Gill Model

- **Steady response to heating:**

 Gaussian heat source in center of domain.

 Boundary conditions are infinite in y, periodic in x

 Top panel: convergence
 Bottom panel: velocity vectors and vorticity

Fig. 1. Exact solution to the Gill model (no zonal compensation of mass sink) with zonally periodic boundary conditions. (top) Horizontal divergence (solid contours 0.1 to 0.9 by 0.2; dashed 0.02 and 0.06; and chain-dashed −0.1 to −0.02, by 0.04; all in units of D_0). (bottom) Velocity vectors and contours of vorticity (contour interval is 0.6D_0, negative contours dashed). Full computational domain extends up to $|y/R_0| = 10$.

From Bretherton and Sobel 2003
Gill Model

Also get cool asymmetric (about the equator) things:

Heating applied in region A.

Only subsidence contours are drawn (there is upward motion elsewhere).

From Gerber, Ito and Schubert (2001)
Summary of Derivations

- Barotropic and first baroclinic modes
- No barotropic mode => dynamics are linear!
 - No barotropic mode + Newtonian cooling + Rayleigh friction + prescribed latent heating => “Matsuno-Gill model”
- Moisture equation for precipitation term
 - Can make condensation the only nonlinearity
The Transients

- Equatorial waves:
 - Dry and with moisture
 - Observations and models
- Start with derivations:
 - 1-D, non-rotating baroclinic modes
 - Equatorial Kelvin wave derivation
Dispersion Relations for Equatorial Waves

- System has the following: (see Majda 2003 or Gill for more details)
 - Kelvin waves (nondispersive eastward propagating waves)
 - Mixed Rossby-gravity wave (Yanai mode)
 - Equatorial Rossby waves
 - Inertia-gravity waves
Structure of Equatorial Waves

- Structures (Rossby and Kelvin):

Vectors = winds
Colors = divergence contours
(ignoring the ovals)

From Yang et al 2007
Structure of Equatorial Waves

- More structures (mixed Rossby gravity and WIG):

Vectors = winds
Colors = divergence contours
(ignoring the ovals)

From Yang et al 2007
Equatorial Kelvin Waves in the Ocean

- These are seen in the ocean, and are key to El Nino dynamics

Sea surface height anomalies
Equatorial Kelvin Waves in the Ocean

- A global picture:

![Image of global picture dated OCT 1 1992]
Wheeler and Kiladis (1999) examined spectra of OLR data in the tropics:
Atmospheric Obs. of Equatorial Waves

- Filter out “background spectrum”:
 - Can see all different wave types! Especially Kelvin, MRG, and ER. Also, the mysterious MJO...
Equatorial Waves in Idealized GCM

- In simplified moist GCM, Kelvin waves dominate the spectrum.

They can propagate around and around the equator multiple times!
Full GCM Waves

• Observations versus models:

(a) GPI

(b) Kelvin

(c) MJO

(d) ER

(e) CCSM3

Obs

AM2

• Models are too weak, too fast

Equatorial Waves

- In observations, speeds are significantly slower than predicted by the dry theory
 - Kelvin wave travels at ~15-20 m/s in obs
- Also true in simplified GCM/full GCMs:
 - Speeds are still significantly slower than predicted by the dry theory
 - Even in fastest model, only get ~30 m/s speed
- There’s a simple theory for speed reduction that involves condensation
 - Derivation w/ active moisture
Convectively coupled Kelvin waves

- In simplified moist GCM, GMS reduction leads to slower convectively coupled waves:

 \[
 \text{GMS} = 7 \text{ K} \quad \text{GMS} = 4.5 \text{ K} \quad \text{GMS} = 2.5 \text{ K}
 \]

 Wavespeed can be tuned to essentially any value in this model

 See Frierson (2007b) for more detail
Equatorial Waves

- Alternative theory for wave speed:
 - Higher vertical mode structure causes phase speed reduction

<table>
<thead>
<tr>
<th>Diagram</th>
</tr>
</thead>
</table>

- What powers the waves?
 - Evaporation-wind feedback derivation

Schematic of Kelvin wave structure from Straub and Kiladis (2003)
Madden-Julian Oscillation

- 30-60 day eastward propagating envelope of enhanced/suppressed precip

Figure is boreal winter OLR composite

From MJO diagnostics webpage
MJO Structure

- Has characteristics of Kelvin wave and Rossby wave
Movie of Indian Ocean Twin Cyclones

- Precipitable water satellite images: