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Basic Idea

Forecast ensembles:

The dominant approach to probabilistic forecasting
They contain useful information (spread-skill relationship)
BUT they tend to be underdispersed, especially at the surface
uncalibrated

Bayesian Model Averaging (BMA) provides calibrated and sharp
probabilistic forecasts

based on an ensemble
for temperature, PoP, quantitative precip, wind speeds
and potentially other parameters
for entire weather fields and multiple parameters simultaneously
(desirable for aviation)

BMA is the basis for Probcast, the first operational PDF-based
calibrated probabilistic forecasting website

currently for the Pacific Northwest,
temperature and precip

UW can work with NWS to extend it to

other parameters
aloft as well as surface
the nation (and beyond)
=⇒ the 4D probabilistic forecasting cube
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Bayesian model averaging

BMA for exchangeable ensembles

BMA for precipitation

Local BMA

BMA for weather fields
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Bayesian Model Averaging for Ensembles

The overall (BMA) forecast probability distribution is a mixture of
distributions, each one centered on one of the forecasts after bias
correction.

The weights are the estimated probabilities of the models, and
reflect the relative predictive performance of the models during a
training period.

The BMA point or deterministic forecast is just a weighted average
of the forecasts in the ensemble.
BMA model for temperature:

Let y be the verifying value and ỹk be the kth forecast from the
ensemble.
The model is:

p(y |ỹ1, . . . , ỹK ) =
KX

k=1

wkN(ak + bk ỹk , σ
2)

where wk ≥ 0 and
PK

k=1 wk = 1.

The model is estimated from a training set of recent data at stations
by maximum likelihood using the EM algorithm.

Good results with a 25-day “moving window” training period.



Bayesian Model Averaging for Ensembles
The overall (BMA) forecast probability distribution is a mixture of
distributions, each one centered on one of the forecasts after bias
correction.

The weights are the estimated probabilities of the models, and
reflect the relative predictive performance of the models during a
training period.

The BMA point or deterministic forecast is just a weighted average
of the forecasts in the ensemble.
BMA model for temperature:

Let y be the verifying value and ỹk be the kth forecast from the
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Results for 2007 (◦C )

(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble

2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble

2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble

2.31 1.96

BMA for UWME

2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31

1.96

BMA for UWME

2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31

1.96

BMA for UWME 2.15

1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble

Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31 1.96
BMA for UWME 2.15

1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])

Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram

PIT histogram

for raw ensemble

for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble

Similar results for other times (2000-2009) and places:
Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])

Netherlands/Europe (KNMI)



Results for 2007 (◦C )
(24hr forecasts of 2m temperature at ASOS stations and buoys)

MAE CRPS
Raw Ensemble 2.31 1.96
BMA for UWME 2.15 1.55

Verification rank histogram PIT histogram
for raw ensemble for BMA

BMA better calibrated and more accurate than the raw ensemble
Similar results for other times (2000-2009) and places:

Canada (Wilson et al 2007 [MSC])
Netherlands/Europe (KNMI)



BMA for Ensembles with Exchangeable Members

“Traditional” BMA gives a different weight to each ensemble
member

But often ensembles have subsets of exchangeable members:
ECMWF: 2 groups: control (1); singular vector perturbations (50)
NCEP 2006 SREF: 21 members divided into 13 groups

Exchangeable BMA forces the weights for exchangeable members to
be the same.
Example: 89-member ensemble combining UWME (8 individual
members) and UW-EnKF (experimental: 80 exchangeable
members).
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BMA for Precipitation

The normal-based BMA used for temperature doesn’t work for
precipitation because:

precip has a nonzero probability of being exactly zero
it is constrained to be nonnegative
its distribution, given that it is not zero, is strongly skewed

For probabilistic forecasting of precipitation, we replace the normal
distribution by a mixture of

a point mass at zero, whose probability is specified by logistic
regression given the forecast
a gamma distribution, whose mean and variance depend on the
forecast

We then proceed with maximum likelihood estimation as before

Recently extended to wind speeds:

Zero component not needed in the Pacific Northwest
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Calibration of Forecasts of the Probability of Precipitation
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Thus a good PoP forecast would be on the diagonal (solid line)

Crosses show the proportion of the ensemble members that predict
precipitation, i.e. the raw ensemble PoP forecast. Poorly calibrated

Circles show the BMA PoP forecast. Much better.
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Local BMA

“Traditional” BMA estimates its parameters over the whole forecast
domain (in our case the Pacific Northwest)

But relative performance of models (⇒ BMA weights) and forecast
error variance (⇒ BMA variance) can vary over the domain

Local BMA estimates BMA for each gridpoint separately, using only
observations at stations that are similar to the gridpoint in terms of
location, elevation and land use.

Much better performance on average than global BMA

=⇒ feasible to use BMA for the nation
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Probabilistic Forecasting of Entire Weather Fields
A Very High-Dimensional Quantity of Interest (10,000 dimensions)

Important for forecasting functionals of a weather field

Desirable for route planning in aviation

Example: What is the probability that there will be freezing
precipitation somewhere on the I-90 freeway in Washington State?

The functional is the minimum temperature over a spatial area
This helps decide whether to pretreat the road with chemicals

Basic idea: Produce a statistical ensemble of forecasts of entire
weather fields by perturbing the outputs from the model (i.e. the
forecasts), rather than the inputs.

For the simplest case of just one forecast (no ensemble):

A spatial geostatistical model is used for the forecast errors
A fast and exact simulation method is used to generate a statistical
ensemble of forecasts (the circulant embedding method)
The result: the Geostatistical Output Perturbation (GOP) Method
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Sample from the Forecast Predictive Distribution
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Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Some References

MWR = Monthly Weather Review
JASA = Journal of the American Statistical Association

BMA for temperature:

Raftery, Gneiting et al (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. MWR 133: 1155–1174.

Wilson, Beauregard, Raftery, Verret (2007). Calibrated surface temperature forecasts from the Canadian ensemble prediction
system using Bayesian model averaging. MWR 135: 1364–1385.

BMA for precip and wind:

Sloughter, Raftery, Gneiting, Fraley (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging.
MWR 135: 3209–3220.

Sloughter, Gneiting, Raftery (2009). Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging.
JASA, to appear.

Probabilistic forecasting of weather fields:

Gel, Raftery, Gneiting (2004). Calibrated probabilistic mesoscale weather field forecasting: The Geostatistical Output
Perturbation (GOP) method. JASA 99: 575-590.

Berrocal, Raftery, Gneiting (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts.
MWR 135: 1386–1402.

Berrocal, Raftery, Gneiting (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann.
Appl. Stat. 2: 1170–1193.

EMOS:

Gneiting, Raftery et al (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS
Estimation. MWR 133: 1098–1118.

Similar in practice to BMA, giving similar results.

Not so similar in concept

Overview paper:

Gneiting and Raftery (2005). Weather forecasting with ensemble methods. Science 310: 248–249.



Summary

Forecast ensembles show a spread-skill relationship, but still tend to
be underdispersed
Bayesian model averaging is a statistical way of getting sharp
calibrated probabilistic forecasts from an ensemble, that honor the
spread-skill relationship
In experiments with forecasting temperature, precip and wind, BMA
has consistently been calibrated, sharp, and has given good
deterministic forecasts
BMA has been extended to provide forecasts of entire meteorological
fields (Spatial BMA)
Free R packages: EnsembleBMA, ProbForecastGOP
Web sites: www.stat.washington.edu/raftery/Research/dsm.html
www.stat.washington.edu/MURI
www.probcast.washington.edu
bma.apl.washington.edu
We can work with NWS to develop probabilistic forecasts for

other parameters relevant to aviation
all levels of the atmosphere
the nation (and beyond)
to produce the 4-d probabilistic forecasting cube
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