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Linear Inverse Model Optimal Perturbation Filter

Here we describe the linear inverse model (LIM) optimal perturbation filter (LIMopt),
which was identified by F17 as one of the best available method for estimating the forced
climate response from a single ensemble member. We then compare it to the LFP fil-
tering method presented in the main text.

LIMs assume that the evolution of anomalies x (e.g., SST anomalies) are described
by a multivariate linear Markov process (i.e., a first-order Ornstein-Uhlenbeck process)

dx

=L 1
o =X+ (1)
where L is a linear operator and ¢ is white noise (e.g., Penland and Sardeshmukh 1995).
The best estimate of the state vector x(t), is given by forward integration according to
x(t+7) = G(7)x(t), where G(7) = exp(L7). The evolution of the state vector can be
decomposed into a sum of nonnormal eigenmodes

x(t) = Ziuiai(t), (2)

where u; are the eigenvectors of L, estimated from the ensemble-mean covariance ma-
trix (C) and the ensemble-mean lag-1 covariance matrix (C;) by

L:%mKCMCYﬂ. (3)
Here, we have allowed for the use of multiple ensemble members, but this holds also for
the case of a single ensemble member. The time evolution «;(t) is determined from the
projection of x onto the corresponding adjoint eigenvector. The eigenmodes are either
stationary damped modes with a single spatial pattern and decay time or a damped os-
cillatory mode with two patterns. The first eigenmode is the one with the least damp-
ing, and will generally capture any long-term forced response in the dataset (Compo and
Sardeshmukh 2010; Newman 2013; F17). This framework is generally applied to seasonal
SST anomalies, with 7 = 3 months; we will apply it here to seasonal surface temper-
ature anomalies (including land and sea ice). The dimensionality is reduced by work-
ing in a truncated EOF space, in our case with 50 EOFs to account for around 77% of
the total variance.
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Following F17, we employ a LIM-based optimal perturbation filter (LIMopt) to iden-
tify a spatiotemporally varying estimate of the forced response in CESM-LE surface tem-
peratures. This method was used by Solomon and Newman (2012) to isolate (and re-
move) ENSO variability within Pacific SSTs and by F17 to isolate the forced response
within global SSTs. The optimal initial structure ®4 (7. ) is the pattern that evolves into
the maximum possible anomaly after time 7., taken here to be 2.5 yr (as in F17, but much
longer than the 6-9 months used by Solomon and Newman (2012) to isolate the ENSO
signal). Tt is the normalized right singular eigenvector of G(7.) = exp(L7.). The LIMopt
filter considers the evolution of anomalies from this optimal initial structure over a longer
time period 71. The forced response is given by

F=2" alt-1)GHd(r), (4)

where «(t) is determined by projection of the left singular vector ¥;(7.) onto the anomaly
at that point in the iteration, i.e.,

a(t) = [x(t) = 27 jalt = )G(r): ()] Wi (7o), (5)

with the initial condition «(0) = x(0)¥;(7.). This method considers all anomalies that
evolve from the optimal initial structure, which allows the spatial pattern to evolve over
time.

In order to apply LIMopt to multiple ensemble members, in addition to averaging
over multiple ensemble members in the computation of (C) and (C;), one must replace
x(t) with (x(¢)) in Eq. 5. Alternatively, one could use the opposite order of operations
where the iterative procedure (Egs. 4 and 5) is applied to each ensemble member sep-
arately and then the resulting forced response estimate F is averaged over the ensem-
ble. However, this arrives at the same answer after a longer computation time.

We apply LIMopt to the CESM-LE seasonal surface temperature anomalies. We
use 7. = 2.5 yr (as in F17), but try two different choices of 71: 71 = 20 yr (as in F17)
and 71 = 0 (which uses the optimal perturbation pattern, but skips the iterative filter-
ing). The results are compared to LFP filtering in Fig. S1. While LIMopt provides a much
better estimate of the forced response than the unfiltered data (i.e., a simple ensemble
mean), it generally does not perform as well as LFP filtering. In particular, it does not
improve the forced response estimate as much with the addition of ensemble members.
Focusing on the case of a single ensemble member, LFP filtering achieves a better cor-
relation with the forced response of grid-point temperatures (Fig. Sla), global-mean sur-
face temperature (Fig. Slc), North Atlantic SST (Fig. S1d), and US surface tempera-
ture (Fig. S1f), but LIMopt achieves a marginally better correlation with the forced re-
sponse of the Pacific east-west SST difference (Fig. Sle). In terms of global-mean RMSE,
they perform about the same (Fig. S1b).

Also of note is that LIMopt with 7 = 0 generally performs similar to or slightly
better than LIMopt with 74 = 20 yr, indicating that the iterative filtering procedure
does not substantially improve the forced response estimate. Simply identifying the op-
timal perturbation pattern is the main benefit derived from the LIMopt analysis. A po-
tential explanation for this is that the LIMopt filter (with 7 > 0) uses the LIM to smooth
over unforced variations, but in doing so can introduce anomalies that are not actually
present in the data set. So while this filtering improves the estimate of the forced response
in a single ensemble member (Fig. S1, cf. F17), it can introduce small errors at the lo-
cal scale, which prevent it from generalizing well to larger ensemble sizes (Fig. S1).

Here we analyzed which method works best for isolating the forced response from
a single ensemble member. While LIMopt may perform better for the pattern of trop-
ical SST change (Fig. Sle), LFP filtering performs better on average (Fig. Sla), includ-
ing for global-mean surface temperature (Fig. Slc). Comparing with the work of F17,
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Figure S1. Asin Fig. 1, except with the addition of LIMopt forced response estimates. For
legibility, S/NP filtering is omitted from panels (c)-(f).

this also means that LFP filtering performs better than a linear trend, quadratic trend,
regression against global-mean SST, or multi-variate ensemble empirical mode decom-
position. Additionally, its similarity to S/NP filtering makes it easily generalizable to
different ensemble sizes. Moreover, LFP filtering is a purely statistical method and makes
no assumptions about the nature of the underlying dynamics, as LIM-based methods do.
Overall this make LFP filtering the best available method for isolating forced responses
in small ensembles or single realizations.
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