Symbolic Math Toolbox | ![]() ![]() |
Syntax
hypergeom(n, d, z)
Description
hypergeom(n,
d,
z)
is the generalized hypergeometric function F(n, d, z), also known as the Barnes extended hypergeometric function and denoted by jFk where j = length(n)
and k = length(d)
. For scalar a
, b,
and c
, hypergeom([a,b],c,z)
is the Gauss hypergeometric function 2F1(a,b;c;z).
hypergeom([],[],z)
returns exp(z)
hypergeom(1,[],z)
returns -1/(
-1+z)
hypergeom(1,2,'z')
returns (exp(z)
-1)/z
hypergeom([1,2],[2,3],'z')
returns -2*(
-exp(z)+1+z)/z^2
hypergeom(a,[],z)
returns (1
-z)^(
-a)
hypergeom([],1,
-z^2/4)
returns besselj(0,z)
hypergeom([
-n, n],1/2,(1
-z)/2)
returns
expand(cos(n*acos(z)))
which is T(n, z), the n
-th Chebyshev polynomial.
![]() | horner | ifourier | ![]() |