15 SEPTEMBER 2020

DONG ET AL.

in CMIP5 and CMIP6 Models

YUE DONG,* KYLE C. ARMOUR,*® MARK D. ZELINKA,® CRISTIAN PROISTOSESCU,¢
DAVID S. BATTISTL?® CHEN ZHOU,® AND TIMOTHY ANDREWS'
“ Department of Atmospheric Sciences, University of Washington, Seattle, Washington

b School of Oceanography, University of Washington, Seattle, Washington
¢ Lawrence Livermore National Laboratory, Livermore, California

4 Department of Atmospheric Sciences and Department of Geology, University of Illinois at Urbana—Champaign,

Urbana, Illinois
¢ Department of Atmospheric Physics, Nanjing University, Nanjing, China
I Met Office Hadley Centre, Exeter, United Kingdom

(Manuscript received 30 December 2019, in final form 15 June 2020)

ABSTRACT

Radiative feedbacks depend on the spatial patterns of sea surface temperature (SST) and thus can change
over time as SST patterns evolve—the so-called pattern effect. This study investigates intermodel differences
in the magnitude of the pattern effect and how these differences contribute to the spread in effective equi-
librium climate sensitivity (ECS) within CMIP5 and CMIP6 models. Effective ECS in CMIP5 estimated from
150-yr-long abrupt4 X CO2 simulations is on average 10% higher than that estimated from the early portion
(first 50 years) of those simulations, which serves as an analog for historical warming; this difference is reduced
to 7% on average in CMIP6. The (negative) net radiative feedback weakens over the course of the
abrupt4XCO2 simulations in the vast majority of CMIP5 and CMIP6 models, but this weakening is less
dramatic on average in CMIP6. For both ensembles, the total variance in the effective ECS is found to be
dominated by the spread in radiative response on fast time scales, rather than the spread in feedback changes.
Using Green’s functions derived from two AGCMs shows that the spread in feedbacks on fast time scales may
be primarily due to differences in atmospheric model physics, whereas the spread in feedback evolution is
primarily governed by differences in SST patterns. Intermodel spread in feedback evolution is well explained
by differences in the relative warming in the west Pacific warm-pool regions for the CMIP5 models, but this
relation fails to explain differences across the CMIP6 models, suggesting that a stronger sensitivity of ex-
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Intermodel Spread in the Pattern Effect and Its Contribution to Climate Sensitivity

tratropical clouds to surface warming may also contribute to feedback changes in CMIP6.

1. Introduction

Uncertainty in estimates of equilibrium climate sen-
sitivity (ECS)—the equilibrium surface temperature
change in response to a doubling of CO, above prein-
dustrial levels—has long been linked to uncertainty in
the radiative feedbacks A that govern the efficiency with
which the climate system radiates energy to space per
degree of surface warming. The strength of A is intrin-
sically set by blackbody radiation, which is further
modulated by radiative feedbacks associated with
changes in atmospheric lapse rate, water vapor, surface
albedo, and clouds. Among these, the cloud feedback
has been found to be the primary source of ECS un-
certainty (Webb et al. 2006; Soden and Held 2006;
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Dufresne and Bony 2008; Webb et al. 2013; Caldwell
et al. 2016; Zelinka et al. 2016; Ceppi et al. 2017,
Caldwell et al. 2018; Zelinka et al. 2020). The low-cloud
feedback is particularly uncertain (Bony and Dufresne
2005; Webb et al. 2006, 2015; Ceppi et al. 2017), leading
to tremendous efforts in the community to constrain it
(Bony et al. 2006).

Within global climate models (GCMs), ECS is often
estimated based on a standard linear framework for
global energy balance:

N=F +AT, 1)
ECS=T, = —F, /A, 2)
where F is the effective radiative forcing (with Fx

representing forcing from CO, doubling), and where the
subscript ““‘eq’” denotes the equilibrium state when N
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approaches zero. All variables represent global-mean
anomalies with respect to a preindustrial state. A useful
method to derive A and ECS from simulations of abrupt
CO, doubling or quadrupling is proposed by Gregory
et al. (2004), regressing net TOA radiation imbalance N
against surface air temperature change 7 (hereafter re-
ferred to as Gregory N-T regression, with the graphical
illustration of this regression referred to as a Gregory
plot). This method has been widely used to provide es-
timates of A (regression slope), F>x (from the y-axis in-
tercept), and ECS (from the x-axis intercept), but is only
valid under the assumption that A is constant over time
(i.e.,A = A.q at any given time). This general assumption
may be violated for several reasons. For example, a
discrepancy between A and A.q may arise from nonlinear
state dependence of some feedbacks on global-mean or
local temperature (e.g., Block and Mauritsen 2013;
Andrews et al. 2015; Bloch-Johnson et al. 2015). For
instance, sea ice albedo feedback will become less pos-
itive as the amount of sea ice decreases with warming
(Goosse et al. 2018) while the water vapor feedback
(Meraner et al. 2013) and cloud feedback (Caballero
and Huber 2013) may both become more positive with
warming. Most importantly, the majority of GCMs in
phases 5 and 6 of the Coupled Model Intercomparison
Project (CMIP5 and CMIP6) exhibit a weakening of
the negative net feedback as time evolves after CO,
forcing is imposed, indicated by a curvature in the Gregory
N-T regression (Andrews et al. 2015; Armour 2017;
Proistosescu and Huybers 2017; Lewis and Curry 2018).
The time dependence of A has been found to arise pri-
marily from its dependence on the spatial pattern of sea
surface temperature (SST), which itself can evolve over
time (Armour et al. 2013; Zhou et al. 2016; Haugstad
et al. 2017; Ceppi and Gregory 2017; Andrews et al.
2018; Dong et al. 2019)—the so-called pattern effect
(Stevens et al. 2016). An important implication is that
the climate sensitivity inferred from the historical en-
ergy budget is biased low compared to the climate sen-
sitivity estimated over longer time scales under CO,
forcing due to the evolution of surface warming pat-
terns (Armour 2017; Proistosescu and Huybers 2017;
Andrews et al. 2018; Marvel et al. 2018; Dong et al.
2019; Gregory et al. 2020; Rugenstein et al. 2020). What
is less well understood, however, is what sets the magni-
tude of the pattern effect, as illustrated by the large in-
termodel spread in the degree of feedback curvature in
the Gregory regression (Andrews et al. 2015; Armour
2017; Ceppi and Gregory 2017). Moreover, the contri-
bution of model spread in feedback curvature to the
model spread in ECS estimates has not yet been quan-
tified. This work addresses these two key issues in both
CMIP5 and CMIP6 models.
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We first present an overview of net feedbacks in
CMIP5 and CMIP6 models by showing the Gregory N-T'
regression for the 150-yr-long simulations of abrupt
CO, quadrupling (hereafter abrupt4xCO2) (Fig. 1).
Following Andrews et al. (2015), we calculate radiative
feedbacks based on regression over a fast time scale
(years 1-20) and over a slow time scale (years 21-150),
noted hereafter as A9 and A,1_1s0, respectively. We
calculate values of N and 7'in each model with respect to
their preindustrial control simulations (piControl) after
accounting for drift by subtracting the linear regression
of piControl values over time segment corresponding to
the abrupt4xXCO2 simulation [following Forster et al.
(2013) and Armour (2017)]. All of the anomalies used in
this study are annual-mean quantities. Note that we use
year 20 to separate the fast response on decadal time
scales from the slow response on centennial time scales,
following many existing studies, but results are insensi-
tive to the year chosen (Andrews et al. 2015). ECS es-
timated using the regression method over the course of
abrupt4 X CO2 simulations is often referred to as the
effective equilibrium climate sensitivity (Andrews et al.
2015; Andrews and Webb 2018; Andrews et al. 2018;
Gregory et al. 2020), as it presumably differs from the
true ECS of the Earth system that would be found by
equilibrating over multiple millennia (Rugenstein et al.
2020). In this study, we use several measures of the ef-
fective ECS derived from extrapolation of the Gregory
N-T regressions to the x axis (divided by 2 to account for
CO, quadrupling) and distinguish them with a subscript
denoting the years over which the regression was per-
formed. Specifically, we use ECSy o, ECS;1_150, and
ECS;_150, corresponding to values derived from the re-
gressions over years 1-20, years 21-150, and years 1-150,
respectively. Of these three, ECS;; 150 provides the
most accurate estimate of the true ECS in eight GCMs
analyzed by Rugenstein et al. (2020), so we will make
this approximation and refer the effective ECS of each
model to their ECS,;_;50 values here.

Figure 1 shows that for both CMIPS and CMIP6, the
ensemble-mean (negative) net feedback weakens to-
ward the longer time scales. That is, there is a positive
change in the (negative) net feedback (AA = Ay1_150 —
A120 > 0) across 23 of 24 CMIPS5 models and 26 of 29
CMIP6 models (see Table 1 for model information),
indicating that ECS;_,, is nearly always smaller than
ECS;1_150 in both CMIP5 and CMIP6. Comparing the
two ensembles, we find that ECS_,9 and ECS5;_;59 on
average are higher in CMIP6 relative to CMIPS5, al-
though they have larger variance in CMIP6 (Fig. 1;
Tables 2 and 3). Several up-to-date studies of individual
CMIP6 models [Gettelman et al. (2019) for CESM2;
Golaz et al. (2019) for E3SM; Sellar et al. (2019) for
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FIG. 1. Gregory plots for (a) CMIP5 and (b) CMIP6: annual-mean change in global-mean net TOA radiation
(W m™?) against annual-mean change in global-mean surface air temperature (K) from abrupt4 X CO, experiments.
Gray dots denote each year from each model; black dots denote each year of multimodel means. Thin (thick) lines
show regression fits for years 1-20 (blue) and for years 21-150 (red) for each model (multimodel means). The slope
of blue line represents the feedback parameter on the fast time scale (A_»¢), and the slope of red line represents the
feedback parameter on the longer time scale (A»1_150). (¢)—~(f) Box plots of A1y (Wm 2K ™), AA (Wm 2K ™),
ECS; 5 (K), and ECS;1_150 (K) in CMIP5 (left box) and CMIP6 (right box) models. The box indicates interquartile
range (IQR), the whiskers indicate 1.5 X IQR range, and the dashed line inside the boxes indicates the median

value, for each quantity.

UKESM1; Bodas-Salcedo et al. (2019) for HadGEM3;
Andrews et al. (2019) for HadGEM3-GC3.1 and UKESM1]
report that the higher values of ECS in their models are
largely due to stronger positive cloud feedbacks, which is
recently confirmed to be a common feature in the CMIP6
ensemble by Zelinka et al. (2020). Here, by quantifying A on
different time scales, we find that both A, (feedback
strength on the fast time scale) and A\ (feedback change
over time) are, on average, different in CMIP6 relative to
CMIPS (Fig. 1). Key questions are 1) how do Ay, and
AX contribute to the spread in ECS across models and be-
tween CMIP5 and CMIP6 ensembles, and how does the
pattern effect over historical period change from CMIPS to
CMIP6, 2) what causes the differences in AA across models
and between CMIPS and CMIP6 ensembles, and 3) what
physical mechanisms govern A1_» and AA.

Motivated by the three questions, we assess the ef-
fective ECS, A1, and AX within 24 CMIP5 models and

29 CMIP6 models (summarized in Table 1). In section 2,
we investigate the source of model spread in the effec-
tive ECS relating the radiative response on fast time
scale and the pattern effect on slow time scale, and also
estimate the ECS bias relative to historical estimates in
both ensembles. In section 3, we compare the ensemble-
mean A in the CMIP5 and CMIP6 models. In section 4,
we investigate the intermodel spread in Ay and
A\ separately, and track down the key regions of the
pattern effect that are most responsible for driving the
spread in AA across the CMIP5 and CMIP6 models.

2. The contribution of the pattern effect to the
variance of ECS estimates

Figure 1d shows that AA is on average smaller in
CMIP6 models (0.4 Wm ™ 2K ') than in CMIP5 models
(0.53Wm 2K 1), despite the fact that ECS,;_;5¢ is on
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TABLE 1. The CMIP6 models used in this study.

Institution CMIP6 model Data reference
CSIRO-ARCCSS ACCESS-CM2 Dix et al. 2019
CSIRO ACCESS-ESM1.5 Ziehn et al. 2019
BCC BCC-CSM2-MR  Wu et al. 2018
BCC BCC-ESM1 Zhang et al. 2018
CAMS CAMS-CSM1.0 Rong 2019
CCCma CanESM5 Swart et al. 2019
NCAR CESM2 Danabasoglu et al. 2019
NCAR CESM2-WACCM Danabasoglu 2019
CNRM CNRM-CM6.1 Voldoire 2018
CNRM CNRM-ESM2.1 Seferian 2018
E3SM-Project E3SM-1.0 Bader et al. 2019
EC-Earth- EC-Earth3-Veg EC-Earth 2019b

Consortium
EC-Earth- EC-Earth EC-Earth 2019a
Consortium
NOAA-GFDL GFDL-CM4 Guo et al. 2018
NOAA-GFDL GFDL-ESM4 Krasting et al. 2018
NASA-GISS GISS-E2.1-G NASA/GISS 2018a
NASA-GISS GISS-E2.1-H NASA/GISS 2018b
MOHC HadGEM3- Ridley et al. 2018
GC31-LL
INM INM-CM4.8 Volodin et al. 2019
INM INM-CM5.0 Volodin et al. 2019
IPSL IPSL-CM6A-LR  Boucher et al. 2018
MIROC MIROC-ES2L Hajima et al. 2019
MIROC MIROC6 Tatebe and Watanabe
2018
MRI MRI-ESM2.0 Yukimoto et al. 2019
NUIST NESM3 Cao and Wang 2019
NCC NorESM2-LM Seland et al. 2019
SNU SAMO-UNICON Park and Shin 2019
MOHC UKESM1.0-LL Tang et al. 2019

average higher in CMIP6 (Fig. 1f) (corresponding to an
overall less-negative A). That is, higher CMIP6-mean
effective ECS is not coming from a stronger pattern
effect (it is weaker, in fact); it is likely due to less-
negative feedbacks on the fast time scale and stronger
radiative forcing (Zelinka et al. 2020). However, there
remains the possibility that intermodel spread in AA may
contribute to the spread in effective ECS. Therefore, we
first estimate the degree to which AA affects the spread
in ECS,;_150 across models (section 2a). Then we use
abrupt4XCO2 simulations as an analog for historical
warming [following Lewis and Curry (2018)] to estimate
the degree to which the pattern effect causes historical
estimates of effective ECS to be less than ECS;;_;50 (or
ECS;_150) in CMIP5 and CMIP6 models (section 2b).

a. Correlation between ECS5;_150 and ECS;_5¢

Previous studies (Dufresne and Bony 2008; Caldwell
et al. 2016) partitioning ECS into components associ-
ated with radiative feedbacks and radiative forcing have
identified feedbacks as the dominant source of the ECS
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spread across models. To estimate the relative roles of
A1 and AAX in setting ECS, we evaluate the correlation
between ECS,;_150 and ECS;_,y. Without any pattern
effect-induced variance, ECS,;_;50 and ECS;_,¢ would
be highly correlated.

The correlation (%) between ECS,;_;50 and ECS;_5
is 0.69 in CMIP5 and 0.70 in CMIP®6, respectively; both
correlations are statistically significant at 95% confi-
dence level. This indicates that the total variance of
ECS,1_150 can be primarily explained by the spread in
the radiative response on fast time scales, even without
considering the feedback evolution due to the pattern
effect. The degree to which feedbacks change over time
(AA) thus explains, at most, 30% of the total variance in
ECS in both model ensembles, given the fact that A; 59
and AA are weakly correlated (+* = 0.3 for CMIP5 and
7 = 0.2 for CMIP6).

These results suggest that the differences in feedback
evolution on longer time scales contribute much less to
the spread in ECS;; 150 than do the differences in
feedbacks on the fast time scales (A{_»0), even though
this measure of ECS here is based on the latter period
of the abrupt4 X CO2 simulations (years 21-150). However,
it is worth noting that both in ensemble means and in
individual models, AX is generally positive (23 of 24
CMIP5 models and 26 of 29 CMIP6 models), therefore
ECS,1_150 is nearly always greater than that derived
from early portion of the simulation (ECS; ;). Thus,
while Aq_,( is the major driver of variance in ECS, ig-
noring AA and using an assumption of time-invariant
feedbacks would lead to a low estimate of the true ECS
(as estimated here by ECS;1_150).

b. ECS-to-ECS,,;s ratio

As many studies have revealed, the value of ECS es-
timated from historical energy budget constraints is
lower than that based on the behavior of fully coupled
and atmosphere-only GCM simulations (Armour 2017,
Proistosescu and Huybers 2017; Andrews et al. 2018;
Lewis and Curry 2018; Marvel et al. 2018; Gregory et al.
2020). Multiple factors have contributed to the spatial
pattern of warming, and thus the pattern effect, over the
historical period, including the inherent time scales of
ocean adjustment to radiative forcings (e.g., Marvel
et al. 2016; Armour 2017; Proistosescu and Huybers
2017) as well as unforced internal climate variability
(e.g., Andrews et al. 2018; Marvel et al. 2018). The dis-
tinction between forced and unforced pattern effects is
further discussed in Dessler (2020). In this section, we
consider how the forced pattern effect may bias values of
ECS inferred from historical warming based on the be-
havior of the CMIP5 and CMIP6 models’ response to
CO; forcing.
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TABLE 2. Estimates of feedback parameter (W m ™ 2K ') and effective climate sensitivity (K) from abrupt4x CO2 simulations for the
CMIP6 GCMs and their multimodel mean. Shown from left to right are feedback parameter over the fast time scale (A1_,), feedback
parameter over the longer time scale (A51_50), feedback evolution (AA = A5;_150 — A1_n0), effective climate sensitivity from regressions
over years 1-20 (ECS;_5), and effective climate sensitivity from regressions over years 21-150 (ECS;;_150). All regressions are calculated

using the ordinary least squares regression method.

CMIP6 model A 1-20 /\21,150 A Ecsl,z() EC521,150
ACCESS-CM2 -1.1 —0.5 0.6 3.75 541
ACCESS-ESM1-5 —1.14 —0.42 0.73 3.07 4.93
BCC-CSM2-MR —1.26 —0.63 0.64 2.85 3.5
BCC-ESM1 —-1.25 —0.74 0.51 2.78 35
CAMS-CSM1.0 -1.94 -1.71 0.24 223 231
CESM2-WACCM —-1.11 —0.48 0.63 3.65 5.49
CESM2 —1.19 —0.38 0.81 3.67 6.42
CNRM-CM6.1 —-0.92 —0.81 0.1 4.29 4.76
CNRM-ESM2.1 -0.49 —0.58 —0.09 5.7 491
CanESMS5 —0.69 —0.62 0.08 5.44 5.75
E3SM-1.0 -0.77 —0.47 0.3 4.78 5.77
EC-Earth3-Veg —-1.12 -0.7 0.42 3.57 4.45
EC-Earth3 —-1.12 —0.7 0.42 3.57 4.45
GFDL-CM4 —1.44 —0.59 0.85 2.94 4.4
GFDL-ESM4 -1.36 —1.46 -0.1 271 2.63
GISS-E2.1-G —1.46 —-1.2 0.26 2.74 2.87
GISS-E2.1-H —1.26 —1.08 0.17 2.95 3.15
HadGEM3-GC31-LL -0.82 —0.58 0.24 4.72 5.73
INM-CM4.8 -1.8 —0.98 0.82 1.74 1.91
INM-CM5.0 —-1.7 -1.09 0.6 1.85 2.02
IPSL-CM6A-LR -1.01 —0.65 0.36 3.86 4.76
MIROC-ES2L —1.48 —1.94 —0.46 2.69 2.53
MIROC6 —1.63 —1.44 0.19 24 2.59
MPI-ESM1.2-HR —1.51 —0.81 0.7 2.77 3.34
MRI-ESM2.0 —1.45 -0.85 0.6 2.75 341
NESM3 —-0.94 -0.79 0.15 427 4.72
NorESM2-LM —2.06 —0.83 1.23 2.24 2.98
SAMO-UNICON —1.16 —0.74 0.42 3.6 4.19
UKESM1.0-LL —-0.79 —0.63 0.17 4.84 5.49
Mean (median) —1.24 (-1.19) —0.84 (—0.74) 0.4 (0.42) 3.4 (3.07) 4.08 (4.4)
Standard deviation 0.37 0.38 0.34 1.01 1.27

Following Armour (2017) and Andrews et al. (2018),
we rewrite Eq. (2) as

F. F.
= _2X = __ 72X
S )\eq Ahist +A" (3)

where Aps is the feedback parameter estimated from
historical energy budget constraints, and A’ is the change
in feedback at the equilibrium state relative to the his-
torical period. Using Ay based on historical energy
budgets, one can make an estimate of climate sensitivity
(termed ECSy;s; herein):

F
ECS,. =~ A—jﬁ : (4)
ist

which will underestimate the value of ECS if A’ > 0.
Note that while A’ is expected to have the same sign of
AX (positive in most GCMs), their magnitudes will be

smaller. The change AM is defined as the change in
feedbacks between the first 20 years and the last 130
years of abrupt4xXCO2 simulations, whereas A’ is de-
fined in terms of how feedbacks will change from his-
torical warming to equilibrium warming under CO,
forcing. Armour (2017, hereafter A17) and Lewis and
Curry (2018, hereafter LC18) proposed a ratio of ECS to
ECSy;s¢ (hereafter “ECS-to-ECSy ratio”) to quantify
the difference in ECS estimates, and reported the
CMIP5-mean ECS-to-ECSy ratio as 1.095 (LC18) or
1.26 (A17). The difference between these estimates is
attributed to the differences in the method and time
scale of regression used and to differences in assump-
tions about how CO, forcing scales with CO, concen-
tration (LC18).

Ideally, estimates of Ap;5 and ECSy require accurate
estimates of historical energy budgets from observations
or GCM simulations with all historical forcing agents
included (e.g., historical simulations). In the latter case,
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TABLE 3. As in Table 2, but for the CMIP5 models.

CMIP5 model )\1,20 )\21,150 AL Ecsl,z() EC521,150
ACCESS1.0 -1.15 -0.57 0.57 3.1 4.3
ACCESS1.3 -1.17 -0.5 0.67 2.92 4.36
BCC-CSM1.1 —1.49 -0.87 0.62 2.54 3
BCC-CSM1.1-m —1.42 —-0.91 0.51 2.71 3.05
CanESM2 -1.23 -0.89 0.33 34 3.85
CCSM4 -1.57 —0.89 0.69 2.6 32
CNRM-CM5 —1.06 —-1.24 -0.19 3.38 3.18
CSIRO-MKk3.6.0 —-1.25 -04 0.85 2.84 5.03
GFDL CM3 -1.19 -0.61 0.58 3.11 4.3
GFDL-ESM2G -1.51 —0.64 0.87 2.32 3.02
GFDL-ESM2M —1.48 -0.99 0.49 2.42 2.68
GISS-E2-H —1.86 -14 0.46 2.21 2.39
GISS-E2-R —2.47 -1.3 1.17 1.88 2.31
HadGEM2-ES —-0.83 —0.34 0.49 4.01 6.02
INM-CM4 -1.5 -1.26 0.23 2.04 2.16
IPSL-CM5A-LR —0.89 —0.62 0.27 3.77 4.44
IPSL-CM5A-MR -0.91 —0.62 0.29 3.85 4.52
IPSL-CM5B-LR —-1.29 -0.79 0.5 2.35 2.79
MIROCS —1.66 -1.3 0.36 2.64 2.84
MPI-ESM-LR —1.38 —0.87 0.51 3.32 3.89
MPI-ESM-MR —1.48 —0.88 0.59 3.16 3.73
MPI-ESM-P —1.57 —0.96 0.61 3.13 3.68
MRI-CGCM3 —1.56 -1.13 0.43 2.31 2.66
NorESM1-M —1.61 =0.77 0.85 2.34 3.18
Mean (median) —1.40 (—1.45) —0.86 (—0.88) 0.53 (0.51) 2.85(2.78) 3.52 (3.19)
Standard deviation 0.35 0.3 0.27 0.58 0.95

additional simulations with the same historical forc-
ings but fixed SSTs are needed to diagnose the mag-
nitude of forcing, namely, the Radiative Forcing Model
Intercomparion Project (RFMIP; Pincus et al. 2016).
Given the absence of the RFMIP simulations for the
majority of the current CMIP5 and CMIP6 models,
several ways to approximate ECSy; are proposed, for
example, using abrupt4XCO2 or 1pctCO2 simulations
as an analog for historical warming (A17, LC18), or
estimating historical forcings based on empirical scaling
(Gregory et al. 2020). Here, following LC18, we make
use of the early portion of abrupt4xCO2 simulations
as a historical analog to estimate ECS;;5 by regressing N
against T over years 2-50 of each model’s abrupt4 X CO2
simulation. We also calculate F,« by scaling the y-axis
intercept of the regression of N against 7 over years 2-10.
Long-term ECS here is estimated from the regression of
N against T over years 21-150 (equal to ECS,;_50),
which is the same period used in both A17 and LC18, but
using Deming regression to be consistent with LC18 for
comparison. We also provide the results using a more
conventional estimate of ECS derived from the N-T
regression over years 1-150 (ECS;_is0; shown in pa-
rentheses in Table 4).

The results of individual CMIP6 models and ensemble
means are shown in Table 4. The pattern-effect induced

feedback evolution from the historical period to
equilibrium (A") is on average weaker in CMIP6
models (0.06 Wm 2K !) relative to CMIP5 models
(0.092Wm 2K ™), so that the ECS-to-ECSy; ratio is
also reduced in the CMIP6 ensemble mean (6% ) com-
pared to the CMIPS ensemble mean (9.5%; consistent
with LC18). This suggests that the latest generation of
GCMs produce an overall smaller ECS-to-ECSy,, ratio,
consistent with results above that the pattern effect
is slightly smaller in the abrupt4XCO2 simulations.
However, there remains a large spread across CMIP6
models: A’ varies from 0.3 to —0.23Wm 2K !, corre-
sponding to ECS values that are 40% higher to 12%
lower than ECSy.

We note an important caveat of this analysis regarding
the calculation of ECSy;s.. Making use of abrupt4 X CO2
simulations as an analog for the historical energy budget
is a useful approach as it enables intermodel compari-
son, but it may produce different values of ECSy;s than
those estimated from historical simulations that include
a more realistic time evolution of CO, and non-CO,
forcings as well as an unforced pattern effect (Marvel
et al. 2016: Gregory et al. 2020; Andrews et al. 2019). For
example, Andrews et al. (2019) found that ECS;;, within
historical simulations of HadGEM3-GC3.1-LL is 4.7K,
with a ECS-to-ECSy ratio of 1.21. For comparison, using
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TABLE 4. Estimates of ECSy;s;, ECS-to-ECSy; ratio, and A’ (the change in feedback from historical period to equilibrium) for individual
CMIP6 models and ensemble means of CMIP5 and CMIP6, to be compared with Table S2 in Lewis and Curry (2018). For ECS-to-ECSy;;5
ratio and A, the results shown are calculated with the values of effective ECS derived from regressions over years 21-150 (or years 1-150),

using the Deming regression method.

ECS-to-ECSy;i5 ratio years 21-150 (years

CMIP6 model ECShist 1-150) A’ years 21-150 (years 1-150)
ACCESS-CM2 4.05 1.28 (1.13) 0.22 (0.12)
ACCESS-ESM1.5 3.13 1.41 (1.19) 0.31 (0.17)
BCC-CSM2-MR 2.81 1.06 (1.04) 0.06 (0.05)
BCC-ESM1 3.05 1.07 (1.05) 0.07 (0.05)
CAMS-CSM1.0 2.19 0.98 (1.02) —0.04 (0.03)
CESM2 4.16 1.4 (1.21) 0.32 (0.2)
CESM2-WACCM 3.9 1.32 (1.17) 0.25 (0.15)
CNRM-CM6.1 4.72 0.96 (1.02) —0.03 (0.02)
CNRM-ESM2.1 4.52 0.91 (1.02) —0.06 (0.01)
CanESMS5 533 1.05 (1.04) 0.03 (0.03)
E3SM-1.0 491 1.1 (1.07) 0.06 (0.04)
EC-Earth3 3.87 1.09 (1.1) 0.08 (0.09)
EC-Earth3-Veg 3.91 1.08 (1.09) 0.07 (0.08)
GFDL-CM4 3.16 112 (1.14) 0.13 (0.16)
GFDL-ESM4 2.55 0.88 (0.98) —0.2 (—0.02)
GISS-E2.1-G 2.57 1(1.03) 0 (0.04)
GISS-E2.1-H 2.95 0.99 (1.02) —0.01 (0.03)
HadGEM3-GC31-LL 5.24 1.08 (1.05) 0.06 (0.04)
INM-CM4.8 1.74 1.05 (1.04) 0.09 (0.07)
INM-CMS5.0 1.84 1(1.02) 0 (0.04)
IPSL-CM6A-LR 431 1.01 (1.02) 0.01 (0.02)
MIROC-ES2L 2.62 0.88 (1.02) —0.23 (—0.04)
MIROC6 237 0.95 (1.03) —0.09 (0.05)
MPI-ESM1.2-HR 2.63 1.18 (1.11) 0.23 (0.15)
MRI-ESM2.0 2.68 1.09 (1.11) 0.11 (0.13)
NESM3 4.78 0.91 (0.96) —0.08 (—0.04)
NorESM2-LM 1.88 1.1 (1.16) 0.22 (0.34)
SAMO-UNICON 3.38 1.05 (1.06) 0.06 (0.06)
UKESM1.0-LL 5.12 1.06 (1.04) 0.05 (0.03)
CMIP6 mean 3.46 1.07 (1.07) 0.06 (0.07)
CMIP6 std 1.08 0.13 (0.06) 0.13 (0.08)
CMIP5 mean 2.807 1.095 (1.073) 0.092 (0.086)
CMIP5 std 0.59 0.134 (0.063) 0.141 (0.069)

HadGEM3-GC3.1-LL’s abrupt4 X CO?2 simulation, our
calculation gives an ECSy;; of 5.2K, and an ECS-to-
ECSy,s ratio of 1.08 (Table 4), suggesting that the values
reported here may underestimate the historical pattern
effect. However, our main focus is to provide informa-
tion on the difference in pattern effect between the
CMIP5 and CMIP6 ensembles, rather than to provide a
definitive ECS;;¢ metric for each model. Future work
employing RFMIP simulations to accurately quantify ra-
diative feedbacks in the historical simulations of CMIP6
models is needed to shed light on this in greater detail.

3. The consistency and difference in ensemble-
mean A\ between CMIPS and CMIP6

Even though AA does not contribute as much as Ay 5
to the intermodel spread in ECS, it substantially affects

ECS estimates for both CMIP5-mean and CMIP6-mean
projections (comparing ECS;_5, to ECS,;_150 in Figs. le
and 1f). In this section, we first compare the global-mean
A\ and its individual components partitioned by radia-
tive kernels. We then examine the spatial patterns of
ensemble-mean AA from CMIPS5 and CMIP6 models. A
comparison of SST patterns is also provided to aid in
uncovering the causes of ensemble differences.

Figure 2 shows global-mean net A and its individual
components associated with changes in atmospheric
temperature, water vapor, lapse rate, surface albedo,
and clouds, estimated using radiative kernels (Huang
et al. 2017) as described in Zelinka et al. (2020). We
calculate the cloud feedback using radiative kernels by
removing cloud masking effects from the temperature-
mediated change in net cloud radiative effect. An overall
consistency between CMIP5 and CMIP6 is found in the
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FI1G. 2. The Ax for each individual CMIP5 models (blue circles),
CMIP6 models (orange circles), and their multimodel means
(black circles), decomposed into contributions of (from left to
right) Planck (PL), surface albedo (ALB), the sum of lapse rate
(LR) and water vapor (WV), net cloud (CLD), and residual (RES),
respectively. The AA o1 p is further broken down into contributions
from Northern Hemisphere (ALB_NH) and Southern Hemisphere
(ALB_SH). The differences between CMIP5 means and CMIP6
means are printed at the bottom, with red numbers highlighting
multimodel means that are significantly different (p < 0.05).

fact that the dominant contribution to the ensemble-
mean A\ comes from the net cloud component (AAcy p),
followed by the sum of lapse rate (AApg) and water
vapor (Alwy) components. Both CMIP5 and CMIP6
have a large spread in the net AA, primarily owing to the
spread in Alcrp. However, the (positive) ensemble-
mean net AA is slightly smaller in CMIP6, primarily due
to a smaller surface-albedo feedback change (AA A1),
particularly from the Northern Hemisphere (NH).

We next show the spatial patterns of ensemble-mean
feedbacks for the CMIP5 and CMIP6 models (Figs. 3
and 4). The feedback patterns are first calculated for
each model by regressing the corresponding local N
against global-mean T over the two separate time pe-
riods, and then averaging across models. The patterns
of local contributions to the net feedback change are
qualitatively consistent between the two ensemble means
(Figs. 3 and 4, first row). That is, the positive changes in
the net feedback primarily come from the tropical eastern
Pacific. This is a region where a cool ocean and a strong
capping inversion promote ubiquitous low clouds in the
climatology. Because warmer surface temperatures and
weaker low-level stability in this region both reduce low
cloud cover, delayed warming in this region will yield
a less-negative feedback during the approach toward
equilibrium (Zhou et al. 2016; Ceppi and Gregory 2017).
Indeed, among all individual components, cloud feed-
back and lapse-rate feedback contribute the most to the
positive change in the net feedback over this region in
both CMIP5 and CMIP6. The major difference between
the two ensembles lies in the Arctic, where positive
surface-albedo feedback strengthens with time in the
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CMIP5 models (Fig. 3, bottom row) but weakens over
time in the CMIP6 models (Fig. 4, bottom row), consis-
tent with the regional attribution results in Fig. 2.

Changes in the strength of the surface-albedo feed-
back may arise from changes in the sensitivity of local
albedo to local surface temperature (a nonlinear state
dependence; e.g., Goosse et al. 2018), or from differ-
ences in surface warming patterns acting on constant
local surface-albedo feedbacks (e.g., Armour et al.
2013), or from a combination of these two factors. The
state dependence can be identified through changes in
the local surface-albedo feedback, which is defined by
regressing local N onto local T (rather than global T),
assuming that the local surface-albedo feedback is in-
dependent of the pattern of surface warming. We found
that the local surface-albedo feedback over the Arctic
slightly strengthens over time in both ensembles, indicating
a nonlinear state dependence, but that the change in
local surface-albedo feedback from fast to slow time
scale is nearly identical in the CMIP5 and CMIP6 mul-
timodel means. Moreover, while this nonlinear state
dependence—induced strengthening of the local surface-
albedo feedback over time may enhance the strength-
ening of the Arctic surface-albedo feedback within
CMIP5 (Fig. 3, bottom row), it opposes to the weaken-
ing of the Arctic surface-albedo feedback within CMIP6
(Fig. 4, bottom row), suggesting that A\ o1 g is primarily
governed by changing warming patterns rather than by
local state dependence. Indeed, the relative warming in
the Arctic over the first 20 years is stronger in CMIP6
than CMIP5 (Fig. 5¢), but it becomes weaker over the
following decades in CMIP6 relative to CMIPS5 (Fig. 5f).
As a result of this change in the rate of Arctic warming,
the Arctic surface-albedo feedback on average weakens
over time (i.e., negative Al 5y g) within CMIP6 models
(Fig. 4), which overcomes the positive AAarp arising
from enhanced warming of the Southern Ocean on
the slow time scale (Fig. 4 bottom row), leading to a
slightly negative value of global-mean AAarp and an
overall smaller value of global-mean A\ in CMIP6
models (Fig. 2).

4. The source of the intermodel spread in A\ across
CMIP5 and CMIP6

We next move away from the multimodel mean per-
spective, to consider why individual models have dif-
ferent values of AA. We find it conceptually helpful to
consider that radiative feedbacks and their changes may
be influenced by both atmospheric model physics and
SST patterns. To separate the two factors, we make use
of radiative feedback “Green’s functions” (Zhou et al.
2017; Dong et al. 2019), which will be introduced in
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FIG. 3. CMIPS5 ensemble-mean spatial patterns of the local radiative feedback components (calculated by regressing the local N against
global-mean 7). Shown from top to bottom are net feedback, net cloud feedback, lapse-rate feedback, water-vapor feedback, Planck
feedback, and surface-albedo feedback, on time scales of (left) years 1-20 and (center) years 21-150, and (right) the change (late
minus early).
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FIG. 4. As in Fig. 3, but for CMIP6 ensemble means.
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FIG. 5. Spatial patterns of SST changes (SST*) over (top) years 1-20 and (middle) years 21-150, and (bottom) their changes (late minus
early), for (a)-(c) CMIP5 multimodel mean, (d)-(f) CMIP6 multimodel mean, and (g)—(i) the difference (CMIP6 minus CMIPS5). The
values of SST* are calculated as the regression slope of local SST changes against global-mean SST changes, such that the global mean of
(a), (b), (d), and (e) is one by construction. Note that the color scales in the left two columns and in the right column are different.

section 4a. In sections 4b and 4c, we investigate the
major source of the intermodel spread in AA across the
CMIPS and CMIP6 models, respectively.

a. Green’s functions

To separate the effect of SST patterns and the effect
of model physics, we use radiative feedback Green’s
functions, as they predict the radiative response based
solely on SST anomaly patterns, given the atmospheric
physics of the parent model from which they were de-
rived. The basis of a Green’s function is a Jacobian
matrix, representing the sensitivity of any regional re-
sponse to regional SST anomalies, which consists of both
local and nonlocal effects of changes in SST. The full
Jacobian is calculated from a series of prescribed-SST
simulations within an AGCM, each with a single patch
of SST anomalies on the top of climatological SSTs.
Then, convolving the Jacobian with a global SST anomaly

pattern can predict the global response to the given SST
pattern, based on the assumption of spatial linearity,
which has been shown to be a good approximation (Zhou
etal.2017; Dong et al. 2019). Hence, applying the Green’s
functions linearly separates the differences in SST pat-
terns and the differences in the sensitivity of radiative
feedbacks on SST patterns.

Here we employ two Green’s functions: one derived
from the Community Atmosphere Model version 5
(CAMS) by Zhou et al. (2017), and one derived from
CAM4 by Dong et al. (2019). The major difference be-
tween CAM4 and CAMS Green'’s functions lies in the
representation of cloud properties within the two models,
which are reported to be more realistic in CAMS (Kay
et al. 2012), although both models exhibit large biases in
the subtropical marine boundary layer cloud regimes.
Throughout this study, we use the two-dimensional
global-mean Jacobians (denoted as Jx, the sensitivity
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of a global-mean response X to each grid of SST
anomalies) for computational efficiency because our
focus is on global-mean quantities. To compute feed-
back parameters from the Green’s functions, we first
reconstruct annual global-mean net TOA radiative re-
sponse R and surface air temperature response 7 by
convolving the Green’s functions 7 x with each model’s
annual-mean global SST change [SST(r)],

X =7, SST(), (5)

where X can be any response (e.g., R, T), and SST(r)
denotes the global pattern of SST anomalies. Then A4 5,
As1-150, and AA are calculated following the same re-
gressions used to process model outputs. Note that the
Green’s function can only predict the TOA radiative
response R (= AT), which is different from the net TOA
radiation imbalance N in fully coupled GCMs, because
the latter includes the effective radiative forcing of CO,
quadrupling Fyx: N = F4x + R. Indeed, the effective
radiative forcing also varies slightly across models; but
it is abruptly imposed and held constant over time.
Therefore, while radiative forcing matters for ECS itself,
its absence does not cause any inconsistency in the es-
timates of feedbacks (defined as the regression slope in
Gregory plots) between Green’s functions and the GCM
simulations.

b. Intermodel spread in A\ across CMIP5 models

We first show the comparison of feedbacks from
CMIP5 GCMs and those reconstructed by the CAM4/
CAMS5 Green’s functions (Fig. 6). Both Green’s func-
tions poorly capture Aq_»( but approximately reproduce
GCM values of AX, suggesting that Ay_y and AA are
governed by different processes. The failure of the
Green’s functions in reconstructing Ay 5o may come
from several factors; for example, the Green’s func-
tions fail to account for the radiative response to land
warming which emerges generally on fast time scales.
However, we favor the interpretation that the spread
in Ay, is primarily determined by each model’s at-
mospheric physics (e.g., cloud parameterizations).
Therefore, the radiative responses from each model
cannot be captured by Green’s functions derived from
either CAM4 or CAMS, which have distinct atmo-
spheric physics. On the other hand, the fact that both
Green’s functions more accurately reproduce A, even
though they are built from different models, suggests
that the spread in A\ arises primarily from the changes
in SST patterns and is largely insensitive to model
physics.

We next investigate what regions of SSTs drive the
intermodel spread in AA across the CMIP5 models.
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Previous studies have pointed out the importance of
tropical warming through changing cloud and lapse-rate
feedbacks. Zhou et al. (2016) proposed the role of the
tropical eastern Pacific, where relative cooling in recent
decades is thought to be responsible for driving an in-
crease in local low cloud and a more-negative cloud
feedback. Andrews and Webb (2018) further established a
mechanism associated with east-west tropical Pacific SST
gradient that governs the change in tropospheric sta-
bility, and therefore the change in low clouds and lapse
rate. Silvers et al. (2018) highlighted changes in low
clouds throughout the tropics beyond the traditional
stratocumulus regimes in driving decadal variability of
feedbacks over the historical period. Recently, Dong
et al. (2019) proposed that AA tracks the ratio of
warming in the west Pacific warm-pool (WP) regions
relative to warming in the rest of global ocean areas 7.
Here we test this mechanism by examining the correla-
tion of AX against the proposed WP warming ratio
change Ay across models.

To calculate Ay for all CMIP5 and CMIP6 models, we
define WP regions in this study as grid cells within 30°S—
30°N, 30°E-160°W that have an upward vertical velocity
at 500 hPa (wsq) in the piControl simulation. Unlike the
fixed rectangular area in the west Pacific used in Dong
et al. (2019), this updated metric takes into account
mean-state biases, ensuring that in each model the WP
regions capture the radiative responses in regions of
deep convection. Note that results using the fixed region
in Dong et al. (2019) are similar to those shown here. We
also simplify y to be the WP SST warming relative to
global-mean surface air temperature changes, calcu-
lated as the regression slope of the averaged SST over
the selected WP regions against global-mean 7, over the
two time periods used throughout this study (years 1-20
for Y1-20, years 21-150 for Y21-150» and A’)’ =Y21-150 —
Y1-20)-

Figure 7a shows that A\ is well correlated with Ay for
CMIP5 models (with 7* = 0.63). Although many ap-
proximations are made in the derivation (Dong et al.
2019), the simple metric Ay, which includes no infor-
mation about radiative response, explains over 60% of
the variance in CMIP5 AA. The physical mechanism, as
discussed in Dong et al. (2019), is the preeminent impact
of WP warming on global TOA radiation change via
deep convection. Over the WP regions, where the sur-
face is tightly coupled to the free troposphere by deep
convection, surface warming directly enhances upper
tropospheric warming. This leads to a stronger negative
lapse-rate feedback and a more-negative cloud feedback
over low-cloud regions caused by increased lower tro-
pospheric stability, which together promotes a more
efficient radiative damping at TOA. On the other hand,
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the weaker coupling between surface and upper tropo-
sphere in all other regions results in a weak TOA radi-
ation response to surface warming. This leads to a weaker
negative lapse-rate feedback, and a more-positive low-
cloud feedback, hence, resulting in an inefficient radia-
tive damping (see Dong et al. 2019, their Figs. 4 and 5).
The key importance of warm pool warming for TOA
radiation changes is also supported by observational
evidence (Zhou et al. 2016; Ceppi and Gregory 2017;
Fueglistaler 2019).

To further demonstrate the proposed mechanism, we
select three representative models that have large posi-
tive AA (GISS-E2-R), small positive Ax (IPSL-CM5B-
LR), and small negative AA (CNRM-CMS5), respectively.

The term AA is demonstrated as the degree of curvature
in the Gregory plots for each model (Figs. 8a—c). We
then show their SST warming patterns defined as local
SST changes regressed against global-mean SST changes,
denoted by SST* (Figs. 8d-1). In this context, values
above 1 (in red) indicate local warming exceeding the
global-mean warming in the given period, and values
below 1 (in blue) indicate local warming weaker than the
global-mean warming. In GISS-E2-R, the warm-pool
regions warm up relatively quickly during the first 20
years, but warming in the warm pool does not keep pace
with warming in other oceans (e.g., the Southern Ocean)
over the last 130 years. This sharp transition of surface
warming from tropical ascent regions to all other regions
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FIG. 7. The relation between the change in net feedback (AA) and the change in the west Pacific warm-pool
warming ratio (Ay), for (a) CMIP5 models and (b) CMIP6 models. The linear fit for CMIPS5 models is plotted as the
black line in (a) and the gray dashed line in (b). Variance explained is noted in the bottom-left corner of each panel.

is responsible for the large AA. In IPSL-CMS5B-LR, the
WP region does not warm substantially faster than the
global average warming on the fast time scale, so that
the change in the relative warming over WP regions is
weaker, leading to a smaller AA. In CNRM-CMS5, the
WP region warms relatively fast on the longer time
scales, leading to a nearly zero change in WP region in
contrast to the other two models, driving a negative AA.
This comparison shows that the CMIPS5 values of AX can
be well characterized by the ratio of warm-pool to
global-mean warming (Fig. 7a), suggesting an important
role of tropical convective regions in modulating the
strength of radiative feedbacks in CMIP5.

c¢. Intermodel spread in A\ across CMIP6 models

For CMIP6 models, we first repeat the analysis ap-
plying the WP warming ratio. Interestingly, the above
theory does not seem to hold as well for CMIP6 models
(Fig. 7b), suggesting that the A\ spread in the latest
models may not directly trace to relative warm-pool
warming. One may ask whether this is because the deep
convection in other regions (e.g., Atlantic Ocean warm-
pool regions) carry more weight in the CMIP6 ensem-
ble. To identify the key regions for driving feedback
changes, we regress global-mean AA onto local ASST*
(the change in the relative warming rate from fast to slow
time scale) across CMIPS and CMIP6 models, respec-
tively, and evaluate the local correlation coefficient
(r). Note that SST* is calculated as the local SST

change relative to global-mean SST change, and A is
defined as the late period (years 21-150) minus the early
period (years 1-20).

The resulting correlation maps (r) are shown in Fig. 9.
The positive correlation indicates that models that have
stronger positive global-mean A\ tend to show a locally
delayed warming as approaching to equilibrium, whereas
the negative correlation indicates that models that have
stronger positive global-mean A\ tend to show a local
warming predominately on the fast time scale. The
magnitude of correlation coefficient illustrates the de-
gree to which the intermodel spread in AA correlates
with the differences in local warming rates. For example,
Fig. 9a shows a strong negative correlation over Indo-
Pacific deep convective regions, which indicates that in
the CMIP5 models, A\ is primarily governed by the
difference in the relative warming in the west Pacific
warm-pool regions where greater warming on the fast
time scale gives rise to a stronger positive AA. This is
achieved mostly through AAcrp (Fig. 9¢) and Aipgr
(Fig. 9¢). However, the results from the CMIP6 models
highlight the tropical Indian Ocean, the equatorial
eastern Pacific, and the SH midlatitudes (Fig. 9b), which
are mostly reflected in the pattern of AA¢cpp (Fig. 9d).
This comparison suggests that the CMIPS values of
A)X may be primarily dominated by surface warming in
the broad tropical convective regions, whereas the
CMIP6 values of A may be influenced more by surface
warming in the tropical subsidence regions and extratropics.
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FI1G. 8. (a)—(c) Gregory plots and (d)—(1) patterns of SST changes for (left) GISS-E2-R, (center) IPSL-CM5B-LR, and (right) CNRM-
CMS. Colored lines in (a)—(c) show regression fits for years 1-20 (blue) and for years 21-150 (red). Also shown are the regression slopes of
local SST changes against global-mean SST changes over years 1-20 in (d)—(f) and years 21-150 in (g)—(i), and the change between the two
time periods (later minus early) in (j)—(1). The hatchings highlight the warm-pool ascent regions in each model.

Indeed, we found that about half of the variance in A\ in
CMIPS5 ensemble can be explained by the change in the
estimated inversion strength (EIS) per unit of global
warming, whereas the variance in AA explained by the
EIS change in CMIP6 ensemble is slightly decreased
(#* = 0.4). Moreover, we found that both Green’s functions
fail to reproduce CMIP6 A (not shown), even though
they largely capture AX in CMIPS models (Figs. 6¢,d).
Multiple factors may contribute to the inability of
the CAM4/CAMS Green’s functions to capture the
behavior of CMIP6 models, and we consider two of
them here.

First, we consider the possibility that the CAM4/
CAMS Green’s functions cannot capture feedback
changes in the CMIP6 models, even assuming that the
radiative response to SST patterns remain linear
(section 4a). That is, the CMIP6 models may be

systematically different from the CMIP5 models from
which the Green’s functions are built. One example
is the modifications made to extratropical clouds in
CMIP6 models, whose feedbacks have strengthened in
CMIP6 owing to changes in their sensitivities to local
environmental conditions (Zelinka et al. 2020). These
changes may give rise to a different dependence of cloud
feedbacks on SST pattern, presumably with stronger
cloud radiative response to Southern Ocean warming.
In this case, the global TOA radiation change may no
longer be dominated by the tropical warm-pool warming
as seen in CAM4 Green’s function for example (see
Dong et al. 2019, their Fig. 11), but could instead also be
strongly influenced by the Southern Ocean warming.
As aresult, the delayed Southern Ocean warming would
yield a stronger pattern effect on the cloud feedback
(i.e., a greater positive AAcrp). Indeed, the Southern
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FIG. 9. Correlation coefficients () for local regression of global-mean A\ against local ASST"
(local SST warming rate relative to global-mean SST change) across (left) CMIP5 models and
(right) CMIP6 models for (a),(b) net AA, (c),(d) cloud Aj, (e),(f) surface-albedo AA, (g),(h)
lapse rate AA, and (i),(j) water vapor feedback. Hatching marks grids where correlations are
significant (i.e., p < 0.05).
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Ocean is highlighted in the CMIP6’s result in Fig. 9d
with a stronger positive correlation, suggesting a stron-
ger sensitivity of cloud feedback on the Southern Ocean
warming rate. If this is the case, new Green’s functions
with up-to-date GCMs may better capture the causes of
feedback changes in CMIP6 models.

Apart from extratropical clouds, changes in CMIP6
models may also yield a different radiative response to
the equatorial eastern Pacific, where delayed warming
seems to drive a negative AA corresponding to a strength-
ening of global-mean (negative) feedback over time
(Fig. 9b). However, there also remains a possibility
that the correlation between the equatorial eastern
Pacific warming and AA is not causal but comes about
through correlations between the eastern Pacific and
SH extratropical warming rates, for instance. Specific
mechanisms need to be further uncovered.

A second possibility comes from the potential non-
linear state dependence of feedbacks in the CMIP6
models, in which case the Green’s functions can no
longer apply as they rely on linear estimation. In par-
ticular, we consider a well-documented nonlinearity
in the extratropical mixed-phase cloud feedback. The
negative mixed-phase cloud feedback arises from the
brightening of the clouds as they become increasingly
composed of liquid droplets with warming. Therefore, it
depends on the mean-state of ice/liquid fraction of the
clouds, with more ice in the initial state leading to a
stronger negative-feedback with warming (Tsushima
et al. 2006; Storelvmo et al. 2015; McCoy et al. 2015).
Many CMIP6 models now have higher climatological
cloud liquid water fractions, in better agreement with
observations (Bodas-Salcedo et al. 2019; Gettelman
et al. 2019; Zelinka et al. 2020). Bjordal et al. (2020,
manuscript submitted to Nat. Geosci.) shows that in
CESM?2, with the inclusion of a new mixed-phase ice
nucleation scheme, the negative mixed-phase cloud
feedback weakens with warming from the first 15 years
to the last 15 years of abrupt4xXCO2 simulation, par-
ticularly over the Southern Ocean, as the amount of ice
decreases allowing for no further phase change to hap-
pen (see their Fig. 3). This weakening toward longer
time scales in their simulations leads to a positive AAcpp
over the Southern Ocean, which is primarily driven by
the nonlinear state dependence rather than by the pat-
tern effect. If this case holds more generally across the
CMIP6 models, the nonlinear state dependence of
AAcrp on the Southern Ocean warming may never be
captured by any Green’s functions, as the method relies
on linear estimation.

In summary, we found the CMIP5 and CMIP6 en-
sembles on average highlight different regions where
surface warming can influence the magnitude of global-
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mean AA (Fig. 9). In CMIPS5, intermodel differences in
AX are overall driven by intermodel differences in the
surface warming rates over the west Pacific warm-pool
region, where surface warming has strong remote impact
on global TOA radiation changes (Dong et al. 2019). In
CMIP6, intermodel differences in AA (and the cloud
component AAcp in particular) appear to have more
contributions from SH extratropical warming and
tropical eastern Pacific warming. Specific physical
mechanisms are under investigation. Here we speculate
that the stronger sensitivity of feedbacks on the delayed
extratropical warming may result either from a stronger
pattern effect (stronger cloud radiative response to sur-
face warming in this region) or from a nonlinear state
dependence of extratropical cloud feedback on the mean
state of the liquid fraction in the clouds.

5. Conclusions

In this study, we investigated the changes in radiative
feedbacks over time and their contributions to climate
sensitivity from abrupt4XCO2 simulations within 24
CMIP5 GCMs and 29 CMIP6 models. Comprehensive
comparisons were made between the two CMIP gener-
ations and between individual models. To examine the
time variation of feedbacks, we derived feedback pa-
rameters from the Gregory regressions between the net
TOA radiation imbalance and surface air temperature
change over years 1-20 as A 1_»o and years 21-150 as A»_150,
and use AA (= Az1_150 — A1_p0) to represent the feedback
changes over time.

We found that on average the effective ECS derived
from the regression is higher and AA is smaller in CMIP6
relative to CMIP5. We then evaluated the correlation
between ECS,;_150 (derived from years 21-150; featur-
ing long-term response) and ECS;_5 (derived from
years 1-20; featuring fast response governed primarily
by A1_s0). The correlation (+7) is 0.69 for CMIP5 and 0.70
for CMIPO6, suggesting that the variance in ECS (as es-
timated by ECS,;_150) is dominated by the differences in
radiative response on the fast time scale, rather than the
differences in AA. This also explains the fact that a
greater AA generally leads to a greater effective ECS
within individual climate models, yet the higher effec-
tive ECS in the CMIP6 models occurs despite smaller
AA. We also compared the ECS-to-ECSy;,; ratio be-
tween CMIP5 and CMIP6, where ECSy,;; is estimated
from years 2-50 of abrupt4 X CO2 simulations as an analog
for historical warming. We found the difference in feed-
back estimates between the short-term abrupt4xCO2
(as the proxy for historical energy budget) and the long-
term abrupt4 X CO2 (as the proxy for equilibrium state)
is on average smaller in CMIP6, and the CMIP6-mean
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ECS-to-ECSy,;5 ratio is also slightly reduced, on average,
relative to CMIPS, suggesting a weaker forced pattern
effect in CMIP6 abrupt4XCO2 simulations. Further
work employing fully coupled historical simulation and
RFMIP simulations are expected to provide a more
accurate estimate on historical energy budget and the
role of unforced pattern effect by internal variability
over the historical period.

Although the spread in AA contributes less to the
spread in ECS than does atmospheric model physics,
understanding the magnitude of AX and the pattern ef-
fect is still of a great importance to constrain ECS on
longer time scales. By comparing the multimodel mean
AX in the CMIPS and CMIP6 models, we see great
similarities in the spatial patterns of A\, highlighting the
cold tongue regions with delayed warming. An overall
smaller ensemble-mean AA in the CMIP6 models is pri-
marily due to the difference in surface-albedo feedback
over the Arctic. While the positive Arctic surface-albedo
feedback generally strengthens with time in CMIPS, it
weakens over time in CMIP6, compensating the global-
mean change in surface-albedo feedback. This is caused
primarily by changes in surface warming patterns in
CMIP6, which feature rapid Arctic warming on the fast
time scale followed by slow Arctic warming on the slow
time scale. But we caution that the differences between
ensemble-mean AA are not statistically significant given
the large spread across models, and the results may be
subject to change as more models come in.

Because both model physics and surface warming
patterns are important for driving AA, we employ Green’s
functions to isolate their contributions and investigate
why individual models produce different AA. The Green’s
functions used in this study are derived from two GCMs,
which intrinsically represent the given model physics of
CAM4 or CAMS but can be independently applied to
different SST anomaly patterns. When applied to the
CMIPS models, the Green’s functions reproduce AA well
but cannot capture Aq_po, suggesting that A\ is primarily
set by the differences in warming patterns, while Aq_5q is
presumably determined by the differences in model
physics. Building upon Dong et al. (2019), the spread in
A is found to be well correlated with the change in the
warm-pool warming ratio, defined as the relative ocean
warming from warm-pool ascent regions to global-mean
surface air warming. Across CMIP5 models, this simple
metric is able to explain over 60% variance of AA. Models
showing greater AA generally have west Pacific warm-
pool regions warming up more quickly than the rest of
world oceans on the fast time scale, but more slowly on
longer time scales. This transition, on the other hand,
is less significant in models that produce smaller AA.
Regression of global-mean AA against local warming
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rates also highlights the west Pacific warm-pool regions as
the dominant control driving AA variance across CMIPS
models, consistent with recent observations identifying
the warm-pool as a key region controlling global radia-
tion (e.g., Fueglistaler 2019).

However, the correlation analysis across CMIP6 models
show a different spatial distribution, with SH extra-
tropics and equatorial eastern Pacific being highlighted
in addition to the west Pacific warm-pool regions, sug-
gesting that the CMIP6 values of AA may not be domi-
nated by tropical warm-pool warming. The specific
mechanism needs to be further uncovered; we speculate
here that it may be partly attributable to a stronger
sensitivity of extratropical clouds to surface warming.
Future studies employing Green’s function approach
built from the CMIP6 models may bring more insights
on investigating the pattern effect within the latest
generation of GCMs, but will have limitations in the
case that nonlinear state dependence of feedbacks also
contributes to the changes in feedbacks with time.
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