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Abstract	3 

This chapter introduces cloud feedbacks and describes salient features of their structure. 4 

One particularly pronounced feature simulated by global climate models (GCMs), is the 5 

contrast between the subtropics where cloud cover decreases with warming (a positive 6 

feedback) and the mid- and high-latitudes where cloud albedo increases with warming (a 7 

negative feedback). This increase in cloud albedo appears to be due to mixed-phase 8 

clouds (MPCs) transitioning from a more ice-dominated to more liquid-dominated state. 9 

The representation of this behavior in GCMs is discussed and is compared to satellite 10 

observations.  Observational constraints on the mixed-phase cloud feedback show that the 11 

current generation of GCMs have too strong an increase in planetary albedo due to ice 12 

transitioning to liquid in the mid- and high-latitudes, indicating a potential 13 

underestimation of climate sensitivity. This behavior appears to be at least partially due to 14 

an inability to maintain supercooled liquid water at sufficiently low temperatures.  15 
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	18 

Introduction	19 

Oceanic planetary boundary layer (PBL) cloud cover strongly affects reflected 20 

shortwave (SW) radiation, but has relatively little effect on the outgoing longwave (LW). 21 

This leads to a negative cloud radiative effect (CRE) that strongly affects the Earth’s 22 

radiative balance [Hartmann and Short, 1980]. Because of this it is important to represent 23 

the response of PBL cloud to warming accurately to calculate 21st century climate 24 

change. Unfortunately, PBL clouds must be parameterized in GCMs.  This is because 25 

turbulent motions with length scales smaller than a GCM grid cell create boundary-layer 26 

cloud. The ability of the PBL cloud parameterizations to reproduce cloud behavior in the 27 

current climate can be evaluated using observations, however it is difficult to use the 28 



existing observational record to evaluate the accuracy of the response of PBL cloud to 29 

warming. This results in a cloud feedback that is highly uncertain, even in the most recent 30 

generation of GCMs [Bony et al., 2006; Caldwell et al., 2013; Vial et al., 2013; Webb et 31 

al., 2013] and accounts for most of the uncertainty in the estimation of equilibrium 32 

climate sensitivity (ECS) [Vial et al., 2013; Webb et al., 2006].  33 

Even though the global cloud feedback varies widely across GCMs the spatial 34 

structure of GCM cloud feedbacks are relatively similar [Zelinka et al., 2012; Zelinka et 35 

al., 2016; Zelinka et al., 2013]. One particularly striking feature is the similarity in the 36 

latitudinal pattern of the response of cloud SW reflection to warming. We will refer to 37 

this change in the reflection of SW due to changes in cloud optical depth and amount 38 

with warming as the SW cloud feedback. The SW cloud feedback over oceans in the fifth 39 

climate model intercomparison project (CMIP5) is shown in Figure 1. Across GCMs the 40 

SW cloud feedback transitions from positive in the subtropics to negative poleward of 41 

around 50°. This is particularly pronounced in the Southern Hemisphere, but also occurs 42 

in the Northern Hemisphere. In GCMs this effect is not strongly coupled to shifts in 43 

midlatitude jet position [Bender et al., 2011; Ceppi and Hartmann, 2015; Ceppi et al., 44 

2014; Grise and Medeiros, 2016]. The SW cloud feedback may be decomposed into 45 

contributions from cloud optical depth, amount, and altitude [Zelinka et al., 2012]. The 46 

contributions from amount and optical depth, which dominate the SW, are shown in 47 

Figure 1. It is clear that the majority of the positive subtropical feedback originates from 48 

cloud area decreasing and revealing the relatively dark ocean beneath, while the negative 49 

midlatitude feedback is due to increasing cloud optical depth.  50 

<< Insert Figure 1 here>> 51 

 Decreasing cloud cover with warming has been studied extensively and is a robust 52 

feature of both large eddy simulation and observational analysis [Blossey et al., 2013; 53 

Bretherton, 2015; Bretherton and Blossey, 2014; Bretherton et al., 2013; Clement et al., 54 

2009; Klein et al., 1995; Myers and Norris, 2013; 2015; 2016; Norris and Leovy, 1994; 55 

Norris et al., 2016; Qu et al., 2014a; b; Qu et al., 2015; Rieck et al., 2012; Seethala et al., 56 

2015]. It is well known that increasing boundary layer stability increases cloud cover and 57 

that boundary layer stability increases as the planet warms [Klein and Hartmann, 1993; 58 

Myers and Norris, 2015; Qu et al., 2014b; Webb et al., 2013; Wood and Bretherton, 59 



2006]. However, the increase in cloud cover due to increasing stability seems to be 60 

overwhelmed by decreases driven by thermodynamic mechanisms linked to sea surface 61 

temperature increases [Bretherton and Blossey, 2014]. This positive subtropical cloud 62 

amount feedback increases equilibrium climate sensitivity (ECS), , and the negative 63 

feedback at high latitudes has a counterbalancing effect on ECS. The robustness of the 64 

positive cloud amount feedback in the subtropics makes it particularly important to 65 

understand whether the negative feedback in the mid-latitudes is physical, and if so, if its 66 

strength is accurately represented. 67 

The potential for a pronounced change in cloud optical depth due to mixed-phase 68 

clouds transitioning to a relatively more liquid-dominated state was first noted by 69 

Mitchell et al. [1989] and Li and Le Treut [1992]. Over the last decade this so-called 70 

mixed-phase cloud feedback has been of increasing interest in the climate modeling 71 

community [Ceppi et al., 2016a; Choi et al., 2014; Kay et al., 2016; McCoy et al., 2016; 72 

Naud et al., 2006; Tan and Storelvmo, 2016; Tan et al., 2016; Tsushima et al., 2006] and 73 

has been recently featured in review articles [Gettelman and Sherwood, 2016; Storelvmo 74 

et al., 2015]. It appears that representing mixed-phase cloud behavior in a way that is 75 

both physically robust and tractable from a modeling standpoint is becoming a widely 76 

acknowledged challenge in accurately predicting 21st century climate change. 77 

 As discussed in Mitchell et al. [1989] and Li and Le Treut [1992], the increase in 78 

cloud optical depth in the mid-latitudes appears to be due to transitions of mixed-phase 79 

cloud cover to a relatively less ice-dominated and more liquid-dominated state. At zero-th 80 

order this is simply because ice crystals tend to be larger than liquid droplets and thus less 81 

reflective for a constant amount of condensate [McCoy et al., 2014; Tsushima et al., 82 

2006; Zelinka et al., 2012]. In addition to this effect it is probable that the cloud water 83 

mass will increase with warming because ice precipitates much more efficiently than 84 

liquid [Ceppi et al., 2016a; Field and Heymsfield, 2015; Heymsfield et al., 2009; McCoy 85 

et al., 2015a; Mitchell et al., 1989; H Morrison et al., 2011]. This mixed-phase cloud 86 

feedback is the subject of this chapter. 87 

The mixed-phase cloud feedback is particularly difficult to constrain in GCMs for 88 

several reasons. These may be generally grouped into bottom-up and top-down 89 

uncertainties. From the bottom-up, the mixed-phase cloud feedback is uncertain because 90 



it is governed by ice nucleation; and other mixed-phase cloud physics, which are a 91 

complex interplay of different mechanisms, many of which still lack a strong constraint 92 

[Atkinson et al., 2013; Hoose and Möhler, 2012; H Morrison et al., 2011; Murray et al., 93 

2012; Tan and Storelvmo, 2016]. From the top down the feedback is uncertain because 94 

we cannot accurately measure the amount of cloud ice mass, making it difficult for 95 

models to be rigorously evaluated [Carro-Calvo et al., 2016; Hu et al., 2010; Jiang et al., 96 

2012]. Together, these top-down and bottom-up uncertainties yield a wide variety of 97 

mixed-phase behaviors in climate models and have led to mixed-phase cloud feedbacks 98 

being one of the major contributors to uncertainty in the cloud feedback, and thus climate 99 

sensitivity [McCoy et al., 2016; Zelinka et al., 2016]. In this chapter we will discuss the 100 

origins, mechanisms, and possible constraints on this feedback. 101 

 102 
Figure	1	The	SW	cloud	feedback	of	GCMs	participating	in	CMIP5.	The	figure	on	the	left	shows	the	multi-103 
model	mean	SW	cloud	feedback	with	one	standard	deviation	across	the	GCMs	shown	as	a	dashed	line.	104 
The	same	figure	is	shown	on	the	right,	but	with	SW	cloud	feedback	decomposed	into	contributions	from	105 
optical	depth	and	amount	feedbacks	(see	Zelinka	et	al.	[2012]).		106 

 107 

The	Mixed-Phase	Cloud	Feedback	in	GCMs	108 

 As we discussed in the introduction, understanding the robustness and strength of 109 

the mixed-phase cloud feedback in GCMs is important for better constraining ECS and 110 
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offering better predictions of 21st century climate change [Tan et al., 2016]. Because 111 

mixed-phase cloud physics operate at a length scale smaller than global climate model 112 

resolution their behavior in GCMs must be parameterized. Readers interested in a more 113 

in-depth discussion of how MPCs are parameterized in GCMs should read chapter <<cite 114 

Kali Furtado’s chapter on mixed-phase cloud parameterization>> of this text.  115 

 As noted above, parameterization of mixed-phase cloud physics is not the focus 116 

of this chapter, but it is useful to discuss it briefly. When confronted with the need to 117 

represent mixed-phase clouds, GCMs may either attempt to represent the nucleation of 118 

ice by aerosol and the growth of ice particles in MPCs, or may simply diagnose the 119 

partitioning of ice and liquid based on a function of temperature [Cesana et al., 2015; 120 

Tsushima et al., 2006]. Both approaches are problematic. Diagnosing liquid fraction as a 121 

function of atmospheric temperature is a very stable method of describing mixed-phase 122 

clouds, and can be implemented based on aircraft sampling of clouds (see Bower et al. 123 

[1996]), however it cannot represent the impacts of regional variability in ice nuclei (IN) 124 

on supercooled liquid clouds [Atkinson et al., 2013; Kanitz et al., 2011; Murray et al., 125 

2012]. Indeed, when observed over large regions, differences in cloud cover in regions 126 

that have access to IN (particularly dust) have noticeably less supercooled liquid [Hu et 127 

al., 2010; Kanitz et al., 2011; Tan et al., 2014]. Sources of IN, particularly feldspar, are 128 

much more common in the Northern Hemisphere than in the Southern Hemisphere, 129 

leading to Northern Hemisphere clouds being more glaciated [Atkinson et al., 2013; A E 130 

Morrison et al., 2010; Murray et al., 2012].  131 

 While mixed-phase cloud processes are complex, when a mixed-phase cloud is 132 

warmed it should transition from a more ice-dominated to a more liquid-dominated state 133 

as sinks of cloud water through ice-phase precipitation are suppressed [Ceppi et al., 134 

2016a; McCoy et al., 2015a; Mitchell et al., 1989; H Morrison et al., 2011].  Because of 135 

the difference in the radiative properties of ice and liquid this results in an increase in 136 

upwelling SW and a negative optical depth feedback, providing that the size of ice 137 

crystals and liquid droplets are reasonably represented in a given GCM.  138 

Do GCMs all agree on the mixed-phase cloud temperature range? By examining 139 

the behavior of mixed-phase clouds in GCMs as a function of atmospheric temperature it 140 

becomes clear that climate models disagree strongly as to the temperature range inhabited 141 



by mixed phase clouds. This is shown in Figure 2 for GCMs participating in CMIP5. To 142 

create the curves shown in Figure 2 for each GCM the fraction of liquid condensate is 143 

calculated within each model-level and latitude-longitude grid box. The fraction of liquid 144 

condensate is then averaged as a function of atmospheric temperature. This yields a gross 145 

statistical representation of the partitioning of ice and liquid as a function of temperature 146 

within each model. Examination of these curves reveals substantial disagreement 147 

between GCMs in terms of their mixed-phase condensate partitioning behavior. Some 148 

GCMs maintain liquid water to temperatures as low as 220K, well below the 149 

homogeneous freezing temperature, while some models are entirely composed of ice at 150 

temperatures as high as 260K. Overall, there is a nearly 35K range across models where 151 

ice and liquid are equally prevalent.  While it is useful to discuss the temperature range 152 

for which mixed-phase clouds exist in a particular GCM, we will utilize the temperature 153 

at which ice and liquid are equally mixed for the remainder of this chapter. This is useful 154 

for brevity and characterizing the mixed-phase cloud temperature range of each model by 155 

a single number still has the capability to explain a significant amount of inter-model 156 

variability. We will refer to this quantity, the atmospheric temperature at which ice and 157 

liquid each make up 50% of existing condensate, as T5050 [McCoy et al., 2016; Naud et 158 

al., 2006].  159 

<< Insert Figure 2 here >> 160 

We have shown that in the models participating in CMIP5 there is an 161 

approximately 35K range in the temperature where ice and liquid are equally prevalent 162 

(Figure 2). Can the range of GCM ice to liquid partitioning shown in Figure 2 be 163 

constrained using observations? As noted above, the curves in Figure 2 show the 164 

temperature dependent partitioning of ice and liquid for vertical averages over GCM 165 

model levels (see McCoy et al. [2015a] for calculation details). Because of this it is hard 166 

to evaluate this model behavior with observations.  Evidently this is not directly 167 

comparable to in-situ measurements made from an airplane, because airplane 168 

measurements are made in specific cloud regimes and at high temporal and spatial 169 

resolutions [Bower et al., 1996; Cober et al., 2001; Isaac and Schemenauer, 1979; 170 

Korolev and Isaac, 2003; Moss and Johnson, 1994; Mossop et al., 1970; Storelvmo et al., 171 

2015].  172 



A more direct comparison may be made between GCM phase partitioning and 173 

ground- and space-based remote sensing. Naud et al. [2006] utilized Moderate Resolution 174 

Imaging Spectroradiometer (MODIS) [King et al., 2003] measurements of cloud top 175 

phase in northern hemisphere cyclones to show that cloud tops were equally partitioned 176 

between ice and liquid at roughly 255K in the Northern Hemisphere.  Surface-based lidar 177 

estimates made by Kanitz et al. [2011] showed a T5050 that varied between 242K for 178 

pristine maritime regions and 260K for a continental site in Leipzig, Germany. This 179 

contrast between pristine maritime regions away from dust sources and continental sites 180 

is echoed by studies conducted using space-based lidar [Hu et al., 2010; Tan et al., 2014]. 181 

Komurcu et al. [2014] evaluated a selection of state of the art GCMs that do not treat ice 182 

and liquid partitioning as a function of temperature alone. The simulated cloud lidar 183 

output from these models showed that all six GCMs produced clouds that were much 184 

more glaciated than observed by the CALIPSO lidar [Winker et al., 2009]. This result is 185 

reinforced by the analysis performed by Cesana et al. [2015] and McCoy et al. [2015a] 186 

who diagnosed the effective ice to liquid partitioning curve used by several of the models 187 

participating in CMIP5 (Figure 2). However, it was shown by Cesana et al. [2015] using 188 

simulated lidar output from GCMs that lidar-diagnosed ice to liquid partitioning is not 189 

directly comparable to the curves shown in Figure 2. This makes using space-borne 190 

observations to constrain ice in mixed-phase clouds in models problematic. McCoy et al. 191 

[2016] offered a rough estimate of the range where ice and liquid are equally mixed 192 

based on results from Cesana et al. [2015] and Hu et al. [2010]. This range was estimated 193 

at 254K-258K, in the global mean. This is a much smaller range than the range of 194 

temperatures from CMIP5 models (shown as a shaded area in Figure 2), and supports the 195 

idea that the current generation of GCMs tends to freeze liquid at temperatures that are 196 

too high [Cesana et al., 2015; Komurcu et al., 2014; McCoy et al., 2016]. 197 

The most apparent effect of this diversity in model parameterization manifests 198 

itself in a wide variety of climatological cloud properties in GCMs. GCMs that maintain 199 

liquid down to colder temperatures tend to both have more liquid and less ice, as one 200 

would naïvely expect. This is shown in Figure 3 by examining how the T5050 201 

temperature relates to the inter-model spread in historical LWP and IWP in CMIP5 202 

GCMs. In addition, GCMs with a higher T5050 appear to have less overall cloud water 203 



(ice and liquid combined), which is generally consistent with the idea of enhanced 204 

precipitation efficiency in more glaciated clouds (see H Morrison et al. [2011], Ceppi et 205 

al. [2016a], and McCoy et al. [2015a]).  206 

<<Insert Figure 3 here>> 207 

Mixed-phase parameterizations have the capability to substantially influence the 208 

climate mean-state ice and liquid content in the mixed-phase regions. This variety in 209 

GCM climate mean-state ice and liquid water content may potentially be due to the weak 210 

observational constraint on ice-phase condensate in the current climate [Jiang et al., 211 

2012]. Only the MODIS and Cloudsat instruments offer estimates of the cloud ice water 212 

content through the vertical extent of the atmosphere. MODIS only retrieves IWP while 213 

the sun is up, which excludes nighttime and high-latitude winter. It is difficult to estimate 214 

an error in this retrieval beyond errors engendered by the assumed particle size 215 

distribution used in the retrieval and intercomparison of GCMs and observations by Jiang 216 

et al. [2012] assigned a factor of two uncertainty in the IWP retrieval from MODIS.  The 217 

Cloudsat radar is highly sensitive to the partitioning of cloud ice and precipitation 218 

[Eliasson et al., 2011] as well as to the assumed particle size distribution [Jiang et al., 219 

2012]. The uncertainty range in Cloudsat IWP assigned by Jiang et al. [2012] is between 220 

50% and a factor of two depending whether or not columns that the cloud radar has 221 

identified as precipitating are excluded from the dataset. Ultimately, this wide variability 222 

in the IWP that can be consistent with observations means that GCMs are left with 223 

relatively little observational constraint in the creation of cloud parameterizations.  224 

Evidently GCM mixed-phase parameterizations play an important role in determining the 225 

column-integrated ice and liquid in mixed-phase regions. Does this matter to the SW 226 

cloud feedback? In general, it appears that models whose mixed-phase clouds contain a 227 

greater amount of ice that is susceptible to transitioning to water will have a larger 228 

increase in liquid water with warming. This is shown in Figure 4 by examining the 229 

change in LWP for a CO2-induced warming, where the change in LWP has been 230 

normalized by surface temperature change.  231 

Figure 4 shows that the intermodel spread in T5050 is strongly correlated with 232 

warming-induced increases in LWP. That is to say, models that glaciate their cloud cover 233 



more at warmer temperatures also increase their LWP more strongly in a warming 234 

climate and have a more pronounced negative optical depth feedback.  235 

<<Insert Figure 4 here>> 236 

The first intercomparison of GCM mixed-phase cloud feedbacks was performed 237 

by Tsushima et al. [2006], who analyzed five of the GCMs participating in the third 238 

climate model intercomparison project (CMIP3) and showed that there was a strong 239 

relationship between the phase partitioning in mixed-phase clouds and warming-induced 240 

increases in LWP. This dependence of the optical depth feedback on ice and liquid 241 

partitioning was also demonstrated by Choi et al. [2014], who created several versions of 242 

the CAM3 GCM with different ice and liquid partitioning functions. This behavior still 243 

appears to be a robust feature of CMIP5 models [McCoy et al., 2015a]. Ceppi et al. 244 

[2016a] further demonstrated that this linkage is causal and not coincidental by 245 

perturbing the mixed-phase microphysical parameterizations in GFDL-AM2.1 and 246 

CESM-CAM5 showing that decreased efficiency of liquid water sinks through mixed-247 

phase processes played a critical role in the increase in mid-latitude LWP with warming. 248 

It is interesting to note that there is not a consensus between GCMs participating in 249 

CMIP5 regarding whether the increase in LWP with warming is dominated by a simple 250 

repartitioning of condensate with warming, or if it is due to an increase in overall 251 

condensate mass in line with decreases in precipitation efficiency [Ceppi et al., 2016a; 252 

McCoy et al., 2015a]. In some GCMs the increase in LWP with warming may be 253 

explained entirely by replacing ice with liquid in line with increasing atmospheric 254 

temperature and the curves shown in Figure 2, while the increase in LWP in other GCMs 255 

is almost entirely due to increases in overall cloud condensate in line with suppression of 256 

frozen precipitation sinks as clouds move to a less glaciated state [McCoy et al., 2015a]. 257 

Because of this model diversity, observations of changes in precipitation efficiency due 258 

to changes in prevalence of glaciated hydrometeors may be a useful constraint on the 259 

mixed-phase cloud feedback. 260 

Viewing mixed-phase cloud properties in a zonal-mean sense is useful for 261 

discussing the large spread in cloud feedbacks in the Southern Ocean among GCMs. 262 

However, in order to provide more realistic model parameterization of mixed-phase cloud 263 

processes it is important to investigate how different cloud regimes contribute to the 264 



mixed-phase cloud feedback. Studies based on cyclone compositing in mid-latitude 265 

regions reveal that the change in LWP with warming and changes in reflected SW are not 266 

tightly coupled [Bodas-Salcedo et al., 2016]. The clouds in cyclone composites that are 267 

responsible for the bulk of the radiative response to warming are non-frontal clouds, 268 

which are relatively thin and tend to be supercooled liquid, as opposed to the frontal 269 

clouds, which have significant amount of ice and liquid. Because the frontal clouds are 270 

already relatively opaque, increases in their optical depth are less important than 271 

increases in the optical depth of thin, non-frontal clouds [Bodas-Salcedo et al., 2016].  272 

Discussion of the mixed-phase cloud feedback tends to focus on mixed-, and ice-273 

phase microphysics, but warm, liquid microphysics also have the potential to affect the 274 

mixed-phase cloud feedback. We have discussed the mixed-phase cloud feedback in the 275 

context of changes in LWP. However, cloud optical depth is controlled by both LWP and 276 

cloud droplet number concentration, which is in turn controlled by the availability of 277 

cloud condensation nuclei (CCN) [Bréon et al., 2002; Nakajima et al., 2001; Sekiguchi et 278 

al., 2003; Storelvmo et al., 2006; Twomey, 1977]. It is interesting to speculate on how 279 

changes in the availability of cloud condensation nuclei (CCN) with warming will affect 280 

the mixed-phase cloud feedback. As noted before, liquid droplets are much smaller than 281 

ice-crystals, and thus a given mass of cloud liquid is brighter than the same mass of ice. 282 

However, the availability of CCN, and thus the number concentration in the deglaciated 283 

cloud, also significantly affects the strength of the mixed-phase cloud feedback by 284 

affecting how relatively bright the newly minted liquid is [McCoy et al., 2014]. The 285 

mixed-phase cloud feedback occurs in both the Northern and Southern midlatitudes. 286 

These are extremely different aerosol regimes. In the Northern Hemisphere 287 

anthropogenic CCN controls cloud microphysical properties [Carslaw et al., 2013]. The 288 

Southern Ocean is highly pristine and accurate representation of its aerosol sources is 289 

difficult [Hamilton et al., 2014]. Sources of CCN in the Southern Ocean are primarily 290 

natural and composed of sea spray and the sulfate from biogenic dimethyl sulfide (DMS) 291 

[G. P. Ayers and Gras, 1991; Greg P. Ayers and Cainey, 2007; Charlson et al., 1987; 292 

Kruger and Grassl, 2011; Lana et al., 2012; McCoy et al., 2015b; Meskhidze and Nenes, 293 

2006; 2010; Vallina and Simó, 2007; Vallina et al., 2006]. Because a complex web of 294 

organisms produces DMS it is difficult to precisely diagnose how changes in the ocean 295 



biome will affect its production. It seems likely that biogenic emissions of DMS will 296 

decrease with increasing ocean acidification in a warming world [Six et al., 2013], 297 

potentially blunting the negative mid-latitude mixed-phase cloud feedback. The control 298 

of Southern Ocean CCN by sea-spray aerosol is particularly interesting because sea spray 299 

emissions are closely tied to wind speed [Grythe et al., 2014], and mixed-phase cloud 300 

parameterizations will affect wind speed through their control of the latitudinal gradient 301 

of absorbed SW radiation [Ceppi et al., 2014; McCoy et al., 2016], potentially yielding an 302 

interplay of these mechanisms. 303 

 Ultimately, the amount of liquid in a cloud plays a central role in determining its 304 

albedo. If the LWP in mixed-phase regions is so strongly controlled by the mixed-phase 305 

parameterization in a given GCM there must be another factor to counter-balance it and 306 

bring the planetary albedo into a reasonable agreement with observations. That is to say, 307 

the planetary albedo in a given GCM should be approximately consistent with 308 

observational estimates in the climate mean-state. If too little supercooled liquid is 309 

maintained in the clouds then this will lead to too low an albedo. Some other factor must 310 

increase the planetary albedo so that it is generally consistent with observations. It 311 

appears that, at least in the most recent generation of GCMs, this factor is the cloud 312 

fraction. It can be seen by regressing inter-model spread in cloud fraction on the mixed-313 

phase characterization parameter, T5050, that models that glaciate clouds at warmer 314 

temperatures (higher T5050) both have lower LWP and a higher CF [McCoy et al., 2016]. 315 

The correlation between T5050 and LWP is restricted to regions where a substantial 316 

amount of cloud exists above the melting level, but the inter-model correlation between 317 

T5050 and cloud area coverage appears to be a global phenomenon, which is clearly 318 

unphysical, especially since one would expect increased glaciation to decrease cloud 319 

cover [Heymsfield et al., 2009; McCoy et al., 2016]. One possible explanation of this 320 

behavior is that the critical relative humidity (RH) that GCMs use to parameterize cloud 321 

cover [Bender, 2008; Mauritsen et al., 2012; Quaas, 2012] is adjusted to increase cloud 322 

cover and thus bring planetary albedo into a reasonable range. This is not an entirely 323 

unreasonable supposition and has been singled out as a common ‘tuning parameter’ 324 

[Bender, 2008; Mauritsen et al., 2012]. Anecdotally, it may be seen that in studies which 325 

have directly addressed the sensitivity of Southern Ocean cloud properties to mixed-326 



phase parameterizations that the critical RH has been adjusted to yield a control climate 327 

that is in energy balance [Kay et al., 2016; Tan et al., 2016]. Ultimately, this tuning 328 

between mixed-phase clouds and cloud fraction yields brighter subtropics and darker 329 

extratropics when model clouds glaciate at warmer temperatures [McCoy et al., 2016]. It 330 

is interesting to note that this behavior is consistent with the emergent constraint on ECS 331 

offered by Volodin [2008] (see Klein and Hall [2015] for a discussion of emergent 332 

constraints).  333 

In mixed-phase regions this tuning between cloud cover and liquid content in 334 

MPCs also results in clouds that are both too few, or cover too little area, and clouds that 335 

contain too much liquid and are too bright. In many GCMs this seesaw between cloud 336 

liquid and cloud area yields model cloud properties that agree poorly with observed cloud 337 

properties [McCoy et al., 2016].  338 

 The choices made regarding mixed-phase cloud parameterizations in GCMs have 339 

far ranging impacts on model behavior. Can we use observations of mixed-phase cloud 340 

temperature range to provide a so-called emergent constraint [Klein and Hall, 2015] on 341 

climate sensitivity in the current generation of GCMs? The T5050 that characterizes 342 

mixed-phase cloud parameterization does not correlate strongly across models with 343 

equilibrium climate sensitivity [McCoy et al., 2016]. This is because the subtropical 344 

cloud area feedback is more positive in models with a higher T5050, effectively 345 

counterbalancing the more negative cloud optical depth feedback in the midlatitudes 346 

(higher T5050 implies stronger increase in LWP with warming, see Figure 4). It is not 347 

clear why models with a higher T5050 have a more positive subtropical cloud amount 348 

feedback. One potential mechanism may be the positive feedbacks between boundary-349 

layer radiative cooling, relative humidity, and cloud cover, as described by Brient and 350 

Bony [2013], thus linking climate mean-state cloud fraction to the response of cloud 351 

fraction to warming.   352 

 In summary, because of the wide variety of mixed-phase cloud behavior in the 353 

current GCMs cloud optical depth feedbacks are highly uncertain. However, GCMs must 354 

have a reasonable planetary albedo. Because of this necessity, uncertainty as to the 355 

amount of liquid in mixed-phase cloud cover results in a counterbalancing variability in 356 

cloud area. This seesaw between cloud area and mixed-phase cloud liquid results in 357 



cancellation between the negative optical depth feedback in the mid-latitudes and the 358 

positive cloud area feedback in the subtropics. Investigation by Zelinka et al. [2016] in 359 

CMIP3 and CMIP5 GCMs that provided ISCCP simulator output showed a 17% decrease 360 

in intermodel variance in net cloud feedback due to this anti-correlation between cloud 361 

amount and optical depth feedback. Given the robustness of the positive subtropical 362 

cloud area feedback (see introduction) it is probable that this compensation between 363 

cloud amount and optical depth feedbacks leads to an underestimation of climate 364 

sensitivity in the current generation of GCMs. In the next section we will discuss 365 

observational constraints on the mixed-phase cloud feedback.  366 

 367 
Figure	2	The	fraction	of	cloud	water	that	is	liquid	as	a	function	of	atmospheric	temperature	from	a	368 
selection	of	GCMs	participating	in	CMIP5	(for	a	full	list	of	GCMs	and	details	of	the	calculation	see	McCoy	et	369 
al.	[2015a]).	The	midpoint	of	the	curves,	where	ice	and	liquid	are	equally	mixed	(T5050),	is	shown	370 
highlighted	by	dots.	The	range	in	of	T5050	that	would	be	inferred	based	on	the	CALIPSO	cloud	top	phase		371 
[Hu	et	al.,	2010]	combined	with	comparison	between	paritioning	and	simulated	lidar	data	from	Cesana	372 
et	al.	[2015];	[Hu	et	al.,	2010]	is	shown	in	red.		373 

 374 



 375 
Figure	3	The	across	model	correlation	between	T5050	(see	Figure	2)	and	zonal-mean	climate	mean-376 
state	cloud	properties	over	oceans:		liquid	water	path	(LWP),	ice	water	path	(IWP),	and	ice	and	liquid,	or	377 
condensed	water	path	(CWP).	In	the	mid-latitudes,	GCMs	that	freeze	liquid	at	warmer	temperatures	378 
(high	T5050)	have	less	liquid	and	more	ice.	They	also	have	less	overall	ice	and	liquid	water	path.	(Figure	379 
adapted	from	McCoy	et	al.	[2016]).	380 
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	381 

Figure	4	as	in	Figure	3,	but	showing	the	correlation	between	T5050	and	change	in	zonal-mean	LWP	over	382 
oceans	normalized	by	change	in	SST	between	historical	and	RCP8.5	scenarios	in	CMIP5.	GCMs	that	have	a	383 
mixed-phase	scheme	that	has	generated	a	large	amount	of	susceptible	ice	in	the	climate	mean	state	384 
increase	their	liquid	water	path	more	with	warming.		385 

 386 

	387 

Observations	of	the	mixed-phase	cloud	feedback	388 

 In the previous sections we have discussed the mixed-phase cloud feedback in the 389 

context of climate models. Can we observe the fingerprint of the mixed-phase cloud 390 

feedback in the observational record?   391 

This task is somewhat hampered by the fact that the negative optical depth 392 

feedback should occur in the high- and mid-latitudes.  Passive remote sensing is subject 393 

to substantial errors at low sun angles in the high-latitude wintertime [Grosvenor and 394 

Wood, 2014]. Further, the longer data records offered by ISCCP [Rossow and Schiffer, 395 
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1999] and PATMOS-x [Heidinger et al., 2014] are not stable in a climate sense and must 396 

be corrected for artifacts [Norris and Evan, 2015].   397 

Even with these observational uncertainties, can we see optical depth increasing 398 

with increasing surface temperature in the satellite record? Several studies have shown a 399 

pronounced increase in optical depth with warming over land at low temperatures 400 

[Feigelson, 1978; Genio and Wolf, 2000; Tselioudis et al., 1992] while studies over ocean 401 

regions generally indicate no covariance between warming and optical depth, or a slight 402 

decrease [Norris and Iacobellis, 2005; Tselioudis et al., 1992]. Gordon and Klein [2014] 403 

demonstrated that by comparing the optical depth feedback in GCMs with the optical 404 

depth-temperature relation detected by Tselioudis et al. [1992] that the strong negative 405 

cloud feedback diagnosed by GCMs was too negative. 406 

 Is there no evidence of a substantial increase in cloud optical depth with warming 407 

over oceans? The difficulty in robustly detecting an increase optical depth with increasing 408 

surface temperature in the observational record may reflect observational limitations, but 409 

it may also be partially due to the fact that many different mechanisms affect boundary-410 

layer maritime cloud cover in a warming world. As noted earlier, cloud amount, and to 411 

some extent LWP, should generally decrease with enhanced surface temperature in the 412 

absence of mixed-phase transitions [Bretherton and Blossey, 2014], and it should 413 

increase due to increased boundary layer stability, which increases with surface 414 

temperature [Klein and Hartmann, 1993; Myers and Norris, 2015; Qu et al., 2014a; b; Qu 415 

et al., 2015; Wood and Bretherton, 2006]. Given the limited resolution of remote-sensing 416 

instruments, observational artifacts engendered by attempting to disentangle changes in 417 

cloud area from cloud optical depth may potentially make detecting the sensitivity of 418 

cloud albedo to temperature difficult.  419 

Despite these issues, recent investigation directed at exploring the possibility of a 420 

negative cloud feedback due to mixed phase transitions have diagnosed a near-zero to 421 

weak increase in cloud optical depth with temperature. While these studies disagree 422 

somewhat as to the strength of the midlatitude SW cloud feedback, they agree that the 423 

most negative SW cloud feedbacks in GCMs are not consistent with the current 424 

observational record [Ceppi et al., 2016b; Terai et al., 2016].  425 



The observationally constrained range of the Southern Ocean SW cloud feedback 426 

(including both amount and optical depth components) inferred by Ceppi et al. [2016b] is 427 

more negative than the range inferred by Terai et al. [2016], even though these studies 428 

share observational data sets. It is probable that this difference is due to systematic 429 

differences in the approaches taken by these studies to diagnosing the sensitivity of cloud 430 

optical depth to temperature. Different predictor variables may partially explain the 431 

different results arrived at by these studies. Ceppi et al. [2016b] regressed upon low- to 432 

mid-tropospheric temperature alone, while Terai et al. [2016] regressed upon both 433 

estimated inversion strength (EIS, [Wood and Bretherton, 2006])  and temperature. 434 

Strong and nonlinear covariation between EIS and tropospheric temperature [Myers and 435 

Norris, 2015] may lead to attributing variation in optical depth and cloud cover to 436 

tropospheric temperature that are due to variation in EIS if only temperature is used as a 437 

predictor. Another possible source of disagreement between these studies is that Terai et 438 

al. [2016] focused on the optical depth of low clouds, while Ceppi et al. [2016b] 439 

investigated changes in both cloud fraction and optical depth without restricting to low 440 

clouds. [Ceppi et al., 2016b] diagnosed increases in both cloud cover and optical depth 441 

with warming leading to a negative overall SW cloud feedback.  For these studies to be 442 

compared they must both be cast in terms of the SW cloud feedback as a whole. When 443 

Terai et al. [2016] replaced the optical depth portion of the SW cloud feedback in GCMs 444 

with the optical depth sensitivities that they diagnosed from observations their results 445 

were in agreement with the overall SW cloud feedback range inferred by Ceppi et al. 446 

[2016b].  This is summarized in Figure 5 for the Southern Ocean in the latitude band 447 

45°S-60°S.    448 

<< Insert Figure 5 here> 449 

Ultimately, it appears that the observational record is in qualitative agreement that 450 

the most negative SW cloud feedbacks predicted by GCMs are too negative (Figure 5).  451 

This result is consistent with the results presented in the previous section: compared to 452 

observations, GCMs generally represent mixed-phase clouds as too glaciated at warm 453 

temperatures and increase LWP with warming too strongly. This too-strong dependence 454 

of LWP on temperature is corroborated by investigation of the long data record of 455 

microwave-observed LWP [O'Dell et al., 2008] shown in Ceppi et al. [2016b]. The 456 



dependence of LWP on temperature derived in this study is shown in Figure 6. This 457 

provides a complimentary analysis to studies investigating the dependence of optical 458 

depth on temperature because optical depth is a function of both droplet number 459 

concentration and liquid water path.  Showing that LWP is dependent on surface 460 

temperature disentangles possible trends in cloud microphysical properties. 461 

<<Insert Figure 6 here>> 462 

 463 

Constraint	of	Mixed-Phase	properties	in	GCMs	464 

 Evidently the mixed-phase optical depth feedback is consistent with the 465 

observational record. As discussed above, the decisions that GCMs make concerning the 466 

handling of mixed-phase cloud cover strongly affects the negative optical depth feedback. 467 

Because of the pronounced hemispheric contrast in IN and, subsequently cloud 468 

glaciation[Hu et al., 2010; Kanitz et al., 2011; Tan et al., 2014], GCMs should have a 469 

parameterization that responds to aerosol concentrations to properly represent mixed-470 

phase cloud cover. One way to pursue this is to attempt to simply create the most 471 

advanced parameterization possible, but due to the complexity of mixed-phase cloud 472 

microphysics this has been exceedingly difficult to accomplish. Some processes that 473 

govern the mixed-phase system simply lack any strong observational constraint and they 474 

may be thought of as a so-called ‘tunable-parameter’ [Tan and Storelvmo, 2016].  475 

 Ultimately, the goal of adjusting the mixed-phase parameterization is to improve 476 

model biases in regional radiation budgets, and the global circulation [Grise et al., 2015; 477 

Kay et al., 2016; Trenberth and Fasullo, 2010]. One approach that has been used to 478 

address uncertainty in how to adjust the mixed-phase parameterization is to choose the 479 

parameters that govern mixed-phase clouds in GCMs in such a way that the simulated 480 

CALIPSO supercooled liquid occurrence in the GCM matches observations [Tan and 481 

Storelvmo, 2016]. In prognostic mixed-phase parameterizations there are many different 482 

factors that control the occurrence of supercooled liquid and there are many different 483 

combinations that may generate similar looking mixed-phase clouds. To explore this Tan 484 

and Storelvmo [2016] utilized a quasi-Monte Carlo sampling approach to investigate how 485 

different combinations of mixed-phase parameters satisfied observational constraints on 486 



supercooled liquid occurrence.   In the sensitivity analysis conducted by Tan and 487 

Storelvmo [2016] it was found that the vast majority of supercooled liquid occurrence in 488 

the CAM5.1 GCM was governed by the Wegener-Bergeron-Findeisen (WBF) process 489 

[Storelvmo and Tan, 2015]. The importance of the WBF process inferred by Tan and 490 

Storelvmo [2016] is in agreement with the investigations of existing GCM 491 

parameterizations conducted by Cesana et al. [2015] and Komurcu et al. [2014], which 492 

also found that the WBF process exerted a significant control on the mixed-phase cloud 493 

behavior in an array of different GCMs. The version of CAM5.1 created by Tan and 494 

Storelvmo [2016] to agree best with CALIPSO was run with the fully-coupled version of 495 

the model in Tan et al. [2016] to investigate the response of the model to warming. It was 496 

found that this adjustment to bring the mixed-phase cloud parameterization into 497 

agreement with observed supercooled liquid occurrence raised the equilibrium climate 498 

sensitivity (ECS) substantially as it reduced the occurrence of glaciated cloud cover in the 499 

climate mean-state and reduced the negative mid-latitude optical depth cloud feedback.    500 

 The creation of a mixed-phase cloud scheme that is tuned to agree with our best 501 

space-borne measures of mixed-phase behavior in a state-of-the-art GCM substantially 502 

increases the ECS within that model. What does this mean for the range on ECS offered 503 

by model intercomparison? It should be noted that many other factors determine the ECS 504 

of a given GCM. However, the increase in CESM’s ECS in Tan et al. [2016]’s analysis 505 

indicates that misrepresentation of mixed-phase clouds had led to an under-representation 506 

of ECS within that model. As noted earlier, in general, GCMs tend to glaciate mixed-507 

phase clouds at temperatures that are too warm in the global-mean relative to space-borne 508 

estimates [Cesana et al., 2015; McCoy et al., 2016]. Tighter constraints on the mixed-509 

phase parameterizations in these GCMs should lead to an increase in ECS in models with 510 

too little supercooled liquid as the magnitude of the mixed-phase cloud feedback is 511 

reduced. 512 

 513 
	514 



  515 
Figure	5	SW	cloud	feedback	from	GCMs	participating	in	CMIP5	(see	Zelinka	et	al.	[2013])	(red)	compared	516 
to	observationally	constrained	estimates	of	the	SW	cloud	feedback	from	Ceppi	et	al.	[2016b]	and	Terai	et	517 
al.	[2016]	(black).		Averages	are	taken	over	the	latitude	band	between	45°S	and	60°S.	518 
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 520 

 521 
Figure	6		LWP		change	in	GCMs	predicted	by	their	temperature	sensitivity	versus	their	response	to	522 
warming.	The	observational	range	inferred	from	long-term	microwave	measurements	of	LWP	is	523 
indicated	using	cross-hatching.	(Adapted	from	Ceppi	et	al.	[2016b]).	524 

 525 

Summary		526 

In this chapter we have discussed the negative cloud optical depth feedback that 527 

appears across GCMs in middle to high latitudes. This feedback is due to mixed-phase 528 

clouds transitioning to a less glaciated state as the planet warms. The uncertainty in the 529 

mixed-phase cloud feedback results from the wide variety of mixed-phase 530 

parameterizations that exist in the current generation of GCMs. Models that glaciate at 531 

warmer temperatures have a larger reservoir of ice in their mixed phase cloud cover that 532 

is susceptible to warming, which transitions to liquid as the climate warms and produce a 533 

stronger negative optical depth feedback. Cloud fraction is higher in models that glaciate 534 

clouds at warmer temperatures. This appears to be a result of the fact that a good fit to the 535 

observed cloud reflectivity is a product of cloud fraction and cloud optical depth.  If 536 

models have more ice and thus a lower cloud optical depth, then they must have a higher 537 

cloud fraction to produce a realistic planetary albedo. This indirect control of cloud cover 538 
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by the mixed-phase parameterizations in GCMs also produce an artifact of cancellation 539 

between subtropical positive cloud feedback and midlatitude negative cloud feedback. 540 

(Figure 1). 541 

We discuss several recent papers that use the satellite observational record to 542 

evaluate the strength of the mixed-phase cloud feedback. These studies agree in 543 

diagnosing a cloud feedback in the mid-latitudes due to cloud optical depth changes that 544 

is either weakly negative or near zero. Overall, they agree in showing that many GCMs 545 

have SW cloud feedbacks that are too negative in the Southern Ocean (Figure 5)[Ceppi et 546 

al., 2016b; Terai et al., 2016].  We have also discussed studies that evaluate the mixed-547 

phase temperature range in the current generation of GCMs. It was found that GCMs are 548 

generally unable to maintain supercooled liquid to low enough temperatures.  Because of 549 

this GCMs generally over-represent the strength of the negative midlatitude cloud optical 550 

depth feedback [McCoy et al., 2016]. This is also in agreement with evaluations made 551 

using a state of the art GCM that has had its mixed-phase parameterization constrained to 552 

better agree with space-borne observations of super-cooled liquid cloud occurrence [Tan 553 

et al., 2016].  554 

The representation of mixed-phase clouds in GCMs is important to the accurate 555 

prediction of 21st century climate change and to accurately represent the current climate. 556 

Overall, it is likely that this too-strong negative cloud optical depth feedback leads to an 557 

underestimation of climate sensitivity. Based on these different lines of investigation it 558 

seems clear that GCMs must carefully vet their mixed-phase parameterizations so that 559 

they agree, at least roughly, with observations of mixed-phase clouds.   560 
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