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ABSTRACT: State-of-the-art coupled global climate models (GCMs) fail to simulate key features
of observed seasonal precipitation trends since 1980, including drying of the southwestern US,
the southeastern US, East Africa, and subtropical South America, as well as wetting of the
Maritime Continent and the Amazon. They also fail to simulate the sea-level pressure (SLP) trends
since 1980 associated with a poleward shift of the North Pacific storm track in the mid-latitudes
and a strengthened Pacific Walker Circulation. We show that state-of-the-art atmosphere-only
climate model ensembles driven by observed sea-surface temperatures (SSTs) simulate historical
precipitation and SLP trends that are more similar to those observed in the regions noted above,
suggesting that the observed pattern of SST changes has shaped regional precipitation and SLP
trends. Analysis of the coupled and atmosphere-only model ensembles reveals that multidecadal
SST patterns similar to those of the interannual El-Nifio Southern Oscillation are responsible for
some of the regional trends simulated. The tropical Pacific zonal SST gradient is found to have
substantially contributed to observed drying over the southwestern and southeastern US, signifying

a key role for tropical Pacific warming patterns in future precipitation trends in these regions.
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1. Introduction

Global warming due to increasing concentrations of greenhouse gases is expected to produce
substantial changes in the hydrological cycle around the world, affecting the regional distribution
of precipitation (Douville et al. 2021) with major implications for snow cover (Adam et al. 2009),
terrestrial and marine ecosystems (Weltzin et al. 2003; Doney et al. 2012), water availability (Kon-
apala et al. 2020), and soil moisture (Seneviratne et al. 2010). Substantial seasonal precipitation
trends have been observed and studied over recent decades including in the southwestern United
States (US; e.g. Lehner et al. 2018; Seager and Hoerling 2014; Cayan et al. 2010; Williams et al.
2022), the southeastern US (Easterling et al. 2017; Qian et al. 2024), the Amazon Rainforest (Gloor
etal. 2015; Almeida et al. 2016; Moreira et al. 2024), East Africa (Rowell et al. 2015; Gebrechorkos
et al. 2019), and other regions.

Figure 1 (left column) illustrates the seasonal precipitation trends over the period 1979-2014
from the Global Precipitation Climatology Project (GPCP) dataset (see Section 2a for details). In
the Northern Hemisphere, there have been drying trends over the southwestern and southeastern
US in December-January-February (DJF) and March-April-May (MAM), a drying trend in East
Africa in MAM, a wetting trend over the Maritime Continent during MAM, and wetting trends
over the Sahel region in June-July-August (JJA) and September-October-November (SON). Over
the Amazon, there has been a strong wetting trend in MAM and a drying trend in SON. There has
also been a drying trend in subtropical South America during MAM.

Figure 1 (left column) also illustrates seasonal trends in sea-level pressure (SLP; black contours)
calculated from a state-of-the-art atmospheric reanalysis (ECMWF ERAS; Hersbach et al. 2020)
over the same period (see Section 2a). In mid-latitudes, trends in SLP reveal changes in the average
position of the storm tracks that bring precipitation to land regions (Trenberth et al. 1998). In
the tropics, trends in SLP reveal changes in the areas of deep convection and weak subsidence,
corresponding to regions of strong and weak precipitation, respectively. There has been a strong
increase in SLP in the north Pacific during DJF and MAM, an increase in SLP in the south-central
Pacific in SON, and a decrease in SLP in the Pacific sector of the Southern Ocean in MAM, JJA,
and SON. There are also strong SLP trends in the northern and southern Atlantic Ocean during DJF
and SON. Altogether, the observed patterns of precipitation and SLP changes over recent decades

show large regional trends with distinct seasonality.
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Fic. 1. Seasonal trends in precipitation and sea-level pressure (SLP) over 1979-2014 from (left, a-d)
GPCPv2.3/ERAS Reanalysis, (middle, e-h) multi-model mean AMIP simulations, and (right, i-1) multi-model
mean CMIP simulations. Simulations from the same model are averaged before averaging over all model ensem-
bles (see Egs. la, 1b). Trends in precipitation over ocean and land use a different colorbar. SLP contour lines

are (0.5, 1, 1.5, 3, and 5) hPa / 36 years (dashed contours are negative, zero contour is omitted).

What has driven these observed precipitation and SLP trends? Climate models can serve as
a guide. Figure 1 (right column) shows 1979-2014 precipitation trends averaged over selected
global climate models (restricted to those providing many ensemble members; see Section 2b and
Table 1) participating in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIPS5,
Taylor et al. 2012; CMIP6, Eyring et al. 2016). These precipitation trends represent the forced
response of the fully-coupled (CMIP) models to historical changes in greenhouse gases and other
forcing agents over the same period as the observations. The CMIP model forced response largely
fails to reproduce observed trends in precipitation in many regions and seasons, even simulating an

incorrect sign of trends in some regions, such as in the southeastern US during DJF and MAM, East
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Africa during MAM, and subtropical South America during MAM. Likewise, the CMIP forced
response fails to reproduce the observed trends in SLP in the same regions and seasons.

The inability of the CMIP multimodel mean to reproduce many of the observed precipitation
and SLP trend patterns does not necessarily indicate that the models’ forced response is wrong,
given that observations reflect only a single realization of internal climate variability. Observations
of sea-surface temperature (SST) trend patterns have been shown to differ substantially from the
forced SST trends simulated by CMIP models (Wills et al. 2022). In particular, observations
have shown a large-scale cooling trend in the central-eastern Pacific Ocean and a warming trend
in the western tropical Pacific Ocean in all seasons — a strengthening of the east-west (zonal)
equatorial SST gradient that broadly resembles a trend toward La Nina-like conditions (Fig. 2).
In turn, atmospheric teleconnections emanating from the tropical Pacific have contributed to a
poleward shift of the storm tracks and thus to changes in SLP and precipitation patterns. Indeed,
the observed SLP and precipitation trends over North America have been linked to the observed
pattern of tropical SST trends (Seager and Hoerling 2014; Lehner et al. 2018; Siler et al. 2019; Qiu
et al. 2024), implying that the inability of the CMIP model forced response to capture observed
SLP and precipitation trends in those regions may be traced to their inability to capture the unique
observed tropical SST trend patterns (e.g., Wills et al. 2022). The question arises: can CMIP model
biases in SLP and precipitation trends in other regions also be traced to their biases in tropical SST
trend patterns?

Here, we study the global influence of historical SST trend patterns on regional precipitation
trends since 1979. To do so, we compare precipitation and SLP trends simulated using fully-
coupled CMIP models with both observations and trends simulated as part of the Atmospheric
Model Intercomparison Project (AMIP; Taylor et al. 2012; Eyring et al. 2016), wherein atmospheric
model simulations are performed using the same historical radiative forcing as in the fully-coupled
CMIP models, but with observed SSTs and sea-ice concentrations prescribed. Hoerling et al.
(2010) conducted a similar study using CMIP3 models, however the AMIP models they analyzed
did not include time-varying radiative forcing.

Figure 2 shows the multimodel mean SST trends for AMIP (left column) and CMIP (middle
column) for the same set of models over 1979-2014. The AMIP simulations (with SSTs prescribed

from observations) show broad cooling in the central-eastern Pacific and warming in the western
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Pacific in all seasons. The AMIP simulations also show cooling in the Southern Ocean and warming
throughout the rest of the oceans. In contrast, the CMIP models show more uniform warming across
all ocean basins. The right column of Fig. 2 shows the difference between CMIP-simulated and
AMIP (observed) SST trends, highlighting large discrepancies throughout the Pacific and Southern
Oceans.

The middle column of Fig. 1 (e-h) shows the precipitation and SLP trends in the AMIP sim-
ulations. The AMIP simulations show broad improvement in simulating observed regional pre-
cipitation and SLP trends compared to the CMIP forced response. In the Northern Hemisphere,
the AMIP simulations capture the observed drying trends in the southwestern and southeastern
US during DJF and MAM, the drying trend in East Africa during MAM, the wetting trend over
the Maritime Continent during DJF, MAM, and SON, and the wetting trend over the Sahel during
SON. In the Southern Hemisphere, the AMIP models capture the observed wetting trend over the
Amazon in MAM and the drying trend over the Amazon during SON. The AMIP SLP trends also
better resemble those from the ERAS reanalysis, with large positive trends in the North Pacific
during DJF and MAM as well as negative trends in the Southern Ocean during DJF, JJA, and SON.

Given that the AMIP and CMIP models are driven by identical radiative forcing, and differ only
in their SST patterns, these findings (Figs. 1 and 2) suggest that the unique pattern of observed
SST trends has indeed contributed to the observed trends in regional precipitation and SLP in
several seasons and regions around the world. However, key questions remain: 1) How well do
AMIP simulations capture observed precipitation trends? 2) Are the mechanisms linking SST
trend patterns to precipitation and SLP trends over recent decades the same as those linking SST
patterns to precipitation and SLP changes on interannual timescales (e.g., mediated by the well-
understood atmospheric dynamics associated with the El Nifio Southern Oscillation, ENSO)? 3)
What role does the tropical Pacific zonal SST gradient in particular play in shaping precipitation
trends, compared to SST trends in other ocean basins? Answering these questions is the aim
of this study, with implications for understanding historical precipitation trends and predicting
precipitation changes as the SST pattern evolves in the future.

The outline of this paper is as follows: Section 2 describes the datasets and methods used.
Section 3 describes the analysis and results in five parts: the criteria for regional analysis (Section

3a); observed and modeled SST/sea-level-pressure/precipitation teleconnections on interannual
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FiG. 2. Seasonal trends in sea-surface temperature (SST) over 1979-2014 from (left, a-d) observations used to
force the AMIP simulations, (middle, e-h) multi-model mean CMIP simulations, and (right, i-1) the difference
between AMIP and CMIP simulations. Simulations from the same CMIP model are averaged before averaging

over all model ensembles (see Eqgs. 1a, 1b).

timescales (Section 3b); an evaluation of whether teleconnections associated with interannual
variability also mediate long-term precipitation and circulation trends (Section 3c); the role of the
tropical Pacific zonal SST gradient in regional precipitation trends (Section 3d); and why some
regions’ precipitation may not be influenced by the unique pattern of observed SST trends (Section
3e). Finally, we discuss implications for future precipitation trends, with a focus on regions where

the tropical Pacific has had a dominant influence on precipitation trends in recent decades.

2. Data & Methods

a. Observations and reanalysis data

For observed precipitation, we use the Global Precipitation Climatology Project version 2.3

(GPCP, Adler et al. 2018). GPCP provides near-global coverage of precipitation by blending
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observations from rain gauges and satellites since 1979. These data are monthly means with a
resolution of 2.5° latitude X 2.5° longitude, and are the main observed precipitation dataset used
for Sections 3a-d. In Section 3d, we compare the results with two other precipitation products:
the National Oceanic and Atmospheric Administration Climate Prediction Center Merged Analysis
of Precipitation (NOAA CMAP, Xie and Arkin 1997) and the Global Precipitation Climatology
Centre Full Data Reanalysis (GPCC, Schneider et al. 2022). The NOAA CMAP product, much
like the GPCP product, combines near-global satellite coverage with rain gauge measurements of
monthly mean precipitation, starting in 1979 and continuing to the present with a resolution of
2.5° latitude x 2.5° longitude. The GPCC product is composed of weather station measurements
of monthly mean precipitation from 1891 through 2019 at a resolution of 2.5° latitude x 2.5°
longitude.

For SLP, we use the ECMWF Reanalysis version 5 (ERAS; Hersbach et al. 2020). These data
are also monthly means from January 1979 to the present, with a resolution of 0.25° latitude x
0.25° longitude. For observed SSTs, we use the National Oceanic and Atmospheric Administration
Extended Reconstruction Sea-Surface Temperature version 5 (ERSSTvS, Huang and Coauthors
2017), a 2.0 ° latitude x 2.0° longitude monthly gridded dataset extending from January 1854 to
the present. We conduct our analyses over the period 1979-2014 to coincide with the start of the

satellite era (1979) and the end of the most recent publicly available AMIP simulations (2014).

b. Climate model data

Isolating the forced response of a climate model requires a large ensemble of simulations that can
be averaged to reduce the influence of internal variability. Each ensemble member is initialized from
a perturbed set of initial conditions and evolves under the same radiative forcing. For each CMIP
model, we analyze the corresponding AMIP model, which is composed of the same atmosphere and
land module as its CMIP counterpart. Each AMIP model ensemble is forced with the same radiative
forcing as its CMIP counterpart, but has observed SSTs and sea-ice concentrations prescribed as
surface boundary conditions. Individual AMIP ensemble members are also initialized from a
perturbed set of initial conditions, producing an estimate of internal atmospheric variability that
occurs given the same prescribed SSTs, sea-ice conditions, and radiative forcing. Averaging

over the ensemble members of CMIP model large ensembles provides an estimate of the climate
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CMIP Model (members) AMIP Model (members, End Date) References
CESM1.1 (40) CAMS5-GOGA (10, 2015) Kay et al. (2015)
CanESM2 (50) CanAM4 (5, 2009) Kirchmeier-Young et al. (2017), von Salzen et al. (2013)
GFDL-CM3 (20) GFDL-CM3 AMIP (5, 2008) Sun et al. (2018)
MPI-ESM-LR (100) ECHAMBS (3, 2008) Mabher et al. (2019)
EC-Earth (16) EC-Earth AMIP (1, 2008) Hazeleger et al. (2010)
CESM2(CMIP6 Forcing) (50) CAM6-GOGA (10, 2021) Rodgers et al. (2021)
MIROC6 (50) MIROC6 AMIP (10, 2014) Tatebe et al. (2019)
MPI-ESM1.2-LR (50) MPI-ESM1.2-LR AMIP (3, 2014) Olonscheck et al. (2023)

TaBLE 1. CMIP large ensembles (and corresponding AMIP ensemble) used for analysis as well as the number

of members (N) used within each ensemble.

response to historical forcing. Meanwhile, averaging over the ensemble members of the AMIP
model ensembles provides an estimate of the climate response to historical forcing subject to the
observed timeseries of SSTs and sea-ice concentrations. Table 1 outlines the CMIP and AMIP
models used (8 in total), as well as the number of members constituting each ensemble.

We analyze monthly mean precipitation, SLP, and SST fields from the CMIP and AMIP historical
forcing simulations. For models where SST data could not be found, we analyze surface temperature
(model variable 75) data masked by land and we omit high-latitude areas under sea-ice cover. All
data was downloaded from the Earth System Grid Federation (Cinquini et al. 2014) and the National
Center for Atmospheric Research Climate Data Gateway (NCAR CDG). The precipitation data
includes both liquid and solid phase and both convective and large-scale precipitation.

Some AMIP simulations from the CMIPS generation of models end before December 2014.
In this case, any linear trends calculated are still scaled by 36 years, and regional analysis is
performed in areas where our results do not change with respect to a varying end date. For the
CMIPS5 (coupled) simulations of historical forcing and the CAMS5-GOGA simulations (both ending
in 2006), we append data from the Representative Concentration Pathways (RCP) 8.5 scenario to
2014.

c. Methods

To motivate regions for the analysis of precipitation, we calculate the linear trends in 3-month-
average precipitation and SLP for observations/reanalysis, AMIP ensembles, and CMIP ensembles,
sliding the 3-month average every month. For the CMIP and AMIP models, we calculate the

ensemble average trends as:
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where N is the number of ensemble members for model j, and S is the trend in precipitation/SLP
for ensemble member k. We then regrid ensemble averages bilinearly to a common resolution

(2.5° latitude x 2.5° longitude) before averaging over all models:

1 4
<S>:M;Sf’ (1b)

where M = 8 is the total number of models, and K j 1s the average trend over model j. We calculate
all subsequent ensemble and model averages using Eqs (1a, 1b). Figure 1 shows the results for
meteorological seasons DJF, MAM, JJA, and SON.

We compute the difference in the modeled 3-month average trends in precipitation from the
GPCP trends, and also compute the difference between the AMIP and CMIP ensembles. We
normalize these differences by a measure of the spread in precipitation trends associated with
intrinsic atmospheric variability, o4 7p, estimated as follows. First, we calculate the standard

deviation of precipitation trend across the ensemble members of each AMIP model:

NA
1 < —
= — o —G.)2
7= N,.;(Sﬂ« Si)s )

where N; is the number of ensemble members in a given model, j is the model, S_J is the
mean precipitation trend for model j, and S, is the trend of an individual ensemble member in

precipitation. We then average the 0']2 over all the models to obtain o 4p;p:

3)

oamip represents the the standard deviation in precipitation trends due to internal atmospheric
variability when SSTs and sea ice are prescribed (i.e., that arising from chaotic atmospheric
motions). o 4p7p provides a measure of how closely we could ever expect climate model simulations

to capture observed precipitation trends, given that those trends reflect a single realization of

10
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intrinsic atmospheric variability. When differences between modeled and observed trends are
much larger than o 4;p, those differences cannot be attributed to internal atmospheric variability
and thus reflect a robust difference. However, when differences between modeled and observed
trends are smaller than o4 ;p, then those differences might have arisen from intrinsic atmospheric

variability in the observations, and we thus regard them as in agreement.

3. Analysis

a. Identifying regions and seasons of interest based on observed and simulated precipitation trends

Figure 1 showed precipitation trends from observations (GPCP), AMIP models, and CMIP
models. Figure 3 shows the difference between GPCP, AMIP, and CMIP trends, normalized by
oamip for each season to illustrate where the differences are large compared to trends that can
occur due to intrinsic atmospheric variablity alone, which we use as a measure of significance.
The right column of Fig. 3 shows differences in precipitation trends between AMIP and CMIP
models. Because AMIP and CMIP models are driven by identical historical radiative forcing, any
large differences in their precipitation trends can be attributed to differences between the observed

and CMIP-simulated patterns of SST trends.

1) IDENTIFYING REGIONS OF INTEREST

We highlight eight land regions of interest with either red or dashed magenta boxes (Fig. 3). Red
boxes indicate regions where 1) CMIP models show geographically coherent differences from the
observed precipitation trends, 2) AMIP models show a substantially smaller bias than the CMIP
models compared to the observed trends, and 3) AMIP models correctly simulate the sign of the
observed trend. The red boxes thus illustrate regions where the observed precipitation trend is in
large part explained by the unique pattern of SST trends observed over recent decades, rather than
by the forced response to historical forcing.

For example, in the southwestern US the CMIP model mean shows large and widespread pre-
cipitation trend biases during MAM, with the CMIP models simulating a weak drying trend that is
over 2.0047p from the observed strong drying trend (Figs. 3b and 1b). However, AMIP models
simulate a strong drying trend that is in good agreement with the observed trend in this region (Fig.

3f). The difference between AMIP and CMIP responses (Fig. 3j) provides a measure of how the

11
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Fic. 3. Seasonal differences in precipitation trends over 1979-2014 normalized by the average standard
deviation of precipitation trends in the AMIP ensembles (o ap7p). Comparing (left) GPCP to CMIP model
forced response, (middle) GPCP to AMIP model forced response, and (right) the difference between AMIP
and CMIP model forced responses. Darker colors illustrate where differences are large compared to internal
atmospheric variability, while white illustrates where differences are small compared to internal atmospheric
variability. Red boxes highlight regions where AMIP models show substantially smaller biases in the simulated
trend and simulate the correct sign of the observed change, indicating that the observed precipitation trend
is in part due to observed SST trends that differ from the forced CMIP SST trend. Magenta dashed boxes
indicate regions in seasons where the CMIP and AMIP models both capture the observed precipitation trend,
indicating that the difference between observed and CMIP-simulated SST trends does not significantly influence

precipitation trends there.

unique observed SST pattern has influenced precipitation trends: it has contributed substantially
to the strong drying trend over the southwest US in MAM.
A similar story can be seen in other regions as well. In the southeastern US in MAM, the

CMIP models simulate a wetting trend that is over 2.504)7p from the observed strong drying

12



252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

trend (Figs. 3b and 1b), while AMIP models simulate a drying that is in much better agreement
with observations (Figs. 3b, f). In East Africa during MAM, the CMIP models simulate a weak
wetting trend that is over 2.50477p from the observed strong drying trend (Figs. 3b and 1b), and
AMIP models simulate a drying trend that is in better agreement with observations, except over
high-elevation regions (Fig. 3f). Over the Maritime Continent, the CMIP models simulate a weak
precipitation trend that is 2.00 4 s7p from the observed wetting trend in MAM, while AMIP models
simulate a wetting trend that is in good agreement with observations (Fig. 3f). In South America
over the Amazon Rainforest during MAM, the CMIP models simulate a weak drying trend that is
over 2.50 4y 1p from the observed wetting trend (Figs. 3b and 1b,j), while AMIP models simulate a
wetting trend that is in better agreement with observations (Fig. 3f). In subtropical South America
during MAM the CMIP models simulate a weak wetting trend that is around 2.004,;p from
the observed drying trend (Figs. 3b and 1b), while AMIP models simulate a drying trend that is
improved compared to observations, but still biased by 1.504p7p (Fig. 1f). While the difference
between the AMIP and CMIP simulated trend in subtropical South America is small, adjusting the
seasons (see Section 3a(2)) magnifies the difference and justifies our analysis of this region. In
each of these regions, the difference between AMIP and CMIP responses suggests that the unique
observed SST trend pattern has played a key role in the observed MAM precipitation trends (Fig.
3.

In contrast, dashed magenta boxes on Fig. 3 highlight regions where both the CMIP and AMIP
models simulate precipitation trends that are similar in magnitude and sign to the observed trend.
In these regions, processes other than the difference between the observed and CMIP-simulated
SST patterns dominate the precipitation trend, such as the response to the common radiative forcing
prescribed in both CMIP and AMIP models. We analyze two equatorial regions within the same
season (SON) where this occurs: the Sahel and the Amazon. In the Sahel, both AMIP and CMIP
models simulate wetting trends similar to those observed. Normalized differences (Fig. 31) indicate
that the AMIP and CMIP models agree on the magnitude of simulated wetting. In the Amazon,
AMIP and CMIP models simulate the observed drying trend, with the CMIP models simulating
a stronger trend than the AMIP models. In these two regions, the similarity between AMIP and
CMIP responses suggests that the unique observed SST trend pattern has not played a role in the

observed SON precipitation trends (Fig. 31).
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Additional regions also show large normalized differences between the CMIP and AMIP simu-
lations (right column of Fig. 3). However, we choose not to analyze these regions because (i) the
magnitude of the trend differences between observations, CMIP models, and AMIP models are
small, such is the case for the southern portion of Africa during JJA, or (ii) the observed trends are
not robust with respect to a varying end date, such is the case with the Maritime Continent during
SON and DIJF. In the analysis that follows, we focus on the eight (red and magenta boxed) regions

in Fig. 3.

2) IDENTIFYING SEASONS OF INTEREST

Location Months | Trend (mm/day/36 yrs) | SSTs Matter? (Fig.3) | tropical Pacific SSTw - g Matters? (Fig. 7)
Southwestern United States | JFMA -0.52 v v
Southeastern United States JEMA -0.78 v v
East Africa MAM -0.90 v X
Maritime Continent MAM 1.41 v X
Subtropical South America AMIJ -0.31 v X
Amazon FMAM 1.28 v X
Amazon ASON -0.89 See Section 3e X
Sahel ASON 0.40 See Section 3e X

TaBLE 2. Locations and seasons analyzed for this study, along with the observed area-averaged trend in
precipitation for 1979-2014 (from GPCPv2.3). Checkmarks indicate whether the global pattern of SST trends

or the tropical Pacific zonal SST gradient trend influence the precipitation trend in that region.

For each of the regions highlighted in Section 3a(1), we broaden the seasons of interest by calcu-
lating sliding 3-month average (DJF, JFM, FMA, ... etc.) normalized differences in precipitation
trends. Starting from the meteorological seasons highlighted above in Section 3a, we include
neighboring months that strengthen the observed precipitation trends while excluding months that
weaken trends. For example, in the southwestern US during MAM, we remove May since it di-
minishes the drying signal, while adding January and February since they contribute to a stronger
drying over the 36-year period. Table 2 lists the broadened seasonal average analyzed for each

region in the rest of the analysis and also summarizes whether the global trend pattern in SST
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and the trend in the tropical Pacific zonal SST gradient contributed to the long-term trends in

precipitation (Section 3d).

b. The SST-precipitation relationship on interannual timescales

Figure 1 and the red boxes in 3 show where AMIP models, given the observed SST trend pattern,
simulate improved precipitation trends in key regions and seasons compared to CMIP models.
Previous literature (Seager and Hoerling 2014, Lehner et al. 2018, Siler et al. 2019, Qiu et al. 2024)
suggests that tropical SSTs are important in driving some of the regional trends. Here we explore
which SST patterns are connected to precipitation and SLP changes for each of our regions and
seasons of interest on the interannual timescale in both observations and models. This analysis will
allow us to evaluate how well models simulate observed atmospheric teleconnections, and provide
context for why model simulations may or may not capture observed trends in precipitation and
atmospheric circulation in Section 3c.

To study the links between SSTs, SLP, and regional precipitation on interannual timescales, we
linearly detrend the time series of each field over 1979-2014 for observations, AMIP, and CMIP
models. For each AMIP model, we concatenate detrended ensemble members together into one
time series. The same is done for each CMIP model. We then spatially average precipitation
over each region of interest (see Table 2) and normalize the precipitation by its standard deviation
over the time series. We then regress the SST/SLP at each point against the regionally averaged
normalized precipitation. We apply a two-tailed Student’s ¢-test to determine whether the regression
coeflicient at each gridpoint is significantly different from zero, at a level p<0.1. The regression
from each model is then bilinearly regridded to a common grid (2.5° latitude X 2.5° longitude)
and averaged across the 8 models. Gridpoints where fewer than 5 models have regressions that
are statistically significant are stippled. Figure 4 shows the above regression of SST and SLP
anomalies in normalized regional precipitation. Regression values are scaled by -1, such that
SST/SLP regression values are associated with negative precipitation anomalies in the boxed
region.

For observations (left column of Fig. 4), the importance of the tropical Pacific for many regions’
precipitation reflects well understood ENSO teleconnections (Ropelewski and Halpert 1987; Tren-

berth et al. 1998; Davey et al. 2014): seasonal precipitation in the southwestern US (A1), south-
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Fic. 4. Seasonal anomalies in SST and SLP regressed on normalized precipitation anomalies (averaged
over the red box in each figure). Significant relationships (p <0.1) between SST anomalies and normalized
precipitation are unstippled, while significant relationships between SLP anomalies and normalized precipitation
are shown in black contours (otherwise grey). Regression values are scaled by -1 to facilitate comparison with
the La-Nifia-like SST pattern from Figure 2. SLP contours are (0.25, 0.5, 1, 2, 3, and 4) hPa / op (dashed

contours are negative, zero contour is omitted).

eastern US (B1), the Maritime Continent (D1), subtropical South America (E1), and the Amazon
(F1, G1) is modulated by interannual variability in tropical Pacific SST associated with ENSO. In
the tropics, El-Nifio conditions cause rainfall deficits in MAM in the Maritime Continent (D1) and
in FMAM in the Amazon (F1). In midlatitudes, poleward propagating Rossby waves generated by
anomalous tropospheric latent heating from deep convection in the tropics affect the extratropical
large-scale atmospheric flow. Over the southwestern and southeastern US, La Nifa causes a pole-
ward shift in the storm tracks, indicated by the strengthening SLP over the north Pacific, reflecting
fewer storms reaching these regions (Fig. 4A1). Over subtropical South America, La Nifia heating
anomalies cause a wave train that shifts the Southern Hemisphere storm tracks poleward, reflecting
reduced precipitation reaching this region as well (Fig. 4E1; Garreaud and Battisti 1999); previous
literature has also commented on the large role of interannual tropical Pacific variability on pre-
cipitation in this region (Seager et al. 2010). Comparing these observed relationships to those in
the AMIP and CMIP models, we find similar SST patterns across these regions, indicating that the
models simulate the observed ENSO teleconnections well.

Previous literature indicates that La-Nifa-like conditions can cause weak positive precipitation
anomalies in the Sahel in ASON (Fig. 4H1), and that ENSO has no effect on East African
precipitation in MAM (e.g., Davey et al. 2014; Folland et al. 1991). In agreement with observations,
the AMIP and CMIP ensembles show a weak relationship between precipitation anomalies in the
Sahel and tropical Pacific SST (Fig. 4H1-3). In East Africa, AMIP and CMIP ensembles suggest,
unlike in observations (Fig. 4C1), that La Nifa conditions contribute to precipitation deficits (Fig.
4C2,3).

Figure 4 panels G1-3 show that interannual precipitation variability in the Amazon in ASON
is linked to tropical Pacific SST variability in observations, AMIP models, and CMIP models.

However, our results in Section 3a showed that global SSTs are not linked to long-term trends in
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precipitation in this region and season. This result, which we verify in Section 3c, suggests that
SST patterns are important for interannual precipitation variability in the Amazon in ASON, but
are not important for multidecadal trends in precipitation.

In summary, we have shown where SSTs matter for precipitation around the world on interannual
timescales. Consistent with previous studies, observations show that SST variability in the tropical
Pacific affects precipitation in 5 of 8 regions considered here, indicating the importance of ENSO
variability for precipitation in these regions. Our analysis also shows that AMIP and CMIP
models reproduce the strong relationships observed between tropical Pacific SST, SLP, and regional

precipitation anomalies in these regions.

c. The SST-precipitation relationship on multidecadal timescales

The previous section established the ability of models to simulate well-understood, observed
SST-precipitation teleconnections modulated by changes in atmospheric circulation on interannual
timescales. In this section, we analyze the multidecadal trends (1979-2014) in the CMIP models
to assess whether the observed trends could arise due to internal (unforced) SST variability, and
if so, whether the processes responsible are related to trends in tropical Pacific SSTs. Previous
literature has shown that SST trends can affect long-term precipitation trends, particularly in
the southwestern US. For example, Lehner et al. (2018) and Siler et al. (2019) used dynamical
adjustment to understand how tropical Pacific SSTs have influenced recent trends in western
US precipitation and SLP, while Qiu et al. (2024) found that tropical SST trends contribute to
precipitation trends over the southwestern US and Amazon regions. Kuo et al. (2023, 2025) point
to the role of anthropogenic aerosols driving SST and circulation trends that influence southwestern
US precipitation. Elsewhere, Rowell et al. (2015) compared CMIP and AMIP model precipitation
trends and concluded that SST trends have contributed to historical drying in East Africa, but were
unable to pinpoint the exact SST pattern responsible.

Here, we leverage the eight CMIP model large ensembles to evaluate whether SST and SLP
trend patterns related to regional precipitation trends (1979-2014) are similar to those shown in
Section 3c. For each model ensemble member, we calculate the linear trend in SLP and SST at
each gridpoint and the linear trend in precipitation in each region of interest (Table 2). We then

regress the gridded SST and SLP trends against the regionally-averaged precipitation trend from
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each ensemble member. These results are bilinearly regridded to a common grid (2.5° latitude
x 2.5° longitude) before averaging over all model ensembles. A two-tailed 7-test is applied to
test significance at level p<0.1; gridpoints where fewer than 5 models have regressions that are
statistically significant are stippled. Results shown in Fig. 5 are scaled by -1 to reflect SST trends

that are correlated with drying in the boxed region.
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Fic. 5. Model ensemble average of multidecadal trends in seasonal SST and SLP regressed against multidecadal
trends in seasonal regional precipitation from each CMIP large ensemble. Trends in regional precipitation are
calculated from the average over the red box in each plot. Significant relationships (p <0.1) between SST trends
and regional precipitation trends are unstippled. Significant relationships between SLP trends and regional
precipitation trends are contoured in black (otherwise grey). SLP contours correspond to (0.25, 0.5, 1, 3, and
5) hPa/mm/day (dashed contours are negative, zero contour is ommitted). Regression values are scaled by -1 to

facilitate comparison with the La-Nifia-like SST pattern from Figure 2.

21



401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

In the southwestern and southeastern US there is an ENSO-like relationship between SST trends
in the tropical Pacific and precipitation trends in both regions (Figs. 5a,b) that is similar to the
interannual relationships shown in rows A and B of Fig. 4. The negative precipitation trend in the
southwestern US is also associated with a statistically significant positive SST trend in the central
North Pacific (see Conclusions and Implications section). An analysis of pre-industrial control
simulations from the same set of CMIP models (not shown) illustrates similar teleconnection
patterns with similar model agreement, signifying that there exists robust patterns of SST trends
in the tropical Pacific correlated to precipitation trends across both regions in forced and unforced
simulations.

The other six regions (Maritime Continent, East Africa, subtropical South America, the Sahel,
and the Amazon in both seasons) all show little to no connection between tropical Pacific SST
and precipitation trends for their corresponding seasons, and this result is robust when applying a
similar analysis to pre-industrial control simulations of the CMIP models (not shown). Note that
our statistical constraint for significant relationships between SST, SLP and regional precipitation
trends is high; relaxing this constraint from 5 or more models with regression coeflicients of p<0.1
to 5 or more models agreeing on the sign regression coefficient increases the geographical area of
SST and SLP trends that are associated to regional precipitation trends. However, the associated
multi-model mean relationships between SST, SLP, and regional precipitation trends to these areas
are still weak.

That CMIP models do not show a strong link between SST trends and precipitation trends over
the Maritime Continent, subtropical South America, and East Africa is surprising, given that
the ensemble-averaged trends in AMIP simulations (Fig. 3) more closely resemble observations
than those from CMIP simulations. Furthermore, panels D3 and E3 in Fig. 4 demonstrate that
CMIP models do simulate interannual SST—precipitation teleconnections for the Maritime Con-
tinent and subtropical South America. However, these interannual teleconnections are weaker in
CMIP models than in their AMIP counterparts, which could contribute to a too-weak relationship
between SSTs and precipitation on multidecadal timescales. It is also possible that the CMIP
models’ multidecadal SST variability never accesses the pattern of SST trends seen in observations
(Wills et al. 2022), compromising the atmospheric response to these SST trends responsible for the

multidecadal teleconnections to precipitation over the Maritime Continent and subtropical South
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America. Other work has shown that the tropical Atlantic is responsible for multidecadal precipi-
tation variability in subtropical South America (Seager et al. 2010), but our results do not indicate
show a robust connection. In East Africa, both CMIP and AMIP models produce weak interan-
nual SST—precipitation links that are not seen in observations (panels C1-3 of Fig. 4), suggesting
that current model ensembles do not capture the SST trend patterns that contributed to observed

historical drying in this region.

d. The equatorial Pacific influence on regional precipitation trends

We have found that tropical Pacific SST trends are linked to precipitation trends in the south-
western and southeastern US via ENSO-like teleconnections. In this section, we scale the results
in Fig. 5 to determine to what extent the CMIP models would represent the observed regional
precipitation trends if they had simulated the observed amplitude of the SST trend pattern in the
equatorial Pacific. To do this, we define the zonal SST gradient in the equatorial Pacific following

Wills et al. (2022):

SSTw_g = SSTw — SSTE, 4)

where SSTw is SST averaged over (5°S - 5°N, 110°E —180°) and SSTg is SST averaged over
(5°S - 5°N, 180° - 80°W). We calculate the trend in SSTw_g for each member of the CMIP
ensemble over all of the seasons in Table 2. We also calculate the observed SSTw_g trend in the
aforementioned seasons from ERSSTVS data. For each model, we regress the precipitation trend
at each gridpoint against the SSTw_g trend from each ensemble member, obtaining regression
coefficient and intercept maps. We bilinearly regrid both maps from each model to a common
grid resolution (2.5° latitude x 2.5° longitude) and then scale the regression coefficient map by
the observed SSTw_g trend before adding the intercept map. The result is a regression estimate
of the precipitation trend that each model would simulate if one of its ensemble members were to
accurately simulate the observed zonal SST gradient trend.

Figure 6 shows an example of this regression for area-averaged precipitation trends in the
southwestern US (JEMA) in the CESM2 Large Ensemble along with precipitation trends from
its corresponding AMIP ensemble. Note that the regression line fit to the CESM2 data falls

within the spread of the AMIP model’s simulated precipitation trends and close to the observed
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Fic. 6. Example of regressing precipitation trends against SST-gradient trends for the CESM?2 Large Ensemble.
Red points indicate trends from each individual ensemble member, blue points indicate trends from the corre-
sponding AMIP model (CAM6-GOGA simulation), and the green line is the regression fit to the large ensemble,
extrapolated to the observed zonal SST gradient trend. The black cross shows the observed precipitation and

SST-gradient trends from GPCP and ERSSTvS5 data.

precipitation trend when evaluated using the observed trend value of SSTw_g. Given that the AMIP
model ensemble corresponding to CESM2 is driven by the observed zonal SST gradient trend, our
regression result indicates that the equatorial Pacific zonal SST gradient trend is directly related to
the precipitation trend in the southwestern US in this model.

For each region, we plot the area-averaged precipitation trend estimate (labeled SST-Grad Re-
gression) using our regression along with the simulated CMIP and AMIP model trends in Figure 7.
The observed regional precipitation trends from the GPCP, GPCC, and NOAA CMAP products are
also plotted for comparison. Comparing the SST-Grad Regression box to the CMIP box for each
region shows whether or not the CMIP models would be able to simulate the observed precipitation
trends if they had simulated the observed zonal SST gradient in the equatorial Pacific.

Taking into account the zonal SST gradient trend helps reconcile the differences in simulated
precipitation trends simulated by CMIP and AMIP models over the southwestern and southeast-
ern US (Fig. 7a,b). In these regions, strong relationships between equatorial Pacific SST and
precipitation were identified on interannual and multidecadal timescales and the results in Fig. 7
suggest equatorial Pacific SST trends are responsible for much of the drying trends in JFMA in

these regions. Moreover, the estimated drying from our regression matches well with the observed
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Fic. 7. Box and Whisker Plots illustrating the area-averaged trends for each region/season in Table 2 from
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GPCC (yellow) and NOAA CMAP (purple). The black line in each box represents the median. Circles represent

flier points, which are data outside of the 1.5x inter-quartile range.

drying in the southwestern US, suggesting that the equatorial Pacific zonal SST gradient is key to
understanding precipitation changes in the region.

Over the Maritime Continent (Fig. 7d), the re-scaled SST gradient trend reconciles the difference
between CMIP and AMIP models’ precipitation trends, but does not fully explain the observed

precipitation trend. This result suggests that a process independent of the atmosphere’s response to
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the equatorial Pacific SST gradient contributes to the observed precipitation trend in this region. In
East Africa, subtropical South America, and the Amazon (FMAM) (Figs. 7c,e,f), the re-scaled SST-
gradient trend does not reconcile the differences between CMIP and AMIP models’ precipitation
trends, nor does it explain the observed precipitation trends in these regions. However, the AMIP
models still simulate trends close to observations (Fig. 3), which indicates that SST trends outside

of the equatorial Pacific may be responsible for the observed precipitation trends in these regions.

e. Regions of agreement between AMIP and CMIP

Two regions of interest (the Sahel and the Amazon in ASON) show little difference between
AMIP and CMIP simulated precipitation trends (boxed in dashed magenta in Fig. 3). Figures
7g-h show the inter-model spread in their precipitation trends simulated by CMIP and AMIP as
well as the calculation from our SST gradient regression method; all three show agreement on
the weak drying trend in the Amazon Rainforest and the wetting trend in the Sahel. The shared
forced response in these two regions in both the CMIP and AMIP models, despite different SST
trend patterns, suggests that a common response to radiative forcing prescribed to both models is
responsible for the precipitation trends. It is likely that shared tropical Atlantic SST meridional
SST gradients are driving the precipitation trends in both regions.

Biasutti (2019) reviews the many hypotheses for the rebound in Sahel precipitation since the late
1970s, with the leading cause being the reduction of reflective aerosol emissions from European
and North American factories. These emissions caused cooling over the North Atlantic, shifting
the rain band over Western Africa southward (Folland et al. 1986; Giannini et al. 2003; Dong and
Sutton 2015) away from the Sahel and led to a negative precipitation trend from 1950 to 1990.
The identical aerosol emissions imposed on both CMIP and AMIP models could have led to this
similar effect, as the reduction of emissions would lead to a large rebound in precipitation in the
Sahel afterward as North Atlantic SSTs warm and the rain band shifts northward.

The Amazonian drying trend in ASON may also be related to SST trends. We found that negative
tropical Atlantic SST trends are related to drying trends over this region and season (Fig. 5g), but
the observed SST trend is weakly positive (Fig. 2d). However, the common characteristic between

AMIP and CMIP SST trends in the Atlantic is a meridional SST gradient that indicates a northward
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ITCZ shift over the Atlantic, which would decrease convection and rainfall over the Amazon and

subsequently promote drying (Knight et al. 2008; Harris et al. 2008).

4. Conclusions and Implications

In this paper, we compared the precipitation responses of AMIP and CMIP model ensembles
under historical forcing to observed precipitation trends around the world over 1979-2014. CMIP
models fail to simulate the observed precipitation trends in most regions, while AMIP models
generally produce more accurate trends. Comparing results from CMIP and AMIP models suggests
that observed SST trends that are distinct from those found in the forced response of CMIP models
have contributed to the observed precipitation trends in the southwestern US (JFMA, consistent
with Lehner et al. 2018; Qiu et al. 2024; Kuo et al. 2025), the southeastern US (JFMA), the
Maritime Continent (MAM), the Amazon (FMAM), East Africa (MAM), and subtropical South
America (AMJ, consistent with Seager et al. 2010) (see Table 2).

The multidecadal JFMA drying trends in the southwestern and southeastern US showed a strong
relationship to the trend in the zonal SST gradient in the equatorial Pacific, likely via teleconnections
similar to those observed in interannual La Nina events. Notably, the recent multidecadal trend
in southwest US winter precipitation has been reproduced in a climate model forced by observed
Pacific SST (Lehner et al. 2018), with the drying primarily attributed to trends in the tropical
Pacific SST (Todd et al. 2025, Supplemental Data Fig. 10). However, the latter study using the
same model argues for a secondary contribution from SST trends in the North Pacific. These
results suggest that teleconnections emanating from tropical Pacific SSTs are most important in
setting the atmospheric circulation trends responsible for the observed drying trend over the recent
historical period in the southwestern US, and to a lesser extent, the observed JFMA drying in the
southeastern US.

Although the observed multidecadal SST trends (not seen in the forced response from the
CMIP models) contribute to the precipitation trends in the other four regions mentioned above,
those precipitation trends cannot be attributed to differences in the trends in the equatorial Pacific
zonal SST gradient, but must be due to trends in SSTs elsewhere. For the wetting trends in the
Maritime Continent (MAM) and the Amazon (FMAM) and the drying trend in subtropical South

America (AM]J), this result is somewhat surprising because in these three regions, similarly signed
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precipitation anomalies are strongly linked to La Nifia events on interannual time scales that feature
anomalies in the zonal SST gradients that are similar to the observed multidecadal trend. Future
work may be able to leverage idealized AMIP experiments, such as TOGA (Tropical Ocean Global
Atmosphere) ensembles, and ocean pacemaker ensembles to identify which specific SST patterns
are most important for precipitation trends in these regions.

CMIP and AMIP models simulated similar precipitation trends in both the Sahel and Amazon
(ASON); these model results suggest that the observed precipitation trends in these two regions have
not been strongly affected by the unique observed SST trend pattern. Notably, while interannual
tropical Pacific SST variability is known to have an effect on Amazon precipitation in ASON, there
is no link to a similar relationship regarding the multidecadal drying over the same region. Our
results and a review of the literature suggest that a shared tropical Atlantic SST trend response to
radiative forcing common to both CMIP and AMIP models may have induced precipitation trends
in both regions. Single-forcing ensembles may also provide insights into the different radiative
forcings responsible for the trends in these regions.

The sign of the trend in the equatorial Pacific zonal SST gradient is expected to change in
the future, eventually becoming more El-Nifio-like with enhanced warming in the east Pacific
(Rugenstein et al. 2020; Armour et al. 2024; Forster et al. 2021). If this projected change does
occur, our regressions of precipitation trends against the equatorial Pacific SST gradient in CMIP
models (Section 3d) suggest that both the southwestern and southeastern US will become wetter.
These results suggest that extrapolating observed precipitation trends using the assumption that
they scale with global average temperature (e.g., Kravitz et al. 2017; Kravitz and Snyder 2023;
Herger et al. 2015) could lead to substantial errors in regional precipitation projections. This
point is most clear for precipitation trends over the southwestern and southeastern US, where the
equatorial Pacific zonal SST gradient trend has contributed substantially to observed drying. It
may also be true for the Maritime Continent, the Amazon (FMAM), East Africa, and subtropical
South America, where the global SST pattern was found to influence precipitation trends but the
exact regional SST patterns could not be identified.

In contrast, we found that a common response to radiative forcing in both AMIP and CMIP
models drives similar precipitation trends in both the Sahel and the Amazon (ASON) that agree

well with the observed precipitation trend despite their differing SST trend patterns. This finding
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suggests that long-term precipitation changes may scale more directly with radiative forcing or
global temperature in these two regions, and may be less sensitive to uncertainties in how SST

patterns may change in the future.
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