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ABSTRACT

The increasing frequency of very high summertime temperatures has motivated growing interest in the
processes determining the probability distribution of surface temperature over land. Here, we show that on
monthly time scales, temperature anomalies can be modeled as linear responses to fluctuations in shortwave
radiation and precipitation. Our model contains only three adjustable parameters, and, surprisingly, these can
be taken as constant across the globe, notwithstanding large spatial variability in topography, vegetation, and
hydrological processes. Using observations of shortwave radiation and precipitation from 2000 to 2017, the
model accurately reproduces the observed pattern of temperature variance throughout the Northern
Hemisphere midlatitudes. In addition, the variance in latent heat flux estimated by the model agrees well with
the few long-term records that are available in the central United States. As an application of the model, we
investigate the changes in the variance of monthly averaged surface temperature that might be expected due
to anthropogenic climate change. We find that a climatic warming of 4°C causes a 10% increase in temper-

ature variance in parts of North America.

1. Introduction

As the global mean temperature rises, the impacts of
extreme summertime temperatures are expected to
grow more severe (Kirtman et al. 2013). An increase in
seasonally averaged temperatures has already led to
more record-breaking high temperatures around the
world (Rhines and Huybers 2013; Diffenbaugh et al.
2017), but whether anthropogenic climate change will
drive changes in the probability distribution of sum-
mertime temperatures is an unsolved question. Some
authors argue that only a shift in the underlying tem-
perature probability distribution could generate such
extreme events as the record-breaking 2010 European
heat wave (Schir et al. 2004; Barriopedro et al. 2011).
Others argue that, while unprecedented in the past 600
years, this extreme seasonal anomaly can be attrib-
uted to gradual warming without invoking a changed
probability distribution (Tingley and Huybers 2013).
Climate models project increased summertime tem-
perature variance in simulations where greenhouse gas
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emissions are not curtailed, but underlying biases in model
representations of the historical record along with highly
parameterized relationships between land surface fluxes,
soil moisture, and 2-m air temperature make the accuracy
of such predictions difficult to evaluate (Seneviratne et al.
2010; Mueller and Seneviratne 2014). Given the com-
plexity of global climate models and their large biases in
contemporary summertime temperature variance (Vargas
Zeppetello et al. 2020), developing alternative modeling
approaches is a key strategy for understanding and im-
proving the projections of future temperature variance in
the context of anthropogenic climate change.

In this paper, we develop a diagnostic model for
summertime temperature variance written in terms of
monthly anomalies in shortwave radiation and precipi-
tation. Since observations of shortwave radiation, pre-
cipitation, and temperature are available from 2000 to
2017, we can use the model to estimate temperature
variance during this period and compare our estimate to
the observed values. This diagnostic model is unique in
that it depends only on well-observed quantities; other
novel modeling approaches (e.g., Schwingshackl et al.
2018; Vargas Zeppetello et al. 2020) use correlation
analysis to relate temperature variability to various com-
ponents of the surface energy budget available only within a
climate modeling context. In contrast, our diagnostic model
can be used to estimate summertime temperature variance
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in any dataset that includes information on monthly radia-
tion and precipitation variability.

First, we develop the diagnostic model from consider-
ations of the land surface energy and water budgets. Next,
we use the model to estimate the variance in monthly av-
erage temperature during summer and compare it to the
observed temperature variance over North America from
2000 to 2017. We also show the diagnostic model’s estimate
of latent heat flux variance and compare it to that from the
longest observed record of latent heat flux in the United
States. Finally, we use the model to explore how changes in
various climatological mean variables expected due to in-
creasing anthropogenic greenhouse gas emissions may af-
fect summertime temperature variance. A summary and
conclusions follow.

2. The diagnostic model

On monthly time scales, we assume that the land surface
energy and water budgets are in equilibrium. These two
equilibrium budget equations are

0=.7'-Fly—LE —H -G and (1)

0= —-E-R-TI. )

All terms in Eq. (1) are given in Wm ™2, while all terms
in Eq. (2) are given in kg H,Om ?s™'. The term .7 is
the net shortwave radiation incident at the land surface,
while Fp v is the net surface longwave radiation flux. The
terms LE and H are the turbulent fluxes of latent and
sensible heat respectively, while G is the flux of energy
downward into the soil column. Also, .7 is precipitation,
R and I are the surface runoff and infiltration moisture
fluxes respectively, E is the net evapotranspiration, and
L is the latent enthalpy of vaporization. Primed quan-
tities denote departures from respective monthly means
for June, July, and August over the 2000-17 period. For
example, the net shortwave radiation anomaly in the ith
month of the jth year can be written as

T=T =T 3)
where .7 ; denotes the climatological monthly mean for the
ith month over the 2000-17 period, .7; = (1/18)21.37 ij-
Using this definition of a monthly anomaly, Fig. la
shows the summertime 2-m air temperature variance
a*(T) = (1/N)Y, (T};)* between 2000 and 2017 com-
puted from the interpolated weather station data pre-
sented in Willmott and Matsuura (2001). Since our record
comprises 18 sets of three summer months, N = 18 X 3 =
54. In the remainder of this paper, we will drop the sub-
scripts on the anomaly terms for clarity.
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a. Linear response surface fluxes

The sum of monthly net longwave, sensible heat, and
ground heat flux anomalies is assumed to be linearly
proportional to temperature perturbations, thus

Flw+H +G =vT. 4)

Here, v (in Wm 2K ') is the reciprocal of the response
of 2-m air temperature 7" to a radiative forcing .7 " in the
absence of evapotranspiration anomalies [see Eq. (1)].
While it is common practice to write anomalies in up-
ward surface longwave radiation, sensible heat flux, and
ground heat flux as linear functions of near-surface
temperature, recent studies (e.g., Schwingshackl et al.
2018; Vargas Zeppetello et al. 2019b) have demon-
strated that downward longwave radiation anomalies
can also be written as linear functions of surface tem-
perature anomalies.

The use of 2-m air temperature, rather than land
surface temperature, introduces some ambiguity into
the value of v, as sensible heat flux has been shown to
impact land surface and 2-m air temperature differently
on submonthly time scales (Gallego-Elvira et al. 2016;
Panwar et al. 2019). However, the extremely high cor-
relation between monthly anomalies in land surface and
2-m air temperature found in reanalysis and global cli-
mate models suggests treating the land—atmosphere in-
terface as a phantom layer that is as equally well
characterized by the surface temperature as it is by the
2-m air temperature (Vargas Zeppetello et al. 2020).
Because reliable observations of 2-m air temperature
span the globe, we will accept the ambiguity associated
with the v parameter in order to derive a closed model
for temperature variance that can be compared to
observations.

Similar to the fluxes in Eq. (4), the sum of runoff and
infiltration anomalies is assumed to be linearly propor-
tional to soil moisture perturbations, thus:

R+1=pm. (5)

In Eq. (5), “fractional surface saturation” m is a unitless
number between zero and one that designates the fraction
of available pore space in the evapotranspiration-accessible
portion of the soil column that is occupied by liquid
water. The relationship between fractional surface
saturation and a particular mass flux of liquid water
depends on soil properties that are not known at con-
tinental scales. Despite this knowledge barrier, hy-
drological models of varying complexity feature high
correlations between runoff, infiltration, and incident
precipitation on seasonal time scales (Haddeland et al.
2011; Oki and Kim 2016). To ensure proper scaling
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FIG. 1. (a) Observed summertime 2-m air temperature variance computed from interpolated weather station data
presented in Willmott and Matsuura (2001). Also shown are model forcings for the years 2000-17: (b) shortwave
radiation variance o?(.7) calculated from CERES satellite data (CERES Science Team 2000), (c) precipitation
forcing variance o?(L.%) computed from the Willmott and Matsuura (2001) dataset, and (d) covariance between
shortwave radiation and precipitation anomalies .7’ L' computed by combining the two datasets cited above.

between these three mass fluxes and the fractional
surface saturation, at each grid cell we set the ““surface
moisture capacity” u (in kgm ?s™!) to be

n=ao(2), (6)

where o(%) is the local summertime standard deviation
in monthly averaged precipitation and « is a unitless
parameter that controls the mass of liquid water re-
quired to effectively change the soil’s fractional satura-
tion m. High a could correspond, for example, to a
shallow soil column where infiltration syphons off a
large portion of incident precipitation without changing
the soil’s effective saturation. In addition to the depth
of the evapotranspiration-accessible portion of the soil
column, « is dependent on the soil type, porosity, and to-
pography. Since observations of o(.%) exist (see section 2c),
a is the real tunable parameter embedded in Eq. (5), but we
will retain p in the rest of our equations for simplicity.

In wet regions, where mean precipitation and o(.%)
are both generally high, Egs. (5) and (6) imply that
anomalies in runoff and infiltration are generally large

for a given .. Higher runoff and infiltration fluxes in
wet regions have been inferred from satellite observa-
tions of soil moisture (McColl et al. 2019) and in soil
chamber experiments dating back to the earliest exam-
inations of flow through porous media (Richards 1928).
In dry regions where o(%) is generally small, Egs. (5)
and (6) imply that soil moisture fluctuations are not as-
sociated with large changes in the lateral or vertical
liquid water fluxes. This is consistent with modeling and
catchment analyses that show low runoff fractions in dry
soils (Haddeland et al. 2011).

b. Evapotranspiration

We write total evapotranspiration as

E=Papmy. )
r

In Eq. (7), p, (kg airm ) is the density of air, r, (sm ™)
is the “bulk surface resistance” parameter, and V (kg
H,O kgair ') is the atmospheric water vapor demand
written as the difference ¢,(7) — ¢, where ¢, is the
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FIG. 2. Maps of two important terms in the diagnostic model: (a) I' (W m ™2 K™ !), the inverse of the “moist surface
climate sensitivity,” and (b) (1 + w/8) ', a unitless dryness index that regulates how precipitation forcing influences

temperature variance [see Eqgs. (11)-(14)].

saturation specific humidity at the 2-m air temperature
T, and ¢ is the boundary layer specific humidity. The
first-order terms in a Taylor expansion of Eq. (7) are

E =LV +myT), ®)

s

where barred terms indicate summertime mean values. In
Eq. (8), v [kg H,O (kgair) ' K~ ']is a linearized value of
the derivative dq,/dT given by the Clausius—Clapeyron
equation evaluated at the summertime mean 2-m air
temperature 7. We have assumed that anomalies in
specific humidity are small compared to those in g, on
monthly time scales—as is true in limited observations
available for comparison (van Heerwaarden et al. 2010;
Vargas Zeppetello et al. 2019a).

c. Diagnostic equations
By substituting Eq. (8) into Eq. (2), we obtain

L ey,
m_,U«"‘B(JO p; T>, 9)

)

where we have substituted

(10)

as the climatological mean potential evapotranspiration, or
the mean evapotranspiration E expected for m =1, or
saturated soils. Note that 8 increases exponentially with 7
due to the dependence of saturation specific humidity on
the Clausius-Clapeyron relationship. Combining Eq. (9)
with Egs. (1) and (8), we obtain

T =

(7' —=¢L7), 11)

=l =

where ¢ = (1 + w/B) ' c[0,1]isadrynessindex and '
is the ““moist surface climate sensitivity’”:

N Lp my

r
A

I'=v

(1=9. (12)

Maps of I" and ¢ are shown in Fig. 2. The inverse of the
first term in Eq. (12), v "' (K W~ ' m?), can be considered
the ““dry surface climate sensitivity” [see Eq. (4)]. The
second term in Eq. (12) is associated with the climato-
logical mean latent heat flux [see Eq. (8)] that renders
drier soils (smaller 77 and larger ) more sensitive to
forcing than wet soils.

We have now obtained an equation for 7" in terms of
monthly anomalies .7, %, and climatological values 71
and V that manifest themselves in Eq. (11) through the T
and ¢ terms. Observations of climatological fractional
surface soil moisture 77 and atmospheric water vapor
demand V are not available at the continent scale. For
climatological soil moisture 72, we normalize the sum-
mertime precipitation climatology .%°(x) at every grid cell by
the maximum monthly averaged precipitation over North
America max (:7); hence m(x) = .2(x)/max(.°)." Finally,
for each point in space, we calculate climatological atmo-
spheric water vapor demand from the observed summertime
mean surface temperature, and the summertime mean spe-
cific humidity from ERAS reanalysis’ lowest atmospheric
layer (Copernicus Climate Change Service 2017).

Using Eq. (11), we arrive at our equation for tem-
perature variance written as the sum of three terms:

! We note that mean soil moisture does indeed scale linearly with
mean precipitation in both ERAS and the global climate model
ensemble we analyzed in this work. The scaling factor we chose was
max(.%), but the results were insensitive to changes in this value.
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F1G. 3. Ratio of temperature variance calculated using Eq. (13) to that observed (Fig. 1a). (a) A spatial map of this
ratio across North America. (b) Histograms of this ratio for different regions in the midlatitudes (note the log scale
on the abscissa). The solid black line shows all points in the North American domain shown in (a), while the dashed
black line shows the set of all land points between 30° and 75°N. The blue line shows all grid cells in the North
American domain that are below 1000 m in elevation. The red line shows all grid cells where observed temperature
variance is larger than 2°C?, while the green line shows grid cells above this high temperature variance threshold

that lie south of 50°N in the North American domain.

oX(T) = % [0*(7) =27 LZ{+*(LP)P]. (13)
We will refer to 0?(.F), o?(L%), and .7’ L7 as the
“forcing components,” each in W>*m™*. Figures 1b—d
shows the observed forcing components for the 2000-17
period. Note that everywhere .7’ L% <0 due to the
negative correlation between shortwave radiation and
precipitation. Observations of summertime radiation
are from the CERES satellite (CERES Science Team
2000), while observations of precipitation are from in-
terpolated weather station data presented in Willmott
and Matsuura (2001). Equation (13) can be used to
estimate temperature variance in any dataset that in-
cludes surface shortwave radiation and precipitation;
the appendix contains maps of the summertime tem-
perature variance (Fig. Al) and forcing components
(Figs. A2-A4) in the Northern Hemisphere midlati-
tudes from the observations, ERAS, and an ensemble of
global climate model simulations that we will analyze to
complement our analyses presented in section 3.

We can use Egs. (8)-(11) to write an equation for the
variance in latent heat flux. Written in terms of the
forcing components:

2o |(5-1) 7

+2/ (g - 1>W +2(L2)|. (14)

Diagnostic Egs. (13) and (14) constitute our model
and contain three tunable parameters v [Eq. (4)],
© [Eq. (59)], and 7y [Eq. (7)]. Observations of these
quantities do not exist; we assume that the three param-
eters are constant across the model domain. By tuning the
model parameters to obtain good overall agreement with
the observed temperature variance over the North
American domain, we obtain v = 14Wm 2K,
w=>50(2)kgm 2s7! andr,=75m 's. The values of T
and ¢ depend on these parameters and the summertime
mean values of 772 and V.

3. Results
a. Temperature variance

We begin with an evaluation of Eq. (13): can this
diagnostic model accurately estimate the summertime
temperature variance in the midlatitudes? The as-
sumption of constant parameter values ignores re-
gional variations in roughness, vegetation phenology,
and other surface properties. Nonetheless, in Fig. 3 we
show that over the North American domain the tem-
perature variance estimated by the model using forcing
components from observations (shown in Figs. 1b-d)
agrees well with the observed pattern of temperature
variance. Figure 3a shows a map of the ratio of the
temperature variance estimated by the model using the
observed forcings to the observed temperature vari-
ance 0(T)mode/o*(T)ovs., While Fig. 3b shows histo-
grams of this variance ratio for various sets of grid cells
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FIG. 4. (a) Temperature variance estimated by the diagnostic model using the observed forcings shown in
Figs. 1b—d. Also shown are components of the temperature variance associated with the (b) radiation forcing,
(c) precipitation forcing, and (d) the covariance between precipitation and radiation, respectively.

described below. The structure of Eq. (13) allows us to
decompose the temperature variance into three terms
associated with each forcing component. Maps of the
variance computed according to Eq. (13) and each
term associated with this decomposition are shown
in Fig. 4. One notable aspect of this decomposition
is that the component of temperature variance as-
sociated with precipitation forcing is similar to that found
in Koster et al. (2015) using different methods.

The model agrees well with the observed pattern of
temperature variance over North America (the train-
ing dataset); the solid black histogram is centered on
unity, indicating good overall agreement, and the di-
agnostic model’s estimated temperature variance is
off by more than a factor of 2 in fewer than 15% of grid
cells. While the three spatially invariant parameters
listed above were tuned to achieve this agreement,
extending the model throughout the Northern
Hemisphere midlatitudes (between 30° and 75°N) also
shows a good fit to observations (the dashed black
histogram in Fig. 3b); 78% of grid cells are within a
factor of 2 of the observed temperature variance and
the distribution is centered on unity with no obvious
bias toward over or underestimating temperature
variance. However, there are several specific regions

where the model’s basic assumptions are violated, re-
sulting in spurious estimates.

The model tends to overestimate temperature variance
in high-elevation regions. This is likely due to our simple
formulation of runoff flux, which does not account for
topography and thus results in an overestimation of tem-
perature variance associated with precipitation. Removing
high-elevation regions from the set of points analyzed in
Fig. 3b, we obtain the blue histogram that has notably
fewer points with overestimates of temperature variance.
Problems associated with our runoff parameterization are
also likely responsible for the overestimate of tem-
perature variance around the Gulf of Mexico. Monthly
averaging in the Gulf Coast means that short time scale
variability associated with tropical cyclones is not ex-
plicitly accounted for and creates a high bias in soil
moisture variability that is reflected in the overestimate
of temperature variance (see Fig. 3a). With a more
sophisticated runoff parameterization, the large pre-
cipitation anomalies (primarily associated with tropical
cyclones) would have less influence on soil moisture
due to high runoff rates driven by these systems.

Underestimates of temperature variance are also
present in our evaluation exercise, particularly in coastal
regions such as the west coast of the United States and
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far northern Canada. In these regions, remote forcing
due to thermal advection (and possibly associated with
summer sea ice variability at high latitudes) plays a
significant role in the temperature variance (Holmes
et al. 2016). The red histogram in Fig. 3b shows the ratio
of variances in grid cells where the observed tempera-
ture variance exceeds 2°C% Since many of these grid
cells are in the high latitudes (see Fig. 1a), where sum-
mertime sea ice variability and thermal advection likely
contribute to high temperature variance, we attribute
the systemic underestimate of temperature variance in
this subset of grid boxes to the absence of thermal ad-
vection in our model formulation. If we only consider
high temperature variance regions, south of S50°N,
however, our model is a fair fit to observations: 70% of
points lie within 50% of the observed temperature var-
iance. This suggests that even in high temperature var-
iance regions in the continental United States, our
model captures the essential physics governing the dis-
tribution of land surface temperatures. While some
studies (e.g., Schneider et al. 2015) have noted the
important role of thermal advection in regulating
midlattitude temperature variability in wintertime, our
work aligns with the results of Holmes et al. (2016), who
argue that in most continental regions in summertime,
thermal advection is not a major contributor to local
summertime temperature variance. Another region
where the model underestimates temperature variance
is the Ohio Valley (south of the Great Lakes). Mueller
et al. (2017) quantified the influence of agriculture on
temperature extremes in this region; the neglect of
vegetation changes during summertime may contribute
to the model’s underestimate of temperature variance.

The histograms detailed above testify to the skill of
our model [Eq. (13)] to simulate the observed tem-
perature variance. Analogous maps and histograms
that show the diagnostic model’s ability to reproduce
the temperature variance in ERAS and an ensemble of
global climate models are shown in the appendix
(Figs. A5 and A6).

The temperature variance and forcings in the three
datasets shown in Figs. A1-A4 (observations, ERAS,
and the global climate model ensemble) differ substan-
tially from one another, but the same values of three
tunable parameters (bulk surface resistance ry, dry surface
climate sensitivity », and surface moisture capacity w)
are used in each realization of the model and lead to
accurate estimates of each product’s temperature vari-
ance. This suggests that the model’s skill does not stem
from overtuning; Eq. (13) captures the basic physics
underlying the relationships between temperature var-
iance and the surface budgets of energy and moisture.
Also, with the exception of the mean surface moisture
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FIG. 5. Latent heat flux variance calculated with Eq. (14) using
the 2000-17 forcing values from Figs. 1b—d. Inset table shows the
latent heat flux variance for the same period averaged over the
southern Great Plains from three sources: observations (SGP
Obs.), our diagnostic model [Eq. (14)], and ERAS. The red circle
on the map indicates the SGP domain.

m, variations in soil hydrological parameters and ex-
change coefficients are unimportant in capturing the
spatial pattern and amplitude of monthly temperature
variance. This result is reminiscent of a recent study by
Byrne and O’Gorman (2018) that accurately captured
observed trends in land surface relative humidity using
only a single land surface dryness parameter.

b. Latent heat flux variance

We have shown that our model reproduces the ob-
served temperature variance given the observed forcing.
How does the pattern of temperature variance relate to
the variance in latent heat flux over the same period?
Figure 5 shows the latent heat flux variance estimated by
Eq. (14). Similar to the temperature variance, the latent
heat flux variance can be decomposed into three forcing
terms. While each forcing component makes a compa-
rable contribution to the temperature variance, precip-
itation forcing is overwhelmingly responsible for the
variance in latent heat flux, leading to a maximum in
latent heat flux variance in the central United States.
Maps of each component are shown in Fig. 6.

Direct global observations of latent heat flux variance
do not exist. Long records of latent heat flux covering the
entire 2000-17 period are only available from three en-
ergy balance Bowen ratio stations at three Atmospheric
Radiation Measurement sites within the Southern Great
Plains (SGP) field campaign (Xie and Gaustad 1993). By
averaging the output from the three sites and removing
monthly means in a manner analogous to Eq. (3), we
estimate the latent heat flux variance in the SGP domain
(shown by the red circle in Fig. 5) as 283 W?m ™ *. This
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FIG. 6. Components of latent heat flux variance shown in Fig. 5: (a) the component associated with radiative forcing, (b) the component
associated with precipitation forcing, and (c) the component associated with the covariance structure. Note that the color bars are different

in each panel and especially that the color bar in (c) is negative.

compares favorably to the latent heat flux variance cal-
culated with Eq. (14) using the observed forcing (see inset
in Fig. 5). For comparison, the latent heat flux variance
over the same period and region from ERAS, a new re-
analysis product, is shown in the inset to Fig. 5; it is 35%
less than the variance observed in the SGP record. That
our model reproduces the observed latent heat flux var-
iance at the SGP is independent evidence that the pa-
rameter values (chosen to match our model to the
observed temperature variance) are physically realistic.

c. Temperature variance in a changing climate

The plasticity of the diagnostic model allows us to ex-
plore the sensitivity of temperature variance to changes in
selected state variables. We specify changes in state var-
iables that are expected with a 4°C global average
warming such as a decrease in land relative humidity of
4% (Byrne and O’Gorman 2016) and a decrease in soil
moisture of 10% (Berg et al. 2017). We emphasize that
our results should not be interpreted as projections be-
cause we use spatially uniform mean-state changes in this
analysis. Rather, our results serve to highlight the im-
portance of different aspects of land-atmosphere inter-
action on local temperature probability distributions.

Increasing the climatological mean surface tempera-
ture by 4°C while holding relative humidity constant
increases climatological mean atmospheric water vapor
demand V by way of increasing the surface g, (and its
derivative y = dq,/dT) relative to g. As a result, the
temperature variance increases everywhere (Fig. 7a)
due to an increase in 8, which increases the moist surface
climate sensitivity I' ! [see Eqgs. (10)—(12)]. Including a
4% reduction in relative humidity amplifies the increase
in temperature variance associated with a 4°C warming
(cf. Figs. 7a,b) by further increasing the atmospheric
water vapor demand V. Importantly, these changes are
largest in wet regions in the eastern United States, where
evaporative cooling is more sensitive to background

atmospheric demand V than to the availability of soil
moisture 772 (Seneviratne et al. 2010; Vargas Zeppetello
et al. 2019a). In these regions, the combination of a 4°C
increase in temperature and a 4% decrease in relative
humidity causes temperature variance to increase by up
to 25% (Fig. 7b).

Climate models simulate a decrease in climatological
surface soil moisture 77 associated with increased sum-
mertime evapotranspiration in greenhouse warming sce-
narios (Berg et al. 2017). Figure 7c shows the change in
temperature variance associated with a 10% reduction in
soil moisture (a typical value for the end of this century in
the RCP8.5 emission scenarios). A reduction in mean soil
moisture increases temperature variance by reducing the
latent heat flux anomalies associated with a nominal
temperature perturbation, thus increasing the moist sur-
face climate sensitivity I' ! [see Eq. (12)]. The increase in
temperature variance due to a climatological mean soil
drying of 10% is less than that due to a 4°C mean warming
if the projected decrease in relative humidity is in-
cluded (cf. Figs. 7b,c). The regions with the largest in-
creases in temperature variance are coincident with
maximum values of 77, where the 10% reduction in soil
moisture constitutes the maximum absolute decrease
in soil moisture.

Colman (2015) showed that anthropogenic climate
forcing is projected to cause a reduction in low clouds
throughout the midlatitudes. Under the assumption that a
decrease in average cloudiness will be accompanied by a
decrease in the shortwave radiation variance at Earth’s
surface, Fig. 7d shows the impact of a 10% decrease in
0%(.7) at each grid cell in the domain. This results in a
o*(T) reduction everywhere, but the signal is particularly
strong in the high latitudes, where radiative forcing is
largest, and in the dry American West, where radiative
forcing is the largest contributor to temperature variance
due to the lack of available soil moisture for evapo-
transpiration (see Fig. 4).
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FIG. 7. Changes in temperature variance associated with a change in a mean-state variable, reported as a per-
centage change relative to the variance simulated by Eq. (13) using the observed forcing over the period 2000-17.
(a) The mean temperature has been increased by 4°C while holding relative humidity constant. (b) The impact of
the same warming in (a) while including a 4% decrease in relative humidity. (c) The impact of a 10% decrease in soil
moisture everywhere in the domain. (d) The impact of a 10% reduction in radiative forcing variance everywhere in
the domain. (e) The impact of a 10% increase in surface resistance.and (f) The impact of both the 10% increase in

surface resistance and a 10% decrease in soil moisture.

Our results suggest that a mean warming com-
bined with an atmospheric drying could dramatically
amplify temperature variance—particularly in wet
regions where soil moisture is plentiful and evapo-
transpiration responds primarily to evaporative de-
mand (Fig. 7b). Swann et al. (2016) demonstrated
that, on a global scale, CO, climate forcing in an
ensemble of models may not translate into mean-
ingful changes in mean evapotranspiration because
plants compensate for the enhanced atmospheric

demand by closing their stomata in response to
higher levels of atmospheric CO,. In terms of our
diagnostic model, this corresponds to an increase in
bulk surface resistance r;. Figure 7e shows the im-
pact on temperature variance of a 10% reduction in
surface resistance everywhere in the domain (r, =
82.5 vs ry = 75). As expected, the impact of this
change is limited to the regions where latent heat
flux variance is largest (see Fig. 5). Interestingly, the
sign of the change is negative: increasing surface



;
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[

F1G. Al. Midlatitude maps of summertime land surface tem-
perature variance for (a) the observations, (b) ERAS, and (c) the
GCME. The six models that comprise the GCME are listed in
Table Al, and all have been regridded onto a common grid spacing.
Note that (a) here and in Figs. A2a, A3a, and A4a are extended
versions of Fig. 1.

resistance leads to decreasing summertime temper-
ature variance. This change is somewhat surprising
because increasing surface resistance causes greater
mean temperatures. However, increasing surface
resistance also reduces evapotranspiration sensitivity to
any forcing at all time scales. Thus, increasing surface
resistance damps temperature variance in the central
United States, where we have shown that latent heat flux
variations contribute most to overall temperature vari-
ance. This effect is not trivial; Fig. 7f shows that com-
bining the impacts of reduced soil moisture and increased
surface resistance results in a muted change over the
central United States due to the tug of war between the
two large but opposing impacts on latent heat flux in
this region.

4. Conclusions

In this paper, we use the land surface budgets of en-
ergy and liquid water to derive a simple diagnostic
model of the variance in monthly averaged temperature
and latent heat flux during summertime. The variances
are linear functions of local shortwave radiation vari-
ance, precipitation variance, and the covariance be-
tween monthly anomalies in shortwave radiation and
precipitation. Our approach is uniquely independent of
any particular modeling platform; we can use observa-
tions, reanalysis, and global climate model output to
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FIG. A2. As in Fig. A1, but for variance in shortwave radia-
tion 02(.7).

estimate a particular dataset’s temperature variance.
Using the observed forcing values, our model repro-
duces the summertime temperature variance in obser-
vations, ERAS, and a global climate model ensemble
for the 2000-17 period with considerable skill. We also
provide an estimate of summertime latent heat flux
variance over North America. Unfortunately, an ob-
served record of latent heat flux that is long enough to
estimate the monthly variance is only available at one

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
[w2 m*]

F1G. A3. Asin Fig. Al, but for variance in precipitation forc-
ing 0?(L%).
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FI1G. A4. Asin Fig. A1, but for the covariance in monthly shortwave
radiation and precipitation anomalies .7’ L.Z.

location: the ARM Southern Great Plains site. Our
model’s estimate for the latent heat flux variance in this
region agrees favorably with the observed record and is
closer to the observed Southern Great Plains site value
than a state-of-the-art reanalysis product (ERAS). One
drawback of the model is that it does not include ad-
vective terms or feedbacks between the land surface and
atmospheric forcings. Future work in land-atmosphere
interaction will focus on short time scale feedbacks that
could complicate the relationship between atmospheric
forcings and surface fluxes that were assumed indepen-
dent in our model.

We used the model to explore the impacts of climate
change on surface temperature variance. We find that, in
isolation, 4°C warming causes an increase in tempera-
ture variance over all of North America. Importantly,
the increase in temperature variance is extremely sen-
sitive to changes in relative humidity of the near-surface
air; including a 4% decrease in relative humidity (pro-
jected to occur with a 4°C increase in temperatures; see
Byrne and O’Gorman 2016) increases the temperature
variance by up to 25% in some climatologically wet re-
gions of the United States compared to the 2000-18
value. When changes in both temperature and relative
humidity are accounted for, temperature variance in-
creases by more than 20% in some parts of the eastern
United States. We also find that the increase in tem-
perature variance associated with the projected de-
creases in soil moisture could be compensated for by
increased stomatal resistance in response to higher at-
mospheric CO,, but this estimate is poorly constrained
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TABLE Al. List of models comprising the global climate model

ensemble.
Model Institution
BCC-CSM1.1 Beijing Climate Center (China)
CanESM2 Canadian Centre for Climate Modeling
and Analysis
CESM1-BGC National Center for Atmospheric
Research (United States)
HadGEM2-ES Hadley Centre for Climate Prediction and

Research (United Kingdom)
Institut Pierre Simon Laplace (France)
Bjerknes Centre for Climate Research

(Norway)

IPSL-CM5A-LR
NorESM1-ME

due to the complexities associated with quantifying the
stomatal response to carbon emissions.

In simulations of the twentieth century, climate models
display large biases in summertime temperature variance
on monthly time scales (Vargas Zeppetello et al. 2020).
These biases raise serious questions concerning the reli-
ability of the model-projected changes in temperature
variance driven by anthropogenic climate change. The
present study presents a tool that can be used to identify
the sources of bias in simulated temperature variance by
quantitatively assessing the relative contributions of bia-
ses in the forcings (shortwave and precipitation variance)
and biases in the mean state (temperature, humidity, and
soil moisture) to biases in the simulated temperature
variance. In this way, the model can be used to identify
pathways for improving the models, which presumably
will lead to more reliable projections of changes in

0.25 0.50 0.65 0.80 0.90 110 1.25 1.50 2.00 4.00
Variance Ratio [-]

FIG. AS. Ratio of temperature variance estimated by the diag-
nostic model to temperature variance in (a) observations, (b) ERAS,
and (c) the GCME.
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FI1G. A6. Histograms analogous to those in Fig. 2b for (a) ERAS and (b) the GCME. Other than the dashed black
line, all histograms are for points in the North American domain.

temperature variance driven by climate change. The
biases in climate models have led investigators evaluating
the impact of climate change on food production and
human heat stress to make the conservative assumption
that the variability of summertime temperature will remain
constant as the climate warms (e.g., Tigchelaar et al. 2018).
Our results suggests that this assumption ignores poten-
tially dramatic increases in temperature variance associated
with climate change and provides a framework for quan-
tifying how large those changes are likely to be so that they
can be integrated more easily with impact assessments.
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APPENDIX

Comparison between Observations, Reanalysis, and
Global Climate Models

We present global maps of midlatitude Northern
Hemisphere temperature variance (Fig. A1) and forc-
ings (Figs. A2-A4 ) for observations, ERAS, and a
global climate model ensemble (GCME) taken from the
CMIPS5 data archive. ERAS runs from 1979 to 2019; for
consistency with the available observations we used the
2000-17 period to calculate all quantities relevant for
the diagnostic model. The GCME is composed of sce-
narios where the atmospheric CO, concentration rises
by 1% each year from a preindustrial control baseline in

six models listed in Table A1; we use the first 18 years of
these runs. For the GCME temperature variance, we
calculated an average of each forcing from each of the
six models considered, then input them into the diag-
nostic model to obtain the estimate of temperature vari-
ance. We then compare this estimate to the average of the
temperature variances simulated by the six models.

The temperature variance and radiative forcing in
ERAS are nearly identical to the observations, while the
GCME has high biases in both quantities. We have
identified biases in incident shortwave radiation vari-
ability as an important contributor to climate model tem-
perature variance biases in other work (Vargas Zeppetello
et al. 2020). Despite the biases in shortwave radiation
variance, the precipitation forcing and covariance terms
from the GCME compare favorably to those from both
ERAS and the observations.

In Figs. AS and A6, we show the skill of the diagnostic
model as the ratio of temperature variance estimated
from the diagnostic model driven by the relevant forc-
ings from observations, reanalysis, and the GCME to the
temperature variance found in those three datasets. We
use the same values for the parameters v, u, and r, in
each realization and obtain good agreement between
the model estimate and the temperature variance in all
three products.
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