Lecture 20

Origin of the atmosphere (Chap. 10)

The carbon cycle and long-term climate (Chap. 8 of the textbook: p.158-170)
Earth is unfathomably old
most of Earth history is very alien

Geological Time: Fig 8-11

<table>
<thead>
<tr>
<th>EON</th>
<th>GLACIATIONS</th>
<th>ERA</th>
<th>Duration in millions of years</th>
<th>Millions of years ago</th>
</tr>
</thead>
<tbody>
<tr>
<td>HADEAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCHEAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRECAMBRIAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTERZOIC</td>
<td>Neoproterozoic</td>
<td></td>
<td>330</td>
<td>900</td>
</tr>
<tr>
<td>PROTERZOIC</td>
<td>Paleoproterozoic</td>
<td></td>
<td>900</td>
<td>2500</td>
</tr>
<tr>
<td>PROTERZOIC</td>
<td>Mesoproterozoic</td>
<td></td>
<td>700</td>
<td>1600</td>
</tr>
<tr>
<td>PHANOZOIC</td>
<td>Late Proterozoic glaciations</td>
<td>Neoproterozoic</td>
<td>330</td>
<td>900</td>
</tr>
<tr>
<td>PHANOZOIC</td>
<td>GENOZOIC</td>
<td></td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>PHANOZOIC</td>
<td>MESOZOIC</td>
<td></td>
<td>186</td>
<td>251</td>
</tr>
<tr>
<td>PHANOZOIC</td>
<td>PALEOZOIC</td>
<td></td>
<td>293</td>
<td></td>
</tr>
</tbody>
</table>

- **Snowball Earth episodes #1**
 - oldest fossil visible to naked eye
 - rise of atmospheric oxygen
 - (greatest global pollution event; deadly to nearly all existing life)
- **Snowball Earth episodes #2**
 - life survives in pockets
- **“Cambrian explosion”**
 - multicellular animal fossils
- **end of last ice-age; begin civilization**
- **beginning of modern era of ice-ages**
- **asteroid impact; death of dinosaurs**
- **formation of Earth-Moon system**
- **Earth is unfathomably old**
- **most of Earth history is very alien**
Geological Time: Fig 8-11

<table>
<thead>
<tr>
<th>EON</th>
<th>GLACIATIONS</th>
<th>ERA</th>
<th>Duration in millions of years</th>
<th>Millions of years ago</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phanerozoic</td>
<td></td>
<td>Cenozoic</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mesozoic</td>
<td>186</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paleozoic</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Precambrian</td>
<td>Hurnian glaciations</td>
<td>Neoproterozoic</td>
<td>330</td>
<td>544</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paleoproterozoic</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mesoproterozoic</td>
<td>700</td>
<td>1600</td>
</tr>
<tr>
<td>Archean</td>
<td>Warm (?)</td>
<td>Late Prot.</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early</td>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

Key Events:
- **Cambrian explosion**
- **Dinosaurs**
- **Ice-ages**
- **largest mass extinction**
- **asteroid extinction**
Origin of Earth’s atmosphere & ocean

The early atmosphere came from **outgassing** (release of gases from the solid Earth) and **impact degassing** (release of gases when ice-rich asteroids hit).

Volcanoes give out mostly water and CO$_2$, with relatively small quantities of H$_2$, CO, and CH$_4$, and no O$_2$.

Before the Earth’s iron core formed, during 4.5-4.4 Ga, Earth’s atmosphere may have contained a considerable proportion of H$_2$ and other **reducing** gases (those that would tend to react with oxygen, were it present).

The reduced to oxidized gas ratio (H$_2$/H$_2$O, CH$_4$/CO$_2$, etc.) in volcanic gases, in particular, depends on the degree of oxidation in the upper mantle, the source region for such gases.

(a) before (b) after core formation
The Hadean climate: Poorly known

The atmosphere in the Hadean (4.5-3.8 Ga) can only be guessed at using theory -- we have hardly any rock data from this time.

Nitrogen would be delivered to Earth in nitrogen-containing organic compounds that we find in some meteorites or as ammonia (NH₃) ice. In either case, impact degassing converts it to N₂. We expect about 0.8 bar N₂ in the Hadean atmosphere, as today.

Carbon would be delivered in organic compounds too. But it tends to get oxidized to CO₂. How much CO₂ there was is not known. It seems likely that CO₂ would react rapidly with the seafloor. This presents the conundrum that Earth may have had so little CO₂ in the atmosphere at this time (when the Sun was fainter) that Hadean Earth could have been frozen.
Carbonate-silicate cycle

Over geologic time, CO$_2$ is controlled by the carbon cycle, which has several different parts. The familiar part is the **organic carbon cycle**, in which plants (and many microbes) convert CO$_2$ and H$_2$O into organic matter and O$_2$ by photosynthesis. Organic matter has average stoichiometry “CH$_2$O”, so the reaction for (oxygenic) photosynthesis can be written as

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{CH}_2\text{O} + \text{O}_2 \quad \text{(R1)}
\]

Respiration and decay reverse R1 (photosynthesis)
The organic carbon cycle cannot be the primary control on CO$_2$ levels over long time scales.

CO$_2$ is continually input from volcanoes. To draw down CO$_2$ over geological time via the biosphere would require that much organic carbon leak out at somehow.

An imbalance that does occur when organic carbon is buried in sediments cannot be maintained at large levels for long because it is controlled by a negative feedback loop involving atmospheric O$_2$. Basically an increase in organic carbon burial causes an increase in O$_2$, which in turn causes a decrease in organic carbon burial. This cycle is controlled by oxygen rather than by climate,
The part of the carbon cycle most important to long-term climate is the **inorganic carbon cycle**, sometimes called the **carbonate-silicate cycle**. (below - like Fig 8-17)

Carbonic acid dissolves silicate rocks. Products go via rivers to ocean.
Inorganic cycle - a long-term negative feedback

1) CO$_2$ gets removed into calcium carbonate on the seafloor

2) CaCO$_3$ gets subducted

3) CO$_2$ gets released back into the atmosphere by thermal decomposition of CaCO$_3$

Timescale = 0.5 million years to replenish & recycle the CO$_2$

Thought experiment: What would happen if the Earth froze over?

1) Hydrological cycle shuts down. No weathering of surface rocks.

2) Volcanic activity continues unabated

3) Eventually the CO$_2$ greenhouse effect would melt the ice. (Estimated to take 0.3 bars CO$_2$, which builds up in 10 m.y.)
Negative feedback

Weathering rate depends on temperature directly (chemical kinetics) and indirectly through the amount of rainfall.

[Qu.] Why should rainfall depend on temperature?

The rate of silicate weathering slows down as Earth’s surface becomes colder. Because CO$_2$ is being extracted at a lower rate, this allows CO$_2$ to accumulate and Earth to warm up again.

This maintains an equable climate over timescales of $\sim 10^6$ years.

[Qu.] Why is this feedback irrelevant for anthropogenic global warming?
Failure of climate stabilization on Venus & Mars

Venus has a mean surface temperature of about 460°C, while Mars’ mean temperature is about -55°C.

Venus was close enough to the Sun that it lost its water by the process of photodissociation followed by escape of hydrogen to space. Once water was lost, silicate weathering could not occur, so volcanic CO$_2$ accumulated.

Mars formed farther from the Sun, so that a stronger atmospheric greenhouse effect would have been needed to warm its surface. It can be shown that CO$_2$ and H$_2$O by themselves could not have kept Mars warm early in its history when the Sun was less bright. However, Mars had another serious problem: Mars is only ~1/9th of Earth’s mass. Thus, its interior cooled more rapidly than Earth’s, and widespread volcanism ceased a long time ago. Without volcanism, there was no mechanism for recycling CO$_2$, so CO$_2$ should have accumulated in the crust as carbonate or on the surface as CO$_2$ ice. However, the early Martian atmosphere (because of low Martian gravity) was cumulatively blasted away to space by comet or asteroid impacts.

Mars shows that size matters: A small, geologically inactive planet can neither develop a stable climate nor hold on to its atmosphere.
What makes a good planet go bad?

Venus (runaway greenhouse)
- Oceans boiled away
- No more weathering
- Carbon partitions to atmosphere
- CO2 is ~245,000 times that on Earth
Ts = 460 C

Earth ("just right")
- has oceans
- hydrological cycle
- weathering returns CO2 to lithosphere
- plate tectonics (volcanoes) return carbon to atmos.
- negative feedback

Mars (virtually no greenhouse)
- farther from Sun; too cold for liquid water
- no water vapor greenhouse
- too small for plate tectonics
- no carbon cycle
- CO2 is ~16 times Earth
Ts = -55C