
Modeling

Simulation

Implementation

xPC Target
 For Use with Real-Time Workshop ®

User’s Guide
Version 1.1

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

xPC Target User’s Guide
 COPYRIGHT 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: September 1999 First printing New for version 1.0 (Release 11.1)
November 2000 Second printing Revised for version 1.1 (Release 12.0)

i

Contents

Preface

Documentation . xi
Online Documentation . xi
Printing the Documentation . xi

Required Products . xii
MATLAB . xii
Simulink . xiii
Real-Time Workshop . xiv
C Compiler . xiv

Related Products . xv
Stateflow . xv
Stateflow Coder . xv
DSP Blockset . xvi
Dials & Gauges Blockset . xvi

Using This Guide . xvii
Expected Background . xvii
Organization . xviii

Conventions . xix
Terminology . xix
Typographical . xxi

ii

1
Introduction

What Is xPC Target? . 1-3

Features of xPC Target . 1-4
Real-Time Kernel . 1-4
Real-Time Application . 1-6
Signal Acquisition and Analysis . 1-6
Parameter Tuning . 1-7

Hardware Environment . 1-8
Host PC . 1-8
Target PC . 1-8
Host-Target Connection . 1-9
Input/Output Driver Support . 1-11

Software Environment . 1-12
Host-Target Communication . 1-12
Rapid Prototyping Process . 1-13
Embedded Process . 1-15

User Interaction . 1-18
xPC Target Graphical Interface . 1-19
MATLAB Command Line Interface . 1-20
Target PC Command Line Interface . 1-21
Simulink External Mode Interface . 1-21
Simulink Dials and Gauges Interface . 1-22
Web Browser Interface . 1-22

iii

2
Installation and Configuration

System Requirements . 2-3
Host PC . 2-3
Target PC . 2-4

Installation on the Host PC . 2-7
Getting or Updating Your License . 2-7
CD-ROM Installation . 2-8
Web Download Installation . 2-8
Files on the Host PC Computer . 2-10

Initial Working Directory . 2-11
Setting Your Working Directory from the Desktop Icon 2-11
Setting Your Working Directory from Within MATLAB 2-11

Serial Communication . 2-12
Hardware for Serial Communication . 2-12
Environment Properties for Serial Communication 2-13

Network Communication . 2-15
Hardware for Network Communication 2-16
Ethernet Card for a PCI-Bus . 2-18
Ethernet Card for an ISA-Bus . 2-18
Environment Properties for Network Communication 2-20

Target Boot Disk . 2-23
Current Properties on the Target Boot Disk 2-25

Testing and Troubleshooting the Installation 2-26
Testing the Installation . 2-26
Test 1, Ping Target System Standard Ping 2-27
Test 2, Ping Target System xPC Target Ping 2-29
Test 3, Reboot Target Using Direct Call 2-30
Test 4, Build and Download Application 2-30
If You Still Need More Help . 2-31

iv

3
Basic Procedures

Simulating the Model . 3-3
Loading a Simulink Model . 3-3
Running a Simulation Using the Simulink Graphical Interface 3-4
Running a Simulation Using the
 MATLAB Command Line Interface 3-5

Creating the Target Application . 3-7
Booting the Target PC . 3-7
Troubleshooting the Boot Process . 3-8
Entering the Simulation Parameters . 3-8
Building and Downloading the Target Application 3-13
Troubleshooting the Build Process . 3-15

Controlling the Target Application . 3-16
Control with MATLAB Commands . 3-17

Signal Monitoring . 3-19
Signal Monitoring with MATLAB Commands 3-19

Signal Logging . 3-20
Signal Logging with xPC Target Graphical Interface 3-20
Signal Logging with MATLAB Commands 3-22

Signal Tracing . 3-26
Signal Tracing with xPC Target GUI . 3-26
Signal Tracing with xPC Target GUI (Target Manager) 3-31
Signal Tracing with MATLAB Commands 3-35

Parameter Tuning . 3-38
Parameter Tuning with MATLAB Commands 3-38
Parameter Tuning with Simulink External Mode 3-40

v

4
Advanced Procedures

I/O Driver Blocks . 4-3
xPC Target I/O Driver Blocks . 4-3
Adding I/O Blocks with the xPC Target Library 4-4
Adding I/O Blocks with the Simulink Library Browser 4-7
Defining I/O Block Parameters . 4-10

xPC Target Scope Blocks . 4-13
xPC Target Scope Blocks . 4-13
Adding xPC Target Scope Blocks . 4-14
Defining xPC Target Scope Block Parameters 4-16

Target PC Command Line Interface 4-19
Using Methods and Properties on the Target PC 4-19
Target Object Methods . 4-20
Target Object Properties . 4-20
Scope Object Methods . 4-21
Scope Object Properties . 4-22
Using Variables on the Target PC . 4-24
Variable Commands . 4-24

Web Interface . 4-25
Connecting the Web Interface . 4-25
Using the Main Page . 4-26
Changing WWW Properties . 4-28
Viewing Signals with the Web Browser 4-28
Using Scopes with the Web Browser . 4-29
Viewing and Changing Parameters with the Web Interface . . 4-30
Changing Access Levels to the Web Browser 4-31

vi

5
xPC Target

Embedded Option

Introduction . 10-3
DOSLoader Mode Overview . 10-4
StandAlone Mode Overview . 10-4
Architecture . 10-5
Restrictions . 10-6

Updating the xPC Target Environment 10-8

Creating a DOS System Disk . 10-11

DOS Loader Target Applications . 10-12
Creating a Target Boot Disk for DOS Loader 10-12
Creating a Target Application for DOS Loader 10-13

Stand-Alone Target Applications . 10-14
Creating a Target Application for Stand-Alone 10-14
Creating a Target Boot Disk for Stand-Alone 10-15
Using Target Scope Blocks with Stand-Alone 10-15

6
Environment Reference

Environment . 5-3
Environment Properties . 5-3
Environment Functions . 5-11

Using Environment Properties and Functions 5-12
Getting a List of Environment Properties 5-12
Saving and Loading the Environment 5-13
Changing Environment Properties with Graphical Interface . 5-14
Changing Environment Properties with Command Line Interface 5-16
Creating a Target Boot Disk with Graphical Interface 5-17
Creating a Target Boot Disk with Command Line Interface . 5-19

vii

System Functions . 5-20
GUI Functions . 5-20
Test Functions . 5-21
xPC Target Demos . 5-21

Environment and System Function Reference 5-23

7
Target Object Reference

Target Object . 6-3
What is a Target Object? . 6-3
Target Object Properties . 6-4
Target Object Methods . 6-9
Target PC Commands . 6-11

Using Target Objects . 6-13
Displaying Target Object Properties . 6-13
Setting the Value of a Target Object Property
 from the Host PC . 6-14
Setting the Value of a Target Object Property
 from the Target PC . 6-15
Getting the Value of a Target Object Property 6-16
Using the Method Syntax with Target Objects 6-17

viii Contents

8
Scope Object Reference

Scope Object . 7-3
What is a Scope Object? . 7-3
Scope Object Properties . 7-3
Scope Object Methods . 7-6

Using Scope Objects . 7-8
Displaying Scope Object Properties for a Single Scope 7-8
Displaying Scope Object Properties for All Scopes 7-9
Setting the Value of a Scope Property . 7-9
Getting the Value of a Scope Property 7-10
Using the Method Syntax with Scope Objects 7-11

Preface

Documentation xi
Online Documentation xi
Printing the Documentation xi

Required Products xii
MATLAB . xii
Simulink . xiii
Real-Time Workshop xiv
C Compiler . xiv

Related Products xv
Stateflow . xv
Stateflow Coder . xv
DSP Blockset . xvi
Dials & Gauges Blockset xvi

Using This Guide xvii
Expected Background xvii
Organization . xviii

Conventions xix
Terminology . xix
Typographical . xxi

 Preface

x

xPC Target is part of a family of software products that you use to create
real-time control systems. Some of these products are required while others
you use for special applications.

This chapter includes the following sections:

• “Documentation” - Online and PDF files

• “Documentation” - MATLAB®, Simulink®, Real-Time Workshop®, xPC
Target, and a C compiler

• “Related Products” - Stateflow®, Stateflow Coder, DSP Blockset, Dials &
Gauges Blockset, xPC Target Embedded Option, and Web browser

• “Using This Guide” - Suggestions for learning about xPC Target, finding
information, and a description of the chapters

• “Conventions” - Terms that may have various meanings and text formats in
this guide

Documentation

xi

Documentation
The xPC Target software is shipped with a Getting Started Guide. The
remaining documentation is available online through the Help browser
window, or as PDF files that you can view online or print.

This section includes the following topics:

• “Online Documentation”

• “Printing the Documentation”

Online Documentation
Access to the online information for xPC Target is through the MATLAB
window.

1 In the MATLAB window, from the View menu, click Help.

The Help browser window opens.

2 In the left pane, click xPC Target.

The Help browser displays the xPC Target Roadmap page in the right pane.
Access the online information by selecting the links under the “Learning
About xPC Target” section.

Alternatively, you can access the online information by using the table of
contents in the left pane. Click the + and - boxes to display and hide
hierarchical levels.

Printing the Documentation
Access to the PDF files for xPC Target is through the xPC Target Roadmap
page or from the pdf_doc directory. The locations listed below assume you have
installed the files from the documentation CD.

The following manuals are available as PDF files.

• xPC Target User’s Guide - located at
C:\MATLAB root\help\pdf_doc\xpc\xpc_target_ug.pdf

• xPC Target I/O Reference Guide - located at
C:\MATLAB root\help\pdf_doc\xpc\xpc_io_ref.pdf

 Preface

xii

Required Products
xPC Target is a PC-compatible product, that you install on a host computer
running Microsoft Windows 95, Windows 98, Windows 2000, or Window NT.

xPC Target requires the following products from The MathWorks:

• MATLAB - Command line interface for xPC Target

• Simulink - Environment to model physical systems and controllers using
block diagrams

• Real-Time Workshop - Converts Simulink blocks and code from Stateflow
Coder into C code

In addition, xPC Target requires one of the following C compilers to compile C
code from Real-Time Workshop into executable code:

• Microsoft Visual C/C++
• Watcom C/C++

MATLAB
MATLAB provides a command line interface for xPC Target.

With xPC Target, you have full control of the target computer and target
application using MATLAB functions and the command line interface or M-file
scripts. You use the MATLAB functions for:

• Real-time application control - Download, start, and stop the target
application

• Signal acquisition and analysis - Save signal data while the target
application is running and analyze the data after the application has
completed running, or display signal data while the target application is
running in real-time

• Parameter tuning - Change parameters while the target application is
running in real-time

Note Version 1.1 of xPC Target requires MATLAB version 6.0 on the R12 CD.

Required Products

xiii

MATLAB documentation - For information on using MATLAB, see the
MATLAB Getting Started manual. It explains how to work with data and how
to use the functions supplied with MATLAB. For a reference describing the
functions supplied with MATLAB, see the online MATLAB Function Reference.

Simulink
Simulink provides an environment where you model your physical system and
controller as a block diagram. You create the block diagram by using a mouse
to connect blocks and a keyboard to edit block parameters.

You can use xPC Target with most Simulink blocks including discrete-time and
continuous-time systems. When you use a continuous-time system and
generate code with Real-Time Workshop®, you must use a fixed-step
integration algorithm.

C-code S-functions are supported by Real-Time Workshop. However, M-code
S-functions are not supported.

xPC Target I/O driver blocks - With xPC Target, you can remove the physical
system model and replace it with I/O driver blocks connected to your sensors
and actuators. The xPC Target I/O library supports more than 150 driver
blocks, and you can download additional drivers from The MathWorks Web
site.

The I/O device drivers are written as Simulink C-code S-functions.

Note Version 1.1 of xPC Target requires Simulink version 4.0 on the R12 CD.

Simulink documentation - For information on using Simulink, see the Using
Simulink manual. It explains how to connect blocks to build models and change
block parameters. It also provides a reference that describes each block in the
standard Simulink library.

 Preface

xiv

Real-Time Workshop
Real-Time Workshop provides the utilities to convert your Simulink models
into C code and then with a third-party C compiler, compile the code into a
real-time executable.

Features of Real-Time Workshop include support for multirate systems, as
well as loop-rolling and S-function inlining, which allow you to optimize your
code for size and efficiency.

With xPC Target, you can build and download your target application to the
target computer using the Build command in Real-Time Workshop.

Note Version 1.1 of xPC Target requires Real-Time Workshop version 4.0
and the R12 CD.

Real-Time Workshop documentation - For information on code generation,
see the Real-Time Workshop User’s Guide.

C Compiler
The C compiler creates executable code from the C code generated from
Real-Time Workshop and the C-code S-functions you have created. This
executable code is an image that is the base of the target application.

In addition to the products from The MathWorks, you need to install a
C compiler. Real-Time Workshop and xPC Target support the following C
compilers:

Microsoft Visual C/C++
Version 1.1 of xPC Target requires Microsoft Visual Studio C/C++ version 5.0
or 6.0.

Watcom C/C++
Version 1.1 of xPC Target requires Watcom C/C++ version 10.6 or 11.0.

Related Products

xv

Related Products
In addition to the required products from The MathWorks, the following
products are compatible with xPC Target:

• Stateflow - Model complex systems and logic using flow and state transition
diagrams.

• Stateflow Coder - Convert Stateflow blocks into code used by Real-Time
Workshop

• DSP Blockset - Add digital signal processing blocks to the Simulink library.

• Dials & Gauges Blockset - Add graphical blocks to the Simulink library for
creating an instrument control panel with a second Simulink model

Stateflow
Stateflow provides a graphical design and development tool for complex control
and supervisory logic problems. It uses flow diagram notation and state
transition notation to model complex system behavior.

Note Version 1.1 of xPC Target requires Stateflow version 4.0 on the R12 CD.

Stateflow documentation - For information on creating state flow diagrams,
see the Stateflow User’s Guide.

Stateflow Coder
Stateflow Coder provides the utilities to convert Stateflow blocks into code used
by Real-Time Workshop.

Note Version 1.1 of xPC Target requires Stateflow version 4.0 on the R12 CD.

Stateflow Coder documentation - For information on state flow diagrams
and the Stateflow Coder, see the Stateflow User’s Guide.

 Preface

xvi

DSP Blockset
The DSP Blockset provides the Simulink blocks to add digital signal processing
functions to your Simulink model.

xPC Target is compatible with the DSP blockset.

Note Version 1.1 of xPC Target requires DSP Blockset version 4.0 on the R12
CD.

DSP Blockset documentation. For information on adding DSP blocks to your
Simulink model, see the DSP Blockset User’s Guide.

Dials & Gauges Blockset
The Dials and Gauges Blockset provides the Simulink blocks to create an
instrument control panel. This instrument control panel acts as an interface to
your real-time application.

Note Version 1.1 of xPC Target requires Dials & Gauges Blockset Version 1.1
on the Release 12 CD.

Dials & Gauges Blockset documentation - For information on creating a
Dials & Gauges model, see the Dials & Gauges Blockset User’s Guide.

Using This Guide

xvii

Using This Guide
To help you effectively read and use this guide, this section provides a brief
description of the chapters and a suggested reading path.

This section includes the following topics:

• “Expected Background”
• “Organization”

Expected Background
Users who read this book should be familiar with:

• Using Simulink and Stateflow to create models as block diagrams, and
simulating those models in Simulink

• The concepts and use of Real-Time Workshop to generate executable code.

When using Real-Time Workshop and xPC Target you do not need to program
in C or other low-level programming languages to create, test, and deploy
real-time systems.

If you are a new user - Begin with Chapter 1, “Introduction”. This chapter
gives you an overview of the xPC Target features and xPC Target environment.
Next, read and try the examples in Chapter 3, “Basic Procedures”.

If you are an experienced user - After you are familiar with using xPC
Target, read or browse Chapter 6, “Environment Reference”, Chapter 7,
“Target Object Reference”, and Chapter 8, “Scope Object Reference” for more
detailed information about the commands in xPC Target. Next, read and try
the examples in Chapter 4, “Advanced Procedures”.

 Preface

xviii

Organization
The following table lists the organization of the xPC Target Getting Started
Guide.

Chapter Description

1, “Introduction” Overview of the functions and features of
xPC Target.

2, “Installation and
Configuration”

Procedures to install xPC Target on the host
computer, and configure the host computer
for communication with the target
computer.

3, “Basic Procedures” Procedures for learning how to use xPC
Target. The procedures are designed to help
you become familiar with using xPC Target.

4, “Advanced Procedures” Procedures for learning additional features
in xPC Target.

5, “xPC Target Embedded
Option”

Description and procedures for using the
embedded option for stand-alone
applications, and loading target
applications from a device other then a 3.5
inch disk drive.

6, “Environment Reference” Reference for the environment commands
for setting up communication between the
host and target computers.

7, “Target Object Reference” Reference for the target object methods and
properties.

8, “Scope Object Reference” Reference for the scope object methods and
properties

Conventions

xix

Conventions
To help you effectively read this guide, we use some conventions. Conventions
are the ways of consistently formatting the text and graphics, and the meaning
we use for common terms.

This section includes the following topics:

• “Terminology”
• “Typographical”

Terminology
Some technical terms have different meanings. The following table lists some
of the terms used with real-time systems and the meaning we use with xPC
Target.

Term Definition

application See target application.

build process Process of generating C code from your Simulink
model, compiling, linking, and downloading the
generated code to create a target application.

execution Running the target application on the target PC in
real-time.

executable code See target application.

kernel Main real-time software component running on the
target PC that manages the downloaded target
application.

model Simulink/Stateflow model.

parameter tuning Process of changing block parameters and
downloading the new values to a target application
while it is running.

sample rate Rate the target application is stepped in samples/
second. Reciprocal of the sample time.

 Preface

xx

sample time Interval, in seconds, between the execution of a
target application step.

signal logging Acquire and save signal data created during a
real-time execution.

signal monitoring Get the values of one or more signals without time
information.

signal tracing Acquire and display packages of signal data during
real-time execution.

simulation Running a simulation of the Simulink/Stateflow
model on the host PC in nonreal-time.

target application Executable code generated from a Simulink/
Stateflow model which can be executed by the xPC
Target kernel on the target PC.

Term Definition

Conventions

xxi

Typographical
Typographical conventions are ways of formatting the text to indicate terms,
objects, and dialog between the user and the computer. The following table lists
the notational conventions we use in the xPC Target Getting Started Guide.

Item Convention to Use Example

Example code Monospace font To start the application, type

start(tg)

Function names Monospace font The addscope function creates
a new scope object.

MATLAB output Monospace font MATLAB displays the output

avgTET=
0.000011

Keys Boldface with an
initial capital
letter

Press Return.

Menu names,
menu items, and
command buttons

Boldface with an
initial capital
letter

From the File menu, click
Open. Click Update.

New terms Italics The target application is
downloaded from the host
computer.

 Preface

xxii

1

Introduction

What Is xPC Target? . 1-3

Features of xPC Target 1-4
Real-Time Kernel . 1-4
Real-Time Application . 1-6
Signal Acquisition and Analysis 1-6
Parameter Tuning . 1-7

Hardware Environment 1-8
Host PC . 1-8
Target PC . 1-8
Host-Target Connection 1- 9
Input/Output Driver Support1-11

Software Environment 1-12
Host-Target Communication1-12
Rapid Prototyping Process 1-13
Embedded Process . .1-15

User Interaction .1-18
xPC Target Graphical Interface 1-19
MATLAB Command Line Interface 1-20
Target PC Command Line Interface 1-21
Simulink External Mode Interface 1-21
Simulink Dials & Gauges Interface 1-22
Web Browser Interface1-22

1 Introduction

1-2

xPC Target has many features. An introduction to these features and the xPC
Target software environment will help you develop a model for working with
xPC Target.

This chapter includes the following sections:

• “What Is xPC Target?” - Host-target PC solution for prototyping, testing,
and deploying real-time systems

• “Features of xPC Target” - Real-time kernel, real-time application, signal
acquisition and analysis, and parameter tuning

• “Software Environment” - Rapid prototyping process and embedded
process

• “Hardware Environment” - Host PC and target PC

• “User Interaction” - Graphical, command line, Web browser, Simulink
external mode, Dials & Gauges

What Is xPC Target?

1-3

What Is xPC Target?
xPC Target is a host-target PC solution for prototyping, testing, and deploying
real-time systems. It is an environment where the host and target computers
are different computers.

In this environment you use your desktop PC as a host computer with
MATLAB®, Simulink®, and Stateflow® (optional) to create models using
Simulink blocks and Stateflow diagrams. After creating a model, you can run
simulations in nonreal-time.

You can than use your host computer with Real-Time Workshop®, Stateflow
Coder (optional) and a C compiler to create executable code. After creating the
executable code, you can run your target application in real time on a second
PC compatible system.

• Special hardware requirements - The xPC Target software requires a host
PC, target PC, and for I/O, the target PC must also have I/O boards
supported by xPC Target.

• Special software requirements - The xPC Target software requires either
a Microsoft Visual C/C++ compiler (version 5.0 or 6.0) or a Watcom C/C++
compiler (version 10.6 or 11.0). In addition, xPC Target requires, MATLAB,
Simulink, and Real-Time Workshop.

• xPC Target Embedded Option requirements - The xPC Target Embedded
Option is a separate product that requires an additional licence from The
MathWorks. With this additional licence, you can deploy an unlimited
number of real-time applications for stand alone operation.

This option allows you to boot the target PC from an alternate device other
than a floppy disk drive such as a hard disk drive or flash memory. It also
allows you to create stand-alone applications on the target PC independent
from the host PC.

1 Introduction

1-4

Features of xPC Target
The xPC Target software environment includes many features to help you
prototype, test and deploy real-time systems.

This section includes the following topics:

• “Real-Time Kernel” - BIOS, BIOS-extension, kernel, and loader

• “Real-Time Application” - Memory model, and task execution time

• “Signal Acquisition and Analysis” - Signal monitoring, logging to the
MATLAB workspace, and signal tracing on the host PC or target PC screen

• “Parameter Tuning” - Interactive, scripts and batch procedures

Real-Time Kernel
xPC Target does not require DOS, Windows, Linux, or any another operating
system on the target PC. Instead, you boot the target PC with a special boot
disk that includes the highly optimized xPC Target kernel.

Target boot disk - The boot disk eliminates the need to install software,
modify existing software configurations, or access the hard disk on the target
PC. This arrangement allows you to use the target PC for testing real-time
applications, and then when you have finished your tests, you can use the
target PC again as a desktop computer. Software is not permanently installed
on the target PC unless you are deliberately using the xPC Target Embedded
Option and install a stand-alone application on the hard disk or flash memory.

Target PC BIOS - Selecting a newer BIOS allows you to customize settings for
better control over the real-time behavior of the system. For example, turn off
the external and CPU-cache, suppress the check for a keyboard, and switch off
any power save features.

The xPC Target kernel runs only on a PC compatible system and a key
component of every PC compatible system is the BIOS. The BIOS is the only
software component which is needed by the xPC Target kernel.

After the BIOS is loaded, it searches the target boot disk for a bootable image
(executable). This bootable image includes a 16-bit part and a 32-bit part. The
16-bit part runs first because the CPU is still in real mode. It prepares the
descriptor tables and in addition to other things switches the CPU to protected
mode. Next, the 32-bit part runs. It prepares the target PC environment for
running the kernel and finally starts the kernel.

Features of xPC Target

1-5

After loading the kernel, the target PC does not make calls to the BIOS or DOS
functions. The resources (for example, interrupt controller, UART, and
counters) on the CPU motherboard are addressed entirely through I/O
addresses.

Real-Time Kernel - After the kernel starts running, it displays a welcome
message with information about the host-target connection. The kernel
activates the application loader and waits to download a target application
from the host PC. The loader receives the code, copies the different code
sections to their designated addresses, and sets the target application ready to
start. You can now use xPC Target functions and other utilities to
communicate with the target application.

It is important to note, that after the CPU switches to protected mode (32-bit),
none of the xPC Target components switch the CPU back to real mode (16-bit).

The generated real-time application and the real-time kernel are compiled as
Windows NT applications with a flat memory model. This provides full 32-bit
power without time consuming 16-bit segment switching and DOS extenders.

Target PC heap - The initialization code of the target application reserves the
remaining unused RAM as heap. The memory available for the heap is
displayed on the left side of the target screen as Memory. By default, it is 4 MB
less than the entire RAM installed (1 MB for the application; 3 MB for the
kernel). Normally, the largest part of the heap is used by signal logging because
logging acquires and stores data during the entire run.

You can define the amount of memory available for data logging in the
Simulation Parameters dialog box. See “Entering the Simulation Parameters”
on page 3-8.

1 Introduction

1-6

Real-Time Application
A real-time application (target application) is created from a Simulink/
Stateflow model with Real-Time Workshop, Stateflow Coder, and xPC Target.
Applications created with Real-Time Workshop and xPC Target run in
real-time on a standard PC without using a standard operating system.

The target application runs in real time on the target PC and has the following
characteristics:

• Memory model - The target application is compiled as a Windows NT
application with the flat memory model. This provides full 32-bit power
without time consuming 16-bit segment switching and DOS extenders. Also,
it does not rely on DOS or any other Microsoft operating system.

• Task Execution time - The target application is capable of high-speed,
real-time task execution. A small block diagram can run with a sample time
as fast as 10 µs (100 MHz). Model size, complexity, and target PC hardware
affect maximum speed (minimal sample time) of execution.

For more information on creating a target application, see “Creating the Target
Application” on page 3-7.

Signal Acquisition and Analysis
Signal acquisition is through the real-time kernel. Signal data from your
real-time application is stored in RAM on the target PC, and can then be used
for analysis. xPC Target supports the following types of signal acquisition:

• Signal Monitoring - This is the process for acquiring signal data without
time information. In this mode, you can get the current value of one or more
signals. The data is not acquired in the real-time task but in the background
task. The advantage of this process is that collecting data does not add any
computational load to running the real-time application.

For example, if you have a LED Gauge in a Simulink model on the host PC,
you could use signal monitoring to display the status of the signal.

Features of xPC Target

1-7

• Signal Logging - This is the process for acquiring signal data during a
real-time run. The data is collected in the real-time task and acquired
samples are associated with a time stamp. After the run reaches its final
time or you manually stop the run, the host PC makes a request to upload
data from the target PC. You can then visualize signals by plotting data on
the host PC, or you can save data to a disk.

• Signal Tracing - This is the process of acquiring and visualizing signals
during a real-time run. The data is collected in the real-time task and
acquired samples are associated with a time stamp. It allows you to acquire
signal data and visualize it on the target PC or to upload the signal data and
visualize it on the host PC while the target application is running. The
flexibility of this acquisition type is very similar to the behavior of a digital
oscilloscope.

For information on the various ways to acquire signal data with xPC Target,
see “User Interaction” on page 1-18.

Parameter Tuning
Most Simulink blocks have parameters that you can change before or while
your target application is running. For example, parameters include the
amplitude and frequency of a sine wave.

• Interactive - xPC Target supports interactive tuning of parameters while
the target application is running in real time. The changes to parameters are
immediately reflected in the signal outputs.

• Scripts and batch procedures - xPC Target also includes commands to
change parameters during a run or between runs. By writing a script that
incrementally changes a parameter and monitors a signal output, you can
optimize the value of that parameter.

For information on the various ways to tune parameters with xPC Target, see
“User Interaction” on page 1-18.

1 Introduction

1-8

Hardware Environment
The hardware environment consists of a host computer, target computer, I/O
boards on the target computer, and a serial or network connection between the
host and target computers.

This section includes the following topics:

• “Host PC” - Desktop PC, or notebook PC

• “Target PC” - Desktop PC, industrial PC, PC 104, or CompactPCI

• “Host-Target Connection”- RS232 serial or TCP/IP network

• “Input/Output Driver Support” - Analog, digital, CAN, GPIB, RS232,
counters, timers, and signal conditioning

Host PC
You can use any PC that runs Windows 95, Windows 98, Windows 2000, or
Windows NT on the host PC. Also, it must contain a 3.5-inch floppy disk drive,
and a free serial port or an Ethernet adapter card.

The host PC can be one of the following:

• Desktop PC

• Notebook PC

For more details on the requirements of the host PC, see “Host PC” on page 2-3.

Target PC
You can use virtually any PC with an Intel 386/486/Pentium or AMD K5/K6/
Athlon processor as the target computer with a floating-point unit (FPU)
present. Also, it must contain a 3.5 inch floppy disk drive, and a free serial port
or an Ethernet adapter card. Using the xPC Target Embedded Option, you can
transfer files from the 3.5 inch disk to a hard disk or flash memory.

Hardware Environment

1-9

The target PC can be one of the following:

• Desktop PC - This computer is booted from a special target boot disk
created by xPC Target.

When you boot the target PC from the target boot disk, xPC Target uses the
resources on the target PC (CPU, RAM, and serial port or network adapter)
without changing the files already stored on the hard drive.

After you are done using your desktop computer as a target PC, you can
easily reboot your computer without the target boot disk. You can then
resume normal use of your desktop computer using the pre-existing
operating system and applications.

• Industrial PC - This computer is booted from a special target boot disk, or
with the xPC Target Embedded Option, booted from a hard disk or a flash
memory.

When using an industrial target PC, you can select PC104, PC104+,
CompactPCI, or single-board computer (SBC) hardware.

You do not need any special target hardware. However, the target PC must be
a fully compatible system and contain a serial port or Ethernet card. For more
details on the requirements of the target PC, see “Target PC” on page 2-4.

Host-Target Connection
xPC Target supports two connection-and-communication protocols between
the host PC and the target PC: serial and network.

Serial - The host and target computers are connected directly together with a
serial cable using their RS232 ports. This cable is wired as a null modem link
that can be up to 5 meters long. We provide a null modem cable with the xPC
Target software.

1 Introduction

1-10

The transfer rate is variable between 1200 and 115200 Baud.

For detailed information to setup the hardware and software for serial
communication, see “Serial Communication” on page 2-12.

Network - The host and target computers are connected through a network.
The network can be a LAN, the Internet, or a direct connection using a
cross-over Ethernet cable. Both the host and target computers are connected to
the network with Ethernet adapter cards. xPC Target uses the TCP/IP protocol
for communication.

When using a network connection, the target PC can use the Ethernet adapter
card provided with xPC Target or one of the supported cards. The data transfer
rate is limited to 10 Mbit/s. For a list of supported cards, see “Hardware for
Network Communication” on page 2-16.

For detailed information to setup the hardware and software for network
communication, see “Network Communication” on page 2-15.

RS 232
Serial connection

Serial
port

Host PC Target PC

Serial
port

Target PCHost PC

TCP/IP
Network connection

Network
card

Network
card

Hardware Environment

1-11

Input/Output Driver Support
xPC Target supports a wide range of I/O boards. The list of supported I/O
boards includes ISA, PCI, PC/104, and CompactPCI hardware. The drivers are
represented by Simulink blocks. Your interaction with the drivers is through
these Simulink blocks and the parameter dialog boxes.

I/O board library - The I/O driver library contains Simulink blocks for xPC
Target. You drag-and-drop a block from the I/O library and connect I/O drivers
to your model the same way as you would connect any standard Simulink
block.

Input/Output support - The I/O device library supports over 40 standard
boards. Input/Output boards plug into the target PC expansion bus, or are
modules in PC104 and industrial PC computers. xPC Target supports the
following I/O functions:

• Analog input (A/D) and analog output (D/A) - Interface sensors and
actuators to your target application

• Digital input and output - Interface to switches, on/off devices, and
communicate information in parallel

• RS232 support - COM1 or COM2 ports for serial communication

• CAN support - CAN-AC2, CAN-AC2-PCI, and CAN-AC2-104 boards from
Softing GmbH

The xPC Target CAN drivers enable you to interface with a CAN fieldbus
network to provide communication through a CAN network between
real-time applications and remote sensors and actuators. The xPC Target
CAN drivers are compatible with CAN specification 2.0A and 2.0B and use
the dynamic object mode.

• GPIB support - Special RS232 drivers support communication with a GPIB
control module from National Instruments

• Counter - Pulse and frequency code modulation applications
• Watchdog - Monitor an interrupt or memory location, and reset the

computer if an application does not respond

• Incremental encoder - Change motion into numerical information for
determining position, direction of rotation, and velocity

• Shared memory. Use with multiprocessing applications

1 Introduction

1-12

Software Environment
The software environment is a place to design, build, and test a target
application in nonreal-time and real-time. It also includes communication
between the host and target computers.

This section includes the following topics:

• “Host-Target Communication” - Control the target application, upload
signal data, and download parameter values.

• “Rapid Prototyping Process” - Design and build a target application on a
host PC. Download the target application to a target PC. Run and test the
target application with interactive tuning of parameters and acquisition of
data.

• “Embedded Process” - Boot the kernel from a device other than the floppy
disk drive, but download the target application from the host PC. Or boot the
kernel/application from the floppy disk drive or another device, and run the
target application completely separate from the host PC.

Host-Target Communication
Whether using a serial connection (RS232) or using a network connection
(TCP/IP), information is exchanged between the host PC and target PC. This
information includes:

• Target application. - Download a target application from the host to the
target computer.

• Control -Change properties and control the target application. This
includes starting and stopping the target application, changing sample and
stop times, and getting information about the performance of the application
and CPU.

• Signal data - Upload signal data from the host computer for analysis after
the target application is finished running, or view signal data during the run.

• Parameter values - Download parameter values to the target computer
between runs or during a run.

Software Environment

1-13

Rapid Prototyping Process
Design and build a target application on a host PC, and then run and test the
target application on a target PC. xPC Target functions include interactive
control of the target application, acquisition of signal data, and tuning of
parameters while running in real time.

The rapid prototyping process includes the following sequence of tasks:

1 Create a Simulink/Stateflow model - You create block diagrams in
Simulink using simple drag-and-drop operations, then you enter values for
the block parameters and select sample rates. If you use continuous-time
components, you also need to select an integration algorithm.

2 Simulate the model in nonreal-time - Simulink uses a computed time
vector to step the model. After the outputs are computed for a given time
value, Simulink immediately repeats the computations for the next time
value. This process is repeated until it reaches the stop time.

Because this computed time vector is not connected to a hardware clock, the
outputs are calculated in nonreal-time as fast as your computer can run. The
time to run a simulation can differ significantly from real-time.

3 Create an executable target application - Real-Time Workshop, Stateflow
Coder, xPC Target, and a C compiler create the target application that runs
on the target PC. This real-time application uses the initial parameters from
the Simulink model that were available at the time of code generation.

4 Execute the target application in real-time - The target PC is booted
using a special boot disk that loads the xPC Target real-time kernel. After
booting the target PC, you can build and download a real-time application.

xPC Target provides the necessary software that makes use of real-time
resources on the target PC hardware. Based on your selected sample rate,
xPC Target uses interrupts to step the model at the proper rate. With each
new interrupt, the target application computes all of the block outputs from
your model.

1 Introduction

1-14

5 Acquire signals and tune parameters - You acquire signal data using xPC
Target scopes and Gauge blocks. Scopes are created on the target PC by:

- Adding xPC Target Scope blocks to your Simulink model

- Using the xPC Target Scope manager window

- Commands in the MATLAB window

- Commands in the target PC command window

- Adding Gauge blocks to a second Similink model

- Using the xPC Target Web browser interface

Note xPC Target does not support normal Simulink scope blocks in external
mode. Instead, use xPC Target scope blocks.

You can tune parameters using:

- Commands in the MATLAB window

- Commands in the target PC command window

- Simulink in external mode

- Adding Dial blocks to a second Simulink model

- Using the xPC Target Web browser interface.

Software Environment

1-15

Embedded Process
Often, control system and digital signal processing applications are developed
for use in production where a limited number of deployed systems are required.
Whether deploying one or one hundred systems, the xPC Target Embedded
Option provides a convenient approach that allows you to implement your
system on low cost PC hardware.

When you have completed development and testing, you can use the target
application as a real-time system that runs on a dedicated target PC without
the need to connect to the host computer.

The xPC Target Embedded Option consists of two modes of operation. In each
case, the target PC boots into DOS, starts the DOS program xpcboot.com from
autoexec.bat, and then starts the kernel from xpcboot.com.

• “DOSLoader Mode” - Run the kernel from a device other than the floppy
disk drive such as a hard disk or flask disk, and download the target
application from the host PC.

• “(DOSLoader)/Standalone Mode” - Run both the kernel and the target
application from the floppy disk drive on the target PC, or optionally boot
from a device other than the floppy disk drive. The target application runs
completely independent from the host PC.

Note The xPC Target Embedded Option is a separate product that requires
an additional licence from The MathWorks. With this additional licence you
can deploy an unlimited number of real-time applications for stand alone
operation.

For more information on the xPC Target Embedded Option, see “xPC Target
Embedded Option” on page 5-1.

1 Introduction

1-16

DOSLoader Mode
The DOSLoader mode allows you to boot your target computer from devices
other than a 3.5-inch floppy disk drive. For example, the boot device can be a
hard disk drive or flash memory. The target application is still downloaded
from the host PC. You can also use this mode to boot from a floppy disk drive,
but there is no advantage to use this method over using a normal target boot
disk.

1 Select the DOSLoader mode from the xPC Target Setup window.

2 Create a new target boot disk.

3 Copy DOS system files and utilities to the target boot disk. In the
autoexec.bat file, remove the line that loads xpcboot.com.

4 Boot the target PC with the target boot disk from the floppy disk drive.

5 Copy files to the alternate boot device. In the autoexec.bat file, replace the
line that loads xpcboot.com.

6 Remove the target boot disk and reboot the target PC from the alternate boot
device.

7 Build a target application and download it to the target PC.

For more information on the xPC Target Embedded Option, see “xPC Target
Embedded Option” on page 5-1

Software Environment

1-17

(DOSLoader)/Standalone Mode
The Standalone mode combines the target application with the kernel and
boots them together on the target PC from a 3.5 inch floppy disk drive, hard
disk drive, or flash memory. The host PC does not have to be connected to the
target PC.

1 Select the StandAlone mode from the xPC Target Setup window.

2 Build a kernel/target application.

3 Copy DOS system files, utilities, kernel/application files and helper files to
the boot disk.

Note If booting from a alternate boot device, in the autoexec.bat file,
remove the line that loads xpcboot.com.

4 Boot the target PC with the target boot disk from the floppy disk drive.

Note If booting from and alternate boot device, copy files to the alternate
boot device. In the autoexec.bat file, replace the line that loads
xpcboot.com. Remove the target boot disk and reboot the target PC from
the alternate boot device.

For more information on the xPC Target Embedded Option, see “xPC Target
Embedded Option” on page 5-1

1 Introduction

1-18

User Interaction
The xPC Target environment to has an intuitive and modifiable interface. It
uses an object-oriented structure with properties and methods. Because of this
open structure, there are several ways to interact with your target application.

This section includes the following topics:

• “xPC Target Graphical Interface” - Use the xPC Target GUIs to set
environment properties and create xPC Target scopes

• “MATLAB Command Line Interface” - Enter xPC Target functions on the
host PC.

• “Target PC Command Line Interface” - Enter xPC Target functions on the
target PC

• “Simulink External Mode Interface” - Connect a Simulink block diagram
to the target application for parameter tuning

• “Simulink Dials and Gauges Interface” - Create a second Simulink model
with Dials, Gauges, and special xPC Target interface blocks

• “Web Browser Interface” - Use Microsoft Internet Explorer or Netscape
Navigator to connect to the target computer from any computer on the
network

The following table compares the different interfaces supported by xPC Target.

Interface Environment
properties

Control Signal
Acquisition

Parameter
Tuning

xPC Target GUI X X

MATLAB
Command Line

X X X X

Target PC
Command Line

X X X

Simulink
External Mode

X X

Web Interface X X X

Dials & Gauges X X

User Interaction

1-19

xPC Target Graphical Interface
xPC Target offers graphical user interfaces (GUIs) for setting up the xPC
Target environment, and for tracing signals while running real-time
applications. These GUIs are build using xPC Target commands and MATLAB
Handle Graphics®.

There is no xPC Target GUI for controlling the target application or tuning
parameters. Use one of the other methods of interaction for these functions.

The xPC Target graphical interface includes the following functions:

• Environment - Use the xPC Target Setup window to change properties in
the xPC Target environment. Properties include, communication between
the host and target computers, and entering the type and location of your C
compiler.

For more information on environment properties, see “Serial
Communication” on page 2-12, “Network Communication” on page 2-15, and
the “Environment Reference” on page 6-1.

• Signal acquisition - Use the Scope Manager window to interactively add
scopes of type host or target, add or remove signals, and set triggering modes.
A scope created on the target PC acquires data from the target application
and stores the data for display.

A scope with type host continuously uploads the signal traces and displays
them on the host PC.

A scope with type target displays the signal traces on the target PC. Because
xPC Target uses highly optimized graphic routines, signal tracing has the
same fast display and update rates that you normally observe when using
digital oscilloscopes.

An alternative to using the Scope Manager window is to add special xPC
Target scope blocks to your Simulink model. These blocks create scopes on
the target PC during initialization of the target application after the
download process.

For more information on using scopes, see “Signal Tracing with xPC Target
GUI” on page 3-26 and “Signal Tracing with xPC Target GUI (Target
Manager)” on page 3-31.

1 Introduction

1-20

MATLAB Command Line Interface
You can interact with the xPC Target environment through the MATLAB
command line interface. Enter xPC Target commands in the MATLAB window
on the host PC. You can also write your own M-file scripts that use xPC Target
functions for batch testing procedures.

xPC Target has more than 40 MATLAB functions for controlling the target
application from the host computer. These functions define, at its most basic
level, what you can do with the xPC Target system.

Some tasks are difficult to implement with graphical interface objects. The
GUIs that we provide with xPC Target are for the most common tasks. They
use the functions but do not extend their functionality. The command line
interface provides an interactive environment that you can extend.

The MATLAB command line interface includes the following functions:

• Environment - Directly change the environment properties without using a
GUI.

• Control - Download, start, and stop real-time applications. Change sample
times without regenerating code. Get statistical performance information
during or after the last run.

• Signal acquisition - Trace signals for viewing while the real-time
application is running. Transfer signal data to the MATLAB workspace by
uploading signal data between runs.

• Parameter tuning - Change parameters while the real-time application is
running. Also, use xPC Target commands to change parameters in between
runs or during a run. This allows you to batch process many runs at one time.

For a complete list of MATLAB functions to use with xPC Target, refer to
“Environment Reference” on page 6-1, “Target Object Reference” on page 7-1,
and “Scope Object Reference” on page 8-1

User Interaction

1-21

Target PC Command Line Interface
You can interact with the xPC Target environment through the target PC
command window. Enter commands in the command line on the target PC.
This interface is useful with stand-alone applications that are not connected to
the host PC.

The target PC command line interface includes the following functions:

• Control - Start and stop the target application, change the stop time and
sample time

• Signal acquisition - Acquiring signal data is limited to viewing signal traces
and signal monitoring on the target PC screen.

• Parameter tuning - Changing parameters is limited to changing the scalar
parameters in your model.

Simulink External Mode Interface
Use Simulink in external mode to connect your Simulink block diagram to your
target application. The block diagram becomes a graphical interface to the
target application running in real time. By changing parameters in the
Simulink blocks you also change parameters in the target application.

The Simulink external mode interface includes the following functions:

• Control - Limited to connecting the Simulink block diagram, starting and
stopping the target application

• Parameter tuning - Select external mode, and change parameters in the
target application by changing parameters in the Simulink parameter dialog
boxes. Once you change a value, the new value is immediately downloaded
to the target PC and replaces the existing parameter while the target
application continues to run.

Note xPC Target does not support data acquisition thorough Simulink
External Mode. Instead, use xPC Target scope blocks.

1 Introduction

1-22

What Is External Simulation Mode? External simulation mode is a feature of
the Real-Time Workshop (RTW). It offers an easy way to change parameters in
a target application regardless of whether a target application is running or
not:

• If a target application is not running, it allows you to prepare a model with
a new set of parameters before the next run.

• If a target application is running, it allows you to change parameters and
immediately see what effect changing parameters has on the behavior of
your generated code.

Simulink Dials and Gauges Interface
Use Dials, Gauges, and special xPC Target interface blocks to create a second
Simulink model. This second Simulink model runs in normal mode and in
nonreal-time. The special xPC Target interface blocks connect the second
Simulink model to the target application, which runs in real time.

The Simulink Dials and Gauges interface includes the following functions:

• Signal acquisition - Use Gauge blocks to visualize and animate signal data.

• Parameter tuning - Use Dial blocks to change parameters in your model.

Web Browser Interface
If the target PC is connected to a network (TCP/IP), you can use a Web browser
to interact with the target application from any computer connected to a
network.

The Web browser interface includes the following functions:

• Control - Start and stop the target application, change the stop time and
sample time

• Signal acquisition - Signal tracing is limited to viewing a snapshoot of a
scope screen captured from the target PC screen. Add scopes of type target,
add or remove signals, and set triggering modes. Also, you can monitor signal
values.

• Parameter tuning - Change parameters in an HTML form, and then submit
that form to make the changes in your target application.

2
Installation and
Configuration

System Requirements 2-3
Host PC . 2-3
Target PC . 2-4

Installation on the Host PC 2-7
Getting or Updating Your License 2-7
CD-ROM Installation 2-8
Web Download Installation 2-8
Files on the Host PC Computer 2-10

Initial Working Directory 2-11
Setting Your Working Directory from the Desktop Icon . . . 2-11
Setting Your Working Directory from Within MATLAB . . . 2-11

Serial Communication 2-12
Hardware for Serial Communication 2-12
Environment Properties for Serial Communication 2-13

Network Communication 2-15
Hardware for Network Communication 2-16
Ethernet Card for a PCI-Bus 2-18
Ethernet Card for an ISA-Bus 2-18
Environment Properties for Network Communication 2-20

Target Boot Disk 2-23
Current Properties on the Target Boot Disk 2-25

Testing and Troubleshooting the Installation 2-26
Testing the Installation 2-26
If You Still Need More Help 2-31

2 Installation and Configuration

2-2

The software environment for xPC target uses two separate computers.
Because of this added complexity, installation and configuration are more
involved.

This chapter includes the following sections:

• “System Requirements” - Select a host PC and target PC

• “Installation on the Host PC” - Get a valid license for xPC Target, and a
separate license for the xPC Target Embedded Option. Install from a CD or
download from the Web

• “Serial Communication” - Select for an easy and inexpensive installation

• “Network Communication” - Select for faster data transfer rates and
longer connections

• “Target Boot Disk” - Boot the kernel on the target PC and establish a
connection with the host PC

• “Testing and Troubleshooting the Installation” - Test the installation

System Requirements

2-3

System Requirements
The hardware and software requirements are different for the host and target
computers.

This section includes the following topics:

• “Host PC” - Desktop or notebook PC

• “Target PC” - Desktop, industrial PC, PC/104, and Compact PC

Host PC
The host PC is usually your desktop computer where you install MATLAB,
Simulink, Stateflow, Stateflow Coder, Real-Time Workshop, and xPC Target.
Also, you can use a notebook computer without slots as the host computer.

The following table lists the minimum software xPC Target requires on your
host PC system. For a list of optional software products related to xPC Target,
see “Related Products” on page -xv.

Table 2-1: Software Requirements for the Host PC

Software Description

Operating
system

Windows 95, Windows 98, Windows 2000 or Windows
NT 4.0.

MATLAB Version 6.0

Simulink Version 4.0

Real-Time
Workshop

Version 4.0

C language
compiler

Microsoft Visual C/C++ versions 5.0 or 6.0.

Watcom C/C++ versions 10.6 or 11.0.

xPC Target Version 1.1

2 Installation and Configuration

2-4

The following table lists the minimum resources xPC Target requires on the
host PC system.

Table 2-2: Hardware Requirements for the Host PC

Target PC
The target PC has to be a PC compatible system. In many cases you can use a
second desktop computer as the target PC, but also you can use an industrial
system like a PC/104 or CompactPCI as the target computer.

The following table lists the software xPC Target requires on the target PC
system.

Table 2-3: Software Requirements for the Target PC

Hardware Description

Communication One free serial port (COM1 or COM2) with a 9-pin or
25-pin D-sub connector, or an Ethernet card connected
to a network.

CPU Pentium, Athlon or higher.

Peripherals Hard disk drive with 60 Mbytes of free space.

One 3.5-inch floppy disk drive.

CD-ROM drive.

RAM 32 Mbytes or more.

Software Description

Operating
system

None. If you have an operating system installed, it is
not affected.

BIOS PC compatible.

System Requirements

2-5

The following table lists the minimum hardware resources xPC Target
requires on the target PC system.

Table 2-4: Hardware Requirements for the Target PC

Hardware Description

Chip set PC compatible with UART (For example, 16550),
programmable interrupt controller (For example, 8259),
keyboard controller, and counter (For example, 8254).

Communication One free serial port (COM1 or COM2) with a 9-pin or
25-pin D-sub connector, or an Ethernet card connected
to a network. An Ethernet card is provided with xPC
Target.

CPU Intel 386 with a floating-point processor, Intel 486/
Pentium or AMD K5/K6. We recommend a Pentium, K6
or higher CPU. xPC Target does not support DEC Alpha
computers.

Keyboard and
mouse

Needed to control the target PC when you create
stand-alone applications.

Note If a keyboard is not connected, the BIOS may
display an error message (keyboard failure). With a
newer BIOS, you can use the BIOS setup to skip the
keyboard test.

Monitor We recommend using a monitor, but it is not necessary.
You can get all of the target information using xPC
Target functions on the host PC.

Peripherals One 3.5 inch floppy disk drive. A hard disk drive is not
required.

Note If you install the xPC Target Embedded Option,
you can copy files to a hard disk or flash memory and
boot from that device.

RAM 8 Mbytes or more.

2 Installation and Configuration

2-6

Random Access Memory (RAM) - xPC Target works with PC compatible
computers that use inexpensive dynamic RAM, unlike many nonPC compatible
target computers that use expensive static RAM. You can acquire several
megabytes of data during a run depending on how much memory you install in
the target PC.

PC compatible target computers - xPC Target supports the following
PC-compatible hardware (form factors):

• PC ISA

• PC PCI

• PC/104 and PC/104+

• CompactPCI

I/O boards - You can install inexpensive I/O boards in the PCI or ISA slots of
the target PC. These boards provide a direct interface to the sensors, actuators,
or other devices for real-time control or signal processing applications.

For a list of I/O functions supported by xPC Target, see “Input/Output Driver
Support” on page 1-11.

Installation on the Host PC

2-7

Installation on the Host PC
You install the xPC Target software entirely on the host PC. Installing
software on the target PC is not necessary. We distribute the xPC Target
software on a CD-ROM or as a file you download from the Web.

This section includes the following topics:

• Getting or Updating Your License

• CD-ROM Installation

• Web Download Installation

The xPC Target family of software includes options that you can purchase and
add later to the xPC Target environment.

xPC Target Embedded Option - With the xPC Target Embedded Option
active, you have additional choices for the type of target boot disk. You can
choose from BootFloppy, DosLoader, and StandAlone. See the “Embedded
Process” on page 1-15.

Getting or Updating Your License
Before you install xPC Target or the xPC Target Embedded Option, you must
have a valid License File or Personal License Password (PLP). The License File
or Personal License Password identifies the products you purchased from The
MathWorks and you are permitted to install and use.

When you purchase a product, The MathWorks sends you a License File or
Personal License Password (PLP) in and e-mail message. If you have not
received a PLP number, contact the MathWorks.

Internet http://www.mathworks.com/mla

Log into MATLAB Access using your last name and Access
number. Follow the license links to determine your PLP
number

E-mail mailto:service@mathworks.com. Include your license
number

Telephone 508-647-7000. Ask for Customer Service

Fax 508-647-7001. Include your license number

2 Installation and Configuration

2-8

CD-ROM Installation
We distribute xPC Target version 1.1 on The MathWorks R12.0 CD with the
general installation program.

After you get a valid Personal License Password (PLP), you can install the xPC
Target software. For detailed information about the installation process, see
the MATLAB Install Guide for PC.

1 Insert the R12.0 CD-ROM into the host CD drive.

After a few seconds, the installation program starts automatically. If the
installation program does not start automatically, run setup.exe on the
CD-ROM.

2 Follow the instructions on each dialog box.

The xPC Target installation is now complete.

Your next task is to set up the xPC Target environment for either serial or
network communication. See “Serial Communication” on page 2-12 or
“Network Communication” on page 2-15.

Web Download Installation
We distribute xPC Target as a single, self-extracting file. After you get a valid
Personal License Password (PLP), you can install the xPC Target software. See
“Getting or Updating Your License” on page 2-7.

To download xPC Target from the Internet, and install it on the host computer,
use the following procedure:

1 In the Web browser window, enter the following address

http://www.mathworks.com

2 On the right side of the page, click the link labeled Downloads. On the
Downloads Web page, click the link labeled download products.

The MATLAB Access Web page opens.

Installation on the Host PC

2-9

3 Enter your last name and your MATLAB Access number. Click the Login
button.

The Downloads Web page opens.

4 From the left list, select the PC Windows check box, and then click the
Continue button. From the Select Your Products list, select the xPC
Target check box, and then click the Continue button.

5 On the next Web page, click the xPC Target link. In the File Download
dialog box, select Save this file to disk, and select the directory where you
installed MATLAB.

Your browser downloads the file xPC_Target.exe to your computer.

6 Double-click the self-extracting file xPC_Target.exe.

The install program copies extracted files to a temporary directory and
starts the MATLAB installation program.

7 Follow the instructions on each dialog box.

After MATLAB finishes the installation, the install program deletes all of
the files from the temporary directory.

The xPC Target installation is now complete.

Your next task is to set up the xPC Target environment for either serial or
network communication. See “Serial Communication” on page 2-12 or
“Network Communication” on page 2-15.

2 Installation and Configuration

2-10

Files on the Host PC Computer
When using xPC Target, you may find it helpful to know where files are
located:

• MATLAB working directory - Simulink models (model.mdl), xPC Target
applications (model.dlm)

Note select a working directory outside of the MATLAB root. See “Initial
Working Directory” on page 2-11

• RTW working directory - The RTW C-code files (model.c, model.h) are in
a subdirectory called model_xpc_rtw.

xPC Target uses the directories and files located in
C:\MATLABROOT\Toolbox\rtw\targets\xpc:

• target - Files and functions related to the xPC Target kernel and build
process

• xpc - Functions related overall to xPC Target, methods for target objects,
and methods for scope objects

• xpcdemos - Simulink models and M-file demos.

Initial Working Directory

2-11

Initial Working Directory
You should set your MATLAB working directory outside of the MATLAB root
directory. The default MATLAB root directory is c:\matlab.

If your MATLAB working directory is below or inside the MATLAB root, files
created by Simulink, Real-Time Workshop, and Real-Time Windows Target
are mixed with the MATLAB directories. This mixing of files could cause you
file management problems when deleting unwanted files.

Setting Your Working Directory from the Desktop
Icon
Your initial working directory is specified in the shortcut file you use to start
MATLAB. To change this initial directory, use the following procedure:

1 Right-click the MATLAB desktop icon, or from the program menu,
right-click the MATLAB shortcut.

2 Click Properties. In the Start in text box, enter the directory path you want
MATLAB to initially use. Make sure you choose a directory outside of the
MATLAB root directory.

3 Click OK, and then start MATLAB. To check your working directory, type

pwd or cd

Setting Your Working Directory from Within
MATLAB
An alternative, but temporary, procedure for setting your MATLAB working
directory is:

1 In the MATLAB command window, type

cd c:\mwd

2 To check your working directory, type

pwd or cd

2 Installation and Configuration

2-12

Serial Communication
Before you can create and run a target application, you need to set up the
connection between your host and target computers. You can use either serial
or network communication.

This section includes the following topics:

• “Hardware for Serial Communication”

• “Environment Properties for Serial Communication”

For using network communication, see “Network Communication” on
page 2-15.

Advantages of Serial Communication - A host-to-target connection using
serial RS232 communication has advantages over network TCP/IP
communication: inexpensive, easy to install, and always available.

Hardware for Serial Communication
Before you install the xPC Target software and configure it for serial
communication, you must install the following hardware:

• Null modem cable - You connect the host and target computers with the
null modem cable supplied by The MathWorks with the xPC Target
software. You can use either the COM1 or COM2 ports.

• I/O boards - If you use I/O boards on the target PC, you need to correctly
install the boards. See the manufactures literature for installation
instructions.

Serial Communication

2-13

Environment Properties for Serial Communication
The xPC Target environment is defined by a group of properties. These
properties give xPC Target information about the software and hardware
products that it works with. You might change some of these properties often,
while others you would change only rarely.

After you have installed xPC Target, you can set the environment properties
for the host and target computers. You need to change these properties before
you can build and download a target application.

To change the environment properties using a graphical user interface, use the
following procedure.

1 In the MATLAB window, type

xpcsetup

The xPC Target Setup window opens.

2 Installation and Configuration

2-14

The xPC Target Setup window has two sections:

- xPC Target

- xPC Target Embedded Option

If your license does not include the embedded option, the TargetBoot list is
disabled (grayed-out) with Boot Floppy as your only choice. With the xPC
Target Embedded Option installed, you have the additional choices of
DOSLoader and StandAlone.

2 From the CCompiler list, choose either VisualC or Watcom.

3 In the CompilerPath box, enter the root path where you installed your
C/C++ compiler.

4 From the HostTargetComm list, choose RS232.

5 From the RS232HostPort list, choose either COM1 or COM2 for the
connection on the host PC. Then, xPC Target automatically determines the
COM port you use on the target computer.

6 When you finish changing the properties, click the Update button.

xPC Target updates the environment with the new properties.

You do not have to exit and restart MATLAB after making changes to the xPC
Target environment, even if you change the communication between the host
and target from RS232 to TCP/IP. However, you have to recreate the target
boot disk, and rebuild the target application from the Simulink model.

For more information on the xPC Target Environment, see “Environment
Reference” on page 6-1

Your next task is to create a target boot disk. See “Target Boot Disk” on
page 2-23.

Network Communication

2-15

Network Communication
Before you can create and run a target application, you need to set up the
connection between the host and target computers. You can use either serial or
network communication.

This section includes the following topics:

• “Hardware for Network Communication”

• “Ethernet Card for a PCI-Bus”
• “Ethernet Card for an ISA-Bus”
• “Environment Properties for Network Communication”

For using serial communication, see “Serial Communication” on page 2-12.

Advantages of Network Communication - A host-to-target connection using
network TCP/IP communication has advantages over serial RS232
communication:

• Higher data throughput - Network communication using Ethernet can
transfer data up to 10 Mbit/s instead of the maximum data transfer rate of
115 kBaud with serial communication.

• Longer distances between host and target computer - By using
repeaters and gateways you do not restrict the distance between your host
and target computers to the length of a serial cable. Also, communication
over the Internet is possible.

This manual does not include information for installing network cards or the
TCP/IP protocol on your host computer. For correct installation and setup of
your network cards and the TCP/IP protocol, contact your system
administrator.

2 Installation and Configuration

2-16

Hardware for Network Communication
You must install the following hardware before you install the xPC Target
software and configure it for network communication:

• Network adapter card - When using xPC Target with TCP/IP, you must
have a network adapter card correctly installed on both your host PC and
your target PC. Then, you connect the host and target computers with a
coaxial cable or unshielded twisted pair (UTP) cable to your local area
network (LAN).

Also, you can directly connect your computers together. Use a cross-over
UDP cable with RJ45 connectors, or add BNC T-connectors to your Ethernet
boards, connect with a normal coaxial cable, and add BNC-terminators at the
ends.

• I/O boards - If you use I/O boards on your target PC, you need to correctly
install the boards.

Supported Ethernet cards - xPC Target includes device drivers for specific
network cards. The MathWorks supplies a PCI-bus Ethernet card with the xPC
Target software for you to use in your target PC. This card is NE2000
compatible.

Note The Ethernet card included with xPC Target supports a data transfer
rate of 10 Mbit/s. We do not support a 100 Mbit/s Ethernet card.

Network Communication

2-17

The following are cases where you cannot use the Ethernet card we provide
with xPC Target:

• You do not have an available PCI slot in your target PC

• You do not have a PCI-bus in your target PC

• You need to use an Ethernet card other then the card we provide with xPC
Target

If one of the above cases applies, purchase one of the boards from the following
list. We have tested these boards to be compatible with xPC Target.

Board Type Board Number xPC Target
Driver

PCI SMC EZ Card 10 SMC1208T
(RJ45)

NE2000

SMC EZ Card 10 SMC1208BT
(RJ45, BNC)

NE2000

SMC EZ Card 10 SMC1208BTA
(RJ45, BNC, AUI)

NE2000

ISA SMC EZ Card 10 SMC1660T
(RJ45)

NE2000

SMC EZ Card 10 SMC1660BT
(RJ45, BNC)

NE2000

SMC EZ Card 10 SMC1660BTA (RJ45,
BNC, AUI)

NE2000

PC/104 Real Time Devices USA CM202 (RJ45,
BNC, AUI)

NE2000

WinSystems Inc. PCM-NE2000-16
(RJ45)

NE2000

WinSystems Inc. PCM-NE2000-16-BNC
(BNC)

NE2000

SBC Versalogic VSBC-6 SMC91C9X

2 Installation and Configuration

2-18

Ethernet Card for a PCI-Bus
If your target PC has a PCI-bus, we recommend that you use an Ethernet card
for the PCI-bus. The PCI-bus has a faster data transfer rate and requires
minimal effort to configure. Also, The MathWorks supplies one PCI-bus
Ethernet card with the xPC Target software for your target PC.

To install the PCI-bus Ethernet card supplied with the xPC Target software,
use the following procedure:

1 Turn off your target PC.

2 If the target PC already has an unsupported Ethernet card, remove the card.

3 Plug the Ethernet card from The MathWorks into a free PCI-bus slot.

4 Connect your target PC Ethernet card to your LAN using a coaxial cable or
an unshielded twisted-pair cable.

Your next task is to set up the xPC Target environment for network
communication. See “Environment Properties for Network Communication” on
page 2-20.

Ethernet Card for an ISA-Bus
Your target PC might not have an available PCI-bus slot, or your target PC
might not contain a PCI-bus (older motherboards, passive ISA-backplanes, or
PC/104 computers). In these cases, you can use an Ethernet card for an
ISA-bus.

If you are using an ISA-bus, you need to reserve, from the BIOS, an interrupt
for this board.

The MathWorks does not provide an ISA-bus board. For a list of known
compatible network adapter cards, see “Hardware for Network
Communication” on page 2-16.

Network Communication

2-19

To install an ISA-bus Ethernet card, use the following procedure:

1 Turn off your target PC.

2 On your ISA-bus card, assign an IRQ and I/O-port base address by moving
the jumpers or switches on the card. Write down these settings because you
need to enter them in the xPC Target Setup window.

We recommend setting the IRQ line to 11 and the I/O-port base address
around 0x300. If one of these hardware settings would lead to a conflict in
your target PC, choose another IRQ or I/O-port base address.

Note If your ISA-bus card does not contain jumpers to set the IRQ line and
the base address, use the utility on the installation disk supplied with your
card to manually assign the IRQ line and base address. Do not configure the
card as a PnP-ISA device.

3 If the target PC already has an unsupported Ethernet card, remove the card.
Plug the compatible network card into a free ISA-bus slot.

4 Connect the target PC network card to your local area network (LAN) using
a coaxial or an unshielded twisted-pair cable.

If you use an Ethernet card for an ISA-bus within a target PC with a
PCI-bus, you must reserve the chosen IRQ line number for the Ethernet card
in the PCI-BIOS. Refer to your BIOS setup documentation to setup the
PCI-BIOS.

Your next task is to set up the xPC Target environment for network
communication. See “Environment Properties for Network Communication” on
page 2-20.

2 Installation and Configuration

2-20

Environment Properties for Network
Communication
The xPC Target environment is defined by a group of properties. These
properties give xPC Target information about the software and hardware that
it works with. You change some of these properties often while others you
change only rarely.

After you have installed xPC Target, you can set the specific environment
properties for your host and target computers. You must change these
environment properties before you can build and download a target
application.

To change the environment properties using a graphical user interface, use the
following procedure.

1 In the MATLAB window, type

xpcsetup

The xPC Target Setup window opens.

Network Communication

2-21

The xPC Target Setup window has two sections:

- xPC Target

- xPC Target Embedded Option

If your license does not include the embedded option, the TargetBoot list is
disabled (grayed-out) with Boot Floppy as your only choice. With the xPC
Target Embedded Option installed, you have the additional choices of
DOSLoader and StandAlone.

2 From the CCompiler list, choose either VisualC or Watcom.

3 In the CompilerPath box, enter the root path where you installed the your
C/C++ compiler.

4 From the HostTargetComm list, choose TCP/IP.

The TCP/IP text boxes become active.

You must enter the following properties with the correct values according to
your LAN environment. Ask your system administrator for values to the
following settings:

- TcpIpTargetAddress - This is the IP address for your target PC. An
example of an IP address is 192.168.0.1.

- TcpIpSubNetMask - This is the Subnet Mask address of your LAN. An
example of a Subnet Mask address is 255.255.0.0.

You enter the following properties depending on your specific circumstances:

- TcpIpTargetPort - This property is set by default to 22222. This value
should not cause any problems, because this number is higher than the
reserved area (telnet, ftp, ...) and it is only of relevance on the target PC.
If necessary this property value can be changed to any value higher than
20000.

- TcpIpGateway - This property is set by default to 255.255.255.255. This
means that your do not use a gateway to connect to your target PC.

If you communicate with the target PC from within your LAN, you may not
need to define a gateway and change this setting.

2 Installation and Configuration

2-22

If you communicate from a host PC located in a LAN different from your
target PC you need to define a gateway and enter its IP address. This is
especially true if you want to work over the Internet. Ask your system
administrator for the IP address of the appropriate gateway.

The following properties are specific for the Ethernet card on your target PC:

- TcpIpTargetDriver - This property is set by default to NE2000. xPC
Target also supports the SMC91C9X drivers.

- TcpIpTargetBusType - This property is set by default to PCI. If
TcpIpTargetBusType is set to PCI, then the properties TcpIpISAMemPort
and TcpIpISAIRQ have no effect on TCP/IP communication and are
disabled (grayed out). If you are using an ISA-bus Ethernet card, set
TcpIpTargetBusType to ISA and enter values for TcpIpISAMemPort and
TcpIpISAIRQ.

- TcpIpISAMemPort and TcpIpISAIRQ - If you are using an ISA-bus
Ethernet card, you must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The values of these properties must
correspond to the jumper settings or ROM settings on your ISA-bus
Ethernet card.

5 When you finish changing the properties, click the Update button.

xPC Target updates the environment with the new properties.

You do not have to exit and restart MATLAB after making changes to the xPC
environment even, if you changed the communication between the host and
target from RS232 to TCP/IP. Only the SIMULINK model has to be rebuilt.

For more information on the xPC Target Environment, see “Environment
Reference” on page 6-1.

Your next task is to create a target boot disk. See “Target Boot Disk” on
page 2-23.

Target Boot Disk

2-23

Target Boot Disk
You use the target boot disk to load and run the xPC Target kernel

After you make changes to the xPC Target environment properties, you need
to create or update a target boot disk.

To create a target boot disk for the current xPC Target environment, use the
procedure below:

1 In the MATLAB window, type

xpcsetup

The xPC Target Setup window opens.

2 Click the BootDisk button.

If you didn’t update the current settings, the following message box opens.

Click No. Click the Update button, and then click the BootDisk button
again.

After you update the current properties, and click the BootDisk button, the
following message box opens.

2 Installation and Configuration

2-24

3 Insert a formatted 3 1/2 inch floppy disk into the host PC disk drive, and
then click OK.

Note All data on the disk will be erased.

xPC Target displays the following dialog box while creating the boot disk.
The process takes about 1 to 2 minutes.

4 Close the xPC Target Setup window.

5 Remove the target boot disk from the host PC disk drive and insert it into
your target PC disk drive.

Your next task is to test your installation. See “Testing and Troubleshooting
the Installation” on page 2-26.

Target Boot Disk

2-25

Current Properties on the Target Boot Disk
To check if a target boot disk corresponds to the current xPC Target
environment, use the following procedure.

To check the target boot disk with an xPC Target GUI

1 Insert the target boot disk into your host PC drive, and type

xpcsetup

The xPC Target Setup window opens

2 In the Setup window, click the BootDisk button.

If the boot disk properties correspond to the current properties, the following
message opens and no data is written to the disk.

To check the target boot disk with MATLAB commands

1 Insert the target boot disk into your host PC drive, and type

xpcbootdisk

MATLAB displays the message

Insert a formatted floppy disk into your host PC’s
disk drive and press a key to continue

2 Press any key.

If the boot disk properties correspond to the current properties, MATLAB
displays the following message and not data is written to the disk.

Inserted floppy is a Target Boot Floppy for the current xPC
Target environment

2 Installation and Configuration

2-26

Testing and Troubleshooting the Installation
Use this section to troubleshoot connection and communication problems
between your host and target computers.

This section includes the following topics:

• “Testing the Installation”
• “Test 1, Ping Target System Standard Ping”
• “Test 2, Ping Target System xPC Target Ping”
• “Test 3, Reboot Target Using Direct Call”
• “Test 4, Build and Download Application”

Testing the Installation
xPc Target uses a function to test the entire installation. After you install the
xPC Target software, set the environment settings, and create a target boot
disk, you can test your installation.

1 Insert your target boot disk into your target PC disk drive.

2 Press the reset button on your target PC.

After loading the BIOS, xPC Target boots the kernel, and displays the
following screen on the target PC.

3 In the MATLAB window, type

xpctest

Testing and Troubleshooting the Installation

2-27

MATLAB runs the test script and displays messages indicating the success
or failure of a test. If you use RS232 communication, the first test is skipped.

xPC Target Test Suite 1.1
Host-Target interface is: TCP/IP (Ethernet)
Test 1, Ping target system using standard ping: ... OK
Test 2, Ping target system using xpctargetping: ... OK
Test 3, Reboot target using direct call: OK
Test 4, Build and download xPC Target application: ... OK
Test 5, Check host-target communication for commands: .. OK
Test 6, Download xPC Target application using OOP: ... OK
Test 7, Execute xPC Target application for 0.2s: ... OK
Test 8, Upload logged data and compare with simulation:. OK
Test Suite successfully finished

If any of the tests fail, see the approtiate test section:

• “Test 1, Ping Target System Standard Ping”

• “Test 2, Ping Target System xPC Target Ping”

• “Test 3, Reboot Target Using Direct Call”

• “Test 4, Build and Download Application”

Test 1, Ping Target System Standard Ping
If you are using a network connection, this is a standard system ping to your
target computer. If this test fails, try troubleshooting with the following
procedure:

1 Open a DOS shell, and type the IP address of the target computer

ping xxx.xxx.xxx.xxx

DOS should display a message similar to the following.

Pinging xxx.xxx.xxx.xxx with 32 bytes of data:
Replay form xxx.xxx.xxx.xxx: bytes-32 time<10nx TTL=59

2 Installation and Configuration

2-28

2 Check the messages on your screen.

Ping command fails - If the DOS shell displays the following message.

Pinging xxx.xxx.xxx.xxx with 32 byte of data:
Request timed out.

The ping command failed, and the problem may be with your network
cables.

To solve this problem, check your network cables. You may have a faulty
network cable, or if you are using a coaxial cable, the terminators may be
missing.

Ping command fails, but cables are okay - If the cables are okay, the
problem may be that you entered an incorrect property in the Setup window.

To solve this problem, in the MATLAB command window, type

xpcsetup

Check that TcpIpTargetAddress, TcpIpSubNetMask, and TcpIpGateway
have the correct values.

For a PCI-bus:

- Check that TcpIpTargetBusType is set to PCI instead of ISA.

For an ISA-bus:

- Check that TcpIpTargetBusType is set to ISA instead of PCI.

- Check that TcpIpTargetISAMemPort is set to the correct I/O-port base
address, and check that the address does not lead to a conflict with another
hardware resource.

- Check that TcpIpTarget IRQ is set to the correct IRQ line, and check that
the line number does not lead to a conflict with another hardware
resource.

- If the target PC motherboard contains a PCI chipset, check if the IRQ line
used by the ISA-bus Ethernet card is reserved within the BIOS setup.

Testing and Troubleshooting the Installation

2-29

Ping succeeds, but test 1 with the command xpctest fails - The problem
may be that you have incorrect IP and gateway addresses entered in the
Setup window.

To solve this problem, in the MATLAB command window, type

xpcsetup

Enter the correct addresses. Click the Update button. Recreate the target
boot disk by inserting a floppy disk into the host disk drive, and then clicking
the BootDisk button.

If you still cannot solve your problem, see “If You Still Need More Help” on
page 2-31.

Test 2, Ping Target System xPC Target Ping
This test is an xPC Target ping to your target computer. If this test fails, try
troubleshooting with the following procedure.

1 In the MATLAB window, type

tg=xpc

2 Check the messages in the MATLAB window.

MATLAB should respond with the following messages.

xPC Object
 Connected = Yes
 Application = loader

Target object does not connect - If you do not get the above messages, the
problem may be that you have a bad target boot disk.

To solve this problem, create another target boot disk with a new floppy disk.
See “Target Boot Disk” on page 2-23.

If you still cannot solve your problem, see “If You Still Need More Help” on
page 2-31.

2 Installation and Configuration

2-30

Test 3, Reboot Target Using Direct Call
This test tries to boot your target computer using an xPC Target command. If
this test fails, try troubleshooting with the following procedure.

1 In the MATLAB window, type

xpctest noreboot

This command reruns the test without using the reboot command and
displays the message

Test 3, Reboot target using direct call: ... SKIPPED

2 Observe the messages in the MATLAB command window during the build
process.

Reboot fails, but build okay when reboot skipped - If the command
xpctest skips the reboot command, and successfully builds and loads the
target application, the problem is some target hardware does not support
the xPC Target reboot command. In this case, you cannot use this command
to reboot your target computer. You need to reboot using a hardware reset
button.

If you still cannot solve your problem, see “If You Still Need More Help”.

Test 4, Build and Download Application
This test tries to build and download the model xpcosc.mdl. If this test fails,
try troubleshooting with the following procedure:

1 In the MATLAB command window, check the error messages.

These messages help you locate where there is a problem.

2 If you get the error message

xPC Target loader not ready

Reboot your target computer. This error message is sometimes displayed
even if the target screen shows the loader is ready.

If you still cannot solve your problem, see “If You Still Need More Help”.

Testing and Troubleshooting the Installation

2-31

If You Still Need More Help
If you cannot solve your problem, contact The MathWorks directly for help.

Internet http://www.mathworks.com/support

E-mail mailto:support@mathworks.com

Telephone 508-647-7000

Ask for Technical Support

2 Installation and Configuration

2-32

3

Basic Procedures

Simulating the Model 3-3
Loading a Simulink Model 3-3
Running a Simulation Using the

Simulink Graphical Interface 3-4
Running a Simulation Using the

MATLAB Command Line Interface 3-5

Creating the Target Application 3-7
Booting the Target PC 3-7
Troubleshooting the Boot Process 3-8
Entering the Simulation Parameters 3-8
Building and Downloading the Target Application 3-13
Troubleshooting the Build Process 3-15

Controlling the Target Application 3-16
Control with MATLAB Commands 3-17

Signal Monitoring 3-19
Signal Monitoring with MATLAB Commands 3-19

Signal Logging 3-20
Signal Logging with xPC Target Graphical Interface 3-20
Signal Logging with MATLAB Commands 3-22

Signal Tracing 3-26
Signal Tracing with xPC Target GUI 3-26
Signal Tracing with xPC Target GUI (Target Manager) . . . 3-31
Signal Tracing with MATLAB Commands 3-35

Parameter Tuning 3-38
Parameter Tuning with MATLAB Commands 3-38
Parameter Tuning with Simulink External Mode 3-40

3 Basic Procedures

3-2

The procedures in this chapter explain the basic functions of xPC Target by
using a simple Simulink model. The model is an oscillator with a square wave
input. Since this model does not have I/O blocks, you can try these procedures
regardless of whether you have I/O hardware on the target PC.

This chapter includes the following sections:

Simulink Model
• “Simulating the Model” - Run a simulation of your Simulink/Stateflow

model on the host PC.

xPC Target Application
• “Creating the Target Application” - Use Real-Time Workshop, Stateflow

Coder, and a C compiler to create a real-time application.

• “Controlling the Target Application” - Run the target application in real
time on the target PC.

Signal Acquisition and Analysis

• “Signal Monitoring” - Get signal data without time information while
running you real-time application.

• “Signal Logging” - Save signal data for analysis after completing a real-time
run.

• “Signal Tracing” - Visualize signals while running your real-time
application.

Parameter Tuning
• “Parameter Tuning” - Change block parameters while running your

real-time application.

Simulating the Model

3-3

Simulating the Model
You use Simulink in normal mode to observe the behavior of your model in
nonreal-time. This section includes the following topics:

• “Loading a Simulink Model”
• “Running a Simulation Using the Simulink Graphical Interface”
• “Running a Simulation Using the MATLAB Command Line Interface”

For procedures to run your target application in real-time, see “Creating the
Target Application” on page 3-7.

Loading a Simulink Model
Loading a Simulink model moves information about your model, including the
block parameters, into the MATLAB workspace.

After you create and save a Simulink model, you can load it back into the
MATLAB workspace. This procedure uses the Simulink model xpcosc.mdl as
an example.

1 In the MATLAB window, type

xpcosc

MATLAB loads the oscillator model and displays the Simulink block
diagram, as shown below.

.

3 Basic Procedures

3-4

Your next task is to run a simulation of your model in nonreal-time. See
“Running a Simulation Using the Simulink Graphical Interface” or “Running
a Simulation Using the MATLAB Command Line Interface”.

Running a Simulation Using the Simulink Graphical
Interface
You run a simulation of your model to observe the behavior of the model in
nonreal-time.

After you load your Simulink model into the MATLAB workspace, you can run
a simulation. This procedure uses the Simulink model xpcosc.mdl as an
example and assumes you have already loaded that model.

1 From the Simulation menu, click Normal, and then click Start.

2 In the Simulink window, double-click the output scope block.

Simulink opens a scope window showing the output of the model.

3 You can either let the simulation run to its stop time, or stop the simulation
manually. To stop the simulation manually, from the Simulation menu,
click Stop.

Simulating the Model

3-5

Running a Simulation Using the MATLAB Command
Line Interface
You run a simulation of your model to observe the behavior of the model in
nonreal-time.

After you load your Simulink model into the MATLAB workspace, you can run
a simulation. This procedure uses the Simulink model xpcosc.mdl as an
example and assumes you have already loaded that model.

1 In the MATLAB window, type

sim(’xpcosc’)

Simulink runs a simulation in normal mode.

2 You can either let the simulation run to its stop time, or stop the simulation
manually. To stop the simulation manually, press Ctrl-T.

3 After Simulink finishes the simulation, type

plot(tout,yout)

You enter the MATLAB variables tout and yout in the Simulation
Parameters dialog box. The signals are logged into memory through Outport
blocks. See “Entering the Simulation Parameters” on page 3-8.

MATLAB opens a plot window and displays the output response. The signal
from the signal generator is added to the outport block and shown in the
figure below.

3 Basic Procedures

3-6

Note When running your target application in real-time, data is not saved to
the variable tout and yout. Instead, data is saved to the target object
properties TimeLog, StateLog, and OutLog. However, you must still select the
Time, States, and Output check boxes for data to be logged into the target
object properties.

Your next task is to create a target application. See “Creating the Target
Application” on page 3-7.

Creating the Target Application

3-7

Creating the Target Application
You run the target application to observe the behavior of your model in
real-time.

This section includes the following topics:

• “Booting the Target PC”

• “Troubleshooting the Boot Process”
• “Entering the Simulation Parameters”
• “Building and Downloading the Target Application”
• “Troubleshooting the Build Process”

For procedures to simulate your model in nonreal-time, see “Simulating the
Model” on page 3-3.

Booting the Target PC
Booting the target computer loads and starts the xPC Target kernel on the
target PC. The loader then waits for xPC Target to download your target
application from the host PC.

After you have configured xPC Target using the Setup window, and created a
target boot disk for that setup, you can boot the target PC. You need to boot the
target computer before building your target application because the build
process automatically downloads your target application to the target PC.

1 Insert the target boot disk into the target PC disk drive.

2 Turn on the target PC or press the reset button.

The target PC displays the following screen.

In the example above, the status window shows the kernel is in the loader mode
and waiting to load a target application. 1MB of memory is reserved for the

3 Basic Procedures

3-8

application, 3 MB is used by the kernel, and 61 MB is available from a total of
64 MB. The xPC Target kernel uses the 61 MB for the heap, running scopes,
and acquiring data.

Your next task is to enter the simulation and real-time run parameters for
Real-Time Workshop. See “Entering the Simulation Parameters” on page 3-8

Troubleshooting the Boot Process
Possible Problem. When booting the target PC, it might display the message:

xPC Target 1.1 loading kernel..@@@@@@@@@@@@@@@@@@@@@@

The target PC displays this message when it cannot read and load the kernel
from the target boot disk. The probable cause is a bad disk.

Solution. The solution is to reformat the disk or use a new preformatted floppy
disk and create a new target boot disk.

Entering the Simulation Parameters
The simulation and real-time run parameters are entered in the Simulink
Parameters dialog box. They give information to Real-Time Workshop for how
to build the target application from your Simulink model.

After you load a Simulink model and boot the target PC, you can enter the
simulation parameters. This procedure uses the Simulink model xpcosc.mdl
as an example and assumes you have already loaded that model.

1 In the Simulink window, and from the Simulation menu, click Parameters.
In the Simulation Parameters dialog box, click the Solver tab.

Simulink displays the Solver page. This page defines the initial stop and
sample time for your target applcation.

2 In the Start time box, enter 0 seconds. In the Stop time box, enter and
initial stop time. For example, enter 0.2 seconds. You can change this time
after creating your target application by changing the target object property
tg.Stoptime.

3 From the Type list, choose Fixed-step. Real-Time Workshop does not
support variable step solvers. From the integration algorithm list choose a
solver. For example, choose the general purpose solver ode4 (Runge-Kutta).

Creating the Target Application

3-9

In the Fixed step size box, enter the sample time for the target application.
For example, enter 0.00025 seconds (250 microseconds). You can change
this value after creating the target application.

If you find that 0.000250 seconds results in overloading the CPU on the
target PC, try a larger Fixed step size such as 0.002 seconds.

If your model contains discrete states, which would lead to a hybrid model,
the sample times of the discrete states can only be multiples of the Fixed
step size. If your model does not contain any continuous states, enter
’auto’, and the sample time is taken from the model.

The Solver page should look similar to the figure shown below.

4 In the Simulation Parameters dialog box, click the Workspace I/O tab.

The Workspace I/O page opens. This page defines which model signals are
logged during the simulation of your model or the real-time run of your
target application.

3 Basic Procedures

3-10

5 In the Save to workspace section, choose the Time, State, and Output
check boxes.

To save (log) data from signals other than the state values, you need to add
outport blocks to your Simulink model and connect the signals to the outport
blocks.

Note When running your target application in real-time, data is not saved
to the variables tout and yout. Instead, data is saved to the target object
properties TimeLog, StateLog, and OutLog. However, you must still select
the Time, States, and Output check boxes for data to be logged into the
target object properties.

The Workspace I/O page should look similar to the figure shown below.

Normally all the check boxes are activated, except maybe in the following
cases:

• Many states - If your model contains many states (for example, greater than
20 states) the storage of the state vector requires a lot of target memory. By
turning off logging of the state signals, more memory is available for the
target application. An alternative to logging all of the state signals is for you
to select individual states of interest by adding outport blocks to your model.

Creating the Target Application

3-11

• Small sample time - You may choose a very short sample time that
overloads the CPU. By turning off certain logging options more computing
time is available for calculating the model.

6 In Simulation Parameters dialog box, click the Real-Time Workshop tab.

The Real-Time Workshop page opens.

7 Click the Browse button.

The System Target File Browser opens.

8 From the list, choose xpctarget.tlc xPC Target. Click Ok.

The System target file xpctarget.tlc, the Template makefile
xpc_default_tmf, and the Make command make_rtw are automatically
entered into the page. The Real-Time Workshop page should now look like
the figure shown below.

9 From the Category list, choose xPC Target code generation options.

The Real-Time Workshop page opens to the options page.

3 Basic Procedures

3-12

10 From the Mode list, choose either Real-Time or Freerun. Freerun is
similar to a simulation, but with the generated code.

11 Select the Log Task Execution Time check box to log the task execution
time to the target object property tg.TETlog. Selecting the Enable Signal
Acquisition (Scope) Engine check box allows you to add scopes to the target
PC.

12 In the Signal Logging Buffer Size in Bytes box, enter the maximum
number of sample points to save before wrapping. This buffer includes the
time, states, outputs, and task execution time logs.

For example, the model xpcosc.mdl has 6 signals (1 time, 2 states, 2
outputs, and 1 TET). If you enter a buffer size of 100000, then the target
object property tg. MaxLogSample is calculated as 100000 / 6 = 1666. After
saving 1666 sample points the buffer wraps to collect the next 1666 samples.

If you select a logging buffer size larger then the RAM on the target PC, the
target PC displays a message, ERROR: allocation of logging memory failed,
after downloading and initializing the target application. In this case you
need to install more RAM or reduce the buffer size for logging. In any case
the target PC has to be rebotted.

13 From the Interrupt Source list, select a source. The default value is set to
Timer.

14 In the Name of xPC Target object box, enter the a target object name. The
default target object name it tg.

The options page should now look similar to the figure shown below.

Creating the Target Application

3-13

15 Click OK.

Your next task is to create (build) the target application. See “Building and
Downloading the Target Application” on page 3-13.

Building and Downloading the Target Application
You use the xPC Target build process to generate C code, compile, link, and
download your target application to the target PC.

After you enter your changes in the Simulation Parameters dialog box, you
can build your target application. This procedure uses the Simulink model
xpcosc.mdl as an example, and assumes you have loaded that model.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop. From the Real-Time Workshop submenu, click Build Model.

After the compiling, linking, and downloading process, a target object is
created with properties and associated methods. The default name of the

3 Basic Procedures

3-14

target object is tg. For more information about the target object, see “Target
Object Reference” on page 7-1.

On the host computer, MATLAB displays the following lines after a
successful build process.

Starting Real-Time Workshop build procedure for model:
xpcosc
. . .
Successful completion of xPC Target build procedure for
model: xpcosc

The target PC displays the following information.

2 In the MATLAB window, type

tg

MATLAB displays a list of properties for the target object tg.

If you do not have a successful build, see “Troubleshooting the Build Process”
on page 3-15.

Your next task is to run the target application in real-time on the target PC.
See “Controlling the Target Application” on page 3-16.

Creating the Target Application

3-15

Troubleshooting the Build Process
If the host PC and target PC are not properly connected or you have not
correctly entered the environment properties, the download process is
terminated after about 5 seconds with a time-out error.

To correct the problem use the following procedure.

1 In the MATLAB window, type

xpcsetup

The xPC Target Setup window opens.

2 Check and, if necessary, make changes to the communication properties,
update the properties, and recreate the target boot disk.

For information on the procedures, see either “Environment Properties for
Serial Communication” on page 2-13 or “Environment Properties for Network
Communication” on page 2-20, and then see “Target Boot Disk” on page 2-23.

3 Basic Procedures

3-16

Controlling the Target Application
During the build process, a target object was created that represents the target
application and the target computer. The target object is defined by a set of
properties and associated methods. You control the target application and
computer by changing the target object properties with the target object
methods.

This section includes the following topic:

• “Control with MATLAB Commands”

For controlling the target application from:

• The target PC, see “Target PC Command Line Interface” on page 4-19.

• A Web browser, see “Web Interface” on page 4-25.

For more information about the target object properties and methods, see
“Target Object Reference” on page 7-1.

Controlling the Target Application

3-17

Control with MATLAB Commands
You run your target application in real time to observe the behavior of your
model with generated code.

After xPC Target downloads your target application to the target PC, you can
run the target application. This procedure uses the Simulink model
xpcosc.mdl as an example, and assumes you have created and downloaded the
target application for that model. The default name of the target object is tg.

1 In the MATLAB window, type

+tg or tg.start or start(tg)

The target application starts running on the target PC. In the MATLAB
window, the status of the target object changes from stopped to running.

xPC Object
Connected = Yes
Application = xpcosc
Application = xpcosc
Mode = Real-Time Single-Tasking
Status = running

On the target PC screen, the Simulation line changes from stopped to
running and the AverageTET line periodically updates with a new value.

2 In the MATLAB window, type

-tg or tg.stop or stop(tg)

The target application stops running.

xPC Target allows you to change many properties and parameters without
rebuilding your target application. Two of these properties are stop time and
sample time.

3 Basic Procedures

3-18

After you build a target application, but before you start running the
application you can change the sample time. You can change the stop time
before you start the target application or while it is running.

1 Change the stop time. For example, to change the stop time to 1000 seconds,
type either

tg.StopTime = 1000 or set(tg,’StopTime’,1000)

2 Change the sample time. For example, to change the sample time to 0.01
seconds, type either

tg.SampleTime = 0.01 or set(tg, ’SampleTime’, 0.01)

Although you can change the sample time in between different runs, you can
only change the sample time without rebuilding the target application under
certain circumstances.

If you choose a sample time that is too small, a CPU overload can occur. If a
CPU overload occurs, the target object property CPU Overload changes to
detected. In that case, change the Fixed step size in the Solver property
sheet to a larger value.

Signal Monitoring

3-19

Signal Monitoring
Signal monitoring is the process for acquiring signal data during a real-time
run without time information. The advantage to signal monitoring is that there
is no additional load to the real time tasks.

This section includes the following topic:

“Signal Monitoring with MATLAB Commands”

Signal Monitoring with MATLAB Commands
Use signal monitoring to acquire signal data without creating scopes that run
on the target PC.

After you start running a target application, you can use signal monitoring to
get signal data:

1 In the MATLAB window, type

tg.S1

MATLAB displays the value of the signal S1.

ans=
3.731

Although, this procedure shows how to get signal data interactively, you would
normally use signal monitoring in a MATLAB M-file script.

3 Basic Procedures

3-20

Signal Logging
Signal logging is the process for acquiring signal data during a real-time run,
and after the run reaches its final time or after you manually stop the run,
transferring the data to the host PC for analysis. You can plot the data, and
later save it to a disk.

This section includes the following topics:

• “Signal Logging with xPC Target Graphical Interface”
• “Signal Logging with MATLAB Commands”

Signal Logging with xPC Target Graphical Interface
Exporting data with the xPC Target scope window does not require you to add
outport blocks to your Simulink model and activate the logging of signals. You
can select which signals to collect, and you can capture unexpected outputs
during a run.

This procedure uses a scope window as a graphical interface to move data from
the last data package collected to the MATLAB workspace. For information on
exporting data using outport blocks, a scope object and the properties Data and
Time, see Chapter 8, “Scope Object Reference.”.

After you complete a run with a scope, you can move data from the last data
package collected to the MATLAB workspace. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have completed
a run with the target application.

1 In the xPC Target Scope window, and from the Plot menu, click Variable
Name for Export.

The Variable Name for Export dialog box opens.

Signal Logging

3-21

2 In the Data and Time text boxes, enter the name of the MATLAB variables
to contain the data from the scope data package. Click the Apply button,
and then click the Close button.

The default name for the time vector is scopen_time, and the default name
for the signal vector is scopen_data where n is the scope number.

3 In the Scope window, click the Export button. You can export data
regardless of whether a scope is started or stopped.

4 In the MATLAB window, type

whos

MATLAB displays a list of variables and their description. For example

Name Size Bytes Class
 ans 1x1 13958 xpc object
 scope1_data 250x2 4000 double array
 scope1_time 250x1 2000 double array
 t 801x1 6408 double array
 tg 1x1 14002 xpc object
 x 801x2 12816 double array
 y 801x1 6408 double array

Grand total is 5828 elements using 59592 bytes

You can now save or further analyze the data using the MATLAB variables.

5 Type

plot(scope1_time, scope1_data)

3 Basic Procedures

3-22

MATLAB plots the variables scope1_time and scope1_data in a new
widnow

Signal Logging with MATLAB Commands
You analyze and plot the outputs and states of your target application to
observe the behavior of your model, or to determine the behavior when you vary
the input signals.

Time, states and outputs. Logging the time, state, and output signals is
possible only if you add, before the build process, outport blocks to your
Simulink model, and in the I/O-Workspace page select the Save to workspace
check boxes. See “Entering the Simulation Parameters” on page 3-8

Task execution time. Plotting the task execution time is possible only if you
select the Log Task Execution Time check box in the xPC Target code
generation option page. See “Entering the Simulation Parameters” on
page 3-8.

After you run a target application, you can plot the state and output signals.
This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have created and downloaded the target application for that
model.

Signal Logging

3-23

1 In the MATLAB window, type either

+tg or tg.start or start(tg)

The target application starts and runs until it reaches the final time set in
the target object property tg.StopTime.

The outputs are the signals connected to Simulink outport blocks. The model
xpcosc.mdl has just one outport block labeled 1 and there are two states.
This outport block shows the signals leaving the blocks labeled Integrator1
and Signal Generator.

2 Plot the signals from the outport block and the states. In the MATLAB
window, type

plot(tg.TimeLog,tg.Outputlog)
figure
plot(tg.TimeLog,tg.StateLog)

Values for the logs are uploaded to the host PC from the target application
on the target PC. If you want to upload part of the logs, see the target object
method “getlog” on page 7-23.

The plots shown below are the result of a real-time execution. To compare
this plot with a plot for a nonreal-time simulation, see “Running a
Simulation Using the Simulink Graphical Interface” on page 3-4.

3 Basic Procedures

3-24

The task execution time (TET) is the time to calculate the signal values for the
model during each sample interval. If you have subsystems that run only under
certain circumstances, plotting the TET would show when subsystems were
executed and the additional CPU time required for those executions.

After you run a target application, you can plot the last execution time. This
procedure uses the Simulink model xpcosc.mdl as an example, and assumes
you have created and downloaded the target application for that model.

1 Plot the signals from the outport block and the task execution time (TET).
In the MATLAB window, type

plot(tg.TimeLog,tg.Outputlog)
figure
plot(tg.TimeLog,tg.TETLog)

Values for the logs are uploaded to the host PC from the target application
on the target PC. If you want to upload part of the logs, see the target object
method “getlog” on page 7-23.

The plots shown below are the result of a real-time run. The output is shown
on the left and the task execution time is shown on the right.

Signal Logging

3-25

2 Get information about the average task execution time. In the MATLAB
window, type either

tg.AvgTET or get(tg,’AvgTET’)

MATLAB displays the following information.

ans =
0.000009

In the example above, the minimum TET was 8 µs, the maximum TET
11 µs, and the average TET 9 µs. This means that the real-time task has
taken about 3 % of the CPU performance (Average TET of 9 µs / Sample time
of 250 µs).

3 Basic Procedures

3-26

Signal Tracing
Signal tracing is the process of acquiring and visualizing signals during a
real-time run. It allows you to acquire signal data and visualize it on your
target PC or upload the signal data and visualize it on your host PC while the
target application is running.

This section includes the following topics:

• “Signal Tracing with xPC Target GUI”
• “Signal Tracing with xPC Target GUI (Target Manager)”
• “Signal Tracing with MATLAB Commands”

Signal logging differs from signal tracing. With signal logging you can only look
at a signal after a run is finished, and the entire log of the run is available. For
information on signal logging, see “Signal Logging” on page 3-20.

Signal Tracing with xPC Target GUI
Opening an Scope window on the host PC allows you to view signals with a
graphical user interface (GUI).

After you create, download, and start running a target application, you can
view signals. This procedure uses the Simulink model xpcosc.mdl as an
example, and assumes you are running the target application for that model.

1 In the MATLAB window, type

xpcscope

The Manager window opens. This window is the root-window of the xPC
Target Scope graphical interface.

At this point, the window is empty because you need to define a specific
scope.

Signal Tracing

3-27

2 From the File menu, click New Scope.

On the host PC, a new scope button appears on the Manager window and a
new Scope window opens.

If the Scope window is in the background, on the Manager window, click the
View Scope 1 button. The Scope window moves to the foreground.

The Scope window uses most of the area for signal plotting. At the bottom,
there are controls to specify the scope functions.

3 Basic Procedures

3-28

The target PC displays the following message.

Scope: 1, created, type is host

3 In the Scope window, click the Add/Remove button

The Add/Remove Signals dialog box opens. It allows you to specify which
signals to trace.

The Signal list box displays all of the available signals from the target
application. The names of the signals correspond to the block names within
the Simulink model xpcosc.mdl. The block name indicates the output
signal from that block.

Click a block name to highlight it, and then click the Add Signal button to
move the signal to the Signals to trace box on the right of the window. The
Signals to trace box contains the signals to be traced by this scope.

4 From the Signal list box, click Integrator 1, and then click the Add
Signal button. Similarly, add the Signal Generator signal.

Changes to the Add/Remove Signals dialog box are shown below. The
signals to trace can be removed by clicking the block name in the Signals to
trace box, and then clicking the Remove Signal button.

Signal Tracing

3-29

During the next steps, you can leave the Add/Remove Signals dialog box
open, or close and reopen it without restrictions.

You can now start the scope, but you must also start the target application
before the signals are visible in the scope window. If you use a scope, set the
final time to a value high enough to ensure the target application is running
during the entire signal tracing session. The final time is set by changing the
target object property tg.StopTime.

5 In the Scope window, click the Start button. In the MATLAB window, type
either

+tg or tg.start or start(tg)

The target application and the scope starts running. You can start the scope
and the target application in any order. The target application does not have
to be running to start the scope or make changes to the scope properties.
While the scope is running, the Start button on the Scope window changes
to a Stop button.

If a target application is running and you start a scope, the host scope
window acquires one data package, and then updates the signal graph. The
time to collect one data package is equal to the number of samples multiplied
by the sample time.

3 Basic Procedures

3-30

If you are using a scope with type host, there is a delay between collecting data
packages because of the communication overhead from the target PC to the
host PC. If you are using a scope with type target, the scope window is updated
faster than when using a scope on the host PC.

6 In the Scope window, click the Stop button.

7 Close the Scope Manager window by using one of the following procedures:

- From the File menu, click Close All Scopes.

- From the File menu, click Close Scope Manager.

8 A message box opens asking if you want to save the current scope state. Use
one of the following procedures:

- If you do not want to save the scope state, click No.

- If you want to save the scope state, click Yes. The Save Scopes dialog box
opens. Enter the name of a file, and then click Save.

Signal Tracing

3-31

Signal Tracing with xPC Target GUI (Target
Manager)
Opening a Scope window on the target PC allows you to select and view signals
using a graphical user interface.

After you create, download, and start running a target application, you can
view signals. This procedure uses the Simulink model xpcosc.mdl as an
example, and assumes you are running the target application for that model.

1 In the MATLAB window, type

xpctgscope

The Target Manager window opens. This window is the root-window of the
Scope graphical user interface.

At this point, the window is empty because a specific scope has not been
defined.

2 From the File menu, click New Scope.

On the host PC, and on the Target Manager window, a new scope button
appears.

And on the target PC, a new scope window opens.

3 Basic Procedures

3-32

3 In the Target Manager window, right-click the scope button, and then click
Properties.

The Target Scope 1 window opens.

Signal Tracing

3-33

4 Click the Add/Remove button.

The Add/Remove Signals dialog box opens. This dialog box allows you to
specify which signals to trace.

The Signal list box, displays all of the available signals from the target
application. The names of the signals correspond to the block names within
the Simulink model xpcosc.mdl. The block name indicates the output
signal from that block.

Click a block name to highlight it, and then click the Add Signal button to
move the signal to the Signals to trace box on the right of the window. The
Signals to trace box contains the signals to be traced by this scope.

5 From the Signal list box, click Integrator 1, and then click the Add
Signal button. Similarly, add the Signal Generator signal.

On the host PC, changes to the Add/Remove Signals dialog box are shown
below. The signals to trace can be removed by clicking the block name in the
Signals to trace box, and then clicking the Remove Signal button.

3 Basic Procedures

3-34

The target PC displays the following messages.

Scope: 1, created, type is target
Scope: 1, signal 1 added
Scope: 1, signal 0 added

The line above the graph gives information about the target scope object.
The string SC1 means that this graph corresponds to the scope object with
an identifier equal to 1. The colored number 0 and number 4 are the signals
added to this target scope. When you start signal tracing, the color of the
traces corresponds to the color of the signal numbers.

6 Starting a scope on the target PC is slightly different than starting a scope
on the host PC. In the Target Manager window, right-click the Scope 1
button, and then click Start.

You also need to start running a target application before the signals are
visible in the scope window. Type either

start(tg) or +tg

Signal Tracing

3-35

The plot window on the target PC displays the signal traces and updates at
a rate equal to the time to collect one data package, as shown below.

Signal Tracing with MATLAB Commands
Creating a target scope object allows you to select and view signals using the
xPC Target functions. This section describes how to signal trace using xPC
Target functions instead of using the xPC Target graphical interface.

After you create and download, the target application, you can view output
signals. This procedure uses the Simulink model xpcosc.mdl as an example,
and assumes you have build the target application for that model.

1 Start running your target application. Type either

+tg or tg.start or start(tg)

The target PC displays the following message.

System: execution started (sample time: 0.0000250)

3 Basic Procedures

3-36

2 To get a list of parameters, type either

set(tg, ’ShowSignals’, ’on’) or tg.ShowSignals=’on’

The MATLAB window displays a list of the target objects properties for the
available signals. For example, the signals for the model xpcosc.mdl are
shown below.

ShowSignals = On
 Signals = PROP. VALUE BLOCK NAME

S0 0.000000 Integrator1
S1 0.000000 Signal Generator
S2 0.000000 Gain
S3 0.000000 Integrator
S4 0.000000 Gain1
S5 0.000000 Gain2
S6 0.000000 Sum

The signal names (S0, S1 . . .S6) are properties of the target object. And the
Parameter identifiers (P0, P1, . . .P6) are properties of the target object.

3 Create a scope to display on the target PC. For example, to create a scope
with an identifier of 1 and an scope object name of sc1, type

sc1=tg.addscope(’target’, 1) or sc1=addscope(tg, ’target’, 1)

4 List the properties of the scope object. For example, to list the properties of
the scope object sc1, type

sc1

The MATLAB window displays a list of the scope object properties. Notice
the scope properties StartTime, Time, and Data are not accessible with a
scope of type target.

xPC Scope Object

 Application = xpcosc
 ScopeId = 1
 Status = Interrupted
 Type = Target
 NumSamples = 250
 Decimation = 1

Signal Tracing

3-37

 TriggerMode = FreeRun
 TriggerSignal = -1
 TriggerLevel = 0
 TriggerSlope = Either
 TriggerScope = 1
 Mode = Redraw (Graphical)
 YLimit = Auto
 Grid = On
 StartTime = Not accessible
 Data = Not accessible
 Time = Not accessible
 Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

tg.addsignal (sc1,[0,1]) or addsignal(sc1,[0,1])

The target PC displays the following messages.

Scope: 1, signal 0 added
Scope: 1, signal 1 added

After you add signals to a scope object, the signals are not shown on the
target screen until you start the scope.

6 Start the scope object. For example, to start the scope sc1, type either

+sc1 or sc.start or start(sc1)

The target screen plots the signals after collecting each data package.
During this time you can observe the behavior of the signals while the scope
is running.

7 Stop the scope. Type either

sc1 or sc1.stop or stop(sc1)

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message.

Scope: 1, set to state ’interrupted’

3 Basic Procedures

3-38

Parameter Tuning
xPC Target lets you change parameters in your target application while it is
running in real time.

This section includes the following topics:

• “Parameter Tuning with MATLAB Commands”
• “Parameter Tuning with Simulink External Mode”

Parameter Tuning with MATLAB Commands
You use the MATLAB functions to change block parameters. With these
functions you do not need to set Simulink in external mode, and you do not need
to connect Simulink with the target application.

You can download parameters to the target application while it is running or
between runs. This feature lets you change parameters in your application
without rebuilding the Simulink model.

After you download a target application to the target PC, you can change block
parameters using MATLAB functions. This procedure uses the Simulink model
xpcosc.mdl as an example, and assumes you have created and downloaded the
target application for that model.

1 In the MATLAB window, type either

+tg or tg.start or start(tg)

The target PC displays the following message.

System: execution started (sample time: 0.001000)

2 Display a list of parameters. Type either

set(tg,’ShowParameters’,’on’) or tg.ShowParameters=’on’

and then type

tg

Parameter Tuning

3-39

The MATLAB window displays a list of the target objects properties.

ShowParameters = On
Parameters= PROP VALUE PARAMETER NAME BLOCK NAME

P0 0.000000 InitialCondition Integrator1
P1 4.000000 Amplitude Signal Generator
P2 20.000000 Frequency Signal Generator
P3 1000000.0 Gain Gain
P4 0.000000 InitialCondition Integrator
P5 400.00000 GainGain1
P6 1000000.0 GainGain2

The parameter names (P0, P1, . . .P6) are properties of the target object. and
the signal names (S0,S1, . . .) are also properties of the target object.

3 Change the gain. For example, to change the Gain1 block, type either

tg.p5=800 or set(tg,’p5’,800)

As soon as you change parameters, the changed parameters in the target
object are downloaded to the target application. The target PC displays the
following message.

Param: param 5 updated

And the plot frame updates the signals after running the simulation with
the new parameters.

4 Stop the target application. In the MATLAB window, type either

-tg or tg.stope or stop(tg)

The target application on the target PC stops running, and the target PC
displays the following messages.

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

3 Basic Procedures

3-40

Parameter Tuning with Simulink External Mode
You use Simulink external mode to connect your Simulink block diagram to
your target application. The block diagram becomes a graphical user interface
to your target application. You set up Simulink in external mode to establish a
communication channel between your Simulink block window and your target
application.

In Simulink external mode, wherever you change parameters in the Simulink
block diagram, Simulink downloads those parameters to the target application
while it is running. This feature lets you change parameters in your program
without rebuilding the Simulink model to create a new target application.

After you download your target application to the target PC, you can connect
your Simulink model to the target application. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created and
downloaded the target application for that model.

1 In the Simulink window, and from the Simulation menu, click External.

A check mark appears next to the menu item External, and Simulink
external mode is activated.

2 In the Simulink block window, and from the Simulation menu, click
Connect to target.

All of the current Simulink model parameters are downloaded to your target
application. This downloading guarantees the consistency of the parameters
between the host model and the target application.

The target PC displays the following message.

ExtM: Updating # parameters

3 From the Simulation menu, click Start real-time code or in the MATLAB
window, type either

+tg or tg.start or start(tg)

The target application begins running on the target PC, and the target PC
displays the following message.

System: execution started (sample time: 0.000250)

Parameter Tuning

3-41

4 From the Simulation block diagram, click the block labeled Gain1.

The Block Parameters: Gain1 parameter dialog box opens.

5 In the Gain text box, enter 800, and click OK.

As soon as you change a model parameter and click OK or the Apply button
on the Block Parameters: Gain1 dialog box, all of the changed parameters
in the model are downloaded to the target application, as shown below.

3 Basic Procedures

3-42

6 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the target application. Now, if you
change a block parameter in the Simulink model, there is no effect on the
target application. Connecting and disconnecting Simulink works
regardless of whether the target application is running or not.

7 From the Simulation menu, click Stop real-time code, or in the MATLAB
command window, type either

stop(tg) or -tg

The target application on the target PC stops running, and the target PC
displays the following messages.

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

4

Advanced Procedures

I/O Driver Blocks 4-3
xPC Target I/O Driver Blocks 4-3
Adding I/O Blocks with the xPC Target Library 4-4
Adding I/O Blocks with the Simulink Library Browser . . . 4-7
Defining I/O Block Parameters 4-10

xPC Target Scope Blocks 4-13
xPC Target Scope Blocks 4-13
Adding xPC Target Scope Blocks 4-14
Defining xPC Target Scope Block Parameters 4-16

Target PC Command Line Interface 4-19
Using Methods and Properties on the Target PC 4-19
Target Object Methods 4-20
Target Object Properties 4-20
Scope Object Methods 4-21
Scope Object Properties 4-22
Using Variables on the Target PC 4-24
Variable Commands 4-24

Web Interface 4-25
Connecting the Web Interface 4-25
Using the Main Page 4-26
Changing WWW Properties 4-28
Viewing Signals with the Web Browser 4-28
Using Scopes with the Web Browser 4-29
Viewing and Changing Parameters with the Web Interface . 4-30
Changing Access Levels to the Web Browser 4-31

4 Advanced Procedures

4-2

After learning the basic procedures for creating and running a target
application, signal acquisition and parameter tuning, you can try some od the
special and advanced procedures with xPC Target.

This chapter includes the following sections:

• “I/O Driver Blocks” - Adding I/O driver blocks to your Simulink model
connects your model to sensors and actuators.

• “xPC Target Scope Blocks” - Adding xPC Target scopes blocks to your
Simulink model eliminates the need to create and define scopes after the
build process.

• “Web Interface” - Connect to the target application from any computer
connected to the network.

• “Target PC Command Line Interface” - Enter commands on the target PC
for stand alone applications not connected to the host PC.

I/O Driver Blocks

4-3

I/O Driver Blocks
You add I/O driver blocks to your Simulink model to connect your model to
physical I/O boards. These I/O boards then connect to the sensors and actuators
in the physical system.

This section includes the following topics:

• “xPC Target I/O Driver Blocks”

• “Adding I/O Blocks with the xPC Target Library”
• “Adding I/O Blocks with the Simulink Library Browser”
• “Defining I/O Block Parameters”

xPC Target I/O Driver Blocks
A driver block does not represent an entire board, but an I/O section supported
by a board. Therefore, the xPC Target library may have more then one block
for each physical board. I/O driver blocks are written as C-code S-functions
(noninlined S-functions). We include the source code for the C-code S-functions
with xPC Target.

xPC Target supports PCI and ISA busses. If the bus type is not indicated in the
driver block number, you can determine the bus type of a driver block by
checking the blocks parameter dialog box. The last parameter is either a PCI
slot for PCI boards, or a Base Address for ISA boards.

4 Advanced Procedures

4-4

Adding I/O Blocks with the xPC Target Library
xPC Target contains an I/O driver library with Simulink blocks. You can
drag-and-drop these blocks from the library to your Simulink model.
Alternately, you can access the I/O driver library with the Simulink Library
Browser. See “Adding I/O Blocks with the Simulink Library Browser” on
page 4-7.

The highest hierarchy level in the library is grouped by I/O function. I/O
functions include A/D, D/A, Digital In, Digital Out, Counter, Watchdog,
Incremental Encoder, RS232, CAN, GPIB, and shared memory. The second
level is grouped by board manufacturer. The manufacturer groups within this
second level contain the specific boards.

This procedure uses the Simulink model xpcosc.mdl as an example of how to
connect an I/O block.

1 In the MATLAB window, type

xpclib

The Library: xpclib window opens.

2 Open a function group. For example, to open the A/D group, double-click the
A/D block.

I/O Driver Blocks

4-5

The manufacturer level opens.

Within each manufacturer group are the blocks for a single function.

3 Open a manufacturer group. For example, to open the A/D driver blocks
from ComputerBoards, double-click the group marked ComputerBoards.

The window with the A/D driver blocks for ComputerBoards opens.

4 In the Simulink window, type

xpcosc

The Simulink block diagram opens for the model xpcosc.mdl.

4 Advanced Procedures

4-6

5 From the block library, click-and-drag the name of an A/D board to the
Simulink block diagram. Likewise, click-and-drag the name of a D/A board
to your model.

Simulink adds the new I/O blocks to your model.

6 Remove the signal generator block and add the analog input block in its
place. Remove the scope block and add the analog output block in its place.

The demo model xpcosc should look like the figure shown below.

Your next task is to define the I/O block parameters. See “Defining I/O Block
Parameters” on page 4-10.

I/O Driver Blocks

4-7

Adding I/O Blocks with the Simulink Library
Browser
You can access the xPC Target driver blocks using the Simulink Library
Browser. You drag-and-drop these blocks from the library to your Simulink
model. Alternately, you can access driver blocks using the xPC Target I/O
driver library, See “Adding I/O Blocks with the xPC Target Library” on
page 4-4.

The highest hierarchy level in the library is grouped by I/O function. I/O
functions include A/D, D/A, Digital In, Digital Out, Counter, Watchdog,
Incremental Encoder, RS232, CAN, GPIB, and shared memory. The second
level is grouped by board manufacturer. The manufacturer groups within this
second level contain the specific boards.

This procedure uses the Simulink model xpcosc.mdl as an example of how to
connect an I/O block.

1 In the MATLAB window type

xpcosc

The Simulink block diagram opens for the model xpcosc.mdl.

2 In the Simulink window, and from the View menu, click Show Library
Browser.

The Simulink Library Browser window opens. Alternately, you can open the
Simulink Library Browser by typing simulink in the MATLAB command
window.

4 Advanced Procedures

4-8

You can access the xPC Target I/O library by right-clicking xPC Target,
and then clicking Open the xPC Target Library.

3 Double-click xPC Target.

A list of I/O functions opens.

I/O Driver Blocks

4-9

4 Open a function group. For example, to open the A/D group for
ComputerBoards, double-click A/D, and then double-click
ComputerBoards.

A list with the A/D driver blocks for ComputerBoards opens.

5 From the block library, click-and-drag the name of an A/D board to the
Simulink block diagram. Likewise, click-and-drag the name of a D/A board
to your model

Simulink adds the new I/O blocks to your model.

6 Remove the signal generator block and add the analog input block in its
place. Remove the scope block and add the analog output block in its place.

The model xpcosc should look like the figure shown below.

4 Advanced Procedures

4-10

Your next task is to define the I/O block parameters. See “Defining I/O Block
Parameters”.

Defining I/O Block Parameters
The I/O block parameters define values for your physical I/O boards. For
example, I/O block parameters include channel numbers for multichannel
boards, input and output voltage ranges, and sample time.

This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have added an analog input and an analog output block to your
model. To add an I/O block, see either “Adding I/O Blocks with the xPC Target
Library” on page 4-4 or“Adding I/O Blocks with the Simulink Library Browser”
on page 4-7.

1 In the Simulink window, double-click the input block labeled Analog Input.

The dialog box for the A/D converter opens.

2 Fill in the dialog box. For example, for a single channel enter 1 in the
Number of Channels box, choose ±10 V for the input range, and choose
single-ended (16 channels)for the MUX-switch position. Enter the
same sample time you entered for the step size in the Simulation
Parameters dialog box. Enter the base address for this ISA-bus board.

The Block Parameters dialog box should look similar to the figure shown
below.

I/O Driver Blocks

4-11

3 In the Simulink window, double-click the output block labeled Analog
Output.

The dialog box for the D/A converter opens.

4 Fill in the dialog box. For example, for one channel enter [1] in the Channel
Vector box, for an ouptut level of ±10 V enter the code [-10] in the Range
Vector box. Enter the same sample time you entered for the step size in the
Simulation Parameters dialog box. Enter the base address for this ISA-bus
board.

4 Advanced Procedures

4-12

The Block Parameters dialog box should look similar to the figure shown
below.

If you change the sample time by changing the target object property
SampleTime, the step size you entered in the Simulation Parameters dialog
box, as well as the sample times you entered in both of the I/O blocks are set to
the new value.

Your next task is to build and run the target application, see “Creating the
Target Application” on page 3-7.

xPC Target Scope Blocks

4-13

xPC Target Scope Blocks
Usually scope objects are defined using xPC Target functions or the graphical
interface after downloading your target application. An alternative is for you
to add special xPC Target scope blocks to you Simulink model. These blocks
should not be confused with standard Simulink scope blocks. The xPC Target
scope blocks have unique capabilities when used with xPC Target.

This section includes the following topics:

• “xPC Target Scope Blocks”

• “Adding xPC Target Scope Blocks”

• “Defining xPC Target Scope Block Parameters”

xPC Target Scope Blocks
An xPC Target scope block is added to your model the same way you add any
Simulink block. After adding an xPC Target scope block, you define the
properties of the scope object and the signals you want to display. When the
target application is downloaded to the target PC, the a scope is automatically
created on the target PC. No additional definitions are necessary.

Note The scope object created on the host PC is not assigned to a MATLAB
variable. To assign the scope object, use the target object function getscope.
Also, if you use the function remscope to remove a scope created during the
build and download process, and then you restart the target application, the
scope is recreated.

Alternative methods for creating xPC Target scopes - For information on
using xPC Target functions to create scopes, see “Signal Tracing with MATLAB
Commands” on page 3-35. For information on using the xPC Target graphical
interface to create scopes, see “Signal Logging with xPC Target Graphical
Interface” on page 3-20.

4 Advanced Procedures

4-14

Adding xPC Target Scope Blocks
Adding xPC Target scope blocks to your Simulink model saves you the time to
define and select signals after you download the target application to the target
PC, and the information is saved with your model.

You can drag an xPC Target scope block into any Simulink model, and the
input to the scope can be connected to any block output. If you want to trace
more than one signal, add a multiplexer block to your model, and connect the
scope block to the multiplexer output.

The following procedure uses the Simulink model xpcosc.mdl as an example to
show how to connect an xPC Target scope block to your model.

1 In the MATLAB window type

xpcosc

The Simulink block diagram opens for the model xpcosc.mdl.

2 In the Simulink window, and from the View menu, click Show Library
Browser.

The Simulink Library Browser window opens.

xPC Target Scope Blocks

4-15

3 Double-click xPC Target.

A list of I/O functions opens.

4 Double-click Misc.

A list of miscellaneous group blocks opens.

4 Advanced Procedures

4-16

5 Click-and-drag Scope (xPC) to your Simulink block diagram.

Simulink adds a new scope block to your model with a scope identifier of 1.

6 Connect the xPC Target scope block with the Simulink scope block.

The model xpcosc should look like the figure shown below.

Your next task is to define the xPC Target scope block parameters. See
“Defining xPC Target Scope Block Parameters”.

Defining xPC Target Scope Block Parameters
Scope block parameters define the signals to trace on the scope, trigger modes,
and the axis range.

This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have added an xPC Target scope block to your model. To add a
scope block, see “Adding xPC Target Scope Blocks” on page 4-14.

1 Double-click the scope block labeled Scope (xPC).

The Block Parameters dialog box for the scope block opens.

xPC Target Scope Blocks

4-17

2 In the Scope Number box, enter a unique number to identify the scope.
This number is used to identify the xPC Target scope block and the scope
screen on the host or target computers.

3 From the Scope Type list, choose either Host or Target.

4 From the Scope Mode list, choose either Numerical, Graphical
(redraw), Graphical (sliding), or Graphical (rolling).

If you selected Host for the Scope Type, then you can only choose either
Numerical or Graphical (redraw) for the Scope Mode.

5 Select the Grid check box to display grid lines on the scope.

4 Advanced Procedures

4-18

6 In the Y-axis Limits box, enter a row vector with two elements where the
first element is the lower limit of the y-axis and the second element is the
upper limit. If you enter 0 for both elements, then the scaling is set to auto.

7 Select the Start Scope after download check box, to start a scope when
the target application is downloaded. With a target scope, the scope window
open automatically. With a host scope, you need to open the window by
typing xpcscope.

8 In the Number of Samples box, enter the number of values acquired in a
data package before redrawing the graph. In the Interleave box, enter a
value to collect data at each sample time (1) or to collect data at less than
every sample time (2 or greater).

9 From the Target Mode list, choose either FreeRun, Software Trigger,
Signal Trigger, or Scope Trigger.

If you selected Signal Trigger, then in the Trigger Signal box, enter the
index of a signal. In the Trigger Level text box, enter a value for the signal
to cross before triggering. And from the Trigger Slope list choose either,
rising, or falling.

If you choose Scope Trigger, then in the Trigger Scope Number box,
enter the block number of a scope block. If you use this feature, you must
also add a second scope block to your Simulink model.

10 Click OK.

Your next task is to build and run the target application. As soon as the target
application is built and downloaded, a scope and scope object are automatically
created. However, the scope object is not assigned to a MATLAB variable.

Target PC Command Line Interface

4-19

Target PC Command Line Interface
You can interact with the xPC Target environment through the target PC
command window. This interface is useful with stand-alone applications that
are not connected to the host PC.

This section includes the following topics:

• “Using Methods and Properties on the Target PC”
• “Target Object Methods”
• “Target Object Properties”
• “Scope Object Methods”

• “Scope Object Properties”

• “Using Variables on the Target PC”

• “Variable Commands”

Using Methods and Properties on the Target PC
xPC Target uses an object oriented environment on the host PC with methods
and properties. While the target PC does not use the same objects, many of the
methods on the host PC have equivalent target PC commands. The target PC
commands are case sensitive, but the arguments are not case sensitive.

After you have created and downloaded a target application to the target PC,
you can use the target PC commands to run and test your application.

1 On the target PC, press C or move the mouse over the command window.

The target PC command window is activated, and a command line opens. If
the command window is already activated, you do not have to press C. In
this case, pressing C is taken as the first letter in a command.

2 In the Cmd box, type a target PC command. For example, to start your
target application, type

start <enter>

Once the command window is active, you do not have to reactivate it before
typing the next command. For a list of target PC commands, see “Target Object
Methods” on page 4-20, “Target Object Properties” on page 4-20, “Scope Object
Methods” on page 4-21, and “Scope Object Properties” on page 4-22.

4 Advanced Procedures

4-20

Target Object Methods
When using the target PC command line interface, target object methods are
limited to starting and stopping the target application.

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column, and the target object name tg is used as an example for the MATLAB
methods.

Target Object Properties
When using the target PC command line interface, target object properties are
limited to parameters, signals, stoptime, and sampletime. Notice the difference
between a parameter index (0, 1, . . .) and a parameter name (P0, P1, . . .).

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column, and the target object name tg is used as an example for the MATLAB
methods.

Target PC MATLAB

start tg.start or +tg

stop tg.stop or -tg

reboot tg.reboot

Target PC MATLAB

setpar parameter_index =
number

set(tg, ’parameter_name’,
number)

getpar parameter_index get(tg, ’parameter_name’)

stoptime = number tg.stoptime = number

sampletime = number tg.sampletime = number

set(tg, ’SampleTime’, number)

Target PC Command Line Interface

4-21

Scope Object Methods
When using the target PC command line interface, you use scope object
methods to start a scope, and add signal traces. Notice the methods addscope
and remscope are target object methods on the host PC, and notice the
difference between a signal index (0, 1, . . .) and a signal name (S0, S1, . . .)

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column. The target object name tg and the scope object name sc is used as an
example for the MATLAB methods.

parameter_name (P0, P1, . . .)
parameter_name = number

tg.parameter_name
tg.parameter_name = number

signal_name (S0, S1, . . .) tg.S#

Target PC MATLAB

addscope scope_index
addscope

tg.addscope(scope_index)
tg.addscope

remscope scope_index
remscope ’all’

tg.remscope(scope_index)
tg.remscope

startscope scope_index sc.start or +sc

stopscope scope_index sc.stop or -sc

addsignal scope_index =
signal_index1, signal_index2,
. . .

sc.addsignal(signal_index_vect
or)

remsignal scope_index =
signal_index1, signal_index2,
. . .

sc.remsignal(signal_index_vect
or)

Target PC MATLAB

4 Advanced Procedures

4-22

Scope Object Properties
When using the target PC command line interface, scope object properties are
limited to those shown in the following table. Notice the difference between a
scope index (0, 1, . . .) and the MATLAB variable name for the scope object on
the host PC. The scope index is indicated in the top left corner of a scope
window (SC0, SC1, . . .).

If a scope is running, you need to stop the scope before you can change a scope
property.

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column, and the scope object name sc is used as an example for the MATLAB
methods

viewmode scope_index or left click
the scope window

viewmode all or right click any
scope window

Press function key for scope, and
then press V to toggle viewmode

ylimit scope_index
ylimit scope_index = auto
ylimit scope_index = num1, num2

grid on
grid off

Target PC MATLAB

numsamples scope_index =
number

sc.NumSamples = number

decimation scope_index =
number

sc.Decimation = number

Target PC MATLAB

Target PC Command Line Interface

4-23

scopemode scope_index = 0 or
numerical, 1 or redraw, 2 or
sliding, 3 or rolling

sc.Mode = ’numerical’,
’redraw’, ’sliding’, ’rolling’

triggermode scope_index = 0,
freerun, 1 software, 2, signal,
3, scope

sc.TriggerMode = ’freerun’,
’software’, ’signal’, ’scope’

numprepostsamples scope_index
= number

sc.NumPrePostSamples = number

triggersignal scope_index =
signal_index

sc.TriggerSignal =
signal_index

triggerlever scope_index =
number

sc.TriggerLevel = number

triggerslope scope_index = 0,
either, 1, rising, 2, falling

sc.TriggerSlope = ’Either’,
’Rising’, ’Falling’

triggerscope scope_index2 =
scope_index1

sc.TriggerScope = scope_index1

Press function key for scope,
and then press S or move mouse
into the socpe window

sc.trigger

Target PC MATLAB

4 Advanced Procedures

4-24

Using Variables on the Target PC
Use variables to tag unfamiliar commands, parameter indices, and signal
indexes with more descriptive names.

After you have created and downloaded a target application to the target PC,
you can create target PC variables.

1 On the target PC, press C.

The target PC command window is activated, and a command line opens.

2 In the Cmd box, type a variable command. For example, if you have a
parameter that controls a motor, you could create the variables on and off
by typing

setvar on = p7= 1
setvar off = p7=0

3 Type a variable name. For example, to turn the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

Variable Commands
The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column.

Target PC MATLAB

setvar variable_name = target
command

getvar variable_name

delvar variable_name

delallvar

Web Interface

4-25

Web Interface
xPC Target has a Web server build in the TCP/IP mode to the kernel that
allows you to interact your target application using a Web browser. If the
target PC is connected to a network, you can use a Web browser to interact with
the target application from any computer connected to a network

Currently this feature is limited to Microsoft Internet Explorer (version 4.0 or
later) and Netscape Navigator (version 4.5 or later) are the supported
browsers.

This section includes the following sections:

• “Connecting the Web Interface”
• “Using the Main Page”
• “Changing WWW Properties”
• “Viewing Signals with the Web Browser”
• “Using Scopes with the Web Browser”
• “Viewing and Changing Parameters with the Web Interface”
• “Changing Access Levels to the Web Browser”

Connecting the Web Interface
The TCP/IP stack on the xPC Target kernel supports only one simultaneous
connection, since its main objective is real-time applications. This connection
is shared between MATLAB and the Web browser. This also means that only
one browser or MATLAB is able to connect at one time.

Before you connect your Web browser, a target application must be loaded onto
the target PC. Whether the target application is running or not is irrelevant,
but it must be loaded. Also, JavaScript and StyleSheets must be turned on.

1 In the MATLAB window, type

xpcwwwenable

MATLAB is disconnected from the target PC, and the connection is reset for
connecting to another client. If you do not use this command, your Web
browser may not be able to connect to the target PC.

4 Advanced Procedures

4-26

2 Open a Web browser. In the address box, enter the IP address and port
number you entered in the xPC Target Setup window. For example, if the
target computer IP address is 192.168.0.1 and the port is 22222, type

http://192.168.0.1:22222/

The browser loads the xPC Target Web interface frame and pages.

Using the Main Page
The Main page is divided into four parts, one below the other. The four parts
are: System Status, xPC Target Properties, Navigation, and WWW Properties.

After you connect a Web browser to the target PC you can use the Main page
to control the target application.

1 In the left frame, click the Refresh button.

System status information in the top cell is uploaded from the target PC. If
the right frame is either the Signals List page or the Screen Shot page,
updating the left frame also updates the right frame.

Web Interface

4-27

2 Click the Start Execution button.

The target application begins running on the target PC, the Status line is
changed from Stopped to Running, and the Start Execution button text
changes to Stop Execution.

3 Update the execution time and average task execution time (TET). Click the
Refresh button. To stop the target application, click the Stop Execution
button.

4 Enter new values in the Stop Time and Sample Time boxes, and then click
the Apply button. You can enter -1 or Inf in the Stop Time box for an
infinite stop time.

The new property values are downloaded to the target application. Notice,
the sample time box is visible only when the target application is stopped.
You cannot change the sample time while a target application is running.

5 Select scopes to view on the target PC. From the ViewMode list choose one
or all of the scopes to view.

Note the ViewMode button is visible only if you add two or more scopes to
the target PC.

4 Advanced Procedures

4-28

Changing WWW Properties
The WWW Properties cell in the left frame contains fields that affect the
display on the Web interface itself, and not the application. There are two
fields: maximum signal width to display, and refresh interval.

1 In the Maximum Signal Width enter -1, Inf (all signals), 1 (show only
scalar signals), 2 (show scalar and vector signals less than or equal to 2
wide), or n (show signals with a width less than n)

Signals with a width greater than the value you enter, are not displayed on
the Signals page.

2 In the Refresh Interval box, enter a value greater than 10. For example,
enter 20.

The signal page updates automatically every 20 seconds. Entering -1 or Inf
does not automatically refresh the page.

Sometimes, both of the frames try to update simultaneously, or the auto
refresh starts before the previous load has finished. This problem may happen
with slow network connections. In this case, increase the refresh interval or
manually refresh the browser (Set the Refresh Interval = Inf).

This may also happen when you are trying to update a parameter or property
at the same time as the page is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about
the format, and you may have to refresh it. This should not happen too often.

Viewing Signals with the Web Browser
The Signal page is a list of the signals in your model.

After you connect a Web browser to the target PC you can use the Signals page
to view signal data.

1 In the left frame, click the Signals button.

The Signals page is loaded in the right frame with a list of signals and the
current values.

Web Interface

4-29

2 On the Signals page in the right frame, click the Refresh button.

The Signals page is updated with the current values. Vector/matrix signals
are expanded and indexed in the same column-major format that MATLAB
uses. This may be affected by the Maximum Signal Width value you enter in
the left frame.

3 In the left frame, click the Screen Shot button.

The Screen Shot page is loaded and a copy of the current target PC screen is
displayed. The screen shot uses the Portable Network Graphics file format
PNG.

Using Scopes with the Web Browser
The Web browser interface allows you to visualize data using an interactive
graphical interface.

After you connect a Web browser to the target PC you can use the Scopes page
to add, remove and control scopes on the target PC.

1 In the left frame, click the Scopes button.

The Scopes List page is loaded into the right frame.

2 Click the Add Scope button.

A scope of type target is created and displayed on the target PC. The scopes
page displays a list of all the scopes present. The capability exists to add a
new scope, remove existing scopes, and control all aspects of a scope from
this page.

Note If any host scopes exist, they will be visible and controllable from this
page. They may even be removed. However, there is no capability to add any
scopes of type host from the Scope page.

3 Click the Edit button.

The scope editing page opens. From this page, you can edit the properties of
any scope, and control the scope.

4 Advanced Procedures

4-30

4 Click the Add Signals button.

The browser displays an Add New Signals list.

5 Select the check boxes next to the signal names, and then click the Apply
button.

A Remove Existing Signals list is added above the Add New Signals list.

You do not have to stop a scope to make changes. If stopping the scope is
necessary, the Web interface stops it automatically and then restarts it if
necessary when the changes are made. It will not restart the scope if the state
was originally stopped.

Viewing and Changing Parameters with the Web
Interface
The parameters page displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC you can use the Parameters
page to change parameters in your target application while it is running in real
time.

1 In the left frame, click the Parameters button.

The Parameter List page is loaded into the right frame.

If the parameter is a scalar parameter, the present parameter value is
shown in a box that you can edit.

If the parameter is a vector/matrix, there is a button which takes you to
another page which displays the vector/matrix (in the correct shape) and
enables you to edit the parameter

2 Enter a new parameter value into one or more of the parameter boxes, and
then click the Apply button.

The new parameter values are uploaded to the target application.

Web Interface

4-31

Changing Access Levels to the Web Browser
The Web browser interface allows you to set access levels to the target
application. The different levels limit access to the target application. The
highest level, 0, is the default level and allows full access. The lowest level 4,
only allows signal monitoring and tracing with your target application.

1 In the Simulink window, click Simulation Parameters. On the Simulation
Parameter dialog box, click the Real-Time Workshop tab.

Access levels are set in the System target file box. For example, to set the
access level to 1, enter

xpctarget.tlc -axpcWWWAccessLevel=1

The effect of not specifying -axpcWWWAccessLevel=# is that the access level
of 0 (the highest) is set.

2 Click OK.

The various fields disappear depending on the access level. For example, if your
access level does not allow you access to the parameters, you will not see the
button for parameters.

There are various access levels for monitoring, which will allow different levels
of hiding. The proposed setup is described below. Each level builds up on the
previous one, so only the incremental hiding of each successive level is
described

Level 0 - Full access to all pages and functions.

Level 1 - Cannot change the sample and stop times. Cannot change
parameters, but can view parameters.

Level 2 - Cannot start and stop execution of the target application.

Level 3 - Cannot view parameters. Cannot add new scopes, but can edit
existing scopes.

Level 4 - Cannot edit existing scopes on the Scopes page. Cannot add or remove
signals on the Scopes page. Cannot view the Signals page and the Parameters
page.

4 Advanced Procedures

4-32

5
xPC Target
Embedded Option

Introduction 5-3
DOSLoader Mode Overview 5-4
StandAlone Mode Overview 5-4
Architecture . 5-5
Restrictions . 5-6

Updating the xPC Target Environment 5-8

Creating a DOS System Disk 5-11

DOS Loader Target Applications 5-12
Creating a Target Boot Disk for DOS Loader 5-12
Creating a Target Application for DOS Loader13

Stand-Alone Target Applications 5-14
Creating a Target Application for Stand-Alone 5-14
Creating a Target Boot Disk for Stand-Alone 5-15
Using Target Scope Blocks with Stand-Alone 5-15

5 xPC Target Embedded Option

5-2

The xPC Target Embedde Option allows you to boot the target PC from an
alternate device other than a floppy disk drive such as a hard disk drive or flash
memory. It also allows you to create stand-alone applications on the target PC
independent from the host PC.

This chapter includes the following sections:

• “Introduction”

• “Architecture”

• “Restrictions”

• “Updating the xPC Target Environment”

• “Creating a DOS System Disk”

• “DOS Loader Target Applications”

• “Stand-Alone Target Applications”

Introduction

5-3

Introduction
The xPC Target Embedded Option allows you to boot the xPC Target kernel
from not only a floppy disk drive, but also from other devices, including a flash
disk or a hard disk drive. By using xPC Target Embedded Option, you can
configure target PCs to automatically start execution of your embedded
application for continuous operation each time the system is booted. You use
this capability to deploy your own real-time applications on target PC
hardware.

The xPC Target Embedded Option extends the xPC Target base product by
adding two additional modes of operation:

• DOSLoader - This mode of operation is used to start the kernel on the target
PC from not only a floppy disk, but optionally start it from a flash disk or a
hard disk. The target PC then waits for the host computer to download a
real-time application either using the RS232 serial connection or using
TCP/IP network communication. Control and setting of starting, stopping,
parameters, tracing, and other properties can be achieved from either the
host PC of from the target PC.

• StandAlone - This mode extends the DOSLoader mode. After starting the
kernel on the target PC, StandAlone mode automatically starts execution of
your target application for complete stand-alone operation. This eliminates
the need for using a host computer and allows you to deploy real-time
applications on PC hardware environments.

Whether you are using the xPC Target Embedded Option with the DOSLoader
mode or the StandAlone mode, you initially boot your target PC with DOS
from virtually any boot device. Then the kernel is invoked from DOS.

Note The xPC Target Embedded Option requires a boot device with DOS
installed. DOS software and license are not included with xPC Target or with
the xPC Target Embedded Option.

During setup of either the DOSLoader mode or StandAlone mode, the xPC
Target Setup window allows you to create files for installation on the target
boot device. One of these files is an autoexec.bat file. When DOS starts, it

5 xPC Target Embedded Option

5-4

invokes the autoexec.bat file which in turn starts the xPC Target kernel on
the target PC.

If you do not provide an target application and an autoexec.bat file to invoke
your target application, xPC Target Embedded Option starts the kernel on
your target PC and is ready to receive your target application whenever you
build and download a new one from the host computer.

In comparison, when using xPC Target without the xPC Target Embedded
Option, you can only download real-time applications to the target PC after
booting from an xPC Target boot disk. Because of this, when using xPC Target
without Embedded Option is not available, you are always required to use a
target PC equipped with a floppy disk drive. However, there are several cases
where your target system may not have a floppy disk drive or where the drive
is removed after setting up the target system. These cases can be overcome by
using the DOSLoader mode.

DOSLoader Mode Overview
With the DOSLoader mode of operation, you first set up a boot device such as
a floppy disk drive, flash disk, or a hard disk drive. This boot device must
include DOS and modules from xPC Target Embedded Option. Once the kernel
starts running, it awaits commands from the host computer and a target
application that is downloaded from the host computer. The primary purpose
of the DOSLoader mode is to allow you to boot from devices other than the
floppy drive.

StandAlone Mode Overview
With the StandAlone mode of operation, you create completely stand-alone
applications which start execution automatically when the target PC is booted.
There is no need for communication with a host computer to downloaded the
application after booting. Once the boot device has been set up with DOS,
modules from xPC Target Embedded Option, and your target application, you
boot the target PC. Upon booting, DOS invokes your autoexec.bat file which
invokes the kernel. However, in StandAlone mode, your target application is
combined with kernel in one binary *.rtb file. The final result is that your
target application starts automatically each time the target PC is booted. By
using xPC Target Embedded Option, you can deploy control systems, DSP
applications, and other systems on PC hardware for use in production

Introduction

5-5

applications using PC hardware. Typically these production applications are
found in systems where production quantities are low to moderate.

xPC Target Embedded Option also gives you the choice of using target scopes
on the target PC. When using StandAlone mode, target scopes allows you to
trace signals using the target PC monitor without any interaction from the host
computer. Assuming you do not want to view signals on the target PC, it is not
necessary to use target scopes or a monitor on your target PC. In such a case,
your system is able to operate as a black-box without a monitor, keyboard, or
mouse. Stand-alone applications are automatically set to continue running for
an infinite time duration or until the target computer is turned off.

Architecture
xPC Target Embedded Option creates additional files that you add to your
target PC DOS boot device. With the DOSLoader mode, an autoexec.bat file
is generated. This file enables DOS to automatically execute the file
xpcboot.com when the target PC is booted. The file autoexec.bat includes an
argument that invokes a *.rtb file containing the xPC Target kernel.
Therefore, when the boot device invokes DOS, the autoexec.bat file then
starts the xPC Target kernel. All of these files are placed on a floppy disk when
you click BootDisk from the xpcsetup GUI. Your real-time application is not
copied to the boot device. You create the real-time application later by clicking
Build.

The StandAlone mode operates in a similar fashion with a few important
differences. From the xpcsetup GUI, after choosing StandAlone, you only
click Update to make your current selections active. When you later click
Build, an autoexec.bat file and the xpcboot.com file are placed in a
subdirectory that is created within your present working directory. This
directory is named: modename_xpc_emb. In addition, the build process creates
your target application and combines it with the xPC Target kernel. This
combined *.rtb file is also placed in the same modename_xpc_emb
subdirectory. You copy these files onto any DOS boot device. Then, upon
booting DOS, the xpcboot.com file is invoked with the kernel and with your
target application. If you choose to use target scopes with your stand-alone
application, you can do so provided appropriate xPC Target Scope blocks are
added and configured prior to code generation.

A small DOS executable called xpcboot.com is the core module of the
Embedded Option. This module is used in both the DOSLoader mode and the

5 xPC Target Embedded Option

5-6

StandAlone mode. The module xpcboot.com is executed from DOS. It loads
and executes any xPC Target application. The first argument given to
xpcboot.com is the name of the image file (*.rtb) to be executed. This image
file contains the xPC Target kernel and options, such as whether you are
communicating using a serial cable or TCP/IP, and the ethernet address you
have assigned to the target PC.

Since the xPC Target loader is just an ordinary xPC Target application, the
loader can be executed from xpcboot.com.

Before starting the kernel, you must first boot the target PC under DOS. The
module xpcboot.com is then automatically executed under DOS by
autoexec.bat. To boot the target PC under DOS, you must first install DOS on
the target PC boot device. The xPC Target Embedded Option does not have
specific requirements as to the type of device you use to boot DOS. It is possible
to boot from a floppy disk drive, hard disk drive, flash disk, or other device
where you have installed DOS.

DOS is only needed to execute xpcboot.com and read the image file from the
file system. After switching to the loaded kernel, and then executing the xPC
Target application, DOS is discarded and is unavailable, unless you reboot the
target PC without automatically invoking the xPC Target kernel. Once the xPC
Target application begins execution, the target application is executed entirely
in the protected mode using the 32-bit flat memory model.

Restrictions
The following restrictions apply to the booted DOS environment when you use
xpcboot.com to execute the target applications:

• The CPU must be executed in real mode

• While loaded in memory, the DOS partition must not overlap the address
range of a target application

You can satisfy these restrictions by avoiding the use of additional memory
managers like emm386 or qemm. Also, you should avoid any utilities that attempt
to load in high memory space (for example, himem.sys). If the target PC DOS
environment does not use a config.sys file or memory manager entries in the
autoexec.bat file, there should not be any problems when running
xpcboot.com.

Introduction

5-7

It is also necessary that your TargetMouse setting is consistent with your
hardware. Some PC hardware may use an RS232 port for the mouse, while
others use a PS2 mouse. If a mouse is not required in your application, you may
choose to select None as your setting for the TargetMouse.

5 xPC Target Embedded Option

5-8

Updating the xPC Target Environment
After the xPC Target Embedded Option software has been correctly installed,
the xPC Target environment, visible through xpcsetup or getxpcenv, contains
new property choices for DOSLoader or StandAlone, in addition to the default
BootDisk that is normally used with xPC Target.

It is assumed that the xPC Target environment is already set up and working
properly with the xPC Target Embedded Option disabled. If you have not
already done so, we recommend you confirm this now.

You can use the function getxpcenv to see the current selection for
TargetBoot, or you can view this through the xPC Target Setup window. Start
MATLAB and execute the function

xpcsetup

Within the frame of the xPC Target Embedded Option, you see the property
TargetBoot, as well as the currently selected value. The choices are:

• BootFloppy - Standard mode of operation when xPC Target Embedded
Option is not installed.

• DOSLoader - For invoking the kernel on the target PC from DOS.

• StandAlone - For invoking the kernel on the target PC from DOS and
automatically starting the target application without connecting to a host
computer. With this mode, the kernel and the target application are
combined as a single module that is placed on the boot device.

Updating the xPC Target Environment

5-9

The default setting for the property TargetBoot is BootFloppy. When using
BootFloppy, xPC Target must first create a target boot disk, which is then
used to boot the target PC.

5 xPC Target Embedded Option

5-10

The property TargetBoot can be set to two other values, namely DOSLoader
or StandAlone. If the xPC Target loader is booted from any boot device with
DOS installed, the value DOSLoader must be set as shown above. If you want
to use a stand-alone application that automatically starts execution of your
target application immediately after booting, specify StandAlone.

After changing the property value, you need to update the xPC Target
environment by clicking the Update button in the xPC Target Setup window.
If your choice is DOSLoader, a new target boot disk must be created by clicking
BootDisk. Note that this overwrites the data on the inserted target boot disk
as new software modules are placed on the target boot disk. If your choice is
StandAlone, you click the Update button. Upon building your next real-time
application, all necessary xPC Target files are saved to a subdirectory below
your present working directory. This subdirectory is named with your model
name with the string “_xpc_emb” appended. For example, xpcosc_xpc_emb.

For more detailed information about how to use the xPC Target Setup, see
Chapter 6, “Environment Reference.”

Creating a DOS System Disk

5-11

Creating a DOS System Disk
When using DOSLoader mode, or StandAlone mode, you must first boot your
target PC with DOS. These modes may be used from any boot device including
flash disk, floppy disk drive, or a hard disk drive.

In order to boot DOS with a target boot disk, a minimal DOS system is required
on the boot disk. With Windows 95, Windows 98, or DOS, you can create a DOS
boot disk using the command

sys a:

Note xPC Target Embedded Option does not include a DOS license. You
must obtain a valid DOS license for your target PC.

It is helpful to also copy additional DOS-utilities to the boot disk including

• A DOS-editor to edit files

• The format program to format a hard disk or FlashRAM

• The fdisk program to create partitions

• The sys program to transfer a DOS system onto another drive, such as the
hard disk drive

A config.sys file is not necessary. The autoexec.bat file should be created to
automatically boot the loader or a standalone xPC Target application. This is
described in the following sections.

5 xPC Target Embedded Option

5-12

DOS Loader Target Applications
This section includes the following topics:

• “Creating a Target Boot Disk for DOS Loader”
• “Creating a Target Application for DOS Loader”

Creating a Target Boot Disk for DOS Loader
As the first step, we assume you have created a DOS system disk and updated
the xPC Target environment by setting the property TargetBoot to
DOSLoader. From the xPC Target Setup window, click the BootDisk button
and xPC Target copies the necessary files to the DOS disk. The files that are
added to the DOS boot disk include:

• checksum.dat

• autoexec.bat

• xpcboot.com

• *.rtb (where * is defined in the table below)

With the DOSLoader mode, the correct *.rtb file is added to the DOS disk
according to the options specified in the following table.

Note The numeric value of n corresponds to the maximum model size. This
value is either 1, 4, or 16 megabytes. The default value for n is 1, or a
1-megabyte maximum model size.

Table 5-1: DOSLoader Mode *.rtb File Naming Convention

xPC Target
environment

HostTargetComm:
RS232

HostTargetComm:
TCP/IP

TargetScope: Disabled xpcston.rtb xpctton.rtb

TargetScope: Enabled xpcsgon.rtb xpctgon.rtb

DOS Loader Target Applications

5-13

The file autoexec.bat is copied to the DOS disk. This file should contain at
least the following line:

xpcboot xxx.rtb

where xxx.rtb is the file described in table 11-1. We recommend that you view
this autoexec.bat file to confirm this.

Now the target boot disk can be removed from the host and put into the target
PC disk drive. By rebooting the target PC, DOS is booted from the target boot
disk and the autoexec.bat file with the result in the xPC Target loader being
automatically executed. From this point onwards, the CPU runs in protected
mode and DOS is discarded.

You can repeat this procedure as necessary. There are no restrictions on the
number of xPC Target boot floppies that you can create. However, xPC Target
and the xPC Target Embedded Option do not include DOS licenses. It is
assumed that you will purchase valid DOS licenses for your target PCs from
the supplier of your choice.

If the xpcboot command is not placed in the autoexec.bat, xpcboot.com is not
executed when the target PC is booted. Instead, the target will be finished once
it has booted DOS. You can then use the DOS environment to create a DOS
partition on a hard disk, format it, and transfer xpcboot.com and xxx.rtb onto
it. The autoexec.bat file can then be placed on the hard disk and edited so that
it automatically boots the xPC Target loader the next time the target PC is
booted. After this step the floppy disk drive can be removed from the system.
The same procedure works with flash disks and other boot devices.

Creating a Target Application for DOS Loader
After having booted the target PC as described in the proceeding section, the
target PC is ready to receive xPC Target applications from the host computer.
Only now, these applications are received by the DOSLoader component of
xPC Target. In every aspect, the DOSLoader mode will allow your target PC
to operate just as it normally would when running the xPC Target after booting
from a standard xPC Target boot disk. When you click Build for your model,
the target application is downloaded to the target PC using the communication
protocol as you specified earlier in the xPC Target Setup window.

5 xPC Target Embedded Option

5-14

Stand-Alone Target Applications
This section includes the following topics:

• “Creating a Target Application for Stand-Alone”
• “Creating a Target Boot Disk for Stand-Alone”
• “Using Target Scope Blocks with Stand-Alone”

Creating a Target Application for Stand-Alone
After selecting StandAlone as your TargetBoot entry, the xPC Target
environment is ready to create completely stand-alone applications using the
Real-Time Workshop Build button.

Once the build process has finished, a message is displayed confirming that a
stand-alone application has been created. With the StandAlone mode, the
download procedure is not automated. The files necessary for creating
stand-alone operation are placed in a subdirectory below your working
directory. You copy these files to your DOS boot device.

After the build process is complete, files in your subdirectory include:

• model.rtb. This image contains the xPC Target kernel and your target
application.

• autoexec.bat. This file is automatically invoked by DOS. It then runs
xpcboot.com and the *.rtb file.

• xpcboot.com. This file is a static file that is part of xPC Target Embedded
Option.

Note We suggest setting the property HostTargetComm to RS232 if
property TargetBoot is set to StandAlone. This will use less memory than
the TCP/IP setting. With either setting, StandAlone mode does not have any
interaction with the host PC.

Stand-Alone Target Applications

5-15

Creating a Target Boot Disk for Stand-Alone
After making a bootable DOS boot disk, the file autoexec.bat file must contain
at least the following line

xpcboot model.rtb

where model is the name of your Simulink model.

These files should be copied to your DOS boot disk and inserted into the target
drive. By rebooting the target PC, DOS is booted from the boot disk. The
autoexec.bat file invokes the command string shown above which starts the
kernel and the real-time application. Because of the stand-alone nature of the
executed rtb file, the simulation of the xPC Target application starts
immediately. Interaction between the host PC and target PC is no longer
possible.

Is also possible to transfer the DOS system and stand-alone xPC Target
applications to a hard disk or a flash RAM board. This offers great flexibility in
creating self-starting stand-alone applications.

Using Target Scope Blocks with Stand-Alone
When using xPC Target Embedded Option with StandAlone mode, you can
also use target scopes for tracing signals and displaying them on the target
screen.

Because host-to-target communication is not supported with the StandAlone
mode, scope objects of type target must be defined within the Simulink model
before the xPC Target application is built.

5 xPC Target Embedded Option

5-16

xPC Target (basic package) offers a block for such purposes.

Copy the Scope (xPC) block into your block diagram and connect the signals
you would like to view to this block. Multiple signals can be used provided a
Mux block is used to bundle them.

Stand-Alone Target Applications

5-17

It is necessary to edit the Scope (xPC) dialog box and confirm that the check
box entry for Start Scope after download is checked as shown in the
following dialog box.

This setting is required to enable target scopes to begin operating as soon as
the application starts running. The reason this setting is required is that the
host PC is not available in StandAlone mode to issue a command that would
start scopes. With these settings, click Build and copy the files from your
modelname_xpc_emb subdirectory to your boot disk. Then boot your target PC.
When the target application starts to run, the target scopes will start
automatically. A monitor is needed on your target PC to view the results.

Note When using target scopes with StandAlone mode, you must specify the
Scope Type as Target prior to generating code.

5 xPC Target Embedded Option

5-18

6

Environment Reference

Environment 6-3
Environment Properties 6-3
Environment Functions 6-11

Using Environment Properties and Functions 6-12
Getting a List of Environment Properties 6-12
Saving and Loading the Environment 6-13
Changing Environment Properties

with Graphical Interface 6-14
Changing Environment Properties

with Command Line Interface 6-16
Creating a Target Boot Disk with Graphical Interface . . . 6-17
Creating a Target Boot Disk with Command Line Interface . 6-19

System Functions 6-20
GUI Functions 6-20
Test Functions 6-21
xPC Target Demos 6-21
Environment and System Function Reference 6-23

6 Environment Reference

6-2

The xPC Target environment defines connections and communication between
the host and target computers. It also, defines the build process for a real-time
application.

This chapter includes the following sections:

• “Environment” - List of environment properties and functions with a brief
description

• “Using Environment Properties and Functions” - Common tasks within
the xPC Target software environment

• “System Functions” - List of functions for testing and opening graphical
interfaces

Environment

6-3

Environment
The xPC Target environment defines the software and hardware environment
of the host PC as well as the target PC. An understanding of the environment
properties will help you to correctly configure the xPC Target environment.

This section includes the following topics:

• “Environment Properties” - List of properties with a brief description

• “Environment Functions” - List of functions with a brief description

Environment Properties
The environment properties define communication between the host PC and
target PC, the type of C compiler and its location, and the type of target boot
floppy created during the setup process. You can view and change these
properties using the environment functions or Setup window.

Table 6-1: List of Environment Properties

Environment
property

Description

Version xPC Target version number. Read-only.

Path xPC Target root directory. Read-only.

CCompiler Values are ’Watcom’ or ’VisualC’. From the
Setup window CCompiler list, choose either
Watcom or VisualC.

CompilerPath Value is a valid compiler root directory. Enter the
path where you installed a Watcom C/C++ or
Microsoft Visual C/C++ compiler.

If the path is invalid or the directory does not
contain the compiler, then when you use the
function updatexpcenv or build a target
application, an error message appears.

6 Environment Reference

6-4

TargetRAMSizeMB Values are ’Auto’ or ’MB of target RAM’.

From the Setup window TargetRAMSizeMB list,
choose either Auto or Manual. If you select
Manual, enter the amount of RAM, in megabytes,
installed on the target PC. This property is set by
default to Auto.

TargetRAMSizeMB defines the total amount of
installed RAM in the target PC. This RAM is used
for the, kernel, target application, data logging,
and other functions that use the heap.

If TargetRAMSizeMB is set to Auto, the target
application automatically determines the amount
of memory up to 64 MB. If the target PC does not
contain more than 64 MB of RAM, or you do not
want to use more then 64 MB, select Auto. If the
target PC has more than 64 MB of RAM, and you
want to use more than 64 MB, select Manual, and
enter the amount of RAM installed in the target
PC.

MaxModelSize Values are ’1MB’, ’4MB’, or ’16MB’.

From the Setup window MaxModelSize list,
choose either1 MB, 4 MB, or 16 MB.

Choosing the maximum model size reserves the
specified amount of memory on the target PC for
the target application. The remaining memory is
used by the kernel and by the heap for data
logging.

Selecting too high a value leaves less memory for
data logging. Selecting too low a value does not
reserve enough memory for the target application
and creates an error.

Table 6-1: List of Environment Properties

Environment
property

Description

Environment

6-5

SystemFontSize Values are ’Small’ or ’Large’.

From the Setup window SystemFontSize list,
choose either Small, or Large.

The xPC Target GUIs use this information to
change the font size.

CANLibrary Values are ’None’, ’200 ISA’, ’527 ISA’, ’1000
PCI’, ’1000 MB PCI’, or ’PC104’.

From the Setup window CANLibrary list, choose
None, 200 ISA, 527 ISA, 1000 PCI, 1000 MB PCI,
or PC104.

HostTargetComm Values are ’RS232’ or ’TcpIp’.

From the Setup window HostTargetComm list,
choose either RS232 or TCP/IP.

If you select RS232, you also need to set the
property RS232HostPort. If you select TCP/IP,
then you also need to set all properties that start
with TcpIp.

RS232HostPort Values are ’COM1’ or ’COM2’.

From the Setup window RS232HostPort list,
choose either COM1 or COM2 for the connection
on the host computer. xPC Target automatically
determines the COM port on the target PC.

Before you can choose an RS232 port, you need to
set the HostTargetComm property to RS232.

RS232Baudrate Values are ’115200’, ’57600’, ’38400’, ’19200’,
’9600’, ’4800’, ’2400’, or ’1200’.

From the RS232Baudrate list, choose 115200,
57600, 38400, 19200, 9600, 4800, 2400, or 1200.

Table 6-1: List of Environment Properties

Environment
property

Description

6 Environment Reference

6-6

TcpIpTargetAddress Value is ’xxx.xxx.xxx.xxx’.

In the Setup window TcpIpTargetAddress box,
enter a valid IP address for your target PC. Ask
you system administrator for this value.

For example, 192.168.0.1

TcpIpTargetPort Value is ’xxxxx’.

In the Setup window TcpIpTargetPort box, enter
a value greater than 20000.

This property is set by default to 22222 and should
not cause any problems. The number is higher
than the reserved area (telnet, ftp, ...) and it is only
of use on the target PC.

TcpIpSubNetMask Value is ’xxx.xxx.xxx.xxx’.

In the Setup window TcpIpSubNetMask text box,
enter the subnet mask of your LAN. Ask you
system administrator for this value.

For example, 255.255.0.0.

Table 6-1: List of Environment Properties

Environment
property

Description

Environment

6-7

TcpIpGateway Value is ’xxx.xxx.xxx.xxx’.

In the Setup window TcpIpGateway box, enter
the IP address for your gateway. This property is
set by default to 255.255.255.255 which means
that a gateway is not used to connect to the target
PC.

If you communicate with your target PC from
within a LAN that uses gateways, and your host
and target computers are connected through a
gateway, then you need to enter a value for this
property. If your LAN does not use gateways, you
do not need to change this property. Ask your
system administrator.

TcpIpTargetDirver Values are ’NE2000’ or ’SMC91C9X’.

From the Setup window TcpIpTargetDriver list,
choose either NE2000 or SMC91C9X. The
Ethernet card provided with xPC Target uses the
NE2000 driver.

TcpIpTargetBusType Values are ’PCI’ or ’ISA’.

From the Setup window TcpIpTargetBusType
list, choose either PCI or ISA. This property is set
by default to PCI, and determines the bus type of
your target PC. You do not need to define a bus
type for your host PC, which can be the same or
different from the bus type in your target PC.

If TcpIpTargetBusType is set to PCI, then the
properties TcpIpISAMemPort and TcpIpISAIRQ
have no effect on TCP/IP communication.

If you are using an ISA bus card, set
TcpIpTargetBusType to ISA and enter values for
TcpIpISAMemPort and TcpIpISAIRQ.

Table 6-1: List of Environment Properties

Environment
property

Description

6 Environment Reference

6-8

TcpIpTargetISAMemP
ort

Value is ’0xnnnn’.

If you are using an ISA-bus Ethernet card, you
must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The
values of these properties must correspond to the
jumper settings or ROM settings on your ISA-bus
Ethernet card.

On your ISA-bus card, assign an IRQ and I/O-port
base address by moving the jumpers on the card.

We recommend setting the I/O-port base address
to around 0x300. If one of these hardware settings
leads to a conflict in your target PC, choose
another I/O-port base address and make the
corresponding changes to your jumper settings.

TcpIpTargetISAIRQ Value is ’n’ where n is between 4 and 15.

If you are using an ISA bus Ethernet card, you
must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The
values of these properties must correspond to the
jumper settings or ROM settings on the ISA-bus
Ethernet card.

On your ISA-bus card, assign an IRQ and I/O-port
base address by moving the jumpers on the card.

We recommend setting the IRQ to 5, 10, or 11. If
one of these hardware settings leads to a conflict in
your target PC, choose another IRQ and make the
corresponding changes to your jumper settings.

Table 6-1: List of Environment Properties

Environment
property

Description

Environment

6-9

EmbeddedOption Values are ’Disabled’ or ’Enabled’. This
property is read-only.

Note The xPC Target Embedded Option is enabled
only if you purchase an additioanl license.

TargetScope Values are ’Disabled’ or ’Enabled’.

From the Setup window TargetScope list, choose
either Enabled or Disabled.

The property TargetScope is set by default to
Enabled. If you set TargetScope to Disabled,
then the target PC displays information as text.

To use all of the features of target scope, you also
need to install a keyboard and mouse on the target
PC.

Table 6-1: List of Environment Properties

Environment
property

Description

6 Environment Reference

6-10

TargetMouse Values are ’None’, ’PS2’, ’RS232 COM1’, ’RS232
COM2’.

From the Setup window TargetMouse list, choose
None, PS2, RS232 COM1, or RS232 COM2.

Before you can select a target mouse, you need to
set the Target Scope property to Enabled.

TargetMouse allows you to disable or enable
mouse support on the target PC:

• If you do not connect a mouse to the target PC,
you need to set this property to None, otherwise,
the target application may not behave properly.

• If the target PC supports PS/2 devices (keyboard
and mouse) and you connect a PS/2 mouse, set
this property to PS2.

• If you connect a serial RS232 mouse to the
target PC, choose either RS232 COM1 or RS232
COM2 depending on which serial port you
attached the mouse.

TargetBoot Values are ’BootFloppy’, ’DOSLoader’, or
’StandAlone’.

From the Setup window TargetBoot list, choose
either BootFloppy, DOSLoader, or StandAlone.

If your license file does not include the license for
the xPC Target Embedded Option, the Target
Boot box is disabled with BootFloppy as your
only selection. With the xPC Target Embedded
Option licensed and installed, you have the
additional choices of DOSLoader and
StandAlone.

Table 6-1: List of Environment Properties

Environment
property

Description

Environment

6-11

Environment Functions
The environment functions allow you to change the environment properties.
The functions are listed in the following table.

Table 6-2: List of Environment functions

Environment
functions

Description

getxpcenv List environment properties in the MATLAB
window or assign the list as a cell array to a
MATLAB variable.

setxpcenv First of two steps to change environment
properties. See also updatexpcenv.

updatexpcenv Changes the current environment properties to
equal the new properties entered using the
function setxpcenv.

xpcbootdisk Creates a boot floppy disk containing the kernel
according to the current environment properties.

6 Environment Reference

6-12

Using Environment Properties and Functions
You use the xPC Target Setup window to enter properties that are independent
of your model.

This section includes the following topics:

Changing Environment Properties

• “Getting a List of Environment Properties”

• “System Functions”

• “Changing Environment Properties with Graphical Interface”
• “Changing Environment Properties with Command Line Interface”

Target Boot Disk
• “Creating a Target Boot Disk with Graphical Interface”

• “Creating a Target Boot Disk with Command Line Interface”

To enter properties specific to your model and its build procedure, see
“Entering the Simulation Parameters” on page 3-8. These properties are saved
with your Simulink model.

Getting a List of Environment Properties
To use the xPC Target functions to change environment properties, you need
to know the names and allowed values of the properties. Use the following
procedure to get a list of the property names, their allowed values, and their
current values:

1 In the MATLAB window, type

setxpcenv

MATLAB displays a list of xPC Target environment properties and the
allowed values. For a list of the properties, see “Environment Properties” on
page 6-3

2 Type

getxpcenv

Using Environment Properties and Functions

6-13

MATLAB displays a list of xPC Target environment properties and the current
values.

3 Alternately, in the MATLAB window, type

xpcsetup

MATLAB opens the xPC Target Setup window with the current values.

Saving and Loading the Environment
This feature makes it easy and fast to switch between different xPC Target
environments:

1 In the xPC Target Setup window, and from the File menu, click Save
Settings.

The Save xPC Target Environment dialog box opens.

2 Enter the name of an environment file (*.mat). Select a directory, and then
click Save.

xPC Target saves the current environment properties.

After you have saved an xPC Target environment, you can load those
property values back into xPC Target.

3 From the File menu, click Load Settings.

The Load xPC Target Environment dialog box opens.

4 Select a directory with a previously saved environment file (*.mat). Select
the file, and then click Open.

5 In the xPC Target Setup window, click the Close button.

If you changed the environment properties, but do not click the Update
button, xPC Target displays a warning.

Even if you decide to continue with the exit process, you will not lose the values
you changed. However, the current environment does not reflect the changes
you made in the xPC Target Setup window. If you reopen the xPC Target Setup
window, the changes you made reappear, and the Update button is enabled.

6 Environment Reference

6-14

Changing Environment Properties with Graphical
Interface
xPC Target lets you define and change environment properties. These
properties include, the path to the C/C++ compiler, the host PC COM-port, the
logging buffer size, and many others. Collectively these properties are known
as the xPC Target environment.

To change an environment property using the xPC Target GUI, use the
following procedure:

1 In the MATLAB command window, type

xpcsetup

MATLAB opens the xPC Target Setup window.

Using Environment Properties and Functions

6-15

The xPC Target Setup window has two sections:

- xPC Target
- xPC Target Embedded Option

If your license does not include the xPC Target Embedded Option, the
TargetBoot box is grayed-out with BootFloppy as your only selection. With
the xPC Target Embedded Option, you have the additional choices of
DOSLoader and StandAlone.

2 Change properties in the environment by entering new property values in
the text boxes or choosing items from the lists.

After you make changes to the environment properties, you need to update
the xPC Target environment. Updating makes your changes in the xPC
Target Setup window equal to the current property values.

3 Click the Update button.

xPC Target updates the xPC Target environment and disables (grays-out)
the Update button. As long as the Update button is enabled, the xPC Target
environment needs to be updated.

6 Environment Reference

6-16

Changing Environment Properties with Command
Line Interface
xPC Target lets you define and change different properties. These properties
include, the path to the C/C++ compiler, the host COM-port, the logging buffer
size, and many others. Collectively these properties are known as the xPC
Target environment.

You can use the command line functions to write an M-file script that accesses
the environment settings according to your own needs. For example, you could
write an M-file that switches between two targets.

The following procedure shows how to change the COM port property for your
host PC from COM1 to COM2:

1 In the MATLAB window, type

setxpcenv(’RS232HostPort’,’COM2’)

The up-to-date column shows the values that you have changed, but have
not updated.

Making changes using the function setxpcenv does not change the current
values until you enter the update command.

2 In the MATLAB window, type

updatexpcenv

The environment properties you changed with the function setxpcenv
become the current values.

HostTargetComm
RS232HostPort
RS232Baudrate

:RS232
:COM2
:115200

up to date
COM2
up to date

HostTargetComm
RS232HostPort
RS232Baudrate

:RS232
:COM2
:115200

up to date
up to date
up to date

Using Environment Properties and Functions

6-17

Creating a Target Boot Disk with Graphical
Interface
You use the target boot disk to load and run the xPC Target kernel.

After you make changes to the xPC Target environment properties, you need
to create or update a target boot disk. To create a target boot disk for the
current xPC Target environment, use the following procedure:

1 In the MATLAB window, type

xpcsetup

The xPC Target Setup window opens.

2 Click the BootDisk button.

If you didn’t update the current settings, the following message box appears.

Click No. Click the Update button, and then click the BootDisk button
again.

After you update the current properties, and click the BootDisk button, the
following message box appears.

3 Insert a formatted floppy disk into the host PC disk drive, and then click OK.
All data on the disk will be erased.

The write procedure starts and while creating the boot disk, the MATLAB
command window displays the following status information. On Windows

6 Environment Reference

6-18

NT systems, the status information is displayed only at the end of the write
process.

xPC Target DiskWrite Utility Version 1.1,(c) 1998-2000 The
MathWorks, Inc.Read File:
C:\MATLAB\TOOLBOX\RTW\TARGETS\XPC\XPC\BIN\
..\..\target\kernel\xpcsgb1.rtd

Write Track 0- 9:uuuuuuuuuuuu
Write Track 10-19: uuuuuuuuuuuuuuuuuuuu
Write Track 20-29: uuuuuuuuuuuuuuuuuuuu
Write Track 30-39: uuuuuuuuuuuuuuuuuuuu
Write Track 40-49: uuuuuuuuuuuuuuuuuuuu
Write Track 50-59: uuuuuuuuuuuuuuuuuuuu
Write Track 60-69: uuuuuuuuuuuuuuuuuuuu
Write Track 70-79: uuuuuuuuuuuuuuuuuuuu

The process of creating a boot disk takes about 1 to 2 minutes.

4 Close the xPC Target Setup window.

5 Remove the target boot disk from the host PC disk drive. You may now use
this disk to boot your target PC.

To create a boot disk using the command line interface, see “Creating a Target
Boot Disk with Command Line Interface” on page 6-19.

Using Environment Properties and Functions

6-19

Creating a Target Boot Disk with Command Line
Interface
You use the target boot disk to load and run the xPC Target kernel.

After you make changes to the xPC Target environment properties, you need
to create or update a boot disk. To create a target boot disk for the current xPC
Target environment, use the following procedure:

1 In the MATLAB window, type

xpcbootdisk

xPC Target displays the following message.

Insert a formatted floppy disk into your host PC’s
disk drive and press any key to continue.

2 Insert a formatted floppy disk into the host PC disk drive, and then press
any key.

The write procedure starts and while creating the boot disk, the MATLAB
command window displays the following status information. On Windows
NT systems, the status information is displayed only at the end of the write
process.

xPC Target Disk Write Utility Version 1.1,
(c) 1998-1999 The MathWorks Inc.
Read File: C:\MATLAB\TOOLBOX\RTW\TARGETS\XPC\XPC\BIN\..\..
\target\kernel\xpcsgb1.rtd

Write Track 0- 9:
Write Track 10-19:uuuuuuuuuuuuuuuu
Write Track 20-29: uuuuuuuuuuuuuuuuuuuu
Write Track 30-39: uuuuuuuuuuuuuuuuuuuu
Write Track 40-49: uuuuuuuuuuuuuuuuuuuu
Write Track 50-59: uuuuuuuuuuuuuuuuuuuu
Write Track 60-69: uuuuuuuuuuuuuuuuuuuu
Write Track 70-79: uuuuuuuuuuuuuuuuuuuu

To create a boot disk using the graphical interface, see “Creating a Target Boot
Disk with Graphical Interface” on page 6-17.

6 Environment Reference

6-20

System Functions
The system functions allow you to open xPC Target GUIs and run tests from
the MATLAB window.

This section includes the following topics:

• “GUI Functions”

• “Test Functions”

• “xPC Target Demos”

GUI Functions
The GUI functions are listed in the following table.

Table 6-3: List of GUI Functions

System functions Description

xpcscope Opens the scope manager window on the host PC
for scopes with type host.

xpcsetup Opens the Setup window.

xpctargetspy Open the Target Spy window on the host PC. Use
this GUI to upload the target PC screen to the
host PC.

xpctest Test the xPC Target installation.

xpcscope Opens the scope manager window on the host PC
for scopes with type host.

xpcsetup Opens the Setup window.

xpctargetspy Open the Target Spy window on the host PC. Use
this GUI to upload the target PC screen to the
host PC.

xpctest Test the xPC Target installation.

System Functions

6-21

Test Functions
The test functions are listed in the following table.

xPC Target Demos
The xPC Target demos are used to demonstrate the features of xPC Target. But
they are also M-file scripts that you can view to understand how to write your
own scripts for creating and testing target applications.

The following table lists the demo scripts that we provide with xPC Target.

Table 6-4: List of Test Function

System functions Description

getxpcpci Determine which PCI boards are installed in the
target PC.

xpctargetping Test the communication between the host PC and
the target PC

xpctargetspy Open the Target Spy window on the host PC. Use
this GUI to upload the target PC screen to the
host PC.

xpctest Test the xPC Target installation.

Demo Filename

Parameter Sweep parsweepdemo

Signal tracing using free-run mode scfreerundemo

Signal tracing using software triggering scsoftwaredemo

Signal tracing using signal triggering scsignaldemo

Signal tracing using scope triggering scscopedemo

Signal tracing using the target scope. tgscopedemo

6 Environment Reference

6-22

To locate or edit a demo script

1 In the MATLAB window, type

scfreerundemo

MATLAB displays the location of the M-file.

D:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos\scfreerundemo.m

2 Type

edit scfreerundemo

MATLAB opens the M-file in a MATLAB editing widow.

Environment and System Function Reference

6-23

Environment and System Function Reference
This section includes an alphabetical listing of the environment and system
functions.

For a list of the functions with a brief description, see:

• “Environment Functions” on page 6-11
• “GUI Functions” on page 6-20

• “Test Functions” on page 6-21

getxpcenv

6-24

6getxpcenvPurpose List environment properties assign to a MATLAB variable

 Syntax MATLAB Command Line

getxpcenv

Description Function for environment properties. This function displays, in the MATLAB
window, the property names, the current property values, and the new
property values set for the xPC Target environment.

Examples Return the xPC Target environment in the structure shown below. The output
in the MATLAB window is suppressed. The structure contains three fields for
property names, current property values, and new property values.

env =getxpcenv

env =
 propname: {1x25 cell}
 actpropval: {1x25 cell}
 newpropval: {1x25 cell}

Display a list of the environment property names, current values, and new
values.

env =getxpcenv

See Also The xPC Target functions setxpcenv, updatexpcenv, xpcbootdisk, and
xpcsetup.

getxpcpci

6-25

6getxpcpciPurpose Determine which PCI boards are installed in the target PC

Syntax MATLAB Command Line

getxpcpci(’type_of_boards’)

Arguments

Description The information is displayed in the MATLAB window. Only devices supported
by driver blocks in the xPC Target Block Library are displayed. The
information includes the PCI bus number, slot number, assigned IRQ number,
manufacturer name, board name, device type, manufacturer PCI Id, and the
board PCI Id itself.

For a successful query:

• The host-target communication link must be working. (The function
xpctargetping must return success before using the function getxpcpci.

• Either a target application is loaded or the loader is active. The latter is used
to query for resources assigned to a specific PCI device, which have to be
provided to a driver block dialog box prior to the model build process.

Examples Return the result of the query in the struct pcidevs instead of displaying it.
The struct pcidevs is an array with one element for each detected PCI device.
Each element combines the information by a set of fieldnames. The struct
contains more information compared to the displayed list, such as the assigned
base addresses, the base and sub class.

pcidevs = getxpcpci

Display the supported and installed PCI devices.

getxpcpci(’all’)

Display the installed PCI devices, not only the devices supported by the xPC
Target Block Library. This will include graphics controller, network cards,
SCSI cards and even devices which are part of the motherboard chipset (for
example PCI-to-PCI bridges).

getxpcpci(’all’)

type_of_boards Values are no arguments, ’all’ and ’supported’.

getxpcpci

6-26

Display a list of the currently supported PCI devices in the xPC Target block
library. The result is stored in a struct instead of displaying it.

getxpcpci(’supported’)

setxpcenv

6-27

6setxpcenvPurpose Change xPC Target environment properties.

Syntax MATLAB Command Line

setxpcenv('property_name’, 'property_value')
setxpcenv('prop_name1', 'prop_val1', 'prop_name2', prop_val2')
setxpcenv

Arguments

Description Function for environment properties. Enter new environment properties. If the
new value is different from the current value, the property is marked as having
a new values. Use the function updatexpcenv to change the current properties
to the new properties.

The function setxpcenv works similarly to the function set of the MATLAB
Handle Graphics system. The function setxpcenv must be called with an even
number of arguments. The first argument of a pair is the property name, and
the second argument is the new property value for this property.

Using the function setxpcenv without arguments returns a list of allowed
property values in the MATLAB window.

Examples List the current environment properties. For a description of properties and
allowed values, see “Environment Properties” on page 6-3.

setxpcenv

Change the host PC, serial communication port, to COM2.

setxpcenv(’HostCommPort’,’COM2’)

 See Also The xPC Target functions getxpcenv, updatexpcenv, xpcbootdisk, and
xpcsetup. The procedures “Changing Environment Properties with Graphical

property_name Not case sensitive. Property names can be shortened
as long as they can be differentiated from the other
property names.

property_value Character string. Type setxpcenv without
arguments to get a listing of allowed values. Property
values are not case sensitive.

setxpcenv

6-28

Interface” on page 6-14 and “Changing Environment Properties with
Command Line Interface” on page 6-16.

updatexpcenv

6-29

6updatexpcenvPurpose Change current environment properties to equal new properties

 Syntax MATLAB Command Line

updatexpcenv

Description Function for environment properties. This procedure includes creating
communication M-files as well as patching the xPC Target kernel and system
DLL’s. Calling the function updatexpcenv is necessary after new properties are
entered with the function setxpcenv, but before creating a target boot floppy
with the function xpcbootdisk.

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk,
and xpcsetup. The procedures “Changing Environment Properties with
Graphical Interface” on page 6-14 and “Changing Environment Properties
with Command Line Interface” on page 6-16.

xpcbootdisk

6-30

6xpcbootdiskPurpose Create xPC Target boot disk, and confirm the current environment properties

Syntax MATLAB Command Line

xpcbootdisk

Description Function for environment properties. This function creates a xPC target boot
floppy for the current xPC Target environment which has been updated with
the function updatexpcenv. Creating an xPC Target boot floppy consists of
writing the correct bootable kernel image onto the disk. You are asked to insert
an empty, formatted floppy disk into the floppy drive.

All existing files are erased by the function xpcbootdisk. If the inserted floppy
disk already is an xPC Target boot disk for the current environment settings,
this function exits without writing a new boot image to the floppy disk. At the
end, a summary of the creation process is displayed.

If you update the environment, you need to update the target boot floppy for
the new xPC environment with the function xpcbootdisk.

Examples To create a boot floppy disk, in the MATLAB window, type

xpcbootdisk

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk,
and xpcsetup. See also, the procedures “Creating a Target Boot Disk with
Graphical Interface” on page 6-17 and “Creating a Target Boot Disk with
Command Line Interface” on page 6-19.

xpcscope

6-31

6xpcscopePurpose Open a scope manager window on the host PC.

Syntax MATLAB Command Line

xpcscope

Description This graphical user interface (GUI) allows you to define scopes that display on
your host PC, choose signals, and control the data acquisition process.

See Also The xPC Target function xpctgscope and the procedures “Signal Tracing with
xPC Target GUI” on page 3-26 and “Signal Tracing with xPC Target GUI
(Target Manager)” on page 3-31.

xpcsetup

6-32

6xpcsetupPurpose Open the Setup window

 Syntax MATLAB Command Line

xpcsetup

Description This graphical user interface (GUI) allows you to:

• Enter and change environment properties

• Create an xPC Target boot floppy disk

See Also See also the functions setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk, and
the procedures “I/O boards - If you use I/O boards on the target PC, you need
to correctly install the boards. See the manufactures literature for installation
instructions.” on page 2-12, “Environment Properties for Network
Communication” on page 2-20, and.

xpctargetping

6-33

6xpctargetpingPurpose Test communication between the host and target computers

Syntax MATLAB Command Line

xpctargetping

Examples Check for communication between the host PC and target PC.

xpctargetping

Description Ping’s the target PC from the host PC and returns either ’success’ or ’failed’. If
the xPC Target kernel is loaded, running, and communication is working
properly, this function returns the value ’success’.

This function works with both RS232 and TCP/IP communication.

ans =
success

See Also The xPC Target procedure “Testing and Troubleshooting the Installation” on
page 2-26.

xpctargetspy

6-34

6xpctargetspyPurpose Open an xPC Target Spy window on the host PC

Syntax MATLAB Command Line

xpctargetspy

Description This graphical user interface (GUI) allows you to upload displayed data from
the target PC.

The behavior of this function depends on the value for the environment
property TargetScope.

• If TargetScope is enabled, a single graphics screen is uploaded. The screen is
not continually updated because of a higher data volume when a target
graphics card is in VGA mode.

To update the host screen with another target screen, move the pointer into
the Spy window and left-click.

• If TargetScope is disabled, text output is continuously transferred every
second to the host and displayed in the window.

Examples To open the Target Spy window, in the MATLAB window, type

xpctargetspy

See Also The xPC Target procedures “I/O boards - If you use I/O boards on the target PC,
you need to correctly install the boards. See the manufactures literature for
installation instructions.” on page 2-12 and “Environment Properties for
Network Communication” on page 2-20.

xpctest

6-35

6xpctestPurpose Test the xPC Target installation

Syntax MATLAB Command Line

xpctest
xpctest(’reboot_flag’)

Arguments

Description Series of xPC Target tests to check the correct functioning of the following xPC
Target tasks:

• Initiate communication between the host and target computers.

• Reboot the target PC to reset the target environment.

• Build a target application on the host PC.

• Download a target application to the target PC.

• Check communication between the host and target computers using
commands.

• Execute a target application.

• Comparing the results of a simulation and the target application run.

xpctest(’noreboot’) skips test 2. Use this option if target hardware does not
support software rebooting.

Examples If the target hardware does not support software rebooting, and to skip test 2,
in the MATLAB window, type

xpctest(’noreboot’)

See Also The procedures “Testing and Troubleshooting the Installation” on page 2-26
and “Test 1, Ping Target System Standard Ping” on page 2-27.

reboot_flag noreboot. Skips the reboot test. User this option if
the target hardware does not support software
rebooting. Value is 'noreboot'

xpctgscope

6-36

6xpctgscopePurpose Open the target scope manager window.

Syntax MATLAB Command Line

xpctgscope

Description This graphical user interface (GUI) allows you to define scopes that display on
your target PC, choose signals, and control the data acquisition process.

See Also The xPC Target function xpcscope and the procedures “Signal Tracing with
xPC Target GUI (Target Manager)” on page 3-31 and “Signal Tracing with xPC
Target GUI” on page 3-26.

xpcwwwenable

6-37

6xpcwwwenablePurpose Disconnect the target PC from the current client application

Syntax MATLAB Command Line

xpcwwwenable

Description Use this function to disconnect the target application from MATLAB before you
connect to the Web browser. Also, you can use this function to connect to
MATLAB after using a Web browser, or switch to another Web browsers.

xpcwwwenable

6-38

7
Target Object Reference

Target Object 7-3
What is a Target Object? 7-3
Target Object Properties 7-4
Target Object Methods 7-9
Target PC Commands 7-11

Using Target Objects 7-13
Displaying Target Object Properties 7-13
Setting the Value of a Target Object Property

from the Host PC 7-14
Setting the Value of a Target Object Property

from the Target PC 7-15
Getting the Value of a Target Object Property 7-16
Using the Method Syntax with Target Objects 7-17

7 Target Object Reference

7-2

Use target objects to run and control real-time applications on the target PC.

This chapter includes the following sections:

• “Target Object” - Definition, properties, and methods

• “Using Target Objects” - Changing properties, and running methods

Target Object

7-3

Target Object
xPC Target uses a target object to represent the target application and target
kernel. An understanding of the target object properties and methods will help
you to control and test your application on the target PC.

This section includes the following topics:

• “What is a Target Object?”
• “Target Object Properties”
• “Target Object Methods”

What is a Target Object?
A target object on the host PC represents the interface to a target application
and the kernel on the target PC. You use target objects to run and control the
target application.

When you change a target object property on the host PC, information is
exchanged with the target PC and the target application.

To create a target object:

• Build a target application. xPC Target creates a target object during the
build process.

• Use the target object constructor function xpc. In the MATLAB window, type
tg = xpc.

A target object has associated properties and methods specific to that object.

7 Target Object Reference

7-4

Target Object Properties
Target object properties let you access information from your target application
and control its execution. You can view and change these properties using
target object methods.

The properties for a target object are listed in the following table. This table
includes a description of the properties and which properties you can change
directly by assigning a value.

Table 7-1: List of Target Object Properties

Property Description Write

Connected Communication status between the host PC
and the target PC. Values are ’Yes’ or ’No’.

Application Name of the Simulink model and target
application build from that model.

Mode Type of Real-Time Workshop code generation.
Values are ’Real-Time Singletasking’,
’Real-Time Multitasking’, or
’Accelerate’. The default value is
’Real-Time Singletasking’.

Note Even if you select Real-Time
Multitasking, the actual mode can be
Real-Time Singletasking. This happens if your
model contains only one or two tasks and the
sample rates are equal.

Status Execution status of your target application.
Values are ’stopped’ or ’running’.

CPUoverload CPU status for overload. If the target
application requires more CPU time than the
sample time of the model, this value is set
from ’none’ to ’detected’ and the current
run is stopped. Correcting CPUoverload
requires either a faster processor or a larger
sample time.

Target Object

7-5

ExecTime Execution Time. Time, seconds, since your
target application started running. When the
target application stops, the total execution
time is displayed.

SessionTime Time since the kernel started running on your
target PC. This is also the elapsed time since
you booted the target PC. Values are in
seconds.

StopTime Time when the target application stops
running. Values are in seconds. The original
value is set in the Simulink Simulation
Parameters dialog box.

When the ExecutionTime reaches the
StopTime, the application stops running.

Yes

SampleTime Time between samples. This value equals the
step size, in seconds, for updating the model
equations and post the outputs.

Yes

AvgTET Average task execution time. This value is an
average of the measured CPU times, in
seconds, to run the model equations and post
outputs during each sample interval. Task
execution time is nearly constant with minor
deviations due to cache, memory access,
interrupt latency, and multirate model
execution.

MinTET Minimum task execution time. Corresponds to
the fastest time (smallest time measured), in
seconds, to update model equations and post
outputs.

Table 7-1: List of Target Object Properties

Property Description Write

7 Target Object Reference

7-6

MaxTET Maximum task execution time. Corresponds
to the slowest time (longest time measured),
in seconds, to update model equations and
post outputs.

ViewMode Displays either all scopes or a single scope on
the target PC. Values are ’all’ or a single
scope index. This property is active only if the
environemnt property TargetScope is set to
enabled.

Yes

TimeLog Storage in the MATLAB workspace for the
time or t-vector logged during execution of the
target application.

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution of
the target application.

OutputLog Storage in the MATLAB workspace for the
output, or y-vector logged during execution of
the target application.

TETLog Storage in the MATLAB workspace for a
vector containing task execution times during
execution of the target application.

To enable logging of the TET, you need to
check the Log Task Execution Time box
located at Simulation Parameters dialog box>
Real-Time Workshop page > Category:xPC
Target code generation options group

Table 7-1: List of Target Object Properties

Property Description Write

Target Object

7-7

MaxLogSamples Maximum number of samples for each logged
signal within the circular buffers for TimeLog,
StateLog, OutputLog, and TETLog. StateLog
and OutputLog can have one or more signals.

This value is calculated by dividing the Signal
Logging Buffer Size by the number of logged
signals. The Signal Logging Buffer Size box
is located at Simulation Parameters dialog
box> Real-Time Workshop page >
Category:xPC Target code generation options
group.

NumLogWraps The number of times the circular buffer
wrapped. The buffer wraps each time the
number of samples exceeds MaxLogSamples.

LogMode Controls which data points are logged.

• Equi-distant time. Logs a data point at
every time interval. Set value to ’normal’.

• Equi-distant amplitude. Logs a data point
only when one of the output values from the
OutputLog changes by a specified
amplitude. Set value to a signal value.

Yes

Scopes List of index numbers with one index for each
scope.

NumSignals The number of signals from your Simulink
model that are available to be viewed with a
scope.

ShowSignals Flag set to view or hide the list of signals from
your Simulink blocks. This list is shown when
you display the properties for a target object.
Values are ’on’ or ’off’.

Yes

Table 7-1: List of Target Object Properties

Property Description Write

7 Target Object Reference

7-8

Signals List of viewable signals. This list is visible
only when ShowSignals is set to ’on’.

• Property name. S0, S1. . .

• Property value. Value of the signal

• Block Name. Name of the Simulink block
the signal is from.

S# Property name for a signal.

NumParameters The number of parameters from your
Simulink model that you can tune or change.

ShowParameters Flag set to view or hide the list of parameters
from your Simulink blocks. This list is shown
when you display the properties for a target
object. Values are ’on’ or ’off’.

Yes

Parameters List of tunable parameters. This list is visible
only when ShowParameters is set to ’on’.

• Property name. P0, P1. . .

• Property value. Value of the parameter in a
Simulink block.

• Type. Datatype of the parameter. Always
double.

• Size. Size of the the parameter. For
example, scalar, 1x2 vector, or 2x3 matrix.

• Parameter name. Name of a parameter in a
Simulink block.

• Block name. Name of a Simulink block

Yes

P# Property name for block parameter.

Table 7-1: List of Target Object Properties

Property Description Write

Target Object

7-9

Target Object Methods
The target object methods allow you to control a target application on the
target PC from the host PC.

Target object methods are entered in the MATLAB window on the host PC. You
can also control the target application from the target PC using target PC
commands. See “Target PC Commands” on page 7-11.

The methods are listed in the following table.

Table 7-2: List of Target Object Methods

Method Description

xpc Creates a target object on the host PC (constructor).

set Sets writable target object properties to the specified
value.

get Returns the value of readable properties from a target
object.

start Starts the execution of a target application on the
target PC.

stop Stops the execution of a target application on the target
PC.

load Downloads a target application from the host PC to the
target PC.

unload Unloads a target application from the target PC. If a
target application is running, it is stopped and
unloaded.

addscope Creates a new scope with type ’host’ or ’target’ on
the target PC.

getscope Returns the properties of a previously created scope
from the target PC. The scope properties can be
assigned to a MATLAB variable to create a scope
object.

7 Target Object Reference

7-10

remscope Removes a scope from the target PC. This method does
not remove the scope object, on the host PC, that
represent the scope.

getparamid Returns the property name or index of a parameter
from the target object.

getsignalid Returns the property name or index of a signal from the
target object.

getlog Uploads and returns one of the data logs from the
target PC to the host PC. TimeLog, StateLog,
OutputLog, TETLog

reboot Reboot the target PC. If a target application is running,
the target application is stopped, and then the target
PC is rebooted.

close Close the serial connection to the target PC so that the
host PC can use the COMM port for another device.

Table 7-2: List of Target Object Methods

Method Description

Target Object

7-11

Target PC Commands
The target PC commands allow you to control a target application on the target
PC from the target PC.

Target PC commands are entered in the target PC command window on the
target PC. You can also control the target application from the host PC using
target object methods. See “Target Object Methods” on page 7-9.

The commands are listed in the following table.

Table 7-3: List of Target PC Commands

Command Description

delallvar Delete all variables.
Syntax: delvar

delvar Delete a variable.
Syntax: delvar variable_name

getpar Displays the value of a block parameter using the
parameter index.

Syntax: setpar parameter_index

getvar Display the value of a variable.
Syntax: getvar variable_name

P# Display or change the value of a block parameter. For
example, P2 or P2=1.23e-4

Syntax: parameter_name, or
parameter_name = floating_point_number

S# Displays the value of a signal. For example, S2.

Syntax: signal_name.

sampletime Enter a new sample time.
Syntax: sampletime = floating_point_number

7 Target Object Reference

7-12

setpar Changes the value of a block parameter using the
parameter index.

Syntax: setpar parameter_index =
floating_point_number

setvar Sets a variable to a value. Later you can use that
variable to do a macro expansion.
Syntax: setvar variable_name = target_pc_command

For example, you can type setvar aa=startscope 2,
setvar bb=stopscope 2

showvar Display a list of variables.
Syntax: showvar

stoptime Enter a new stop time. Use inf to run the target
application until you manually stop it or reset the
target PC.
Syntax: stoptime = floating_point_number

viewmode Zoom in to one scope, or zoom out to all scopes.

Syntax: viewmode scope_number, or viewmode ’all’

Table 7-3: List of Target PC Commands

Command Description

Using Target Objects

7-13

Using Target Objects
xPC Target uses a target object to represent the target application and target
kernel. This section shows some of the common tasks that you use with target
objects.

This section includes the following topics:

• “Displaying Target Object Properties”

• “Setting the Value of a Target Object Property from the Host PC”
• “Setting the Value of a Target Object Property from the Target PC”

• “Getting the Value of a Target Object Property”

• “Using the Method Syntax with Target Objects”

Displaying Target Object Properties
You may want to list the target object properties to monitor a target
application. The properties include the execution time, and average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default target
object name tg as an example:

1 In the MATLAB window, type
tg

The current target application properties are uploaded to the host PC, and
MATLAB displays a list of the target object properties with the updated
values.

Note the target objects properties for TimeLog, StateLog, OutputLog, and
TETLog are not updated at this time.

For a list of target object properties with a description, see “Target Object
Properties” on page 7-4.

7 Target Object Reference

7-14

Setting the Value of a Target Object Property from
the Host PC
You can change a target object property by using xPC Target methods on the
host PC.

With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(target_object, property_name, new_property_value)
can be replaced by:

target_object.propety_name = new_property_value.

For example, to change the stop time mode for the target object tg:

1 In the MATLAB window, type

tg.stoptime = 1000

2 Alternately, you could type

set(tg, ’stoptime’, 1000)

Parameters are also target object properties. For example, to change the
frequency of the signal generator in the model xpcosc:

1 In the MATLAB window, type

tg.p2 = 30

2 Alternately, you could type

set(tg, ’p2’, 30)

When you change a target object property, the new property value is
downloaded to the target PC. The xPC Target kernel then receives the
information and changes the behavior of the target application.

To get a list of the writable properties, type set(target_object). The build
process assigns the default name of the target object to tg.

Using Target Objects

7-15

Note Method names are case-sensitive and need to be complete, but property
names are not case-sensitive and need not be complete as long as they are
unique.

Setting the Value of a Target Object Property from
the Target PC
You can type commands directly from a keyboard on the target PC. These
commands create a temporary difference between the behavior of the target
application and the properties of the target object. The next time you access the
target object, the properties are updated from the target PC:

1 On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.

2 Type a target command. For example, to change the frequency of the signal
generator (parameter 2) in the model xpcosc, type

setpar 2=30

3 Change the stop time. For example to set the stop time to 1000 type

stoptime = 1000

The parameter changes are make to the target application but not to the
target object. When you type any xPC Target command in the MATLAB
command window, the target PC returns the present properties to the target
object.

Note The target PC command setpar does not work for vector parameters.

7 Target Object Reference

7-16

Getting the Value of a Target Object Property
You can list a property value in the MATLAB window, or assign that value to
a MATLAB variable. With xPC Target you can use either a function syntax or
an object property syntax.

The syntax get(target_object, property_name) can be replaced by

target_object.propety_name

For example, to access the start time:

1 In the MATLAB window, type

endrun = tg.stoptime

2 Alternately, you could type

endrun = get(tg,’stoptime’) or tg.get(’stoptime’)

Signals are also target object properties. For example, to get the value of the
Integrator1 signal from the model xpcosc:

1 In the MATLAB window, type

outputvalue= tg.S0

2 Alternately, you could type

outputvalue = get(tg, ’s2’) or tg.get(’s2’)

To get a list of readable properties, type target_object. Without assignment
to a variable, the property values are listed in the MATLAB window.

Note Method names are case-sensitive and need to complete, but property
names are not case-sensitive and need not be complete as long as they are
unique.

Using Target Objects

7-17

Using the Method Syntax with Target Objects
Use the method syntax to run a target object method. The syntax
method_name(target_object, argument_list) can be replaced with:

target_object.method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
method names must be entered in full, and in lowercase. For example, to add a
scope of type target with a scope index of 1:

1 In the MATLAB window, type

tg.addscope(’target’,1)

2 Alternately, you could type

addscope(tg, ’target’, 1)

addscope

7-18

7addscopePurpose Creates one or more scopes on the target PC

 Syntax MATLAB command line

Creating a scope and scope object without assigning to a MATLAB variable.

addscope(target_object, ’scope_type’, new_scope_index)
target_object.addscope(’scope_type’, new_scope_index).

Creating a scope, scope object, and assign to a MATLAB variable.

scope_object = addscope(target_object,’scope_type’,
new_scope_index)

scope_object = target_object.addscope(’target’, new_scope_index)

Target PC command line - When using this command on the target PC, it is
limited to adding a scope of type target.

addscope
addscope new_scope_index

Arguments

Description Method of a target object. Creates a scope on the target PC, a scope object on
the host PC, and updates the target object property Scopes. This method
returns a scope object vector. If the result is not assigned to a variable, the
scope object properties are listed in the MATLAB window. If you try to add a
scope with the same index as an existing scope, the result is an error.

A scope acquires data from the target application and displays that data on the
target PC or uploads the data to the host PC.

target_object Name of a target object.

scope_type Values are ’host’ or ’target’. This argument is
optional with host as the default value.

new_scope_index Vector of new scope indices. This argument is
optional with the next available integer in the
target object property Scopes as the default
value.
If you enter a scope index for an existing scope
object, the result is an error.

addscope

7-19

All Scopes of type target or host run on the target PC

Scope of type target - Data collected is displayed on the target screen and
acquisition of the next data package is initiated by the kernel.

Scope of type host - Collects data and waits for a command from the host PC
for uploading the data. The data is then displayed using the host scope GUI
(xpcscope) or other MATLAB functions.

Examples Create a scope and scope object sc1 using the method addscope. A target scope
is created on the target PC with an index of 1, a scope object is created on the
host PC, and it is assigned to the variable sc1. The target object property
Scopes is changed from No scopes defined to 1.

sc1 = addscope(tg,’target’,1) or sc1 = tg.addscope(’target’,1)

Create a scope with the method addscope and then to create a scope object,
corresponding to this scope, using the method getscope. A target scope is
created on the target PC with an index of 1, a scope object is created on the host
PC, but it is not assigned to a variable. The target object property Scopes is
changed from No scopes defined to 1.

addscope(tg,’target’,1) or tg.addscope(’target’,1)
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

Create two scopes using a vector of scope objects scvector. Two target scopes
are created on the target PC with a scope index of 1 and 2, two scope objects are
created on the host PC that represent the scopes on the target PC. The target
object property Scopes is changed from No scopes defined to 1,2.

scvector = addscope(tg, ’target’, [1, 2])

target
object

target
application

Host PC Target PC

kernel

Scope engine

addscope

kernel

Scope engine

target
object

target
application

Host PC Target PC

scope
scope
object

addscope

7-20

See Also The xPC Target target object methods remscope, getscope. The xPC Target
GUI function xpcscope. The xPC target M-file demo scripts listed in “xPC
Target Demos” on page 6-21.

close

7-21

7closePurpose Closes the serial port connecting the host PC with the target PC

Syntax MATLAB command line

close(target_object)

Arguments

Description Method of a target object. If you want to use the serial port for another function
without quiting MATLAB, for example a modem, use this function to close the
connection.

target_object Name of a target object.

get

7-22

7getPurpose Return the property values for target and scope objects.

Syntax MATLAB command line
get(target_object, ’target_object_property’)

Arguments

Description Method of target objects. Gets the value of readable target object properties
from a target object.

Examples List the value for the target object property StopTime. Notice the property
name is a string, in quotes, and not case-sensitive.

get(tg,'stoptime’) or tg.get('stoptime')

ans = 0.2

See Also The xPC Target target object method set.The scope object methods get and
set. The built in MATLAB functions get and set.

target_object Name of a target object

target_object_property Name of a target object property.

getlog

7-23

7getlogPurpose Get all or part of the output logs from the target object

 Syntax MATLAB command line

log = getlog(target_object, ’log_name’, start_time,
number_points, interleave)

Arguments

Description Method of a target object. Use this function instead of the function get when
you want only part of the data.

Examples To get the first 1000 points in a log.

Outlog = getlog(tg, ’TETLog’, 0, 1000)

To get every other point in the output log and plot values.

Output_log = getlog(tg, TETLog, 0, ,2)
Time_log = getlog(tg, TimeLog, 0, ,2)
plot(time_log, output_log)

See Also The xPC Target target object methods get. The procedures “Entering the
Simulation Parameters” on page 3-8, “Entering the Simulation Parameters” on
page 3-8.

log User defined MATLAB variable.

log_name Values are TimeLog, StateLog, OutputLog, or
TETLog. This argument is required.

first_point First data point. The logs begin with 1. This
argument is optional. Default is 1

number_points Number of points after the start time. This
argument is optional. Default is all points in log.

interleave 1 returns all sample points. n returns every nth
sample point. This argument is optional, Default
is 1.

getparamid

7-24

7getparamidPurpose Get a parameter index or property name from the parameter list

Syntax MATLAB command line

getparamid(target_object, ’block_name’, ’parameter_name)
getparamid(target_object, ’block_name’, ’parameter_name’,
’flag’)

Arguments target_object

Description Method of a target object. Returns the index of a parameter in the parameter
list based on the path to the parameter name. The names must be entered in
full and are case-sensitive.

Examples Get the property name for the parameter Gain in the Simulink block Gain1,
incrementally increase gain, and pause to observe signal trace.

id = getparamid(tg, ’Subsyste/Gain1’, ’Gain’)
for i = 1 : 3
set(tg, id, i*2000);
pause(1);

end

Get the property name (P0, P1, . . .) of a single block.

getparamid(tg, ’Gain1’, ’Gain’)

Get the property index (0, 1, . . .) of asingal block.

getparamid(tg, ’Gain1’, ’Gain’, ’numeric’)

P5 is a property of the target object. For example, you could assign a value to
the gain with tg.p5 = 1000.

Name of a target object. The default name is tg.

block_name Simulink block path and name.

parameter_name Name of a parameter within a Simulink block

flag If flag = property, then return the property name
for the parameter. If flag = numeric, then return a
number index. This argument is optional with the
default behavior to return a property name.

getparamid

7-25

See Also The xPC Target scope object method getsignalid. The xPC target M-file demo
scripts listed in “xPC Target Demos” on page 6-21.

getscope

7-26

7getscopePurpose Gets a scope object pointing to a scope already defined in the kernel

 Syntax MATLAB command line

scope _object_vector = getscope(target_object, scope_index)

scope_object_vector = target_object.getscope(scope_index)

Arguments target_object

Description Method of a target object. Returns a scope object vector. If you try to get an
nonexistent scope, the result is an error. The list of existing scopes may be
retrieved using the method get(target_object, ’scopes’) or target_object.scopes.

Examples If your Simulink model has an xPC Target scope block, a scope of type target is
created at the time the target application is downloaded to the target PC. To
change the number of samples, you need to create a scope object and then
change the scope object property NumSamples.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
sc1.NumSample = 500

Name or a target object.

scope_index_vector Vector of existing scope indices listed in the target
property Scopes. The vector may have only one
element.

scope_object_vector MATLAB variable for a new scope object vector.
The vector many have only one scope object.

getscope

target
object

target
application

Host PC Target PC

scope

kernel

Scope engine
kernel

Scope engine

target
object

target
application

Host PC Target PC

scope
scope
object

getscope

7-27

To get the properties of all scopes on the target PC and create a vector of scope
objects on the host PC. If the target object has more than one scope, creates a
vector or scope objects.

scvector = getscope(tg)

See Also The xPC Target target object methods addscope and remscope. The xPC target
M-file demo scripts listed in “xPC Target Demos” on page 6-21.

getsignalid

7-28

7getsignalidPurpose Get the signal index or property name from the signal list

 Syntax MATLAB command line

getsignalid(target_object, ’block_name’)
getsignalid(target_object, ’block_name’, ’flag’)

Arguments

Description Method of a target object. Returns the index or name of a signal from the signal
list, based on the path to the signal name. The block names must be entered in
full and are case-sensitive.

Examples Get the property name for the parameter Gain in the Simulink block Gain1.

getsignalid(tg, ’Gain1’) or tg.getsignal(’Gain1’)
ans = S6

Get the property index for the parameter Gain in the Simulink block Gain1.

getsignalid(tg, ’Gain1’, ’Gain’, ’numeric’)
ans = 6

S6 is a property of the target object. For example, you could get the value of a
signal with signal_6 = tg.s6.

See Also The target object method getparamid. The xPC target M-file demo scripts
listed in “xPC Target Demos” on page 6-21.

target_object Name of an existing target object.

block_name Name of a Simulink block from you model.

flag If flag = property, then return the property name
for the signal. If flag = numeric, then return a
number index. This argument is optional with the
default behavior to return a number.

load

7-29

7loadPurpose Download a target application to the target PC

Syntax MATLAB command line

load(target_object,’target_application’)
target_object.load(’target_application’)

Arguments

Description Method of a target object. Before using this function, the target PC must be
booted with the xPC Target kernel, and the target application must be built in
the current working directory on the host PC.

If an application was previously loaded, the old target application is first
unloaded before downloading the new target application. The method load is
called automatically after the RTW build process.

Examples Load the target application xpcosc represented by the target object tg.

load(tg,’xpcosc’) or tg.load(’xpcosc’)
+tg or tg.start or start(tg)

See Also The xPC Target function unload. The xPC target M-file demo scripts listed in
“xPC Target Demos” on page 6-21.

target_object Name of an existing target object

target_application Simulink model and target application name.

reboot

7-30

7rebootPurpose Reboot the target PC

Syntax MATLAB command line

reboot(target_object)

Target PC command line

reboot

Arguments

Description Method of a target object. Reboots the target PC, and if a target boot disk is
still present, the xPC target kernal is reloaded.

You can also use this method to reboot the target PC back to Windows after
removing the target boot disk.

Note This method may not work on some target hardware.

See Also The xPC Target target object methods load and unload.

target_object Name of an existing target object

remscope

7-31

7remscopePurpose Remove a scope from the target PC.

Syntax MATLAB command line

remscope(target_object, scope_index_vector)
target_object.remscope(scope_index_vector)

remscope(target_object)
target_object.remscope

Target PC command line

remscope scope_index
remscope ’all’

Arguments

Description Method of a target object. If a scope index is not given, then the method
remscope deletes all scopes on the target PC. The method remscope has no
return value. The scope object representing the scope on the host PC is not
deleted.

Examples Remove a single scope.

remscope(tg,1) or tg.remscope(1)

target_object Name of a target object. The default name it tg.

scope_index_vector Vector of existing scope indices listed in the target
property Scopes.

scope_index Single scope index.

remscope

kernel

Scope engine

target
object

target
application

Host PC Target PC

scope
scope
object

kernel

Scope engine

target
object

target
application

Host PC Target PC

scope
object

remscope

7-32

Remove two scopes.

remscope(tg,[1 2]) or tg.remscope([1,2])

Remove all scopes.

remscope(tg) or tg.remscope

See Also The xPC Target target object methods addscope and getscope. The xPC target
M-file demo scripts listed in “xPC Target Demos” on page 6-21.

set

7-33

7setPurpose Change property values for target objects

Syntax MATLAB command line

set(target_object)

set(target_object, property_name1, property_value1,
property_name2, property_value2, . . .)

target_object.set(’property_name1’, property_value1)

set(target_object, property_name_vector, property_value_vector)

target_object_name.property_name = property_value

Target PC command line - Commands are limited to the target object
properties: stoptime, sampletime, and parameters.

parameter_name = parameter_value
stoptime = floating_point_number
sampletime = floating_point_number

Arguments

Description Method of a target object. Sets the properties of the target object. Not all
properties are user-writable.

Properties must be entered in pairs, or using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they have to both be
row vectors or both column vectors, and the corresponding values for properties
in property_name_vector are stored in property_value_vector.

The function set typically does not return a value. However, if called with an
explicit return argument, for example, a = set(target_object, property_name,

target_object Name of a target object

property_name Name of a scope object property. Always use
quotes

property_value Value for a scope object property. Always use
quotes for character strings, quotes are optional
for numbers.

parameter_name The letter p followed by the parameter index. For
example, p0, p1, p2.

set

7-34

property_value), it returns the value of the properties after the indicated
settings have been made.

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)

xPC Target Object:
 Writable Properties

 StopTime
 SampleTime
 ViewMode
 LogMode : [0 | 1]
 ShowParameters : [On | {Off}]
 ShowSignals : [On | {Off}]

Change the property showsignals to on.

tg.set(’showsignals’, ’on’) or set(tg, ’showsignals’, ’on’)

As an alternative to the method set, use the target object property
showsignals. In the MATLAB window, type

tg.showsignals =’on’

See Also The xPC Target target object methods get. The scope object methods get and
set. The built in MATLAB functions get and set. The xPC target M-file demo
scripts listed in “xPC Target Demos” on page 6-21.

start

7-35

7startPurpose Start execution of a target application on a target PC.

Syntax MATLAB command line

start(target_object)
target_object.start
+target_object

Target PC command line

start

Arguments

Description Method of both target and scope objects. Starts execution of the target
application represented by the target object. Before using this method, the
target application must be created and loaded on the target PC. If a target
application is running, this command has no effect.

Examples Start the target application represented by the target object tg.

+tg or tg.start or start(tg)

See Also The xPC Target target object methods stop on page 7-36, load on page 7-29,
and unload on page 7-37. The scope object method stop on page 8-21.

target_object Name of a target object. The default name is tg.

stop

7-36

7stopPurpose Stop execution of a target application on a target PC.

 Syntax MATLAB command line

stop(target_object)
target_object.stop
-target_object

Target PC command line

stop

Arguments

Description Stops execution of the target application represented by the target object. If the
target application is stopped, this command has no effect.

Examples Stop the target application represented by the target object tg.

stop(tg) or tg.stop or -tg

See Also The xPC Target target object method start on page 7-35. The scope object
methods stop on page 8-21 and start on page 8-19.

target_object Name of a target object.

unload

7-37

7unloadPurpose Removes the current target application from the target PC.

 Syntax MATLAB command line

unload(target_object)
target_object.unload

Arguments

Description Method of a target object. The kernel goes into loader mode is ready to
download new target application from the host PC.

Examples Unload the target application represented by the target object tg.

unload(tg) or tg.unload

See Also The xPC Target methods load and reboot.

target_object Name of a target object that represents a target
application.

xpc

7-38

7xpcPurpose Create a target object representing the target application

 Syntax MATLAB command line

target_object = xpc

Arguments

Description Constructor of a target object. The target object represents the target
application and target PC. Changes are made to the target application by
making changes to the target object using methods and properties.

Examples Before you build a target application, you can check the connection between
your host and target computers by creating a target object.

tg = xpc

xPC Object

 Connected = Yes
 Application = loader

See Also The xPC Target methods get on page 7-22, set on page 7-33.

target_object Variable name to reference the target object.

8
Scope Object Reference

Scope Object 8-3
What is a Scope Object? 8-3
Scope Object Properties 8-3
Scope Object Methods 8-6

Using Scope Objects 8-8
Displaying Scope Object Properties for a Single Scope 8-8
Displaying Scope Object Properties for All Scopes 8-9
Setting the Value of a Scope Property 8-9
Getting the Value of a Scope Property 8-10
Using the Method Syntax with Scope Objects 8-11

8 Scope Object Reference

8-2

Use scope objects to run and control scopes on the target PC.

This chapter includes the following sections:

• “Scope Object” - Definition, properties, and methods

• “Using Scope Objects” - Changing properties, and running methods

Scope Object

8-3

Scope Object
xPC Target uses scopes and scope objects as an alternative to using Simulink
scopes and external mode. Understanding the structure of scope objects will
help you to develop a mental model of the xPC Target software environment.

This section includes the following topics:

• “What is a Scope Object?” - Definition, and ways to create scope objects

• “Scope Object Properties” - List of properties with definitions

• “Scope Object Methods” - List of methods with definitions

What is a Scope Object?
A scope object on the host PC represents a scope on the target PC. You use
scope objects to observe the signals from your target application during a
real-time run or analyze the data after the run is finished.

To create a scope object:

• Add an xPC Target scope block to your Simulink model, build the model to
create a scope, and then use the target object method getscope to create a
scope object.

• Use the target object method addscope to create a scope, create a scope object
and assign the scope properties to the scope object.

A scope object has associated properties and methods specific to that object.

Scope Object Properties
Scope object properties let you select signals to acquire, set triggering modes,
and access signal information from the target application. You can view and
change these properties using scope object methods

8 Scope Object Reference

8-4

The properties for a scope object are listed in the following table. This table
includes a description of the properties and which properties you can change
directly by assigning a value.

Table 8-1: List of Scope Object Properties

Property Description Write

Application Name of the Simulink model associated to
this scope object.

ScopeId A numeric index unique for each scope.

Status Indicates whether data is being acquired,
the scope is waiting for a trigger, the scope
has been stopped (interrupted), or
acquisition is finished. Values are
’Acquiring’, ’Ready for being
Triggered’, ’Interrupted’, and
’Finished’.

Type Determines whether the scope is displayed
on the host computer or on the target
computer. Values are ’host’ and
’target’.

NumSamples Number of contiguous samples captured
during the acquisition of a data package.

Yes

NumPrePostSamples Number of samples collected before or
after a trigger event. The default value is
0. Entering a negative value collects
samples before the trigger event. Entering
a positive value collects samples after the
trigger event. If you set TriggerMode to
FreeRun, this property has no effect on
data acquisition.

Scope Object

8-5

Decimation A number n, where every nth sample is
acquired in a scope window.

Note This value is the same as Interleave
in a scope window.

Yes

TriggerMode Trigger mode for a scope. Valid values are
’FreeRun’ (default), ’Software’,
’Signal’, and ’Scope’.

Yes

TriggerSignal If TriggerMode=’Signal’, identifies which
block output signal to use for triggering
the scope. You identify the signal with a
signal index from the target object
property Signal.

Yes

TriggerLevel If TriggerMode=’Signal’, indicates the
value the signal has to cross to trigger the
scope and start acquiring data. The trigger
level can be crossed with either a rising or
falling signal.

Yes

TriggerSlope If TriggerMode=’Signal’, indicates
whether the trigger in on a rising or falling
signal. Values are ’Either’ (default),
’Rising’, or ’Falling’.

Yes

TriggerScope If TriggerMode=’Scope’, identifies which
scope to use for a trigger. A scope can be
set to trigger when another scope is
triggered. This is done by setting the slave
scope property TriggerScope to the scope
index of the master scope.

Yes

Mode Indicates how a scope displays the signals.
Values are ’Numerical’, ’Redraw’
(default), ’Sliding’, or ’Rolling’.

Yes

Table 8-1: List of Scope Object Properties

Property Description Write

8 Scope Object Reference

8-6

Scope Object Methods
The scope object methods allow you to control scopes on your target PC. The
methods are listed in the following table.

YLimit Minimum and maximum y-axis values.
This property can be set to ’auto’.

Yes

Grid Values are ’on’ or ’off’. Yes

StartTime Time within the total execution time, when
a scope begins acquiring a data package.

Time Contains the time data for a single data
package from a scope.

Data Contains the output data for a single data
package from a scope.

Signals List of signal indices from the target object
to display on the scope.

Table 8-2: List of Scope Object Methods

Scope Method Description

set Sets writable scope object properties to the specified
value. For a list of writable values, use
set(scope_object)

get Returns the value of readable properties from a scope
object.

addsignal Adds a signal to a scope and a scope object. The signal
is specified using the signal indices from the target
object.

Table 8-1: List of Scope Object Properties

Property Description Write

Scope Object

8-7

remsignal Removes a signal from a scope and a scope object. The
signal is specified using signal indices from the scope
object.

start Starts a scope, but does not necessarily start the
acquisition of data. The acquisition of data is
dependent on the trigger mode.

stop Stops a scope and the acquisition of a data.

trigger If TriggerMode=’Software’, starts the acquisition of
data from the target application.

Table 8-2: List of Scope Object Methods

Scope Method Description

8 Scope Object Reference

8-8

Using Scope Objects
xPC Target uses scope objects to represent scopes on the target PC. This
section shows some of the common tasks that you use with scope objects.

This section includes the following topics:

• “Displaying Scope Object Properties for a Single Scope”

• “Displaying Scope Object Properties for All Scopes”
• “Setting the Value of a Scope Property”

• “Getting the Value of a Scope Property”

• “Using the Method Syntax with Scope Objects”

Displaying Scope Object Properties for a Single
Scope
To list the properties of a single scope object sc1:

1 In the MATLAB window, type
sc1 = getscope(tg,1) or sc1 = tg.getscopes(1)

MATLAB creates the scope object sc1 from a previously created scope.

2 Type
sc1

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of the scope object properties with the updated
values. Because sc1 is a vector with a single element, you could also type,
sc1(1) or sc1([1]).

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

For a list of target object properties with a description, see “Target Object
Properties” on page 7-4.

Using Scope Objects

8-9

Displaying Scope Object Properties for All Scopes
To list the properties of all scope objects associated with the target object tg:

1 In the MATLAB window, type
getscope(tg) or tg.getscope

MATLAB displays a list of all scope objects associated with the target object.

2 Alternately, type
allscopes = getscope(tg) or allscopes = tg.getscope
allscopes

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of all the scope object properties with the updated
values. To list some of the scopes, use the vector index. For example, to list
the fist and third scopes, type allscopes([1,3]).

For a list of target object properties with a description, see “Target Object
Properties” on page 7-4.

Setting the Value of a Scope Property
With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(scope_object, property_name,
new_property_value) can be replaced by:

• scope_object_vector.property_name = new_property_value.
• scope_object(index_vector).propety_name = new_property_value.

For example to change the trigger mode for the scope object sc1:

1 In the MATLAB window, type

sc1.triggermode = ’signal’

2 Alternately, you could type

set(sc1,’triggermode’, ’signal’) or sc1.set(’triggermode’, ’signal’)

Assignment for may also be done for a vector of scope objects, for example
allscopes([1, 2]).numsamples = 500. Notice, the indices are MATLAB vector
indices and not xPC Target scope indices.

To get a list of the writable properties, type set(scope_object).

8 Scope Object Reference

8-10

Note Method names are case-sensitive, but property names are not.

Getting the Value of a Scope Property
You can list a property value in the MATLAB window, or assign that value to
a MATLAB variable. With xPC Target you can use either a function syntax or
an object property syntax.

The syntax get(scope_object_vector, property_name) can be replaced by

• scope_object_vector.property_name
• scope_object_vector(index_vector).property_name

For example to assign the start time from the scope object sc1:

1 In the MATLAB window, type

beginrun = sc1.starttime

2 Alternately, you could type

beginrun = get(sc1,’starttime’) or sc1.get(’starttime’)

Assignment may also be done using a vector of scope objects, for example
scopetypes = allscopes([1, 2]).type. Notice, the indices are MATLAB vector
indices and not xPC Target scope indices.

To get a list of readable properties, type scope_object. Without assigning to
a variable, the property values are listed in the MATLAB window.

Note Method names are case-sensitive, but property name are not.

Using Scope Objects

8-11

Using the Method Syntax with Scope Objects
Use the method syntax to run a scope object method. The syntax
method_name(scope_object_vector, argument_list) can be replaced with:

• scope_object.method_name(argument_list)
• scope_object_vector(index_vector).method_name(list of arguments)

Unlike properties, for which partial but unambiguous names are permitted,
method names must be entered in full, and in lowercase. For example, to add
signals to the first scope in a vector of all scopes:

1 In the MATLAB window, type

allscopes(1).addsignal([0,1])

2 Alternately, you could type

addsignal(allscopes(1), [0,1])

8 Scope Object Reference

8-12

addsignal

8-13

8addsignalPurpose Adds signals to a scope represented by a scope object

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)

scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments

Description Method of a scope object. The signals must be specified by their index, which
may be retrieve using the target object method getsignalid. If the
scope_object_vector has two or more scope objects, the same signals are
assigned to each scope.

Examples Add signals 0 and 1 from the target object tg to the scope object sc1. The signals
are added to the scope, and the scope object property Signals is updated to
include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

Display a list of properties and values for the scope object sc1 with the property
Signals shown below.

sc1.Signals

Signals = 1 : Signal Generator
 0 : Integrator1

Other ways to add signals without using the method addsignal is to use the
scope object method set.

scope_object_vector Name of a single scope object, or the name of a
vector of scope objects.

signal_index_vector For one signal, use a single number. For two or
more signals, enclose numbers in brackets and
separate with commas.

scope_index Single scope index.

addsignal

8-14

set(sc1,’Signals’, [0,1]) or sc1.set(’signals’,[0,1],

Or to directly assign signal values to the scope object property Signals.

sc1.signals = [0,1].

See Also The xPC Target scope object methods remsignal and set. The target object
method addscope and getsignalid.

get

8-15

8getPurpose Return the property values for scope objects

Syntax MATLAB command line

get(scope_object_vector)

get(scope_object_vector, ’scope_object_property’)

get(scope_object_vector, scope_object_property_vector)

Arguments

Description Method of scope objects. Gets the value of readable scope object properties from
a scope object or the same property from each scope object in a vector of scope
objects.

Examples List all of the readable properties, along with their present values. This is given
in the form of a structure, whose fieldnames are the property names and field
values are property values.

get(sc)

List the value for the scope object property Type. Notice the property name is a
string, in quotes, and is not case-sensitive.

get(sc,'type’)
ans = Target

See Also The xPC Target scope object method set. The target object methods get and
set. The built in MATLAB functions get and set.

target_object Name of a target object

scope_object_vector Name of a single scope, or name of a vector of
scope objects

scope_object_property Name of a scope object property

remsignal

8-16

8remsignalPurpose Remove signals from a scope represented by a scope object

 Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments

Description Method for a scope object. The signals must be specified by their index, which
may be retrieved using the target object method getsignalid. If the
scope_object_vector has two or more scope object, the same signals are removed
from each scope. The argument SIGNALS is optional; if left out, all signals are
removed.

Examples Remove signals 0 and 1 from the scope represented by the scope object sc1.

sc1.get(’signals’)

ans= 0 1

Removed signals from the scope on the target PC with the scope object property
Signals updated.

remsignal(sc1,[0,1]) or sc1.remsignal([0,1])

See Also The xPC Target scope object method remsignal, and the target object method
getsignalid.

scope_object MATLAB object created with the target object
methods addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional and if left out
all signals are removed.

signal_index Single signal index.

set

8-17

8setPurpose Change property values for scope objects

Syntax MATLAB command line

set(scope_object_vector)

set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)

scope_object_vector.set(’property_name1’, property_value1, ..)

set(scope_object, ’property_name’, property_valuse, . . .)

Arguments

Description Method for scope objects. Sets the properties of the scope object. Not all
properties are user-writable

Properties must be entered in pairs, or using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they have to both be
row vectors or both column vectors, and the corresponding values for properties
in property_name_vector are stored in property_value_vector.

The function set typically does not return a value. However, if called with an
explicit return argument, for example, a = set(target_object, property_name,
property_value), it returns the value of the properties after the indicated
settings have been made.

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)

xPC Scope Object:
 Writable Properties

scope_object Name of a scope object, or a vector of scope objects

property_name Name of a scope object property. Always use
quotes

property_value Value for a scope object property. Always use
quotes for character strings, quotes are optional
for numbers.

set

8-18

 NumSamples
 Decimation
 TriggerMode : [{FreeRun} | Software | Signal | Scope]
 TriggerSignal
 TriggerLevel
 TriggerSlope : [{Either} | Rising | Falling]
 TriggerScope
 Signals
 Mode : [Numerical | {Redraw} | Sliding | Rolling]
 YLimit
 Grid

The property value for the scope object sc1 is changed to on

sc1.set(’grid’, ’on’) or set(sc1, ’grid’, ’on’)

See Also The xPC Target scope object method get. The target object methods set and
get. The built in MATLAB functions get and set.

start

8-19

8startPurpose Start execution of a scope on a target PC

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector

start(getscope(target_object, scope_index_vector))

Target PC command line

startscope scope_index
startscope ’all’

Arguments

Description Method for scope objects. Starts a scope on the target PC represented by a scope
object on the host PC. This method does not necessarily start data acquisition
which depends on the trigger settings. Before using this method, a scope must
be created. To create a scope, use the target object method addscope or add xPC
Target scope blocks to your Simulink model.

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

target_object Name of a target object.

scope_object_vector Name of a single scope object, name of vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the target
object method getscope which returns a
scope_object vector.

scope_index_vector Index for a single scope, or list of scope indices in
vector form.

scope_index Single scope index.

start

8-20

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

start(getscope(tg)) or start(tg.getscope)

See Also The xPC Target target object methods getscope and stop. The scope object
method stop.

stop

8-21

8stopPurpose Stop execution of a scope on the target PC.

 Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object

stop(getscope(target_object, scope_index_vector))

Target PC command line

stopscope scope_index
stopscope ’all’

Arguments

Description Method for a scope objects. Stops the scopes represented by the scope objects.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the command
allscopes = getscope(tg) or allscopes = tg.getscope.

stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

target_object Name of a target object.

scope_object_vector Name of a single scope object, name of vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the target
object method getscope which returns a
scope_object vector.

scope_index_vector Index for a single scope, or list of scope indices in
vector form.

scope_index Single scope index.

stop

8-22

See Also The xPC Target target object methods getscope, stop, and start. The scope
object method start.

trigger

8-23

8triggerPurpose Software trigger the start of data acquisition for one or more scopes.

Syntax MATLAB command line

trigger(scope_object_vector) or scope_object_vector.trigger

Arguments

Description Method for a scope object. If the scope object property TriggerMode has a value
of ’software’, then this function triggers the scope represented by the scope
object to acquire the number of data points in the scope object property
NumSamples.

Note Only scopes with type host store data in the properties scope_object.Time
and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition or one set of
samples, nd plot data.

sc1 = tg.addscope(‘host’,1) or sc1=addscope(tg,’host’,1)
sc1.triggermode = ’software’

tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)

plot(sc1.time, sc1.data)

sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes
allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes
allscopes.trigger or trigger(allscopes)

scope_object_vector Name of a single scope object, name of a vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the target
object method getscope which returns a
scope_object vector.

trigger

8-24

I-1

Index

A
adding

scope blocks 4-14
advanced tutorial 4-1
advantages

network communication 2-15
serial communication 2-12

B
before you install

obtaining a valid license 2-7
overview 2-7

block library
in Simulink 4-7
with xPC Target 4-4

block parameters
defining 4-10
defining scope 4-16

boot disk, see target boot disk
booting the target PC 3-7
build process xix

target application 3-13
troubleshooting 3-15

C
C compiler

required product xiv
CD-ROM

installing from 2-8
changing

environment properties 5-16
changing parameters

using commands 3-38
using target object properties 3-38
xPC Target commands 3-38

changing properties
environment properties 5-14

command line interface 1-20
scope object 7-3
target object 6-3

commands
xPC Target 5-20

communication
between computers 1-12

compiler
required xiv

computer
communication 1-12
desktop PC 1-8, 1-9
host PC 1-8
industrial PC 1-9
notebook PC 1-8
target PC 1-8

connecting
computers 1-9
I/O boards 1-11
real-world 1-11

contacting The MathWorks
for technical support 2-31
for valid license 2-7

conventions
in this guide xix
typographical xxi

creating
boot disk 5-19
model with I/O blocks 4-3
model with scope blocks 4-13
scope objects 3-26, 3-31
target application 3-7
target boot disk 2-23, 5-17, 5-19
target object 3-13

Index

I-2

D
defining

I/O block parameters 4-10
scope block parameters 4-16

desktop PC 1-8, 1-9
directories

installed 2-10
working 2-10
xpc 2-10
xpcdemo 2-10

disk
boot, see target boot disk

diskette, see target boot disk
documentation

notational conventions xix
terminology conventions xix

downloadable file
installation 2-8

downloading
target application 3-13

E
entering

environment properties 5-14
Simulation Parameters 3-8

environment
network communication 2-20
serial communication 2-13

environment properties
changing 5-14, 5-16
list 5-12
loading 5-13
saving 5-13
updating 5-14, 5-16

Ethernet card
ISA-bus 2-18

PCI-bus 2-18
expected background xvii
external mode

Simulink 1-22

F
features

xPC Target 1-4
files

installed 2-10
project directory 2-10
working directory 2-10
xpc directory 2-10
xpcdemos directory 2-10

floppy disk, see target boot disk
functions

changing parameters 3-38

G
getting

list of environment properties 5-12
list of scope object properties 3-36
list of target object properties 3-36, 3-38

graphical user interface (GUI)
interaction with 1-19

H
hardware environment 1-8
host computer, see host PC
host PC 1-8

communication 1-12
connecting 1-9
hardware 2-12
requirements 2-3

Index

I-3

I
I/O block library

access in Simulink 4-7
access in xPC Target 4-4

I/O block parameters
defining 4-10

I/O blocks
in Simulink model 4-3

industrial PC 1-9
installing

Ethernet card for ISA 2-18
ethernet card for PCI 2-18
from CD-ROM 2-8
from downloadable file 2-8
hardware 2-12
network communication 2-15
serial communication 2-12
testing 2-26

interaction
command line interface 1-20
graphical user interface 1-19

ISA-bus
Ethernet card 2-18

L
license

obtaining 2-7
list

environment properties 5-12
scope properties 7-3
target properties 6-4

loading
environment properties 5-13
Simulink model 3-3

M
MATLAB

required product xii
methods

scope object 7-6
target object 6-9, 6-11

N
network communication

advantages 2-15
environment 2-20
hardware 2-16
host PC 2-16
installing 2-15
setting up 2-15, 2-20
target PC 2-16

notebook PC 1-8

O
organization of this document xviii
overview

command line interface 1-20
graphical user interface 1-19

P
parameters

changing with commands 3-38
defining block 4-10
defining scope blocks 4-16

PCI-bus
Ethernet card 2-18

Index

I-4

properties
changing environment 5-16
environment list 5-12
scope object 7-3
target object 6-4
updating environment 5-16

R
Real-Time Workshop

required product xiv
required products

C language compiler xiv
MATLAB xii
Real-Time Workshop xiv
Simulink xiii
xPC Target xii

requirements
host PC 2-3
system 2-3
target PC 2-4

running a simulation
on the host PC 3-3

running target application 3-16

S
saving

environment properties 5-13
scope blocks

adding to model 4-14
defining parameters 4-16
in Simulink model 4-13

scope object
command line interface 7-3
commands 7-3
getting list of properties 3-36

methods 7-6
methods, see commands
properties 7-3

scope objects
creating 3-26, 3-31

selecting
signals for tracing 3-26, 3-31

serial communication
advantages 2-12
environment 2-13
hardware 2-12
installing 2-12
setting up 2-12

setting
initial working directory 2-11

Setup window
using 5-12

signal 3-31
signal tracing

selecting signals 3-26
signals for tracing

selecting 3-26, 3-31
Simulation Parameters

entering 3-8
Simulink

external mode 1-22
I/O block library 4-7
loading a model 3-3
required products xiii

Simulink model
adding scope blocks 4-14
with I/O blocks 4-3
with scope blocks 4-13

software environment 1-12
starting

target application 3-17

Index

I-5

stopping
target application 3-17

system requirements 2-3
host PC 2-3

T
target application

building 3-13
creating 3-7
downloading 3-13
running 3-16
starting 3-17
stopping 3-17

target boot disk
creating 2-23, 5-17, 5-19
with desktop PC 1-9
with industrial PC 1-9

target computer, see target PC
target object

changing parameters 3-38
command line interface 6-3
commands 6-3
getting list of properties 3-36, 3-38
methods 6-9, 6-11
methods, see commands
properties 6-3, 6-4

target PC 1-8
booting 3-7
communication 1-12
connecting 1-9
creating boot disk 5-19
hardware 2-12
requirements 2-4
running target application 3-16

testing
installation 2-26

troubleshooting
build process 3-15

tutorial
advanced 4-1
basic 3-1
creating a target application 3-7
running a simulation 3-3
running target application 3-16

U
updating

environment properties 5-14, 5-16
using

setup window 5-12
xPC Target commands 5-20
xPC Target setup window 5-12

using this guide
conventions xix
organization xviii

V
valid license

obtaining 2-7

W
working directory

initial 2-11
setting initial 2-11

Index

I-6

X
xPC Target

commands 5-20
features 1-4
interaction 1-18
overview 1-3
required products xii
Setup window 5-12
what is it? 1-3

	Preface
	Documentation
	Online Documentation
	Printing the Documentation

	Required Products
	MATLAB
	Simulink
	Real-Time Workshop
	C Compiler

	Related Products
	Stateflow
	Stateflow Coder
	DSP Blockset
	Dials & Gauges Blockset

	Using This Guide
	Expected Background
	Organization

	Conventions
	Terminology
	Typographical

	Introduction
	What Is xPC Target?
	Features of xPC Target
	Real-Time Kernel
	Real-Time Application
	Signal Acquisition and Analysis
	Parameter Tuning

	Hardware Environment
	Host PC
	Target PC
	Host-Target Connection
	Input/Output Driver Support

	Software Environment
	Host-Target Communication
	Rapid Prototyping Process
	Embedded Process

	User Interaction
	xPC Target Graphical Interface
	MATLAB Command Line Interface
	Target PC Command Line Interface
	Simulink External Mode Interface
	Simulink Dials and Gauges Interface
	Web Browser Interface

	Installation and Configuration
	System Requirements
	Host PC
	Target PC

	Installation on the Host PC
	Getting or Updating Your License
	CD-ROM Installation
	Web Download Installation
	Files on the Host PC Computer

	Initial Working Directory
	Setting Your Working Directory from the Desktop Icon
	Setting Your Working Directory from Within MATLAB

	Serial Communication
	Hardware for Serial Communication
	Environment Properties for Serial Communication

	Network Communication
	Hardware for Network Communication
	Ethernet Card for a PCI-Bus
	Ethernet Card for an ISA-Bus
	Environment Properties for Network Communication

	Target Boot Disk
	Current Properties on the Target Boot Disk

	Testing and Troubleshooting the Installation
	Testing the Installation
	Test 1, Ping Target System Standard Ping
	Test 2, Ping Target System xPC Target Ping
	Test 3, Reboot Target Using Direct Call
	Test 4, Build and Download Application
	If You Still Need More Help

	Basic Procedures
	Simulating the Model
	Loading a Simulink Model
	Running a Simulation Using the Simulink Graphical Interface
	Running a Simulation Using the MATLAB Command Line Interface

	Creating the Target Application
	Booting the Target PC
	Troubleshooting the Boot Process
	Entering the Simulation Parameters
	Building and Downloading the Target Application
	Troubleshooting the Build Process

	Controlling the Target Application
	Control with MATLAB Commands

	Signal Monitoring
	Signal Monitoring with MATLAB Commands

	Signal Logging
	Signal Logging with xPC Target Graphical Interface
	Signal Logging with MATLAB Commands

	Signal Tracing
	Signal Tracing with xPC Target GUI
	Signal Tracing with xPC Target GUI (Target Manager)
	Signal Tracing with MATLAB Commands

	Parameter Tuning
	Parameter Tuning with MATLAB Commands
	Parameter Tuning with Simulink External Mode

	Advanced Procedures
	I/O Driver Blocks
	xPC Target I/O Driver Blocks
	Adding I/O Blocks with the xPC Target Library
	Adding I/O Blocks with the Simulink Library Browser
	Defining I/O Block Parameters

	xPC Target Scope Blocks
	xPC Target Scope Blocks
	Adding xPC Target Scope Blocks
	Defining xPC Target Scope Block Parameters

	Target PC Command Line Interface
	Using Methods and Properties on the Target PC
	Target Object Methods
	Target Object Properties
	Scope Object Methods
	Scope Object Properties
	Using Variables on the Target PC
	Variable Commands

	Web Interface
	Connecting the Web Interface
	Using the Main Page
	Changing WWW Properties
	Viewing Signals with the Web Browser
	Using Scopes with the Web Browser
	Viewing and Changing Parameters with the Web Interface
	Changing Access Levels to the Web Browser

	xPC Target Embedded Option
	Introduction
	DOSLoader Mode Overview
	StandAlone Mode Overview
	Architecture
	Restrictions

	Updating the xPC Target Environment
	Creating a DOS System Disk
	DOS Loader Target Applications
	Creating a Target Boot Disk for DOS Loader
	Creating a Target Application for DOS Loader

	Stand-Alone Target Applications
	Creating a Target Application for Stand-Alone
	Creating a Target Boot Disk for Stand-Alone
	Using Target Scope Blocks with Stand-Alone

	Environment Reference
	Environment
	Environment Properties
	Environment Functions

	Using Environment Properties and Functions
	Getting a List of Environment Properties
	Saving and Loading the Environment
	Changing Environment Properties with Graphical Interface
	Changing Environment Properties with Command Line Interface
	Creating a Target Boot Disk with Graphical Interface
	Creating a Target Boot Disk with Command Line Interface

	System Functions
	GUI Functions
	Test Functions
	xPC Target Demos

	Environment and System Function Reference

	Target Object Reference
	Target Object
	What is a Target Object?
	Target Object Properties
	Target Object Methods
	Target PC Commands

	Using Target Objects
	Displaying Target Object Properties
	Setting the Value of a Target Object Property from the Host PC
	Setting the Value of a Target Object Property from the Target PC
	Getting the Value of a Target Object Property
	Using the Method Syntax with Target Objects

	Scope Object Reference
	Scope Object
	What is a Scope Object?
	Scope Object Properties
	Scope Object Methods

	Using Scope Objects
	Displaying Scope Object Properties for a Single Scope
	Displaying Scope Object Properties for All Scopes
	Setting the Value of a Scope Property
	Getting the Value of a Scope Property
	Using the Method Syntax with Scope Objects

	Index

