Hadley Circulation Effect on Climate

- Water vapor transport
- Precipitation distribution and the Intertropical Convergence Zone (ITCZ)
- Fraction and types of clouds
- Redistributes heat and momentum
- Surface winds drive ocean currents
Hierarchical Approach

- Models of increasing complexity to build understanding
 - Isolate particular physical effects

- Main focus here:
 - Intermediate complexity moist GCM
 - Isolate the dynamical effect of moisture (latent heating when condensation occurs)

- Interaction between different levels of complexity is key
 - Frequent comparison with more complex models
Outline

- Introduction to Moisture and Moist GCM Description
- Effect of Convection on the Hadley Circulation
- Convectively Coupled Kelvin Waves
- ITCZ Response to Extratropical Forcing
- Hadley Cell Expansion with Global Warming
Introduction to Moisture

- Saturation vapor pressure: how much water vapor can exist in air before condensation
 - Increases rapidly with temperature:
 \[e_s = e_{s0} \exp \left(-\frac{L}{R_v} (T^{-1} - T_0^{-1}) \right) \]

- Water vapor releases latent heat when it condenses
- Typical tropical lower tropospheric moisture values: 40 K of latent energy
Idealized Moist GCM

- Gray radiative transfer
 - Water vapor, other radiative feedbacks suppressed
 - Radiative fluxes only a function of temperature

- Aquaplanet surface (ocean-covered Earth)
 - Slab mixed layer
 - Zonally symmetric

- Simplified parameterizations of moisture and convection
Model Climatology

- Zonal wind and temperature
Tropical General Circulation Theories

- One traditional view: latent heating “drives” the circulation
 - Would expect increases in strength with more moisture
- In idealized GCM simulations, Hadley cell weakens (by up to a factor of 10) as moisture is increased!
 - Hadley cell weakens in global warming simulations too
- Problems with traditional view:
 - Moisture affects aspects of “basic state,” e.g. static stability
 - Precipitation constrained by energy balance
- Need to consider energy budget
Energy Budget

- Dry static energy budget:

\[\nabla \cdot (\rho \nu s) = LP + SH - R \]

\[s = c_p T + gz \] = dry static energy, \(L \) = latent heat constant, \(P \) = precipitation, \(SH \) = sensible heat flux, \(R \) = radiative cooling

- Globally, \(LP \approx R \)
Moisture Budget

- Moisture budget:

\[
\nabla \cdot (\rho \nu q) = E - P
\]

E = evaporation, q = specific humidity
Moist Static Energy Budget

- Moist static energy budget:
 \[\nabla \cdot (\rho vm) = LE + SH - R \]
 \[m = c_p T + gz + Lq \]
 \[= \text{moist static energy} \]

- If no net flux through mixed layer,
 \[LE + SH + R_s = 0 \]
 \[\nabla \cdot (\rho vm) = SW - OLR \]
Effect of Convection Scheme

- Instantaneous precipitation, idealized GCM:
Simple Convection Schemes

- Large scale condensation only (LSC only):
 - Only precipitate when gridbox is saturated
- Simplified Betts-Miller scheme (SBM):
 - Relax temperature to moist adiabat (up to level of zero buoyancy)
 - Relax humidity to specified relative humidity w.r.t. adiabat
 \[
 \frac{T - T_{eq}}{T}, \quad \frac{q - q_{eq}}{T}
 \]
 - Make energy correction
 - Perform shallow convection when \(P < 0 \)
Effect of Convection on ITCZ

- Control SBM and LSC only precipitation comparison:
 - Maximum precip increased by 50% in LSC case
 - Total precip stays approximately the same
Effect of Convection on ITCZ

- Control SBM and LSC only midtropospheric streamfunction comparison:

- Hadley circulation fluxes more moisture equatorward in LSC only case

\[\delta P \approx q \frac{\partial}{\partial y} (\delta v) \]
Varying Convection Scheme Parameters

- Change SBM convective relaxation time from 1 hr to 8 hrs:
Varying Convection Scheme Parameters

- Change SBM convective relaxation time from 1 hr to 16 hrs:
Varying Convection Scheme Parameters

- Explanation:

$$P = \frac{\bar{q} - \bar{q}_{eq}}{\tau}$$

$$\bar{q} = \bar{q}_{eq} + \tau P$$

- Higher relaxation times have higher relative humidity until LSC occurs
Varying Convection Scheme Parameters

- Can have intermediate regimes as well:
 - Hadley cell can attain any intermediate value
 - Reference profile humidity parameter can change LSC fraction as well
 - Fraction of convective versus large scale condensation is key
Gross Moist Stability

- Introduce the “gross moist stability” (energy transport per unit mass transport):

\[\Delta m = \frac{\int_0^{p_s} \bar{v} \bar{m} \, dp}{\int_{p_m}^{p_s} \bar{v} \, dp} \]

- Gives efficiency of Hadley cell at transporting energy
Gross Moist Stability

- GMS:

\[\Delta m = \frac{\int_0^{P_s} \bar{v} \bar{m} \, dp}{\int_{P_m}^{P_s} \bar{v} \, dp} \]

- More large scale precip => smaller GMS
- Can have negative values!
Gross Moist Stability

- Smaller GMS => less efficient Hadley cell
 - More mass flux required to transport same amount of MSE (to keep temperature gradients weak)

- Negative GMS cases:
 - Eddy fluxes increase significantly for these cases (so total transport is poleward)

- What sets GMS in the ITCZ?
Gross Moist Stability

- Typical moist static energy profile:

\[\Delta m = \frac{\int_0^{P_s} \bar{v} \bar{m} \, dp}{\int_{P_m}^{P_s} \bar{v} \, dp} \]

- Upper tropospheric outflow
- Lower tropospheric inflow
Gross Moist Stability

- Typical moist static energy profile:

\[
\Delta m = \frac{\int_0^{P_s} \bar{v} \bar{m} \, dp}{\int_{P_m}^{P_s} \bar{v} \, dp}
\]

Smaller GMS

Lower outflow

Lower tropospheric inflow
Theory for Gross Moist Stability

- **GMS is larger when:**
 - Convection can easily occur up to high levels
 - The convection scheme is penetrative

- **GMS is smaller when:**
 - Abrupt trigger for convection (e.g., saturation of gridbox required)
 - CAPE built up and rapidly released

- **GMS then influences strength of Hadley circulation**

Frierson 2007a (JAS, in press)
“Hypohydrostatic” Experiments

- Non-hydrostatic model (GFDL ZETAC model)
- Same idealized physics (LSC only)
- Transform equations so that maximum convective growth is at a larger scale (after Kuang, Blossey and Bretherton 2005)
- Examine effect on tropical general circulation

Collaboration with Steve Garner, Olivier Pauluis, Isaac Held, and Geoff Vallis
Depth of Convection

- Convection gets deeper:
 - Vertical velocity reaches 13 km instead of 10 km
 - Wider updrafts

Control

Hypohydrostatic
Effect on Zonally Averaged Circulation

- Has same effect on tropical circulation as adding a convection scheme
 - Deeper convection, larger GMS, weaker Hadley cell

Garner et al 2007 (JAS, in press)
Summary to this point

- Properties of convection scheme can strongly influence Hadley cell
 - “Deep tropical control” on Hadley circulation
- Can increase strength up to 50% by tuning parameters
- Can vary gross moist stability over wide range as well
- Excellent test grounds for theories of tropical general circulation
Kelvin Waves

- Standard two-layer model:
 \[
 \frac{\partial u}{\partial t} = -\frac{\partial T}{\partial x} \quad \frac{\partial T}{\partial t} = -\Delta s \frac{\partial u}{\partial x} + LP
 \]
 Dry equations give wavespeed of \(\sqrt{\Delta s} \)
- But precip is correlated with convergence
 \[
 P = -\Delta q \frac{\partial u}{\partial x}
 \]
 so
 \[
 \frac{\partial T}{\partial t} = -\Delta m \frac{\partial u}{\partial x}
 \]
- Phase speed goes as \(\sqrt{\Delta m} \)
Kelvin Waves in Idealized GCM

- Does GMS reduction lead to slower Kelvin waves?

Wavenumber-frequency spectra (Wheeler-Kiladis):

- GMS = 7 K
- GMS = 4.5 K
- GMS = 2.5 K
- GMS = -2.5 K

Frierson 2007b (JAS, in press)
Equatorial Waves in a Full GCM

- Experiments with SNU atmospheric GCM
 - Run over observed SST’s
 - Simplified Arakawa-Schubert (SAS) convection scheme
 - Vary strength of convective trigger

Collaboration with Jialin Lin, In-Sik Kang, Myong-In Lee, and Daehyun Kim