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Abstract Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may
provide insight into the different physical mechanisms of SSWs. Based on 37major SSWs during the
1958–2014 winters in the ERA reanalysis data sets, the self-organizingmaps method is used to classify the
tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns
appears as a mixed pattern consisting of the negative-signed Western Hemisphere circulation pattern and
the positive phase of the Pacific-North America pattern. The mixed pattern exhibits higher statistical
significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar
North Pacific low, Atlantic blocking, and thewestern Pacific pattern. Other clusters confirm northern European
blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological
planetary waves provides a simple interpretation for the precursors. The relationship between the classified
precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed.

1. Introduction

Major sudden stratospheric warmings (SSWs) consist of large and rapid temperature increases in the polar
stratosphere and a complete reversal of the climatological westerly winds in wintertime. It is known that
the occurrence of SSWs is preceded by the enhancement of upward wave fluxes of planetary waves from
the troposphere [Limpasuvan et al., 2004; Polvani and Waugh, 2004; Charlton and Polvani, 2007]. Recent multi-
year statistical studies on the precursors of SSWs and polar vortex intensification events (PVIs) have noted that
tropospheric blocking in some specific regions and tropospheric variability in the North Pacific can enhance or
suppress upward planetary wave propagation and give rise to anomalous stratospheric polar vortices, includ-
ing SSWs and PVIs [Martius et al., 2009; Garfinkel et al., 2010;Woollings et al., 2010; Castanheira and Barriopedro,
2010; Nishii et al., 2010, 2011; Barriopedro and Calvo, 2014; Dai and Tan, 2016; Huang et al., 2017]. However,
these studies have not yet agreed on the tropospheric precursors.

Composite and correlation analysis are used in many of the above studies to detect the tropospheric
precursors. A shortcoming of these methods is treating SSWs all together. When explaining why it would
be surprising to find a coherent tropospheric precursor pattern, Limpasuvan et al. [2005b] argued that the
specific geographic source of the anomalous planetary waves for wave numbers 1 or 2 might vary from
one SSW event to the next. An early study by Taguchi [2008] failed to find significant changes in the
frequency of blockings either before or after SSWs. The diversity of blocking precursors may weaken the
blocking-SSW statistical linkages [Woollings et al., 2010; Nishii et al., 2011]. Moreover, precursors for
regional blocking in the Northern Hemisphere and tropospheric variability in the North Pacific such as
the subpolar North Pacific low and the western Pacific (WP) teleconnection pattern focus on the regional
signals [Garfinkel et al., 2010; Nishii et al., 2010; Dai and Tan, 2016], but neglecting their planetary-scale
backgrounds. Although the Pacific-North America (PNA) pattern was suggested to link ENSO variability
to the stratospheric polar vortex [e.g. Garfinkel and Hartmann, 2008], it is not clear whether the PNA
pattern can be regarded as a precursor pattern of SSWs. In view of the above, cluster analysis could provide
an alternative framework for classifying different precursors of SSWs without losing the planetary-scale
information. Classifying the tropospheric precursor patterns of SSWs could help to better understand the
different triggering mechanisms of SSWs.

In this letter, we use the self-organizing maps (SOM) method to perform cluster analysis of the anomalous
circulation patterns in the Northern Hemisphere during the growth stage of SSWs. We explore the
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precursors and show that one of the precursor patterns appears as a mixed pattern, consisting of a combina-
tion of the negative-signed Western Hemisphere (WH) circulation pattern (C2 in Bao and Wallace [2015]) and
the positive phase of the PNA pattern.

2. Data and Methodology

We combine the four-times-daily 500 hPa geopotential height fields (Z500) from the ERA-40 (1957–1978
[Uppala et al., 2005]) and ERA-Interim (1979–2014 [Dee et al., 2011]) reanalysis data sets to create a continuous
57-winter data set. The data have a 2.5° × 2.5° horizontal resolution. Major SSWs for the period 1958–2014 are
chosen according to a SSW Compendium [Butler et al., 2017]. Although 38 SSW events are detected in ERA-
40/ERA-Interim reanalysis data set [Butler et al., 2017; Polvani et al., 2017], we remove one SSW event that
occurred in February 2002 which is detected in ERA-40 but not in ERA-Interim. Thus, 37 SSWs in ERA reanalysis
product are used in this study.

After removing the seasonal cycle averaged over the 57 winters (November–March), the Northern
Hemisphere daily average Z500 anomalies are smoothed by a 10 day low-pass filter.

We use the self-organizing maps (SOM) method for cluster analysis [e.g. Bao and Wallace, 2015]. In order to
assess the distinctiveness of a cluster, we calculate the variance ratio as in Bao and Wallace [2015]. The
variance ratio is obtained by dividing the squared distance between a cluster’s centroid and the centroid
of the entire data set by the mean squared distance between the individual maps in that cluster and the
centroid of the entire data set.

3. Results

In this study, we identify the precursors of SSWs from the Northern Hemispheric anomalous Z500 field for the
period �22 to �10 days. The negative sign indicates days prior to the central date of SSWs. The precursor
period in our study is close to the growth stage of SSWs in Limpasuvan et al. [2004], but different from the
period �10 to 0 days in Martius et al. [2009] and Barriopedro and Calvo [2014], which is closer to the mature
stage of SSWs. The composite (unclassified) precursor of 37 SSWs (Figure 1, top) only shows weak positive
anomalies over Northeastern Canada and the North Atlantic and weak negative anomalies over the North
Pacific at middle and high latitudes, similar to the composite 250 hPa geopotential height anomalies during
the growth stage of SSWs in an earlier study by Limpasuvan et al. [2004].

We then use the SOM method to carry out a cluster analysis of the Northern Hemisphere anomalous Z500
field poleward of 20°N averaged over the precursor period �22 to �10 days of 37 SSWs. Figure 1 (middle
row) shows the clusters for a 1 × 2 array (typically the number of clusters prescribed in SOM analysis is
specified as a two-dimensional array). There are 27 members classified into C2-1 and 10 members into
C2-2. However, the variance ratio of C2-1 with the value of 5.1% is very low, meaning that the C2-1 is not very
distinctive. Next, we look at the clusters for a 1 × 3 array (Figure 1, bottom row). The variance ratio of each
cluster reaches around 20% and each cluster has representative members. Thus, the clusters for a 1 × 3 array
satisfy a trade-off between distinctiveness and robustness when considering how many clusters to prescribe
in SOM [Bao and Wallace, 2015]. The SOM analysis remains similar for slightly different choices of analysis
period (�22 to �8 days or �20 to �10 days), but its advantage becomes less clear for periods longer than
17 days for this particular application.

C3-1 to C3-3 represent three types of tropospheric precursor patterns of SSWs. They are significantly different
from the SOM regimes identified from all winter days [Bao and Wallace, 2015]. C3-1 comprising 14 members
is indicative of a northern European blocking pattern along with an upstream wave train from the eastern
Pacific to eastern North America. Our result is consistent with previous studies detecting northern
European blocking as a precursor of SSWs [Limpasuvan et al., 2004; Martius et al., 2009; Garfinkel et al.,
2010;Woollings et al., 2010; Nishii et al., 2011; Barriopedro and Calvo, 2014], and it also reveals an accompany-
ing upstream wave train in the precursor pattern.

C3-2 presents a planetary-scale east-west dipole with a negative anomaly in the North Pacific and a positive
anomaly in North America and the North Atlantic together with opposite subtropical anomalies, which
appears as a westward shifted, negative-signed WH pattern (C2 in Bao and Wallace [2015]) or an eastward
shifted, positive phase of the PNA pattern. As the negative anomaly extends to the WP and the Far East
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and the positive anomaly centered over the North Atlantic, C3-2 could be related to the WP pattern, subpolar
North Pacific low, and Atlantic blocking precursors suggested in previous studies [Nishii et al., 2010; Dai and
Tan, 2016; Garfinkel et al., 2010; Martius et al., 2009; Woollings et al., 2010; Nishii et al., 2011; Barriopedro and
Calvo, 2014]. Nevertheless, here we emphasize the planetary-scale pattern rather than those regional
signals as the precursor of SSWs.

We project the daily low-pass filtered anomalous Z500 fields onto the original WH pattern and obtain the nor-
malizedWH index. The daily WP, PNA, and North Atlantic Oscillation (NAO) indices are obtained by projecting
daily low-pass filtered anomalous Z500 fields onto the WP, PNA, and NAO patterns, which are produced from
the regression of monthly mean Z500 anomalies onto the NOAA monthly WP, PNA, and NAO indices,
respectively. We also define three indices for the area-weighted averaged daily low-pass filtered Z500
anomalies divided by their respective standard deviations during November–March over the Pacific
low (150°E–130°W, 40°N–70°N), the Atlantic high (60°W–10°W, 40°N–65°N), and the Gulf of Alaska high
(160°W–130°W, 40°N–65°N).

Figures 2a–2c shows the 7 day runningmean indices for theWP pattern, theWH pattern, the PNA pattern, the
Pacific low, and the Atlantic high for the period �30 to 0 days of 12 SSWs classified in C3-2. Using 7 day run-
ning means only makes the plots look smoother, but the visual appearance is not sensitive to the alternative
choice of a 9 day or 11 day running mean. We have put confidence limits on the composite mean values in
Figure 2, based on the unsmoothed daily data. All the 12 SSWs show persistent, negative WH indices and

Figure 1. Composite of Z500 anomaly fields during the period �22 to �10 days of (top) 37 SSWs and (middle row)
clusters for a 1 × 2 array (note that the number of clusters prescribed in SOM analysis is specified as a two-dimensional
array) and (bottom row) clusters for a 1 × 3 array of Z500 anomaly fields averaged over the period �22 to �10 days
of 37 SSWs classified in each cluster. Red (blue) contours indicate positive and negative values (interval: 25 m). The variance
ratio is denoted by the percentage value, and the number of members in each cluster is shown in parentheses. Gray
shading in Figure 1 (bottom row) indicates that the composites are significant beyond the 95% confidence level based on
a t test.
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positive PNA indices during the growth stage of SSWs. The composite for the WH indices and the PNA indices
shows a higher confidence level than that for the WP indices (Figures 2a and 2c), and the WH indices precede
the PNA indices. Contrasting the Pacific low and the Atlantic high indices, both of them contribute to the
precursor pattern of SSWs, but the Pacific low plays a more important role (Figure 2b). When we project
the daily low-frequency anomalous Z500 fields onto a mixed pattern calculated as the average of the
negative-signed WH pattern and the positive phase of the PNA pattern, the composite for the mixed index
shows the highest level of significance (Figure 2c).

C3-3 is characterized by a local blocking high over the Gulf of Alaska and projects negatively upon the
NAO pattern (Figure 1, bottom row). The Gulf of Alaska high in C3-3 is similar to the blocking frequency
composites in Martius et al. [2009], who found significant blocking occurrence over the northeastern
Pacific for both the periods �10 to 0 days and �20 to �10 days for splitting SSWs. The corresponding
time series in Figure 2d indicate that the negative NAO appears earlier (before day �16) and the Gulf
of Alaska blocking appears later (after day �17), and both of them are not as significant as the indices
of C3-2 precursor.

A detailed study of the dynamical connection between the three types of tropospheric precursors and SSWs
will be investigated in the future. Here we compare the precursors and climatological planetary waves to
make a simple interpretation. Figure 3 shows the three clusters superimposed on the climatological station-
ary wave-1 and wave-2 components of the Z500 field, respectively. The Z500 anomalies of each cluster that
are in phase with the climatological wave-1 and wave-2 components are effective in deepening them by
constructive interference, and vice versa. Therefore, it is shown from the map correlations in Figure 3 that
C3-1 and C3-2 mainly deepen the climatological wave-1 amplitudes, and C3-3 deepens the climatological
wave-2 amplitudes. All three precursors constructively interfere with the climatological planetary wave-1
or wave-2 and thus favor the occurrence of SSWs.

Figure 2. Seven day running mean indices during the period�30 to 0 days for (a) the WP pattern (green) and the WH pat-
tern (brown), (b) the Atlantic high (red) and the Pacific low (blue), (c) the PNA pattern (black) and themixed pattern (orange)
of 12 SSWs classified in C3-2, and for (d) the Alaska high (magenta) and the NAO (navy) of 11 SSWs classified in C3-3.
Composites of the 7 day running mean indices are denoted by the thick lines. Squares, crosses, and dots denote 90%, 95%,
and 99% confidence limits on the composite mean values, respectively.
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4. Discussion

In this study, we identify the tropospheric precursor patterns of SSWs using the SOM clustering method.
Classifying the precursor patterns could help to better understand the different triggering mechanisms of
SSWs. One of the three types of precursor pattern appears as a mixture of the negative-signed WH pattern
and the positive phase of the PNA pattern, which constructively interferes with the climatological planetary
wave-1 and favors the occurrence of SSWs. A novel aspect of our study is the finding that this mixed pattern
can be considered as a tropospheric precursor pattern when predicting SSWs.

Previous studies of ENSO modulation on SSWs have given rise to some confusion [Taguchi and Hartmann,
2006; Butler and Polvani, 2011; Garfinkel et al., 2012; Barriopedro and Calvo, 2014; Dai and Tan, 2016; Polvani
et al., 2017]. Butler and Polvani [2011] found that major SSWs occur with equal probability during El Niño
and La Niña winters. Recently, Polvani et al. [2017] revisited the findings of Butler and Polvani [2011], and their
new results based on an updated sea surface temperature data set conclude that El Niño appears to enhance
the occurrence of SSWs. Referring to Butler et al. [2017], their table from http://www.esrl.noaa.gov/csd/
groups/csd8/sswcompendium/, and Polvani et al. [2017, Table S2], here we list in Table 1 the number of
SSWs for each ENSO phase and each type of precursor. An interesting result that emerges in Table 1 is that
ENSO modulation of the occurrence of SSWs is due to the precursor of C3-2, viz., SSWs associated with the
C3-2 pattern precursor tends to occur in El Niño winters.

Although separate composites for displacement and splitting SSWs have shown distinct precursors asso-
ciated with regional blocks [Charlton and Polvani, 2007; Martius et al., 2009], we find a higher occurrence of
displacement SSWs for C3-2 and splitting SSWs for C3-3 (Table 1). Owing to the limited SSWs samples and

Figure 3. Composites of Z500 anomalies (contours) for C3-1, C3-2, and C3-3, superimposed on the climatological planetary (top row) wave-1 and (bottom row) wave-
2 height fields (shading). Red and blue contours are same as in Figure 1. Red (blue) shading indicates positive (negative) values (interval: 25 m). The value of the
spatial correlation coefficients between C3-1–C3-3 and the climatological planetary waves is shown at the top right corner of each plot.

Table 1. The Number of Classified SSWs According to C3-1–C3-3 Precursors During 1958–2014 for the Different ENSO
Phases and Different Types of SSWs

ENSO Phases Types of SSWs

El Niño La Niña Neutral Splitting Displacement

C3-1 4 5 5 7 7
C3-2 8 2 2 5 7
C3-3 4 3 4 7 4
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the relatively small difference, the relationship between classification of the precursors and the types of SSWs
remains to be confirmed.

The results bring up the question whether the WH pattern is a precursor of extreme PVIs. Compositing tropo-
spheric patterns during the growth stage of PVIs shows a wave train that projects positively onto the WH pat-
tern [Limpasuvan et al., 2005a; Huang et al., 2017]. This suggests that a pattern associated with theWH pattern
could be a major precursor of PVIs. A similar cluster analysis will be performed to validate the hypothesis and
identify different types of tropospheric precursors of PVIs in a companion study.
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