
the first half of February 1986 (Fig. 14c) shows close
agreement of position with both of these features. Nei-
ther of these anomalous ridging patterns is as closely
duplicated in the integrations using the adjoint and
first two optimal perturbations as initial states.

6. Summary and conclusions

We have studied the barotropic stability of observed
300-mb nonzonal flows during the winter of 1985/86,
a period associated with strong low-frequency vari-
ability. Rather than exclusively seeking exponentially
amplifying and/or periodic solutions, we allow unre-
stricted time dependence and search for the disturbance
that grows most rapidly over a finite time interval. This
disturbance is found following Farrell (1988, 1989a),
using the fact that the eigenfunctions from a traditional
stability analysis may form a complete basis set with
which to expand an arbitrary disturbance. The obvious
advantage of this basis set is that the energy of the
disturbance at any time is easily obtained after the
spectral expansion coefficients are known, so that an
optimization problem can be formulated. Concep-
tually, this method of superposing normal-mode so-
lutions is equivalent to a Laplace (or Fourier) trans-
form method (Tung 1983).

From the solution of a global optimization problem,
we have determined the structure of optimal pertur-
bations that extract the greatest amount of globally in-
tegrated energy from nonzonal flows over a specified
time interval. These optimal perturbations were found
to assume the energetically favorable position of being
tilted against the strongest shear of the flow, and became
rather localized as the optimizing interval was de-
creased. Only 2% of the total number of v = 3 day
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optimal perturbations extract at least twice the energy
of the most unstable eigenmode at ¢ = 7.

Consistent with previous studies of simpler basic
flows (Farrell 1989a; Mak and Cai 1989), the initial
growth of the optimum greatly exceeded that of the
most unstable eigenmode, and was also significantly
greater than an adjoint mode initial condition. More-
over, the nonlinear evolution of the optimal pertur-
bations suggests that they are at least as important for
stability considerations as the adjoint and eigenmode
structures.

The nonlinear evolution of the 3-day optimal
anomaly to the 1-16 January 1986 mean flow leads to
the development of strong ridging over the west coast
of North America. This development is apparently as-
sociated with the fastest way for a perturbation to gain
energy, and is in reasonable agreement with the ob-
served behavior. Preliminary sensitivity studies indicate
this behavior remains when the optimal perturbation
is longitudinally shifted 10° or less. The time evolution
of the first two optimal anomalies to the 24 January-
8 February 1986 mean flow did not exhibit a quasi-
stationary development. For this flow it appears the
third 7 = 3 day optimal initial condition leads to a
development that most closely mimics the observed
pattern.

Palmer (1988) has recently studied the predictive
skill of the ECMWF forecast model, and found evi-
dence that it varies with the extratropical flow regime
as categorized by the PNA index defined by Wallace
and Gutzler (1981). Paradoxically, the most barotrop-
ically stable regime was found to be the least predict-
able. Zhang ( 1988) has suggested that this paradox may
be resolved by remembering that the projectability is
an important quantity to consider in nonself-adjoint
systems, since it essentially determines how easily a
mode can be excited. He shows that the most unstable
mode has a larger projectability in the more stable flow
regime, and hence the projection of an arbitrary field
onto the most unstable mode is likely to be greater in
this stabler regime. He argues that the initial behavior
of perturbations to a basic flow can thus depend more
on the projectability than on the exponential growth
rate.

Farrell (1990) has argued that exponential instability
is not even required to give the flow greater unpre-
dictability. He postulates that the error growth may be
related to the spectrum of optimal perturbations, and
that an assessment of this error can be made for an
ensemble of perturbations once this spectrum is known.
Our particular application of the optimization problem
may be used to directly examine Farrell’s hypothesis
and its implications for predictability, as well as its use
for the general stability analysis addressed here.
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APPENDIX
Eigenanalysis of Nonself-adjoint Systems

Consider the archetypal ordinary differential equa-
tion,
@
——Ly=0
dt 4
where .L denotes a general linear operator that can be
represented as a matrix, L, of order N. The corre-
sponding eigenvalue problem,

(A1)

LXj = 0;X;

(A2a)

will provide solutions to the discretized version of (A1)
in the form, ¥ = x;e%‘. Now consider the additional
matrix eigenvalue problem:

My, = M\eyie (A2b)

where M is yet to be specified. It is easy to show that
if x is a vector of spherical harmonic coefficients, then
the matrix representation of the inner (scalar) product
may be written

{(x, x) = x"Dx (A3)

where (-, - denotes a suitable inner product, D is a
real positive—-definite diagonal matrix that defines its
matrix equivalent, and ( )¥ denotes the Hermitian
(complex conjugate transpose). For instance, setting
D = |, the identity matrix, yields the squared-amplitude
inner product. Another choice of D will return a kinetic
energy quantity. If we multiply (A2a, b) by the other’s
eigenvector, take the inner product, and subtract the
resulting equations we obtain

v/(DL — MPD)x; = (0, — A\{)yi/Dx;  (A4)

where * denotes the complex conjugate. If we identify
M as the adjoint matrix to L we will be led to a biorth-
ogonality relation, since by definition the adjoint op-
erator satisfies

(o, L) = (Mo, ¢)
or in matrix notation,

y"DLx = (My)”Dx = y”M”Dx - DL = M”D. (A6)

(AS)

Since the eigenvalues of M are the same as those for
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L (Friedman 1956, pp. 199-200), we can obtain the
biorthogonality relation from (A3), (A4), and (AS):
the adjoint vectors, y, are orthogonal to the eigenvec-
tors, x, that is, {yi, X;) = 0 if ¢; # A . For the squared-
amplitude inner product M = L¥ so that if L is Her-
mitian the operator is self adjoint, and the eigenvectors
are mutually orthogonal. Inhomogeneities in the flow
generally destroy this symmetry in L and one must
consider the adjoint problem to determine the spectral
representation of a field in the space spanned by the

“eigenvectors. For a nonself-adjoint matrix, L, our nor-

malization of the eigenvectors and adjoint vectors fol-
lows Zhang (1988) so that the projectability, ;, belongs
to the set of real numbers,

'Yj<Yk, Xj> = Ojk

(x5, %) = 1
where 9 = 1 if j = k, 0 otherwise.

(A7)
(A8)
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