Lecture 27

The long-term temperature record.

This lecture: How do we know that the 1990s was the warmest decade in the last 1000 years?

An important scientific issue is being able to distinguish natural variability (solar, volcanic forcing, ENSO) from anthropogenic influence. Coming next.

(Ch. 15: p.292, then p.296-315, skip p.293-295)

Holocene climate

- come out of latest glaciation starting 14.7 ka
- Younger-Dryas is relapse to cold, low CO$_2$ period 12.9-11.7 ka
- roughly, then, glaciation ended about 12 ka
- warm period 5000-6000 yr b.p.
- cool period ~3000 yr b.p.
- Medieval warm period ~1000 yr b.p. (~1000-1300 A.D.)
- Little Ice Age ~300 yr b.p. (~1400-1850 A.D.)

The Little Ice Age

Late 1500s - cooling that continued through to about 1850

Evidence:
- re-advance of glaciers
- wintertime freezing of rivers (Thames in London, Tagus in Spain/Portugal, canals of Amsterdam) and seas (Baltic Sea).

Our best data (satellites since 1978) show that changes in solar flux are not significant over the 11-year solar sunspot cycle. Only very shortwave UV changes significantly but this only affects the temperature of the atmosphere above 85 km altitude.

Proxy data used to reconstruct climate

1) Pollen
2) Tree rings
3) Corals
4) Ice cores (gases, isotopes)
5) Ocean sediments

Pollen: (e.g. from lake sediments) tell us the past vegetation that lived. For example, a pine forest might be followed by an oak forest, a pattern typical of a shift to a drier climate. (Palynology - study of pollen)

Trees: Annual growth rings provide the age of a tree. The width of the growth ring can be related to the availability of water and the temperature in the growing season.

Coral: Seasonal growth band and stable isotope variations in CaCO$_3$ skeleton. 18O decreases as temperature increases because of (a) more evaporation of 18O and (b) more direct incorporation of 18O into the CaCO$_3$ (a kinetic effect). Yields a reliable temperature record to ±0.2°C accuracy. (Summary: Low 18O = WARM, High 18O = COOL)
Carbon dating

In the upper atmosphere, cosmic ray neutrons interact with nitrogen and make carbon-14:

\[
\begin{align*}
\text{mass number} & \quad ^{14}_7\text{N} + ^{1}_0\text{p} \rightarrow ^{14}_6\text{C} + ^{1}_1\text{H} \\
\text{atomic number (proton)} &
\end{align*}
\]

Radioactive 14C gets oxidized to 14CO$_2$. This CO$_2$ is mixed by convection and winds to a near constant fraction in the atmosphere. CO$_2$ is cycled through vegetation. All living things contain some radioactive 14C. Can calibrate past variations in solar cosmic rays, and hence atmospheric 14C, using tree rings.

When organisms die, 14C decays with a half-life of 5730 years to 14N. This provides an age of shells, bones, dead wood, corals, etc.
The 1990s are likely to have been the warmest decade of the millennium in the Northern Hemisphere" (IPCC 2001)

Recent climate changes - and natural variability

- Volcanoes and Climate (Kump 15:299-302)
- Sun and Climate (Kump 15:303-306)

Motive: context for assessing the question of future climate change

- Natural variability produces "noise" (ups and downs) in the temperature record
- Volcanoes provide a test of the theory that changes in energy balance cause changes in Global Annual Average Surface Temperature (GAAST)
- Solar changes are frequently invoked and emphasized by the so-called "skeptics" as an alternative explanation for the observed, global warming. Does it have any scientific credibility? Answer: No.

Natural Variability, Signal, and Noise

Any measurement in science contains signal, what we are trying to detect and quantify, and noise, anything that gets in the way of detecting and quantifying the signal.

When we examine the temperature record, we are trying to determine if it contains the signal of human-induced global warming. Two types of "noise" get in the way:
- errors in the measurements (discussed in Kump, Chap 1)
- natural variability

In essence, we need to be able to answer this question:
How large are natural changes in GAAST?

Given that information, we can assess the likelihood that the industrial-era changes in GAAST represent natural variation and not a human-induced effect.

(In a statistical analysis, natural variability would be the "null hypothesis".)
Natural climate variability due to Volcanoes and the Sun

Two types of natural variability of climate:
1) unforced change (internal variability)
2) change that is forced by natural causes:
 - Volcanoes and Solar changes are the two main mechanisms of natural, forced change.

Basis for historical research - proxy records:
- volcanoes: ash and sulfate in snow and ice-cores (many 1000s of years)
- sun: sunspot observations (centuries to a few thousand years)

Forcing mechanism (physical basis of the forcing):
- well understood for volcanoes
 i. sulfur dioxide (SO_2) injected to the stratosphere forms sulfuric acid droplets
 ii. particles in the stratosphere reflect sunlight, increasing Earth's albedo
 iii. Pinatubo (1991): forcing and corresponding surface cooling were measured
- highly speculative for the sun
 i. changes in solar energy have been measured but are too small
 ii. therefore, exotic theories involving cosmic rays and clouds are invoked as "possible mechanisms". (To date, these appear implausible.)