Neural Network Toolbox | ![]() ![]() |
Calculate network outputs, signals, and performance
Syntax
[perf,El,Ac,N,BZ,IWZ,LWZ]=calcperf(net,X,Pd,Tl,Ai,Q,TS)
Description
This function calculates the outputs of each layer in response to a networks delayed inputs and initial layer delay conditions.
[perf,El,Ac,N,LWZ,IWZ,BZ] = calcperf(net,X,Pd,Tl,Ai,Q,TS)
takes,
net -
Neural network.
X -
Network weight and bias values in a single vector.
Pd -
Delayed inputs.
Tl -
Layer targets.
Ai -
Initial layer delay conditions.
Q -
Concurrent size.
TS -
Time steps.
perf -
Network performance.
El -
Layer errors.
Ac -
Combined layer outputs = [Ai
, calculated layer outputs].
N -
Net inputs.
LWZ -
Weighted layer outputs.
IWZ -
Weighted inputs.
BZ -
Concurrent biases.
Examples
Here we create a linear network with a single input element ranging from 0 to 1, two neurons, and a tap delay on the input with taps at zero, two, and four time steps. The network is also given a recurrent connection from layer 1 to itself with tap delays of [1 2].
net = newlin([0 1],2); net.layerConnect(1,1) = 1; net.layerWeights{1,1}.delays = [1 2];
Here is a single (Q = 1
) input sequence P
with five time steps (TS = 5
),and the four initial input delay conditions Pi
, combined inputs Pc
, and
delayed inputs Pd
.
P = {0 0.1 0.3 0.6 0.4}; Pi = {0.2 0.3 0.4 0.1}; Pc = [Pi P]; Pd = calcpd(net,5,1,Pc);
Here the two initial layer delay conditions for each of the two neurons are defined.
Ai = {[0.5; 0.1] [0.6; 0.5]};
Here we define the layer targets for the two neurons for each of the five time steps.
Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
Here the network's weight and bias values are extracted.
X = getx(net);
Here we calculate the network's combined outputs Ac
, and other signals described above.
[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5)
![]() | calcpd | cell2mat | ![]() |