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Forecast ensembles:
o The dominant approach to probabilistic forecasting
e They contain useful information (spread-skill relationship)
o BUT they tend to be underdispersed, especially at the surface
o uncalibrated
Bayesian Model Averaging (BMA) provides calibrated and sharp
probabilistic forecasts
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o for temperature, PoP, quantitative precip, wind speeds
o and potentially other parameters
o for entire weather fields and multiple parameters simultaneously
(desirable for aviation)
BMA is the basis for Probcast, the first operational PDF-based
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o the nation (and beyond)
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The overall (BMA) forecast probability distribution is a mixture of
distributions, each one centered on one of the forecasts after bias
correction.
The weights are the estimated probabilities of the models, and
reflect the relative predictive performance of the models during a
training period.
The BMA point or deterministic forecast is just a weighted average
of the forecasts in the ensemble.
BMA model for temperature:

o Let y be the verifying value and yx be the kth forecast from the

ensemble.
o The model is:

K
pylin, - 9x) = > wN(ak + biji, %)
k=1
where wy > 0 and Zle wi = 1.
The model is estimated from a training set of recent data at stations
by maximum likelihood using the EM algorithm.
Good results with a 25-day “moving window” training period.
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@ BMA better calibrated and more accurate than the raw ensemble
@ Similar results for other times (2000-2009) and places:

o Canada (Wilson et al 2007 [MSC])

o Netherlands/Europe (KNMI)
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Exchangeable BMA: Results for 2007

MAE CRPS
Raw BMA Raw BMA
UW ME (8) 231 215 196 155
UW EnKF (80 exchangeable) 3.32 249 284 1.76
Combined (89) 325 209 264 148

UW EnKF worse than UW ME (experimental)

Combined raw ensemble worse than UW ME

BMA improves all 3 ensembles

With BMA, combined ensemble better than UW ME alone!

Same conclusion with MAE (deterministic) and CRPS (probabilistic)
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@ The normal-based BMA used for temperature doesn't work for
precipitation because:
o precip has a nonzero probability of being exactly zero
e it is constrained to be nonnegative
o its distribution, given that it is not zero, is strongly skewed

o For probabilistic forecasting of precipitation, we replace the normal
distribution by a mixture of
e a point mass at zero, whose probability is specified by logistic
regression given the forecast
e a gamma distribution, whose mean and variance depend on the
forecast
@ We then proceed with maximum likelihood estimation as before
@ Recently extended to wind speeds:
o Zero component not needed in the Pacific Northwest
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Calibration of Forecasts of the Probability of Precipitation

Observed Frequency

x-axis shows the forecast probability of precipitation (PoP)

y-axis shows the observed relative frequency of precipitation, based
on 2 years of data, 2003-2004 (100K obs)

Thus a good PoP forecast would be on the diagonal (solid line)

Crosses show the proportion of the ensemble members that predict
precipitation, i.e. the raw ensemble PoP forecast. Poorly calibrated

Circles show the BMA PoP forecast. Much better.
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@ The raw ensemble is poorly calibrated
@ The BMA forecast distribution is much better calibrated
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Local BMA

“Traditional” BMA estimates its parameters over the whole forecast
domain (in our case the Pacific Northwest)

But relative performance of models (== BMA weights) and forecast
error variance (= BMA variance) can vary over the domain

Local BMA estimates BMA for each gridpoint separately, using only
observations at stations that are similar to the gridpoint in terms of
location, elevation and land use.

Much better performance on average than global BMA
—> feasible to use BMA for the nation
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Probabilistic Forecasting of Entire Weather Fields

A Very High-Dimensional Quantity of Interest (10,000 dimensions)

@ Important for forecasting functionals of a weather field

@ Desirable for route planning in aviation

@ Example: What is the probability that there will be freezing
precipitation somewhere on the 1-90 freeway in Washington State?

o The functional is the minimum temperature over a spatial area
o This helps decide whether to pretreat the road with chemicals

@ Basic idea: Produce a statistical ensemble of forecasts of entire
weather fields by perturbing the outputs from the model (i.e. the
forecasts), rather than the inputs.

@ For the simplest case of just one forecast (no ensemble):

o A spatial geostatistical model is used for the forecast errors
o A fast and exact simulation method is used to generate a statistical

ensemble of forecasts (the circulant embedding method)
o The result: the Geostatistical Output Perturbation (GOP) Method
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