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ABSTRACT

Evaporation plays an extremely important role in determining summertime surface temperature variability
over land. Observations show the relationship between evaporation and soil moisture generally conforms to
the Budyko “‘two regime’’ framework; namely, that evaporation is limited by available soil moisture in dry
climates and by radiation in wet climates. This framework has led climate models to different parameteri-
zations of the relationship between evaporation and soil moisture in wet and dry regions. We have developed
the Simple Land-Atmosphere Model (SLAM) as a tool for studying land—atmosphere interaction in general,
and summertime temperature variability in particular. We use the SLAM to show that a negative feedback
between evaporation and surface temperature gives rise to the two apparent evaporation “‘regimes” and
provide analytic solutions for evaporative cooling anomalies that demonstrate the nonlinear impact of soil
moisture perturbations. Stemming from the temperature dependence of vapor pressure deficit, the feedback
we identify has important implications for how transitions between wet and dry land surfaces may impact
temperature variability as the climate warms. We also elucidate the impacts of surface moisture and insolation
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perturbations on latent and sensible heat fluxes and on surface temperature variability.

1. Introduction

As the climate warms, the impacts of increasing sum-
mertime temperatures are becoming more evident.
Global warming has increased the severity of maximum
monthly summertime temperatures (Kirtman et al. 2013;
Diffenbaugh et al. 2017). The temperature of the hottest
day of the year has increased nearly 1°C per decade over
the past 30 years in both Houston and Moscow, while
the average trend over Eurasia is 0.3°C per decade
(Papalexiou et al. 2018). Small alterations to climate
variability result in large changes to the probability of
extreme events like heat waves and droughts that depend
on temperature thresholds (Katz and Brown 1992), and
constitute a major challenge to climate adaptation. These
challenges and their consequences were on display in
2003, when an unprecedented seasonal heat wave killed
70000 people in Europe (Robine et al. 2008). Schir et al.
(2004) found that this seasonal anomaly could not be
explained by mean global warming and invoked increased
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temperature variability to explain the extremely unlikely
heat wave. Just seven years later, an even more extreme
seasonal heat wave killed 55000 people in Russia and
likely broke 500-year temperature records over much of
central and eastern Europe (Barriopedro et al. 2011;
Tingley and Huybers 2013).

In addition to the mortality associated with heat
waves, temperature extremes impact global food secu-
rity by contributing to year-to-year uncertainty in crop
yields. The 2010 Russian heat wave noted above
caused a 25% reduction in wheat yield, and Tigchelaar
et al. (2018) found that mean global warming dramati-
cally increases crop yield variability. Specifically, a 4°C
mean global warming makes the likelihood that each of the
four largest maize-producing countries will experience a
10% or greater drop in yield during a particular year 87%,
while in the current climate this kind of synchronized
shock is extremely unlikely.

Given the impacts of extreme summertime tempera-
tures and the dependence of statistical extremes on
natural variability, understanding the physical processes
that give rise to summertime temperature variability
is extremely important. For over a decade, regional
models forced with anthropogenic CO, emissions have
projected a robust increase in temperature variability
over Europe (Vidale et al. 2007). In particular, models
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FIG. 1. Multimodel-mean percentage change in standard de-
viation of 2-m air temperature between the 2085-99 and 2000-14
periods across an ensemble of CMIP5 model simulations of the
RCP8.5 forcing scenario.

that simulate the modern European climate most accu-
rately project a 20% increase in daily temperature var-
iability over large swaths of southern and central Europe
by the end of the twenty-first century under business as
usual greenhouse gas emissions (Fischer et al. 2012).
Global climate models forced by increasing greenhouse
gas emissions project significant (up to 40% ) increases in
the standard deviation of monthly summertime tem-
peratures, particularly over North and South America,
Europe, and Southeast Asia (see Fig. 1 and Table 1 for a
list of models in the ensemble).

Our confidence in these projections is tied to the
ability of the models to represent the present-day sum-
mertime climate. Unfortunately, regional and global
climate models have large biases in continental land
surface temperatures, with summer mean temperatures
that are too high and more variable than the historical
record (Lenderink et al. 2007; Morcrette et al. 2018).
Further, Donat et al. (2017) found that changes in ex-
tremely warm temperatures in climate model simula-
tions of the past 50 years are much larger than
corresponding changes in the observational record. The
source of these errors differs across models, and due to
the complexity of land—atmosphere interaction no sin-
gular cause has been identified. However, model rep-
resentations of evaporation have been implicated as a
primary cause of temperature biases in climate models
(Mueller and Seneviratne 2014; Merrifield and Xie 2016;
Ma et al. 2018). Variations in evaporation are linked to
variations in soil moisture, which has become widely
regarded as a fundamental control on summertime
temperatures (Seneviratne et al. 2010).

While current observations cannot reveal the mech-
anistic relationship between soil moisture and evapo-
ration (Koster et al. 2015), observational studies have
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TABLE 1. Climate models used in calculating the ensemble
averaged increase in standard deviation of monthly summertime
2-m air temperature. (Expansions of acronyms are available online
at http://www.ametsoc.org/PubsAcronymList.)

Climate model

ACCESS1.0, ACCESS1.3,
CSIRO Mk3.6.0

Institution

CSIRO (Australia)

BCC (China) BCC_CSM1.1
BNU (China) BNU-ESM
Environment Canada CanESM2
NCAR (United States) CCSM4, CESM1(CAMS)
MRI (Japan) CGCM3, ESM1
CNRM (France) CM5

IPSL (France) CMS5A-MR
GFDL (United States) GFDL CM3
GISS (United States) GISS-E2-H
INM (Russia) INM-CM4
MIROC (Japan) MIROC-ESM
MPI (Germany) MPI-ESM-MR
NCC (Norway) NorESM1-M

shown two distinct patterns of evaporation behavior
(Ryu et al. 2008; Teuling et al. 2009; Gentine et al. 2012).
The conceptual framework underpinning these two
patterns comes from Budyko (1961). Budyko proposed
that evaporation efficiency (defined as the ratio of actual
to potential evaporation) is linearly dependent on soil
moisture up to a critical value, above which it is constant
(see Fig. 2). Below this critical value evaporation is
considered “‘moisture controlled” while above it is con-
sidered ‘‘climate (or energy) controlled” (Eagleson
1978). Even as models of the land surface have become
more complex, the nonlinear connection between soil
moisture and evaporation proposed by Budyko is com-
monly invoked to explain model output and observa-
tions of evaporation [see discussion in Seneviratne et al.
(2010)]. However, no critical value of soil moisture has
been observed (Koster et al. 2006), begging the question
of what really distinguishes the two apparent soil mois-
ture ‘“‘regimes.”

Despite the conceptual power of Budyko’s frame-
work, Dirmeyer et al. (2006) showed that an ensemble
of climate models had no consistent representation of
the connection between soil moisture and evaporation.
The common invocation of the two soil moisture regimes
proposed by Budyko contrasts starkly with the murky
representation of evaporation behavior in climate
models. Developing a process-based account of these
apparent soil moisture regimes is therefore critical to
understanding the thermodynamics that govern land—
atmosphere interaction and summertime temperature
variability.

In this paper, we aim to illuminate the essential physics
underpinning the relationship between soil moisture and
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FIG. 2. Schematic representation of the connection between
evaporation efficiency and soil moisture, originally proposed by
Budyko (1961). The nonlinear relationship is predicated on the
existence of a critical value of soil moisture where evaporation
efficiency becomes decoupled from soil moisture and becomes
completely driven by climate conditions.

evaporation. To achieve this, we construct the one-
dimensional Simple Land-Atmosphere Model (SLAM)
that represents the land-atmosphere fluxes of energy and
moisture with as few parameters as possible. In section 2,
we will briefly describe the SLAM and show results from
an evaluation exercise. An in-depth description of the
model’s derivation and equations is given in the appen-
dix. The SLAM relies on time series of forcing and
boundary conditions that are not widely available on
subseasonal time scales; in section 3 we develop a suite of
synthetic forcings that we use to create an ensemble of
model runs with varying surface moisture initializations.
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In section 4, we show that the two apparent soil moisture
regimes are a fundamental feature of land-atmosphere
interaction caused by a feedback between evaporative
cooling and vapor pressure deficit modulated by available
soil moisture. In section 5 we present a discussion of re-
sults and conclusions.

2. SLAM description and evaluation
a. Model description

Figure 3a shows a schematic of the SLAM where all
model layers and thermodynamic variables are labeled.
All model layers have a temperature (K) and moisture
variable that are assumed to be homogenous within the
layer. The moisture variables are specific humidity g
[kg H,O (kg air) '] for the atmospheric layers and vol-
umetric soil water content m [m® H,O (m dry soil) ~*] for
the soil layers. The volumetric soil water content is de-
fined as the volume occupied by liquid water in a unit
volume of soil. Smith and Mullins (2001) use the mass
ratio of liquid water to dry soil w [kg H,O (kg dry soil) ']
to define volumetric soil water content:

Pa
Py

m=w

Q)

In Eq. (1), pg and p, are the bulk densities (kgm>) of
dry soil and liquid water. In practice, m has an upper
limit mg,, set by the volume of air-filled pore space in a
particular dry soil sample.

vy
>
Uit

Vo

H,

FIG. 3. (a) A schematic of the SLAM showing temperature and moisture variables in each model layer along with the boundary
conditions. (b) Schematic showing all fluxes of moisture and energy. Blue arrows denote water fluxes; orange arrows denote turbulent,
conductive, or longwave energy fluxes. Purple arrows denote fluxes that involve model forcings or boundary conditions, while those under
the cloud are partially controlled by cloud fraction.
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The soil surface layer has thickness d, = 10cm; this
encompasses the region where radiative heating is
largest during the diurnal cycle. The depth of the total
soil column D, = 1 m contains the full rooting zone and
is deep enough that we can assume a constant temper-
ature below this level; the constant “cold abyss” tem-
perature Tp is one of the model’s boundary conditions.
The lower atmospheric boundary layer thickness d; =
100 m incorporates nearly all possible vegetation types,
while the total boundary layer height D, = 1000m is a
representative value over land surfaces. Temperature
Trop, specific humidity grop, and cloud fraction cf
boundary conditions are prescribed above the upper
boundary layer.

All model fluxes are shown in Fig. 3b; model forcings
and fluxes controlled by boundary conditions are shown
in purple. Within the four model layers, fluxes of mois-
ture (kg H,Om 2s~ ') and energy (W m ™ ?) are shown in
blue and orange respectively. The term & is the pre-
cipitation into the surface soil layer, while transpiration
from the root and surface layers are m; and m, re-
spectively. The term Q;, is the infiltration of liquid
water between the surface and root layers, while Q) is
drainage of excess soil moisture out of the model. Terms
Q34 and Q1 are turbulent fluxes of water vapor between
the lower and upper atmospheric boundary layers, and
between the upper boundary layer and free troposphere,
respectively. The term .7 is the net shortwave radiation
absorbed at the surface, while F,, F3, and F, represent
net longwave radiation absorbed in the layer denoted by
the subscript. Also, H; 3, I3 4, and H; are the turbulent
sensible heat fluxes from the soil surface to the lower
boundary layer, between the lower and upper boundary
layers, and between the upper boundary layer and free
troposphere, respectively. Terms H; , and H | represent
conductive heat fluxes that transfer energy from the
surface to the root layer and from the root layer out of
the model, respectively. Finally, E represents evapora-
tion; because evaporation both cools and dries the sur-
face, it is shown in both blue and orange in Fig. 3b.

A detailed description of the model’s derivation and
all equations governing the model fluxes is given in the
appendix, but the evaporation E (kgH,Om *s™')
equation is of fundamental importance, so we will
present it here:

Ee a—=1)e,
r

N

X[q,(T,) — q;]- )

Here r, (sm ') is the surface resistance that governs the
rate at which energy is transferred from the land surface
into the lower boundary layer by turbulent eddies, while
fuis the fraction of the land surface covered by vegetation.
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The density of air is p,, ¢, [kg HO (kg air) '] is the sat-
uration specific humidity evaluated at the surface tem-
perature 75, and g5 is the specific humidity in the lower
boundary layer.

In Eq. (2), X is a coupling term that connects the soil
water content in the surface layer m to evaporation. In
the Budyko framework, this coupling term is nonlinear
(see Fig. 2):

m-—-m
w
m

, if m <m<m_.,

. —m w crit

crit w (3)
1, if m

X =

<m<m__..
crit sat

In Eq. (3), the wilting point m,, is the point at which
evaporation becomes impossible, and mi,;; is a param-
eter that controls the distinction between the apparent
moisture-controlled and climate-controlled regimes.

To investigate whether the Budyko parameterization
is crucial to the development of these apparent regimes,
we assume a simpler form of the coupling term:

x= M @
msal - mw

Under this assumption, X varies linearly between zero
and one and can be thought of as the fractional soil
saturation (it is expressed as a percentage in our figures).
We constrain soil moisture in each layer so that it does
not exceed saturation mg, or go beneath the wilting
point m,,. While certainly a simplification of the complex
processes that relate soil moisture to evaporation, we
will show that this simple coupling deployed in the
SLAM generates realistic evaporation behavior across
the soil moisture spectrum (see section 4).

b. Model evaluation

The SLAM needs time series of net absorbed short-
wave radiation .7, precipitation 7, and cloud fraction c¢
as well as temperature and humidity boundary condi-
tions Ttop and grop to generate output. The Atmo-
spheric Radiation Measurement facility in the Southern
Great Plains (SGP) provides data on solar radiation .7,
precipitation &°, and cloud fraction ¢y every minute;
these data are shown in Figs. 4a—c (Riithimaki and Shi
1994; Long et al. 2014). Boundary conditions Tt and
gtop come from interpolated radiosonde data for tem-
perature and specific humidity at 1000 m that are pro-
vided at every minute and are shown in Figs. 4d and 4e
(Troyan and Jensen 1998). Data for these five fields are
available from 0000 CDT 1 June 2014 through 0000
CDT 31 August 2014.

In addition to the time series shown in Fig. 4 we used
the parameters listed in Table 2 for our simulation. We
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FIG. 4. (a)-(c) Forcings and (d),(e) boundary conditions measured at the SGP Atmospheric Radiation Mea-
surement (ARM) site in the summer of 2014 (0000 CDT 1 Jun 2014-0000 CDT 31 Aug 2014). These forcings and
boundary conditions are used to drive the SLAM in the model evaluation exercise (see section 2b).

refer the interested reader to the appendix for in-
formation on how these parameters are incorporated
into model equations. All parameters on the left-hand
side of the table are held constant and govern the tur-
bulent energy and moisture fluxes. Vegetation fraction
fv,» and stomatal resistance 7y are taken as representa-
tive values for an average grassland (Wei et al. 2017;
Garratt 1992). Surface resistance r; and maximum re-
sistance to turbulent heat transport 7,1 are estimates
for a reasonably smooth land surface (Garratt 1992).
The maximum resistance to turbulent moisture trans-
port 7, 4 is much smaller than the equivalent resistance
to turbulent heat transport to keep water vapor well
mixed in the boundary layer. We estimate the average
insolation maximum o, from the radiation observa-
tions (see Fig. 4a).

The right-hand side of Table 2 contains soil parame-
ters. Deep root fraction f, for a grassland is estimated
from Jackson et al. (1996). Bulk land surface density and
heat capacity vary linearly between the values indicated
in the table (see the appendix). Tong et al. (2016)
present functional forms for how soil conductivity
A increases with soil moisture.

The SLAM output is insensitive to changes in initial
conditions for temperature and specific humidity in the
various layers. For simplicity, we take initial conditions
directly from the observations. The constant tempera-
ture of the cold abyss 7T was set to 280K, and the
SLAM output is also insensitive to changes in this value.

Soil moisture initial conditions do not have a large im-
pact on model output, but this is due to the 100-mm pre-
cipitation event that occurs during the first week of summer

TABLE 2. Parameter values used in all SLAM simulations in this study. The left two columns show values associated with turbulent
energy and moisture fluxes; the right two columns show soil parameters. Where ranges exist, functional forms are described in the

appendix or found in citations from section 2b.

Parameter Value (units) Parameter Value (units)
fo 0.7 (—) fr 0.7 (—)
o 100 (sm ™) Ds 900 (dry)-1240 (wet) (kgm ™)
ry 100 (sm™ 1) Cps 1300 (dry) —2600 (wet) (Jkg 1K1
TaT 100 (sm™ 1) A 0 (dry)-2 (wet) (Wm™?)
Tag 20 (sm™h) Xw 0.1 (m*m™?)
O max 1000 (W m™2) Xt 0.4 (m*m )
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summer of 2014. The SLAM is forced with ARM obser-
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vations from the SGP site shown in Fig. 4. The numbers on the top right of each panel are the variance in daily
averaged values of each observed time series explained by daily averaged SLAM output (%), and the ratio of daily
averaged standard deviations in the SLAM to those observed (o /00).

(hence, in the first week of the simulation; Fig. 4b). This
event eliminates any influence of the soil moisture initial
condition on the rest of the simulation, as it effectively
saturates both soil layers in the model. Still, the soil mois-
ture observations from the SGP site start near their mini-
mum value, so we prescribe this “dry start” for our
simulation in both the surface and root layers.

In Fig. 5, we show observations from the SGP site in
blue and the SLAM output in orange. Tower observa-
tions of temperature and specific humidity at 60m are
sampled once per minute (Xie and Chen 2012) and
compared to 73 and g5 output from the SLAM. Sensible
and latent heat flux observations derived from eddy
covariance estimates with 30-min time steps (McCoy
et al. 2017) are compared to H,3 and L(E + m; + )
output from the SLAM. Volumetric soil water obser-
vations were gathered from 5-cm depth once per hour,
normalized using Eq. (4) and the measured maxima and
minima of the observations for the corresponding mig,,
and m,, parameters, and compared to X output from the
SLAM (Ermold et al. 1996). To quantify model per-
formance, Fig. 5 also shows the variance in daily aver-
aged values of each observed time series explained by
daily averaged SLAM output (%), and the ratio of
standard deviation in the daily averaged SLAM output
to that observed (o y/00).

The SLAM output explains more than 60% of the
variance in observed daily averaged 60-m temperature,
and the standard deviation in the SLAM’s daily aver-
aged temperatures closely matches that observed. Sim-
ilarly, the variance in daily averaged SGP 60-m specific
humidity is largely explained by the SLAM output,
while the standard deviation in SLAM’s daily averaged
values is somewhat less than observed. Mean biases in
the SLAM output for temperature and specific humidity
are —0.5°C and —0.5gkg ™!, respectively.

The SLAM’s representation of turbulent heat fluxes
has some potentially important departures from the eddy
covariance observations. The mean biases in the latent
and sensible heat fluxes output from the SLAM are —27
and +26 Wm 2, respectively. In addition, the SLAM
explains roughly half of the variance in the daily averaged
values of both fluxes. These errors could be due to the
model’s relative simplicity: the SLAM does not account
for wind variability and advection that contribute to
turbulent energy flux variability, or for vegetation dy-
namics that impact the partitioning between latent and
sensible heat fluxes. Despite neglecting these complex-
ities, the standard deviation in daily averaged latent heat
flux values output by the SLAM is 76 % of that observed,
indicating that this simple model is able to generate
somewhat realistic variability in latent heat flux.
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The discrepancies between the observed turbulent
fluxes and those output by the SLAM could also result
from errors in the eddy covariance observations that have
known problems with energy conservation (Franssen et al.
2010). The SLAM’s departures from the observed turbu-
lent fluxes are not always reflected in the temperature er-
rors. For example, in early August, the SLAM output has
larger sensible heat fluxes and smaller latent heat fluxes
than the observations. Both of these flux biases should
generate a warm bias in atmospheric temperature, but the
SLAM temperature is lower than observed during this
period. Further, while the observations suggest that the
SLAM has a low bias in latent heat flux, the soil moisture
observations indicate that evaporation from the surface
layer is well represented by the SLAM.

The surface saturation X simulated by SLAM agrees
with the observations, even though the actual values of
surface volumetric soil water m differ between the SLAM
and the observations due to our choice mg, and m,, pa-
rameters. However, changing these parameters produces
almost identical time series for all five quantities shown in
Fig. 5. Because the surface saturation expressed in Eq. (4),
rather than the value of m, is used to regulate evaporation
[see Eq. (2)], the importance of SLAM’s soil moisture
values lies in their variability more than their mean; this is a
general feature of land surface models (Koster et al. 2009).

3. Synthetic forcing

The skill of the SLAM to reproduce the SGP obser-
vations for one summer motivates us to use it to under-
stand the processes that control summertime temperatures
and temperature variability more generally. To do this,
we need a large ensemble of experiments and thus a
large ensemble of model forcing and boundary condition
time series with high sampling frequency. Such time
series are not available for a hydrologically diverse set of
regions, or on time scales long enough to study tem-
perature variability. Further, using observations to drive
the SLAM makes separating atmospheric forcings from
land—atmosphere feedbacks nearly impossible. We have
therefore developed synthetic forcing and boundary con-
dition time series that can substitute for observational
data and allow us to investigate the relationship between
soil moisture, evaporation, and summertime temperatures.
These time series and a description of the forcing ensemble
used to drive the SLAM are presented in this section, but
readers interested primarily in the model results may skip
to section 4.

a. Forcing description

We begin with time series for .72, Trqp, and grop. Power
spectra of ERA-Interim reanalysis output demonstrate
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that net surface insolation, 850-hPa temperature, and
850-hPa specific humidity are a combination of red noise
and a diurnal cycle during the summer (Dee et al. 2011).
With these power spectra in mind, we write time series for
Ttops GTop, and .72 as

Trop(0) =B ¥ (rp, ) + T ®)
Grop() =B,V (r,.0) + Tro,  and (6)
Dmax(t)’ if D(t) + Bﬁ’q,/‘ (r,//,’ [) > Dmax (t)’

2= [DO)+B,Y ,(r,.1)] 7D

+B,¥ ,(r,.1)], otherwise.

™)

In Egs. (5)—(7), the ¥,(ry, t) terms are red noise time
series controlled by a 6-h lag autocorrelation coefficient
r.. Each red noise component has a multiplicative con-
stant B, that controls the amount of red noise variability
in each time series. In Egs. (5) and (6), Trop and oy are
the mean temperature and specific humidity at the upper
boundary. Although there are diurnal cycles in both
temperature and specific humidity at 1000 m, we assume
that those cycles are a response to surface processes and
do not include them in our external forcing. In Eq. (7),
D(¢) is an imposed diurnal insolation cycle with maxi-
mum o, while D,,4(?) is a cloud-free diurnal cycle with a
higher maximum value of peak insolation o ,,x. The term
7 represents the Heaviside function, which ensures that
7(t) never dips below zero.

Once we have the radiation time series [Eq. (7)], we
can write the cloud fraction as a function of the in-
solation red noise time series:

—EO 5w ). )

max

¢ (1) =

The Heaviside function ensures that ¢ never dips below
zero, and we require that 0 < ¢; <1. When the red noise
component of the insolation forcing is positive, the cloud
fraction must be zero, while a negative value of Wr
indicates a positive cloud fraction. The unitless & term
governs how sensitive the cloud fraction is to variations in
the insolation forcing; higher values lead to higher cloud
fractions for the same insolation forcing variations.

The precipitation time series is generated through
stochastic processes that are initiated whenever the
cloud fraction is greater than zero, linking precipitation
to both cloud fraction and net insolation. At any time
step when the sky is cloudy, a random number between 0
and 1 is generated and compared to a threshold value set
to 0.9; if the random number is greater than the threshold,
precipitation is triggered. While somewhat arbitrary, ex-
periments with this synthetic forcing algorithm show that
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FIG. 6. Monthly standard deviations of (a) net surface insolation from the CERES satellite, (b) precipitation from
the Earth Systems Research Laboratory, (¢) temperature, and (d) specific humidity at the 850-hPa level from ERA-
Interim. All monthly values come from the period 2000-14. Data from JJA were used in the Northern Hemisphere
and from DJF in the Southern Hemisphere. The circle designates the central U.S. region used as the target for our

synthetic forcing ensemble.

this threshold value is high enough that cloudy periods
generally have less than a trace of precipitation but low
enough that significant rainfall occurs on monthly time
scales. The rain rate at each time step when precipitation
occurs is given by a random value according to a log-
normal distribution with specified mean & and standard
deviation 0. This procedure generates rain rate proba-
bility density functions similar to those found in Sauvageot
(1994).

b. Synthetic summers

Using the equations from section 4a, we create an
ensemble of forcing time series for SLAM experiments
to investigate the impact of soil moisture on summer-
time temperature variability. The ensemble has 50 sets
of the five time series .72, 7, Trrop, Grop, and cyrequired
to drive the SLAM. Simulations are made to start on
1 June and extend 92 days (three months of summer in
the midlatitudes).

The parameters chosen in the forcing algorithm were
tuned so that climatological mean values and monthly
standard deviations for the .72, 7, Trp, and qrop are
similar to those from the central United States in the
summer months of June-August (see circled region in
Fig. 6). The central United States has been identified as a

hot spot of land—-atmosphere interaction because it is a
transition zone between the wet climate of the Ameri-
can East Coast and the dry climate of the American
West (Koster et al. 2004). The monthly means and
standard deviations of the synthetic forcing were com-
pared to satellite observations of shortwave radiation
from the CERES satellite (CERES Science Team 2000),
interpolated weather station precipitation data from the
Earth Systems Research Laboratory (Matsuura 2001),
and ERA-Interim temperature and specific humidity
output at the 850-hPa level. Summertime monthly
standard deviations for these four quantities from the
years 2000-14 are shown in Fig. 6.

Parameters used to create the forcing ensemble, as
well as ensemble monthly means and standard de-
viations, are shown in Table 3. The .72 and ” monthly
means and standard deviations match those found in
observations over the central United States. The mean
value of the upper-level boundary conditions were taken
to be the climatology from ERA-Interim, but the stan-
dard deviations in both Ty, and g,p used in the model
are reduced compared to those from observations (see
Figs. 6¢ and 6d): we interpret much of the variability in T
and g at 850 hPa as a response to land surface processes
rather than to external forcing.



15 OCTOBER 2019

VARGAS ZEPPETELLO ET AL.

6947

TABLE 3. The left half of the table shows parameters used to generate the suite of model forcings and boundary conditions. The right half
of the table shows monthly averaged means () and standard deviations o() for each quantity in the forcing ensemble.

Parameter Value Units Field 0,00 Units
Feads I'T> Tqn @ 0.1, 0.6, 0.6, 2 — 7 242,132 Wm2
Brad» BT By 250, 4,2 Wm 2 K, gkg ! P 125,33 cm
7 4x1073 mm min ! Trop 292, 0.7 K
Cmaxs O 610, 950 Wm 2 drop 12.0, 0.3 gkg !
op 10.0 mm min ! ¢t 0.11, 0.03 —

To investigate soil moisture’s impact on summertime
temperature variability, we created four ensembles of 50
simulations; the simulations in each ensemble were
given the same 50 sets of forcings and boundary condi-
tions. Ensembles differ in that they have progressively
more saturated soil moisture initial conditions. These
different initial conditions were applied to the surface
and root layers. Each ensemble has 50 members, for a
total of 200 three-month summer simulations. Model
parameters are identical to those used to evaluate the
SLAM’s performance in the evaluation exercise (see
Table 2 and section 2b).

4. Evaporation and soil moisture
a. The source of regime behavior

A logical starting point in our search to understand
the relationship between evaporation and soil moisture
is vapor pressure deficit V:

V=4/(T)-q. )
Like relative humidity, V is a measure of atmospheric
water vapor demand and is a function of temperature
and specific humidity.

Figure 7a shows daily composites of specific humidity
observations at 60 and 1000m from the SGP site during
the summer of 2014, along with the daily composite of
qs; output from the SLAM simulation driven by SGP
forcings and boundary conditions (see section 2b). The
phase relationship between observed ¢(60m) and
(1000 m) indicates that turbulent mixing of water vapor
through the boundary layer and dry air entrainment during
the daytime are larger influences on near-surface specific
humidity than evapotranspiration. Similar phasing of
above and within boundary layer surface specific humid-
ity has been found in other observational studies (van
Heerwaarden et al. 2010). In contrast, the diurnal cycle
in SLAM near-surface specific humidity suggests that
evapotranspiration influences g; more than turbulence.
While the mean value of SLAM’s g5 and SGP’s g(60 m)
are similar, the inconsistent phasing of the two signals

suggests that a more sophisticated representation of tur-
bulence and/or a variable depth boundary layer in the
SLAM could make near-surface specific humidity output
more realistic. In addition, the observation-based bound-
ary condition grop = (1000 m) has a diurnal cycle in phase
with the SLAM output; the prescribed boundary condition
may be unduly influencing the simulation of gs. This issue
could be remedied by prescribing a constant value of grop
rather than the observed value.

Importantly, the inconsistency between the SLAM’s
representation of near-surface specific humidity and the
observed composite does not preclude accurate modeling
of evaporation because V is largely controlled by tem-
perature and not by the near-surface specific humidity.
Figure 7b shows daily composites of V derived from SGP
observations of 60-m temperature and specific humidity
and the SLAM’s V derived from T3 and ¢;. The SLAM
simulates a strong diurnal cycle that is very similar to that
observed: the diurnal cycle in V is largely determined by
the diurnal cycle in temperature. That temperature is the
main driver of V is not surprising because the Clausius—
Clapeyron relationship that governs saturation specific
humidity is a function of temperature [see Eq. (9)] and
there is a large range in the diurnal cycle of g,(7) relative
to g. We expect some inconsistency between the SLAM
and observed V due to the SLAM’s g5 errors, specifically
the underprediction of V during the day when the SLAM
overpredicts gs;. However, despite the inconsistencies in
specific humidity between the SLAM and the observa-
tions, the two V signals agree very well; it is encouraging
that the primary quantity driving evapotranspiration is
well simulated by the SLAM.

The SLAM’s equation for evaporation [see Eq. (2)],
where E « XV, links soil moisture, vapor pressure defi-
cit, and temperature, but we have not demonstrated the
influence of each quantity on the others. Figure 7c shows
daily composites of V taken from all synthetic model
runs colored by the daily averaged surface soil moisture
X; a uniform moisture increment (of dX = 0.1) separates
each pair of lines. Brown composites indicate days
when the surface is nearly dry, while dark green lines
indicate a nearly saturated surface. Increasing soil
moisture damps the diurnal cycle of V because more
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FIG. 7. Atmospheric moisture composites from SGP observations and SLAM. (a) Daily composites for specific
humidity from 60-m tower observations, 1000-m radiosonde observations, and the g; SLAM output for the SGP-forced
run. (b) The V composites derived from 60-m tower observations of temperature and specific humidity at SGP and from
SLAM g¢; and T output. (c) The V composites from the synthetic ensemble experiments color coded by daily averaged
soil moisture; brown lines correspond to dry soils and green lines correspond to wet soils. (d) The V composites cal-
culated through Eq. (15) for the same values of soil moisture used to compute the composites in (c).

evaporative cooling on days with more available soil
moisture drives down temperature, and therefore V.

As soil moisture increases, the tight grouping of the
green lines compared to the brown lines in Fig. 7c suggests
that V becomes less sensitive to increasing soil mois-
ture. What is the source of the vapor pressure deficit’s
decreased sensitivity to soil moisture on the wettest days?
To address this question, we define evaporative cooling
Tr (°C) as the cumulative cooling of the surface due to
evaporation over the course of one day. We assume that
an increment dE in evaporation rate produces a pro-
portional change in evaporative cooling dTg. Therefore, a
Taylor series expansion of Eq. (2) yields

dT,=C(VdX +XdV), (10)
where C [K kg air (kg H,O) '] is a constant given by
L1 -
c=E=Me. (11)
CSrS

where L [J (kgH,0) '] is the enthalpy of vaporization,
¢, (J K~ 'm™?) is an effective soil heat capacity, and 7 (s)

is the time scale over which we integrate the evaporative
cooling. The terms on the right-hand side of Eq. (10)
represent two separate contributions to evaporative
cooling: the first is a land surface control driven by a
perturbation in soil moisture dX while the second is an
atmospheric control driven by a perturbation in vapor
pressure deficit dV. Our results (Fig. 7a) and those of
others (e.g., van Heerwaarden et al. 2010; Byrne and
O’Gorman 2016) have indicated that boundary layer
specific humidity is relatively insensitive to evaporative
cooling, so we will assume that all V perturbations are
driven by the influence of evaporative cooling and ra-
diative forcing on near-surface temperature and that
specific humidity perturbations are negligible. We can
then write a perturbation of vapor pressure deficit as

dVv =vy(dT,—dT,), (12)
where y = dq,/dT [kg H,O (kg air) "' K~ '] evaluated at
some mean temperature 7, and dT is a radiatively in-
duced temperature anomaly that is independent of
evaporative cooling.



15 OCTOBER 2019

In the simplest case, we assume that d7r = 0 and
dV = —vydTg. Substituting this assumption into Eq. (10),
we obtain

cv
or
__ CyV
dVv = T3 CdeX' (14)

We can integrate Eq. (14) from X = 0 to X to obtain the
following closed form solution for V(X):

(15)

where V(X = 0) is the vapor pressure deficit assuming
that no evaporation occurs and some combination of net
radiation and sensible heat flux balance the surface en-
ergy budget. Daily composites of V(X) computed by
Eq. (15) using V(X = 0) from the composite shown in
Fig. 7c are shown in Fig. 7d and agree remarkably well
with the daily V' composites output from the SLAM
experiments (cf. Fig. 7c with Fig. 7d).

The solid black line in Fig. 8 shows the evaporative
cooling anomaly dTx generated over the course of one
day by a soil moisture perturbation dX = 0.1 as a func-
tion of X using Eq. (13) and assuming summertime mean
values of y and V from the SGP site during the summer
of 2014. The damping structure is clearly visible: the
same moisture perturbation generates a nearly 6°C
anomaly over a completely dry soil, compared to a
roughly 1°C anomaly over a completely saturated land
surface. In the real world, vy, V, and X change in time: the
black dots in Fig. 8 show daily values of dTg predicted
from daily values of vy, V, and X from the SGP obser-
vations. Incorporating daily vy, V, and X variability into
Eq. (13) adds very little additional information to this
calculation, suggesting that the dominant physical re-
lationship associated with this nonlinear damping
structure is the feedback between evaporative cooling
and vapor pressure deficit.

This feedback that couples evaporative cooling to
soil moisture is overwhelmingly due to the Clausius—
Clapeyron relationship. The Clausius—Clapeyron relation-
ship gives vapor pressure deficit a strong temperature
dependence that connects evaporative cooling, soil
moisture, and atmospheric temperature through the
v factor. The right-hand side of Eq. (13) illustrates
a tug-of-war between soil moisture anomalies that
increase the land surface’s capacity for evaporative
cooling, and decrease the atmosphere’s demand for
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FIG. 8. An illustration of the relationship between evaporative
cooling perturbations d7 given a +0.1 perturbation in soil satu-
ration dX and mean soil saturation X. The solid black line shows
this relationship using average summertime values of y and V from
the SGP during the summer of 2014 in Eq. (13). The black dots
show the same relationship using daily averaged values of vy, X, and
V from the SGP during the summer of 2014. The shaded region
shows the influence of forced temperature perturbations between
+1°C from Eq. (16).

water vapor. When the soil is dry, low mean evapora-
tive cooling implies large a vapor pressure deficit and
the only limitation on an evaporative cooling anomaly
is the soil moisture perturbation. In the limit (X) — 0,
this translates to ‘‘free’ evaporation where CVdX =
dTg. As soil moisture increases, evaporative cooling
anomalies decrease as (1 + CyX)~'. Although v itself
has a temperature dependence, it is large enough at
average summertime temperatures that this inverse
relationship between d7Tz and X asymptotes as X — 1.
Hence, at high mean soil moisture, evaporative cooling
anomalies are insensitive to soil moisture perturba-
tions. This insensitivity is indicative of a strong nega-
tive feedback between evaporative cooling and vapor
pressure deficit that is most active at high soil moisture.

Hence, instead of the two soil moisture regimes as-
sumed by Budyko, Fig. 8 and Eq. (13) indicate that there
is a continuous transition between two limits: (i) a high
evaporative cooling sensitivity to soil moisture brought
on by high vapor pressure deficit when the soil is dry, and
(ii) a low evaporative cooling sensitivity to soil moisture
brought on by low vapor pressure deficit when the soil
is wet.

b. Impact of insolation on evaporative cooling

In the real world, evaporation is not the only source of
temperature anomalies. If we combine Egs. (10) and
(12) and include a nonzero radiatively forced tempera-
ture anomaly that impacts dV, we obtain



6950 JOURNAL OF CLIMATE VOLUME 32
§ 60
= ] ] 3.60 — X =15%
2 0401 b X =30%
S 1 0351 — X =50%
8 50 — X =70%
o T 0301 — X =85%
o 404
2 £ 0251
© —
5 30 | 0.20]
% ¥
g O 0.151
o 20 o
o 0.101
=
= 10 0.051
g o 0.001
3 0 20 40 60 80 100 0 10 20 30 40 50 60

Daily Average Surface Saturation (%)

Cumulative Evaporative Cooling (°C)

FI1G. 9. (a) Scatterplot of evaporative cooling T s for all days in the ensemble as a function of daily averaged
surface soil saturation. Red lines are the theoretical evaporative cooling functions computed according to Eq. (18)
with three different values of surface resistance. Black lines are the theoretical evaporative cooling functions
computed to Eq. (19). (b) PDFs of five sets of evaporative cooling values composited on the five different values of
daily averaged surface soil saturation X indicated in the key. The numbers in (b) are the standard deviations in daily

Tr s for each distribution o(Tgx).
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Fe

(16)

The first term on the right-hand side of Eq. (16) is
identical to the right-hand side of Eq. (13) and describes
the impact of a soil moisture perturbation on evapora-
tive cooling. The second term incorporates radiatively
forced perturbations to vapor pressure deficit. The
shaded region of Fig. 8 shows how a range of temper-
ature perturbations —1°C = d7y = 1°C modulates
evaporative cooling anomalies across the soil moisture
spectrum. When X is low, forced temperature pertur-
bations cannot impact evaporative cooling and soil
moisture acts as the main constraint on d7z. At high
values of X, the shaded region becomes more sub-
stantial, indicating that available soil moisture gives land
surfaces the capacity to translate radiatively forced
temperature perturbations into evaporative cooling
anomalies. We have already demonstrated that d7 is
insensitive to dX for highly saturated soils, thus, we
expect temperature perturbations forced by net in-
solation to be the primary control on evaporative cool-
ing anomalies when X is large.

So far, we have argued that a negative feedback exists
between soil moisture, evaporative cooling, and vapor
pressure deficit. Because of this feedback’s damping
structure (Fig. 8), soil moisture anomalies are the pri-
mary control on evaporative cooling at low X, while at
high X evaporative cooling is most sensitive to radia-
tively forced temperature perturbations. To quantify
these two patterns of behavior using the SLAM, we
define the cumulative daily evaporative cooling (Tx5)
(in °C) as follows:

TE,Z

- EJ E(t) dt. 17
Day

s

The term Ty gauges the amount of evaporative cooling
in the SLAM over one day. If we assume that soil
moisture stays constant over the course of one day, we
can write Eq. (17) as

X
T,.= C—J V(X,1)dt. (18)
’ T Day

Each of the composites in Fig. 7c shows a diurnal cycle of
vapor pressure deficit associated with a particular soil
moisture value V(X, f). We can integrate each of these
composites according to Eq. (18): each integration
gives a point in X, Tgx space, and by performing the
integration with each V composite we can generate a
curve of Ty as a function of X. This exercise can also
yield an analytic solution for T s by using Eq. (15):

CX
T, (X)= mJDayV(O, Hdt.

The red dashed lines in Fig. 9a show three (X, Tkx)
curves computed according to Eq. (18) using the com-
posites in Fig. 7c for three different values of r; [and
therefore C; see Eq. (11)], while the black dashed curves
show three of the same curves computed according to
Eq. (19) with the same three values for 7. The distinctive
nonlinearity in both sets of curves arises from applica-
tion of the governing equations without definition of a
critical soil moisture value separating two patterns of
behavior, and is relatively insensitive to the value of r;.

(19)



15 OCTOBER 2019

VARGAS ZEPPETELLO ET AL.

6951

— 120 120 120 120
L4 ) ° ] o o0
H . o S o o [P EY I o
100 . 2.0 100 . ' Se 100 100 e4 o °™ '~
~ . .“:5 :“. ':::.“‘ e o 2‘-" L4 { c.."J" ° .’. Q,':o? ‘\;30
° %0 . o U‘ ' Pl ) 0-0..- oo o o o ¢ &
o et S A . . ¢ o K YN
o 80 . Fes . 80, ote o ¥E | 80+ 80 >
L AL < .
m L] ~‘ ° %
E 604 ° al ] b| ] c | *] d
L]
20 40 60 80 40 60 80 60 80 60 70 80 90
Surface Saturation (%)
— 120 120 120 120
(o] Y o0
£ . Lol . . . :{;"',’!‘, .
100 - P X 100 e 2 ¥0ee © [ 100 100 4 S T A
[ L] od 09 £0 o .’ ) L)
\ Qe D oo L1 ) f D . ° %0
o 0ot aPgd PN o * oot gmmnt R oSS P e %
o gl @0 00 e o0 ° o o 8% % e ° D D
o ‘0 LY LAY, ] o e« o0 P 2 ®
b 80 R A I 80 1 T T A 80 801 °
® "o Soo . e .
m o o o . . . ° 3
E 60 ‘@l 607 f | 601 g | ©] h
220 240 260 220 240 260 220 240 260 220 240 260

Net Insolation (W/m?)

FIG. 10. Scatterplots of monthly averaged latent heat flux (LHF) as a function of (a)—(d) monthly averaged surface saturation X and
(e)—(h) monthly averaged net insolation .72. The colors indicate the moisture at the initialization of the experiment within the ensemble;
experiments shown in dark brown were initialized with almost no soil moisture in the column, and experiments shown in dark green were

initialized with an almost completely saturated soil column.

This is consistent with the discussion of evaporative
cooling anomalies above: Fig. 8 shows that cooling
anomalies are damped at high values of mean soil
moisture, indicating that there is some upper limit on
evaporative cooling that can only be modulated by ra-
diative forcing on days when mean soil moisture is high.
To explain the reduction in evaporative cooling that
occurs at the largest value of soil moisture shown by the
red dashed curves in Fig. 9a, we need to examine the
connection between radiatively forced temperature
perturbations and evaporative cooling.

We use daily evaporation time series output from
each day in the SLAM ensembles and Eq. (17) to com-
pute the Tgx values shown as blue scatter points in
Fig. 9a. To illustrate model behavior, each point in
Fig. 9a is color coded by daily average insolation; dark
blue points correspond to high insolation, while light
blue points indicate cloudy days with low insolation. A
clear pattern appears across the soil moisture spectrum:
higher insolation allows for greater evaporative cooling,
while lower insolation restricts the energy available for
evaporation. Figure 9a also shows that at the extremely
wet end of the soil moisture spectrum, days with reduced
evaporative cooling are associated with low insolation
(due to rainfall) that drives down V.

Figure 9b shows probability distribution functions of
T s taken from days in the ensemble with five different
values of X indicated in the legend. At low values of

mean soil moisture, evaporative cooling is tightly con-
strained by available soil moisture and radiatively forced
temperature perturbations cannot generate much spread
around the mean value, leading to a small o(Tgy).
In contrast, high soil moisture amplifies the radiatively
forced temperature perturbations and generates a large
o(Tgx). This is consistent with our discussion of forced
temperature perturbations that preferentially amplify
cooling anomalies on days with high soil moisture.

We have argued that one physical law (the Clausius—
Clapeyron relationship) governs the nonlinear rela-
tionship between evaporation and soil moisture, first
noted by Budyko. We have shown in Eq. (13) that even a
linearized version of the Clausius—Clapeyron relation-
ship’s strong temperature dependence gives rise to
constraints on evaporation that change across the soil
moisture spectrum. On the dry end of the spectrum, soil
moisture perturbations strongly amplify evaporative
cooling, while on the wet end, evaporative cooling be-
comes insensitive to soil moisture perturbations and is
driven primarily by radiative forcing. To investigate the
impacts of these different constraints on seasonal time
scales, we turn to monthly averaged model output from
the SLAM. Figure 10 shows scatterplots of monthly
averaged latent heat flux [LHF = L(E + n; + n»)] as a
function of monthly averaged surface saturation X from
each of the four synthetic ensemble experiments. Ex-
periment 1, where the land surface was initialized with
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TABLE 4. Correlations between turbulent surface energy fluxes
(LHF and SSHF) and surface soil saturation X or net insolation .72.
Exp. 1 was initialized with almost no moisture in the soil column,
while Exp. 4 was initialized with an almost completely saturated
column.

Exp. 1 Exp. 2 Exp. 3 Exp. 4
r(X, LHF) 0.64 0.03 —0.41 —0.57
r{.%2, LHF) —0.16 0.32 0.55 0.60
r{X, SSHF) -091 —0.88 —0.88 —0.87
r{.72, SSHF) 0.88 0.89 0.87 0.84

almost no soil moisture, is shown in dark brown (Fig.
10a), while experiment 4, where the SLAM was initial-
ized with an almost completely saturated soil column, is
shown in dark green (Fig. 10d). Figures 10e~h show the
same monthly averaged values of LHF as a function of
net insolation .72, also partitioned by experiment. Cor-
relations r for each scatterplot, along with those for
surface sensible heat flux (SSHF), are shown in Table 4.
In contrast to LHF, correlations of soil moisture and net
insolation with SSHF are nearly constant across the soil
moisture experiments. The consistency in SSHF be-
havior across the soil moisture spectrum is a feature of
global climate models and the ERA-Interim reanalysis
(Tétreault-Pinard 2013).

In Figs. 10a—d, the correlation between LHF and X
switches from positive to negative as soil moisture is
increased. From our discussion above, we anticipate
positive correlation at low soil moisture values because
the amplification of evaporative cooling anomalies is
highly sensitive to moisture perturbations when X is low.
As we move to progressively more saturated initializa-
tion experiments, we expect the soil moisture control on
LHF to diminish [Eq. (13)]. Figures 10c and 10d show an
even more marked shift in behavior across the soil
moisture spectrum; namely, the negative correlation
between LHF and X as the land surface becomes in-
creasingly saturated. To explain this behavior, we next
examine the relationship between soil moisture, pre-
cipitation, and radiative forcing.

We have shown that at high X, variability in radiative
forcing becomes the dominant source of evaporative
cooling variability. In our forcing ensemble, the corre-
lation between monthly insolation and precipitation
is —0.58, implying that soil moisture and insolation are
also anticorrelated on monthly time scales. At large X,
the soil moisture control on evaporation diminishes and
we expect X and LHF to become negatively correlated
because positive soil moisture perturbations are associ-
ated with months with negative insolation anomalies:
since the soil moisture perturbations cannot influence
evaporation, insolation perturbations become the only
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drivers of the correlation. The increasing radiative
control on latent heat flux is evident in the increased
correlation between .72 and X across the soil moisture
initialization experiments. In the driest experiment
(Fig. 10e), the correlation between .72 and LHF is weak
and negative. This weak correlation represents a tug-of-
war between radiative forcing and soil moisture per-
turbations that are generated by precipitation. The
negative correlation between monthly insolation and
precipitation generates a negative correlation between
.7 and X that weakens the correlation between .72
and LHF.

This shift in correlation on monthly time scales comes
about because there is a nonlinear relationship between
evaporative cooling and soil moisture on daily time
scales (Fig. 9a): it is not a product of two distinct soil
moisture regimes, but rather it is a consequence of the
feedback between evaporative cooling and vapor pres-
sure deficit that preferentially damps evaporation when
the soil is wet. We stress again that we have not pre-
scribed any nonlinear behavior in the model that would
force this shift in correlation across the spectrum.

c. Evaporative cooling and summertime temperature
variability

We now investigate summertime temperature vari-
ability generated by SLAM in the synthetic forcing ex-
periments. Figure 11 shows the distributions of daily
averaged near-surface temperature 75 and surface soil
moisture X for each of the four experiments. The x axes
of both plots show the column soil saturation prescribed
at the beginning of each summer simulation; the colors
of the box plots are the same as those from Fig. 10. The
most obvious changes across the four experiments are
the mean cooling and surface saturation increase as the
initial column moisture grows. However, impacts on
variability are also evident in Fig. 11 and summarized in
Table 5.

There is a monotonic but nonlinear decrease in the
standard deviation in temperature o(75) with increasing
initial soil moisture. From a 16% reduction in o(73)
between experiments 1 and 2 to a 7% reduction between
experiments 3 and 4, increasing the initial soil moisture
has diminishing returns on decreases in o(73) in the
SLAM. We might expect o(7T3) to be proportional to
o(X) because of the connection between evaporative
cooling and soil moisture, but the muting of o/(X) with
larger initial soil moisture is much more pronounced
than the muting of o(73). Changes in soil moisture
variability alone cannot explain the way that tempera-
ture variability changes across these experiments.

Note that in Fig. 11a, the minimum daily averaged 75
remains nearly constant between the four experiments:
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FIG. 11. Box-and-whisker plots for (a) daily average near surface
temperature 75 and (b) daily average surface saturation X across
the four column soil moisture initialization experiments. The limits
of all boxes are the maximum and minimum values of the distri-
bution, the boxes represent the interquartile range, and the lines
through the boxes represent the mean.

increasing initial soil moisture does not impact mini-
mum daily averaged temperatures across the experi-
ments. We can explain this behavior in terms of the
radiative control on evaporation on extremely wet days
seen in Figs. 8-10: days with extremely low values of net
insolation will drive down vapor pressure deficit, in-
hibiting any evaporative cooling regardless of available
soil moisture. No amount of excess soil moisture can
influence the radiative forcing that drives the minimum
temperatures in our experiments.

In contrast, the warmest daily averaged T3 values re-
alized in each experiment decrease significantly as the
model is initialized with more soil moisture. The drop in
warmest daily averaged temperatures is largest between
experiments 1 and 2; we have demonstrated in Fig. 8 that
evaporative cooling anomalies are most sensitive to soil
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TABLE 5. Standard deviations for near-surface temperature 73
and surface soil saturation X from each of the four experiments
shown in Fig. 11.

Exp. 1 Exp. 2 Exp. 3 Exp. 4
o(T5) 2.26 1.90 1.68 1.56
o(X) 0.15 0.14 0.12 0.07

moisture when X is low. At high X where we expect
evaporative cooling anomalies to be less sensitive to soil
moisture perturbations, we see that the warmest tem-
peratures become less sensitive to increasing the soil
moisture initialization. The decreased sensitivity of
evaporative cooling anomalies to soil moisture anoma-
lies manifests in a reduced sensitivity of temperature
variability to soil moisture initialization across the four
experiments.

5. Summary and conclusions

We have developed the Simple Land-Atmosphere
Model (SLAM) and evaluated the model’s performance
by comparing its output to observations of summertime
surface climate variability at the Atmospheric Radiation
Measurement site in the SGP. The SLAM was designed to
include the processes most relevant to summertime tem-
perature variability while limiting the number of parame-
ters. Although we do not expect that the model’s simplicity
compromises the essential results and conclusions that we
draw, we suggest the following pathways to future work
that could improve the model’s capacity to simulate sum-
mertime temperature variability:

o Currently the SLAM has a fixed constant boundary
layer depth that does not account for changes in ef-
fective heat capacity of the atmosphere’s lowest layer.
While this could influence our model’s representation
of boundary layer specific humidity, we consider it
unlikely that this simplification impacts our con-
clusions because evaporation is overwhelmingly
controlled by surface temperature rather than at-
mospheric moisture.

o The SLAM’s treatment of vegetation dynamics is very
simple. A more advanced vegetation scheme could
improve the representation of transpiration and allow
modeling of densely vegetated regions, particularly
forests. While we restrict our analysis to evaporation
in this study, the scatterplots in Fig. 10 include the
effects of transpiration and suggest that our conclu-
sions about the relationship between soil moisture and
evaporation apply to transpiration as well.

e The runoff and drainage fluxes are currently applica-
ble only to flat or rolling terrain. A more sophisticated
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runoff scheme would be necessary to accurately model
soil moisture in regions where runoff dynamics are
critical to soil hydrology.

e The column framework adopted by the SLAM does
not include the impact of atmospheric dynamics on
turbulent heat fluxes. In particular, we do not account
for low-level wind variability that could modulate
these fluxes.

Despite its simplicity, the SLAM displays skill in
reproducing key features of the summertime climate at
the SGP site. To understand the relationship between
evaporation and soil moisture, we generated a synthetic
forcing ensemble and used it to drive the SLAM. We
created four experiments of model runs with varying soil
moisture initial conditions that share the same forcings
and boundary conditions.

Without prescribing a nonlinear parameterization
that distinguishes between two apparent soil moisture
regimes, the SLAM output features a nonlinear re-
lationship between soil moisture and evaporation that
very nearly corresponds to the one proposed by Budyko
in his 1961 paper. We have shown that the nonlinearity
arises from a feedback between evaporative cooling
and atmospheric vapor pressure deficit, the strength
of which is governed by the temperature dependence of
the Clausius—Clapeyron relationship. A set of simple
analytic equations demonstrates that this feedback
preferentially damps the influence of soil moisture per-
turbations on evaporative cooling when mean soil
moisture is high. For wet soils, the feedback makes ra-
diative forcing the primary driver of evaporative cool-
ing, while for dry soils evaporative cooling anomalies are
highly sensitive to soil moisture perturbations.

The relationship between soil moisture and evapora-
tive cooling is of paramount importance to the distribution
of summertime temperatures. In our experiments, sum-
mertime temperature variability becomes progressively
less sensitive to increasing initial soil moisture, a finding
that is consistent with previous studies (e.g., Koster et al.
2006). The explanation relies only on the negative feed-
back between temperature and evaporation, and not on
the existence of a critical value of soil moisture that dis-
tinguishes the two apparent regimes. The Clausius—
Clapeyron relationship that connects temperature and
soil moisture through evaporative cooling is thus a suffi-
cient reason to expect the emergence of apparent soil
moisture regimes over land surfaces. While other sources
of nonlinearity between evaporation and soil moisture
surely exist, the impacts of soil moisture perturbations on
temperature variability across climatologically distinct wet
and dry regimes that have been identified in observations
require only this simple physical explanation.
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Our results suggest that large-scale land surface dry-
ing would not only increase mean temperatures due to
less evaporative cooling; it would also increase tem-
perature variability on all time scales by extending the
warm tail of the temperature distribution. Large-scale
surface drying is projected in the CMIP5 ensemble
(Berg et al. 2017), while relative humidity is projected to
decrease over land surfaces (Byrne and O’Gorman
2016). Using simple models to understand the source of
these changes, and how they may impact summertime
temperature variability, is a vital strategy for both vali-
dating climate model projections and gaining insight
into land—atmosphere interaction.
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APPENDIX

Model Derivation and Equations
a. Enthalpy equations

We begin with a thermodynamic formulation of our
simplified land—-atmosphere system, then describe the
SLAM’s fluxes of energy and moisture in terms of the
model’s state variables. To obtain model equations that
allow us to integrate our state variables forward in time,
we need enthalpy equations for the atmospheric and soil
layers. In the atmospheric layers, moist static energy A,
is the sum of enthalpy contributions from dry air and
water vapor:

h,=c,T+Lq+gz. (A1)
In Eq. (A1), ¢, Jkg ' K™ ') is the heat capacity of moist
air (assumed constant), L (Jkg~!) is the enthalpy of
vaporization, and g (m s~ ?) is the gravitational potential.
We assume that variations in height are negligible within
each layer, giving us a specific enthalpy tendency equation
for the atmospheric layers:
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dh dT dq
“=c__ + ]2,
dt €a dt L dt

(A2)

No single equation for soil enthalpy has been firmly
established, largely due to the complex thermodynamics
of porous media and the multiphase nature of any soil
system [see Nitao and Bear (1996) for a more rigorous
thermodynamic treatment.] To derive a soil enthalpy
equation using only the thermodynamic variables we
have defined in the SLAM, we consider a system that
involves dry soil, liquid water, water vapor, and dry air.
The total enthalpy of this system H is given by

H=Muh,+Mh +Mh +Mh,, (A3)
where M, terms are masses and 4, terms represent the
specific enthalpy of each substance given by h, = ¢, , T +
gz. The subscripts d, I, v, and o denote dry soil, liquid
water, water vapor, and dry air respectively. We can
differentiate Eq. (A3) under the assumptions that the
mass of dry soil is constant, that changes in the mass of
dry air have a negligible contribution to the enthalpy
tendency, and that the height z of the system is constant:

H dT
= (Mdcd + M, + Mvcp‘v + Mocp,o)a
dM aM
+h—-1 v,
by dt v odt (A4)

The water vapor tendency in Eq. (A4) is driven entirely
by evaporation of liquid water. However, not all changes
in liquid water mass are due to evaporation of soil water;
some are externally forced. We denote this by modifying
Eq. (A4):

dn
dt

dr

+M c

=(Mdcd+M,cl+Mvc oCpo) gy

+h—

d
¢ _hv)Tl ! de

(AS)

The E and F subscripts denote changes in liquid water
mass associated with evaporation and external forcing
respectively. Implicit in Eq. (A5) is the assumption that
dM,/dt = —dM,/dt| ;. By factoring the mass of dry soil
M, out of Eq. (AS), we obtain an expression in terms of
liquid water mass fraction w [kg H,O (kg dry soil) ']:

aH_
dt

dT aw
+ JR—
M| (cqtwe) gr = Lgr),

dw
dt

clT

}

where we have substituted L in for the specific enthalpy
difference between water vapor and liquid water. In
going from Eq. (A5) to (A6), we have also ignored M,
and M, because both of these terms are small compared
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to M,. The temperature 7 of liquid water coming in and
out of the system is assumed to be the same as that of the
system itself, an assumption we will return to below.
Dividing by the total mass of the system (M, + M), we
obtain

(A7)

dh = M,
dt M +M,

aTr dw
(cd-i—wc)dt Ldt

dw
+c¢,T—-
dt |

where £ is the total soil enthalpy per unit mass. We
can expand Eq. (A7) under the assumption that
M[/Md =w<1:

dh dT dw
T [c,(1 —w)+wc] 7 (1-w)L ar i

+¢,T(1— i ow*) + --- (A8)

Using the definition of volumetric soil moisture
[Eq. (1)], we can write Eq. (A8) in terms of m instead of
w after eliminating terms of O(w?) and higher:

dh_ dT

ar Sar

+ Tcl&—
p, dt |p

p, dm

p, dt|g (49)

From Eq. (AS8), the heat capacity of the soil system is
seen to be linearly dependent on volumetric soil mois-
ture: ¢g(m) = ¢4 + (¢; — cq)(p/pg)m. Similarly, we write
ps(m) = pg + p;m to define a bulk land surface density
that increases linearly with soil moisture.

The three terms on the right-hand side of Eq. (A9)
demonstrate the triple role of liquid water in changes to
soil enthalpy. The first term illustrates how liquid water
increases the heat capacity of the soil. The second term
illustrates the effect of evaporation; in a closed soil
system that does not interact with its environment,
dh/dt = 0 and Eq. (A9) mandates that evaporation of
liquid water within the soil layer must be accompanied
by a corresponding reduction in soil temperature. The
third term accounts for externally forced changes to soil
moisture (i.e., precipitation) that change the system’s
enthalpy. The next step in model development is to
couple the two enthalpy equations [Egs. (A2) and (A9)]
to moisture tendency equations.

b. Moisture budget and enthalpy closure

Since there are two unknowns (7 and m or T and q) in
each of the enthalpy tendency equations [Egs. (A2) and
(A9)], we need two equations in each model layer to
fully describe our system. Water must be conserved, so
we can write water budgets for each layer in terms of
model fluxes. We can use the moisture fluxes shown in
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FIG. Al. Schematic of overall energy balance in the SLAM. As with Fig. 3b, the purple
arrows denote fluxes that are controlled by external forcings or boundary conditions, blue
arrows are moisture fluxes, and the orange arrow denotes net longwave radiation emitted

from the surface and atmospheric layers.

Fig. 3b to write a moisture budget for each layer from
bottom to top with all terms defined in section 2b (given
in kgH,0Om ?s™'):

L dm
1 dtl_le nl_Qla (Alo)
d
ASR=P—E=m,-0,, (Al1)
dq
A37t3 =E+m,+n — Q3’4, (A12)
dq
ca =% (A13)

In Egs. (A10)-(A13), the A; constants govern the
change in m or g for a specific mass flux of liquid water or
water vapor. For the soil layers A; = d;p; (kg HOm ?)
where d; is the layer thickness, while for the atmospheric
layers A; = d,p, (kg airm?).

By combining the moisture budgets and enthalpy
tendency equations, we can close our system and derive
the temperature tendency equations for each layer. As
noted above, changes in enthalpy in the model layers
must be due to some combination of external forcings
(in Wm™?); the sum of these forcings on each model
layer is shown below (all terms described in section 2b):

dh

BEL=H ,~H +Tc(Q,,~n,-0)  (Al4)
dh, P .
Bzﬁ_ﬁ*'Fz_Hzﬁ_Hl,z'kTzcl(/)_nz_Ql.z)’

(A15)
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Hy + LQt al>P
I Atmosphere
L(n +n2)
aT1Qy 1
amT +mny) Surface
dh,
B3_t =K+H,;—H,+ L(E+m, +m,— Q3,4)’
(A16)
dh,
B4W:F4+H3,4_HT+L(Q3,4_QT)' (A17)

In Egs. (A14)—(A17), the B; (kgm~?) terms govern the
change in /4 for a specific enthalpy flux. For each layer,
B; = dpp; (kgm %) where d; and p; represent layer
thickness and density.

By summing Egs. (A14) through (A17), we define the
model energy balance equation, which is illustrated in
Fig. Al:

4

> 520

1

=%+ F, —H —H, +L(n, +m,—

to [(% =)

o))

T, — (n, +Ql)TL.
(A18)

In Eq. (A18), Fy is the sum of all net longwave terms.
Enthalpy is introduced into the model through the
model forcings .2 and 7, while boundary fluxes H;, O+,
H, and Q, act primarily as enthalpy sinks. We have
neglected terms that involve the difference between the
two soil layer temperatures, as this difference is small
relative to mean 75 or T».

Transpiration moistens the atmosphere, removes lig-
uid water from the soil, and acts as a net enthalpy source
in the model because L(n; + n,) > ci(n Ty + n,T>). This
enthalpy input to the model, along with the energy re-
quired to transport liquid water from the surface to
the vegetation tops, is supplied by plants. Plants also
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facilitate the phase change from liquid to vapor without
cooling the soil or atmosphere.

Using conservation equations for moisture [Egs.
(A10)-(A13)] and enthalpy [Egs. (A14)-(A17)], we can
write down the temperature tendency equations for
each layer with all terms (in Wm ™ ?):

dr,

Cgt=H,,—H,,. (A19)
dr,

Cygt=A+F,~LE-H,,—H,,, (A20)
dT,

Cr 2 =F+Hy —H,, (A21)
dr,

C,—~*=F,+H,,—H,. (A22)

4 r 4 3.4 1

In Egs. (A19)-(A22), C; Jm 2K ') acts as the heat
capacity of the layer and is given by C; = ¢, ;p;d; where
¢p,; is the specific heat of the layer. The moisture [Eqgs.
(A10)-(A13)] and temperature [Eqs. (A19)-(A22)]
tendency equations form the backbone of the SLAM.
Next, we write each of the fluxes in these tendency
equations in terms of the SLAM’s state variables, T, ¢,
and m.

c. Soil moisture flux

Moisture movement through porous media is a com-
plex physical process that involves parameters like hy-
draulic conductivity and soil moisture diffusivity that
vary nonlinearly with m (DeVries 1958; Libardi et al.
1982; Rawls et al. 1982). These dynamic parameters
certainly regulate land surface moisture but we have
chosen to neglect them in our model in favor of a simpler
formulation of soil moisture movement. We assume that
the two layers are in equilibrium unless the soil moisture
passes the field capacity mg,, at which point the mois-
ture is transferred to the layer below by infiltration O »
or drainage Q:

_pd

Ql, ! 2( 2 - msat)]/(m sat)’ (A23)
p(D,—d) ,

0, = Id—tz (m,—m_ )7 (m —m_). (A24)

Here, dt is the time step used by the model and .77 is the
Heaviside function. The infiltration and drainage fluxes
operate only when this saturation value is exceeded.
Since the SLAM is a one-dimensional model, we assume
that all excess moisture flows downward out of the root
layer and into the cold abyss (see Fig. 3b).
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d. Soil heat flux

Temperature gradients in the soil column can be large
near the surface; transfer of heat down these tempera-
ture gradients is usually modeled as a diffusive process.
The SLAM follows this framework for the conductive
soil heat fluxes:

H di(T T), (A25)

1,2

A
_ dz(Tl - TD)'

r

(A26)

The A value represents soil thermal conductivity
(Wm 'K™'). We use layer thicknesses as the relevant
depths for calculating temperature gradients in the soil.

e. Surface sensible heat flux and evapotranspiration

Energy fluxes from the land surface to the atmosphere
are often modeled after current flowing through a cir-
cuit. In this analogy, the “voltage drop” is determined
by the vertical temperature gradient or atmospheric
vapor pressure deficit, while the “‘resistance” is a prop-
erty of the land surface and the overlying atmosphere.
This approach has been deployed to model land surface
energy fluxes since the 1980s (Sellers et al. 1986), con-
tinues in the present decade (Best et al. 2011), and has
proven useful in understanding processes and sources of
error in global climate models (Hirsch et al. 2016).

We have discussed the SLAM’s evaporation formula
in section 2b. Sensible heat flux H, 3 and transpiration
from the surface 1, and root layers 7, are all determined
as a function of vertical temperature gradient or vapor
pressure deficit and a resistance parameter:

H,, = p;—?(TZ -T,). (A27)
1 —_

gy =PIy (g (1) g ana (a28)

my =P x g, (1)~ q,1. (A29)

st

In complex models, 7, (sm™ ) is governed by stability,
friction velocity, and roughness length (Garratt 1992).
Similarly, complex models parameterize the stomatal
resistance ry (sm~ ') according to the plant species,
ambient CO, concentrations, and photosynthetic rate
(Collatz et al. 1991). For simplicity, and to avoid the
introduction of too many parameters, we hold values of
these two quantities constant in the SLAM. The pa-
rameters f, and f, influence the partitioning of moisture
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fluxes in the SLAM between evaporation and transpi-
ration and between the two soil layers. The f, parameter
is the fractional vegetation cover of the land surface,
while f, is the fraction of plant roots that penetrate the
10-cm layer. We will draw values of f, from Jackson et al.
(1996). For a discussion of the moisture-flux coupling
term X, see section 2b.

There is an important distinction between evaporation
and transpiration based on the level where each process is
taking place. The vapor pressure deficit at the surface
(driven by T5) drives evaporation while the same deficit
in the lower boundary layer (driven by 75) drives tran-
spiration from both root layers because we assume that
vegetation responds to atmospheric temperature while
evaporation is driven by the land surface temperature.

f- Turbulent heat and moisture fluxes within the
atmosphere

Turbulent fluxes between the atmospheric layers are
also formulated in the resistance framework. In the
SLAM, boundary layer turbulence transports energy
down temperature and humidity gradients. Turbulent
fluxes are inhibited by a resistance that depends on the
stability of the layer in question:

H,, = %(Q -T). (A30)
H, = 2—"’:(@ — T (A31)
Q=1 =0 =4, (A32)
0, =7 (4, ~ dr,y)- (A33)

a,q

In Egs. (A30)—(A33), we introduce two new resistance
parameters, one for atmospheric heat transfer r,r
(sm™") and another for atmospheric vapor transfer Tagq
(sm™ ). In general, water vapor is well mixed in the
boundary layer while temperature has a distinct vertical
structure; resistances governing vapor transfer in our
model are smaller than those governing heat transfer.
Since turbulence is largely dependent on atmospheric
stability, we vary atmospheric turbulent resistance ac-
cording to the sum of buoyancy fluxes:

H2,3 + L(E + n+ 7]2)

o-max

(A34)

ra,T/q = ra,T/q

In Eq. (A34), 7,7 and 7,, are the maximum nighttime
values of turbulent resistance for heat and water vapor,
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while op,,x is a constant equal to the daily maximum
cloud-free insolation (in Wm™2). This formulation en-
sures that nighttime turbulence is weak, while daytime
surface fluxes contribute to vigorous boundary layer
mixing. These resistances are calculated at each time
step.

g Longwave radiation

Net absorbed longwave radiation in each model layer
is a function of the vertical temperature and specific
humidity profile. The emissivity of the atmospheric
layers ¢; is logarithmic with specific humidity g;:

e, =0.5+0.1log (g, X 10%). (A35)
The parameters in Eq. (A35) were chosen so that the
sensitivity of downward longwave radiation to temper-
ature and humidity in the SLAM broadly matches the
sensitivity found in radiative kernels (see Previdi 2010).
Equations for the net longwave absorption in each layer
are given below:

F,=0[~T; + T3 + (1 - )¢, T}

+(1—e)(1- 64)eTOPTéW], (A36)

F, = 630'[’1;1 - 2T;1 + E4T2 +(1- 64)ET0p Téop], and
(A37)
F,=¢,o[(1- 63)T§ +e TS —2T; + €Top Téop]. (A38)

An important component of Egs. (A36)—(A38) is the
longwave emissivity of the free tropospheric layer e,
which is governed both by specific humidity and cloud
fraction cy.

€Top = 0.5+0.1 logm(qTOP X 10%) + 0.4cf. (A39)
The value of 0.4 was chosen to yield values of er,p, near
unity for typical values of boundary layer specific hu-
midity when the sky is completely cloudy. The emissivity
€top 18 capped at one, which is the value of a perfect
blackbody associated with a completely cloudy sky.

h. A note on numerical methods

So far, we have discussed computation of fluxes in the
SLAM from state variables (7, g, and m). To integrate
these equations forward, we use an explicit numerical
method where the fluxes are computed from the state
variables at time step i, then used to find the state vari-
ables at time step i + 1. A schematic set of equations for
this explicit method is shown below where a flux F is
computed using state variables 7, g, and m from the ith
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time step and then used to integrate the state variables
forward:

F.= f(Ti,ql.,ml.), (A40)
dT,.dq,.dm, = F,d, (A41)
T dpysmyy =T, +dT,q, + dg,m, +dm,.  (A42)

An important value in these equations is the time step d,
which must be small for this explicit method to suc-
cessfully model the short time scale variability that the
SLAM is designed to study. This method represents a
departure from land surface schemes used in global
climate models, which often use an implicit numerical
method that can result in loss of energy conservation on
subdaily time scales (Shultz et al. 2000). However, as
long as a small enough time step is used, the explicit
method is accurate.
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