Getting Started

    Preface
        Explaining Neural Networks
        Basic Chapters
        Mathematical Notation for Equations and Figures
            Basic Concepts
            Language
            Weight Matrices
            Layer Notation
            Figure and Equation Examples

        Mathematics and Code Equivalents
        Neural Network Design Book
        Acknowledgments
        Related Products List

    Introduction
        Getting Started
            Basic Chapters
            Help and Installation

        Neural Network Applications
            Applications in this Toolbox
            Business Applications
            Aerospace
            Automotive
            Banking
            Credit Card Activity Checking
            Defense
            Electronics
            Entertainment
            Financial
            Industrial
            Insurance
            Manufacturing
            Medical
            Oil and Gas
            Robotics
            Speech
            Securities
            Telecommunications
            Transportation
            Summary

Using the Neural Network Toolbox

    Neuron Model and Network Architectures
        Neuron Model
            Simple Neuron
            Transfer Functions
            Neuron With Vector Input

        Network Architectures
            A Layer of Neurons
            Multiple Layers of Neurons

        Data Structures
            Simulation With Concurrent Inputs in a Static Network
            Simulation With Sequential Inputs in a Dynamic Network
            Simulation With Concurrent Inputs in a Dynamic Network

        Training Styles
            Incremental Training (of Adaptive and Other Networks)
            Batch Training

        Summary
            Figures and Equations

    Perceptrons
        Introduction
            Important Perceptron Functions

        Neuron Model
        Perceptron Architecture
        Creating a Perceptron (newp)
            Simulation (sim)
            Initialization (init)

        Learning Rules
        Perceptron Learning Rule (learnp)
        Training (train)
        Limitations and Cautions
            Outliers and the Normalized Perceptron Rule

        Graphical User Interface
            Introduction to the GUI
            Create a Perceptron Network (nntool)
            Train the Perceptron
            Export Perceptron Results to Workspace
            Clear Network/Data Window
            Importing from the Command Line
            Save a Variable to a File and Load It Later

        Summary
            Figures and Equations
            New Functions

    Linear Filters
        Introduction
        Neuron Model
        Network Architecture
            Creating a Linear Neuron (newlin)

        Mean Square Error
        Linear System Design (newlind)
        Linear Networks with Delays
            Tapped Delay Line
            Linear Filter

        LMS Algorithm (learnwh)
        Linear Classification (train)
        Limitations and Cautions
            Overdetermined Systems
            Underdetermined Systems
            Linearly Dependent Vectors
            Too Large a Learning Rate

        Summary
            Figures and Equations
            New Functions

    Backpropagation
        Overview
        Fundamentals
            Architecture
            Simulation (sim)
            Training

        Faster Training
            Variable Learning Rate (traingda, traingdx)
            Resilient Backpropagation (trainrp)
            Conjugate Gradient Algorithms
            Line Search Routines
            Quasi-Newton Algorithms
            Levenberg-Marquardt (trainlm)
            Reduced Memory Levenberg-Marquardt (trainlm)

        Speed and Memory Comparison
            Summary

        Improving Generalization
            Regularization
            Early Stopping
            Summary and Discussion

        Preprocessing and Postprocessing
            Min and Max (premnmx, postmnmx, tramnmx)
            Mean and Stand. Dev. (prestd, poststd, trastd)
            Principal Component Analysis (prepca, trapca)
            Post-Training Analysis (postreg)

        Sample Training Session
        Limitations and Cautions
        Summary

    Control Systems
        Introduction
        NN Predictive Control
            System Identification
            Predictive Control
            Using the NN Predictive Controller Block

        NARMA-L2 (Feedback Linearization) Control
            Identification of the NARMA-L2 Model
            NARMA-L2 Controller
            Using the NARMA-L2 Controller Block

        Model Reference Control
            Using the Model Reference Controller Block

        Importing and Exporting
            Importing and Exporting Networks
            Importing and Exporting Training Data

        Summary
        References

    Radial Basis Networks
        Introduction
            Important Radial Basis Functions

        Radial Basis Functions
            Neuron Model
            Network Architecture
            Exact Design (newrbe)
            More Efficient Design (newrb)
            Demonstrations

        Generalized Regression Networks
            Network Architecture
            Design (newgrnn)

        Probabilistic Neural Networks
            Network Architecture
            Design (newpnn)

        Summary
            Figures
            New Functions

    Self-Organizing and Learn. Vector Quant. Nets
        Introduction
            Important Self-Organizing and LVQ Functions

        Competitive Learning
            Architecture
            Creating a Competitive Neural Network (newc)
            Kohonen Learning Rule (learnk)
            Bias Learning Rule (learncon)
            Training
            Graphical Example

        Self-Organizing Maps
            Topologies (gridtop, hextop, randtop)
            Distance Funct. (dist, linkdist, mandist, boxdist)
            Architecture
            Creating a Self Organizing MAP Neural Network (newsom)
            Training (learnsom)
            Examples

        Learning Vector Quantization Networks
            Architecture
            Creating an LVQ Network (newlvq)
            LVQ1 Learning Rule(learnlv1)
            Training
            Supplemental LVQ2.1 Learning Rule (learnlv2)

        Summary and Conclusions
            Self-Organizing Maps
            Learning Vector Quantizaton Networks
            Figures
            New Functions

    Recurrent Networks
        Introduction
            Important Recurrent Network Functions

        Elman Networks
            Architecture
            Creating an Elman Network (newelm)
            Training an Elman Network

        Hopfield Network
            Fundamentals
            Architecture
            Design (newhop)

        Summary
            Figures
            New Functions

    Adaptive Filters and Adaptive Training
        Introduction
            Important Adaptive Functions

        Linear Neuron Model
        Adaptive Linear Network Architecture
            Single ADALINE (newlin)

        Mean Square Error
        LMS Algorithm (learnwh)
        Adaptive Filtering (adapt)
            Tapped Delay Line
            Adaptive Filter
            Adaptive Filter Example
            Prediction Example
            Noise Cancellation Example
            Multiple Neuron Adaptive Filters

        Summary
            Figures and Equations
            New Functions

    Applications
        Introduction
            Application Scripts

        Applin1: Linear Design
            Problem Definition
            Network Design
            Network Testing
            Thoughts and Conclusions

        Applin2: Adaptive Prediction
            Problem Definition
            Network Initialization
            Network Training
            Network Testing
            Thoughts and Conclusions

        Appelm1: Amplitude Detection
            Problem Definition
            Network Initialization
            Network Training
            Network Testing
            Network Generalization
            Improving Performance

        Appcr1: Character Recognition
            Problem Statement
            Neural Network
            System Performance
            Summary

    Advanced Topics
        Custom Networks
            Custom Network
            Network Definition
            Network Behavior

        Additional Toolbox Functions
            Initialization Functions
            Transfer Functions
            Learning Functions

        Custom Functions
            Simulation Functions
            Initialization Functions
            Learning Functions
            Self-Organizing Map Functions

Reference

    Network Object Reference
        Network Properties
            Architecture
            Subobject Structures
            Functions
            Parameters
            Weight and Bias Values
            Other

        Subobject Properties
            Inputs
            Layers
            Outputs
            Targets
            Biases
            Input Weights
            Layer Weights

    Function Reference
        Functions Listed by Class
        Transfer Functions
        Transfer Function Graphs
            Transfer Function Graphs (continued)
            Transfer Function Graphs (continued)
            Transfer Function Graphs (continued)

    Functions Listed Alphabetically
        Reference Headings
        Functions

    Glossary
    Bibliography
    Demonstrations and Applications
        Tables of Demonstrations and Applications
            Chapter 2: Neuron Model and Network Architectures
            Chapter 3: Perceptrons
            Chapter 4: Linear Filters
            Chapter 5: Backpropagation
            Chapter 7: Radial Basis Networks
            Chapter 8: Self-Organizing and Learn. Vector Quant. Nets
            Chapter 9: Recurrent Networks
            Chapter 10: Adaptive Networks
            Chapter 11: Applications

    Simulink
        Block Set
            Transfer Function Blocks
            Net Input Blocks
            Weight Blocks

        Block Generation
            Example
            Exercises

    Code Notes
        Dimensions
        Variables
            Utility Function Variables

        Functions
        Code Efficiency
        Argument Checking

Printable Documentation (PDF)

Product Page (Web)