Signal Processing Toolbox    

Key Areas: Filter Design and Spectral Analysis

In addition to its core functions, the toolbox provides rich, customizable support for the key areas of filter design and spectral analysis. It is easy to implement a design technique that suits your application, design digital filters directly, or create analog prototypes and discretize them. Toolbox functions also estimate power spectral density and cross spectral density, using either parametric or nonparametric techniques. Filter Design and Statistical Signal Processing respectively detail toolbox functions for filter design and spectral analysis.

There are functions for computation and graphical display of frequency response, as well as functions for system identification; generating signals; discrete cosine, chirp-z, and Hilbert transforms; lattice filters; resampling; time-frequency analysis; and basic communication systems simulation.

Interactive Tools: SPTool and FDATool

The power of the Signal Processing Toolbox is greatly enhanced by its easy-to-use interactive tools. SPTool provides a rich graphical environment for signal viewing, filter design, and spectral analysis. The Filter Design and Analysis Tool (FDATool) provides a more comprehensive collection of features for addressing the problem of filter design. The FDATool also offers seamless access to the additional filter design methods and quantization features of the Filter Design Toolbox when that product is installed.

Extensibility

Perhaps the most important feature of the MATLAB environment is that it is extensible: MATLAB lets you create your own M-files to meet numeric computation needs for research, design, or engineering of signal processing systems. Simply copy the M-files provided with the Signal Processing Toolbox and modify them as needed, or create new functions to expand the functionality of the toolbox.


 Signal Processing Toolbox Central Features Representing Signals