Title: Anthropogenic Sulfate Aerosol and the Southward Shift of Tropical Precipitation in the late 20th Century

Authors: Yen-Ting Hwang1*, Dargan M. W. Frierson1, Sarah M. Kang2

Affiliations:
1Department of Atmospheric Sciences, University of Washington, Seattle.
2School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
*Correspondence to: yting@atmos.washington.edu

Abstract: In this paper, we demonstrate a global-scale southward shift of the tropical rain belt during the latter half of the 20th century in observations and global climate models (GCMs). In rain gauge data, the southward shift maximizes in the 1980s, and is associated with signals in Africa, Asia and South America. A southward shift exists at a similar time in nearly all CMIP3 and CMIP5 historical simulations, and occurs on both land and ocean, although in most models the shifts are significantly less than in observations. Utilizing a theoretical framework based on atmospheric energetics, we perform an attribution of the zonal mean southward shift of precipitation across a large suite of CMIP3 and CMIP5 GCMs. Our results suggest that anthropogenic aerosol cooling of the Northern Hemisphere is the primary cause of the consistent southward shift across GCMs, although other processes affecting the atmospheric energy budget also contribute to the model-to-model spread.
1. Introduction

The steady decrease of rainfall in the Sahel, beginning in the 1950s and peaking with a pronounced minimum in rainfall in the early 1980s, is perhaps the most striking precipitation change in the 20th century observational record [Nicholson, 1993; Dai et al., 2004]. Sea surface temperature (SST) patterns are often implicated in changes in tropical precipitation. Folland et al. [1986] linked this drought with the relative changes in sea surface temperature between the hemispheres that were observed worldwide. Giannini et al. [2003] and Zhang and Delworth [2006] demonstrated the responses of rainfall in the Sahel to ocean forcing through single model experiments. Tropical precipitation over Asia can also be affected by interhemispheric SST patterns. Chung and Ramanathan [2006] demonstrated the effect of north-south SST gradients in the tropical Indian Ocean on the Asian summer monsoon.

In this paper, we examine global precipitation changes in the late 20th century in observations and global climate model (GCMs) simulations from the Coupled Model Intercomparison Project Phase 3 and Phase 5 (CMIP3 and CMIP5), and look for the causes of the southward precipitation shift. Local SSTs have a direct link with tropical rainfall; however, they may not be the root cause. Friedman et al. [2013] analyze the temperature contrast between the NH and Southern Hemisphere (SH) in various datasets, and report a drop in the NH minus SH temperature during 1960s to 1980s, followed by a steady increase. An increase of sulfate aerosol concentration, multidecadal ocean variability, and discrete cooling events in the Northern Hemisphere (NH) oceans have all been proposed to explain the observed SST variability [Tett et al., 2002; Knight et al. 2005; Thompson et al. 2010].

We perform an attribution analysis of the zonal mean tropical precipitation changes in GCMs using a method based on energetic constraints [Frierson and Hwang, 2012; Hwang and Frierson,
The energetic framework, described in Section 3, essentially posits that the tropical rain belt is drawn towards the hemisphere with more heating. By analyzing factors contributing to the hemispheric asymmetry of heating, we conclude in Section 4 that aerosol forcings are the primary cause of the late 20th century shift in GCMs. Other factors such as longwave cloud effects, the water vapor greenhouse effect, and ocean heat uptake and circulation changes also contribute, but their effects vary among models.

2. The global-scale southward shift of tropical rainfall

We examine precipitation in the Global Historical Climatology Network (GHCN) Gridded Products [Peterson and Vose, 1997], which takes into account precipitation data from stations throughout the world. Drying of the northern side and wetting of southern side of the tropical rain belt from the late 1960s to the 1980s is seen in its zonal mean (Fig. 1(A)). Negative anomalies of over 10 cm/yr in the zonal mean just north of the equator in the early 1950s become positive anomalies of 10 cm/yr by the mid 1980s. South of the equator the changes are less prominent than those in the NH, but are generally of opposite sign to the changes north of the equator.

The drying of the NH tropics during 1971-1990 is most significant in the Sahel region, but it is also observed in South America and South Asia over limited regions that have station data available (Fig. 2(A)). A moistening south of the equator around northeast Brazil, and the African Great Lakes region is also observed (Fig. 2(A)). An independent precipitation dataset that has complete spatial coverage over land and ocean, the 20th Century Reanalysis (20CR) [Compo et al., 2011], shows a more significant southward shift (Fig. 1(B), Fig. 2(D)). In 20CR, the shift occurs over both land and ocean (Fig. 2(B)), but has discrepancies compared with the
rain gauge data in terms of timing, magnitude and spatial pattern. It is unclear whether this is in part due to the addition of oceanic data points, or is primarily due to inadequacies of the reanalysis product. In the Supplementary Materials, we show that 20CR captures the primary variability patterns of precipitation in recent decades, and therefore is a useful secondary confirmation of a southward shift during the late 20th century.

Do GCMs simulate the observed southward shift of rainfall seen in GHCN and 20CR data? We analyze historical simulations, experiments that consider both natural and anthropogenic forcings to simulate the climate during the 20th century, from all CMIP3 and CMIP5 models (listed in Supplementary Fig. S3). We find that most GCMs simulate some degree of the southward shift, although all but a few underestimate it by at least a factor of two (the shifts of each GCM are shown in the y-axis of Fig. 3(A)). In the multimodel time series (Fig. 1(C), the anomalously dry NH tropics is most prominent in the years around 1980, when the SH tropics was anomalously moist. The multimodel mean anomaly map (Fig. 2(C) shows that the modeled shift is remarkably zonally symmetric, with the exception of the west Pacific and Southeast Asia.

3. The global energetic framework and the attribution analysis

In this section, we investigate the cause of the robust southward shift across GCMs with a theoretical framework based on energetic constraints of the system [Frierson and Hwang, 2012; Kang et al. 2008; Kang et al. 2009]. The Hadley circulation is the foundation of this global energetic framework. While it transports energy poleward in the upper branch, its lower branch also converges moisture toward the tropical rain belt. The Hadley circulation creates a strong link between the hemispheric heating asymmetry and location of the tropical rain belt. For
example, when cooling is imposed in the NH, the northern Hadley cell strengthens to transport energy northward and keep the tropospheric temperature flat within the tropics. At the same time, moisture transport in the lower branch shifts the tropical rain belt southward. Forcings within the tropics are not necessary to cause shifts in the tropical rain belt. High latitude forcings cause shifts in the tropical rain belt as well, with southward shifts in response to increases in NH sea ice [Chiang and Bitz, 2005] or reductions in the thermohaline circulation [Zhang and Delworth, 2005]. Our theoretical framework predicts that the tropical rain belt will shift away from the hemisphere with more cooling (or towards the hemisphere with more heating). With this framework, one would expect models with more cooling in the NH to have an increase in northward cross-equatorial atmospheric energy transport and a southward shift of tropical rain, and this can be seen in Fig. 3(A).

Having shown that tropical precipitation shifts are highly anticorrelated with cross-equatorial energy transports, we next perform an attribution study to explain the cross-equatorial energy transport in each model. Here, we list out the steps for our attribution analysis of tropical precipitation shift in GCMs:

1. We use the approximate partial radiative perturbation (APRP) [Taylor et al., 2007] method to separate changes in shortwave (SW) radiation into changes due to variations in surface albedo, cloud, noncloud SW scattering, and noncloud SW absorption. Surface albedo includes changes in sea ice and snow cover. Cloud includes changes in cloud area and cloud properties. Noncloud shortwave scattering is the change in atmospheric scattering that cannot be explained by surface albedo or cloud, and is primarily due to changes in scattering aerosols. Noncloud SW absorption is the change in atmospheric absorption that cannot be explained by surface albedo or cloud, which is primarily due to changes in absorbing aerosols, ozone, and water vapor. The
sum of the four terms is the same as the difference in net incoming shortwave radiation between 1931~1950 and 1971~1990. The APRP method is particularly accurate for this type of multi-model comparison study since it does not require considering the differences in model climatology. However, the 1-layer atmosphere assumption only works for SW radiation.

(2) We use the radiative kernel technique [Soden et al., 2008] to calculate the changes in longwave radiation due to variations in cloud, lapse rate, water vapor, and surface temperature. This technique provides a simple way to partition changes in longwave radiation across different models using a consistent methodology. Cloud feedbacks cannot be evaluated directly from a cloud radiative kernel because of strong nonlinearities, but they can be estimated from the change in cloud forcing and the difference between the full-sky and clear-sky kernels. We also calculate a longwave residual term, which is the difference between the changes in longwave radiation and the sum of all terms.

(3) Changes in surface flux also contribute to the atmospheric energy budget, and there are two factors that can cause changes in this: changes in ocean heat transport and differential ocean heat uptake. We can interpret changes in surface fluxes as due to variations in these aspects of the ocean, which can be due to either natural variability or aerosol- or global warming-induced trends.

(4) We calculate the implied cross-equator energy transport change due to different terms (described in steps (1)–(3)) by the equations below [Frierson and Hwang, 2012; Wu et al., 2010; Donohoe and Battisti, 2012; Zelinka and Hartmann, 2012]:

\[
F_A(\phi = 0) = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\pi} Q_A \, d\theta \cos \phi \, d\phi = -\int_{0}^{2\pi} \int_{0}^{\pi/2} Q_A \, d\phi \cos \phi \, d\theta,
\]
where $F_A(\phi = 0)$ is the implied cross-equator energy transport, ϕ is latitude, λ is longitude, a is radius of the earth, and Q_A is the change in atmospheric energy budget due to a factor described in steps (1)~(3) with its global-mean value subtracted out. The results are plotted in Figure 3(B) (y axes on the left). In Figure 3(B), we sum up all of the terms related with atmospheric radiative feedback, but we have also investigated their individual contributions (Supplementary Fig. S3). For GCMs that simulate aerosol indirect effects, the indirect effect dominates the structure of shortwave cloud effects; therefore, we include the shortwave cloud effect into the scattering aerosol term in these models. However, even without including the indirect effect, scattering aerosols are still the most dominant term in multi-model mean (Supplementary Fig. S3).

(5) We estimate how much southward shift of precipitation may be induced by the implied cross-equator energy transport change due to each climate component (Fig. 3(B) y-axis on the left) using the linear relationship in Fig. 3(A).

4. Aerosol Forcings and Tropical Precipitation

One possible cause of the southward precipitation shift from 1931~1950 to 1971~1990 is scattering aerosol-induced cooling that primarily occurs in the NH. The 1971~1990 time period experienced the most dramatic southward shift (Fig. 1), and is also the time period that sulfate aerosols emissions peaked. Because aerosols have short lifetimes of a week or two, they are concentrated close to their sources primarily in the NH extratropics and thus cool the NH relative to the Southern Hemisphere (SH). The notion that differential radiative forcings due to reflecting aerosols can shift tropical precipitation southward has been emphasized previously [Chang et al., 2010; Biasutti and Giannini 2006], and has been demonstrated in single-model or
single forcing experiments [Rotstayn et al., 2000; Williams et al., 2001; Rotstayn and Lohmann, 2002; Held et al., 2005; Yoshimori and Broccoli, 2008; Bollasina et al., 2011]. The method described in the last section allows us to address the role of aerosols, ocean processes, and climate feedbacks quantitatively across a large suite of models.

Scattering aerosol (Fig. 3(B)) is the dominant term in the multi-model mean, which indicates that this term is the main cause of the northward cross-equatorial energy transport and the southward precipitation shift. Other terms (Figs. 3(B) and S3) such as longwave cloud effects, water vapor greenhouse effect, and ocean heat uptake and circulation changes can influence cross-equatorial transport as well. In some models, these are the dominant terms. However, the hemispheric asymmetries of these terms are not consistent across GCMs, introducing a northward shift in some GCMs, but a shift of opposite sign in others. The spread across GCMs could be due to differences in natural variability or uncertainties in climate feedbacks with global warming.

5. Conclusions and Discussions

These results suggest that scattering aerosols are the primary driver of the multimodel mean tendency to shift precipitation southward in the late 20th century (mechanism described in Fig. 4), and aerosols lead to much of the model-to-model variability in the simulated shifts as well. One might infer that since all models underestimate the observed precipitation shift (black dashed and black dashed-dotted lines in Fig. 3(B)), more aerosol forcing should be added to the models to improve agreement with observations. However, other energetic responses in the atmosphere and ocean changes (Fig 3(B)) also lead to significant model-to-model spread in the simulations. The important role of processes such as clouds, surface albedo, and the ocean,
along with observational uncertainties in the historical precipitation dataset imply that this likely
will not be useful as an observational constraint on past aerosol effects.

Another factor that may explain the underestimation of the southward shift in GCMs is that
GCMs fail to simulate the historical variations in oceanic circulation. A weakening in the
thermohaline circulation has been proposed to explain the variation in the interhemispheric
thermal anomaly, which is tightly linked with tropical precipitation [Baines and Folland, 2007;
Thompson et al., 2010; Friedman et al., 2013]. However, it is unclear if the variation in ocean is
due primarily to natural variability or anthropogenic forcings. Booth et al. 2012 proposed that
aerosols may be the driver of the observed oceanic variability in North Atlantic during the 20th
century, although their results are highly model dependent [Chiang et al., 2013]. It is also
possible that GCMs simulate too little shift for a given forcing. However, the fact remains that
large fraction of the southward shift of tropical precipitation in the late 20th century was likely
driven by scattering aerosol emissions.

After clean air legislation was enacted in the US and Europe in the early 1990s, scattering
aerosol concentrations were reduced significantly. In the 21st century, scattering aerosols are
expected to continue to decrease, although this assumes continued strict controls on sulfate
emissions. One may expect that this would cause a continued northward recovery of tropical
precipitation; however, changes in other energetic terms in the atmosphere and ocean responses
can clearly complicate the story [Friedman et al., 2013]. A better estimate of changes in the
radiation budget and ocean circulation in the future will help narrow the uncertainties in our
future projections of tropical precipitation.
References:

Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann (2005) A signature of

Figure 1. Time series of zonal mean precipitation anomaly. Zonal mean precipitation anomaly (relative to the 20th century mean) based on (A) the Global Historical Climatology Network (GHCN) gridded products (B) the 20th century reanalysis project (20CR) and (C) the ensemble mean of the 20th century climate simulations from 14 GCMs in CMIP3 and 12 GCMs from CMIP5. Values are smoothed with the 13-point filter to remove fluctuations of less than decadal time scales (as in Solomon et al. [2007]).
Figure 2. Spatial map and zonal mean of changes in precipitation. Changes in precipitation from 1931~1950 to 1971~1990 based on (A) the Global Historical Climatology Network (GHCN) gridded products (B) the 20th century reanalysis project (20CR), and (C) the ensemble mean of the 20th century climate historical simulations from 14 GCMs in CMIP3 and 12 GCMs from CMIP5. (C) the zonal mean of the two along with the 20CR product. The red shading represents the spread of one standard deviation at each latitude among GCMs.
Figure 3. Attribution of tropical precipitation shift based on the global energetic framework. (A) The tropical precipitation shift versus changes in cross-equatorial atmospheric energy transport. Grey circles are models from CMIP3. Black circles are models from CMIP5. Open circles indicate models with no indirect aerosol effects (no SI), closed circles indicate models with indirect aerosol effects (SI), and the red and the pink Xs indicate the ensemble means of the CMIP3 models and the CMIP5 models, respectively. The light grey solid line shows the best linear fit of all models. (B) Attribution of tropical precipitation shift and changes in cross-EQ transport. The black dashed and black dashed-dotted lines mark the precipitation shifts in GHCN and 20CR, respectively.
Figure 4. Schematic of the proposed mechanism for the southward tropical precipitation shift. Sulfate aerosols are primarily located in Northern Hemisphere midlatitudes during 1971~1990. Aerosol direct and indirect effects decrease the absorbed solar radiation and induce a strong cooling locally. This cooling is spread into the Northern Hemisphere tropics by baroclinic eddies. An anomalous Hadley circulation is induced in order to transport energy from the Southern Hemisphere to the Northern Hemisphere and keep the tropospheric temperature gradients relatively flat within the tropics. Since most of the water vapor is in the lower troposphere, this anomalous Hadley circulation transports an anomalous southward moisture flow and results in a southward shift of the tropical rain belt.
Supplementary Materials:

1. Validation and Analysis of the 20th Century Reanalysis Precipitation Data

The 20th century reanalysis (20CR) project only assimilates surface pressure, monthly sea surface temperature, and sea ice distribution [Compo et al., 2011]. Its precipitation data requires careful examination. To validate the precipitation in 20CR, we use Maximum Covariance Analysis [Bretherton et al., 1992; Wallace et al., 1992] to evaluate its ability to capture year-to-year variability observed in the Global Precipitation Climatology Project (GPCP) [Adler et al., 2003; Xie et al., 2003] during 1979~2010.

The Maximum Covariance Analysis is applied to the annual mean precipitation field in the 20CR and the GPCP. First of all, the normalized root mean squared covariance is 0.47, which indicates significant correlation between the two fields. The correlations between the expansion coefficients in the two fields are above 0.96 for the first five modes. The heterogeneous maps are shown in Fig. S1. We repeat the analysis on annual mean zonal mean precipitation field. The normalized root mean square covariance is 0.37. The correlations between the expansion coefficients in the two fields are above 0.78 for the first five modes. The heterogeneous maps are shown in Fig. S2.
Fig. S1. Heterogeneous regression maps from MCA of GPCP and 20CR precipitation fields. (A), (C) Covariance from the 20CR precipitation field regressed upon the first and second normalized GPCP precipitation expansion coefficients, respectively; (B), (D) covariance from the GPCP field regressed upon the first and second normalized 20CR expansion coefficients, respectively. Spatial correlation coefficients are 0.86 between (A) and (B) and 0.78 between (C) and (D).
Fig. S2. Heterogeneous regression maps from MCA of GPCP and 20CR zonal mean precipitation fields. Spatial correlation coefficients are 0.90 and 0.85 between the red and the blue lines in (A) and (B), respectively.

These results indicate that the 20CR captures most of the year-to-year precipitation variability during 1979–2010, without assimilating precipitation observations. Only assimilating a few surface variables not only makes the 20CR independent from the GHCN rain gauge data but also avoids the artificial trends induced by data from the introduction of newer measurements like radiosondes or satellite data, a problem that plagues other reanalyses [Bengtsson et al., 2004; Kinter et al., 2004].
2. Attribution Analysis.

The results of the attribution technique described in the main text are plotted in Fig. S3. Positive values for the y-axis on the right imply this particular term requires an increase in northward energy transport at the equator and thus may shift the ITCZ southward (y-axis on the left). The y-axis on the left is calculated from the linear relationship in Fig. 3(A). Models with more increase in the northward cross-equatorial energy transport are in red, and models with less increase in northward cross-equatorial energy transport are in blue (last column in Fig. S3).

Even without including the indirect effect from the cloud SW term (Cs), scattering aerosols are still the most dominant term in multi-model mean. This term also has a wide spread because GCMs do not have standard prescriptions of scattering aerosol forcing strength and distribution. The cloud LW effect (Cl) and water vapor greenhouse effect (WV) are positive correlated with the shift (stacked blue to red). Their positive feedbacks on precipitation shifts are described in previous studies [Yoshimori and Broccoli, 2009; Frierson and Hwang, 2012].
Fig. S3. Attribution of precipitation shifts in (A) CMIP3 and (B) CMIP5 models. The columns are scattering aerosols (As), the shortwave cloud effect (Cs), the surface albedo effect (I), aerosol, water vapor, and ozone absorption (Aa), the longwave cloud effect (Cl), the lapse rate effect (LR), the water vapor greenhouse effect (WV), the surface temperature effect (Ts), the longwave residual term (LWr), surface flux change (O), and the sum of all terms above (All). Each circle represents one GCM. Open circles are GCMs with no indirect aerosol effect parameterization. Close circles are GCMs with indirect aerosol effect parameterization. The X symbols denote the multi-model mean in each column.
Supporting References:

