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ABSTRACT

Climate models show that soil moisture and its subseasonal fluctuations have important impacts on the
surface latent heat flux, thus regulating surface temperature variations. Using correlations between monthly
anomalies in net absorbed radiative fluxes, precipitation, 2-m air temperature, and soil moisture in the ERA-
Interim reanalysis and the HadCM3 climate model, we develop a linear diagnostic model to quantify the
major effects of land—atmosphere interactions on summertime surface temperature variability. The spatial
patterns in 2-m air temperature and soil moisture variance from the diagnostic model are consistent with those
from the products from which it was derived, although the diagnostic model generally underpredicts soil
moisture variance. We use the diagnostic model to quantify the impact of soil moisture, shortwave radiation,
and precipitation anomalies on temperature variance in wet and dry regions. Consistent with other studies, we
find that fluctuations in soil moisture amplify temperature variance in dry regions through their impact on
latent heat flux, whereas in wet regions temperature variability is muted because of high mean evapotrans-
piration rates afforded by plentiful surface soil moisture. We demonstrate how the diagnostic model can be

used to identify sources of temperature variance bias in climate models.

1. Introduction

In the midlatitudes, society and agricultural produc-
tion are adapted to a summer climate with monthly av-
eraged surface temperature variance of approximatively
2K? (Fig. 1), roughly 3 times smaller than in the win-
tertime climate (Vidale et al. 2007). Schir et al. (2004)
noted in their simulations that the variance in surface
temperature over parts of Europe would double by the
end of the twenty-first century. Their findings were ro-
bust across several greenhouse gas scenarios and global
climate models. Vidale et al. (2007) came to similar
conclusions with a similar set of simulations. Using a
multimodel ensemble, Weisheimer and Palmer (2005)
found that extremely warm summers are expected to be
50% more frequent in central North America at the end
of the twenty-first century than in the twentieth century.
An interesting point noted by these authors was that the
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regions of largest temperature variability change were
not collocated with regions of largest mean temperature
change.

All projections noted above are based on global cli-
mate model (GCM) simulations, whose reliability is
difficult to judge because global observations of land
surface variables such as turbulent heat fluxes and soil
moisture content are limited both by geographic cov-
erage and temporal availability (Seneviratne et al. 2010;
McColl et al. 2019). In contrast, summertime tempera-
ture variability is well observed on global scales; it is of
interest to see how well the GCMs reproduce this
quantity. Using an ensemble of 63 members from 25
GCMs that participated in phase 5 of the Coupled
Model Intercomparison Project (CMIPS), we find that
the mean across all ensemble members overestimates
summertime surface temperature variance by 25% to
100% over the 1979-2008 time period in most conti-
nental locations around the globe (Fig. 2; see Table 1
for a complete list of models). Kotlarski et al. (2014)
found similar biases over continental Europe in an en-
semble of regional climate models.

The summertime temperature variance in the ERA-
Interim reanalysis (ERA-I; Dee et al. 2011), compares
favorably to the observations (Fig. 3, top) except for
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FIG. 1. Summertime variance of observed monthly averaged 2-m
air temperature, o(T), derived from the Matsuura (2001) dataset.
Throughout this study, summer is defined as June-August (JJA)
in the Northern Hemisphere and December—February (DJF) in
the Southern Hemisphere. Each month has its annual mean value
removed when calculating the variance to remove the seasonal
cycle’s influence.

tropical regions, where the reanalysis product under-
predicts temperature variance. In contrast, the variance
in the HadCM3 GCM (Tett et al. 2007) exceeds that
observed in most land areas (Fig. 3, bottom). There are
widespread areas at nearly all latitudes where the sum-
mer 2-m air temperature variance is 2-4 times greater
than observed. Given the GCM errors in the historical
record shown in Figs. 2 and 3, it is not clear how to interpret
the large increases in interannual summertime temperature
variability projected by these GCMs over the next century.

In steady state, the net radiative energy inflow to the
surface is balanced by turbulent fluxes of sensible and
latent heat from the surface to the atmosphere and by a
smaller flow of heat down into the soil column. The
surface temperature fluctuation produced by an external
radiative flux perturbation thus depends on the pro-
cesses governing the ensuing perturbations in energy
fluxes. While a number of surface characteristics can
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FIG. 2. Ratio of the ensemble average variance in summer av-
erage monthly 2-m air temperature from the CMIP5 GCMs to the
observed temperature variance (see Fig. 1). The model output is
taken from the historical runs of the CMIP5 GCMs over the same
period as the observed variance: 1979-2008. See Table 1 for a list of
models.
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TABLE 1. Climate models used in calculating ensemble averaged
monthly averaged surface temperature variance.

Institution

Climate model

CSIRO (Australia)

NCAR (United States)

CNRM (France)

Environment and Climate
Change Canada

GFDL (United States)

Hadley Centre (United
Kingdom)

IPSL (France)
MIROC (Japan)

MPI (Germany)

MRI (Japan)
NCC (Norway)
BCC (China)
INM (Russia)

ACCESS1.3, CSIRO-MK3.6.0
CCSM4.0

CNRM-CM5

CanESM2

GFDL CM3, GFDL-ESM2G
GFDL-ESM2M
HadCM3, HadGEM2-AO

HadGEM2-CC,
HadGEM2-ES

CMS5A-LR

MIROCS, MIROC4h

MIROC-ESM-CHEM,
MIROC-ESM

MPI-ESM-LR, MPI-ESM-MR

MPI-ESM-P

CGCM3

NorESM1-M, NorESM1-M

BCC-CSM1.1

INM-CM4

modulate these energy fluxes, earlier findings suggest
that soil moisture is key because it regulates the parti-
tioning of radiative perturbations between sensible and
latent heat fluxes (Guo et al. 2006; Koster et al. 2006a,b;
Seneviratne et al. 2010; Dirmeyer 2011). Orth and
Seneviratne (2017) showed that soil moisture and sea
surface temperature variability are similarly important to
summertime land surface temperatures in a modern GCM.

Several authors analyzing simulations with freely
evolving and constant (climatological mean) soil moisture
have come to the conclusion that soil moisture fluctuations
lie at the root of both the contemporary patterns of tem-
perature variance and the increases in temperature vari-
ance projected by GCMs under increasing CO, emissions
(Seneviratne et al. 2006; Fischer et al. 2007; Seneviratne
etal.2010; Jaeger and Seneviratne 2011; Lorenz et al. 2016;
Berg and Sheffield 2018). In addition, Vogel et al. (2017)
argued that the large-scale drying trend in the CMIPS
ensemble simulations of business-as-usual emissions sce-
narios, rather than short-term soil moisture fluctuations, is
primarily responsible for the increased temperature vari-
ance in those simulations.

As a demonstration of soil moisture’s importance to
the surface energy budget, Fig. 4 shows the correlation
between monthly anomalies in latent heat flux LE’ and
soil moisture m’ from ERA-I and HadCM3 during the
1979-2008 period. The stark transition between positive
and negative correlation can be explained by soil mois-
ture’s varying influence on evaporation in different cli-
mates (Vargas Zeppetello et al. 2019a). These asymmetric



1 MAY 2020

0.50

HadCM3

FIG. 3. Ratio of monthly averaged summertime 2-m air tem-
perature variance in (top) ERA-I and (bottom) the HadCM3
model to the observed temperature variance for the period 1979-
2008 (see Fig. 1). The regions within the black boxes in the bottom
panel are further analyzed in section 5.

soil moisture impacts on evaporation have led to the def-
inition of “moisture limited” and “energy limited” re-
gimes that are distinguished by a critical value of soil
moisture m; shown by the green line in Fig. 4. This crit-
ical value of soil moisture at which the correlation values in
both ERA-I and HadCM3 switch abruptly from positive to
negative is nearly equal to the globally averaged value of
summertime 1 in those products. These apparent regimes
have been observed in local flux tower analyses (Ryu et al.
2007); Teuling et al. (2009) conducted a global synthesis of
available observations and found similar results but not
such a stark transition between wet and dry climates.

Koster et al. (2006a) showed that the asymmetric impact
of soil moisture perturbations on the surface energy fluxes
in wet and dry climates across the United States is fun-
damental to the spatial distribution of summertime tem-
perature variance, and Koster et al. (2015) showed that
observations across the United States support a strong
relationship between variance in moisture-mediated
evapotranspiration and variance in temperature. These
findings lead to the following hypothesis:
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FIG. 4. Correlation of E' and m’ in summertime for ERA-I and
HadCM3. Correlations are calculated for each of the three summer
months separately, and then averaged. Superposed is the contour
line where the climatological summertime surface soil moisture is
equal to the global mean surface soil moisture 77 for each dataset.

The biases in 2-m air temperature variance shown in
Figs. 2 and 3 are due to errors in the model representa-
tions of the connection between surface turbulent energy
fluxes and soil moisture.

In this paper, we take a first step toward addressing
this hypothesis with the aid of our “‘toy model” of land—
atmosphere interaction on monthly time scales, devel-
oped in sections 2 and 3. For more details on model
development, see Tétreault-Pinard (2013). The model
quantitatively links the variance in 2-m air temperature
T and soil moisture m to the variance in radiative forcing
Z and precipitation 2 by parameterizing anomalies in
surface energy and moisture fluxes in terms of these four
variables. In section 4 we use the toy model to provide a
quantitative assessment of the various processes that
contribute to summertime temperature variability in
ERA-I In section 5 we illustrate how the toy model can
be used to identify the sources of biases in summertime
temperature variance in HadCM3, one model partici-
pating in the CMIPS5 project. A discussion and conclu-
sions are presented in section 6.

2. Model structure
a. Surface energy and moisture budgets

In equilibrium, the land surface energy and water
budgets can be written as
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0=Fgy+Fow— Fiw—LE'—H, -G, (1)

and
0=2-F—-R-T, 2)

where Zsw (Wm™?) is the net absorbed shortwave radi-
ation at the surface, Fiiw (Wm ?) is the downward
longwave radiation incident at the surface, Fypw (Wm™?)
is the flux of longwave radiation emitted by the surface,
and LE and H; (Wm™?) are the turbulent fluxes of latent
heat and sensible heat from the surface to the atmosphere,
where L (Jm~?mm ') is the latent heat of evaporation of
water. Also, 2 (mms ') is the flux of precipitation to the
surface, £ (mms ') is the net flux of water vapor to the
atmosphere due to evapotranspiration, and R (mms ') is
the loss of water through runoff;, G (Wm 2) and [/
(mms~ ') represent, respectively, the flux of energy and
water from the soil surface layer into the ground below.
The scripted terms in Egs. (1) and (2) denote components
of the energy budget that are assumed independent from
the land-atmosphere interactions considered by the toy
model. We decompose each variable X j, measured in year
i and averaged over month j (June, July, or August in the
Northern Hemisphere; December, January, or February
in the Southern Hemisphere) in a given grid box into a
climatological mean for that month, X » and a monthly
averaged fluctuation X; ; = X; ; — X;.

b. Representation of surface fluxes

We use output from ERA-I and HadCM3 to param-
eterize all terms in the surface energy and water budgets
in terms of state variables (temperature and soil mois-
ture) or independent forcings (radiation and precipita-
tion). By substituting these parameterizations into Egs.
(1) and (2), we arrive at equations for monthly tem-
perature and soil moisture anomalies written in terms of
the independent forcings. In an objective procedure, the
combination of variables (%, #, T, and m) chosen for
each parameterization explains more variance in the
surface flux under consideration than any other combi-
nation of variables (see appendix).

Since Eq. (1) describes the surface energy budget, skin
temperature suggests itself as a relevant state variable.
However, to compare between global observations,
models, and reanalysis we choose 2-m air temperature 7'
to be our representative temperature. Recent work (e.g.,
Gallego-Elvira et al. 2016; Panwar et al. 2019) has shown
that surface turbulent heat fluxes impact surface and 2-m
air temperature differently. However, skin and 2-m
air temperature output by ERA-I are extremely well
correlated (r > 0.95) on monthly time scales over nearly
all global land surfaces in summertime. The high
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correlation between skin and 2-m air temperature sug-
gests that they are functionally equivalent for parame-
terizing the various terms in Egs. (1) and (2) in terms of
model state variables. Parameterizing the fluxes in terms
of skin temperature did not substantially alter the results
that we present in this paper.

We choose our soil moisture value m to be the
equivalent moisture height (mm H,O) in the upper
10cm of soil. This is a standard model output from the
CMIP5 models and can be calculated from ERA-I by
interpolating appropriately weighted soil moisture out-
put in top two vertical levels. Using this value allows us
to sidestep differences between model representations
of the soil column, particularly the number of soil mois-
ture layers. More importantly, upper-level soil moisture
is a primary control on surface energy fluxes, suggesting
that the diagnostic model will explain more variance in
these energy budget terms if surface soil moisture is
used rather than a full-column value (Seneviratne
et al. 2010).

Our model examines month-to-month variability and
does not include temperature memory. Analysis of the
HadCM3 shows that in the mid- and high latitudes, 2-m
air temperature has some memory on time scales longer
than one month (explaining up to 25% of the variance),
but this memory is not as pronounced in observations
or ERA-I (explaining less than 15% of the variance).
This exaggerated temperature memory in GCMs might
be linked to exaggerated soil moisture memory (see
McColl et al. 2019) but we do not pursue that problem in
this paper. Although feedbacks between surface fluxes,
radiative forcing, and precipitation have been docu-
mented in reanalysis datasets (e.g., Findell et al. 2011),
we assume that the physical processes that generate such
feedbacks operate at scales larger than a climate model
grid box and are therefore not relevant to our column
approach.

c. Surface longwave radiation

We assume that all anomalies in surface upward
longwave radiation F}y, are driven by temperature
perturbations via the Planck feedback. Thus, F};w = v T,
where yp, = 40T for each grid box. On the time scales of
interest in this study, anomalies in net downward long-
wave radiation at the surface F|; y, are composed of an
independent downward longwave forcing component
(e.g., a change in cloudiness) given by &'y, and by a
response to near-surface temperature changes given by
vpLr I’- We assume that any temperature anomaly 77 is
constant through a typical boundary layer depth and use
the radiative kernels from Previdi (2010) to compute
YpLR, the downward longwave radiative response to a
boundary layer warming of 1 K. These assumptions have
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been used to accurately predict the downward longwave
radiation response to greenhouse warming (Vargas
Zeppetello et al. 2019b). With this assumption about
the longwave response to temperature fluctuations, we
can separate the downward longwave flux at the surface
into the response to this temperature anomaly and the
independent component of the downward longwave
forcing 77| y:

Fliw=% 1wt voir T 3)

The typical midlatitude value for yp, g is ~3Wm 2K !;
this represents a considerable reduction of the Planck
feedback (yp=40T° ~5 Wm 2K ).

Using Eq. (3), we can write the surface energy balance
[Eq. (1)] as

0=F"—(vp— Yo )T ~LE —H, -G, “4)
where &’ is the total radiative forcing:
T =Tew+ T\ 1w- 5)

As noted above, the scripted terms denote components
of the energy budget that are assumed independent from
the land-atmosphere interactions considered by the
toy model.

3. Parameterization of the fluxes of moisture and
energy

We parameterize a monthly averaged flux perturba-
tion X’ in terms of the linear combination of at most two
perturbations in the underlying variables:

X' =aY'+bZ' + X,. (6)

Here Y’ and Z' are fluctuations in either the state vari-
ables m’, T or in the external forcings &', ', while the
coefficients a, b vary by grid box and depend on the
month. The values X', Y, Z’ are taken from HadCM3 or
ERA-I output. The orthogonal projection method (see
appendix) selects the coefficients a, b and variables Y,
7' for which the residual variance o*(X,,) is minimized.
This orthogonal projection method to select the “opti-
mum’’ parameterization is objective in the sense that we
chose the (at most two) state variables that reduce the
parameterization’s unexplained variance, and that the
components associated with variables Y’ and Z' are
linearly independent.

The orthogonal projection method does not provide a
mechanistic description of the physics that govern the
processes it represents. Rather, it minimizes the vari-
ance left unexplained by the parameterizations based on
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the state variables provided for analysis. As such, the toy
model cannot prove the existence of causal relation-
ships; our model’s parameterizations should be consid-
ered as explainers of variance rather than descriptions of
physical mechanisms. We now provide the formulas
used in the toy model provided by the orthogonal
projection method.

a. Forcing decomposition

The forcings ' and 2’ are not independent; they are
anticorrelated over land nearly everywhere due to the
presence of thick, precipitating clouds. Since precipita-
tion anomalies are a strong predictor of radiative forcing
anomalies, it is ideal to separate the radiative forcing
associated with precipitation from the radiative forcing or-
thogonal to precipitation anomalies:

— La?'. @)
Equation (7) defines &, as the downward radiative
forcing anomaly when there are no rain clouds in the
sky. Thus precipitation has two impacts on the toy
model: it diminishes the total radiative forcing and
moistens the surface. The coefficient « is dimensionless
and positive in all regions with significant rainfall. The
orthogonal projection method described above ensures
that #/ and 2 are linearly independent. We refer to 7/,
as “nonprecipitating” and La?’ as “precipitating” ra-
diative forcing in the rest of this paper. Separating the
forcings in this way allows the toy model to fully reflect
the role of precipitation in both modifying surface hy-
drology and the surface energy balance through its in-
fluence on radiative forcing.

b. Ground heat and water fluxes

Neither ERA-I nor HadCM3 provides output of
ground heat flux, so we assume G’ is equal to the
monthly residual of the other components in Eq. (4).
The simplest approximation is that fluctuations in ground
heat flux are linearly proportional to surface temperature
fluctuations:

G =y,T, (8)

where the coefficient y; (W m 2K™!) is always posi-
tive. Neither this nor any other parameterization of G’
explained more than 50% of the variance anywhere
in HadCM3 or ERA-I, and parameterizing this flux
in terms other variables (%', ', or m’) did not sub-
stantially increase the variance explained by Eq. (8).
However, G’ is a small contribution to the surface en-
ergy budget in both products, so this is not particularly
concerning.
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As with ground heat flux, ERA-I and HadCM3 do not
provide output of infiltration, so it is calculated as the
residual of terms in Eq. (2). Infiltration of moisture into
the ground is an important component of the surface
water budget. Including both soil moisture and precipi-
tation in our parameterization of infiltration proved to
increase the variance explained by the parameterization:

I'=vm +B,7. 9)

Although m’ and 2 are correlated, the orthogonal
projection method ensures that each component of the
parameterization is linearly independent from the other.
Note that the dependence of the flux on two correlated
variables (here 2" and m’) introduces some ambiguity in
the value of the coefficients (here, v, and B, ) since they
depend on the order that the projections are done, as
discussed in the appendix. Both the rate v, (s~') and the
unitless coefficient 8, are positive definite.
We parameterize runoff R as
R =B.7'. (10)
This parameterization generally explains little of the
runoff variance, and adding more variables did not im-
prove it substantially. However, R’ is a small contribu-
tion to the surface water budget in both products, so this
parameterization’s weakness is not a major concern.
The coefficients 8, Bz in Egs. (9) and (10) are unit-
less and generally take on values between zero and one.
However, in high latitudes where snowmelt can exceed
precipitation in the summer months, the 8 =8, + B
value can exceed one.

¢. Surface sensible heat flux

The turbulent flux of sensible heat is parameterized as

H =v,T' - Ls,7, (11)
where the coefficient y;; (Wm?K ') is a positive num-
ber representing the flux response to a near-surface change
in temperature. The & coefficient is dimensionless and
positive in all regions with significant rainfall. Similar to the
decomposition of radiative forcing [Eq. (7)], the magni-
tude of 6 reflects the energetic constraint on sensible heat
flux that is associated with monthly anomalies in short-
wave radiation that accompany monthly anomalies in
cloudiness, which we assume are linearly proportional to
precipitation fluctuations 2. Further, in dry regions, pre-
cipitation increases the amount of energy partitioned into
evapotranspiration by providing more soil moisture to the
land surface, thereby reducing the sensible heat flux (see
section 3d). Equation (11) does not imply that precipita-
tion fluctuations physically drive changes in the sensible
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FIG. 5. As in Fig. 4, but for the correlation of E' and %.

heat flux; rather, the precipitation fluctuations contain
information about sensible heat flux variability that is
linearly separable from temperature fluctuations by the
orthogonal projection method.

d. Evapotranspiration: Two parameterization regimes

The impact of soil moisture fluctuations on evapo-
transpiration changes depending on the mean state soil
moisture (see section 1). Thus, our parameterization of
evapotranspiration must be more subtle than those for
the other fluxes. Figure 4 shows the correlation between
monthly anomalies in surface soil moisture m' and
evapotranspiration E’; superimposed on this plot is the
contour line of each dataset’s global average surface soil
moisture, ms. A clear change in behavior is evident
depending on whether a particular grid box’s climatolog-
ical soil moisture is less or greater than 772. While this is
likely a coincidence, the presence of such a stark shift in
correlation across wet and dry climates is not limited to
the models considered here (e.g., Lorenz et al. 2012;
Schwingshackl et al. 2017; Berg and Sheffield 2018).

In both ERA-I and HadCM3, E’ and »?’ are highly posi-
tively correlated in regions where 71 < mig[r(E', m') > 0.6]
and negatively or poorly correlated in regions where
m>mg [—0.8<r(E', m')< —0.2]. Figure 5 shows that
the dramatic shift in behavior across the global mean
value of soil moisture is also reflected in the correlation
between E’ and radiative forcing anomalies . In regions
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where 71 > Mg, an increase in %’ is associated with an
increase in E'[r(E', ') > 0.8], indicating that radiative
forcing is the primary driver of evapotranspiration in
regions where soil moisture is plentiful. In dry regions
(m <mg) where evapotranspiration is tightly con-
strained by available soil moisture, an increase in ' is
associated with a soil drying that drives a decrease
in E'[-08<r(E,7')<-02].

The development of our toy model is guided by the
behavior in ERA-I and HadCM3. As two different
patterns are evident in Figs. 4 and 5, we use the or-
thogonal projection method to generate two different
parameterizations of evapotranspiration in dry and wet
climates:

e Dry regions, where m <mig: The optimal parameter-
ization can be expressed as a linear combination of
fluctuations in m' and "

!
Edry

(12)

A
— ! 0:-/
=vpym +—L. s

where A is a unitless coefficient generated by projecting
the residual E' — vgm’ onto /L.

The rate v (s~ ') is positive definite. This parameteri-
zation captures the fact that evapotranspiration variability
in dry regions is a strong function of soil moisture fluctu-
ations but is also limited by variations in the energy supply.
While A is small in dry regions A < 0.3 and soil moisture is
the fundamental control on evapotranspiration, omitting
radiation in Eq. (12) increases the variance left unex-
plained by this parameterization.

o Wet regions, where m =mg: The optimal parameter-
ization in wet regions involves only fluctuations in
radiative forcing 7"

7 (13)

In wet regions, where radiation is the primary driver
of evapotranspiration variability, A is in the range 0.3 =
A = 0.7. An alternate form of Eq. (13) that retained soil
moisture as a state variable with vz < 0 did not increase
the variance explained by the parameterization, indi-
cating that moisture fluctuations that are linearly inde-
pendent from radiation anomalies have little impact on
evapotranspiration in wet regions.

We generate one set of coefficients (yp, vy, v, A,
Vg, vy, Bg, B, 8u, ) for each grid cell of both ERA-I
and HadCM3, yielding two realizations of the toy model
with different coefficients that reflect the behavior of
these two different models. We found that the variance
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TABLE 2. A list of the parameterization of fluxes in terms of the
state variables (m/, T') and forcings (%', #'). The variance ex-
plained by each parameterization is indicated by the range in
squared correlation between the parameterized flux and the “ac-
tual” flux, as taken from ERA-I except for runoff and infiltration,
which are taken from HadCM3. For each flux, the squared corre-
lation values for each parameterization are similar in the HadCM3
and in the ERA-L For spatial maps of these * values, see Fig. 6

2

(parameterized,

Flux Parameterization model fluxes)
Upward longwave  Fy = ypT" 0.77-0.98
Sensible heat flux ~ H! =y, T' — L8y 2" 0.04-0.95
Evapotranspiration = % F (wet): 0.17-0.98
A
E =vgm' + Zé’i’ (dry)

Runoff R =Br? 0.00-0.32
Infiltration I'=svm' +B,7 0.35-0.98
Ground heat flux G'=vy, T’ 0.00-0.12

explained by each flux parameterization is nearly equal
in the two models considered here and three others
analyzed in Tétreault-Pinard (2013). Table 2 summa-
rizes the variance in model output explained by each
parameterization. Figure 6 shows maps of variance ex-
plained by each parameterization; values for the pa-
rameterizations of £’ and H] are from ERA-I, and of R’
and I’ from the HadCM3. Table 3 summarizes the flux
parameters and their typical values, while Fig. 7 shows
the spatial distribution of the toy model coefficients
given by the orthogonal projection method applied to
the ERA-I output.

4. The toy model

The toy model for 2-m air temperature and surface
soil moisture is now obtained by inserting the parame-
terized fluxes Eqgs. (8)—(12) into Egs. (2) and (4):

- =Vl (1-B)7 - %(g; ey a4

and
T = % (A=A (F, — La?') + L(SH@/ — LvEm’] , (15)

where v, =v| + vg is the total rate at which water es-
capes from the surface layer, y=vyp+ vy, + vy —viw
is a “‘heat capacity’’ parameter, relating the temper-
ature anomaly to the net energy flux into the surface
layer, and B =, + By is the fractional loss of precip-
itation that leaves the surface layer due to downward
or lateral transport (i.e., 1 — B is the efficiency of
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FIG. 6. The variance explained by the key parameterizations, measured by the squared correlation between the
parameterized flux and the “actual” flux (i.e., that obtained from HadCM3 or ERA-I). (top) Variance explained by
the parameterizations of £’ and H; using ERA-I output, and (bottom) variance explained by the parameterization
of R and I’ using the HadCM3 output. Runoff R is not an important component of the water budget in regions
where the parameterization explains a small fraction of the runoff variance. The ground heat flux G’ is a negligible
component of the heat budget everywhere, and our parameterization of upward longwave flux is nearly perfect

everywhere; neither map is shown here.

precipitation in moistening the surface layer). In Eqs.
(14) and (15), we have also used Eq. (7) to substi-
tute #' = F, — La?'.

Importantly, we have used 2-m air temperature as a
state variable in our parameterizations of terms in the
surface energy budget. This requires some justification,
as sensible heat flux cools the land surface and warms
the boundary layer on short time scales (see Fischer
et al. 2007). However, on monthly time scales skin and
2-m air temperature are nearly perfectly correlated: a
large surface temperature anomaly can drive increased
sensible heat flux leading to a warming of 2-m air tem-
perature. On monthly time scales, we treat the land—
atmosphere interface as a ‘“phantom layer” with a
temperature variability that is equally well repre-
sented by land surface or 2-m air temperature. Positive
sensible heat flux anomalies release energy from (and
cool) this layer; negative sensible heat flux anomalies
indicate that the layer is retaining energy and imply a
warming. Considerations of shorter time scales, where
the distinction between skin and 2-m air temperature is
important, are beyond the scope of this paper, and
further research on short time scale energy partition-
ing in land surface models is needed to understand
the dynamics we interpret through our diagnostic
framework.

The two terms on the right-hand side (RHS) of
Eq. (14) show the opposing impacts of precipitation and
radiative flux on surface moisture. Positive precipitation
anomalies moisten the soil directly, and are also asso-
ciated with reduced evaporation (and therefore with
damper soils) through their impact on radiative forcing.
In contrast, positive radiative forcing anomalies con-
tribute to soil drying through enhanced evapotranspi-
ration. The first term on the RHS of Eq. (15) is the
temperature change due to that fraction of the radiative
forcing that is not used for evapotranspiration (1 — A),
the second term reflects the radiative impact of thick
precipitating clouds on sensible heat flux, and the third
term is the temperature fluctuation due to soil mois-
ture’s connection to latent heat flux perturbations.

Figure 8 shows a schematic summary of the model
pathways that modulate temperature anomalies in re-
sponse to precipitating (bottom) and nonprecipitating
(top) radiative forcing. Red arrows denote direct im-
pacts of the forcing, while blue arrows denote the im-
pacts of soil moisture on temperature variability. The
size of the arrows reflects the magnitude of the coupling
between various forcings, fluxes, and state variables.

Equations (14) and (15) can be combined to yield the
equation for temperature anomalies in terms of the
forcing:
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TABLE 3. Summary of the flux parameters (v, v, 8, vg, A ), forcing coefficients («, /), and their typical values across wet and dry regions in
the ERA-I reanalysis product. Also shown is the ratio J of the variance in radiative forcing associated with precipitating clouds to the

variance in total radiative forcing.

Bulk parameter Symbol Typical value
Rate (day ') at which water leaves the surface layer [Eq. (14)] vy =v, +vg 0-0.5 (dry); 0.3-0.9 (wet)
Thermal resistance [(Wm™~2) K] to a net change in the surface Y=vr+vY, ¥y~ YpLR 5-20

energy budget [Eq. (15)]

Fraction of precipitation (unitless) that drains from the surface
layer [Eq. (14)]

Coupling coefficient linking soil moisture anomalies to latent heat
flux anomalies (unitless) [Eq. (16)]

Fraction of net radiative forcing 4’ used for evapotranspiration E'
(unitless) [Eq. (12)]

Fraction of net radiative forcing 7 linearly congruent with
precipitation —LZ”' (unitless) [Eq. (7)]

Fraction of precipitation forcing P linearly congruent with surface
sensible heat flux H] (unitless) [Eq. (11)]

Ratio of the variance in radiative forcing associated with
precipitating clouds to the variance in total radiative forcing

B=Br+B, 0.1-0.3 (dry); 0.4-0.7 (wet)
vElvs 0.1-0.6 (dry); 0.0 (wet)
A 0.1-0.3 (dry); 0.3-0.7 (wet)
a 0.1-0.5
oy 0.0-0.6

I = a*(aLP)o*(F) 0.1-0.7

T’%([l—)\(l—z—’;)}%‘{“[l_)‘o_%ﬂ

+ ’;—f(l -B) - 5H}L@'> .
(16)

The ratio vg/vs measures the coupling strength between
surface moisture and temperature anomalies. This frac-
tion can be either positive or zero: our parameterization
of E’ ensures that when # > g, vi/vs = 0, whereas vi/vg
is positive when a region’s climatological soil moisture is
less than the global mean (see Fig. 7). We now explore the
impact of this coupling term on temperature fluctuations
in our model.

a. Coupled moisture and temperature variability in
the two surface regimes

As emphasized above, our model is diagnostic, so
parsing cause and effect is not possible. However, we
can construct plausible physical interpretations of
the major findings by considering the temperature
and soil moisture response to separate fluctuations in
the external forcing, #/ and #' [from Eqgs. (14) and
(16)], with and without the latent heat flux anomalies

[a(1 —A) — 8,,]L7'

Rlm =

[a(1-A) =8, |L? — L LZa+(1-B)] if v
Yy

associated with moisture fluctuations (i.e., with vg = 0
and vp > 0).

A
Case 1: 7,>0, 2 =0 —>m' = —F,
vl
1, .
—-Z.(1-X) it v, =0;
Y
T = 17)
1
SF (=N +—EAF, it v, >0,
Y YV

We can ignore latent heat flux modifications associated
with soil moisture fluctuations by setting vz = 0: without
these modifications, the degree of warming across re-
gions is dependent only on the fraction of incident ra-
diation used for evapotranspiration A.

However, when we include the dry-region coupling
between surface hydrology and the latent heat flux v >
0, the initial warming forced by a radiation anomaly
Z' >0 is amplified by the decrease in evapotranspira-
tion associated with a drying soil. In contrast, the
warming is muted in wet regions, because the fraction of
radiative forcing used to evaporate soil moisture A is
greater for wet than dry regions (see Fig. 7).

1
Case2: 7' >0, 7, =0—->m'=—[Aa+ (1 -B)|7
Vg

(18)

>0,
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FIG. 7. The toy model coefficients determined from the flux parameterizations fit to the ERA-I output. The panels
show the average value of each coefficient over the three summer months.

We first ignore all surface latent heat flux modifications
associated with soil moisture perturbations by setting
v = 0, whereby the negative radiative forcing anomaly
associated with precipitation’s effect on evapotranspiration
[-La?'(1 — )] leads to cooling opposed by a warming
associated with a damped sensible heat flux L6y 7.
Similar to the uncoupled version of case 1, the regional
differences in this cooling are due to differences in A that
control how much any radiative perturbation is used for
evapotranspiration and 6 that reflects the sensible heat
flux sensitivity to radiative forcing associated with pre-
cipitating clouds. Including the moisture impact on the
latent heat flux in dry regions (vg > 0), the radiative
cooling associated with precipitation is amplified be-
cause more soil moisture is made available for evapo-
transpiration by the precipitation anomaly.

To gain further insight into the switch between am-
plification and muting of temperature anomalies, we

rewrite Eq. (16) in terms of the precipitation 2’ and net
radiative forcing "

T =%{ {1 —A(l —';—iﬂg/— [';—’;“(1 ~B) —6H}L9’}.
(19)

Since A > 0, the first term on the RHS of Eq. (19) shows
that land—-atmosphere interactions amplify radiatively
driven temperature anomalies in dry regions (where
vg > 0) through coupling between soil moisture and
evapotranspiration; in wet regions where A is large, the
efficacy of radiative forcing to generate temperature
anomalies is reduced compared to dry regions because
more of the energy coming into the system is used to
evaporate liquid water. The second term on the RHS of
Eq. (19) shows that in wet regions where vg = 0, sensible
heat flux anomalies driven by cloudiness oppose radiative
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FIG. 8. Schematic showing model pathways that modulate temperature variance in (left) wet/land muted and
(right) dry/land amplified regions in response to (top) nonprecipitating and (bottom) precipitating forcing. Lines
with arrows and stops denote positive and negative relationships, respectively; red lines denote direct impacts of
forcing and blue lines show impacts of coupling between soil moisture, latent heat flux, and temperature. Thicker
lines designate primary forcing impacts, while thinner lines denote weaker relationships. The dotted lines represent
the relationship between sensible heat flux and temperature that is identical in each of the four panels.

forcing anomalies (as ' and 2’ are anticorrelated). This
impact further mutes temperature variability in wet re-
gions, while in dry regions where vg > 0, the latent heat
flux modifications associated with precipitation forcing
act to amplify radiative forced temperature anomalies.

b. Quantifying the impact of land surface and soil
moisture anomalies on temperature variability

Next we use the toy model to estimate the difference
in temperature variance in wet and dry regions, given
the same forcings, &’ and 2. The temperature variance
o?(T) is obtained from Eq. (19):

o(T) =

2
v v _
C,+ Cl_”i +C, <—V§> } y 20X (F),  (20)

where
C0=(1—/\)2+187HK%’> —2(1—)\)}, (21)

C, =2{A - DA+ (1= Ba ] =8, + (1~ Bla ]},
(22)

C, =22+ [(1-BYa?+20(1 - B, (23)

and J = 0?(aLP)/o*(F) is the ratio of precipitation re-
lated radiation forcing to net radiation forcing. Spatial
maps of J for ERA-I and HadCM3 are shown in the
bottom panels of Fig. 9.

In Eq. (20), the coefficients C; and C, [see Eqgs. (22)
and (23)] are governed by the correlations between soil
moisture and turbulent surface energy flux anomalies.
Since the diagnostic model has no connection between
soil moisture and latent heat flux anomalies in wet
regions (where v = 0), these two coefficients only
impact the temperature variance in dry regions. In
contrast, the constant term in Eq. (20) [defined in
Eq. (21)] contributes to temperature variance in both
wet and dry regions. The first term on the RHS of
Eq. (21) is the temperature variance associated with
the incoming radiative flux. Here the only difference
between wet and dry areas is the value of A, the frac-
tion of the incoming radiation anomaly that is used
for evapotranspiration rather than to increase the
temperature; the impact of mean soil moisture on
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HadCM3

FIG. 9. (top) The variance in radiative forcing 0%(%) and (bottom) the ratio of variance in radiation forcing as-

sociated with precipitating clouds to variance net radiative forcing [J = o?(La2?)/o*(F)].

temperature, rather than soil moisture fluctuations, is
measured by this term. Previous authors (e.g., Koster
et al. 2006a; Seneviratne et al. 2010; Koster et al.
2015) have invoked the processes captured in this
term to describe the impacts of evapotranspiration on
temperature fluctuations, and we show below that it is
indeed the major contributor to the difference in
temperature variance between wet and dry regions.
The second term on the RHS of Eq. (21) captures the
sensitivity of sensible heat flux to the precipitating
component of the radiative forcing. The &5 term can
be conceptualized as the inverse of A: if a particular
region uses a small fraction of incident radiation for
evapotranspiration, the sensible heat flux must be
extremely sensitive to variations in the precipitating
component of the radiative forcing. Similarly, if A is
large and a large fraction of radiation is used for
evapotranspiration, the sensible heat flux sensitivity
to the precipitating component of the radiative forc-
ing (measured by 85) must be low.

We now use Eq. (20) to quantify the different con-
tributions to the temperature variance. Using typical
values from ERA-I for J and « and for the model
coefficients A, B, v, and vg in the dry (top row) and
wet (bottom row) midlatitude regions (see Table 3),
we find:

~ 2
1.82 - 0.1822 + 1,682
R W00
a(T) = X —
14 Vz Y
0.16 +0.082Z + 1.45Z
L Vg Vs
[2.84—029+1577 4.12K>
1025-000+000] 025K

where we have used nominal values for the forcing variance
d?(F)~100 W?>m™ and y parameter ~8Wm 2K !
from ERA-I (see Figs. 7 and 9). First, we note that even
without considering fluctuations in turbulent energy
fluxes associated with soil moisture anomalies (vz = 0),
the same variance in radiative forcing o?(%) causes
temperature variance to be more than 11 times greater
(2.84/0.25 = 11.4) in dry regions compared to wet re-
gions because in wet regions a greater fraction of F’
(Awer = 0.5 vs Agry = 0.2) is used to evaporate water
rather than heat the surface and because the surface
sensible heat flux in dry regions is much more sensitive
to fluctuations in the precipitating component of the
radiative forcing (87,ary = 0.5 VS 8 .wer = 0.2). This dif-
ference is estimated by setting vz = 0 in Eq. (20),
whereby 0?(T) = y2Coa?(F).
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For conceptual purposes, we will take the first term on
the RHS of Eq. (20) as the “base” variance associated
with a particular land surface’s partitioning of latent and
sensible heat (governed by A, or the climatological soil
moisture). Including the connection between soil mois-
ture and latent heat flux anomalies amplifies the differ-
ence in temperature variance between wet and dry
regions. Including the impact of soil moisture on evapo-
transpiration in dry regions amplifies the temperature
variance in dry regions from 2.84 to 4.12K? Such am-
plification does not exist in wet regions, where latent heat
flux is insensitive to fluctuations in soil moisture.

The preceding analysis suggests that temperature
variance in dry regions should be much greater than wet
regions. So why is the temperature variance not greater
in the dry regions, compared to the wet regions in the
mid- and high latitudes? Figure 1 shows that the tem-
perature variance in wet northern Canada is about 3
times greater than in the dry southwest United States
(~2.5K? compared to 1K?). In many dry regions, the
increased variance that we expect due to low values of
A and the impact of soil moisture on evapotranspiration
is more than compensated for by differences in forcing
variance. In ERA-I, the radiative forcing in wet regions
in the middle and high latitudes is on the order of
200 W?m™* (see Fig. 9) while in dry regions such as the
southwest United States it is on the order of S0 W?m™*
(see Table 5). Incorporating the differences in forcing
amplitude and thermal inertia vy (see Fig. 7) into Eq. (20),
we obtain a temperature variance in a wet, high forcing
variance region of 1.98 K? and a dry, low forcing variance
region of 1.33K? more similar to the observed values
(see Fig. 1).

c. The toy model and the twentieth-century climate in
ERA-I and HadCM3

We present two realizations of the toy model with
parameters and forcings obtained both from ERA-I and
HadCM3 model output. In general, the toy model’s
temperature variance agrees well with the ERA-I out-
put and is a fair fit to the HadCM3 output (see Fig. 10).
In the ERA-I realization of the toy model, 69% of grid
cells are within a factor of 2 of the correct summertime
temperature variance; in the HadCM3 realization 51%
of the grid cells are within a factor of 2 of the correct
temperature variance. The toy model predicts too much
temperature variance in the HadCM3 realization, partic-
ularly in the high latitudes in the Northern Hemisphere.
Figure 11 shows that the toy model underpredicts soil
moisture variance o~>(m) nearly everywhere in both ERA-I
and HadCM3. The overprediction of soil moisture var-
iance in the Sahara and Arabian Peninsula by the toy
model fit to the ERA-I data is not of particular concern, as
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F1G. 10. The variance in summertime 2-m air temperature
computed by the toy model with coefficients and forcings from
(top) ERA-I and (bottom) HadCM3, normalized by the 2-m air
temperature variance in the ERA-I or HadCM3 dataset o*( Try)/
O'Z(Tdam). Insets show histograms of the normalized variance at all
mapped points.

soil moisture variability has a small impact on the climate
of desert regions and the large overprediction shown in
Fig. 11 does not translate to a large absolute error in
temperature variance.

In the toy model, soil moisture anomalies preferen-
tially enhance temperature anomalies in dry regions.
Hence, a systemic underprediction of soil moisture
variance by the toy model (Fig. 11) should result in
o”(T) values that are too low in dry regions. Figure 10
clearly shows this behavior: the toy model’s systemic
underpredictions are found in dry regions like Australia
and the southwestern United States.

The impact of soil moisture on summer temperature
variance can be estimated by comparing the o*(T) sim-
ulated by the toy model in Fig. 10 to the o*(T) simulated
with the toy model when ' is artificially set to zero in all
regions. The normalized difference between these two
simulations is shown in Fig. 12. In general, soil moisture
anomalies increase temperature variance by 20% to
80% in dry regions such as central Asia, Australia, and
the western United States [as proposed by Seneviratne
et al. (2010); Koster et al. 2015]. This range of values is
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FIG. 11. As in Fig. 10, but for summertime surface soil moisture
o 2(mTM)/ a Z(mdata)'

broadly consistent with expectations from the toy model;
from Eq. (20), including latent heat flux perturbations as-
sociated with soil moisture fluctuations increased the
temperature variance by 31% in dry regions [(4.12 — 2.84)/
4.12 = 0.31].

5. Understanding climate model biases in a*(T)
using the toy model

In this section, we demonstrate one application of the
toy model: understanding biases in summertime tem-
perature variability simulated by climate models. We
use the toy model to determine whether the biases in a
climate model are predominantly due to errors in soil
moisture-latent heat flux coupling or in the radiation
and precipitation forcings. We focus on two regions
where o?(T) in HadCM3 is more than a factor of 3
greater than that observed: the southwest United States
and northern India (see the boxed regions in Fig. 3).
These are also regions that both the HadCM3 and ERA-I
realizations of the toy model are within a factor of
2 of the temperature variance found in their respective
products (see Fig. 10 and Table 4). While all climate
models and reanalysis products have different represen-
tations of land—-atmosphere coupling (Lei et al. 2018),
we expect that the toy model can shed light on
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FIG. 12. The impact of soil moisture anomalies on summertime
temperature variance in ERA-I and HadCM3. Impact is measured as
the normalized change in variance due to the impact of soil moisture
anomalies on temperature variance: {o2[T(m')] — o*[T(m' = O)]Y/
d?[T(m')], where *(T) is given by Eq. (20). The solid green line
shows where the summertime climatological soil moisture is equal to
the global mean soil moisture.

the processes responsible for biases in individual climate
models.

We pose the attribution problem as follows. The toy
model expresses the temperature variance as a function
of precipitating (La#) and nonprecipitating (% ,) radi-
ative forcing, one decomposition coefficient «, and six
surface parameters [see Egs. (16) and (20)]:

0'2(T):02{9‘;79’,%7,3,)\,3},,VE,VS} 24)
= o*{forcing; surface}

In Eq. (24), the forcing variables #, ', a and the
surface parameters v, 8, A, 6y, Vg, Vs are separated by a
semicolon. We will focus on the forcing terms %/ and %',
and vg—the parameter governing the connection be-
tween soil moisture and latent heat flux. Table 5 shows
these values from ERA-I and HadCM3 in the two re-
gions of interest.

In both the southwest United States and over India,
the high forcing values in HadCM3 are likely the
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TABLE 4. Quantifying the source of errors in the summer tem-
perature variance over the southwestern United States and northern
India simulated in the HadCM3. The first row is the temperature
variance from observations (see Fig. 1). The second and third rows
are the temperature variances from the same regions in ERA-I and
HadCM3 output. The fourth and fifth rows are the results from the
toy model with forcing and parameter values from ERA-I and
HadCM3, respectively. The last two rows show results from the toy
model experiments conducted by substituting the forcing values
[0%(F), 0*(#), and ] and the v parameter in the two realizations
of the toy model. Units are K.

South central

Experiment United States India
Observed (University of Delaware) 1.37 0.70
ERA-I 1.75 0.86
HadCM3 3.89 3.04
ERA-I forcing; vx from ERA-I 1.13 1.31
HadCMS3 forcing; v from HadCM3 3.73 2.89
HadCMS3 forcing; vg from ERA-I 3.77 2.62
ERA-I forcing; vg from HadCM3 0.85 212

primary cause of the high bias in temperature variance.
Table 4 shows that replacing the ERA-I forcing with the
HadCM3 forcing while retaining ERA-I v values cau-
ses the temperature variance to increase by a factor of
3.3 (= 3.77/1.13) in the southwest United States and by a
factor of 2 (= 2.62/1.31) in northern India. Conversely,
replacing the HadCM3 forcing with the ERA-I forcing
while retaining the HadCM3 v parameter decreases the
temperature variance by a factor of 4 (= 0.85/3.73) in the
southwest United States and by 27% (= 2.12/2.89) in
northern India.

While biases in the model forcings clearly contribute
to HadCM3’s high bias in temperature variance over
northern India, we can use this attribution procedure to
show that this model’s representation of land—atmosphere
coupling likely contributes to the temperature variance
bias in this region. In HadCM3, all of northern India is
represented as a dry region (Fig. 12 bottom), and the value
of v is correspondingly higher than in ERA-I, where the
region is much wetter on average. Replacing the ERA-1 vz
value with the v from HadCM3 while retaining the ERA-
I forcing amplifies temperature variance by a factor of 1.6
(=2.12/1.31) due to the increased influence of soil moisture
on temperature fluctuations. Conversely, using the ERA-I
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v value in place of the vz from HadCM3 while retaining
the HadCM3 forcing reduces the temperature variance by
9% (= 2.62/2.89), in line with our findings above, sug-
gesting that temperature variance is muted in climatolog-
ically wet regions.

In the southwestern United States, ERA-I has a
stronger coupling between soil moisture and latent heat
flux than the HadCM3 model; replacing the vg from
ERA-I with the vz from HadCM3 while retaining the
ERA-I forcing reduces the temperature variance by
25% (= 0.85/1.13). In contrast, replacing the vg values
from HadCM3 with the vy values from ERA-I while
retaining the HadCM3 forcing increases the temperature
variance only by a factor of 1.01 (3.77/3.73); this insensi-
tivity to changes in vg is likely due to the extremely high
forcing values over the southwestern United States and
other surface parameters from HadCM3.

We have focused on the coupling between soil mois-
ture anomalies and latent heat flux in this analysis, al-
though the plasticity of the toy model allows for the
investigation of many processes that contribute to biases
in temperature variance. For example, Tétreault-Pinard
(2013) used the toy model to identify the sources of
temperature variance biases in the central United States
and eastern Europe in the historical simulations of the
CCSM3.0 and HadCM3 models, used in CMIP3. He
found that high biases in both regions of both models
were associated with erroneously large soil moisture
variability compared to the ERA-40 reanalysis, and not
biases in the forcing amplitude.

6. Discussion and conclusions

We have developed a linear diagnostic model of the
coupled monthly variations in summertime 2-m air
temperature and soil moisture that come about because
of stochastic variations in forcing—taken to be the
monthly anomalies in precipitation 2’ and net radiative
forcing #’. The model is formulated from empirically
derived relationships between the forcings, the two state
variables (2-m air temperature 7" and 10-cm soil mois-
ture m), and the surface fluxes of energy and moisture
using ERA-Interim reanalysis and output from a widely
used climate model, HadCM3.

TABLE 5. Mean values for summer averaged forcing and v values averaged over the central United States and India from ERA-I and
HadCM3 (see boxed regions in Fig. 3).

Region Product o*(F,) (W?m™* d*(La?) (W?m™* vg (day )
Central United States ERA-I 35 36 0.39
HadCM3 194 149 0.22
India ERA-I 69 90 0.10
HadCM3 134 195 0.27
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a. Summary of findings

For the same amplitude of stochastic radiative forcing,
the toy model suggests that the temperature variance in
dry/moisture-limited regions should be much greater
than in wet/energy-limited regions [see discussion fol-
lowing Eq. (20)]. There are two reasons for this: first, a
much greater fraction (1) of the radiative forcing is used
to evaporate water in wet regions than in dry regions,
and so less energy is available to generate temperature
anomalies [as argued by Fischer et al. (2012)]. Second,
the moisture-related fluctuations in latent heat flux
preferentially amplify temperature anomalies in dry
regions. The result that soil moisture anomalies enhance
the temperature variance in dry regions conforms to the
existing literature on land-atmosphere interaction (e.g.,
Seneviratne et al. 2006, 2010; Hirschi et al. 2011; Koster
et al. 2015).

In addition to providing a quantitative framework for
understanding the impact of soil moisture anomalies
on temperature variance, we demonstrate how the toy
model can also be used to illuminate the source of
temperature variance bias in a climate model: a regional
bias in 2-m air temperature variability could be due to
biases in the radiative forcing anomalies, precipitation
forcing anomalies, or an erroneous representation of the
evaporation—moisture connection or of some other land
surface process. We use the toy model to investigate the
biases in monthly summertime temperature variance in
the southwest United States and in northern India in the
HadCM3 model used in CMIPS, finding high biases in
temperature variance in both regions because the sto-
chastic forcing was too strong (i.e., due to too much
variability in cloudiness). In northern India, HadCM3
simulates stronger soil moisture-latent heat flux cou-
pling compared to the ERA-I output, compounding the
high bias in temperature.' Given that most of the CMIP3
and CMIPS5 climate models suffer large biases in sum-
mertime temperature variance [shown in Fig. 2 and
documented in Christensen and Boberg (2012) and
Tétreault-Pinard (2013)], it is likely that our model
could be used to identify and hopefully remedy the
cause of biases in many of the models.

b. Errors and approximations in the toy model

While the toy model provides a reasonable fit to both
ERA-I and HadCM3 temperature variance, it under-
estimates the variance in soil moisture by about one-

! Tétreault-Pinard (2013) provides two additional examples of
how the toy model can be used to identify the sources of biases in
temperature variance.
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third. We believe the toy model’s underestimate is in
part due to the exclusion of soil moisture memory and to
residuals associated with the parameterization of vari-
ous terms in the surface energy and water budgets.
There is no soil moisture memory in the toy model, but
in the real world deep soil moisture dynamics do provide
memory that enhances the variance in surface moisture
m. The one-month autolag in soil moisture in the upper
1m of soil is typically ~0.4 (thicker soil columns have
even greater soil moisture memory; Seneviratne and
Koster 2012). Adding a memory term does indeed en-
hance summer moisture variance, but yields equations
that obscure physical insight, so we have refrained from
doing so.

There are additional structural limitations in the
model’s present form; we summarize these here:

« We use 2-m air temperature as a state variable, but our
model is predicated on an equilibrium land surface
energy budget. Recent work (e.g., Gallego-Elvira
et al. 2016; Panwar et al. 2019) has suggested that
terrestrial turbulent energy fluxes have different sig-
natures on land surface and 2-m air temperature, and
our conception of the land-atmosphere interface as a
“phantom layer” glosses over potentially important
impacts of these turbulent energy fluxes.

o The representation of evapotranspiration in terms of
m’ and &' neglects the complexities of plant canopies,
plant root systems, and variations of relative humidity
in the lower atmosphere.

e Our two-regime parameterization of evapotranspira-
tion is a reflection of relationships found in both ERA-I
and HadCM3 [and in ERA-40 and the two CMIP3
models analyzed by Tétreault-Pinard (2013)]. While
this parameterization captures the behavior of these
products, Vargas Zeppetello et al. (2019a) found that
evapotranspiration is a continuous function of the
underlying variables (soil moisture, radiative forcing,
etc.) and that the apparent soil moisture regimes in
evapotranspiration represent the limits of this func-
tion as soil moisture varies.

o Parameterization of the monthly averaged fluxes in
terms of simultaneous monthly averaged surface var-
iables may hide important physical relationships, in
part because the natural time scales for some pro-
cesses are much shorter than one month and in part
because of our neglect of the system’s memory (par-
ticularly in soil moisture, which is likely to be the cause
of the toy model’s systemic low bias in soil moisture
variance).

These approximations and simplifications have allowed
us insight into the major processes governing summer-
time temperature variability, and have revealed a basic
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pattern, the “land-muted” versus “land-amplified”” dipole
in surface moisture impacts on temperature variances. To
go further will require a time-dependent model that in-
cludes the lower atmosphere and a deeper surface layer,
and is written in terms of physical expressions for the rel-
evant processes.
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APPENDIX

Parameterization of the Fluxes in Terms of the State
Variables and Forcing

To write one value X as a linear combination of some
other values Y or Z we define a projection operator proj
[X, Y] for the kth month of summer (k = 1, 2, 3):

1 1 ¥
ixX,Y],=————> XY Al
pI'O][ > ]k M — 10’2(Yk)i:21 ik * ik ( )
a(X,)
=—_" k,k
AL
where ry y is the correlation function
J— 1 1 < ! !
Iy y (K, )= XikYip (A2)

M-1 U(Xk)a(yz)izl

o is the standard deviation, o(Xx) = /rx x(k, k), and M
(=30) is the number of samples for each summer.

In the case of ground heat flux, runoff, and upward
longwave flux, a single variable explained a large frac-
tion of the flux variance; adding a second projection did
not significantly increase the variance explained by the
parameterization. In the case of infiltration and sensible
heat flux, two variables contributed significantly to the
flux variance. In these cases, the parameterization can
be done in two ways: 1) first calculate a = a; = proj[X’,
Y] and then calculate b = by = proj[ X’ — a1Y’, Z'], or
2) first calculate b = b, = proj[X’, Z'] and then calculate
a = a, = proj[ X’ — b,Z', Y'], where we have dropped the
month subscript for clarity. Since, in general, the vari-
ables Y’ and Z' are not independent, a; # a, and b, # b,.
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We chose the order for the projections based on the
order that minimizes the root-mean-square of the un-
explained variance. The first projection is done using the
variable that appears in the first term on the RHS of a
flux formula. For example, in the parameterization of
infiltration Eq. (9),

I'=vm'+B 7,

the coefficient v| = proj[I’, m']
and B, =proj[I'—v,m', 7'].
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