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ABSTRACT

The increasing frequency of very high summertime temperatures has motivated growing interest in the

processes determining the probability distribution of surface temperature over land. Here, we show that on

monthly time scales, temperature anomalies can be modeled as linear responses to fluctuations in shortwave

radiation and precipitation. Ourmodel contains only three adjustable parameters, and, surprisingly, these can

be taken as constant across the globe, notwithstanding large spatial variability in topography, vegetation, and

hydrological processes. Using observations of shortwave radiation and precipitation from 2000 to 2017, the

model accurately reproduces the observed pattern of temperature variance throughout the Northern

Hemisphere midlatitudes. In addition, the variance in latent heat flux estimated by themodel agrees well with

the few long-term records that are available in the central United States. As an application of the model, we

investigate the changes in the variance of monthly averaged surface temperature that might be expected due

to anthropogenic climate change. We find that a climatic warming of 48C causes a 10% increase in temper-

ature variance in parts of North America.

1. Introduction

As the global mean temperature rises, the impacts of

extreme summertime temperatures are expected to

grow more severe (Kirtman et al. 2013). An increase in

seasonally averaged temperatures has already led to

more record-breaking high temperatures around the

world (Rhines and Huybers 2013; Diffenbaugh et al.

2017), but whether anthropogenic climate change will

drive changes in the probability distribution of sum-

mertime temperatures is an unsolved question. Some

authors argue that only a shift in the underlying tem-

perature probability distribution could generate such

extreme events as the record-breaking 2010 European

heat wave (Schär et al. 2004; Barriopedro et al. 2011).

Others argue that, while unprecedented in the past 600

years, this extreme seasonal anomaly can be attrib-

uted to gradual warming without invoking a changed

probability distribution (Tingley and Huybers 2013).

Climate models project increased summertime tem-

perature variance in simulations where greenhouse gas

emissions are not curtailed, but underlying biases in model

representations of the historical record along with highly

parameterized relationships between land surface fluxes,

soil moisture, and 2-m air temperature make the accuracy

of such predictions difficult to evaluate (Seneviratne et al.

2010; Mueller and Seneviratne 2014). Given the com-

plexity of global climate models and their large biases in

contemporary summertime temperature variance (Vargas

Zeppetello et al. 2020), developing alternative modeling

approaches is a key strategy for understanding and im-

proving the projections of future temperature variance in

the context of anthropogenic climate change.

In this paper, we develop a diagnostic model for

summertime temperature variance written in terms of

monthly anomalies in shortwave radiation and precipi-

tation. Since observations of shortwave radiation, pre-

cipitation, and temperature are available from 2000 to

2017, we can use the model to estimate temperature

variance during this period and compare our estimate to

the observed values. This diagnostic model is unique in

that it depends only on well-observed quantities; other

novel modeling approaches (e.g., Schwingshackl et al.

2018; Vargas Zeppetello et al. 2020) use correlation

analysis to relate temperature variability to various com-

ponents of the surface energy budget available only within a

climate modeling context. In contrast, our diagnostic model

can be used to estimate summertime temperature variance
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in any dataset that includes information on monthly radia-

tion and precipitation variability.

First, we develop the diagnostic model from consider-

ations of the land surface energy and water budgets. Next,

we use the model to estimate the variance in monthly av-

erage temperature during summer and compare it to the

observed temperature variance over North America from

2000 to 2017.Wealso show the diagnosticmodel’s estimate

of latent heat flux variance and compare it to that from the

longest observed record of latent heat flux in the United

States. Finally, we use themodel to explore how changes in

various climatological mean variables expected due to in-

creasing anthropogenic greenhouse gas emissions may af-

fect summertime temperature variance. A summary and

conclusions follow.

2. The diagnostic model

Onmonthly time scales, we assume that the land surface

energy and water budgets are in equilibrium. These two

equilibrium budget equations are

05F 0 2F 0
LW 2LE0 2H0 2G0 and (1)

05P 0 2E0 2R0 2 I 0: (2)

All terms in Eq. (1) are given in Wm22, while all terms

in Eq. (2) are given in kg H2Om22 s21. The term F is

the net shortwave radiation incident at the land surface,

whileFLW is the net surface longwave radiation flux. The

terms LE and H are the turbulent fluxes of latent and

sensible heat respectively, while G is the flux of energy

downward into the soil column. Also,P is precipitation,

R and I are the surface runoff and infiltration moisture

fluxes respectively, E is the net evapotranspiration, and

L is the latent enthalpy of vaporization. Primed quan-

tities denote departures from respective monthly means

for June, July, and August over the 2000–17 period. For

example, the net shortwave radiation anomaly in the ith

month of the jth year can be written as

F 0
i, j 5F

i, j
2F

i
, (3)

whereF i denotes the climatologicalmonthlymean for the

ith month over the 2000–17 period, F i 5 (1/18)�jF i, j.

Using this definition of a monthly anomaly, Fig. 1a

shows the summertime 2-m air temperature variance

s2(T)5 (1/N)�i, j(T
0
i, j)

2
between 2000 and 2017 com-

puted from the interpolated weather station data pre-

sented inWillmott andMatsuura (2001). Since our record

comprises 18 sets of three summermonths,N5 183 35
54. In the remainder of this paper, we will drop the sub-

scripts on the anomaly terms for clarity.

a. Linear response surface fluxes

The sum of monthly net longwave, sensible heat, and

ground heat flux anomalies is assumed to be linearly

proportional to temperature perturbations, thus

F 0
LW 1H0 1G0 5 nT 0: (4)

Here, n (in Wm22K21) is the reciprocal of the response

of 2-m air temperatureT0 to a radiative forcing F 0 in the
absence of evapotranspiration anomalies [see Eq. (1)].

While it is common practice to write anomalies in up-

ward surface longwave radiation, sensible heat flux, and

ground heat flux as linear functions of near-surface

temperature, recent studies (e.g., Schwingshackl et al.

2018; Vargas Zeppetello et al. 2019b) have demon-

strated that downward longwave radiation anomalies

can also be written as linear functions of surface tem-

perature anomalies.

The use of 2-m air temperature, rather than land

surface temperature, introduces some ambiguity into

the value of n, as sensible heat flux has been shown to

impact land surface and 2-m air temperature differently

on submonthly time scales (Gallego-Elvira et al. 2016;

Panwar et al. 2019). However, the extremely high cor-

relation between monthly anomalies in land surface and

2-m air temperature found in reanalysis and global cli-

mate models suggests treating the land–atmosphere in-

terface as a phantom layer that is as equally well

characterized by the surface temperature as it is by the

2-m air temperature (Vargas Zeppetello et al. 2020).

Because reliable observations of 2-m air temperature

span the globe, we will accept the ambiguity associated

with the n parameter in order to derive a closed model

for temperature variance that can be compared to

observations.

Similar to the fluxes in Eq. (4), the sum of runoff and

infiltration anomalies is assumed to be linearly propor-

tional to soil moisture perturbations, thus:

R0 1 I 0 5mm0: (5)

In Eq. (5), ‘‘fractional surface saturation’’ m is a unitless

number between zero and one that designates the fraction

of available pore space in the evapotranspiration-accessible

portion of the soil column that is occupied by liquid

water. The relationship between fractional surface

saturation and a particular mass flux of liquid water

depends on soil properties that are not known at con-

tinental scales. Despite this knowledge barrier, hy-

drological models of varying complexity feature high

correlations between runoff, infiltration, and incident

precipitation on seasonal time scales (Haddeland et al.

2011; Oki and Kim 2016). To ensure proper scaling
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between these three mass fluxes and the fractional

surface saturation, at each grid cell we set the ‘‘surface

moisture capacity’’ m (in kgm22 s21) to be

m5as(P ), (6)

where s(P ) is the local summertime standard deviation

in monthly averaged precipitation and a is a unitless

parameter that controls the mass of liquid water re-

quired to effectively change the soil’s fractional satura-

tion m. High a could correspond, for example, to a

shallow soil column where infiltration syphons off a

large portion of incident precipitation without changing

the soil’s effective saturation. In addition to the depth

of the evapotranspiration-accessible portion of the soil

column, a is dependent on the soil type, porosity, and to-

pography. Since observations ofs(P ) exist (see section 2c),

a is the real tunable parameter embedded inEq. (5), but we

will retain m in the rest of our equations for simplicity.

In wet regions, where mean precipitation and s(P )

are both generally high, Eqs. (5) and (6) imply that

anomalies in runoff and infiltration are generally large

for a given P 0. Higher runoff and infiltration fluxes in

wet regions have been inferred from satellite observa-

tions of soil moisture (McColl et al. 2019) and in soil

chamber experiments dating back to the earliest exam-

inations of flow through porous media (Richards 1928).

In dry regions where s(P ) is generally small, Eqs. (5)

and (6) imply that soil moisture fluctuations are not as-

sociated with large changes in the lateral or vertical

liquid water fluxes. This is consistent with modeling and

catchment analyses that show low runoff fractions in dry

soils (Haddeland et al. 2011).

b. Evapotranspiration

We write total evapotranspiration as

E5
r
a

r
s

mV: (7)

In Eq. (7), ra (kg airm
23) is the density of air, rs (sm

21)

is the ‘‘bulk surface resistance’’ parameter, and V (kg

H2O kgair21) is the atmospheric water vapor demand

written as the difference qs(T) 2 q, where qs is the

FIG. 1. (a)Observed summertime 2-m air temperature variance computed from interpolatedweather station data

presented in Willmott and Matsuura (2001). Also shown are model forcings for the years 2000–17: (b) shortwave

radiation variance s2(F ) calculated from CERES satellite data (CERES Science Team 2000), (c) precipitation

forcing variance s2(LP ) computed from the Willmott and Matsuura (2001) dataset, and (d) covariance between

shortwave radiation and precipitation anomalies F 0 LP 0 computed by combining the two datasets cited above.
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saturation specific humidity at the 2-m air temperature

T, and q is the boundary layer specific humidity. The

first-order terms in a Taylor expansion of Eq. (7) are

E0 5
r
a

r
s

(m0V1mgT 0), (8)

where barred terms indicate summertimemean values. In

Eq. (8), g [kgH2O(kgair)21K21] is a linearized value of

the derivative dqs/dT given by the Clausius–Clapeyron

equation evaluated at the summertime mean 2-m air

temperature T. We have assumed that anomalies in

specific humidity are small compared to those in qs on

monthly time scales—as is true in limited observations

available for comparison (van Heerwaarden et al. 2010;

Vargas Zeppetello et al. 2019a).

c. Diagnostic equations

By substituting Eq. (8) into Eq. (2), we obtain

m0 5
1

m1b

�
P 0 2

r
a
mg

r
s

T 0
�
, (9)

where we have substituted

b5
r
a
V

r
s

(10)

as the climatologicalmeanpotential evapotranspiration, or

the mean evapotranspiration E expected for m5 1, or

saturated soils. Note that b increases exponentially with T

due to the dependence of saturation specific humidity on

the Clausius–Clapeyron relationship. Combining Eq. (9)

with Eqs. (1) and (8), we obtain

T 0 5
1

G
(F 0 2 zLP 0), (11)

where z5 (11m/b)21� [0, 1] is a dryness index and G21

is the ‘‘moist surface climate sensitivity’’:

G5 n1
Lr

a
mg

r
s

(12 z): (12)

Maps of G and z are shown in Fig. 2. The inverse of the

first term in Eq. (12), v21 (KW21m2), can be considered

the ‘‘dry surface climate sensitivity’’ [see Eq. (4)]. The

second term in Eq. (12) is associated with the climato-

logical mean latent heat flux [see Eq. (8)] that renders

drier soils (smaller m and larger z) more sensitive to

forcing than wet soils.

We have now obtained an equation for T0 in terms of

monthly anomalies F 0, P 0, and climatological valuesm

andV that manifest themselves in Eq. (11) through the G
and z terms. Observations of climatological fractional

surface soil moisture m and atmospheric water vapor

demand V are not available at the continent scale. For

climatological soil moisture m, we normalize the sum-

mertime precipitation climatologyP (x) at every grid cell by

the maximum monthly averaged precipitation over North

America max (P ); hence m(x)5P (x)/max(P ).1 Finally,

for each point in space, we calculate climatological atmo-

sphericwater vapor demand from theobserved summertime

mean surface temperature, and the summertime mean spe-

cific humidity from ERA5 reanalysis’ lowest atmospheric

layer (Copernicus Climate Change Service 2017).

Using Eq. (11), we arrive at our equation for tem-

perature variance written as the sum of three terms:

FIG. 2.Maps of two important terms in the diagnosticmodel: (a)G (Wm22 K21), the inverse of the ‘‘moist surface

climate sensitivity,’’ and (b) (11m/b)21, a unitless dryness index that regulates how precipitation forcing influences

temperature variance [see Eqs. (11)–(14)].

1We note that mean soil moisture does indeed scale linearly with

mean precipitation in both ERA5 and the global climate model

ensemble we analyzed in this work. The scaling factor we chose was

max(P ), but the results were insensitive to changes in this value.
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s2(T)5
1

G2
[s2(F )2 2F 0 LP 0z1s2(LP )z2]: (13)

We will refer to s2(F ), s2(LP ), and F 0 LP 0 as the

‘‘forcing components,’’ each inW2m24. Figures 1b–d

shows the observed forcing components for the 2000–17

period. Note that everywhere F 0 LP 0 , 0 due to the

negative correlation between shortwave radiation and

precipitation. Observations of summertime radiation

are from the CERES satellite (CERES Science Team

2000), while observations of precipitation are from in-

terpolated weather station data presented in Willmott

and Matsuura (2001). Equation (13) can be used to

estimate temperature variance in any dataset that in-

cludes surface shortwave radiation and precipitation;

the appendix contains maps of the summertime tem-

perature variance (Fig. A1) and forcing components

(Figs. A2–A4) in the Northern Hemisphere midlati-

tudes from the observations, ERA5, and an ensemble of

global climate model simulations that we will analyze to

complement our analyses presented in section 3.

We can use Eqs. (8)–(11) to write an equation for the

variance in latent heat flux. Written in terms of the

forcing components:

s2(LE)5
�n
G

�2

"�
G

n
2 1

�2

s2(F )

1 2z

�
G

n
2 1

�
F 0 LP 0 1 z2s2(LP )

#
: (14)

Diagnostic Eqs. (13) and (14) constitute our model

and contain three tunable parameters n [Eq. (4)],

m [Eq. (5)], and rs [Eq. (7)]. Observations of these

quantities do not exist; we assume that the three param-

eters are constant across themodel domain. By tuning the

model parameters to obtain good overall agreement with

the observed temperature variance over the North

American domain, we obtain n 5 14Wm22K21,

m5 5s(P ) kgm22 s21, and rs5 75m21 s. The values of G
and z depend on these parameters and the summertime

mean values of m and V.

3. Results

a. Temperature variance

We begin with an evaluation of Eq. (13): can this

diagnostic model accurately estimate the summertime

temperature variance in the midlatitudes? The as-

sumption of constant parameter values ignores re-

gional variations in roughness, vegetation phenology,

and other surface properties. Nonetheless, in Fig. 3 we

show that over the North American domain the tem-

perature variance estimated by the model using forcing

components from observations (shown in Figs. 1b–d)

agrees well with the observed pattern of temperature

variance. Figure 3a shows a map of the ratio of the

temperature variance estimated by the model using the

observed forcings to the observed temperature vari-

ance s2(T)Model/s
2(T)Obs., while Fig. 3b shows histo-

grams of this variance ratio for various sets of grid cells

FIG. 3. Ratio of temperature variance calculated usingEq. (13) to that observed (Fig. 1a). (a)A spatialmap of this

ratio across North America. (b) Histograms of this ratio for different regions in the midlatitudes (note the log scale

on the abscissa). The solid black line shows all points in the North American domain shown in (a), while the dashed

black line shows the set of all land points between 308 and 758N. The blue line shows all grid cells in the North

American domain that are below 1000m in elevation. The red line shows all grid cells where observed temperature

variance is larger than 28C2, while the green line shows grid cells above this high temperature variance threshold

that lie south of 508N in the North American domain.
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described below. The structure of Eq. (13) allows us to

decompose the temperature variance into three terms

associated with each forcing component. Maps of the

variance computed according to Eq. (13) and each

term associated with this decomposition are shown

in Fig. 4. One notable aspect of this decomposition

is that the component of temperature variance as-

sociated with precipitation forcing is similar to that found

in Koster et al. (2015) using different methods.

The model agrees well with the observed pattern of

temperature variance over North America (the train-

ing dataset); the solid black histogram is centered on

unity, indicating good overall agreement, and the di-

agnostic model’s estimated temperature variance is

off by more than a factor of 2 in fewer than 15% of grid

cells. While the three spatially invariant parameters

listed above were tuned to achieve this agreement,

extending the model throughout the Northern

Hemisphere midlatitudes (between 308 and 758N) also

shows a good fit to observations (the dashed black

histogram in Fig. 3b); 78% of grid cells are within a

factor of 2 of the observed temperature variance and

the distribution is centered on unity with no obvious

bias toward over or underestimating temperature

variance. However, there are several specific regions

where the model’s basic assumptions are violated, re-

sulting in spurious estimates.

The model tends to overestimate temperature variance

in high-elevation regions. This is likely due to our simple

formulation of runoff flux, which does not account for

topography and thus results in an overestimation of tem-

perature variance associatedwith precipitation. Removing

high-elevation regions from the set of points analyzed in

Fig. 3b, we obtain the blue histogram that has notably

fewer points with overestimates of temperature variance.

Problems associated with our runoff parameterization are

also likely responsible for the overestimate of tem-

perature variance around the Gulf of Mexico. Monthly

averaging in the Gulf Coast means that short time scale

variability associated with tropical cyclones is not ex-

plicitly accounted for and creates a high bias in soil

moisture variability that is reflected in the overestimate

of temperature variance (see Fig. 3a). With a more

sophisticated runoff parameterization, the large pre-

cipitation anomalies (primarily associated with tropical

cyclones) would have less influence on soil moisture

due to high runoff rates driven by these systems.

Underestimates of temperature variance are also

present in our evaluation exercise, particularly in coastal

regions such as the west coast of the United States and

FIG. 4. (a) Temperature variance estimated by the diagnostic model using the observed forcings shown in

Figs. 1b–d. Also shown are components of the temperature variance associated with the (b) radiation forcing,

(c) precipitation forcing, and (d) the covariance between precipitation and radiation, respectively.
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far northern Canada. In these regions, remote forcing

due to thermal advection (and possibly associated with

summer sea ice variability at high latitudes) plays a

significant role in the temperature variance (Holmes

et al. 2016). The red histogram in Fig. 3b shows the ratio

of variances in grid cells where the observed tempera-

ture variance exceeds 28C2. Since many of these grid

cells are in the high latitudes (see Fig. 1a), where sum-

mertime sea ice variability and thermal advection likely

contribute to high temperature variance, we attribute

the systemic underestimate of temperature variance in

this subset of grid boxes to the absence of thermal ad-

vection in our model formulation. If we only consider

high temperature variance regions, south of 508N,

however, our model is a fair fit to observations: 70% of

points lie within 50% of the observed temperature var-

iance. This suggests that even in high temperature var-

iance regions in the continental United States, our

model captures the essential physics governing the dis-

tribution of land surface temperatures. While some

studies (e.g., Schneider et al. 2015) have noted the

important role of thermal advection in regulating

midlattitude temperature variability in wintertime, our

work aligns with the results of Holmes et al. (2016), who

argue that in most continental regions in summertime,

thermal advection is not a major contributor to local

summertime temperature variance. Another region

where the model underestimates temperature variance

is the Ohio Valley (south of the Great Lakes). Mueller

et al. (2017) quantified the influence of agriculture on

temperature extremes in this region; the neglect of

vegetation changes during summertime may contribute

to the model’s underestimate of temperature variance.

The histograms detailed above testify to the skill of

our model [Eq. (13)] to simulate the observed tem-

perature variance. Analogous maps and histograms

that show the diagnostic model’s ability to reproduce

the temperature variance in ERA5 and an ensemble of

global climate models are shown in the appendix

(Figs. A5 and A6).

The temperature variance and forcings in the three

datasets shown in Figs. A1–A4 (observations, ERA5,

and the global climate model ensemble) differ substan-

tially from one another, but the same values of three

tunable parameters (bulk surface resistance rs, dry surface

climate sensitivity n, and surface moisture capacity m)

are used in each realization of the model and lead to

accurate estimates of each product’s temperature vari-

ance. This suggests that the model’s skill does not stem

from overtuning; Eq. (13) captures the basic physics

underlying the relationships between temperature var-

iance and the surface budgets of energy and moisture.

Also, with the exception of the mean surface moisture

m, variations in soil hydrological parameters and ex-

change coefficients are unimportant in capturing the

spatial pattern and amplitude of monthly temperature

variance. This result is reminiscent of a recent study by

Byrne and O’Gorman (2018) that accurately captured

observed trends in land surface relative humidity using

only a single land surface dryness parameter.

b. Latent heat flux variance

We have shown that our model reproduces the ob-

served temperature variance given the observed forcing.

How does the pattern of temperature variance relate to

the variance in latent heat flux over the same period?

Figure 5 shows the latent heat flux variance estimated by

Eq. (14). Similar to the temperature variance, the latent

heat flux variance can be decomposed into three forcing

terms. While each forcing component makes a compa-

rable contribution to the temperature variance, precip-

itation forcing is overwhelmingly responsible for the

variance in latent heat flux, leading to a maximum in

latent heat flux variance in the central United States.

Maps of each component are shown in Fig. 6.

Direct global observations of latent heat flux variance

do not exist. Long records of latent heat flux covering the

entire 2000–17 period are only available from three en-

ergy balance Bowen ratio stations at three Atmospheric

Radiation Measurement sites within the Southern Great

Plains (SGP) field campaign (Xie and Gaustad 1993). By

averaging the output from the three sites and removing

monthly means in a manner analogous to Eq. (3), we

estimate the latent heat flux variance in the SGP domain

(shown by the red circle in Fig. 5) as 283W2m24. This

FIG. 5. Latent heat flux variance calculated with Eq. (14) using

the 2000–17 forcing values from Figs. 1b–d. Inset table shows the

latent heat flux variance for the same period averaged over the

southern Great Plains from three sources: observations (SGP

Obs.), our diagnostic model [Eq. (14)], and ERA5. The red circle

on the map indicates the SGP domain.
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compares favorably to the latent heat flux variance cal-

culatedwithEq. (14) using the observed forcing (see inset

in Fig. 5). For comparison, the latent heat flux variance

over the same period and region from ERA5, a new re-

analysis product, is shown in the inset to Fig. 5; it is 35%

less than the variance observed in the SGP record. That

our model reproduces the observed latent heat flux var-

iance at the SGP is independent evidence that the pa-

rameter values (chosen to match our model to the

observed temperature variance) are physically realistic.

c. Temperature variance in a changing climate

The plasticity of the diagnostic model allows us to ex-

plore the sensitivity of temperature variance to changes in

selected state variables. We specify changes in state var-

iables that are expected with a 48C global average

warming such as a decrease in land relative humidity of

4% (Byrne and O’Gorman 2016) and a decrease in soil

moisture of 10% (Berg et al. 2017). We emphasize that

our results should not be interpreted as projections be-

cause we use spatially uniformmean-state changes in this

analysis. Rather, our results serve to highlight the im-

portance of different aspects of land–atmosphere inter-

action on local temperature probability distributions.

Increasing the climatological mean surface tempera-

ture by 48C while holding relative humidity constant

increases climatological mean atmospheric water vapor

demand V by way of increasing the surface qs (and its

derivative g 5 dqs/dT) relative to q. As a result, the

temperature variance increases everywhere (Fig. 7a)

due to an increase in b, which increases themoist surface

climate sensitivity G21 [see Eqs. (10)–(12)]. Including a

4% reduction in relative humidity amplifies the increase

in temperature variance associated with a 48C warming

(cf. Figs. 7a,b) by further increasing the atmospheric

water vapor demand V. Importantly, these changes are

largest in wet regions in the easternUnited States, where

evaporative cooling is more sensitive to background

atmospheric demand V than to the availability of soil

moisture m (Seneviratne et al. 2010; Vargas Zeppetello

et al. 2019a). In these regions, the combination of a 48C
increase in temperature and a 4% decrease in relative

humidity causes temperature variance to increase by up

to 25% (Fig. 7b).

Climate models simulate a decrease in climatological

surface soil moisture m associated with increased sum-

mertime evapotranspiration in greenhouse warming sce-

narios (Berg et al. 2017). Figure 7c shows the change in

temperature variance associated with a 10% reduction in

soil moisture (a typical value for the end of this century in

the RCP8.5 emission scenarios). A reduction inmean soil

moisture increases temperature variance by reducing the

latent heat flux anomalies associated with a nominal

temperature perturbation, thus increasing the moist sur-

face climate sensitivity G21 [see Eq. (12)]. The increase in

temperature variance due to a climatological mean soil

drying of 10% is less than that due to a 48Cmeanwarming

if the projected decrease in relative humidity is in-

cluded (cf. Figs. 7b,c). The regions with the largest in-

creases in temperature variance are coincident with

maximum values ofm, where the 10% reduction in soil

moisture constitutes the maximum absolute decrease

in soil moisture.

Colman (2015) showed that anthropogenic climate

forcing is projected to cause a reduction in low clouds

throughout themidlatitudes. Under the assumption that a

decrease in average cloudiness will be accompanied by a

decrease in the shortwave radiation variance at Earth’s

surface, Fig. 7d shows the impact of a 10% decrease in

s2(F ) at each grid cell in the domain. This results in a

s2(T) reduction everywhere, but the signal is particularly

strong in the high latitudes, where radiative forcing is

largest, and in the dry American West, where radiative

forcing is the largest contributor to temperature variance

due to the lack of available soil moisture for evapo-

transpiration (see Fig. 4).

FIG. 6. Components of latent heat flux variance shown in Fig. 5: (a) the component associated with radiative forcing, (b) the component

associatedwith precipitation forcing, and (c) the component associatedwith the covariance structure. Note that the color bars are different

in each panel and especially that the color bar in (c) is negative.
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Our results suggest that a mean warming com-

bined with an atmospheric drying could dramatically

amplify temperature variance—particularly in wet

regions where soil moisture is plentiful and evapo-

transpiration responds primarily to evaporative de-

mand (Fig. 7b). Swann et al. (2016) demonstrated

that, on a global scale, CO2 climate forcing in an

ensemble of models may not translate into mean-

ingful changes in mean evapotranspiration because

plants compensate for the enhanced atmospheric

demand by closing their stomata in response to

higher levels of atmospheric CO2. In terms of our

diagnostic model, this corresponds to an increase in

bulk surface resistance rs. Figure 7e shows the im-

pact on temperature variance of a 10% reduction in

surface resistance everywhere in the domain (rs 5
82.5 vs rs 5 75). As expected, the impact of this

change is limited to the regions where latent heat

flux variance is largest (see Fig. 5). Interestingly, the

sign of the change is negative: increasing surface

FIG. 7. Changes in temperature variance associated with a change in a mean-state variable, reported as a per-

centage change relative to the variance simulated by Eq. (13) using the observed forcing over the period 2000–17.

(a) The mean temperature has been increased by 48C while holding relative humidity constant. (b) The impact of

the samewarming in (a) while including a 4%decrease in relative humidity. (c) The impact of a 10%decrease in soil

moisture everywhere in the domain. (d) The impact of a 10% reduction in radiative forcing variance everywhere in

the domain. (e) The impact of a 10% increase in surface resistance.and (f) The impact of both the 10% increase in

surface resistance and a 10% decrease in soil moisture.
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resistance leads to decreasing summertime temper-

ature variance. This change is somewhat surprising

because increasing surface resistance causes greater

mean temperatures. However, increasing surface

resistance also reduces evapotranspiration sensitivity to

any forcing at all time scales. Thus, increasing surface

resistance damps temperature variance in the central

United States, where we have shown that latent heat flux

variations contribute most to overall temperature vari-

ance. This effect is not trivial; Fig. 7f shows that com-

bining the impacts of reduced soil moisture and increased

surface resistance results in a muted change over the

central United States due to the tug of war between the

two large but opposing impacts on latent heat flux in

this region.

4. Conclusions

In this paper, we use the land surface budgets of en-

ergy and liquid water to derive a simple diagnostic

model of the variance in monthly averaged temperature

and latent heat flux during summertime. The variances

are linear functions of local shortwave radiation vari-

ance, precipitation variance, and the covariance be-

tween monthly anomalies in shortwave radiation and

precipitation. Our approach is uniquely independent of

any particular modeling platform; we can use observa-

tions, reanalysis, and global climate model output to

estimate a particular dataset’s temperature variance.

Using the observed forcing values, our model repro-

duces the summertime temperature variance in obser-

vations, ERA5, and a global climate model ensemble

for the 2000–17 period with considerable skill. We also

provide an estimate of summertime latent heat flux

variance over North America. Unfortunately, an ob-

served record of latent heat flux that is long enough to

estimate the monthly variance is only available at one

FIG. A3. As in Fig. A1, but for variance in precipitation forc-

ing s2(LP ).

FIG. A1. Midlatitude maps of summertime land surface tem-

perature variance for (a) the observations, (b) ERA5, and (c) the

GCME. The six models that comprise the GCME are listed in

TableA1, and all have been regridded onto a common grid spacing.

Note that (a) here and in Figs. A2a, A3a, and A4a are extended

versions of Fig. 1.

FIG. A2. As in Fig. A1, but for variance in shortwave radia-

tion s2(F ).
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location: the ARM Southern Great Plains site. Our

model’s estimate for the latent heat flux variance in this

region agrees favorably with the observed record and is

closer to the observed Southern Great Plains site value

than a state-of-the-art reanalysis product (ERA5). One

drawback of the model is that it does not include ad-

vective terms or feedbacks between the land surface and

atmospheric forcings. Future work in land–atmosphere

interaction will focus on short time scale feedbacks that

could complicate the relationship between atmospheric

forcings and surface fluxes that were assumed indepen-

dent in our model.

We used the model to explore the impacts of climate

change on surface temperature variance.We find that, in

isolation, 48C warming causes an increase in tempera-

ture variance over all of North America. Importantly,

the increase in temperature variance is extremely sen-

sitive to changes in relative humidity of the near-surface

air; including a 4% decrease in relative humidity (pro-

jected to occur with a 48C increase in temperatures; see

Byrne and O’Gorman 2016) increases the temperature

variance by up to 25% in some climatologically wet re-

gions of the United States compared to the 2000–18

value. When changes in both temperature and relative

humidity are accounted for, temperature variance in-

creases by more than 20% in some parts of the eastern

United States. We also find that the increase in tem-

perature variance associated with the projected de-

creases in soil moisture could be compensated for by

increased stomatal resistance in response to higher at-

mospheric CO2, but this estimate is poorly constrained

due to the complexities associated with quantifying the

stomatal response to carbon emissions.

In simulations of the twentieth century, climate models

display large biases in summertime temperature variance

on monthly time scales (Vargas Zeppetello et al. 2020).

These biases raise serious questions concerning the reli-

ability of the model-projected changes in temperature

variance driven by anthropogenic climate change. The

present study presents a tool that can be used to identify

the sources of bias in simulated temperature variance by

quantitatively assessing the relative contributions of bia-

ses in the forcings (shortwave and precipitation variance)

and biases in the mean state (temperature, humidity, and

soil moisture) to biases in the simulated temperature

variance. In this way, the model can be used to identify

pathways for improving the models, which presumably

will lead to more reliable projections of changes in

FIG. A5. Ratio of temperature variance estimated by the diag-

nostic model to temperature variance in (a) observations, (b) ERA5,

and (c) the GCME.

TABLE A1. List of models comprising the global climate model

ensemble.

Model Institution

BCC-CSM1.1 Beijing Climate Center (China)

CanESM2 Canadian Centre for Climate Modeling

and Analysis

CESM1-BGC National Center for Atmospheric

Research (United States)

HadGEM2-ES Hadley Centre for Climate Prediction and

Research (United Kingdom)

IPSL-CM5A-LR Institut Pierre Simon Laplace (France)

NorESM1-ME Bjerknes Centre for Climate Research

(Norway)

FIG.A4. As in Fig. A1, but for the covariance inmonthly shortwave

radiation and precipitation anomalies F 0 LP .
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temperature variance driven by climate change. The

biases in climatemodels have led investigators evaluating

the impact of climate change on food production and

human heat stress to make the conservative assumption

that the variability of summertime temperature will remain

constant as the climate warms (e.g., Tigchelaar et al. 2018).

Our results suggests that this assumption ignores poten-

tially dramatic increases in temperature variance associated

with climate change and provides a framework for quan-

tifying how large those changes are likely to be so that they

can be integrated more easily with impact assessments.
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APPENDIX

Comparison between Observations, Reanalysis, and
Global Climate Models

We present global maps of midlatitude Northern

Hemisphere temperature variance (Fig. A1) and forc-

ings (Figs. A2–A4 ) for observations, ERA5, and a

global climate model ensemble (GCME) taken from the

CMIP5 data archive. ERA5 runs from 1979 to 2019; for

consistency with the available observations we used the

2000–17 period to calculate all quantities relevant for

the diagnostic model. The GCME is composed of sce-

narios where the atmospheric CO2 concentration rises

by 1% each year from a preindustrial control baseline in

six models listed in Table A1; we use the first 18 years of

these runs. For the GCME temperature variance, we

calculated an average of each forcing from each of the

six models considered, then input them into the diag-

nostic model to obtain the estimate of temperature vari-

ance.We then compare this estimate to the average of the

temperature variances simulated by the six models.

The temperature variance and radiative forcing in

ERA5 are nearly identical to the observations, while the

GCME has high biases in both quantities. We have

identified biases in incident shortwave radiation vari-

ability as an important contributor to climate model tem-

perature variance biases in other work (Vargas Zeppetello

et al. 2020). Despite the biases in shortwave radiation

variance, the precipitation forcing and covariance terms

from the GCME compare favorably to those from both

ERA5 and the observations.

In Figs. A5 and A6, we show the skill of the diagnostic

model as the ratio of temperature variance estimated

from the diagnostic model driven by the relevant forc-

ings from observations, reanalysis, and theGCME to the

temperature variance found in those three datasets. We

use the same values for the parameters n, m, and rs in

each realization and obtain good agreement between

the model estimate and the temperature variance in all

three products.
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