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ABSTRACT

Climate models show that soil moisture and its subseasonal fluctuations have important impacts on the

surface latent heat flux, thus regulating surface temperature variations. Using correlations between monthly

anomalies in net absorbed radiative fluxes, precipitation, 2-m air temperature, and soil moisture in the ERA-

Interim reanalysis and the HadCM3 climate model, we develop a linear diagnostic model to quantify the

major effects of land–atmosphere interactions on summertime surface temperature variability. The spatial

patterns in 2-m air temperature and soil moisture variance from the diagnosticmodel are consistent with those

from the products from which it was derived, although the diagnostic model generally underpredicts soil

moisture variance. We use the diagnostic model to quantify the impact of soil moisture, shortwave radiation,

and precipitation anomalies on temperature variance in wet and dry regions. Consistent with other studies, we

find that fluctuations in soil moisture amplify temperature variance in dry regions through their impact on

latent heat flux, whereas in wet regions temperature variability is muted because of high mean evapotrans-

piration rates afforded by plentiful surface soil moisture. We demonstrate how the diagnostic model can be

used to identify sources of temperature variance bias in climate models.

1. Introduction

In the midlatitudes, society and agricultural produc-

tion are adapted to a summer climate with monthly av-

eraged surface temperature variance of approximatively

2K2 (Fig. 1), roughly 3 times smaller than in the win-

tertime climate (Vidale et al. 2007). Schär et al. (2004)
noted in their simulations that the variance in surface

temperature over parts of Europe would double by the

end of the twenty-first century. Their findings were ro-

bust across several greenhouse gas scenarios and global

climate models. Vidale et al. (2007) came to similar

conclusions with a similar set of simulations. Using a

multimodel ensemble, Weisheimer and Palmer (2005)

found that extremely warm summers are expected to be

50%more frequent in central North America at the end

of the twenty-first century than in the twentieth century.

An interesting point noted by these authors was that the

regions of largest temperature variability change were

not collocated with regions of largest mean temperature

change.

All projections noted above are based on global cli-

mate model (GCM) simulations, whose reliability is

difficult to judge because global observations of land

surface variables such as turbulent heat fluxes and soil

moisture content are limited both by geographic cov-

erage and temporal availability (Seneviratne et al. 2010;

McColl et al. 2019). In contrast, summertime tempera-

ture variability is well observed on global scales; it is of

interest to see how well the GCMs reproduce this

quantity. Using an ensemble of 63 members from 25

GCMs that participated in phase 5 of the Coupled

Model Intercomparison Project (CMIP5), we find that

the mean across all ensemble members overestimates

summertime surface temperature variance by 25% to

100% over the 1979–2008 time period in most conti-

nental locations around the globe (Fig. 2; see Table 1

for a complete list of models). Kotlarski et al. (2014)

found similar biases over continental Europe in an en-

semble of regional climate models.

The summertime temperature variance in the ERA-

Interim reanalysis (ERA-I; Dee et al. 2011), compares

favorably to the observations (Fig. 3, top) except for
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tropical regions, where the reanalysis product under-

predicts temperature variance. In contrast, the variance

in the HadCM3 GCM (Tett et al. 2007) exceeds that

observed in most land areas (Fig. 3, bottom). There are

widespread areas at nearly all latitudes where the sum-

mer 2-m air temperature variance is 2–4 times greater

than observed. Given the GCM errors in the historical

record shown in Figs. 2 and 3, it is not clear how to interpret

the large increases in interannual summertime temperature

variability projected by these GCMs over the next century.

In steady state, the net radiative energy inflow to the

surface is balanced by turbulent fluxes of sensible and

latent heat from the surface to the atmosphere and by a

smaller flow of heat down into the soil column. The

surface temperature fluctuation produced by an external

radiative flux perturbation thus depends on the pro-

cesses governing the ensuing perturbations in energy

fluxes. While a number of surface characteristics can

modulate these energy fluxes, earlier findings suggest

that soil moisture is key because it regulates the parti-

tioning of radiative perturbations between sensible and

latent heat fluxes (Guo et al. 2006; Koster et al. 2006a,b;

Seneviratne et al. 2010; Dirmeyer 2011). Orth and

Seneviratne (2017) showed that soil moisture and sea

surface temperature variability are similarly important to

summertime land surface temperatures in amodernGCM.

Several authors analyzing simulations with freely

evolving and constant (climatological mean) soil moisture

have come to the conclusion that soil moisture fluctuations

lie at the root of both the contemporary patterns of tem-

perature variance and the increases in temperature vari-

ance projected by GCMs under increasing CO2 emissions

(Seneviratne et al. 2006; Fischer et al. 2007; Seneviratne

et al. 2010; Jaeger and Seneviratne 2011; Lorenz et al. 2016;

Berg and Sheffield 2018). In addition, Vogel et al. (2017)

argued that the large-scale drying trend in the CMIP5

ensemble simulations of business-as-usual emissions sce-

narios, rather than short-term soil moisture fluctuations, is

primarily responsible for the increased temperature vari-

ance in those simulations.

As a demonstration of soil moisture’s importance to

the surface energy budget, Fig. 4 shows the correlation

between monthly anomalies in latent heat flux LE0 and
soil moisture m0 from ERA-I and HadCM3 during the

1979–2008 period. The stark transition between positive

and negative correlation can be explained by soil mois-

ture’s varying influence on evaporation in different cli-

mates (Vargas Zeppetello et al. 2019a). These asymmetric

FIG. 1. Summertime variance of observedmonthly averaged 2-m

air temperature, s2(T), derived from the Matsuura (2001) dataset.

Throughout this study, summer is defined as June–August (JJA)

in the Northern Hemisphere and December–February (DJF) in

the Southern Hemisphere. Each month has its annual mean value

removed when calculating the variance to remove the seasonal

cycle’s influence.

FIG. 2. Ratio of the ensemble average variance in summer av-

erage monthly 2-m air temperature from the CMIP5 GCMs to the

observed temperature variance (see Fig. 1). The model output is

taken from the historical runs of the CMIP5 GCMs over the same

period as the observed variance: 1979–2008. See Table 1 for a list of

models.

TABLE 1. Climate models used in calculating ensemble averaged

monthly averaged surface temperature variance.

Institution Climate model

CSIRO (Australia) ACCESS1.3, CSIRO-Mk3.6.0

NCAR (United States) CCSM4.0

CNRM (France) CNRM-CM5

Environment and Climate

Change Canada

CanESM2

GFDL (United States) GFDL CM3, GFDL-ESM2G

GFDL-ESM2M

Hadley Centre (United

Kingdom)

HadCM3, HadGEM2-AO

HadGEM2-CC,

HadGEM2-ES

IPSL (France) CM5A-LR

MIROC (Japan) MIROC5, MIROC4h

MIROC-ESM-CHEM,

MIROC-ESM

MPI (Germany) MPI-ESM-LR,MPI-ESM-MR

MPI-ESM-P

MRI (Japan) CGCM3

NCC (Norway) NorESM1-M, NorESM1-M

BCC (China) BCC-CSM1.1

INM (Russia) INM-CM4
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soil moisture impacts on evaporation have led to the def-

inition of ‘‘moisture limited’’ and ‘‘energy limited’’ re-

gimes that are distinguished by a critical value of soil

moisture mcrit shown by the green line in Fig. 4. This crit-

ical value of soilmoisture at which the correlation values in

bothERA-I andHadCM3 switch abruptly frompositive to

negative is nearly equal to the globally averaged value of

summertimem in those products. These apparent regimes

have been observed in local flux tower analyses (Ryu et al.

2007); Teuling et al. (2009) conducted a global synthesis of

available observations and found similar results but not

such a stark transition between wet and dry climates.

Koster et al. (2006a) showed that the asymmetric impact

of soil moisture perturbations on the surface energy fluxes

in wet and dry climates across the United States is fun-

damental to the spatial distribution of summertime tem-

perature variance, and Koster et al. (2015) showed that

observations across the United States support a strong

relationship between variance in moisture-mediated

evapotranspiration and variance in temperature. These

findings lead to the following hypothesis:

The biases in 2-m air temperature variance shown in
Figs. 2 and 3 are due to errors in the model representa-
tions of the connection between surface turbulent energy
fluxes and soil moisture.

In this paper, we take a first step toward addressing

this hypothesis with the aid of our ‘‘toy model’’ of land–

atmosphere interaction on monthly time scales, devel-

oped in sections 2 and 3. For more details on model

development, see Tétreault-Pinard (2013). The model

quantitatively links the variance in 2-m air temperature

T and soil moisturem to the variance in radiative forcing

ℱ and precipitation P by parameterizing anomalies in

surface energy andmoisture fluxes in terms of these four

variables. In section 4 we use the toy model to provide a

quantitative assessment of the various processes that

contribute to summertime temperature variability in

ERA-I. In section 5 we illustrate how the toy model can

be used to identify the sources of biases in summertime

temperature variance in HadCM3, one model partici-

pating in the CMIP5 project. A discussion and conclu-

sions are presented in section 6.

2. Model structure

a. Surface energy and moisture budgets

In equilibrium, the land surface energy and water

budgets can be written as

FIG. 3. Ratio of monthly averaged summertime 2-m air tem-

perature variance in (top) ERA-I and (bottom) the HadCM3

model to the observed temperature variance for the period 1979–

2008 (see Fig. 1). The regions within the black boxes in the bottom

panel are further analyzed in section 5.

FIG. 4. Correlation of E0 and m0 in summertime for ERA-I and

HadCM3. Correlations are calculated for each of the three summer

months separately, and then averaged. Superposed is the contour

line where the climatological summertime surface soil moisture is

equal to the global mean surface soil moisturemG for each dataset.
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05ℱ 0
SW 1F 0

YLW 2F 0
[LW 2LE0 2H0

s 2G0, (1)

and

05P0 2E0 2R0 2 I 0, (2)

where ℱ SW (Wm22) is the net absorbed shortwave radi-

ation at the surface, FYLW (Wm22) is the downward

longwave radiation incident at the surface, F[LW (Wm22)

is the flux of longwave radiation emitted by the surface,

and LE and Hs (Wm22) are the turbulent fluxes of latent

heat and sensible heat from the surface to the atmosphere,

whereL (Jm22mm21) is the latent heat of evaporation of

water. Also, P (mms21) is the flux of precipitation to the

surface, E (mms21) is the net flux of water vapor to the

atmosphere due to evapotranspiration, and R (mms21) is

the loss of water through runoff; G (Wm22) and I

(mms21) represent, respectively, the flux of energy and

water from the soil surface layer into the ground below.

The scripted terms in Eqs. (1) and (2) denote components

of the energy budget that are assumed independent from

the land–atmosphere interactions considered by the toy

model.We decompose each variableXi,j, measured in year

i and averaged over month j (June, July, or August in the

Northern Hemisphere; December, January, or February

in the Southern Hemisphere) in a given grid box into a

climatological mean for that month, Xj, and a monthly

averaged fluctuation X 0
i, j 5Xi, j 2Xj.

b. Representation of surface fluxes

We use output from ERA-I and HadCM3 to param-

eterize all terms in the surface energy and water budgets

in terms of state variables (temperature and soil mois-

ture) or independent forcings (radiation and precipita-

tion). By substituting these parameterizations into Eqs.

(1) and (2), we arrive at equations for monthly tem-

perature and soil moisture anomalies written in terms of

the independent forcings. In an objective procedure, the

combination of variables (ℱ , P, T , and m) chosen for

each parameterization explains more variance in the

surface flux under consideration than any other combi-

nation of variables (see appendix).

Since Eq. (1) describes the surface energy budget, skin

temperature suggests itself as a relevant state variable.

However, to compare between global observations,

models, and reanalysis we choose 2-m air temperature T

to be our representative temperature. Recent work (e.g.,

Gallego-Elvira et al. 2016; Panwar et al. 2019) has shown

that surface turbulent heat fluxes impact surface and 2-m

air temperature differently. However, skin and 2-m

air temperature output by ERA-I are extremely well

correlated (r. 0.95) on monthly time scales over nearly

all global land surfaces in summertime. The high

correlation between skin and 2-m air temperature sug-

gests that they are functionally equivalent for parame-

terizing the various terms in Eqs. (1) and (2) in terms of

model state variables. Parameterizing the fluxes in terms

of skin temperature did not substantially alter the results

that we present in this paper.

We choose our soil moisture value m to be the

equivalent moisture height (mm H2O) in the upper

10 cm of soil. This is a standard model output from the

CMIP5 models and can be calculated from ERA-I by

interpolating appropriately weighted soil moisture out-

put in top two vertical levels. Using this value allows us

to sidestep differences between model representations

of the soil column, particularly the number of soil mois-

ture layers. More importantly, upper-level soil moisture

is a primary control on surface energy fluxes, suggesting

that the diagnostic model will explain more variance in

these energy budget terms if surface soil moisture is

used rather than a full-column value (Seneviratne

et al. 2010).

Our model examines month-to-month variability and

does not include temperature memory. Analysis of the

HadCM3 shows that in the mid- and high latitudes, 2-m

air temperature has some memory on time scales longer

than one month (explaining up to 25% of the variance),

but this memory is not as pronounced in observations

or ERA-I (explaining less than 15% of the variance).

This exaggerated temperature memory in GCMs might

be linked to exaggerated soil moisture memory (see

McColl et al. 2019) but we do not pursue that problem in

this paper. Although feedbacks between surface fluxes,

radiative forcing, and precipitation have been docu-

mented in reanalysis datasets (e.g., Findell et al. 2011),

we assume that the physical processes that generate such

feedbacks operate at scales larger than a climate model

grid box and are therefore not relevant to our column

approach.

c. Surface longwave radiation

We assume that all anomalies in surface upward

longwave radiation F 0
[LW are driven by temperature

perturbations via the Planck feedback. Thus, F 0
[LW 5 gPT

0,
where gP 5 4sT3 for each grid box. On the time scales of

interest in this study, anomalies in net downward long-

wave radiation at the surface F 0
YLW are composed of an

independent downward longwave forcing component

(e.g., a change in cloudiness) given by ℱ 0
YLW, and by a

response to near-surface temperature changes given by

gDLRT
0. We assume that any temperature anomaly T0 is

constant through a typical boundary layer depth and use

the radiative kernels from Previdi (2010) to compute

gDLR, the downward longwave radiative response to a

boundary layer warming of 1K. These assumptions have
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been used to accurately predict the downward longwave

radiation response to greenhouse warming (Vargas

Zeppetello et al. 2019b). With this assumption about

the longwave response to temperature fluctuations, we

can separate the downward longwave flux at the surface

into the response to this temperature anomaly and the

independent component of the downward longwave

forcing ℱ 0
YLW:

F 0
YLW 5ℱ 0

YLW 1 g
DLR

T 0 . (3)

The typical midlatitude value for gDLR is;3Wm22K21;

this represents a considerable reduction of the Planck

feedback (gP 5 4sT3 ; 5 Wm22 K21).

Using Eq. (3), we can write the surface energy balance

[Eq. (1)] as

05ℱ 0 2 (g
P
2 g

DLR
)T 0 2LE0 2H0

s 2G0 , (4)

where ℱ 0 is the total radiative forcing:

ℱ 0 [ℱ 0
SW 1ℱ 0

YLW . (5)

As noted above, the scripted terms denote components

of the energy budget that are assumed independent from

the land–atmosphere interactions considered by the

toy model.

3. Parameterization of the fluxes of moisture and
energy

We parameterize a monthly averaged flux perturba-

tionX0 in terms of the linear combination of at most two

perturbations in the underlying variables:

X 0 5 aY 0 1 bZ0 1X 0
o: (6)

Here Y0 and Z0 are fluctuations in either the state vari-

ables m0, T0 or in the external forcings ℱ 0, P0, while the

coefficients a, b vary by grid box and depend on the

month. The valuesX0, Y0, Z0 are taken fromHadCM3 or

ERA-I output. The orthogonal projection method (see

appendix) selects the coefficients a, b and variables Y0,
Z0 for which the residual variance s2(Xo) is minimized.

This orthogonal projection method to select the ‘‘opti-

mum’’ parameterization is objective in the sense that we

chose the (at most two) state variables that reduce the

parameterization’s unexplained variance, and that the

components associated with variables Y0 and Z0 are

linearly independent.

The orthogonal projection method does not provide a

mechanistic description of the physics that govern the

processes it represents. Rather, it minimizes the vari-

ance left unexplained by the parameterizations based on

the state variables provided for analysis. As such, the toy

model cannot prove the existence of causal relation-

ships; our model’s parameterizations should be consid-

ered as explainers of variance rather than descriptions of

physical mechanisms. We now provide the formulas

used in the toy model provided by the orthogonal

projection method.

a. Forcing decomposition

The forcings ℱ 0 and P0 are not independent; they are

anticorrelated over land nearly everywhere due to the

presence of thick, precipitating clouds. Since precipita-

tion anomalies are a strong predictor of radiative forcing

anomalies, it is ideal to separate the radiative forcing

associated with precipitation from the radiative forcing or-

thogonal to precipitation anomalies:

ℱ 0 5ℱ 0
o 2LaP0 . (7)

Equation (7) defines ℱ 0
o as the downward radiative

forcing anomaly when there are no rain clouds in the

sky. Thus precipitation has two impacts on the toy

model: it diminishes the total radiative forcing and

moistens the surface. The coefficient a is dimensionless

and positive in all regions with significant rainfall. The

orthogonal projection method described above ensures

that ℱ 0
o andP0 are linearly independent. We refer to ℱ 0

o

as ‘‘nonprecipitating’’ and LaP0 as ‘‘precipitating’’ ra-
diative forcing in the rest of this paper. Separating the

forcings in this way allows the toy model to fully reflect

the role of precipitation in both modifying surface hy-

drology and the surface energy balance through its in-

fluence on radiative forcing.

b. Ground heat and water fluxes

Neither ERA-I nor HadCM3 provides output of

ground heat flux, so we assume G0 is equal to the

monthly residual of the other components in Eq. (4).

The simplest approximation is that fluctuations in ground

heat flux are linearly proportional to surface temperature

fluctuations:

G0 5 g
Y
T 0 , (8)

where the coefficient gY (Wm22 K21) is always posi-

tive. Neither this nor any other parameterization ofG0

explained more than 50% of the variance anywhere

in HadCM3 or ERA-I, and parameterizing this flux

in terms other variables (P0, ℱ 0, or m0) did not sub-

stantially increase the variance explained by Eq. (8).

However, G0 is a small contribution to the surface en-

ergy budget in both products, so this is not particularly

concerning.
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As with ground heat flux, ERA-I andHadCM3 do not

provide output of infiltration, so it is calculated as the

residual of terms in Eq. (2). Infiltration of moisture into

the ground is an important component of the surface

water budget. Including both soil moisture and precipi-

tation in our parameterization of infiltration proved to

increase the variance explained by the parameterization:

I 0 5 n
Y
m0 1b

Y
P0 . (9)

Although m0 and P0 are correlated, the orthogonal

projection method ensures that each component of the

parameterization is linearly independent from the other.

Note that the dependence of the flux on two correlated

variables (hereP0 andm0) introduces some ambiguity in

the value of the coefficients (here, nY and bY) since they

depend on the order that the projections are done, as

discussed in the appendix. Both the rate nY (s21) and the

unitless coefficient bY are positive definite.

We parameterize runoff R as

R0 5b
R
P0 . (10)

This parameterization generally explains little of the

runoff variance, and adding more variables did not im-

prove it substantially. However, R0 is a small contribu-

tion to the surface water budget in both products, so this

parameterization’s weakness is not a major concern.

The coefficients bY, bR in Eqs. (9) and (10) are unit-

less and generally take on values between zero and one.

However, in high latitudes where snowmelt can exceed

precipitation in the summer months, the b5bY 1bR

value can exceed one.

c. Surface sensible heat flux

The turbulent flux of sensible heat is parameterized as

H0
s 5 g

H
T 0 2Ld

H
P0 , (11)

where the coefficient gH (Wm2K21) is a positive num-

ber representing the flux response to a near-surface change

in temperature. The dH coefficient is dimensionless and

positive in all regionswith significant rainfall. Similar to the

decomposition of radiative forcing [Eq. (7)], the magni-

tude of dH reflects the energetic constraint on sensible heat

flux that is associated with monthly anomalies in short-

wave radiation that accompany monthly anomalies in

cloudiness, which we assume are linearly proportional to

precipitation fluctuations P0. Further, in dry regions, pre-

cipitation increases the amount of energy partitioned into

evapotranspiration by providing more soil moisture to the

land surface, thereby reducing the sensible heat flux (see

section 3d). Equation (11) does not imply that precipita-

tion fluctuations physically drive changes in the sensible

heat flux; rather, the precipitation fluctuations contain

information about sensible heat flux variability that is

linearly separable from temperature fluctuations by the

orthogonal projection method.

d. Evapotranspiration: Two parameterization regimes

The impact of soil moisture fluctuations on evapo-

transpiration changes depending on the mean state soil

moisture (see section 1). Thus, our parameterization of

evapotranspiration must be more subtle than those for

the other fluxes. Figure 4 shows the correlation between

monthly anomalies in surface soil moisture m0 and

evapotranspiration E0; superimposed on this plot is the

contour line of each dataset’s global average surface soil

moisture, mG. A clear change in behavior is evident

depending on whether a particular grid box’s climatolog-

ical soil moisture is less or greater thanmG. While this is

likely a coincidence, the presence of such a stark shift in

correlation across wet and dry climates is not limited to

the models considered here (e.g., Lorenz et al. 2012;

Schwingshackl et al. 2017; Berg and Sheffield 2018).

In both ERA-I and HadCM3, E0 and m0 are highly posi-

tively correlated in regions wherem#mG[r(E
0, m0). 0:6]

and negatively or poorly correlated in regions where

m.mG [20:8, r(E0, m0),20:2]. Figure 5 shows that

the dramatic shift in behavior across the global mean

value of soil moisture is also reflected in the correlation

between E0 and radiative forcing anomalies ℱ 0. In regions

FIG. 5. As in Fig. 4, but for the correlation of E0 and ℱ 0.
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where m.mG, an increase in ℱ 0 is associated with an

increase in E0[r(E0, ℱ 0). 0:8], indicating that radiative

forcing is the primary driver of evapotranspiration in

regions where soil moisture is plentiful. In dry regions

(m,mG) where evapotranspiration is tightly con-

strained by available soil moisture, an increase in ℱ 0 is
associated with a soil drying that drives a decrease

in E0 [20:8, r(E0, ℱ 0),20:2].

The development of our toy model is guided by the

behavior in ERA-I and HadCM3. As two different

patterns are evident in Figs. 4 and 5, we use the or-

thogonal projection method to generate two different

parameterizations of evapotranspiration in dry and wet

climates:

d Dry regions, where m,mG: The optimal parameter-

ization can be expressed as a linear combination of

fluctuations in m0 and ℱ 0:

E0
dry 5 n

E
m0 1

l

L
ℱ 0 , (12)

where l is a unitless coefficient generated by projecting

the residual E0 2 nEm
0 onto ℱ 0/L.

The rate nE (s21) is positive definite. This parameteri-

zation captures the fact that evapotranspiration variability

in dry regions is a strong function of soil moisture fluctu-

ations but is also limited by variations in the energy supply.

While l is small in dry regions l, 0.3 and soil moisture is

the fundamental control on evapotranspiration, omitting

radiation in Eq. (12) increases the variance left unex-

plained by this parameterization.

d Wet regions, where m$mG: The optimal parameter-

ization in wet regions involves only fluctuations in

radiative forcing ℱ 0:

E0
wet 5

l

L
ℱ 0 . (13)

In wet regions, where radiation is the primary driver

of evapotranspiration variability, l is in the range 0.3 #

l # 0.7. An alternate form of Eq. (13) that retained soil

moisture as a state variable with nE , 0 did not increase

the variance explained by the parameterization, indi-

cating that moisture fluctuations that are linearly inde-

pendent from radiation anomalies have little impact on

evapotranspiration in wet regions.

We generate one set of coefficients (gP, gH , gY, l,

nE, nY, bR, bY, dH , a) for each grid cell of both ERA-I

andHadCM3, yielding two realizations of the toy model

with different coefficients that reflect the behavior of

these two different models. We found that the variance

explained by each flux parameterization is nearly equal

in the two models considered here and three others

analyzed in Tétreault-Pinard (2013). Table 2 summa-

rizes the variance in model output explained by each

parameterization. Figure 6 shows maps of variance ex-

plained by each parameterization; values for the pa-

rameterizations of E0 andH0
s are from ERA-I, and of R0

and I0 from the HadCM3. Table 3 summarizes the flux

parameters and their typical values, while Fig. 7 shows

the spatial distribution of the toy model coefficients

given by the orthogonal projection method applied to

the ERA-I output.

4. The toy model

The toy model for 2-m air temperature and surface

soil moisture is now obtained by inserting the parame-

terized fluxes Eqs. (8)–(12) into Eqs. (2) and (4):

m0 5
1

n
s

�
(12b)P0 2

l

L
(ℱ 0

o 2LaP0)
�

(14)

and

T 0 5
1

g
[(12 l)(ℱ 0

o 2LaP0)1Ld
H
P0 2Ln

E
m0] , (15)

where ns [ nY 1 nE is the total rate at which water es-

capes from the surface layer, g[ gP 1 gY 1 gH 2 gLW

is a ‘‘heat capacity’’ parameter, relating the temper-

ature anomaly to the net energy flux into the surface

layer, and b[bY 1bR is the fractional loss of precip-

itation that leaves the surface layer due to downward

or lateral transport (i.e., 1 2 b is the efficiency of

TABLE 2. A list of the parameterization of fluxes in terms of the

state variables (m0, T0) and forcings (ℱ 0, P0). The variance ex-

plained by each parameterization is indicated by the range in

squared correlation between the parameterized flux and the ‘‘ac-

tual’’ flux, as taken from ERA-I except for runoff and infiltration,

which are taken from HadCM3. For each flux, the squared corre-

lation values for each parameterization are similar in the HadCM3

and in the ERA-I. For spatial maps of these r2 values, see Fig. 6

Flux Parameterization

r2

(parameterized,

model fluxes)

Upward longwave F 0
[ 5gPT

0 0.77–0.98

Sensible heat flux H0
s 5gHT

0 2LdHP
00 0.04–0.95

Evapotranspiration
E0 5

l

L
ℱ 0 (wet);

E0 5 nEm
0 1

l

L
ℱ 0 (dry)

0.17–0.98

Runoff R0 5bRP
0 0.00–0.32

Infiltration I 0 5 nYm
0 1bYP

0 0.35–0.98

Ground heat flux G0 5gYT
0 0.00–0.12
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precipitation in moistening the surface layer). In Eqs.

(14) and (15), we have also used Eq. (7) to substi-

tute ℱ 0 5ℱ 0
o 2LaP0.

Importantly, we have used 2-m air temperature as a

state variable in our parameterizations of terms in the

surface energy budget. This requires some justification,

as sensible heat flux cools the land surface and warms

the boundary layer on short time scales (see Fischer

et al. 2007). However, on monthly time scales skin and

2-m air temperature are nearly perfectly correlated: a

large surface temperature anomaly can drive increased

sensible heat flux leading to a warming of 2-m air tem-

perature. On monthly time scales, we treat the land–

atmosphere interface as a ‘‘phantom layer’’ with a

temperature variability that is equally well repre-

sented by land surface or 2-m air temperature. Positive

sensible heat flux anomalies release energy from (and

cool) this layer; negative sensible heat flux anomalies

indicate that the layer is retaining energy and imply a

warming. Considerations of shorter time scales, where

the distinction between skin and 2-m air temperature is

important, are beyond the scope of this paper, and

further research on short time scale energy partition-

ing in land surface models is needed to understand

the dynamics we interpret through our diagnostic

framework.

The two terms on the right-hand side (RHS) of

Eq. (14) show the opposing impacts of precipitation and

radiative flux on surface moisture. Positive precipitation

anomalies moisten the soil directly, and are also asso-

ciated with reduced evaporation (and therefore with

damper soils) through their impact on radiative forcing.

In contrast, positive radiative forcing anomalies con-

tribute to soil drying through enhanced evapotranspi-

ration. The first term on the RHS of Eq. (15) is the

temperature change due to that fraction of the radiative

forcing that is not used for evapotranspiration (1 2 l),

the second term reflects the radiative impact of thick

precipitating clouds on sensible heat flux, and the third

term is the temperature fluctuation due to soil mois-

ture’s connection to latent heat flux perturbations.

Figure 8 shows a schematic summary of the model

pathways that modulate temperature anomalies in re-

sponse to precipitating (bottom) and nonprecipitating

(top) radiative forcing. Red arrows denote direct im-

pacts of the forcing, while blue arrows denote the im-

pacts of soil moisture on temperature variability. The

size of the arrows reflects the magnitude of the coupling

between various forcings, fluxes, and state variables.

Equations (14) and (15) can be combined to yield the

equation for temperature anomalies in terms of the

forcing:

FIG. 6. The variance explained by the key parameterizations, measured by the squared correlation between the

parameterized flux and the ‘‘actual’’ flux (i.e., that obtained fromHadCM3 or ERA-I). (top) Variance explained by

the parameterizations of E0 andH0
s using ERA-I output, and (bottom) variance explained by the parameterization

of R0 and I0 using the HadCM3 output. Runoff R is not an important component of the water budget in regions

where the parameterization explains a small fraction of the runoff variance. The ground heat fluxG0 is a negligible
component of the heat budget everywhere, and our parameterization of upward longwave flux is nearly perfect

everywhere; neither map is shown here.
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(16)

The ratio nE/nS measures the coupling strength between

surface moisture and temperature anomalies. This frac-

tion can be either positive or zero: our parameterization

ofE0 ensures thatwhenm.mG, nE/nS5 0, whereas nE/nS
is positive when a region’s climatological soil moisture is

less than the globalmean (seeFig. 7).Wenow explore the

impact of this coupling term on temperature fluctuations

in our model.

a. Coupled moisture and temperature variability in
the two surface regimes

As emphasized above, our model is diagnostic, so

parsing cause and effect is not possible. However, we

can construct plausible physical interpretations of

the major findings by considering the temperature

and soil moisture response to separate fluctuations in

the external forcing, ℱ 0
o and P0 [from Eqs. (14) and

(16)], with and without the latent heat flux anomalies

associated with moisture fluctuations (i.e., with nE 5 0

and nE . 0).

Case 1: ℱ 0
o . 0, P0 5 0/m0 52

l

nsL
ℱ 0

o

T 0 5

8>>><
>>>:

1

g
ℱ 0

o(12 l) if n
E
5 0;

1

g
ℱ 0

o(12 l)1
n
E

gn
S

lℱ 0
o if n

E
. 0:

(17)

We can ignore latent heat flux modifications associated

with soil moisture fluctuations by setting nE5 0: without

these modifications, the degree of warming across re-

gions is dependent only on the fraction of incident ra-

diation used for evapotranspiration l.

However, when we include the dry-region coupling

between surface hydrology and the latent heat flux nE .
0, the initial warming forced by a radiation anomaly

ℱ 0
o . 0 is amplified by the decrease in evapotranspira-

tion associated with a drying soil. In contrast, the

warming is muted in wet regions, because the fraction of

radiative forcing used to evaporate soil moisture l is

greater for wet than dry regions (see Fig. 7).

Case 2: P0 . 0, ℱ 0
o 5 0/m0 5

1

ns
[la1 (12b)]P0

T 0 5

8>>><
>>>:

2
1

g
[a(12 l)2 d

H
]LP0 if n

E
5 0;

2
1

g
[a(12 l)2 d

H
]LP0 2

n
E

gn
S

LP0[la1 (12b)] if n
E
. 0:

(18)

TABLE 3. Summary of the flux parameters (ns, g,b, nE, l), forcing coefficients (a, J), and their typical values across wet and dry regions in

the ERA-I reanalysis product. Also shown is the ratio J of the variance in radiative forcing associated with precipitating clouds to the

variance in total radiative forcing.

Bulk parameter Symbol Typical value

Rate (day21) at which water leaves the surface layer [Eq. (14)] ns 5 nY 1 nE 0–0.5 (dry); 0.3–0.9 (wet)

Thermal resistance [(Wm22) K21] to a net change in the surface

energy budget [Eq. (15)]

g5gP 1gY 1gH 2gDLR 5–20

Fraction of precipitation (unitless) that drains from the surface

layer [Eq. (14)]

b5bR 1bY 0.1–0.3 (dry); 0.4–0.7 (wet)

Coupling coefficient linking soil moisture anomalies to latent heat

flux anomalies (unitless) [Eq. (16)]

nE/nS 0.1–0.6 (dry); 0.0 (wet)

Fraction of net radiative forcing ℱ 0 used for evapotranspiration E0

(unitless) [Eq. (12)]

l 0.1–0.3 (dry); 0.3–0.7 (wet)

Fraction of net radiative forcing ℱ linearly congruent with

precipitation 2LP0 (unitless) [Eq. (7)]
a 0.1–0.5

Fraction of precipitation forcing P linearly congruent with surface

sensible heat flux H 0
s (unitless) [Eq. (11)]

dH 0.0–0.6

Ratio of the variance in radiative forcing associated with

precipitating clouds to the variance in total radiative forcing

J5s2(aLP)/s2(ℱ ) 0.1–0.7

1 MAY 2020 VARGAS ZEPPETELLO ET AL . 3555



We first ignore all surface latent heat flux modifications

associated with soil moisture perturbations by setting

nE 5 0, whereby the negative radiative forcing anomaly

associated with precipitation’s effect on evapotranspiration

[2LaP0(12 l)] leads to cooling opposed by a warming

associated with a damped sensible heat flux LdHP
0.

Similar to the uncoupled version of case 1, the regional

differences in this cooling are due to differences in l that

control how much any radiative perturbation is used for

evapotranspiration and dH that reflects the sensible heat

flux sensitivity to radiative forcing associated with pre-

cipitating clouds. Including the moisture impact on the

latent heat flux in dry regions (nE . 0), the radiative

cooling associated with precipitation is amplified be-

cause more soil moisture is made available for evapo-

transpiration by the precipitation anomaly.

To gain further insight into the switch between am-

plification and muting of temperature anomalies, we

rewrite Eq. (16) in terms of the precipitation P0 and net

radiative forcing ℱ 0:

T 0 5
1

g

��
12 l

�
12

n
E

n
S

��
ℱ 0 2

�
n
E

n
S

(12b)2 d
H

�
LP0

�
.

(19)

Since l. 0, the first term on the RHS of Eq. (19) shows

that land–atmosphere interactions amplify radiatively

driven temperature anomalies in dry regions (where

nE . 0) through coupling between soil moisture and

evapotranspiration; in wet regions where l is large, the

efficacy of radiative forcing to generate temperature

anomalies is reduced compared to dry regions because

more of the energy coming into the system is used to

evaporate liquid water. The second term on the RHS of

Eq. (19) shows that in wet regions where nE5 0, sensible

heat flux anomalies driven by cloudiness oppose radiative

FIG. 7. The toy model coefficients determined from the flux parameterizations fit to the ERA-I output. The panels

show the average value of each coefficient over the three summer months.
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forcing anomalies (asℱ 0 andP0 are anticorrelated). This
impact further mutes temperature variability in wet re-

gions, while in dry regions where nE . 0, the latent heat

flux modifications associated with precipitation forcing

act to amplify radiative forced temperature anomalies.

b. Quantifying the impact of land surface and soil
moisture anomalies on temperature variability

Next we use the toy model to estimate the difference

in temperature variance in wet and dry regions, given

the same forcings, ℱ 0 andP0. The temperature variance

s2(T) is obtained from Eq. (19):

s2(T)5

"
C

0
1C

1

n
E

n
S

1C
2

�
n
E

n
S

�2
#
g22s2(ℱ ) , (20)

where

C
0
5 (12 l)2 1

Jd
H

a

��
d
H

a

�
2 2(12 l)

�
, (21)

C
1
5 2f(12 l)[l1 (12b)a21J]2 d

H
[l1 (12b)a22J]g ,

(22)

C
2
5 l2 1 [(12b)2a22 1 2l(12b)a21]J , (23)

and J5s2(aLP)/s2(ℱ ) is the ratio of precipitation re-

lated radiation forcing to net radiation forcing. Spatial

maps of J for ERA-I and HadCM3 are shown in the

bottom panels of Fig. 9.

In Eq. (20), the coefficients C1 and C2 [see Eqs. (22)

and (23)] are governed by the correlations between soil

moisture and turbulent surface energy flux anomalies.

Since the diagnostic model has no connection between

soil moisture and latent heat flux anomalies in wet

regions (where nE 5 0), these two coefficients only

impact the temperature variance in dry regions. In

contrast, the constant term in Eq. (20) [defined in

Eq. (21)] contributes to temperature variance in both

wet and dry regions. The first term on the RHS of

Eq. (21) is the temperature variance associated with

the incoming radiative flux. Here the only difference

between wet and dry areas is the value of l, the frac-

tion of the incoming radiation anomaly that is used

for evapotranspiration rather than to increase the

temperature; the impact of mean soil moisture on

FIG. 8. Schematic showing model pathways that modulate temperature variance in (left) wet/land muted and

(right) dry/land amplified regions in response to (top) nonprecipitating and (bottom) precipitating forcing. Lines

with arrows and stops denote positive and negative relationships, respectively; red lines denote direct impacts of

forcing and blue lines show impacts of coupling between soil moisture, latent heat flux, and temperature. Thicker

lines designate primary forcing impacts, while thinner lines denote weaker relationships. The dotted lines represent

the relationship between sensible heat flux and temperature that is identical in each of the four panels.
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temperature, rather than soil moisture fluctuations, is

measured by this term. Previous authors (e.g., Koster

et al. 2006a; Seneviratne et al. 2010; Koster et al.

2015) have invoked the processes captured in this

term to describe the impacts of evapotranspiration on

temperature fluctuations, and we show below that it is

indeed the major contributor to the difference in

temperature variance between wet and dry regions.

The second term on the RHS of Eq. (21) captures the

sensitivity of sensible heat flux to the precipitating

component of the radiative forcing. The dH term can

be conceptualized as the inverse of l: if a particular

region uses a small fraction of incident radiation for

evapotranspiration, the sensible heat flux must be

extremely sensitive to variations in the precipitating

component of the radiative forcing. Similarly, if l is

large and a large fraction of radiation is used for

evapotranspiration, the sensible heat flux sensitivity

to the precipitating component of the radiative forc-

ing (measured by dH) must be low.

We now use Eq. (20) to quantify the different con-

tributions to the temperature variance. Using typical

values from ERA-I for J and a and for the model

coefficients l, b, nE, and nS in the dry (top row) and

wet (bottom row) midlatitude regions (see Table 3),

we find:

s2(T)5

2
666664
1:822 0:18

n
E

n
S

1 1:68
n2E
n2S

0:161 0:08
n
E

n
S

1 1:45
n2E
n2S

3
7777753

s2(ℱ )

g2

5

"
2:842 0:291 1:57

0:252 0:001 0:00

#
5

4:12K2

0:25K2
,

wherewe have used nominal values for the forcing variance

s2(ℱ ); 100 W2 m24 and g parameter ;8Wm22K21

from ERA-I (see Figs. 7 and 9). First, we note that even

without considering fluctuations in turbulent energy

fluxes associated with soil moisture anomalies (nE 5 0),

the same variance in radiative forcing s2(ℱ ) causes

temperature variance to be more than 11 times greater

(2.84/0.25 5 11.4) in dry regions compared to wet re-

gions because in wet regions a greater fraction of ℱ 0

(lwet 5 0.5 vs ldry 5 0.2) is used to evaporate water

rather than heat the surface and because the surface

sensible heat flux in dry regions is much more sensitive

to fluctuations in the precipitating component of the

radiative forcing (dH,dry 5 0.5 vs dH,wet 5 0.2). This dif-

ference is estimated by setting nE 5 0 in Eq. (20),

whereby s2(T)5 g22C0s
2(ℱ ).

FIG. 9. (top) The variance in radiative forcing s2(ℱ ) and (bottom) the ratio of variance in radiation forcing as-

sociated with precipitating clouds to variance net radiative forcing [J5s2(LaP)/s2(ℱ )].
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For conceptual purposes, we will take the first term on

the RHS of Eq. (20) as the ‘‘base’’ variance associated

with a particular land surface’s partitioning of latent and

sensible heat (governed by l, or the climatological soil

moisture). Including the connection between soil mois-

ture and latent heat flux anomalies amplifies the differ-

ence in temperature variance between wet and dry

regions. Including the impact of soil moisture on evapo-

transpiration in dry regions amplifies the temperature

variance in dry regions from 2.84 to 4.12K2. Such am-

plification does not exist in wet regions, where latent heat

flux is insensitive to fluctuations in soil moisture.

The preceding analysis suggests that temperature

variance in dry regions should be much greater than wet

regions. So why is the temperature variance not greater

in the dry regions, compared to the wet regions in the

mid- and high latitudes? Figure 1 shows that the tem-

perature variance in wet northern Canada is about 3

times greater than in the dry southwest United States

(;2.5K2 compared to 1K2). In many dry regions, the

increased variance that we expect due to low values of

l and the impact of soil moisture on evapotranspiration

is more than compensated for by differences in forcing

variance. In ERA-I, the radiative forcing in wet regions

in the middle and high latitudes is on the order of

200W2m24 (see Fig. 9) while in dry regions such as the

southwest United States it is on the order of 50W2m24

(see Table 5). Incorporating the differences in forcing

amplitude and thermal inertia g (see Fig. 7) into Eq. (20),

we obtain a temperature variance in a wet, high forcing

variance region of 1.98K2 and a dry, low forcing variance

region of 1.33K2, more similar to the observed values

(see Fig. 1).

c. The toy model and the twentieth-century climate in
ERA-I and HadCM3

We present two realizations of the toy model with

parameters and forcings obtained both from ERA-I and

HadCM3 model output. In general, the toy model’s

temperature variance agrees well with the ERA-I out-

put and is a fair fit to the HadCM3 output (see Fig. 10).

In the ERA-I realization of the toy model, 69% of grid

cells are within a factor of 2 of the correct summertime

temperature variance; in the HadCM3 realization 51%

of the grid cells are within a factor of 2 of the correct

temperature variance. The toy model predicts too much

temperature variance in the HadCM3 realization, partic-

ularly in the high latitudes in the Northern Hemisphere.

Figure 11 shows that the toy model underpredicts soil

moisture variance s2(m) nearly everywhere in both ERA-I

and HadCM3. The overprediction of soil moisture var-

iance in the Sahara and Arabian Peninsula by the toy

model fit to the ERA-I data is not of particular concern, as

soil moisture variability has a small impact on the climate

of desert regions and the large overprediction shown in

Fig. 11 does not translate to a large absolute error in

temperature variance.

In the toy model, soil moisture anomalies preferen-

tially enhance temperature anomalies in dry regions.

Hence, a systemic underprediction of soil moisture

variance by the toy model (Fig. 11) should result in

s2(T) values that are too low in dry regions. Figure 10

clearly shows this behavior: the toy model’s systemic

underpredictions are found in dry regions like Australia

and the southwestern United States.

The impact of soil moisture on summer temperature

variance can be estimated by comparing the s2(T) sim-

ulated by the toy model in Fig. 10 to the s2(T) simulated

with the toymodel whenm0 is artificially set to zero in all
regions. The normalized difference between these two

simulations is shown in Fig. 12. In general, soil moisture

anomalies increase temperature variance by 20% to

80% in dry regions such as central Asia, Australia, and

the western United States [as proposed by Seneviratne

et al. (2010); Koster et al. 2015]. This range of values is

FIG. 10. The variance in summertime 2-m air temperature

computed by the toy model with coefficients and forcings from

(top) ERA-I and (bottom) HadCM3, normalized by the 2-m air

temperature variance in the ERA-I or HadCM3 dataset s2(TTM)/

s2(Tdata). Insets show histograms of the normalized variance at all

mapped points.
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broadly consistent with expectations from the toy model;

from Eq. (20), including latent heat flux perturbations as-

sociated with soil moisture fluctuations increased the

temperature variance by 31% in dry regions [(4.122 2.84)/

4.12 5 0.31].

5. Understanding climate model biases in s2(T)
using the toy model

In this section, we demonstrate one application of the

toy model: understanding biases in summertime tem-

perature variability simulated by climate models. We

use the toy model to determine whether the biases in a

climate model are predominantly due to errors in soil

moisture–latent heat flux coupling or in the radiation

and precipitation forcings. We focus on two regions

where s2(T) in HadCM3 is more than a factor of 3

greater than that observed: the southwest United States

and northern India (see the boxed regions in Fig. 3).

These are also regions that both the HadCM3 and ERA-I

realizations of the toy model are within a factor of

2 of the temperature variance found in their respective

products (see Fig. 10 and Table 4). While all climate

models and reanalysis products have different represen-

tations of land–atmosphere coupling (Lei et al. 2018),

we expect that the toy model can shed light on

the processes responsible for biases in individual climate

models.

We pose the attribution problem as follows. The toy

model expresses the temperature variance as a function

of precipitating (LaP) and nonprecipitating (ℱ o) radi-

ative forcing, one decomposition coefficient a, and six

surface parameters [see Eqs. (16) and (20)]:

s2(T)5s2fℱ 0
o,P

0,a;g,b, l, d
H
, n

E
, n

S
g

[s2fforcing; surfaceg
. (24)

In Eq. (24), the forcing variables ℱ 0
o, P

0, a and the

surface parameters g, b, l, dH, nE, nS are separated by a

semicolon.Wewill focus on the forcing termsℱ 0
o andP

0,
and nE—the parameter governing the connection be-

tween soil moisture and latent heat flux. Table 5 shows

these values from ERA-I and HadCM3 in the two re-

gions of interest.

In both the southwest United States and over India,

the high forcing values in HadCM3 are likely the

FIG. 11. As in Fig. 10, but for summertime surface soil moisture

s2(mTM)/s
2(mdata). FIG. 12. The impact of soil moisture anomalies on summertime

temperature variance in ERA-I andHadCM3. Impact is measured as

the normalized change in variance due to the impact of soil moisture

anomalies on temperature variance: {s2[T(m0)] 2 s2[T(m0 5 0)]}/

s2[T(m0)], where s2(T) is given by Eq. (20). The solid green line

shows where the summertime climatological soil moisture is equal to

the global mean soil moisture.
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primary cause of the high bias in temperature variance.

Table 4 shows that replacing the ERA-I forcing with the

HadCM3 forcing while retaining ERA-I nE values cau-

ses the temperature variance to increase by a factor of

3.3 (5 3.77/1.13) in the southwest United States and by a

factor of 2 (5 2.62/1.31) in northern India. Conversely,

replacing the HadCM3 forcing with the ERA-I forcing

while retaining theHadCM3 nE parameter decreases the

temperature variance by a factor of 4 (5 0.85/3.73) in the

southwest United States and by 27% (5 2.12/2.89) in

northern India.

While biases in the model forcings clearly contribute

to HadCM3’s high bias in temperature variance over

northern India, we can use this attribution procedure to

show that this model’s representation of land–atmosphere

coupling likely contributes to the temperature variance

bias in this region. In HadCM3, all of northern India is

represented as a dry region (Fig. 12 bottom), and the value

of nE is correspondingly higher than in ERA-I, where the

region ismuchwetter on average.Replacing theERA-I nE
valuewith the nE fromHadCM3while retaining the ERA-

I forcing amplifies temperature variance by a factor of 1.6

(52.12/1.31) due to the increased influence of soilmoisture

on temperature fluctuations. Conversely, using the ERA-I

nE value in place of the nE from HadCM3 while retaining

the HadCM3 forcing reduces the temperature variance by

9% (5 2.62/2.89), in line with our findings above, sug-

gesting that temperature variance is muted in climatolog-

ically wet regions.

In the southwestern United States, ERA-I has a

stronger coupling between soil moisture and latent heat

flux than the HadCM3 model; replacing the nE from

ERA-I with the nE from HadCM3 while retaining the

ERA-I forcing reduces the temperature variance by

25% (5 0.85/1.13). In contrast, replacing the nE values

from HadCM3 with the nE values from ERA-I while

retaining the HadCM3 forcing increases the temperature

variance only by a factor of 1.01 (3.77/3.73); this insensi-

tivity to changes in nE is likely due to the extremely high

forcing values over the southwestern United States and

other surface parameters from HadCM3.

We have focused on the coupling between soil mois-

ture anomalies and latent heat flux in this analysis, al-

though the plasticity of the toy model allows for the

investigation of many processes that contribute to biases

in temperature variance. For example, Tétreault-Pinard
(2013) used the toy model to identify the sources of

temperature variance biases in the central United States

and eastern Europe in the historical simulations of the

CCSM3.0 and HadCM3 models, used in CMIP3. He

found that high biases in both regions of both models

were associated with erroneously large soil moisture

variability compared to the ERA-40 reanalysis, and not

biases in the forcing amplitude.

6. Discussion and conclusions

We have developed a linear diagnostic model of the

coupled monthly variations in summertime 2-m air

temperature and soil moisture that come about because

of stochastic variations in forcing—taken to be the

monthly anomalies in precipitation P0 and net radiative

forcing ℱ 0. The model is formulated from empirically

derived relationships between the forcings, the two state

variables (2-m air temperature T and 10-cm soil mois-

ture m), and the surface fluxes of energy and moisture

using ERA-Interim reanalysis and output from a widely

used climate model, HadCM3.

TABLE 4. Quantifying the source of errors in the summer tem-

perature variance over the southwestern United States and northern

India simulated in the HadCM3. The first row is the temperature

variance from observations (see Fig. 1). The second and third rows

are the temperature variances from the same regions in ERA-I and

HadCM3 output. The fourth and fifth rows are the results from the

toy model with forcing and parameter values from ERA-I and

HadCM3, respectively. The last two rows show results from the toy

model experiments conducted by substituting the forcing values

[s2(ℱ ), s2(P), and a] and the nE parameter in the two realizations

of the toy model. Units areK2.

Experiment

South central

United States India

Observed (University of Delaware) 1.37 0.70

ERA-I 1.75 0.86

HadCM3 3.89 3.04

ERA-I forcing; nE from ERA-I 1.13 1.31

HadCM3 forcing; nE from HadCM3 3.73 2.89

HadCM3 forcing; nE from ERA-I 3.77 2.62

ERA-I forcing; nE from HadCM3 0.85 2.12

TABLE 5. Mean values for summer averaged forcing and nE values averaged over the central United States and India from ERA-I and

HadCM3 (see boxed regions in Fig. 3).

Region Product s2(ℱ o) (W
2m24) s2(LaP) (W2m24) nE (day21)

Central United States ERA-I 35 36 0.39

HadCM3 194 149 0.22

India ERA-I 69 90 0.10

HadCM3 134 195 0.27
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a. Summary of findings

For the same amplitude of stochastic radiative forcing,

the toy model suggests that the temperature variance in

dry/moisture-limited regions should be much greater

than in wet/energy-limited regions [see discussion fol-

lowing Eq. (20)]. There are two reasons for this: first, a

much greater fraction (l) of the radiative forcing is used

to evaporate water in wet regions than in dry regions,

and so less energy is available to generate temperature

anomalies [as argued by Fischer et al. (2012)]. Second,

the moisture-related fluctuations in latent heat flux

preferentially amplify temperature anomalies in dry

regions. The result that soil moisture anomalies enhance

the temperature variance in dry regions conforms to the

existing literature on land–atmosphere interaction (e.g.,

Seneviratne et al. 2006, 2010; Hirschi et al. 2011; Koster

et al. 2015).

In addition to providing a quantitative framework for

understanding the impact of soil moisture anomalies

on temperature variance, we demonstrate how the toy

model can also be used to illuminate the source of

temperature variance bias in a climate model: a regional

bias in 2-m air temperature variability could be due to

biases in the radiative forcing anomalies, precipitation

forcing anomalies, or an erroneous representation of the

evaporation–moisture connection or of some other land

surface process. We use the toy model to investigate the

biases in monthly summertime temperature variance in

the southwest United States and in northern India in the

HadCM3 model used in CMIP5, finding high biases in

temperature variance in both regions because the sto-

chastic forcing was too strong (i.e., due to too much

variability in cloudiness). In northern India, HadCM3

simulates stronger soil moisture–latent heat flux cou-

pling compared to the ERA-I output, compounding the

high bias in temperature.1 Given thatmost of the CMIP3

and CMIP5 climate models suffer large biases in sum-

mertime temperature variance [shown in Fig. 2 and

documented in Christensen and Boberg (2012) and

Tétreault-Pinard (2013)], it is likely that our model

could be used to identify and hopefully remedy the

cause of biases in many of the models.

b. Errors and approximations in the toy model

While the toy model provides a reasonable fit to both

ERA-I and HadCM3 temperature variance, it under-

estimates the variance in soil moisture by about one-

third. We believe the toy model’s underestimate is in

part due to the exclusion of soil moisture memory and to

residuals associated with the parameterization of vari-

ous terms in the surface energy and water budgets.

There is no soil moisture memory in the toy model, but

in the real world deep soil moisture dynamics do provide

memory that enhances the variance in surface moisture

m. The one-month autolag in soil moisture in the upper

1m of soil is typically ;0.4 (thicker soil columns have

even greater soil moisture memory; Seneviratne and

Koster 2012). Adding a memory term does indeed en-

hance summer moisture variance, but yields equations

that obscure physical insight, so we have refrained from

doing so.

There are additional structural limitations in the

model’s present form; we summarize these here:

d Weuse 2-m air temperature as a state variable, but our

model is predicated on an equilibrium land surface

energy budget. Recent work (e.g., Gallego-Elvira

et al. 2016; Panwar et al. 2019) has suggested that

terrestrial turbulent energy fluxes have different sig-

natures on land surface and 2-m air temperature, and

our conception of the land–atmosphere interface as a

‘‘phantom layer’’ glosses over potentially important

impacts of these turbulent energy fluxes.
d The representation of evapotranspiration in terms of

m0 and ℱ 0 neglects the complexities of plant canopies,

plant root systems, and variations of relative humidity

in the lower atmosphere.
d Our two-regime parameterization of evapotranspira-

tion is a reflection of relationships found in both ERA-I

and HadCM3 [and in ERA-40 and the two CMIP3

models analyzed by Tétreault-Pinard (2013)]. While

this parameterization captures the behavior of these

products, Vargas Zeppetello et al. (2019a) found that

evapotranspiration is a continuous function of the

underlying variables (soil moisture, radiative forcing,

etc.) and that the apparent soil moisture regimes in

evapotranspiration represent the limits of this func-

tion as soil moisture varies.
d Parameterization of the monthly averaged fluxes in

terms of simultaneous monthly averaged surface var-

iables may hide important physical relationships, in

part because the natural time scales for some pro-

cesses are much shorter than one month and in part

because of our neglect of the system’s memory (par-

ticularly in soil moisture, which is likely to be the cause

of the toy model’s systemic low bias in soil moisture

variance).

These approximations and simplifications have allowed

us insight into the major processes governing summer-

time temperature variability, and have revealed a basic

1 Tétreault-Pinard (2013) provides two additional examples of

how the toy model can be used to identify the sources of biases in

temperature variance.
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pattern, the ‘‘land-muted’’ versus ‘‘land-amplified’’ dipole

in surface moisture impacts on temperature variances. To

go further will require a time-dependent model that in-

cludes the lower atmosphere and a deeper surface layer,

and is written in terms of physical expressions for the rel-

evant processes.
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APPENDIX

Parameterization of the Fluxes in Terms of the State
Variables and Forcing

To write one value X as a linear combination of some

other values Y or Z we define a projection operator proj

[X, Y] for the kth month of summer (k 5 1, 2, 3):

proj[X 0,Y 0]
k
[

1

M2 1

1

s2(Y
k
)
�
M

i51

X 0
i,kY

0
i,k, (A1)

5
s(X

k
)

s(Y
k
)
r
XY

(k,k),

where rX,Y is the correlation function

r
X,Y

(k, l)[
1

M2 1

1

s(X
k
)s(Y

l
)
�
M

i51

X 0
i,kY

0
i,l, (A2)

s is the standard deviation, s(Xk)[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rX,X(k, k)

p
, andM

(530) is the number of samples for each summer.

In the case of ground heat flux, runoff, and upward

longwave flux, a single variable explained a large frac-

tion of the flux variance; adding a second projection did

not significantly increase the variance explained by the

parameterization. In the case of infiltration and sensible

heat flux, two variables contributed significantly to the

flux variance. In these cases, the parameterization can

be done in two ways: 1) first calculate a 5 a1 5 proj[X0,
Y0] and then calculate b 5 b1 5 proj[X0 2 a1Y

0, Z0], or
2) first calculate b5 b2 5 proj[X0, Z0] and then calculate

a5 a25 proj[X0 2 b2Z
0,Y0], where we have dropped the

month subscript for clarity. Since, in general, the vari-

ablesY0 and Z0 are not independent, a1 6¼ a2 and b1 6¼ b2.

We chose the order for the projections based on the

order that minimizes the root-mean-square of the un-

explained variance. The first projection is done using the

variable that appears in the first term on the RHS of a

flux formula. For example, in the parameterization of

infiltration Eq. (9),

I 0 5 n
Y
m0 1b

Y
P0 ,

the coefficient nY5proj[I 0,m0]
and bY5proj[I 02nYm

0,P0].
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