
For State Diagram Modeling

Modeling

Simulation

Implementation

User’s Guide
Version 4

STATEFLOW®

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Stateflow User’s Guide
 COPYRIGHT 1997 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1997 First printing
January 1998 Revised for 5.2 (online version)
January 1999 Revised for Stateflow 2.0 (Release 11)
May 2000 Revised for Stateflow 3.0 (Release 11.1, online version)
September 2000 Revised for Stateflow 4.0 (Release 12)

i

Contents

Preface

System Requirements . xiv

Using Stateflow on a Laptop Computer xv

Related Products . xvi

Using This Guide . xvii
Chapter Quick Reference . xvii
Typographical Conventions . xviii

Installing Stateflow . xix

1
Introduction

Overview . 1-2
What Is Stateflow? . 1-2
Examples of Stateflow Applications . 1-2
Stateflow Components . 1-3
Design Approaches . 1-3

Quick Start . 1-5
The Power Switch Model . 1-5
Creating a Simulink Model . 1-6
Creating a Stateflow Diagram . 1-9
Defining Input Events . 1-12
Defining the Stateflow Interface . 1-12
Defining Simulink Parameters . 1-13
Parsing the Stateflow Diagram . 1-14
Running a Simulation . 1-15

ii Contents

Debugging . 1-16
Generating Code . 1-18

2
How Stateflow Works

Finite State Machine Concepts . 2-2
What Is a Finite State Machine? . 2-2
FSM Representations . 2-2
Stateflow Representations . 2-2
Notations . 2-3
Semantics . 2-3
References . 2-3

Anatomy of a Model and Machine . 2-4
The Simulink Model and Stateflow Machine 2-4
Defining Stateflow Interfaces . 2-6
Stateflow Diagram Objects . 2-7

Exploring a Real-World Stateflow Application 2-18
Analysis and Physics . 2-18
Control Logic . 2-22
Running the Model . 2-24

3
Creating Charts

Creating a Chart . 3-2

Using the Stateflow Editor . 3-5
Displaying Shortcut Menus . 3-6
Drawing Objects . 3-6
Specifying Object Styles . 3-7
Selecting and Deselecting Objects . 3-10

iii

Cutting and Pasting Objects . 3-10
Copying Objects . 3-11
Editing Object Labels . 3-11
Exploring Objects in the Editor Window 3-12
Zooming a Diagram . 3-12

Creating States . 3-14
Moving and Resizing States . 3-14
Creating Substates . 3-15
Grouping States . 3-15
Specifying State Decomposition . 3-15
Specifying Activation Order for Parallel States 3-16
Labeling States . 3-16
Using the State Properties Dialog Box 3-17
Naming States . 3-18
Defining State Actions . 3-18
Outputting State Activity to Simulink 3-20

Creating Boxes . 3-21

Creating Transitions . 3-22
What Is a Default Transition? . 3-22
Creating Default Transitions . 3-23
Editing Transition Attach Points . 3-23
Labeling Transitions . 3-23
Valid Labels . 3-24
Changing Arrowhead Size . 3-24
Moving Transition Labels . 3-25
Using the Transition Properties Dialog 3-25

Creating Junctions . 3-27
Changing Size . 3-27
Changing Arrowhead Size . 3-28
Moving a Junction . 3-28
Editing Junction Properties . 3-28

Specifying Chart Properties . 3-30

Waking Up Charts . 3-33

iv Contents

Working with Graphical Functions . 3-34
Creating a Graphical Function . 3-34
Invoking Graphical Functions . 3-38
Exporting Graphical Functions . 3-39
Specifying Graphical Function Properties 3-40

Working with Subcharts . 3-42
Creating a Subchart . 3-43
Manipulating Subcharts as Objects . 3-44
Opening a Subchart . 3-45
Navigating Subcharts . 3-46
Editing a Subchart . 3-46

Working with Supertransitions . 3-48
About Supertransitions . 3-48
Drawing a Supertransition . 3-48
Labeling Supertransitions . 3-53

Creating Chart Libraries . 3-54

Stateflow Printing Options . 3-55
Printing the Current View . 3-55
Printing a Stateflow Book . 3-56

4
Defining Events and Data

Defining Events . 4-2
Adding Events to the Data Dictionary . 4-2
Changing Event Properties . 4-4
Event Dialog Box . 4-5
Naming Events . 4-7
Defining Local Events . 4-7
Defining Input Events . 4-7
Defining Output Events . 4-8
Exporting Events . 4-8
Importing Events . 4-9

v

Specifying Trigger Types . 4-10
Describing Events . 4-11
Documenting Events . 4-11
Implicit Events . 4-11

Defining Data . 4-13
Adding Data to the Data Dictionary . 4-13
Setting Data Properties . 4-14
Data Dialog Box . 4-16
Defining Data Arrays . 4-19
Defining Input Data . 4-20
Defining Output Data . 4-21
Associating Ports with Data . 4-22
Defining Temporary Data . 4-22
Exporting Data . 4-23
Importing Data . 4-23
Documenting Data . 4-24

Symbol Autocreation Wizard . 4-25

5
Defining Stateflow Interfaces

Overview . 5-2
Interfaces to Stateflow . 5-2
Typical Tasks to Define Stateflow Interfaces 5-2
Where to Find More Information on Events and Data 5-3

Defining the Stateflow Block Update Method 5-4
Stateflow Block Update Methods . 5-4
Defining a Triggered Stateflow Block . 5-5
Defining a Sampled Stateflow Block . 5-5
Defining an Inherited Stateflow Block . 5-6
Defining a Continuous Stateflow Block 5-7

Defining Output to Simulink Event Triggers 5-9
Overview . 5-9

vi Contents

Defining Function Call Output Events . 5-9
Defining Edge-Triggered Output Events 5-12

Inputting Events from Simulink . 5-15
Add an Event Choosing a Chart as the Parent 5-15
Choose Input from Simulink as the Scope 5-15
Select the Trigger . 5-16
Apply the Changes . 5-16

Inputting Data from Simulink . 5-17
Add a Data Object Choosing a Chart as the Parent 5-17
Choose Input from Simulink as the Scope 5-17
Specify Data Attributes . 5-18
Apply and Save the Changes . 5-18

Outputting Events to Simulink . 5-19
Add an Event Parented by the Chart . 5-19
Choose Output to Simulink as the Scope 5-19
Apply the Changes . 5-19

Outputting Data to Simulink . 5-20
Add a Data Object Parented by the Chart 5-20
Choose Output to Simulink as the Scope 5-20
Specify Data Attributes . 5-20
Apply the Changes . 5-21

MATLAB Workspace . 5-22
What Is the MATLAB Workspace? . 5-22
Using the MATLAB Workspace . 5-22

Defining the Interface to External Sources 5-23
What Are External Sources? . 5-23
Exported Events . 5-23
Imported Events . 5-25
Exported Data . 5-26
Imported Data . 5-28

vii

6
Exploring and Searching Charts

Overview . 6-2

Exploring Charts . 6-3
Explorer Main Window . 6-3
Moving Objects/Changing Parent . 6-5
Moving Objects/Changing Index and Port Order 6-5
Deleting Objects . 6-5
Editing Objects . 6-5
Setting Properties . 6-5
Renaming Objects . 6-6
Transferring Object Properties . 6-6

Searching Charts . 6-8
Stateflow Finder . 6-8
Finder Display Area . 6-12

7
Notations

Overview . 7-2
What Is Meant by Notation? . 7-2
Motivation Behind the Notation . 7-2
How the Notation Checked Is Checked 7-2
Graphical Objects . 7-3
The Data Dictionary . 7-4
How Hierarchy Is Represented . 7-4

States . 7-7
Overview . 7-7
State Decomposition . 7-7
Active and Inactive States . 7-8
Combination States . 7-9
Labeling a State . 7-10

viii Contents

Transitions . 7-14
Labeling a Transition . 7-15
Valid Transitions . 7-16
Types of Transitions . 7-17
Default Transitions . 7-21
Labeling Default Transitions . 7-21
What Is an Inner Transition? . 7-24
What Is a Self Loop Transition? . 7-27

Connective Junctions . 7-28
What Is a Connective Junction? . 7-28
What Is Flow Diagram Notation? . 7-28

History Junctions . 7-35
History Junctions and Inner Transitions 7-35

Action Language . 7-37
What Is an Action Language? . 7-37
Objects with Actions . 7-37
Transition Action Notation . 7-38
State Action Notation . 7-38
Keywords . 7-39
Action Language Components . 7-40
Bit Operations . 7-41
Binary Operations . 7-42
Unary Operations . 7-44
Unary Actions . 7-44
Assignment Operations . 7-44
User-Written Functions . 7-45
ml() Functions . 7-47
MATLAB Name Space Operator . 7-50
The ml() Function Versus ml Name Space Operator 7-52
Data and Event Arguments . 7-53
Arrays . 7-53
Pointer and Address Operators . 7-54
Hexadecimal Notation . 7-55
Typecast Operators . 7-55
Event Broadcasting . 7-56
Directed Event Broadcasting . 7-57
Conditions . 7-59

ix

Time Symbol . 7-60
Literals . 7-60
Continuation Symbols . 7-61
Comments . 7-61
Use of the Semicolon . 7-61
Temporal Logic Operators . 7-61
After Operator . 7-62
Before Operator . 7-64
At Operator . 7-65
Every Operator . 7-66
Temporal Logic Events . 7-66

8
Semantics

Overview . 8-2
List of Semantic Examples . 8-2

Event-Driven Effects on Semantics . 8-5
What Does Event-Driven Mean? . 8-5
Top-Down Processing of Events . 8-5
Semantics of Active and Inactive States 8-5
Semantics of State Actions . 8-7
Semantics of Transitions . 8-7

Transitions to and from Exclusive (OR) States 8-8

Condition Actions . 8-13

Default Transitions . 8-18

Inner Transitions . 8-23

Connective Junctions . 8-31

Event Actions . 8-40

x Contents

Parallel (AND) States . 8-42

Directed Event Broadcasting . 8-54

Execution Order . 8-58
Overview . 8-58
Execution Order Guidelines . 8-58
Parallel (AND) States . 8-61

Semantic Rules Summary . 8-62
Entering a Chart . 8-62
Executing an Active Chart . 8-62
Entering a State . 8-62
Executing an Active State . 8-63
Exiting an Active State . 8-63
Executing a Set of Flow Graphs . 8-63
Executing an Event Broadcast . 8-64

9
Building Targets

Overview . 9-2
Target Types . 9-2
Building a Target . 9-2
How Stateflow Builds Targets . 9-3

Setting Up Target Build Tools . 9-5
Setting Up Build Tools on UNIX . 9-5
Setting Up Build Tools on Windows . 9-5

Starting a Build . 9-7
Starting from a Target Builder Dialog Box 9-8

Configuring a Target . 9-9
Specifying Code Generation Options . 9-11
Simulation Coder Options Dialog Box 9-14
RTW Coder Options Dialog Box . 9-15

xi

Specifying Custom Code Options . 9-17

Parsing . 9-20
Parser . 9-20
Parse the Machine or the Stateflow Diagram 9-20

Error Messages . 9-24
Parser Error Messages . 9-24
Code Generation Error Messages . 9-25
Compilation Error Messages . 9-25

Integrating Custom and Generated Code 9-26
Invoking Graphical Functions . 9-26

10
Debugging

Overview . 10-2
Typical Debugging Tasks . 10-2
Including Debugging in the Target Build 10-2
Breakpoints . 10-3
Runtime Debugging . 10-3

Stateflow Debugger User Interface . 10-5
Debugger Main Window . 10-5
Status Display Area . 10-6
Breakpoint Controls . 10-6
Debugger Action Control Buttons . 10-7
Animation Controls . 10-8
Display Controls . 10-8
MATLAB Command Field . 10-9

Debugging Runtime Errors . 10-10
Example Stateflow Diagram . 10-10
Typical Scenario to Debug Runtime Errors 10-11
Create the Model and Stateflow Diagram 10-11
Define the sfun Target . 10-12

xii Contents

Invoke the Debugger and Choose Debugging Options 10-12
Start the Simulation . 10-12
Debug the Simulation Execution . 10-12
Resolve Runtime Error and Repeat . 10-13
Solution Stateflow Diagram . 10-13

Debugging State Inconsistencies . 10-14
Causes of State Inconsistency . 10-14
Detecting State Inconsistency . 10-14

Debugging Conflicting Transitions 10-16
Detecting Conflicting Transitions . 10-16

Debugging Data Range Violations . 10-18
Detecting Data Range Violations . 10-18

Debugging Cyclic Behavior . 10-19
Detecting Cyclic Behavior . 10-19

11
Function Reference

sfnew . 11-3
sfexit . 11-4
sfsave . 11-5
stateflow . 11-6
sfprint . 11-9
sfhelp . 11-10

A
Glossary

Preface

System Requirements xiv

Using Stateflow on a Laptop Computer xv

Related Products xvi

Using This Guide xvii
Chapter Quick Reference xvii
Typographical Conventions xviii

Installing Stateflow xix

 Preface

xiv

System Requirements
Stateflow® is a multiplatform product, running on Microsoft Windows 95,
Windows NT, and UNIX systems.

Stateflow requires:

• MATLAB® 6 (Release12)

• Simulink® 4

The UNIX version of Stateflow requires a C or C++ compiler for generating
code from a Stateflow model. See “Setting Up Target Build Tools” on page 9-5
for more information.

Generating code for the Simulink elements of a Stateflow model requires
Version 4 (Release 12) of the Real-Time Workshop® .

MATLAB

Simulink

Stateflow RTW

Stateflow
Coder

Using Stateflow on a Laptop Computer

xv

Using Stateflow on a Laptop Computer
If you plan to run the Microsoft Windows version of Stateflow on a laptop
computer, you should configure the Windows color palette to use more than 256
colors. Otherwise, you may experience unacceptably slow performance.

To set the Windows graphics palette:

1 Click the right mouse button on the Windows desktop to display the desktop
menu.

2 Select Properties from the desktop menu to display the Windows Display
Properties dialog.

3 Select the Settings panel on the Display Properties dialog.

4 Choose a setting that is more than 256 colors from the Color Palette colors
list.

5 Select OK to apply the new setting and dismiss the Display Properties
dialog.

 Preface

xvi

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with Stateflow.

For more information about any of these products, see either:

• The online documentation for that product, if it is loaded or if you are reading
the documentation from the CD

• The Stateflow Web site, at www.stateflow.com

The toolboxes listed below all include functions that extend the MATLAB
environment. The blocksets all include blocks that extend the Simulink
environment.

Product Description

MATLAB An integrated technical computing
environment that combines numeric
computation, advanced graphics and
visualization, and a high-level programming
language

Stateflow Coder Tool that generates customizable code from
Stateflow models

Simulink An interactive environment for modeling,
simulating, and prototyping dynamic systems

Real-Time Workshop Tool that generates customizable code from
Simulink models

Simulink Report
Generator

Tool for documenting information in MATLAB,
Simulink, and Stateflow in multiple output
formats

Using This Guide

xvii

Using This Guide

Chapter Quick Reference
If you are new to the Stateflow environment, go to Chapter 1, “Introduction,”
to get an overview and a quick start.

For an introduction to Stateflow concepts, see Chapter 2, “How Stateflow
Works.”

For information on creating charts, refer to Chapter 3, “Creating Charts.”

Chapter 4, “Defining Events and Data,” describes the nongraphical objects that
are essential to completing and defining interfaces to the Stateflow diagram.

Chapter 5, “Defining Stateflow Interfaces,” describes how to create interfaces
between a chart block and other blocks in a Simulink model.

For information on using the Stateflow Explorer and the Stateflow Finder, see
Chapter 6, “Exploring and Searching Charts.”

Chapter 7, “Notations,” Chapter 8, “Semantics,” and Chapter 9, “Building
Targets,” explain the language used to communicate Stateflow diagram design
information, how that notation is interpreted and implemented behind the
scenes, and how to generate code, respectively.

See Chapter 10, “Debugging,” for information on debugging your simulation.

See Chapter 11, “Function Reference,” for information on specific functions and
their syntax.

See the Glossary for definitions of key terms and concepts.

 Preface

xviii

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention to Use Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names/syntax Monospace font The cos function finds the
cosine of each array element.

Syntax line example is

MLGetVar ML_var_name

Keys Boldface with an initial
capital letter

Press the Return key.

Mathematical
expressions

Italics for variables

Standard text font for
functions, operators, and
constants

This vector represents the
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with

A =
 5

Menu names, menu items, and
controls

Boldface with an initial
capital letter

Choose the File menu.

New terms Italics An array is an ordered
collection of information.

String variables (from a finite
list)

Monospace italics sysc = d2c(sysd,'method')

Installing Stateflow

xix

Installing Stateflow
Your platform-specific MATLAB Installation Guide provides essentially all of
the information you need to install Stateflow.

Prior to installing Stateflow, you must obtain a License File or Personal
License Password from The MathWorks. The License File or Personal License
Password identifies the products you are permitted to install and use.

Stateflow and Stateflow Coder have certain product prerequisites that must be
met for proper installation and execution.

If you experience installation difficulties and have Web access, connect to the
MathWorks home page (http://www.mathworks.com). Look for the license
manager and installation information under the Tech Notes/FAQ link under
Tech Support Info.

Licensed
Product

Prerequisite
Products

Additional Information

Simulink 4 MATLAB 6
(Release 12)

Allows installation of Simulink and
Stateflow in Demo mode.

Stateflow Simulink 4

Stateflow
Coder

Stateflow Same as Stateflow.

 Preface

xx

1

Introduction

Overview . 1-2
What Is Stateflow? 1-2
Examples of Stateflow Applications 1-2
Stateflow Components 1-3
Design Approaches 1-3

Quick Start . 1-5
The Power Switch Model 1-5
Creating a Simulink Model 1-6
Creating a Stateflow Diagram 1-9
Defining Input Events 1-12
Defining the Stateflow Interface 1-12
Defining Simulink Parameters 1-13
Parsing the Stateflow Diagram 1-14
Running a Simulation 1-15
Debugging . 1-16
Generating Code 1-18

1 Introduction

1-2

Overview

What Is Stateflow?
Stateflow is a powerful graphical design and development tool for complex
control and supervisory logic problems. Using Stateflow you can:

• Visually model and simulate complex reactive systems based on finite state
machine theory.

• Design and develop deterministic, supervisory control systems.

• Easily modify your design, evaluate the results, and verify the system's
behavior at any stage of your design.

• Automatically generate integer or floating-point code directly from your
design (requires Stateflow Coder).

• Take advantage of the integration with the MATLAB and Simulink
environments to model, simulate, and analyze your system.

Stateflow allows you to use flow diagram notation and state transition notation
seamlessly in the same Stateflow diagram. Flow diagram notation is
essentially logic represented without the use of states. In some cases, using
flow diagram notation is a closer representation of the system’s logic and avoids
the use of unnecessary states. Flow diagram notation is an effective way to
represent common code structures like for loops and if-then-else constructs.

Stateflow also provides clear, concise descriptions of complex system behavior
using finite state machine theory, flow diagram notations, and state-transition
diagrams. Stateflow brings system specification and design closer together. It
is easy to create designs, consider various scenarios, and iterate until the
Stateflow diagram models the desired behavior.

Examples of Stateflow Applications
A few of the types of applications that benefit from using the capabilities of
Stateflow are:

• Embedded systems

- Avionics (planes)

- Automotive (cars)

- Telecommunications (e.g., routing algorithms)

Overview

1-3

- Commercial (computer peripherals, appliances, etc.)

- Programmable logic controllers (PLCs) (process control)

- Industrial (machinery)

• Man-machine interface (MMI)

- Graphical user interface (GUI)

• Hybrid systems

- Air traffic control systems (digital signal processing (DSP) + Control +
MMI)

Stateflow Components
Stateflow consists of these primary components:

• Stateflow graphics editor (see Chapter 3, “Creating Charts”)

• Stateflow Explorer (see Chapter 6, “Exploring and Searching Charts”)

• Stateflow simulation code generator (see Chapter 9, “Building Targets”)

• Stateflow Debugger (see Chapter 10, “Debugging”)

Stateflow Coder is a separately available product and generates code for
nonsimulation targets. (See Chapter 9, “Building Targets” for information
relevant to Stateflow Coder.)

Stateflow Dynamic Checker supports run-time checking for conditions such as
cyclic behavior and data range violations. The Dynamic Checker is currently
available if you have a Stateflow license.

Design Approaches
Stateflow is used together with Simulink and optionally with the Real-Time
Workshop (RTW), all running on top of MATLAB. MATLAB provides access to
data, high-level programming, and visualization tools. The control behavior
that Stateflow models complements the algorithmic behavior modeled in
Simulink. Simulink supports development of continuous-time and
discrete-time dynamic systems in a graphical block diagram environment.
Stateflow diagrams are incorporated into Simulink models to enhance the new
event-driven capabilities in Simulink (such as conditionally executed
subsystems and event detection).

1 Introduction

1-4

You can design a model starting with a Stateflow (control) perspective and then
later build the Simulink model. You can also design a model starting from a
Simulink (algorithmic) perspective and then later add Stateflow diagrams. You
may have an existing Simulink model that would benefit by replacing Simulink
logic blocks with Stateflow diagrams. The approach you use determines how,
and in what sequence, you develop various parts of the model.

The collection of all Stateflow blocks in the Simulink model is a machine. When
using Simulink together with Stateflow for simulation, Stateflow generates an
S-function (MEX-file) for each Stateflow machine to support model simulation.
This generated code is a simulation target and is called the sfun target within
Stateflow.

Stateflow Coder generates integer or floating-point code based on the Stateflow
machine. Real-Time Workshop generates code from the Simulink portion of the
model and provides a framework for running generated Stateflow code in
real-time. The code generated by Stateflow Coder is seamlessly incorporated
into code generated by Real-Time Workshop. You may want to design a
solution that targets code generated from both products for a specific platform.
This generated code is specifically a RTW target and within Stateflow is called
the rtw target.

Using Stateflow and Stateflow Coder you can generate code exclusively for the
Stateflow machine portion of the Simulink model. This generated code is for
stand-alone (nonsimulation) targets. You uniquely name this target within
Stateflow.

In summary, the primary design approach options are:

• Use Stateflow together with Simulink for simulation.

• Use Stateflow, Stateflow Coder, Simulink, and Real-Time Workshop to
generate target code for the complete model.

• Use Stateflow and Stateflow Coder to generate target code for a machine.

Quick Start

1-5

Quick Start
This section provides you with a quick introduction to using Stateflow. In this
section, you will use Stateflow to create, run, and debug a model of a simple
power switch.

The Power Switch Model
The following figure shows a Stateflow diagram that represents the power
switch we intend to model.

Here is a sample of the completed Simulink model.

When you simulate this model, the generation of the input event from
Simulink, Switch, will toggle the activity of the states between Power_on and
Power_off.

1 Introduction

1-6

Creating a Simulink Model
Opening the Stateflow model window is the first step toward creating a
Simulink model with a Stateflow block. By default, an untitled Simulink model
with an untitled, empty Stateflow block is created for you when you open the
Stateflow model window. You can either start with the default empty model or
copy the untitled Stateflow block into any Simulink model to include a
Stateflow diagram in an existing Simulink model.

These steps describe how to create a Simulink model with a Stateflow block,
label the Stateflow block, and save the model:

1 Display the Stateflow model window.

At the MATLAB prompt enter stateflow.

MATLAB displays the Stateflow block library.

Quick Start

1-7

The library contains an untitled Stateflow block icon, an Examples block,
and a manual switch. Stateflow also displays an untitled Simulink model
window with an untitled Stateflow block.

2 Label the Stateflow block.

Label the Stateflow block in the new untitled model by clicking in the text
area and replacing the text “Untitled” with the text On_off.

1 Introduction

1-8

3 Save the model.

Choose Save As from the File menu of the Simulink model window. Enter a
model title.

You can also save the model by choosing Save or Save As from the Stateflow
graphics editor File menu. Saving the model either from Simulink or from
the graphics editor saves all contents of the Simulink model.

Quick Start

1-9

Creating a Stateflow Diagram
These steps describe how to create a simple Stateflow diagram using the
graphics editor:

1 Invoke the graphics editor.

Double-click on the Stateflow block in the Simulink model window to invoke
the graphics editor window.

2 Create states.

Click on the State button in the toolbar. Click in the drawing area to
place the state in the drawing area. Position the cursor over that state, click
the right mouse button, and drag to make a copy of the state. Release the
right mouse button to drop the state at that location.

1 Introduction

1-10

3 Label states.

Click on the ? character within each state to enter each state label. Label the
states with the titles Power_on and Power_off. Deselect the state to exit the
edit. To deselect a state, click anywhere outside the state or press the Esc
key. Your Stateflow diagram should look similar to this sample.

4 Create transitions.

Draw a transition starting from Power_on and ending at Power_off. Place
the cursor at a straight portion of the border of the Power_on state. Click the
border when the cursor changes to a crosshair. Without releasing the mouse
button, drag the mouse to a straight portion on the border of the Power_off
state. When the transition snaps to the border of the Power_off state,
release the mouse button. (The crosshair will not appear if you place the
cursor on a corner, since corners are used for resizing.)

Draw another transition starting from Power_off and ending on Power_on.
Your Stateflow diagram should look similar to this sample.

Quick Start

1-11

5 Label the transitions.

Click on the transition from Power_on to Power_off to select it. Click on the
? alongside the transition and enter the label Switch. Press the Escape key
to deselect the transition label and exit the edit.

Label the transition from Power_off to Power_on with the same text,
Switch. Your Stateflow diagram should look similar to this sample.

6 Add a default transition.

Click and release the mouse on the Default Transition button in the
toolbar. Drag the mouse to a straight portion on the border of the Power_off
state. Click and release the mouse when the arrowhead snaps to the border
of the Power_off state. Your Stateflow diagram should look similar to this
sample.

For More Information
For more information on creating Stateflow diagrams using the graphics editor
see Chapter 3, “Creating Charts.”

1 Introduction

1-12

Defining Input Events
Add and define input events within the Stateflow diagram:

1 Choose Explore from the graphics editor Tools menu to invoke the
Explorer.

2 Double-click on the machine name (same as the Simulink model name) in
the Object Hierarchy list.

3 Click on the On_off chart entry in the Object Hierarchy list.

4 Select Event from the Add menu.

5 Double-click the event icon in the Explorer entry for the event to display
the event’s property dialog.

6 Enter Switch in the Name field of the Event properties dialog box.

7 Select Input from Simulink as the Scope value.

8 Select Rising Edge as the Trigger type.

9 Click on the OK button to apply the changes and close the window.

10 Choose Close from the Explorer File menu to close the Explorer.

Defining the Stateflow Interface
Make connections in the Simulink model between other blocks and the
Stateflow block:

1 Enter simulink in the MATLAB command window to invoke Simulink.

2 Add a Sine Wave block (located in the Simulink Sources block library) and
connect it to the input trigger port of the Stateflow block.

Quick Start

1-13

3 Add a Scope block (located in the Simulink Sinks block library) and connect
it to the Sine Wave block output as well. Your model should look similar to
this.

Defining Simulink Parameters

1 Double-click on the Sine Wave block and edit the parameters as shown in
this example dialog box.

Click on the OK button to apply the changes and close the dialog box.

1 Introduction

1-14

2 Choose Parameters from the Simulation menu of the Simulink model
window and edit the values to match the values in this dialog box.

For More Information
See Chapter 5, “Defining Stateflow Interfaces.”

Parsing the Stateflow Diagram
Parsing the Stateflow diagram ensures that the notations you have specified
are valid and correct. To parse the Stateflow diagram, choose Parse Diagram
from the Tools menu of the graphics editor. Informational messages are
displayed in the MATLAB command window. Any error messages are
displayed in red. If no red error messages appear, the parse operation is
successful and the text Done is displayed.

For More Information
See “How Stateflow Builds Targets” on page 9-3.

Quick Start

1-15

Running a Simulation

Note Running a simulation may require setting up the tools used to build
Stateflow targets. See “Setting Up Target Build Tools” on page 9-5 for more
information.

These steps show how to run a simulation:

1 Ensure that the Stateflow diagram and the Scope block are open.

Double-click on the On_offStateflow block to display the Stateflow diagram.
Double-click on the Scope block to display the output of the Sine wave.

2 Select Open Simulation Target from the graphics editor Tools menu.

The Simulation Target Builder dialog box appears.

3 Select Coder Options on the Simulation Target Builder dialog box.

The Simulation Coder Options dialog box appears.

4 Ensure that the check box to Enable Debugging/Animation is checked.
Click on the OK button to apply the change. Close the Simulation Coder
Options and the Simulation Target Builder dialog boxes.

5 Select Debug from the graphics editor Tools menu. Ensure that the
Enabled radio button under Animation is checked to enable Stateflow
diagram animation. Click on the Close button to apply the change and close
the window.

6 Choose Start from the graphics editor Simulation menu to start a
simulation of the model.

By default the S-function is the simulation target for any Stateflow blocks.
Stateflow displays code generation status messages in the MATLAB
command window. Before starting the simulation, Stateflow temporarily
sets the model to read-only to prevent accidental modification while the
simulation is running.

1 Introduction

1-16

The input from the Sine block is defined as the Input from Simulink event
Switch. When the simulation starts the Stateflow diagram is animated
reflecting the state changes triggered by the input sine wave. Each input
event of Switch toggles the model between the Power_off and Power_on
state.

7 Choose Stop from the graphics editor Simulation menu to stop a
simulation. Once the simulation stops, Stateflow resets the model to
writable.

Note Before generating code, Stateflow creates a directory called sfprj in
the current directory if the directory does not already exist. Stateflow uses the
sfprj directory during code generation to store information required for
incremental code generation.

Debugging
The Stateflow Debugger supports functions like single stepping, animating,
and running up to a designated breakpoint and then stopping.

These steps show how to step through the simulation using the Debugger:

1 Display the Debugger by choosing Debug from the Tools menu of the
graphics editor.

2 Click on the Breakpoints: Chart Entry check box to specify you want the
Debugger to stop the simulation execution when the chart is entered.

Quick Start

1-17

3 Click on the Start button to start the simulation. Informational and error
messages related to the S-function code generation for Stateflow blocks are
displayed in the MATLAB command window. When the target is built, the
graphics editor becomes read-only (frozen) and the Debugger window will be
updated and look similar to this.

4 Click on the Step button to proceed one step at a time through the
simulation. The Debugger window displays the following information:

•Where the simulation is stopped

•What is executing

•The current event

•The simulation time

•The current code coverage percentage

Watch the graphics editor window as you click on the Step button to see each
transition and state animated when it is executing. After both Power_off
and Power_on have become active by stepping through the simulation, the
code coverage indicates 100%.

5 Choose Stop from the graphics editor Simulation menu to stop a
simulation. Once the simulation stops, the model becomes editable.

1 Introduction

1-18

6 Click on the Close button in the Debugger window.

7 Choose Close from the File menu in the Simulink model window.

For More Information
See Chapter 10, “Debugging” for more information beyond the debugging topics
in this section.

Generating Code
When you simulate a Simulink model containing Stateflow charts, Stateflow
generates a Simulink S-function (sfun target) that enables Simulink to
simulate the Stateflow blocks. The sfun target can be used only with Simulink.
If you have the Stateflow Coder, you can generate stand-alone code suitable for
a particular processor. See Chapter 9, “Building Targets” for more information
on code generation.

2

How Stateflow Works

Finite State Machine Concepts 2-2
What Is a Finite State Machine? 2-2
FSM Representations 2-2
Stateflow Representations 2-2
Notations . 2-3
Semantics . 2-3
References . 2-3

Anatomy of a Model and Machine 2-4
The Simulink Model and Stateflow Machine 2-4
Defining Stateflow Interfaces 2-6
Stateflow Diagram Objects 2-7

Exploring a Real-World Stateflow Application 2-18
Analysis and Physics 2-18
Control Logic . 2-22
Running the Model 2-24

2 How Stateflow Works

2-2

Finite State Machine Concepts

What Is a Finite State Machine?
A finite state machine (FSM) is a representation of an event-driven (reactive)
system. In an event-driven system, the system transitions from one state
(mode) to another prescribed state, provided that the condition defining the
change is true.

For example, you can use a state machine to represent a car’s automatic
transmission. The transmission has a number of operating states: park,
neutral, drive, reverse, and so on. The system transitions from one state to
another when a driver shifts the stick from one position to another, for
example, from park to neutral.

FSM Representations
Traditionally, designers used truth tables to represent relationships among the
inputs, outputs, and states of an FSM. The resulting table describes the logic
necessary to control the behavior of the system under study. Another approach
to designing event-driven systems is to model the behavior of the system by
describing it in terms of transitions among states. The state that is active is
determined based on the occurrence of events under certain conditions.
State-transition diagrams (STDs) and bubble diagrams are graphical
representations based on this approach.

Stateflow Representations
Stateflow uses a variant of the finite state machine notation established by
Harel [1]. Using Stateflow, you create Stateflow diagrams. A Stateflow
diagram is a graphical representation of a finite state machine where states
and transitions form the basic building blocks of the system. You can also
represent flow (stateless) diagrams using Stateflow. Stateflow provides a block
that you include in a Simulink model. The collection of Stateflow blocks in a
Simulink model is the Stateflow machine.

Additionally, Stateflow enables the representation of hierarchy, parallelism,
and history. Hierarchy enables you to organize complex systems by defining a
parent/offspring object structure. For example, you can organize states within
other higher-level states. A system with parallelism can have two or more
orthogonal states active at the same time. History provides the means to

Finite State Machine Concepts

2-3

specify the destination state of a transition based on historical information.
These characteristics enhance the usefulness of this approach and go beyond
what STDs and bubble diagrams provide.

Notations
A notation defines a set of objects and the rules that govern the relationships
between those objects. Stateflow notation provides a common language to
communicate the design information conveyed by a Stateflow diagram.

Stateflow notation consists of:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

See Chapter 7, “Notations,” for detailed information on Stateflow notations.

Semantics
Semantics describe how the notation is interpreted and implemented. A
completed Stateflow diagram illustrates how the system will behave. A
Stateflow diagram contains actions associated with transitions and states. The
semantics describe in what sequence these actions take place during Stateflow
diagram execution.

Knowledge of the semantics is important to make sound Stateflow diagram
design decisions for code generation. Different use of notations results in
different ordering of simulation and generated code execution.

The default semantics provided with the product are described in Chapter 8,
“Semantics.”

References
For more information on finite state machine theory, consult these sources:

[1] Harel, David, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming 8, 1987, pages 231-274.

[2] Hatley, Derek J. and Imtiaz A. Pirbhai, Strategies for Real-Time System
Specification, Dorset House Publishing Co., Inc., NY, 1988.

2 How Stateflow Works

2-4

Anatomy of a Model and Machine

The Simulink Model and Stateflow Machine
The Stateflow machine is the collection of Stateflow blocks in a Simulink
model. The Simulink model and Stateflow machine work seamlessly together.
Running a simulation automatically executes both the Simulink and Stateflow
portions of the model.

A Simulink model can consist of combinations of Simulink blocks, toolbox
blocks, and Stateflow blocks (Stateflow diagrams). In Stateflow, the chart
(Stateflow diagram) consists of a set of graphical (states, transitions,
connective junctions, and history junctions) and nongraphical (event, data, and
target) objects.

There is a one-to-one correspondence between the Simulink model and the
Stateflow machine. Each Stateflow block in the Simulink model is represented
in Stateflow by a single chart (Stateflow diagram). Each Stateflow machine has
its own object hierarchy. The Stateflow machine is the highest level in the
Stateflow hierarchy. The object hierarchy beneath the Stateflow machine
consists of combinations of the graphical and nongraphical objects. The data
dictionary is the repository for all Stateflow objects.

Anatomy of a Model and Machine

2-5

2 How Stateflow Works

2-6

Stateflow scoping rules dictate where the types of nongraphical objects can
exist in the hierarchy. For example, data and events can be parented by the
machine, the chart (Stateflow diagram), or by a state. Targets can only be
parented by the machine. Once a parent is chosen, that object is known in the
hierarchy from the parent downwards (including the parent’s offspring). For
example, a data object parented by the machine is accessible by that machine,
by any charts within that machine, and by any states within that machine. The
hierarchy of the graphical objects is easily and automatically handled for you
by the graphics editor. You manage the hierarchy of nongraphical objects
through the Explorer or the graphics editor Add menu.

Defining Stateflow Interfaces
Each Stateflow block corresponds to a single Stateflow diagram. The Stateflow
block interfaces to its Simulink model. The Stateflow block may interface to
code sources external to the Simulink model (data, events, custom code).

Stateflow diagrams are event driven. Events can be local to the Stateflow block
or can be propagated to and from Simulink and code sources external to
Simulink. Data can be local to the Stateflow block or can be shared with and
passed to the Simulink model and to code sources external to the Simulink
model.

You must define the interface to each Stateflow block. Defining the interface
for a Stateflow block can involve some or all of these tasks:

• Defining the Stateflow block update method

• Defining Output to Simulink events

• Adding and defining nonlocal events and nonlocal data within the Stateflow
diagram

• Defining relationships with any external sources

Anatomy of a Model and Machine

2-7

In this example, the Simulink model titled sf_intro_example consists of a
Simulink Sine Wave source block, a Simulink Scope sink block, and a single
Stateflow block, titled On_off.

See “Defining Input Events” on page 4-7 and Chapter 5, “Defining Stateflow
Interfaces,” for more information.

Stateflow Diagram Objects
This sample Stateflow diagram highlights some key graphical components.
The sections that follow describe these graphical components as well as some
nongraphical objects and related concepts in greater detail.

Simulink model title

Stateflow block (Stateflow diagram) title

2 How Stateflow Works

2-8

Figure 2-1: Graphical Components

States
A state describes a mode of an event-driven system. The activity or inactivity
of the states dynamically changes based on events and conditions.

Every state has a parent. In a Stateflow diagram consisting of a single state,
that state’s parent is the Stateflow diagram itself (also called the Stateflow
diagram root). You can place states within other higher-level states. In the
figure, StateA1 is a child in the hierarchy to StateA.

A state also has history. History provides an efficient means of basing future
activity on past activity.

Transition label

Default transition
Transition

Exclusive (OR) state
History

Parallel (AND) state

junction
(decision point)

Condition

Transition
action

Condition
action

Connective junction

Anatomy of a Model and Machine

2-9

States have labels that can specify actions executed in a sequence based upon
action type. The action types are entry, during, exit, and on.

In an automatic transmission example, the transmission can either be in
neutral or engaged in a gear. Two states of the transmission system are
neutral and engaged.

Stateflow provides two types of states: parallel (AND) and exclusive (OR)
states. You represent parallelism with AND (parallel) states. The transmission
example shows exclusive (OR) states. Exclusive (OR) states are used to
describe modes that are mutually exclusive. The system is either in the
neutral state or the engaged state at any one time.

Transitions
A transition is a graphical object that, in most cases, links one object to
another. One end of a transition is attached to a source object and the other end
to a destination object. The source is where the transition begins and the
destination is where the transition ends. A transition label describes the
circumstances under which the system moves from one state to another. It is
always the occurrence of some event that causes a transition to take place. In
the figure, the transition from StateA1 to StateA2 is labeled with the event
transitionA1_A2 that triggers the transition to occur.

2 How Stateflow Works

2-10

Consider again the automatic transmission system. clutch_engaged is the
event required to trigger the transition from neutral to engaged.

Events
Events drive the Stateflow diagram execution. Events are nongraphical objects
and are thus not represented directly in the figure. All events that affect the
Stateflow diagram must be defined. The occurrence of an event causes the
status of the states in the Stateflow diagram to be evaluated. The broadcast of
an event can trigger a transition to occur or can trigger an action to be
executed. Events are broadcast in a top-down manner starting from the event’s
parent in the hierarchy.

Events are created and modified using the Stateflow Explorer. Events can be
created at any level in the hierarchy. Events have properties such as a scope.
The scope defines whether the event is:

• Local to the Stateflow diagram

• An input to the Stateflow diagram from its Simulink model

• An output from the Stateflow diagram to its Simulink model

• Exported to a (code) destination external to the Stateflow diagram and
Simulink model

• Imported from a code source external to the Stateflow diagram and Simulink
model

Anatomy of a Model and Machine

2-11

Data
Data objects are used to store numerical values for reference in the Stateflow
diagram. Data objects are nongraphical objects and are thus not represented
directly in the figure.

Data objects are created and modified using the Stateflow Explorer. Data
objects can be created at any level in the hierarchy. Data objects have
properties such as a scope. The scope defines whether the data object is:

• Local to the Stateflow diagram

• An input to the Stateflow diagram from its Simulink model

• An output from the Stateflow diagram to its Simulink model

• Non-persistent temporary data

• Defined in the MATLAB workspace

• A constant

• Exported to a (code) destination external to the Stateflow diagram and
Simulink model

• Imported from a code source external to the Stateflow diagram and Simulink
model

Hierarchy
Hierarchy enables you to organize complex systems by defining a parent and
offspring object structure. A hierarchical design usually reduces the number of
transitions and produces neat, manageable diagrams. Stateflow supports a
hierarchical organization of both charts and states. Charts can exist within
charts. A chart that exists in another chart is known as a subchart.

2 How Stateflow Works

2-12

Similarly, states can exist within other states. Stateflow represents state
hierarchy with superstates and substates. For example, this Stateflow diagram
has a superstate that contains two substates.

The engaged superstate contains the first and second substates. The engaged
superstate is the parent in the hierarchy to the states first and second. When
the event clutch_engaged occurs, the system transitions out of the neutral
state to the engaged superstate. Transitions within the engaged superstate are
intentionally omitted from this example for simplicity.

A transition out of a higher level, or superstate, also implies transitions out of
any active substates of the superstate. Transitions can cross superstate
boundaries to specify a substate destination. If a substate is active its parent
superstate is also active.

Conditions
A condition is a Boolean expression specifying that a transition occurs, given
that the specified expression is true. In the component summary Stateflow
diagram, [condition1] represents a Boolean expression that must be true for
the transition to occur.

Anatomy of a Model and Machine

2-13

In the automatic transmission system, the transition from first to second
occurs if the Boolean condition [speed > threshold] is true.

History Junction
History provides the means to specify the destination substate of a transition
based on historical information. If a superstate with exclusive (OR)
decomposition has a history junction, the transition to the destination substate
is defined to be the substate that was most recently visited. A history junction
applies to the level of the hierarchy in which it appears. The history junction
overrides any default transitions. In the component summary Stateflow
diagram, the history junction in StateA1 indicates that when a transition to
StateA1 occurs, the substate that becomes active (StateA1a, StateA1b, or
StateA1c) is based on which of those substates was most recently active.

In the automatic transmission system, history indicates that when
clutch_engaged causes a transition from neutral to the engaged superstate,
the substate that becomes active, either first or second, is based on which of
those substates was most recently active.

2 How Stateflow Works

2-14

Actions
Actions take place as part of Stateflow diagram execution. The action can be
executed either as part of a transition from one state to another or based on the
activity status of a state. In the figure, the transition segment from StateA1b
to the connective junction is labeled with a condition action (func1()) and a
transition action (func2()). The semantics of how and why actions take place
are discussed throughout the examples in Chapter 8, “Semantics.”

Transitions can have condition actions and transition actions, as shown in this
example.

Condition Transition
actionaction

Anatomy of a Model and Machine

2-15

States can have entry, during, exit, and on event_name actions. For example,

The action language defines the types of actions you can specify and their
associated notations. An action can be a function call, an event to be broadcast,
a variable to be assigned a value, etc.

Stateflow supports both Mealy and Moore finite state machine modeling
paradigms. In the Mealy model, actions are associated with transitions,
whereas in the Moore model they are associated with states. Stateflow
supports state actions, transition actions, and condition actions. For more
information, see the section titled “What Is an Action Language?” on page 7-37.

Parallelism
A system with parallelism has two or more states that can be active at the same
time. The activity of each parallel state is essentially independent of other
states. In the figure, StateA2a and StateA2b are parallel (AND) states.
StateA2 has parallel (AND) state decomposition.

2 How Stateflow Works

2-16

For example, this Stateflow diagram has parallel superstate decomposition.

The transmission, heating, and light systems are parallel subsystems in a car.
They exist in parallel and are physically independent of each other. There are
many other parallel components in a car, such as the braking and windshield
wiper subsystems.

You represent parallelism in Stateflow by specifying parallel (AND) state
decomposition. Parallel (AND) states are displayed as dashed rectangles.

Default Transitions
Default transitions specify which exclusive (OR) state is to be active when there
is ambiguity between two or more exclusive (OR) states at the same level in the
hierarchy. In the figure, when StateA is active, by default StateA1 is also
active. Without the default transition to StateA1, there is ambiguity in
whether StateA1 or StateA2 should be active.

Anatomy of a Model and Machine

2-17

In the Lights subsystem, the default transition to the Lights.Off substate
indicates that when the Lights superstate becomes active, the Off substate
becomes active by default.

Default transitions specify which exclusive (OR) substate in a superstate the
system enters by default, in the absence of any information. History junctions
override default transition paths in superstates with exclusive (OR)
decomposition.

Connective Junctions
Connective junctions are decision points in the system. A connective junction is
a graphical object that simplifies Stateflow diagram representations and
facilitates generation of efficient code. Connective junctions provide alternative
ways to represent desired system behavior. In the figure, the connective
junction is used as a decision point for two transition segments that complete
at StateA1c.

This example shows how connective junctions (displayed as small circles) are
used to represent the flow of an if code structure.

Default transition

if [c1]{
a1
if [c2]{

a2
else if [c3]{
a3

}

}

}

2 How Stateflow Works

2-18

Exploring a Real-World Stateflow Application
The modeling of a fault tolerant fuel control system demonstrates how
Simulink and Stateflow may be used to efficiently model hybrid systems
containing both continuous dynamics and complex logical behavior. Elements
in the model containing time domain based dynamic behavior are modeled in
Simulink, while changes in control configuration are implemented in
Stateflow.

The model described represents a fuel control system for a gasoline engine. The
system is highly robust in that individual sensor failures are detected and the
control system is dynamically reconfigured for uninterrupted operation. This
section describes how Stateflow is used to implement the supervisory logic
control system dealing with the sensor failures.

Analysis and Physics
Physical and empirical relationships form the basis for the throttle and intake
manifold dynamics of this model. The mass flow rate of air pumped from the
intake manifold, divided by the fuel rate, which is injected at the valves, gives
the air-fuel ratio. The ideal, or stoichiometric mixture ratio provides a good
compromise between power, fuel economy, and emissions. A target ratio of 14.6
is assumed in this system. Typically, a sensor determines the amount of
residual oxygen present in the exhaust gas (EGO). This gives a good indication
of the mixture ratio and provides a feedback measurement for closed-loop
control. If the sensor indicates a high oxygen level, the control law increases
the fuel rate. When the sensor detects a fuel-rich mixture, corresponding to a
very low level of residual oxygen, the controller decreases the fuel rate.

Exploring a Real-World Stateflow Application

2-19

The following figure shows the top level of the Simulink model (fuelsys.mdl).
The model is modularized into a fuel rate controller and a subsystem to
simulate the engine gas dynamics.

The fuel rate controller uses signals from the system’s sensors to determine the
fuel rate which gives a stoichiometric mixture. The fuel rate combines with the
actual air flow in the engine gas dynamics model to determine the resulting
mixture ratio as sensed at the exhaust. The user can selectively disable each of
the four sensors (throttle angle, speed, EGO and manifold absolute pressure
[MAP]), to simulate failures. Simulink accomplishes this with Manual Switch
blocks. The user can toggle the position of a switch by double-clicking its icon
prior to, or during, a simulation. Similarly, the user can induce the failure
condition of a high engine speed by toggling the switch on the far left. A
Repeating Table block provides the throttle angle input and periodically
repeats the sequence of data specified in the mask

The controller uses the sensor input and feedback signals to adjust the fuel rate
to give a stoichiometric ratio. The model uses four subsystems to implement

2 How Stateflow Works

2-20

this strategy: control logic, sensor correction, airflow calculation, and fuel
calculation. Under normal operation, the model estimates the airflow rate and
multiplies the estimate by the reciprocal of the desired ratio to give the fuel
rate. Feedback from the oxygen sensor provides a closed-loop adjustment of the
rate estimation in order to maintain the ideal mixture ratio.

A detailed explanation of the algorithmic (Simulink) part of the fault tolerant
control system is given in Using Simulink and Stateflow in Automotive
Applications, a Simulink-Stateflow Technical Examples booklet published by
The MathWorks. This section concentrates on the supervisory logic part of the
system that is implemented in Stateflow, but the following points are crucial to
the interaction between Simulink and Stateflow:

• The supervisory logic monitors the readings from the sensors as data inputs
into Stateflow.

• The logic determines from these readings which sensors have failed and
outputs a failure state boolean array as fail_state.

• Given the current failure state, the logic determines in which fueling mode
the engine should be run.

Exploring a Real-World Stateflow Application

2-21

The fueling mode can be either a:

• Low emissions mode, the normal mode of operation where no sensors have
failed

• Rich mixture mode, used when a sensor has failed to ensure smooth
running of the engine

• Shutdown mode, where more than one sensor has failed rendering the
engine inoperable

The fueling mode and failure state are output from the Stateflow as fuel_mode
and fail_state respectively into the algorithmic part of the model where they
determine the fueling calculations.

2 How Stateflow Works

2-22

Control Logic
The single Stateflow chart that implements the entire control logic is shown
below.

The chart consists of six parallel states (denoted by dash-dotted boundaries)
that represent concurrent modes of operation.

The four parallel states at the top of the diagram correspond to the four
individual sensors. Each state has sub-modes or sub-states that represent the
status of that particular sensor, i.e., whether it has failed or not. These
sub-states are mutually exclusive: if the throttle sensor has failed then it is in

Exploring a Real-World Stateflow Application

2-23

the throt_fail state. Transitions determine how states can change and can be
guarded by conditions. For example, the throt_norm state can change to the
throt_fail state when the measurement from the throttle sensor exceeds
max_throt or is below min_throt.

The remaining two parallel states at the bottom consider the status of the four
sensors simultaneously and determine the overall system operating mode. The
Sens_Failure_Counter superstate acts as a store for the resultant number of
sensor failures. This state is polled by the Fueling_Mode state that determines
the fueling mode of the engine. If a single sensor fails, operation continues but
the air/fuel mixture is richer to allow smoother running at the cost of higher
emissions. If more than one sensor has failed, the engine shuts down as a safety
measure, since the air/fuel ratio cannot be controlled reliably.

Although it is possible to run Stateflow charts asynchronously by injecting
events from Simulink when required, the fueling control logic is polled
synchronously at a rate of 100 Hz. Consequently, the sensors are checked every
1/100 second to see if they have changed status and the fueling mode adjusted
accordingly.

2 How Stateflow Works

2-24

Running the Model
On starting the simulation, and assuming no sensors have failed, the Stateflow
diagram initializes in the Warmup mode in which the oxygen sensor is deemed
to be in a warmup phase. If Stateflow is placed into animation mode, the
current state of the system can clearly be seen highlighted in red on the
Stateflow diagram, shown below.

After a given time period, defined by o2_t_thresh, the sensor is deemed to
have reached operating temperature and the system settles into the normal
mode of operation, shown above, in which the fueling mode is set to NORMAL.

As the simulation progresses, the chart is woken synchronously every 0.01
second. The events and conditions that guard the transitions are evaluated and
if a transition is valid, it is taken. The transition itself can be seen animated on
the Stateflow diagram.

To illustrate this, we can provoke a transition by switching one of the sensors
to a failure value on the top level Simulink model. The system detects throttle
and pressure sensor failures when their measured values fall outside their

Exploring a Real-World Stateflow Application

2-25

nominal ranges. A manifold vacuum in the absence of a speed signal is deemed
to indicate a speed sensor failure. The oxygen sensor also has a nominal range
for failure conditions but, because zero is both the minimum signal level and
the bottom of the range, failure can be detected only when it exceeds the upper
limit.

Switching the Simulink switch for the manifold air pressure (MAP) sensor
causes a value of zero to be read by the fuel rate controller. When the chart is
next woken up, the transition from the press_norm state becomes valid as the
reading is now out of bounds and the transition is taken to the press_fail
state. Regardless of which sensor fails, the model always generates the directed
event broadcast Sens_Failure_Counter.INC. (thus making the triggering of
the universal sensor failure logic independent of the sensor). This event causes
a second transition from FL0 to FL1 to be taken in the Sens_Failure_Counter
superstate. Note that both transitions can be seen animated on the Stateflow
diagram below.

With the Sens_Failure_Counter state showing one failure, the condition that
guards the transition from the Low_Emissions.Normal state to the
Rich_Mixture.Single_Failure state is now valid and is therefore taken. As

2 How Stateflow Works

2-26

the Fuel_Disabled state is entered, the, output fuel_mode is set to RICH, as
shown below.

A second sensor failure causes the Sens_Failure_Counter to enter the
Multifail state, broadcasting an implicit event which immediately triggers
the transition from the Running state to the Shutdown state. On entering the
Fuel_Disabled superstate the fueling_mode is DISABLED.

Exploring a Real-World Stateflow Application

2-27

Implicit Event Broadcasts
The fueling example above shows how the control logic can be represented in a
clear and intuitive manner. The Stateflow diagram (or chart) has been
developed in a way that allows the user, or a reviewer, to easily understand
how the logic is structured. Implicit event broadcasts (such as
enter(multifail)) and implicit conditions (in(FL0)) make the diagram easy
to read and the generated code more efficient.

Modifying the Code
To illustrate how easy it is to modify the algorithm, consider the Warmup fueling
state in the fuel control logic. At the moment the fueling is set to the low
emissions mode.

It may be decided that when the oxygen sensor is warming up, changing the
warmup fueling mode to a rich mixture would be beneficial. In the Stateflow
chart this can easily be achieved by changing the parent of the Warmup state to
the Rich_Mixture state.

2 How Stateflow Works

2-28

Once made, the alteration is obvious to all who need to inspect or maintain the
code.

The results of changing the algorithm can be seen in the graphs of air/fuel
mixture ratio for the first few seconds of engine operation after startup.

The left graph shows the air fuel ratio for the unaltered system whereas the
right graph for the altered system shows how the air/fuel ratio stays low in the
warming up phase indicating a rich mixture.

3

Creating Charts

Creating a Chart 3-2

Using the Stateflow Editor 3-5

Creating States 3-14

Creating Boxes 3-21

Creating Transitions 3-22

Creating Junctions 3-27

Specifying Chart Properties 3-30

Waking Up Charts 3-33

Working with Graphical Functions 3-34

Working with Subcharts 3-42

Working with Supertransitions 3-48

Creating Chart Libraries 3-54

Stateflow Printing Options 3-55

3 Creating Charts

3-2

Creating a Chart
To create a Stateflow chart:

1 Create a new model with an empty chart block or copy an empty chart from
the Stateflow block library into your model.

To create a new model with an empty chart, enter sfnew or stateflow at the
MATLAB command prompt. The first command creates a new model.

Chart block

Creating a Chart

3-3

The second command also displays the Stateflow block library in case you
want to create multiple charts in your model.

For information on creating your own chart libraries, see “Creating Chart
Libraries” on page 3-54.

2 Open the chart by double-clicking on the chart block.

Stateflow opens the empty chart in a Stateflow editor window.

3 Creating Charts

3-4

3 Use the Stateflow editor to draw and connect states representing the desired
state machine or a component of the desired state machine.

See “Using the Stateflow Editor” on page 3-5 for more information.

4 Specify a wake up method for the chart.

See “Specifying Chart Properties” on page 3-30.

5 Interface the chart to other charts and blocks in your Stateflow model, using
events and data.

See Chapter 4, “Defining Events and Data” and Chapter 5, “Defining
Stateflow Interfaces” for more information.

6 Rename and save the model chart by selecting Save Model As from the
Stateflow editor menu or Save As from the Simulink menu.

Using the Stateflow Editor

3-5

Using the Stateflow Editor
The Stateflow Editor consists of a window for displaying a state diagram and a
set of commands that allow you to draw, zoom, modify, print, and save a state
diagram displayed in the window.

The editor window includes the following elements:

• Menu bar

Most editor commands are available from the menu bar.

• Toolbar

Contains buttons for cut, copy, paste, and other commonly used editor
commands. The toolbar also contains buttons for navigating a chart’s
subchart hierarchy (see “Navigating Subcharts” on page 3-46).

• Shortcut menus

These menus pop up from the drawing area when you press the right mouse
button. These menus display commands that apply only to the currently

Drawing area

Zoom control

Menu bar

Status bar

Toolbar

Object palette

Shortcut menu

3 Creating Charts

3-6

selected object or to the chart as a whole, if no object is selected. See
“Displaying Shortcut Menus” on page 3-6 for more information.

• Object Palette

Displays a set of tools for drawing states, transitions, and other state chart
objects. See “Drawing Objects” on page 3-6 for more information.

• Drawing area

Displays an editable copy of a state diagram.

• Titlebar

Displays the name of the state diagram being edited followed by an asterisk
if the diagram needs to be saved.

• Zoom control

See “Exploring Objects in the Editor Window” on page 3-12 for information
on using the zoom control.

• Status bar

Displays tooltips and status information.

Displaying Shortcut Menus
Every object in a state diagram has a shortcut menu. To display the shortcut
menu, move the cursor over the object and press the right mouse button.
Stateflow then pops up a menu of operations that apply to the object. You can
similarly display a shortcut menu for the chart as a whole. To display the chart
shortcut menu, move the cursor to an unoccupied location in the diagram and
press the right mouse button.

Drawing Objects
A state diagram comprises seven types of objects: states, boxes, functions,
transitions, default transitions, history junctions, and connective junctions.
Stateflow provides tools for creating instances of each of these types of objects.
The Transition tool, used to draw transitions, is available by default. You select

Using the Stateflow Editor

3-7

and deselect the other tools by clicking their icons in the Stateflow editor’s
object palette.

You use the tools by clicking and dragging the cursor in the editor’s drawing
area. For more information, see the following topics:

• “Creating States” on page 3-14

• “Creating Boxes” on page 3-21

• “Creating a Graphical Function” on page 3-34

• “Creating Transitions” on page 3-22

• “Creating Junctions” on page 3-27

Specifying Object Styles
An object’s style consists of its color and the size of its label font. The Stateflow
Colors & Fonts dialog allows you to specify a color scheme for a chart as a
whole or colors and label fonts for various types of objects in a chart. To display
the dialog, select Style... from the Stateflow editor’s Edit menu. Stateflow
displays the Colors & Fonts dialog. To specify the label font size of a particular
object, select the object and choose the size from the Set Font Size submenu of
the editor’s Edit menu.

State Tool

History Junction Tool

Default Transition Tool

Connective Junction Tool

3 Creating Charts

3-8

Colors & Fonts Dialog
The Colors & Fonts Dialog allows you to specify colors and label fonts for
items in a chart or for the chart as a whole.

The drawing area of the dialog displays examples of the types of objects whose
colors and font labels you can specify. The examples use the colors and label
fonts specified by the current color scheme for the chart. To choose another
color scheme, select the scheme from the dialog’s Schemes menu. The dialog
displays the selected color scheme. Choose Apply to apply the selected scheme
to the chart or Ok to apply the scheme and dismiss the dialog.

To make the selected scheme the default scheme for all Stateflow charts, select
Make this the ‘Default’ scheme from the dialog’s Options menu.

To modify the current scheme, position the cursor over the example of the type
of object whose color or label font you want to change. Then click the left mouse
button to change the object’s color or the right mouse button to change the

Using the Stateflow Editor

3-9

object’s font. If you click the left mouse button, Stateflow displays a color
chooser dialog.

Use the dialog to select a new color for the selected object type.

If the selected object is a label and you click the right mouse button, Stateflow
displays a font selection dialog.

Use the font selector to choose a new font for the selected label.

To save changes to the default color scheme, select Save defaults to disk from
the Colors & Fonts dialog’s Options menu.

3 Creating Charts

3-10

Note Choosing Save defaults to disk has no effect if the modified scheme is
not the default scheme.

Selecting and Deselecting Objects
Once an object is in the drawing area, you need to select it to make any changes
or additions to that object. To select an object, click on it. When an object is
selected, it is highlighted in the color set as the selection color (blue by default;
see “Specifying Object Styles” on page 3-7 for more information).

To select multiple objects, click the left mouse button and drag the selection
rubberband so that the rubberband box encompasses or touches the objects you
want to select. Once all objects are within the rubberband, release the left
mouse button. All objects or portions of objects within the rubberband are
selected.

Simultaneously pressing the Shift key and clicking on an object either adds
that object to the selection list if it was deselected or deselects the object if it is
on the selection list. This is useful to select objects within a state without
selecting the state itself.

To select all objects in the Stateflow diagram, choose Select All from the Edit
menu or the right mouse button shortcut menu.

Simultaneously, pressing the Shift key and doing a rubberband selection
selects objects touched by the rubberband if they are deselected and deselects
objects touched by the rubberband if they are selected.

Pressing the Escape key deselects all selected objects. Pressing the Escape key
again displays the parent of the current chart.

Cutting and Pasting Objects
You can cut one or more objects from the drawing area or cut and then paste
the object(s) as many times as you like. You can cut and paste objects from one
Stateflow diagram to another. The Stateflow clipboard contains the most
recently cut selection list of objects. The object(s) are pasted in the drawing
area location closest to the current mouse location.

Using the Stateflow Editor

3-11

To cut an object, select the object and choose Cut from either:

• The Edit menu on the main window

• The right mouse button shortcut menu

Pressing the Ctrl and X keys simultaneously is the keyboard equivalent to the
Cut menu item.

To paste the most recently cut selection list of objects, choose Paste from either:

• The Edit menu on the main window

• The right mouse button shortcut menu

Pressing the Ctrl and V keys simultaneously is the keyboard equivalent to the
Paste menu item.

Copying Objects
To copy and paste an object in the drawing area, select the object(s), click and
hold the right mouse button down, and drag to the desired location in the
drawing area. This operation also updates the Stateflow clipboard.

Alternatively, to copy from one Stateflow diagram to another, choose the Copy
and then Paste menu items from either:

• The Edit menu on the Stateflow graphics editor window

• Any right mouse button shortcut menu

Pressing the Ctrl and C keys simultaneously is the keyboard equivalent to the
Copy menu item. States that contain other states (superstates) can be grouped
together.

Editing Object Labels
Some Stateflow objects (e.g., states and transitions) have labels. To change
these labels, place the cursor anywhere in the label and click. The cursor
changes to an I-beam. You can then edit the text.

3 Creating Charts

3-12

Changing a Label‘s Font Size
The shortcut menus allows you to change a label’s font size:

1 Select the state(s) whose label font size you want to change.

2 Click the mouse’s right button to display the shortcut menu.

3 Place the cursor over the Font Size menu item.

A menu of font sizes appears.

4 Select the desired font size from the menu.

Stateflow changes the font size of all labels on all selected states to the
selected size.

Exploring Objects in the Editor Window
To view or modify events and data defined by any state visible in the Stateflow
editor window (see Chapter 4, “Defining Events and Data”), position the editor
cursor over the state, display the state’s context menu (by pressing the right
mouse button), and select Explore from the context menu. Stateflow opens the
Stateflow Explorer (if not already open) and expands its object hierarchy view
(see “Explorer Main Window” on page 6-3) to show any events or data defined
by the state.

To view events and data defined by a transition or junction’s parent state,
select Explore from the transition or junction’s context menu.

Zooming a Diagram
You can magnify or shrink a diagram, using the following zoom controls:

• Zoom Factor Selector. Selects a zoom factor (see “Using the Zoom Factor
Selector”).

• Zoom In button. Zooms in by the current zoom factor.

• Zoom Out button. Zooms out by the current zoom factor.

Using the Stateflow Editor

3-13

Using the Zoom Factor Selector
The Zoom Factor Selector allows you to specify the zoom factor by:

• Choosing a value from a menu.

Click on the selector to display the menu.

• Double-clicking on the Zoom Factor Selector selects the zoom factor that
will fit the view to all selected objects or all objects if none are selected.

You can achieve the same effect by choosing Fit to View from any shortcut
menu or by pressing the F key to apply the maximum zoom that includes all
selected objects. Press the space bar to fit all objects to the view.

• Clicking on the Zoom Factor Selector and dragging up or down.

Dragging the mouse upward increases the zoom factor. Dragging the mouse
downward decreases the zoom factor. Alternatively, right-clicking and
dragging on the percentage value resizes while you are dragging.

3 Creating Charts

3-14

Creating States
You create states by drawing them in the Stateflow editor’s drawing area,
using the Stateflow’s State tool.

To activate the State tool, click or double-click on the State button in the
Stateflow toolbar. Single-clicking on the button puts the State tool in
single-creation mode. In this mode, you create a state by clicking the tool in the
drawing area. Stateflow creates the state at the specified location and returns
to edit mode.

Double-clicking on the State button puts the State tool in multiple-creation
mode. This mode works the same way as single-creation mode except that the
State tool remains active after you create a state. You can thus create as many
states as you like in this mode without having to reactivate the State tool. To
return to edit mode, click on the State button, or right click in the drawing
area, or press the Escape key.

To delete a state, select it and choose Cut (Ctrl+X) from the Edit or any
shortcut menu or press the Delete key.

Moving and Resizing States
To move a state, select, drag, and release it in a new position. To resize a state,
drag one of the state’s corners. When the cursor is over a corner, it appears as

State tool

Creating States

3-15

a double-ended arrow (PC only; cursor appearance will vary on other
platforms).

Creating Substates
A substate is a state that can be active only when another state, called its
parent, is active. States that have substates are known as superstates. To
create a substate, click the State tool and drag a new state into the state you
want to be the superstate. Stateflow creates the substate in the specified
parent state. You can nest states in this way to any depth. To change a
substate’s parentage, drag it from its current parent in the state diagram and
drop it in its new parent.

Note A parent state must be large enough to accommodate all its substates.
You may therefore need to resize a parent state before dragging a new
substate into it.

Grouping States
Grouping a state causes Stateflow to treat the state and its contents as a
graphical unit. This simplifies editing a state diagram. For example, moving a
grouped state moves all its substates as well. To group a state, double-click on
it or its border or select Grouped from the Make Contents submenu on the
state or box shortcut menu. Stateflow thickens the state’s border and grays its
contents to indicate that it is grouped. To ungroup a state, double-click it or its
border or select Ungrouped from the Make Contents submenu units shortcut
menu. You need to ungroup a superstate to select objects within the superstate.

Specifying State Decomposition
Stateflow allows you to specify whether activating a state activates all or only
one of its substates. A state whose substates are all active when it is active is
said to have parallel (AND) decomposition. A state in which only one substate
is active when it is active is said to have exclusive (OR) decomposition. An
empty state’s decomposition is exclusive. You can alter a state’s decomposition
only if it contains substates. To alter a state’s decomposition, select the state,
press the right mouse button to display the state’s shortcut menu, and choose
either Parallel (AND) or Exclusive (OR) from the menu.

3 Creating Charts

3-16

You can also specify the state decomposition of a chart. In this case, Stateflow
treats the chart’s top-level states as substates of the chart. Stateflow creates
states with exclusive decomposition. To specify a chart’s decomposition,
deselect any selected objects, press the right mouse button to display the
chart’s shortcut menu, and choose either Parallel (AND) or Exclusive (OR)
from the menu.

The appearance of a superstate’s substates indicates the superstate’s
decomposition. Exclusive substates have solid borders, parallel substates,
dashed borders. A parallel substate also contains a number in its upper right
corner. The number indicates the activation order of the substate relative to its
sibling substates.

Specifying Activation Order for Parallel States
You specify the activation order of parallel states by arranging them from
top-to-bottom and left-to-right in the state diagram. Stateflow activates the
states in the order in which you arrange them. In particular, a top-level
parallel state activates before all the states whose top edges reside at a lower
level in the state diagram. A top-level parallel state also activates before any
other state that resides to the right of it at the same vertical level in the
diagram. The same top-to-bottom, left-to-right activation order applies to
parallel substates of a state.

Note Stateflow displays the activation order of a parallel state in its upper
right corner.

Labeling States
Every state has a label. A state’s label specifies its name and actions that a
state machine takes when entering or exiting the state or while the state is
active. Initially, a state’s label is empty. Stateflow indicates this by displaying
a ? in the state’s label position (upper left corner). Click on the label or display
the state’s properties dialog (see “Using the State Properties Dialog Box” on
page 3-17) to add to or change its contents. For more information on labeling
states, see the following topics:

• “Naming States” on page 3-18

Creating States

3-17

• “Defining State Actions” on page 3-18

Using the State Properties Dialog Box
The State Properties dialog box lets you view and change a state’s properties.
To display the dialog for a particular state, choose Properties from the state’s
shortcut menu or click on the state’s entry in the Explorer content pane. Stateflow
displays the State Properties dialog box.

The dialog includes the following fields.

Field Description

Name Stateflow diagram name; read-only; click on this
hypertext link to bring the state to the foreground.

Output State
Activity

Check this box to cause Stateflow to output the
activity status of this state to Simulink via a data
output port on the chart block containing the state.
See “Outputting State Activity to Simulink” on
page 3-20 for more information.

Parent Parent of this state; a / character indicates the
Stateflow diagram is the parent; read-only; click on
this hypertext link to bring the parent to the
foreground.

3 Creating Charts

3-18

Click on the dialog Apply button to save the changes. Click on the Revert
button to cancel any changes and return to the previous settings. Click on the
Close button to save the changes and close the dialog box. Click on the Help
button to display the Stateflow online help in an HTML browser window.

Naming States
Naming a state allows a state machine to reference the state. To name a state,
enter the state’s name in the first line of the state’s label. Names are
case-sensitive. To avoid naming conflicts, do not assign the same name to
sibling states. However, you can assign the same name to states that do not
share the same parent.

Defining State Actions
Stateflow allows you to specify actions that occur when a state machine enters
a state, exits a state, and while a state is active.

Defining Entry Actions
An entry action is an action executed by a state machine when it enters a
particular state as the result of taking a transition to that state. To specify the
entry action to be taken for a given state, add an entry block to the state’s label.
An entry block begins on a new line and consists of the entry action keyword,
entry or en, followed by a colon, followed by one or more action statements on

Debugger
breakpoints

Click on the check boxes to set debugging
breakpoints on state entry, during, or exit actions.
See Chapter 10, “Debugging” for more information.

Label The state’s label. See the section titled “Labeling
States” on page 3-16 for more information.

Description Textual description/comment.

Document Link Enter a URL address or a general MATLAB
command. Examples are: www.mathworks.com,
mailto:email_address, edit /spec/data/
speed.txt.

Field Description

Creating States

3-19

one or more lines. You must separate statements on the same line by a comma
or semicolon. See “Action Language” on page 7-37 for information on writing
action statements.

Note You can also begin a state’s entry action on the same line as the state’s
name. In this case, begin the entry action with a forward slash (/) instead of
the entry keyword.

Defining Exit Actions
An exit action is an action executed by a state machine when it exits a state as
the result of taking a transition away from the state or the occurrence of an
event (see “Defining On-Event Actions” below). To specify an exit action for a
state, add an exit block to the state’s label. The format of an exit block is the
same as that of an entry block except that the exit block begins with the
keyword exit or ex.

Defining During Actions
A during action is an action that a state machine executes while a state is
active, that is, after the state machine has entered the state and while there is
no valid transition away from the state. To specify a during action, add a during
block to the state’s label. A during block has the same format as an entry block
except that it begins with the keyword during or dur.

Defining On-Event Actions
An on-event action is an action that a state machine takes when a state is
active and one or more events of a specific type occur. (See “Defining Events”
on page 4-2 for information on defining and using events to drive a state
machine.) To specify an event handler for a state, add an on-event block to the
state. An on-event block has the same format as an entry action block except
that it begins with the keyword, on, followed by the name of the event, followed
by a colon, for example

on ev1: exit();

A state machine can respond to multiple events, with either the same or
different actions, when a state is active. If you want more than one type of
event to trigger the same action, specify the keyword as on events, where

3 Creating Charts

3-20

events is a comma-separated list of the events that trigger the actions, for
example,

on ev1, ev2: exit();

If you want different events to trigger different actions, enter multiple event
blocks in the state’s label, each specifying the action for a particular event or
set of events, for example,

on ev1: action1(); on ev2: action2();
on ev3, ev4: exit();

Note Use a during block to specify actions that you want a state machine to
take in response to any visible event that occurs while the machine is in a
particular state (see “Defining During Actions” on page 3-19).

Outputting State Activity to Simulink
Stateflow allows a chart to output the activity of its states to Simulink via a
data port on the state’s chart block. To enable output of a particular state’s
activity, first name the state (see “Naming States” on page 3-18), if unnamed,
then check the Output State Activity check box on the state’s property dialog
(see “Using the State Properties Dialog Box” on page 3-17). Stateflow creates a
data output port on the chart block containing the state. The port has the same
name as the state. Stateflow also adds a corresponding data object of type State
to the Stateflow data dictionary. During simulation of a model, the port outputs
1 at each time step in which the state is active; 0, otherwise. Attaching a scope
to the port allows you to monitor a state’s activity visually during the
simulation. See “Defining Output Data” on page 4-21 for more information.

Note If a chart has multiple states with the same name, only one of those
states can output activity data. If you check the Output State Activity
property for more than one state with the same name, Stateflow outputs data
only from the first state whose Output State Activity property you
specified.

Creating Boxes

3-21

Creating Boxes
Stateflow allows you to use graphical entities called boxes to organize your
diagram visually. To create a box, first create a superstate containing the
objects to be boxed. Then, select Box from the superstate’s Type shortcut
menu. Stateflow converts the superstate to a box, redrawing its border with
sharp corners to indicate its changed status.

Boxes are primarily graphical entities. They do not correspond to any real
element of a state machine. However, boxes do affect the activation order of a
diagram’s parallel states. In particular, a box wakes up before any parallel
states or boxes that are lower down or to the right of the box in the diagram.
Within a box, parallel states still wake up in top down, right-to-left order.

You can group and ungroup boxes and hide or show them in the same way you
hide or show states. See “Grouping States” on page 3-15 and “Working with
Subcharts” on page 3-42 for more information.

3 Creating Charts

3-22

Creating Transitions
Place the cursor at a straight portion of the border of the source state. Click the
border when the cursor changes to a cross-hair. Drag and release on a straight
portion of the border of the destination state when the transition changes from
a dotted line to a solid line. The solid line indicates the transition is in position
to be attached. The cross-hair will not appear if you place the cursor on a
corner, since corners are used for resizing.

Use a similar procedure to create transitions between junctions. You can start
or end a transition at any point on a junction. To draw a perfectly straight
transition between two junctions, hold the Shift key down as you draw the
transition. If you draw a nearly straight transition between two junctions
without holding down the Shift key, Stateflow straightens the transition after
you finish drawing the transition.

To delete a transition, select it and choose Cut (Ctrl+X) from the Edit menu or
any shortcut menu or press the Delete key.

What Is a Default Transition?
The default transition object is a transition with a destination, but no source
object. Default transitions specify which exclusive (OR) state is to be active
when there is ambiguity between two or more exclusive (OR) states at the same
level in the hierarchy. Default transitions also specify that a junction should be
entered by default.

In the Lights subsystem, the default transition to the Lights.Off substate
indicates that when the Lights superstate becomes active, the Off substate
becomes active by default.

Default transitions specify which exclusive (OR) substate in a superstate the
system enters by default, in the absence of any information. History junctions

Default transition

Creating Transitions

3-23

override default transition paths in superstates with exclusive (OR)
decomposition.

Creating Default Transitions
Click on the Default transition button in the toolbar , and click on a
location in the drawing area close to the state or junction you want to be the
destination for the default transition. Drag the mouse to the destination object
to attach the default transition. The size of end point of the default transition
is proportional to the arrowhead size. Default transitions can be labeled just
like other transitions. See the section titled “Labeling Default Transitions” on
page 7-21 for an example.

Editing Transition Attach Points
Place the cursor over an attach point until it changes to a small circle. Click and
drag the mouse to move the attach point; release to drop the attach point. You
can edit both the source and destination attach points of a transition.

The appearance of the transition changes from a solid to a dashed line when
editing a destination attach point. Once you attach the transition to a
destination, the dashed line changes to a solid line. The appearance of the
transition changes to a default transition when editing a source attach point.

To delete a transition, select it and choose Cut (Ctrl+X) from the Edit or any
shortcut menu, or press the Delete key.

Labeling Transitions
The ? character is the default empty label for transitions. Transitions and
default transitions follow the same labeling format. Select the transition to
display the ? character. Click on the ? to edit the label.

Transition labels have this general format.

event [condition]{condition_action}/transition_action

3 Creating Charts

3-24

Specify, as appropriate, relevant names for event, condition,
condition_action, and transition_action. Transitions do not have to have
labels. You can specify some, all, or none of the parts of the label.

To apply and exit the edit, deselect the object.

See these sections in Chapter 7, “Notations” for more information:

• “Transitions” on page 7-14

• “Action Language” on page 7-37

Valid Labels
Labels can consist of any alphanumeric and special character combination,
with the exception of embedded spaces. Labels cannot begin with a numeric
character. The length of a label is not restricted. Carriage returns are allowed
in most cases. Within a condition, you must specify an ellipsis (...) to continue
on the next line.

Changing Arrowhead Size
The arrowhead size is a property of the destination object. Changing one of the
incoming arrowheads of an object causes all incoming arrowheads to that object
to be adjusted to the same size. The arrowhead size of any selected transitions,
and any other transitions ending at the same object, is adjusted.

Label Field Description

event Event that causes the transition to be evaluated.

condition Defines what, if anything, has to be true for the
condition action and transition to take place.

condition_action If the condition is true, the action specified executes
and completes.

transition_action After a valid destination is found and the transition
is taken, this action executes and completes.

Creating Transitions

3-25

To adjust arrowhead size from the Transition shortcut menu:

1 Select the transition(s) whose arrowhead size you want to change.

2 Place the cursor over a selected transition, click the right mouse button to
display the shortcut menu.

A menu of arrowhead sizes appears.

3 Select an arrowhead size from the menu.

Moving Transition Labels
You can move transition labels to make the Stateflow diagram more readable.
To move a transition label, click on and drag the label to the new location and
then release the mouse button.

If you mistakenly click and release the left mouse button on the label, you will
be in edit mode. Press the Esc key to deselect the label and try again.

Using the Transition Properties Dialog
Select a transition and click the right mouse button on that transition’s border
to display the Transition shortcut menu. Choose Properties to display the
Transition properties dialog box.

3 Creating Charts

3-26

This table lists and describes the transition object fields.

Click on the Apply button to save the changes. Click on the OK button to save
the changes and close the dialog box. Click on the Cancel button to close the
dialog without applying any changes made since the last time you clicked the
Apply button. Click on the Help button to display the Stateflow online help in
an HTML browser window.

Field Description

Source Source of the transition; read-only; click on
the hypertext link to bring the transition
source to the foreground.

Destination Destination of the transition; read-only; click
on the hypertext link to bring the transition
destination to the foreground.

Parent Parent of this state; read-only; click on the
hypertext link to bring the parent to the
foreground.

Debugger breakpoints Click on the check boxes to set debugging
breakpoints either when the transition is
tested for validity or when it is valid.

Label The transition’s label. See the section titled
“Labeling a Transition” on page 7-15 for more
information on valid label formats.

Description Textual description/comment.

Document Link Enter a Web URL address or a general
MATLAB command. Examples are:
www.mathworks.com, mailto:email_address,
edit/spec/data/speed.txt.

Creating Junctions

3-27

Creating Junctions
To create one junction at a time, click on a Junction button in the toolbar and
click on the desired location for the junction in the drawing area. To create
multiple junctions, double-click on the Junction button in the toolbar. The
button is now in multiple object mode. Click anywhere in the drawing area to
place a junction in the drawing area. Additional clicks in the drawing area
create additional junctions. Click on the Junction button or press the Esc key
to cancel the operation.

You can choose from these types of junctions.

Changing Size
To adjust the junction size from the Junction shortcut menu:

1 Select the junction(s) whose size you want to change. The size of any selected
junctions is adjusted.

2 Place the cursor over a selected junction, click the right mouse button to dis-
play the shortcut menu and place the cursor over Junction Size.

A menu of junction sizes appears.

3 Select a junction size from the menu.

Name Button
Icon

Description

Connective
junction

One use of a connective junction is to
handle situations where transitions out
of one state into two or more states are
taken based on the same event but
guarded by different conditions.

History junction Use a history junction to indicate,
when entering this level in the
hierarchy, that the last state that was
active becomes the next state to be
active.

3 Creating Charts

3-28

Changing Arrowhead Size
The arrowhead size is a property of the destination object. Changing one of the
incoming arrowheads of a junction causes all incoming arrowheads to that
junction to be adjusted to the same size. The arrowhead size of any selected
junctions is adjusted.

To adjust arrowhead size from the Junction shortcut menu:

1 Select the junction(s) whose incoming arrowhead size you want to change.

2 Place the cursor over a selected junction, click the right mouse button to dis-
play the shortcut menu. Place the cursor over Arrowhead Size.

A menu of arrowhead sizes appears

3 Select a size from the menu.

Moving a Junction
To move a junction, select, drag, and release it in a new position.

Editing Junction Properties
Select a junction, click the right mouse button on that junction to display the
Junction shortcut menu. Choose Properties to display the Connective
Junction Properties dialog box.

Creating Junctions

3-29

This is the History Junction Properties dialog box.

This table describes the junction object fields.

Click on the Apply button to save the changes. Click on the Cancel button to
cancel any changes since the last apply. Click on the OK button to save the
changes and close the dialog box. Click on the Help button to display the
Stateflow online help in an HTML browser window.

Field Description

Parent Parent of this state; read-only; click on the
hypertext link to bring the parent to the
foreground.

Description Textual description/comment.

Document Link Enter a URL address or a general MATLAB
command. Examples are: www.mathworks.com,
mailto:email_address, edit/spec/data/
speed.txt.

3 Creating Charts

3-30

Specifying Chart Properties
Click the right mouse button in an open area of the Stateflow diagram to
display the General shortcut menu. This is the Chart properties dialog box.

This table lists and describes the chart object fields.

Field Description

Name Stateflow diagram name; read-only; click on this
hypertext link to bring the chart to the
foreground.

Simulink Subsystem Simulink subsystem name; read-only; click on
this hypertext link to bring the Simulink
subsystem to the foreground.

Parent Parent name; read-only; click on this hypertext
link to display the parent’s property dialog box.

Update method Choose from Triggered or Inherited, Sampled,
or Continuous.

Specifying Chart Properties

3-31

Export Chart Level
Functions

Exports graphical functions defined at the
chart’s root level. See “Exporting Graphical
Functions” on page 3-39 for more information.

Use Strong Data
Typing with
Simulink IO

If this option is checked, this chart block can
accept and output signals of any data type
supported by Simulink. The type of an input
signal must match the type of the corresponding
chart input data item (see “Defining Input Data”
on page 4-20). Otherwise, a type mismatch error
occurs. If this item is unchecked, this chart
accepts and outputs only signals of type double.
In this case, Stateflow converts Simulink input
signals to the data types of the corresponding
chart input data items. Similarly, Stateflow
converts chart output data (see “Defining Output
Data” on page 4-21) to double, if this option is
unchecked.

Execute (enter) Chart
at Initialization

Check this option if you want a chart’s state
configuration to be initialized at time 0 instead
of at the first occurrence of an input event.

Sample Time If Update method is Sampled, enter a sample
time.

Debugger breakpoint Click on the check box to set a debugging
breakpoint On chart entry.

Editor Click on the Locked check box to mark the
Stateflow diagram as read-only and prohibit any
write operations.

Description Textual description/comment.

Document Link Enter a Web URL address or a general MATLAB
command. Examples are: www.mathworks.com,
mailto:email_address, edit/spec/data/
speed.txt.

Field Description

3 Creating Charts

3-32

Click on the Apply button to save the changes. Click on the Cancel button to
cancel any changes since the last apply. Click on the OK button to save the
changes and close the dialog box. Click on the Help button to display the
Stateflow online help in an HTML browser window.

Waking Up Charts

3-33

Waking Up Charts
Stateflow lets you specify the method by which a simulation updates (wakes
up) a chart. To specify a wake up method for a chart, set the chart’s Update
method property (see “Specifying Chart Properties” on page 3-30) to one of the
following options:

• Triggered or Inherited

This is the default update method. Specifying this method causes inputs
from the Simulink model to determine when the chart wakes up during a
simulation. If you define input events for the chart (see “Defining Input
Events” on page 4-7), the chart awakens when trigger signals appear on the
chart’s trigger port. If you define data inputs (see “Defining Input Data” on
page 4-20) but no event inputs, the chart awakens at the rate of the fastest
data input. If you do not define any inputs for the chart, the chart wakes up
at the model’s solver sample rate.

• Sampled

Simulink awakens (samples) the Stateflow block at the rate you specify as
the block’s Sample Time property. An implicit event is generated by Simulink
at regular time intervals corresponding to the specified rate. The sample
time is in the same units as the Simulink simulation time. Note that other
blocks in the Simulink model may have different sample times.

• Continuous

The Stateflow block wakes up at each step in the simulation, as well as at
intermediate time points that may be requested by the Simulink solver.

See “Defining the Interface to External Sources” on page 5-23 and Using
Simulink for more information.

3 Creating Charts

3-34

Working with Graphical Functions
A graphical function is a function defined by a flow graph. Graphical functions
are similar to textual functions, such as MATLAB and C functions. Like
textual functions, graphical functions can accept arguments and return
results. You invoke graphical functions in transition and state actions in the
same way you invoke MATLAB and C functions. Unlike C and MATLAB
functions, however, graphical functions are full-fledged Stateflow objects. You
use the Stateflow editor to create them and they reside in your Stateflow model
along with the diagrams that invoke them. This makes graphical functions
easier to create, access, and manage than textual functions, whose creation
requires external tools and whose definitions reside separately from the model.

Creating a Graphical Function
To create a graphical function:

1 Create a state in your model where you want the function to appear.

A function can reside anywhere in a diagram, either at the top level or within
any state or subchart. The location of a function determines its scope, that is,
the set of states and transitions that can invoke the function. In particular,
the scope of a function is the scope of its parent state or chart, with the
following exceptions.

- The chart containing the function exports its graphical functions.

In this case, the scope of the function is the scope of its parent state
machine. See “Exporting Graphical Functions” on page 3–39 for more
information.

- A child of the function’s parent define a function of the same name.

In this case, the function defined in the parent is not visible anywhere in
the child or its children. In other words, a function defined in a state or
subchart shadows any functions of the same defined in the ancestors of
that state or subchart.

Working with Graphical Functions

3-35

2 Select Function from the Type submenu of the newly created state’s
shortcut menu.

Stateflow converts the state to a graphical function.

The new function appears as an unnamed object in the Stateflow Explorer.

3 Enter a function prototype in the function label.

The function prototype specifies a name for the function and formal names
for its arguments and return value. A prototype has the syntax
y = f(a1,a2,...an)

where f is the function’s name, a1, a2, an are formal names for its arguments,
and y is the formal name for its return value. The following example shows
a prototype for a graphical function named f1 that takes two arguments and
returns a value.

function label

3 Creating Charts

3-36

The return values and arguments that you declare in the prototype appear
in the Explorer as data items parented by the function object.

The Scope field in the Explorer indicates the role of the corresponding
argument or return value. Arguments have scope Input. Return values have
scope Output. The number that appears in parentheses for the scope of each
argument is the order in which the argument appears in the function’s
prototype. When a Stateflow action invokes a function, it passes arguments
to the function in the same order.

In the context of graphical function prototypes, the term scope refers to the
role (argument or return value) of the data items specified by the function’s
prototype. The term scope can also refer to a data item’s visibility. In this
sense, arguments and return values have local scope. They are visible only
in the flow diagram that implements the function.

Note You can use the Stateflow editor to change the prototype of a graphical
function at any time. When you are done editing the prototype, Stateflow
updates the data dictionary and the Explorer to reflect the changes.

4 Specify the data properties (data type, initial value, etc.) of the function’s
arguments and return values (if it has any).

See“Setting Data Properties” on page 4–14 for information on setting data
properties. The following restrictions apply to argument and return value
properties.

- A function cannot return more than one value.

- Arguments and return values cannot be arrays.

Working with Graphical Functions

3-37

- Arguments cannot have initial values.

- Arguments must have scope Input.

- Return values must have scope Output.

5 Create any additional data items that the function may need to process
when it is invoked.

See “Adding Data to the Data Dictionary” on page 4–13 for information on
how to create data items. A function can access only items that it owns.
Thus, any items that you create for use by the function must be created as
children of the function. The items that you create can have any of the
following scopes.

- Local

A local data item persists from invocation to invocation. For example, if the
item is equal to 1 when the function returns from one invocation, the item
will equal 1 the next time the function is invoked.

- Temporary

Stateflow creates and initialize a copy of a temporary item for each
invocation of the function.

- Constant

A constant data items retains its initial value through all invocations of
the function.

Note You can also assign Input and Output scope to data items that you
create (i.e, to items that do not correspond to the function’s formal arguments
and return value). However, Input and Output items that do not correspond to
your function’s formal arguments and return values will cause parse errors. In
other words, you cannot create arguments or return values by creating data
items.

All data items (other than arguments and return values) parented by a
graphical function can be initialized from the workspace. However, only local
items can be saved to the workspace.

3 Creating Charts

3-38

6 Create a flow diagram within the function that performs the action to be
performed when the function is invoked.

At a minimum, the flow diagram must include a default transition
terminated by a junction. The following example shows a minimal flow
diagram for a graphical function that computes the product of its
arguments.

7 If you prefer, hide the function’s contents by selecting Subcharted from the
Make Contents submenu of the function’s shortcut menu.

Invoking Graphical Functions
Any state or transition action that is in the scope of a graphical function can
invoke that function. The invocation syntax is the same as that of the function
prototype, with actual arguments replacing the formal parameters specified in
the prototype. If the data types of the actual and formal argument differ,
Stateflow casts the actual argument to the type of the formal parameter. The

Working with Graphical Functions

3-39

following example shows a state entry action that invokes a function that
returns the product of its arguments.

Exporting Graphical Functions
You can export a chart’s root-level graphical functions. Exporting the functions
extends their scope to include all other charts in the same model. To export a
chart’s root-level functions, check Export Chart Level Functions on the
chart’s Chart Properties dialog box (see “Specifying Chart Properties” on
page 3-30).

When parsing a chart, Stateflow does not check to see whether the chart’s
usage of exported functions is correct. It is thus up to you to see ensure that the
chart passes arguments of the correct type to an exported function and assigns
the return value of the function to a variable of the correct type. Failure to use
the function correctly can cause link or runtime errors.

Note You cannot export functions from a chart library.

3 Creating Charts

3-40

Specifying Graphical Function Properties
A graphical function has properties that you can specify. To specify the
properties, choose properties from the function’s shortcut menu. The Function
properties dialog box appears.

The dialog has the following fields.

Field Description

Name Function name; read-only; click on this hypertext
link to bring the function to the foreground.

Parent Parent of this function; a / character indicates the
Stateflow diagram is the parent; read-only; click on
this hypertext link to bring the parent to the
foreground.

Debugger
breakpoints

Click on the check box to set a breakpoint where
the function is called. See Chapter 10, “Debugging”
for more information.

Label The function’s label. Specifies the function’s
prototype. See “Creating a Graphical Function” on
page 3-34 for more information.

Working with Graphical Functions

3-41

Description Textual description/comment.

Document Link Enter a URL address or a general MATLAB
command. Examples are: www.mathworks.com,
mailto:email_address, edit/spec/data/
speed.txt.

Field Description

3 Creating Charts

3-42

Working with Subcharts
Stateflow allows you to create charts within charts. A chart that is embedded
in another chart is called a subchart. The subchart can contain anything a
top-level chart can, including other subcharts. In fact, you can nest subcharts
to any level.

A subchart appears as a labeled block in the chart that contains it. A subchart
is itself a superstate of the states and charts that it contains. You can define
actions and default transitions for subcharts just as you can for superstates.
You can also create transitions to and from subcharts just as you can create
transitions to and from superstates. Further, you can create transitions from
states residing outside a subchart to any state within a subchart, and vice
versa. The term super transition refers to a transition that crosses subchart
boundaries in this way (see “Working with Supertransitions” on page 3-48 for
more information).

Subcharts enable you to reduce a complex chart to a set of simpler,
hierarchically organized diagrams. This makes the chart easier to understand
and maintain. Nor do you have to worry about changing the semantics of the
chart in any way. Stateflow ignores subchart boundaries when simulating and
generating code from Stateflow models.

Subcharts define a containment hierarchy within a top-level chart. A subchart
or top-level chart is said to be the parent of the charts it immediately contains.
A subchart or a top-level chart is said to be an ancestor of all the subcharts
contained by its children and their descendents.

Working with Subcharts

3-43

Creating a Subchart
You create a subchart by converting an existing state, box, or graphical
function into the subchart. The object to be converted can be one that you have
created expressly for the purpose of making a subchart or it can be an existing
object whose content you want to turn into a subchart.

To convert a new or existing state, box, or graphical function to a subchart:

1 Select the object and click your mouse’s right button to display the Stateflow
shortcut menu.

3 Creating Charts

3-44

2 Select Subcharted from the Make Contents menu.

Stateflow converts the selected state, graphical function, or box to a
subchart.

Note When you convert a box to a subchart, the subchart retains the
attributes of a box. In particular, the resulting subchart’s position in the chart
determines its activation order (see “Creating Boxes” on page 3-21 for more
information).

To convert the subchart back to its original form, select the subchart and
uncheck the Subcharted item of the Make Contents submenu of the Stateflow
shortcut menu.

Manipulating Subcharts as Objects
Subcharts are first-class objects in Stateflow. You can use the same techniques
to drag, copy, cut, paste, relabel, and resize subcharts as you use to perform
similar objects on states and boxes. You can also draw transitions to and from

Working with Subcharts

3-45

a subchart and any other state or subchart at the same or different levels in the
chart hierarchy (see “Working with Supertransitions” on page 3-48).

Opening a Subchart
Opening a subchart allows you to view and change its contents. To open a
subchart, double-click your mouse anywhere in the block that represents the
subchart. Stateflow replaces the current contents of the editor window with the
contents of the subchart.

A shaded border surrounds the contents of the subchart. Stateflow uses the
border to display supertransitions.

To return to the previous view, select Back from the Stateflow shortcut menu,
press the Esc key on your keyboard, or select the up or back arrow on the
Stateflow toolbar.

3 Creating Charts

3-46

Navigating Subcharts
The Stateflow toolbar contains a set of buttons for navigating a chart’s
subchart hierarchy.

• Up

If the Stateflow editor is displaying a subchart, this button replaces the
subchart with the subchart’s parent. If the editor is displaying a top-level
chart, this button raises the Simulink model window containing the chart.

The next two buttons allow you to retrace your steps as you navigate up and
down a subchart hierarchy.

• Back

Returns to the chart that you visited before the current chart.

• Forward

Returns to the chart that you visited after visiting the current chart.

Editing a Subchart
You can perform any editing operation on a subchart that you can perform on
a top-level chart. You can create, copy, paste, cut, relabel, resize, and group
states, transitions, and other subcharts. You can also create transitions among
states and junctions in a subchart in the same way you create them among

UpForwardBack

Working with Subcharts

3-47

states in a top-level chart. (See “Working with Supertransitions” on page 3-48
for information on creating transitions to and from a subchart). It is also
possible to cut-and-paste objects between different levels in your chart. For
example, to copy objects from a top-level chart to one of its subcharts, first open
the top-level chart and copy the objects. Then open the subchart and paste the
objects into the subchart.

3 Creating Charts

3-48

Working with Supertransitions

About Supertransitions
A supertransition is a transition between different levels in a chart, for
example, between a state or junction in a top-level chart and a state or junction
in one of its subcharts or between states residing in different subcharts at the
same or different level in a diagram. Stateflow allows you to create
supertransitions that span any number of levels in your chart, for example,
from a junction at the top-level to a state that resides in a subchart several
layers deep in the chart.

The point where a supertransition enters or exits a subchart is called a slit.
Slits divide a supertransition into graphical segments. For example, the
following diagram shows two super transitions as seen from the perspective of
a subchart and its parent chart, respectively.

In this example, supertransition t1 goes from state A in the parent chart to
state C in the subchart and supertransition t2 goes from state C in the subchart
to state B in the parent chart. Note that both segments of t1 and t2 have the
same label.

Drawing a Supertransition
The procedure for drawing a supertransition differs slightly, depending on
whether you are drawing the transition from an object outside a subchart to an
object inside the chart, or vice versa.

Parent View Subchart

Supertransition Supertransition

slit

Working with Supertransitions

3-49

Drawing a Transition Into a Subchart
To draw a supertransition from an object outside a subchart to an object inside
the subchart:

1 Position the mouse cursor over the border of the state.

The cursor assumes a crosshair shape.

2 Drag the mouse.

Dragging the mouse causes a supertransition segment to appear. The
segment looks like a regular transition. It is curved and is tipped by an
arrowhead.

3 Drag the segment’s tip anywhere just inside the border of the subchart.

The arrowhead now penetrates the slit.

If you are not happy with the initial position of the slit, you can continue to
drag the slit around the inside edge of the subchart to the desired location.

3 Creating Charts

3-50

4 Continue dragging the cursor toward the center of the subchart.

A wormhole appears in the center of the subchart.

A wormhole allows you to open a subchart while drawing a supertransition.

5 Drag the mouse pointer over the center of the wormhole.

The subchart opens. Now the wormhole and supertransition are visible
inside the subchart.

wormhole

Working with Supertransitions

3-51

6 Drag and drop the tip of the supertransition anywhere on the border of the
object that you want to terminate the transition.

This completes the drawing of the supertransition.

Note If the terminating object resides within a subchart in the current
subchart, simply drag the tip of the supertransition through the wormhole of
the inner subchart and complete the connection inside the inner chart. You
can draw a supertransition to an object at any depth in the chart in this
fashion.

Drawing a Transition Out of a Subchart
To draw a supertransition out of a subchart:

1 Draw an inner transition segment from the source object anywhere just
outside the border of the subchart

A slit appears.

3 Creating Charts

3-52

2 Keep dragging the transition away from the border of the subchart.

A wormhole appears.

3 Drag the transition down the wormhole.

The parent of the subchart appears.

4 Complete the connection.

Note If the parent chart is itself a subchart and the terminating object
resides at a higher level in the subchart hierarchy, you can continue drawing
by dragging the supertransition into the border of the parent subchart. This
allows you to continue drawing the supertransition at the higher level. In this
way, you can connect objects separated by any number of layers in the
subchart hierarchy.

Working with Supertransitions

3-53

Labeling Supertransitions
To label a supertransition, label any of its segments using the same procedure
used to label a regular transition (see “Labeling Transitions” on page 3-23).
The resulting label appears on all segments of the transition. If you change the
label on any segment, the change appears on all segments.

3 Creating Charts

3-54

Creating Chart Libraries
A Stateflow chart library is a Simulink block library that contains Stateflow
chart blocks (and, optionally, other types of Simulink blocks as well). Just as
Simulink libraries serve as repositories of commonly used blocks, chart
libraries serve as repositories of commonly used charts.

You create a chart library in the same way you create other types of Simulink
libraries. First, create an empty chart library by selecting Library from the
New submenu of Simulink’s File menu. Then create or copy chart blocks into
the library just as you would create or copy chart blocks into a Stateflow model.

You use chart libraries in the same way you use other types of Simulink
libraries. To include a chart from a library in your Stateflow model, copy or
drag the chart from the library to the model. Simulink creates a link from the
instance in your model to the instance in the library. This allows you to update
all instances of the chart simply by updating the library instance.

Note Events parented by a library state machine are invalid. Stateflow
allows you to define such events but flags them as errors when parsing a
model.

Stateflow Printing Options

3-55

Stateflow Printing Options
The following options are available for printing Stateflow models:

• You can print a block diagram of the Stateflow model, using the Simulink
Print command.

The Simulink print command is labeled Print... on the Stateflow editor’s File
menu. See the Using Simulink manual or online Simulink documentation for
more information on the command.

• You can print the current view of a diagram, using the Stateflow Print
Current View command.

See “Printing the Current View” on page 3-55.

• You can generate a report that documents the Stateflow component of a
Stateflow model, using the Stateflow Print Book command.

See “Printing a Stateflow Book” on page 3-56.

• You can generate a report that documents an entire Stateflow model,
including both Simulink and Stateflow components, using the Simulink
Report Generator.

The Simulink Report Generator is available as a separate product. See the
Report Generator User’s Guide for more information.

Printing the Current View
To print a Stateflow diagram, open the chart containing the diagram and select
Print Current View from the Stateflow editor’s File menu. Stateflow displays
a submenu of printing options.

• To File

Converts the current view to a graphics file. Selecting this option displays a
submenu of graphics file formats. Choose the desired format to convert the
current view to a file in that format.

• To Clipboard

Copies the current view to the system clipboard. Selecting this option
displays a submenu of graphics formats. Select a format to copy the current
view to the clipboard in that format.

• To Figure

Converts the current view to a MATLAB figure window.

3 Creating Charts

3-56

• To Printer

Prints the current view on the current printer.

You can also print the current view, using the sfprint command. See sfprint
in Chapter 11, “Function Reference” for more information about printing from
the command line.

Printing a Stateflow Book
A Stateflow book is a report that documents all the elements of a Stateflow
chart, including states, transitions, junctions, events, and data. You can
generate a book documenting a specific chart or all charts in a model.

To generate a Stateflow book:

1 Select and open one of the charts you want to document.

2 Select Print Book from the Stateflow editor’s File menu.

Stateflow displays the Print Book dialog box.

3 Check the desired print options on the dialog.

4 Select the Print button to generate the report.

4

Defining Events and Data

Defining Events 4-2
Adding Events to the Data Dictionary 4-2
Changing Event Properties 4-4
Event Dialog Box 4-5
Naming Events 4-7
Defining Local Events 4-7
Defining Input Events 4-7
Defining Output Events 4-8
Exporting Events 4-8
Importing Events 4-9
Specifying Trigger Types 4-10
Describing Events 4-11
Documenting Events 4-11
Implicit Events 4-11

Defining Data 4-13
Adding Data to the Data Dictionary 4-13
Setting Data Properties 4-14
Data Dialog Box 4-16
Defining Data Arrays 4-19
Defining Input Data 4-20
Defining Output Data 4-21
Associating Ports with Data 4-22
Defining Temporary Data 4-22
Exporting Data 4-23
Importing Data 4-23
Documenting Data 4-24

Symbol Autocreation Wizard 4-25

4 Defining Events and Data

4-2

Defining Events
An event is a Stateflow object that triggers actions in a state machine or its
environment. Stateflow defines a set of events that typically occur whenever a
state machine executes (see “Implicit Events” on page 4-11). You can define
other types of events that occur only during execution of a specific state
machine or its environment.

To define an event:

1 Add a default definition of the event to the Stateflow data dictionary (see
“Adding Events to the Data Dictionary”).

2 Set the new event’s properties to values that reflect its intended usage (see
“Changing Event Properties” on page 4-4).

Adding Events to the Data Dictionary
You can use either the Stateflow editor or Explorer to add events that are
visible everywhere in a chart. You must use the Stateflow Explorer to add
events that are visible everywhere in a state machine or only in a particular
state.

Using the Stateflow Editor
To use the Stateflow editor to add an event:

1 Select the event’s scope (see “Event Dialog Box” on page 4-5) from the Event
submenu of the Stateflow editor’s Add menu.

Stateflow adds a default definition of the new event to the Stateflow data
dictionary and displays the Event dialog box. Use the Event dialog box to
specify event options (see “Event Dialog Box” on page 4-5).

Defining Events

4-3

Using the Explorer
To use the Stateflow Explorer to define an event:

1 Select Explore from the Stateflow editor’s Tools menu.

Stateflow opens the Explorer.

2 Select the object (state machine, chart, or state) in the Explorer’s object
hierarchy pane where you want the new event to be visible.

4 Defining Events and Data

4-4

3 Select Event from the Explorer’s Add menu.

Stateflow adds a default definition for the new event in the data dictionary
and displays an entry for the new event in the Explorer’s content pane.

4 Set the new event’s properties to values that reflect its intended usage (see
“Changing Event Properties”).

Changing Event Properties
To change an event’s properties:

1 Select Explorer from the Stateflow editor’s Tools menu.

2 Select the event in the Explorer’s contents pane.

3 Select Properties from the Explorer’s Edit or context menu.

Stateflow displays the Event dialog box for the selected event (see “Event
Dialog Box” on page 4-5).

4 Edit the dialog box.

5 Select OK to apply your changes and dismiss the Event dialog.

Note You can also set an event’s Scope (see “Defining Local Events” on
page 4-7) and Trigger properties by editing the corresponding fields in the
event’s entry in the Explorer’s contents pane. If you want to set only these
properties, you do not need to open the Event dialog for the event.

Defining Events

4-5

Event Dialog Box
The Event dialog box allows you to specify event properties.

The dialog box displays the following fields and options.

Name
Name of this event. The name allows you to specify this event in Stateflow
actions. See “Naming Events” on page 4-7 for more information.

Parent
Clicking on this field displays the parent of this event in the Stateflow editor.
The parent is the object in which this event is visible. When an event is
triggered, Stateflow broadcasts the event to the parent and all the parent’s
descendants. An event’s parent can be a state machine, a chart, or a state. You
specify an event’s parent when you add it to the data dictionary (see “Adding
Events to the Data Dictionary” on page 4-2).

Scope
Scope of this event. The scope specifies where the event occurs relative to its
parent. You can specify the following scopes:

Local. This event occurs in a state machine and is parented by the state
machine or one of its charts or states. See “Defining Local Events” on page 4-7
for more information.

Input from Simulink. This event occurs in one Simulink block and is broadcast in
another. The first block may be any type of Simulink block. The second block

4 Defining Events and Data

4-6

must be a chart block. See “Defining Input Events” on page 4-7 for more
information.

Output to Simulink. This event occurs in one Simulink block and is broadcast in
another. The first block is a chart block. The second block may be any type of
Simulink block. See “Defining Output Events” on page 4-8 for more
information.

Exported. An exported event is a Stateflow event that can be broadcast by
external code built into a stand-alone or Real-time Workshop target. See
“Exporting Events” on page 4-8 for more information.

Imported. An imported event is an externally defined event that can be
broadcast by a state machine embedded in the external code. See “Importing
Events” on page 4-9 for more information.

Trigger
Type of signal that triggers an input or output event. See “Specifying Trigger
Types” on page 4-10 for more information.

Index
Index of the input signal that triggers this event. This option applies only to
input events and appears when you select Input from Simulink as the scope
of this event. See “Associating Input Events with Control Signals” on page 4-7
for more information.

Port
Index of port that outputs this event. This property applies only to output
events and appears when you select Output to Simulink as the scope of this
event. See “Associating an Output Event with an Output Port” on page 4-8 for
more information.

Description
Description of this event. Stateflow stores the contents of this field in the data
dictionary. See “Describing Events” on page 4-11 for more information.

Defining Events

4-7

Document Link
Clicking this field displays online documentation for this event. See
“Documenting Events” on page 4-11 for more information.

Naming Events
Event names enable actions to reference specific events. You assign a name to
an event by setting its Name property. You can assign any name that begins
with an alphabetic character, does not include spaces, and is not shared by
sibling events.

Defining Local Events
A local event is an event that can occur anywhere in a state machine but is
visible only in its parent (and its parent’s descendants). To define an event as
local, set its Scope property to Local.

Defining Input Events
An input event occurs outside of a chart and is visible only in that chart. This
type of event allows other Simulink blocks, including other Stateflow blocks, to
notify a particular chart of events that occur outside it. To define an event as
an input event, set its Scope property to Input from Simulink.

You can define multiple input events for a chart. The first time you define an
input event for a chart, Stateflow adds a trigger port to the chart’s block.
External blocks can trigger the chart’s input events via a signal or vector of
signals connected to the chart’s trigger port by associating input events with
control signals. When defining input events for a chart, you must specify how
control signals connected to the chart trigger the input events (see “Specifying
Trigger Types” on page 4-10).

Associating Input Events with Control Signals
An input event’s Index property associates the event with a specific element of
a control signal vector connected to the trigger port of the chart that parents
the event. The first element of the signal vector triggers the input event whose
index is 1; the second, the event whose index is 2, and so on. Stateflow assigns
1 as the index of the first input event that you define for a chart, 2 as the index
of the second event, and so on. You can change the default association for an

4 Defining Events and Data

4-8

event by setting the event’s Index property to the index of the signal that you
want to trigger the event.

Input events occur in ascending order of their indexes when more than one
such event occurs during update of a chart (see “Waking Up Charts” on
page 3-33). For example, suppose that when defining input events for a chart,
you assign the indexes 3, 2, and 1 to events named A, B, and C, respectively.
Now, suppose that during simulation of the model containing the chart, that
events A and C occur in a particular update. Then, in this case, the order of
occurrence of the events is C first followed by A.

Defining Output Events
An output event is an event that occurs in a specific chart and is visible in
specific blocks outside the chart. This type of event allows a chart to notify
other blocks in a model of events that occur in the chart. To define an event as
an output event, set its Scope property to Output to Simulink. You can define
multiple output events for a given chart. Stateflow creates a chart output port
for each output event that you define (see “Port” on page 4-6). Your model can
use the output ports to trigger the output events in other Simulink blocks in
the same model.

Associating an Output Event with an Output Port
An output event’s Port property associates the event with an output port on the
chart block that parent’s the event. The property specifies the position of the
port relative to other event ports on the chart block. Event ports appear below
data ports on the right side of a chart block. Stateflow numbers ports
sequentially from top to bottom, starting with port 1. Stateflow assigns port 1
to the first output event that you define for a chart, port 2 to the second output
event, and so on. You can change the default port assignment of an event by
resetting its Port property or by selecting the output event in the Explorer and
dragging and dropping it to the desired position in the list of output events.

Exporting Events
Stateflow allows a state machine to export events. Exporting events enables
external code to trigger events in the state machine. To export an event, first
add the event to the data dictionary as a child of the state machine (see “Adding
Events to the Data Dictionary” on page 4-2). Then set the new event’s Scope
property to Exported.

Defining Events

4-9

Note External events can be parented only by a state machine. This means
that you must use the Explorer to add external events to the data dictionary.
It also means that external events are visible everywhere in a state machine.

When encoding a state machine that parents exported events, the Stateflow
code generator generates a function for each exported event. The C prototype
for the exported event function has the form

void external_broadcast_EVENT()

where EVENT is the name of the exported event. External code built into the
target containing the state machine can trigger the event by invoking the event
function. For example, suppose you define an exported event named
switch_on. External code can trigger this event by invoking the generated
function external_broadcast_trigger_on. See “Exported Events” on
page 5-23 for an example of how to trigger an exported event.

Importing Events
A state machine can import events defined by external code. Importing an
event allows a state machine built into a stand-alone or Real-Time Workshop
target to trigger the event in external code. To import an event, first add the
event to the data dictionary as a child of the state machine that needs to trigger
the event (see “Adding Events to the Data Dictionary” on page 4-2). Then set
the new event’s Scope property to Imported.

Note The state machine serves as a surrogate parent for imported events.
This means that you must use the Explorer to add imported events to the data
dictionary.

Stateflow assumes that external code defines each imported event as a function
whose prototype is of the form

void external_broadcast_EVENT

where EVENT is the Stateflow name of the imported event. For example,
suppose that a state machine imports an external event named switch_on.

4 Defining Events and Data

4-10

Then Stateflow assumes that external code defines a function named
external_broadcast_switch_on that broadcasts the event to external code.
When encoding the state machine, the Stateflow code generator encodes
actions that signal imported events as calls to the corresponding external
broadcast event functions defined by the external code.

Specifying Trigger Types
A trigger type defines how control signals trigger input and output events
associated with a chart. Trigger types fall into two categories: function call and
edge. The basic difference between these two types is when receiving blocks are
notified of their occurrence. Receiving blocks are notified of edge-triggered
events only at the beginning of the next simulation time step, regardless of
when the events occurred during the previous time step. By contrast, receiving
blocks are notified of function-call-triggered events the moment the events
occur, even if they occur in mid-step.

You set a chart’s trigger type by setting the Trigger property of any of the
input or output events defined for the chart. If you want a chart to notify other
blocks the moment an output event occurs, set the Trigger property of the
output event to Function Call. The output event’s trigger type must be Either
Edge. If a chart is connected to a block that outputs function-call events, you
must specify the Trigger property of the receiving chart’s input events to
Function Call, Stateflow changes all of the chart’s other input events to
Function Call.

If it is not critical that blocks be notified of events the moment they occur, you
can define the events as edge-triggered. You can specify any of the falling types
of edge triggers:

Rising Edge. A rising level on the control signal triggers the corresponding
event.

Falling Edge. A falling level on the control signal triggers the event.

Either Edge. A change in the signal level triggers the event.

In all cases, the signal must cross 0 to constitute a valid trigger. For example,
a change from -1 to 1 constitutes a valid rising edge, but not a change from
1 to 2.

Defining Events

4-11

If you specify an edge trigger type that differs from the edge type previously
defined for a chart, Stateflow changes the Trigger type of the chart’s input
events to Either Edge.

Describing Events
Stateflow allows you to store brief descriptions of events in the data dictionary.
To describe a particular event, set its Description property to the description.

Documenting Events
Stateflow allows you to provide online documentation for events defined by a
model. To document a particular event, set its Documentation property to a
MATLAB expression that displays documentation in some suitable online
format (for example, an HTML file or text in the MATLAB command window).
Stateflow evaluates the expression when you click on the event’s
documentation link (the blue text that reads “Document Link” displayed at the
bottom of the event’s Event dialog box).

Implicit Events
Stateflow defines and triggers the following events that typically occur
whenever a chart executes:

• Entry into a state

• Exit from a state

• Value assigned to an internal (noninput) data object

These events are called implicit events because you do not have to define or
trigger them explicitly. Implicit events are children of the chart in which they
occur. Thus, they are visible only in the charts in which they occur.

Referencing Implicit Events
Action expressions can use the following syntax to reference implicit events.

event(object)

where event is the name of the implicit event and object is the state or datum
in which the event occurred. Valid implicit event names (and their shortcuts)
are enter (en), exit (ex), and change (chg). If more than one object has the

4 Defining Events and Data

4-12

same name, the event reference must qualify the object’s name with that of its
ancestor. The following are some examples of valid implicit event references.

enter(switch_on)
en(switch_on)
change(engine.rpm)

Example
This example illustrates use of an implicit enter event.

Fan and Heater are parallel (AND) superstates. By default, the first time the
Stateflow diagram is awakened by an event, the states Fan.Off and
Heater.Off become active. The first time event Fan_switch occurs, the
transition from Fan.Off to Fan.On occurs. When Fan.On’s entry action
executes, an implicit local event is broadcast (i.e., en(Fan.On) == 1). This event
broadcast triggers the transition from Heater.Off to Heater.On (triggered by
the condition en(Fan.On). Similarly, when the system transitions from Fan.On
to Fan.Off and the implicit local event Fan.Off is broadcast, the transition
from Heater.On to Heater.Off is triggered.

Defining Data

4-13

Defining Data
A state machine can store and retrieve data that resides internally in its own
workspace. It can also access data that resides externally in the Simulink
model or application that embeds the state machine. When creating a
Stateflow model, you must define any internal or external data referenced by
the state machine’s actions.

To define an item of data:

1 Add the item to the data dictionary (see “Adding Data to the Data
Dictionary”).

2 Set the new item’s properties (see “Setting Data Properties” on page 4-14).

Adding Data to the Data Dictionary
You can use either the Stateflow editor or Explorer to add data that is
accessible only in a specific chart. You must use the Stateflow Explorer to add
data that is accessible everywhere in a state machine or only in a specific state.

Using the Stateflow Editor
To use the Stateflow editor to add data:

1 Select the data’s scope (see “Data Dialog Box” on page 4-16) from the Data
submenu of the Stateflow editor’s Add menu.

Stateflow adds a default definition of the new item to the Stateflow data
dictionary and displays a Data dialog that displays the new item’s default
properties.

2 Use the Data dialog box to set the new item’s properties to reflect its
intended usage.

Using the Explorer
To use the Stateflow Explorer to define a data item:

4 Defining Events and Data

4-14

1 Select Explore from the Stateflow editor’s Tools menu.

Stateflow opens the Explorer.

2 Select the object (state machine, chart, or state) in the Explorer’s object
hierarchy pane where you want the new item to be accessible.

3 Select Data from the Explorer’s Add menu.

Stateflow adds a default definition for the new item in the data dictionary
and displays an entry for the item in the Explorer’s content pane.

4 Set the new item’s properties to values that reflect its intended usage (see
“Changing Event Properties”).

Setting Data Properties
You define a data item by setting its properties.

To set a a data item’s properties:

1 Select Explorer from the Stateflow editor’s Tools menu.

Defining Data

4-15

2 Select the item in the Explorer’s contents pane.

3 Select Properties from the Explorer’s Edit or context menu.

Stateflow displays the Data dialog box for the selected item.

4 Use the dialog box’s controls to set the item’s properties.

See “Data Dialog Box” on page 4-16 for a description of the dialog box’s
controls and how to use them to set the data item’s properties.

5 Select OK to apply your changes and dismiss the Data dialog box.

Note You can also set a data item’s scope, type, sizes, initial value, minimum
and maximum value, and to and from workspace properties by editing the
corresponding fields in the item’s entry in the Explorer’s contents pane. If you
want to set only these properties, you do not need to open the Data dialog box
for the event.

4 Defining Events and Data

4-16

Data Dialog Box
The Data dialog box allows you to set the properties of a dialog item.

The dialog box includes the following options.

Name
Name of the data item. A data name can be of any length and can consist of any
alphanumeric and special character combination, with the exception of
embedded spaces. The name cannot begin with a numeric character.

Parent
Parent of this data item. The parent determines the objects that can access it.
Specifically, only the item’s parent and descendants of that parent can access
the item. You specify the parent of a data item when you add the item to the
data dictionary.

Scope
Scope of this data item. A data object’s scope specifies where it resides in
memory relative to its parent. These are the options for the Scope property:

Local. A local data object resides and is accessible only in a machine, chart, or
state.

Defining Data

4-17

Input from Simulink. This is a data item that is accessible in a Simulink chart
block but resides in another Simulink block that may or may not be a chart
block. The receiving chart block reads the value of the data item from an input
port associated with the data item. See “Importing Data” on page 4-23 for more
information.

Output to Simulink. This is a data item that resides in a chart block and is
accessible in another block that may or may not be a chart block. The chart
block outputs the value of the datum to an output port associated with the data
item. See “Defining Output Data” on page 4-21 for more information.

Temporary. A temporary data item exists only while its parent is executing. See
“Defining Temporary Data” on page 4-22 for more information.

Constant. A Constant data object is read-only and retains the initial value set in
its Data properties dialog box.

Exported. An exported data item is state machine data that can be accessed by
external code that embeds the state machine. See “Exporting Data” on
page 4-23 for more information.

Imported. Imported data is data defined by external code that can be accessed
by a state machine embedded in the external code. See “Importing Data” on
page 4-23 for more information.

Type
Data type of this data item, e.g., integer, double, etc.

Port
Index of the port associated with this data item (see “Associating Ports with
Data” on page 4-22). This control applies only to input and output data.

Units
Units, e.g., inches, centimeters, etc., represented by this data item. The value
of this field is stored with the item in the state machine’s data dictionary.

Array
If checked, this data item is an array. Checking this option enables the next two
options.

4 Defining Events and Data

4-18

Sizes. Size of this array. The value of this property may be a scalar or a
MATLAB vector. If it is a scalar, it specifies the size of a one-dimensional array
(i.e., a vector). If a MATLAB vector, it indicates the size of each dimension of a
multidimensional array whose number of dimensions corresponds to the length
of the vector.

First Index. Specifies the index of the first element of this array. For example,
the first index of a zero-based array is 0.

Limit Range
This control group specifies values used by the state machine to check the
validity of this data item. It includes the next two controls.

Min. Minimum value that this data item can have during execution or
simulation of the state machine.

Max. Maximum value that this data item can have during execution or
simulation of the state machine.

Initialize from
Source of the initial value for this data item: either the Stateflow data
dictionary or the MATLAB workspace. If this data item is an array, Stateflow
sets each element of the array to the specified initial value.

If the source is the data dictionary, enter the initial value in the adjacent text
field. Stateflow stores the value that you enter in the data dictionary.

If the source is the MATLAB workspace, this item gets its initial value from a
similarly named variable in the MATLAB workspace of its parent state, chart,
or machine. For example, suppose that the name of this item is A and that the
parent workspace defines a variable named A. Then at the start of simulation,
Stateflow sets the value of this item to the value of A.

Note You can also use the Stateflow Explorer to set this option.

Defining Data

4-19

Save final value to base workspace
Checking this option causes the value of the data item be assigned to a
similarly named variable in the model’s base workspace at the end of
simulation.

Watch in debugger
If checked, this option causes the debugger to halt if this data item is modified.

Description
Description of this data item.

Document Link
Clicking this field displays user-supplied online documentation for this data
item. See “Documenting Data” on page 4-24 for more information.

Defining Data Arrays
Stateflow allows you to define arrays of data.

To define an array:

1 Add a default data item to the data dictionary as a child of the state, chart,
or machine that needs to access the data (see “Adding Data to the Data
Dictionary” on page 4-13).

2 Open the Data dialog box. Check the Array check box on the dialog. Set the
item’s Sizes property to the size of each of the array’s dimensions (“Setting
Data Properties” on page 4-14).

For example, to define a 100-element vector, set the Sizes property to 100.
To define a 2-by-4 array, set the Sizes property to [2 4].

3 Set the item’s Initial Index property to the index of the array’s first
element.

For example, to define a zero-based array, set the Initial Index property
to 0.

4 Defining Events and Data

4-20

4 Set the item’s initialization source and, if initialized from the data
dictionary, initial value.

For example, to specify that an array’s elements be initialized to zero, set the
Initialized from option in the Data dialog box to data dictionary and the
enter 0 in the adjacent text field.

5 Set the other options in the dialog box (e.g., Name, Type, and so on) to reflect
the data item’s intended usage.

Example
Suppose that you want to define a local, 4-by-4, zero-based array of type
Integer named rotary_switches. Further, suppose that each element of the
array was initially 1 and could have no values less than 1 or greater than 10.
The following Data dialog box shows the settings for such an array.

Defining Input Data
Stateflow allows a model to supply data to a chart via input ports on the chart’s
block. Such data is called input data. To define an item of input data, add a
default item to the Stateflow data dictionary as a child of the chart that will
input the data. Set the new item’s Scope to Input from Simulink. Stateflow

Defining Data

4-21

adds an input port to a chart for each item of input data that you define for the
chart.

Set the item’s other properties (e.g., Name, Type, etc.) to appropriate values.

You can set an input item’s data type to any Stateflow-supported type. If the
chart’s strong data typing option is enabled (see “Specifying Chart Properties”
on page 3-30), input signals must match the specified type. Otherwise, a
mismatch error occurs. If strong data typing is not enabled, input signals must
be of type double. In this case, Stateflow converts the input value to the
specified type. If the input item is a vector, the model must supply the data via
a signal vector connected to the corresponding input port on the chart.

Defining Output Data
Output data is data that a chart supplies to other blocks via its output ports.
To define an item of output data, add a default data item to the data dictionary
as a child of the chart that supplies the item. Then, set the new item’s Scope

Input from

Simulink

data

Input from
Simulink
data

4 Defining Events and Data

4-22

property to Output to Simulink. Stateflow adds an output port to the chart for
each item that it outputs.

You can set an output item’s type to any supported Stateflow data type (for
example, Integer). If the chart’s strong data typing option is enabled (see
“Specifying Chart Properties” on page 3-30), the chart outputs a Simulink
signal of the same data type as the output data item’s type. If the option is not
enabled, the Stateflow chart block converts the output data to Simulink type
double.

Associating Ports with Data
Stateflow creates and associates an input port with each input data item that
you define for a chart and an output port for each output data item. By default,
Stateflow associates the first input port with the first input item you define, the
first output port with the first output item, the second input port with the
second input item, and so on. The Data dialog for each item shows its current
port assignment in the Port field. You can alter the assignment by editing the
value displayed in the Port field or by selecting the data item in the Explorer
and dragging it to the desired location in the list of output or input events.

Defining Temporary Data
Stateflow allows stateless charts and graphical functions to define temporary
data that persists only as long as the chart or graphical function is active. Only

Output to

Simulink

data

Defining Data

4-23

the parent chart or graphical function can access the temporary data. Defining
a loop counter to be Temporary is a good use of this Scope since the value is used
only as a counter and the value does not need to persist.

Exporting Data
Stateflow can export definitions of state machine data to external code that
embeds the state machine. Exporting data enables external code, as well as the
state machine, to access the data. To export a data item, first add it to the data
dictionary as the child of the state machine in which it is defined. Then set its
Scope property to Exported and its other properties (e.g., Name and Type) to
appropriate values.

The Stateflow code generator generates a C declaration for each exported data
item of the form

type ext_data;

where type is the C type of the exported item (e.g., int, double) and data is the
item’s Stateflow name. For example, suppose that your state machine defines
an exported integer item named counter. The Stateflow code generator
exports the item as the C declaration

int ext_counter;

The code generator includes declarations for exported data in the generated
target’s global header file, thereby making the declarations visible to external
code compiled into or linked to the target.

Importing Data
A state machine can import definitions of data defined by external code that
embeds the state machine. Importing externally defined data enables a state
machine to access data defined by the system in which it is embedded. To
import an externally defined data item into a state machine, add a default item
to the data dictionary as a child of the state machine. Then set the new item’s
Scope property to Imported, its Name property to the name used by the
machine’s actions to reference the item, and its other properties (i.e., Type,
Initial Value, etc.) to appropriate values.

4 Defining Events and Data

4-24

The Stateflow code generator assumes that external code provides a prototype
for each imported item of the form

type ext_data;

where type is the C data type corresponding to the Stateflow data type of the
imported item (e.g., int for Integer, double for Double, etc.) and data is the
item’s Stateflow name. For example, suppose that your state machine defines
an imported integer item named counter. The Stateflow code generator
expects the item to be define in the external C code as

int ext_counter;

Documenting Data
Stateflow allows you to provide online documentation for data defined by a
model. To document a particular item of data, set its Documentation property
to a MATLAB expression that displays documentation in some suitable online
format (for example, an HTML file or text in the MATLAB command window).
Stateflow evaluates the expression, when you click on the item’s
documentation link (the blue text that reads Document Link displayed at the
bottom of the event’s Data dialog box).

Symbol Autocreation Wizard

4-25

Symbol Autocreation Wizard
The Symbol Autocreation Wizard helps you to add missing data and events to
your Stateflow charts. When you parse or simulate a diagram, this wizard
detects references to data and events that have not been previously defined in
the Stateflow Explorer. The wizard then opens and heuristically recommends
attributes for the unresolved data or events to help you to define these symbols.

To reject a recommendation, click the check mark next to the symbol’s type.
The wizard unchecks the entry for the symbol. To change the recommended
type, scope, or parent of the symbol, click the corresponding entry for the
symbol in the Symbol Wizard. The wizard replaces the entry with an
alternative value. Keep clicking until the desired alternative appears. When
you are satisfied with the proposed symbol definitions, click the wizard’s Add
button to add the symbols to Stateflow’s data dictionary.

4 Defining Events and Data

4-26

5
Defining Stateflow
Interfaces

Overview . 5-2

Defining the Stateflow Block Update Method 5-4

Defining Output to Simulink Event Triggers 5-9

Inputting Events from Simulink 5-15

Inputting Data from Simulink 5-17

Outputting Events to Simulink 5-19

Outputting Data to Simulink 5-20

MATLAB Workspace 5-22

Defining the Interface to External Sources 5-23

5 Defining Stateflow Interfaces

5-2

Overview

Interfaces to Stateflow
Each Stateflow block interfaces to its Simulink model. Each Stateflow block
can interface to sources external to the Simulink model (data, events, custom
code). Events and data are the Stateflow objects that define the interface from
the Stateflow block’s point of view.

Events can be local to the Stateflow block or can be propagated to and from
Simulink and sources external to Simulink. Data can be local to the Stateflow
block or can be shared with and passed to the Simulink model and to sources
external to the Simulink model.

The Stateflow block interface includes:

• Physical connections between Simulink blocks and the Stateflow block

• Event and data information exchanged between the Stateflow block and
external sources

• Graphical functions exported from a chart

• the MATLAB workspace

• Definitions in external code sources

Typical Tasks to Define Stateflow Interfaces
Defining the interface for a Stateflow block can involve some or all of these
tasks:

• Defining the Stateflow block update method

• Defining Output to Simulink data or events or Input from Simulink data

• Adding and defining nonlocal events and nonlocal data within the Stateflow
diagram

• Defining relationships with any external sources

The tasks are presented in this section in the order of appearance in this list.
This could be a typical sequence. You may find a particular sequence
complements your model development process better than another.

Overview

5-3

Where to Find More Information on Events and Data
See these sections for conceptual information on data and events: “Defining
Events” on page 4-2 and “Defining Data” on page 4-13. These references in
particular are relevant to defining the interface:

• “Defining Input Events” on page 4-7

• “Defining Output Events” on page 4-8

• “Importing Events” on page 4-9

• “Exporting Events” on page 4-8

• “Defining Input Data” on page 4-20

• “Defining Output Data” on page 4-21

• “Importing Data” on page 4-23

• “Exporting Data” on page 4-23

5 Defining Stateflow Interfaces

5-4

Defining the Stateflow Block Update Method

Stateflow Block Update Methods
Stateflow blocks are Simulink subsystems. You have some flexibility in
defining the type of Simulink subsystem of a particular Stateflow block. The
chart is awakened when an event occurs. You can choose from these methods
of having the chart awakened, entered, and executed:

• Triggered/Inherited

This is the default update method.

- Triggered

The Stateflow block is explicitly triggered by a signal originating from a
connected Simulink block. The edge trigger can be set to Rising, Falling,
Either, or Function Call.

- Inherited

The Stateflow block inherits (implicitly) triggers from the Simulink model.
These implicit events are the sample times (discrete-time or continuous) of
the Simulink signals providing inputs to the chart. The sample times are
determined by Simulink to be consistent with various rates of all the
incoming signals.

• Sampled

Simulink will awaken (sample) the Stateflow block at the rate you specify.
An implicit event is generated by Simulink at regular time intervals
corresponding to the specified rate. The sample time is in the same units as
the Simulink simulation time. Note that other blocks in the Simulink model
may have different sample times.

• Continuous

Simulink will awaken (sample) the Stateflow block at each step in the
simulation, as well as at intermediate time points that can be requested by
the Simulink solver. This method is consistent with the continuous method
in Simulink.

See Using Simulink for more information on these types of Simulink
subsystems.

Defining the Stateflow Block Update Method

5-5

Defining a Triggered Stateflow Block
These are essential conditions that define an edge-triggered Stateflow block:

• The chart Update method (set in the Chart Properties dialog box) is set to
Triggered or Inherited. (See “Specifying Chart Properties” on page 3-30.)

• The chart has an Input from Simulink event defined and an edge-trigger
type specified. (See “Defining Input Events” on page 4-7.)

Example: Triggered Stateflow Block
A Pulse Generator block connected to the trigger port of the Stateflow block is
an example of an edge-triggered Stateflow block. The Input from Simulink
event has a Rising Edge trigger type.

If more than one Input from Simulink event is defined, the sample times are
determined by Simulink to be consistent with various rates of all the incoming
signals. The outputs of a Triggered Stateflow block are held after the execution
of the block.

Defining a Sampled Stateflow Block
There are two ways you can define a sampled Stateflow block. Setting the chart
Update method (set in the Chart Properties dialog box) to Sampled and
entering a Sample Time value defines a sampled Stateflow block. (See
“Specifying Chart Properties” on page 3-30.)

Alternatively, you can add and define an Input from Simulink data object.
Data is added and defined using either the graphics editor Add menu or the
Explorer. (See “Defining Input Data” on page 4-20.) The chart sample time is
determined by Simulink to be consistent with the rate of the incoming data
signal.

5 Defining Stateflow Interfaces

5-6

The Sample Time (set in the Chart Properties dialog box) takes precedence
over the sample time of any Input from Simulink data.

Example: Sampled Stateflow Block
A Stateflow block that is not explicitly triggered via the trigger port can be
triggered by Simulink by specifying a discrete sample rate. You can specify a
Sample Time in the Stateflow diagram’s Chart properties dialog box. The
Stateflow block is then called by Simulink at the defined, regular sample times.

The outputs of a sampled Stateflow block are held after the execution of the
block.

Defining an Inherited Stateflow Block
These are essential conditions that define an inherited trigger Stateflow block:

• The chart Update method (set in the Chart Properties dialog box) is set to
Triggered or Inherited. (See “Specifying Chart Properties” on page 3-30)

• The chart has an Input from Simulink data object defined (added and
defined using either the graphics editor Add menu or the Explorer). (See
“Defining Input Data” on page 4-20.) The chart sample time is determined by
Simulink to be consistent with the rate of the incoming data signal.

Example: Inherited Stateflow Block
A Stateflow block that is not explicitly triggered via the trigger port nor is a
discrete sample time specified can be triggered by Simulink. The Stateflow
block is called by Simulink at a sample time determined by Simulink.

Defining the Stateflow Block Update Method

5-7

In this example, more than one Input from Simulink data object is defined. The
sample times are determined by Simulink to be consistent with the rates of
both incoming signals.

The outputs of an inherited trigger Stateflow block are held after the execution
of the block.

Defining a Continuous Stateflow Block
To define a continuous Stateflow block, the chart Update method (set in the
Chart Properties dialog box) is set to Continuous. (See “Specifying Chart
Properties” on page 3-30)

Considerations in Choosing Continuous Update
The availability of intermediate data makes it possible for the solver to ‘back
up’ in time to precisely locate a ‘zero crossing’. Refer to Using Simulink for
further information on zero crossings. Use of the intermediate time point
information can provide increased simulation accuracy.

To support the Continuous update method, Stateflow keeps an extra copy of all
its data.

In most cases, including continuous-time simulations, the Inherited method
provides consistent results. The timing of state and output changes of the
Stateflow block is entirely consistent with that of the continuous plant model.

There are situations when changes within the Stateflow block must be felt
immediately by the plant and a Continuous update is needed:

• Data Output to Simulink that is a direct function of data Input from
Simulink and the data is updated by the Stateflow diagram (state during
actions in particular).

5 Defining Stateflow Interfaces

5-8

• Models in which Stateflow states correspond to intrinsic physical states such
as the onset of static friction or the polarity of a magnetic domain. This is in
contrast to states that are assigned, for example, as modes of control
strategy.

Example: Continuous Stateflow Block
Simulink will awaken (sample) the Stateflow block at each step in the
simulation, as well as at intermediate time points that may be requested by the
Simulink solver. This method is consistent with the continuous method in
Simulink.

In this example (provided in the Examples/Stick Slip Friction Demonstration
block), the chart Update method (set in the Chart Properties dialog box) is set
to Continuous.

Defining Output to Simulink Event Triggers

5-9

Defining Output to Simulink Event Triggers

Overview
Stateflow block output events connect to other Simulink blocks or Stateflow
blocks. There are two main options for trigger type:

• Edge-triggered

• Function call

Simulink controls the execution of edge-triggered subsystems. The function
call mechanism is a means by which Stateflow executes a subsystem
essentially outside of Simulink’s direct control. Use a function call trigger to
have the Stateflow block control the execution of the connected Simulink block.
Function call subsystems are never executed directly by Simulink.

See these examples for more information:

• “Example: Using Function Call Output Events” on page 5-9

• “Example: Function Call Semantics” on page 5-10

• “Example: Edge-Triggered Semantics” on page 5-12

Defining Function Call Output Events
These are essential conditions that define the use of function call output
events:

• The chart has an Output to Simulink event with a Function Call trigger
type defined (added and defined using either the graphics editor Add menu
or the Explorer. See “Defining Output Events” on page 4-8.)

• The Simulink block connected to the Output to Simulink function call event
has the Trigger type field set to function-call.

• Stateflow blocks that have feedback loops from a block triggered by a
function call should avoid placing any other blocks in the connection lines
between the two blocks.

Example: Using Function Call Output Events
A function call trigger operates essentially like a programming subroutine call.
When the system executes the step where the function call is specified, the

5 Defining Stateflow Interfaces

5-10

triggered subsystem executes and then returns to the next statement in the
execution sequence. Using function call triggers, the Stateflow block can
control the execution of other Simulink blocks in the model.

Use a function call event output when you want a Stateflow block (logic portion/
control flow) to control one or more Simulink blocks (algorithmic portion/data
flow).

This example shows a use of function call output events.

The control block is a Stateflow block that has one data input called pulse and
two event Function Call outputs called filter1 and filter2. A pulse
generator provides input data to the control block. Within the control block,
a determination is made whether to make a function call to filter1 or
filter2. If, for example, the Output to Simulink event Function Call
filter1 is broadcast, the band pass filter1 block executes and then returns
to the next execution step in the control block. As part of its execution, band
pass filter1 receives unfiltered input data and outputs filtered data for
display on a scope.

The Stateflow block controls the execution of band pass filter1 and band pass
filter2.

Example: Function Call Semantics
In this example the transition from state A to state B (in the Stateflow diagram)
has a transition action that specifies the broadcast of event1. event1 is defined
in Stateflow to be an Output to Simulink with a Function Call trigger

Defining Output to Simulink Event Triggers

5-11

type.The Stateflow block output port for event1 is connected to the trigger port
of the band pass filter1 Simulink block. The band pass filter1 block has its
Trigger type field set to Function Call.

This sequence is followed when state A is active and the transition from state A
to state B is valid and is taken:

1 State A exit actions execute and complete.

2 State A is marked inactive.

3 The transition action is executed and completed. In this case the transition
action is a broadcast of event1. Because event1 is an event Output to

5 Defining Stateflow Interfaces

5-12

Simulink with a function call trigger, the band pass filter1 block executes
and completes, and then returns to the next statement in the execution
sequence. The value of y is fed back to the Stateflow diagram.

4 State B is marked active.

5 State B entry actions execute and complete (x = x + y). The value of y is the
updated value from the band pass filter1 block.

6 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

Defining Edge-Triggered Output Events
These are essential conditions that define the use of triggered output events:

• The chart has an Output to Simulink event with a trigger type: Either
Edge. (See “Defining Output Events” on page 4-8 .)

• The Simulink block connected to the edge triggered event Output to
Simulink has the Trigger type field set to the equivalent edge triggering
type.

Example: Edge-Triggered Semantics
In this example the transition from state A to state B (in the Stateflow diagram)
has a transition action that specifies the broadcast of event1. event1 is defined
in Stateflow to be an Output to Simulink with an Either edge trigger type.
The Stateflow block output port for event1 is connected to the trigger port of
the band pass filter1 Simulink block. The band pass filter1 block has its
Trigger type field set to Either edge.

Defining Output to Simulink Event Triggers

5-13

This sequence is followed when state A is active and the transition from state A
to state B is valid and is taken:

1 State A exit actions execute and complete.

2 State A is marked inactive.

5 Defining Stateflow Interfaces

5-14

3 The transition action, an edge triggered Output to Simulink event, is
registered (but not executed). Simulink is controlling the execution and
execution control does not shift until the Stateflow block completes.

4 State B is marked active.

5 State B entry actions execute and complete (x = x++).

6 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

7 The band pass filter1 block is triggered, executes, and completes.

Inputting Events from Simulink

5-15

Inputting Events from Simulink
These tasks describe how to add and define the necessary fields for an event
input from Simulink:

• Add an event choosing a chart as the parent of the event

• Choose Input from Simulink as the Scope

• Specify the Trigger type

• Apply and save the changes

Add an Event Choosing a Chart as the Parent
These steps describe how to add an event:

1 Choose Explore from the graphics editor Tools menu to invoke the
Explorer.

2 Select the chart object in the hierarchy that you want to be the event’s
parent.

You must explicitly choose a parent to create an event. Choosing the chart
to be the parent of the event enables receive rights to Simulink, to the chart,
and all its offspring.

3 Choose Event from the Explorer Add menu. The Event Properties dialog
box is displayed.

4 Enter a name in the Name field.

Choose Input from Simulink as the Scope
Once you have chosen the chart as the parent, the choice of valid scopes
includes Local, Input from Simulink, or Output to Simulink.

Choose Input from Simulink as the Scope to enable send rights to Simulink
and any offspring of the chart and to enable receive rights to the chart and all
of its offspring.

When you add an event input, a single Simulink trigger port is added to the top
of the Stateflow block.

5 Defining Stateflow Interfaces

5-16

Select the Trigger
The trigger defines how the Stateflow block’s input events are handled in the
context of their Simulink model. The Trigger type indicates what kind of
signal has meaning for the input event. The Trigger can have these values.

Each Stateflow block can only have one overall trigger type, either function call
or edge. See “Specifying Trigger Types” on page 4-10 for more information.

Apply the Changes
Click on the Apply button to save the properties. Click on the OK button to
save the properties and close the dialog box.

Keyword Description

Rising Edge Rising edge trigger, where the control signal
changes from either 0 or a negative value to a
positive value.

Falling Edge Falling edge trigger, where the control signal
changes from either 0 or a positive value to a
negative value.

Either Edge Either rising or falling edge trigger.

Function Call Function call triggered.

Inputting Data from Simulink

5-17

Inputting Data from Simulink
These tasks describe how to add and define the necessary fields for a data input
from Simulink:

• Add a data object choosing a chart as the parent of the data

• Choose Input from Simulink as the Scope

• Specify data attributes

• Apply and save the changes

Add a Data Object Choosing a Chart as the Parent
These steps describe how to add a data object:

1 Choose Explore from the graphics editor Tools menu to invoke the
Explorer.

2 Select a chart object in the hierarchy that you want to be the data object’s
parent.

You must explicitly choose a parent to create a data object. Choosing the
Chart to be the parent determines that the data resides within the chart.

3 Choose Data from the Explorer Add menu. The Data Properties dialog box
is displayed.

4 Enter a name in the Name field.

Choose Input from Simulink as the Scope
Once you have chosen the chart as the parent, the choice of valid scopes
includes Local, Input from Simulink, Output to Simulink, Temporary, or
Constant.

Choose Input from Simulink as the Scope to enable access rights to Simulink
and any offspring of the chart.

When you add a data input, each data input is represented on the Stateflow
block by a Simulink input port. Multiple data inputs to the Stateflow block
must be scalar (they cannot be vectorized).

5 Defining Stateflow Interfaces

5-18

Specify Data Attributes
If you want to change the defaults, you can specify data Units, Type, Initial,
Minimum, and Maximum values.

Note If you want the input port corresponding to this input data item to
accept Simulink data of type other than double, you must select the chart’s
strong data typing option. See “Defining Input Data” on page 4-20 and
“Specifying Chart Properties” on page 3-30 for more information.

Apply and Save the Changes
Click on the Apply button to save the properties. Click on the OK button to
save the properties and close the dialog box.

Outputting Events to Simulink

5-19

Outputting Events to Simulink
These tasks describe how to add and define the necessary fields for an event
output to Simulink:

• Add an event parented by the chart

• Choose Output to Simulink as the Scope

• Specify the Trigger type

• Apply and save the changes

Add an Event Parented by the Chart
These steps describe how to add an event:

1 Choose Explore from the graphics editor Tools menu to invoke the
Explorer.

2 Select the chart that you want output the event.

3 Choose Event from the Explorer Add menu. The Event dialog box appears.

4 Enter a name in the Name field.

Choose Output to Simulink as the Scope
Once you have chosen the chart as the parent, the choice of valid scopes
includes Local, Input from Simulink, or Output to Simulink.

Choose Output to Simulink as the Scope of the event.

When you define an event to be an Output to Simulink, a Simulink output
port is added to the Stateflow block. Output events from the Stateflow block to
the Simulink model are scalar.

Apply the Changes
Click on the Apply button to save the properties. Click on the OK button to
save the properties and close the dialog box.

5 Defining Stateflow Interfaces

5-20

Outputting Data to Simulink
These tasks describe how to add and define the necessary fields for a data
output to Simulink:

• Add a data object parented by the chart

• Choose Output to Simulink as the Scope

• Specify data attributes

• Apply and save the changes

Add a Data Object Parented by the Chart
These steps describe how to add a data object:

1 Choose Explore from the graphics editor Tools menu to invoke the
Explorer.

2 Select the chart that you want to output data.

3 Choose Data from the Explorer Add menu. The Data dialog box is displayed.

4 Enter a name in the Name field.

Choose Output to Simulink as the Scope
Once you have chosen the chart as the parent, the choice of valid scopes
includes Local, Input from Simulink, or Output to Simulink.

Choose Output to Simulink as the Scope of the data.

When you define a data object to be an Output to Simulink, a Simulink output
port is added to the Stateflow block. Output data objects from the Stateflow
block to the Simulink model are scalar.

Specify Data Attributes
If you want to change the defaults, you can specify data Units, Type, Initial,
Minimum, and Maximum values.

Outputting Data to Simulink

5-21

Note If you want the output port corresponding to this output data item to
emit data of type other than double, you must select the chart’s strong data
typing option. See “Defining Input Data” on page 4-20 and “Specifying Chart
Properties” on page 3-30 for more information.

Apply the Changes
Click on the Apply button to save the properties. Click on the OK button to
save the properties and close the dialog box.

5 Defining Stateflow Interfaces

5-22

MATLAB Workspace

What Is the MATLAB Workspace?
The MATLAB workspace is the area of memory accessible from the MATLAB
command line. The workspace maintains the set of variables built up during a
MATLAB session.

See the MATLAB online or printed documentation for more information.

Using the MATLAB Workspace
You can use the MATLAB workspace to initialize chart data at the beginning
of a simulation and you can save chart data to the workspace at the end of a
simulation. See “Initialize from” on page 4-18 and “Save final value to base
workspace” on page 4-19 for more information.

Two commands, who and whos, show the current contents of the workspace. The
who command gives a short list, while whos also gives size and storage
information.

To delete all the existing variables from the workspace, enter clear at the
MATLAB command line.

Defining the Interface to External Sources

5-23

Defining the Interface to External Sources

What Are External Sources?
Any code that is not part of a Stateflow diagram, the Stateflow machine, nor
the Simulink model is considered external. You can include external source
code in the Target Options section of the Target Builder dialog box. (See
“Building Custom Code into the Target” on page 9-3.)

See Chapter 4, “Defining Events and Data,” for information on defining events
and data.

Exported Events
Consider a real world example to clarify when to define an Exported event. You
have purchased a communications pager. There are a few people you want to
be able to page you, so you give those people your personal pager number.
These people now know your pager number and can call that number and page
you whatever you might be doing. You do not usually page yourself, but you can
do so. Telling someone the pager number does not mean they have heard and
recorded the number. It is the other person’s responsibility to retain the
number.

Similarly, you may want an external source (outside the Stateflow diagram,
the machine, and the Simulink model) to be able to broadcast an event. By
defining an event’s scope to be Exported, that event is made available to
external sources for broadcast purposes. Exported events must be parented by
the machine because the machine is the (highest) level in the Stateflow
hierarchy that can interface to external sources. The machine also retains the
ability to broadcast the Exported event. Exporting the event does not imply
anything about what the external source does with the information. It is the
responsibility of the external source to include the Exported event (in the
manner appropriate to the source) to make use of the right to broadcast the
event.

If the external source is another machine, then one machine defines an
Exported event and the other machine defines the same event to be Imported.
Stateflow generates the appropriate export and import event code for both
machines.

5 Defining Stateflow Interfaces

5-24

This example shows the format required in the external code source (custom
code) to take advantage of an Exported event.

External code source

void func_example(void)
{

extern void broadcast_e (void);
...

}
...
external_broadcast_e();

e is added and
defined as an Exported
event.

 e is imported in the
external code source.

Stateflow generates this
code:

void broadcast_e (void)
{

...

}

/* code based on the event
definition

*/

Defining the Interface to External Sources

5-25

Imported Events
Consider the same pager example discussed for Exported events to clarify the
use of Imported events. Someone buys a pager and indicates you may want to
use this number to page them in the future. They tell you the pager number
and you take note of the number by writing it down. You can then use the
number to page that person.

Similarly, you may want to broadcast an event that is defined externally
(outside the Stateflow diagram, the machine, and the Simulink model). By
defining an event’s scope to be Imported, the event can be broadcast anywhere
within the hierarchy of that machine (including any offspring of the machine).
An Imported event’s parent is external. However, the event needs an ‘adoptive’
parent to resolve symbols for code generation. An Imported event’s adoptive
parent must be the machine because the machine is the (highest) level in the
Stateflow hierarchy that can interface to external sources. It is the
responsibility of the external source to make the Imported event available (in
the manner appropriate to the source).

If the external source is another machine, it must define the same event to be
Exported. Stateflow generates the appropriate import and export event code
for both machines.

5 Defining Stateflow Interfaces

5-26

This example shows the format required in the external code source (custom
code) to make the event available.

Exported Data
You may want an external source (outside the Stateflow diagram, the machine,
and the Simulink model) to be able to access a data object. By defining a data
object’s scope to be Exported, that data is made accessible to external sources.
Exported data must be parented by the machine because the machine is the
(highest) level in the Stateflow hierarchy that can interface to external sources.
The machine also retains the ability to access the Exported data object.
Exporting the data object does not imply anything about what the external
source does with the data. It is the responsibility of the external source to

e is added and
defined as an Imported
event.

External code source

{
void broadcast_e (void)

...
}

e is exported in the
external code source.

Stateflow generates
this code for the
Imported event:

extern void broadcast_e (void);

Defining the Interface to External Sources

5-27

include the Exported data object (in the manner appropriate to the source) to
make use of the right to access the data.

If the external source is another machine, then one machine defines an
Exported data object and the other machine defines the same data object to be
Imported. Stateflow generates the appropriate export and import data code for
both machines.

This example shows the format required in the external code source (custom
code) to import an Exported data object.

ext_data added and
defined as an Exported
data.

ext_data is defined
as imported in the
external code source

External code source

void func_example(void)
{

ext_data = 123;

...

}
...

extern int ext_data;

Stateflow generates this code:

int ext_data;

5 Defining Stateflow Interfaces

5-28

Imported Data
Similarly, you may want to access a data object that is externally (outside the
Stateflow diagram, the machine, and the Simulink model) defined. By defining
a data’s scope to be Imported, the data can be accessed anywhere within the
hierarchy of that machine (including any offspring of the machine). An
Imported data object’s parent is external. However, the data object needs an
‘adoptive’ parent to resolve symbols for code generation. An Imported data
object’s adoptive parent must be the machine because the machine is the
(highest) level in the Stateflow hierarchy that can interface to external sources.
It is the responsibility of the external source to make the Imported data object
available (in the manner appropriate to the source) .

If the external source is another machine, it must define the same data object
to be Exported. Stateflow generates the appropriate import and export data
code for both machines.

Defining the Interface to External Sources

5-29

This example shows the format required if the data is Imported from an
external code source (custom code).

ext_data added and
defined as an Imported
data.

ext_data is defined
as exported in the
external code source.

Stateflow generates this code:

extern int ext_data;

External code source

void func_example(void)
{

}
...

int ext_data;

5 Defining Stateflow Interfaces

5-30

6
Exploring and Searching
Charts

Overview . 6-2

Exploring Charts 6-3
Explorer Main Window 6-3
Moving Objects/Changing Parent 6-5
Moving Objects/Changing Index and Port Order 6-5
Deleting Objects 6-5
Editing Objects 6-5
Setting Properties 6-5
Renaming Objects 6-6
Transferring Object Properties 6-6

Searching Charts 6-8
Stateflow Finder 6-8
Finder Display Area 6-12

6 Exploring and Searching Charts

6-2

Overview
The Stateflow machine is the highest level in the Stateflow hierarchy. The
object hierarchy beneath the Stateflow machine consists of combinations of the
graphical and nongraphical objects. The data dictionary is the repository for all
Stateflow objects.

You can use the Stateflow Explorer and Simulink’s Find dialog box together to
browse and make changes to data dictionary objects.

Exploring Charts

6-3

Exploring Charts
The Explorer displays any defined events, data, and targets within an object
hierarchy where machines, charts, and states are potential parents.

You can create, modify, and delete events, data, and target objects using the
Explorer. You can also add events, data, and targets using the graphics editor
Add menu. (See “Defining Events” on page 4-2 for more information.) If you
add data or events via the Add menu, the chart is automatically defined as the
parent. If you add a target, the machine is defined as the parent. Targets can
only be parented by the machine. If you want to change the parent of a data or
event object, you must use the Explorer to do so. Similarly you must use the
Explorer if you want to delete an event, data, or target object.

Explorer Main Window
This is the Explorer main window showing the object hierarchy of an example
chart (explore_ex).

Machine

Chart

State

Hypertext
link to
parent

Event/Data

Properties

Message area

6 Exploring and Searching Charts

6-4

Object Hierarchy
The Object Hierarchy (machines, charts, and states) is displayed in the
left-hand pane. A ‘+’ character indicates that the hierarchy can be expanded by
double-clicking on that entry (or by clicking on the ‘+’ character. A ‘-’ character
indicates there is nothing to expand. Clicking on an entry in the Object
Hierarchy selects that entry.

Contents Pane
Data, and target objects parented by the currently selected object in the Object
Hierarchy are displayed in the Contents pane. Each type of object has an icon.
The entry for a data object displays selected properties of the object.

These are the possible parent and object combinations.

Targets are parented exclusively by machines. (Although all other
combinations are valid, there are guidelines describing how Scope affects
choice of parent and vice-versa.) The default sfun simulation target is
automatically defined for every machine. If you have a Real-Time Workshop
license, a Real-Time Workshop target is also automatically added:

• When you select Open RTW Target from the graphics editor Tools menu

• If you build a target that includes a Stateflow machine using Real-Time
Workshop

See “Configuring a Target” on page 9-9 for information on customizing the
simulation target. See “Adding a Target to a State Machine’s Target List” on
page 9-9 for information on creating targets to generate code using the
Stateflow Coder product.

For convenience, a hypertext link to the parent of the currently selected object
in the Object Hierarchy is included following the Contents of: label. Click on
the hypertext link to bring that object to the forefront.

Machine Chart State

Event yes yes yes

Data yes yes yes

Target yes no no

Exploring Charts

6-5

Moving Objects/Changing Parent
To create desired behavior you may need to change the parent of an event, data,
or target object.

Objects in the Contents of: pane can be moved in the hierarchy to change an
object’s parent. Click and drag an object from the Contents of: pane to a new
location in the Object Hierarchy pane to change its parent. If the object is the
current parent, an X with a circle around it is displayed (indicating this is an
invalid operation). If you move an object to a level in the hierarchy that does
not support that object’s current Scope property, the Scope is changed to
Local.

Moving Objects/Changing Index and Port Order
To ensure proper ordering of event and/or data Input from or Output to
Simulink you may need to move some of these objects in the Explorer.

Click and drag a data object with Input from or Output to Simulink Scope to
a new position in the Contents of: pane Data list to change its port number.
Click and drag an event Input from or Output to Simulink Scope to a new
position in the Contents of: pane Event list to change its index number.

Deleting Objects
Select the object in the Contents of: pane and press the Delete key or select
Cut (Ctrl+X) from the Edit menu to delete an object.

Editing Objects
To edit a state or chart displayed in the Explorer’s Object Hierarchy pane,
select the object, display its context menu by clicking the right mouse button,
and select Edit from the context menu. Stateflow displays the selected object
in the Stateflow editor.

Setting Properties
To set an object’s properties, select it in the Object Hierarchy or Contents
pane and then select Properties from the Explorer’s Edit or context menu.

6 Exploring and Searching Charts

6-6

Renaming Objects
To rename an event or data item, double click the object’s name in the
Contents pane. An edit field containing the name appears. Edit the name in
the edit field and then click anywhere outside the edit field to apply the
changes.

Transferring Object Properties
The Explorer allows you to transfer the properties of one object to another
object or set of objects.

To transfer an object’s properties:

1 Select the object in the contents pane of the Explorer.

2 Select Pickup Properties from the Explorer’s shortcut or Edit menu.

Exploring Charts

6-7

3 Select the object or objects to which you want to transfer the properties.

4 Select Apply Properties from the Explorer’s shortcut menu or Edit menu if
only one object is selected or from the Edit menu if more than one object is
selected.

Stateflow applies the copied properties to the selected object(s).

6 Exploring and Searching Charts

6-8

Searching Charts
The Simulink Find dialog box allows you to search Stateflow models for
Simulink and Stateflow objects, such as states and transitions, that meet
criteria you specify. Simulink displays any objects that satisfy the search
criteria in the dialog box’s search results pane. To display the Find dialog box,
select Find from the Stateflow Editor’s Tools menu or from the Simulink
model window’s Edit menu. See Searching for Objects in the Simulink
documentation for information on using the Find dialog box.

Note On most platforms, the Simulink Find dialog replaces the Stateflow
Finder provided by previous releases of Stateflow. However, the Simulink
Find dialog box may not be available on some platforms (see the Simulink
Release Notes in the online documentation for a list of platforms where the
Simulink Find dialog box is not available). If the Simulink Find dialog box is
not available, the original Stateflow Finder appears when you select Find
from the Stateflow Editor’s Tools menu. The following section explains how to
use the original Stateflow Finder to search for objects.

Stateflow Finder
The Finder operates on a machine. This is the Finder dialog box.

String Criteria
You specify the string by entering the text to search for in the Look for: text
box. The search is case sensitive. All text fields are included in the search by

Stateflow Machine name

Searching Charts

6-9

default. Alternatively, you can search in specific text fields by using the drop
down Look in: list box to choose one of these options:

• Any

Search the state and transition labels, object names, and descriptions of the
specified object types for the string specified in the Look for: field.

• Label

Search the state and transition labels of the specified object types for the
string specified in the Look for: field.

• Name

Search the name fields of the specified object types for the string specified in
the Look for: field.

• Description

Search the description fields of the specified object types for the string
specified in the Look for: field.

• Document Link

Search the document link fields of the specified object types for the string
specified in the Look for: field.

• Custom Code

Search custom code for the string specified in the Look for: field.

Search Method
By default the Search Method is Normal/Wildcard (regular expression).
Alternatively, you can click on the Exact Word match option if you are
searching for a particular sequence of one or more words.

A regular expression is a string composed of letters, numbers, and special
symbols that defines one or more strings. Some characters have special
meaning when used in a regular expression while other characters are
interpreted as themselves. Any other character appearing in a regular
expression is ordinary, unless a \ precedes it.

6 Exploring and Searching Charts

6-10

These are the special characters supported by Stateflow.

Object Type
Specify the object type(s) to search by toggling the radio boxes. A check mark
indicates that the object is included in the search criteria. By default, all object
types are included in the search criteria. Object Types include:

• States

• Transitions

• Junctions

• Events

• Data

• Targets

Find Button
Click on the Find button to initiate the search operation. The data dictionary
is queried and the results are listed in the display area.

Matches
The Matches field displays the number of objects that match the specified
search criteria.

Character Description

^ Start of string

$ End of string

. Any character

\ Quote the next character

* Match zero or more

+ Match one or more

[] Set of characters

Searching Charts

6-11

Refine Button
After the results of a search are displayed, enter additional search criteria and
click on the Refine button to narrow the previously entered search criteria. An
ampersand(&) is prepended to the search criteria in the Search History: field
to indicate a logical AND with any previously specified search criteria.

Search History
The Search History text box displays the current search criteria. Click on the
pull-down list to display search refinements. An ampersand is prepended to the
search criteria to indicate a logical AND with any previously specified search
criteria. You can undo a previously specified search refinement by selecting a
previous entry in the search history. By changing the Search History selection
you force the Finder to use the specified criteria, as the current, most refined,
search output.

Clear Button
Click the Clear button to clear any previously specified search criteria. Results
are removed and the search criteria is reset to the default settings.

Close Button
Click the Close button to close the Finder.

Help Button
Click the Help button to display the Stateflow online help in an HTML browser
window.

6 Exploring and Searching Charts

6-12

Finder Display Area
The Finder display area looks like this.

The display area is divided into these fields.

All fields are truncated to maintain column widths. The Parent, Source, and
Destination fields are truncated from the left so that the name at the end of

Field Description

Type The object type is listed in this field. States with exclusive (OR)
decomposition are followed by an (O). States with parallel
(AND) decomposition are followed by (A).

Label The string label of the object is listed in this field.

Chart The title of the Stateflow diagram (Stateflow
block) is listed in this field.

Parent This object’s parent in the hierarchy.

Source Source object of a transition.

Destination Destination object of a transition.

Searching Charts

6-13

the hierarchy is readable. The entire field contents, including the truncated
portion, is used for resorting.

Each field label is also a button. Click on the button to have the list sorted
based on that field. If the same button is pressed twice in a row, the sort
ordering is reversed.

The Finder can be resized vertically to display more output rows, but cannot be
expanded horizontally.

Click on a graphical entry to highlight that object in the graphical editor
window. Double-click on an entry to invoke the Property dialog box for that
object. Right-click the entry to display a pop-up menu that allows you to
explore, edit, or display the properties of that entry.

Representing Hierarchy
The Finder displays Parent, Source, and Destination fields to represent the
hierarchy. The Stateflow diagram is the root of the hierarchy and is
represented by the / character. Each level in the hierarchy is delimited by a .
character. The Source and Destination fields use the combination of the ~ and
the . characters to denote that the state listed is relative to the Parent
hierarchy.

6 Exploring and Searching Charts

6-14

Using this Stateflow diagram as an example,

what are the values for the Parent, Source, and Destination fields for the
transition from A2a to A2b?

The transition is within state A2. State A2’s parent is state A and state A’s
parent is the Stateflow diagram itself. /A.A2 is the notation for state A2a’s
parent. State A2a is the transition source and state A2b is the destination.
These states are at the same level in the hierarchy. ~.A2a is the relative
hierarchy notation for the source of the transition. The full path is /A.A2.A2a.
The relative hierarchy notation for the destination of the transition is ~.A2b.
The full path is /A.A2.A2b.

7

Notations

Overview . 7-2

States . 7-7

Transitions . 7-14

Connective Junctions 7-28

History Junctions 7-35

Action Language 7-37

7 Notations

7-2

Overview

What Is Meant by Notation?
A notation defines a set of objects and the rules that govern the relationships
between those objects. Stateflow notation provides a common language to
communicate the design information conveyed by a Stateflow diagram.

Stateflow notation consists of:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

• Action language

Motivation Behind the Notation
Chapter 3, “Creating Charts,” and Chapter 4, “Defining Events and Data,”
discuss how to use the product to create the various objects. Knowing how to
create the objects is the first step to designing and implementing a Stateflow
diagram. The next step is understanding and using the notation to create a
well-designed and efficient Stateflow diagram.

This chapter focuses on the notation: the supported relationships amongst the
graphical objects and the action language that dictates the actions that can be
associated with states and transitions. The Stateflow notation supports many
different ways of representing desired system behavior. The representation
you choose directly affects the efficiency of the generated code.

How the Notation Checked Is Checked
The parser evaluates the graphical and nongraphical objects in each Stateflow
machine against the supported Stateflow notation and the action language
syntax. Errors are displayed in informational pop-up windows. See “Parsing”
on page 9-20 for more information.

Some aspects of the notation are verified at runtime. Using the Debugger you
can detect runtime errors such as:

• State inconsistencies

• Conflicting transitions

Overview

7-3

• Data range violations

• Cyclic behavior

You can modify the notation to resolve runtime errors. See Chapter 10,
“Debugging,” for more information on debugging runtime errors.

Graphical Objects
These are the graphical objects in the notation that are on the toolbar.

A transition is a curved line with an arrowhead that links one graphical object
to another. Either end of a transition can be attached to a source and a
destination object. The source is where the transition begins and the
destination is where the transition ends.

Name Notation Toolbar Icon

State

Box

Graphical Function

History junction

Default transition

Connective junction

7 Notations

7-4

Event and data objects do not have graphical representations. These objects
are defined using the Stateflow Explorer. See Chapter 4, “Defining Events and
Data.”

The Data Dictionary
The data dictionary is a database containing all the information about the
graphical and nongraphical objects. Data dictionary entries for graphical
objects are created automatically as the objects are added and labeled. You
explicitly define nongraphical objects in the data dictionary by using the
Explorer. The parser evaluates entries and relationships between entries in
the data dictionary to verify the notation is correct.

How Hierarchy Is Represented
The notation supports the representation of object hierarchy in Stateflow
diagrams. Some of the objects are graphical while others are nongraphical.

An example of a graphical hierarchy is the ability to draw one state within the
boundaries of another state. Such a representation indicates that the inner
state is a substate or child of the outer state or superstate. The outer state is
the parent of the inner state. In the simple case of a Stateflow diagram with a
single state, the Stateflow diagram is that state’s parent. Transitions are
another example of graphical hierarchy. A transition’s hierarchy is represented
by determining its parent, source, and destination. In a Stateflow diagram you
can see a transition’s parent, source, and destination.

Data and event object are nongraphical and their hierarchy is represented
differently (using the Explorer) from the graphical object hierarchy (using the
graphics editor).

All of the objects in the notation support the representation of hierarchy.

See Chapter 4, “Defining Events and Data,” and Chapter 5, “Defining Stateflow
Interfaces,” for information and examples of representing data and event
objects.

For more information on how the hierarchy representations are interpreted,
see Chapter 8, “Semantics.”

Overview

7-5

Example: Representing State Hierarchy
This is an example of how state hierarchy is represented.

The Stateflow diagram is the parent of Car_done. Car_done is the parent state
of the Car_made and Car_shipped states. Car_made is also a parent to the
Parts_assembled and Car_painted states. Parts_assembled and Car_painted
are children of the Car_made state.

The machine is the root of the Stateflow hierarchy. The Stateflow diagram is
represented by the / character. Each level in the hierarchy of states is
separated by the . character. The full hierarchy representation of the state
names in this example is:

• /Car_done

• /Car_done.Car_made

• /Car_done.Car_shipped

• /Car_done.Car_made.Parts_assembled

• /Car_done.Car_made.Painted

7 Notations

7-6

Example: Representing Transition Hierarchy
This is an example of how transition hierarchy is represented.

A transition’s hierarchy is described in terms of the transition’s parent, source,
and destination. The parent is the lowest level that the transition (source and
destination) is contained within. The machine is the root of the hierarchy. The
Stateflow diagram is represented by the / character. Each level in the hierarchy
of states is separated by the . (period) character. The three transitions in the
example are represented in the following table.

Example: Representing Event Hierarchy
Event hierarchy is defined by specifying the parent of an event when you create
it. Events are nongraphical and are created using either the graphics editor
Add menu or the Explorer. Using hierarchy you can optimize event processing
through directed event broadcasting. Directed event broadcasting is the ability
to qualify who can send and receive event broadcasts.

See “Defining Events” on page 4-2 for more information.

See “Action Language” on page 7-37 for more information on the notation for
directed event broadcasting.

Transition Label Parent Source Destination

switch_off / /Power_on.Low.Heat /Power_off

switch_high /Power_on /Power_on.Low.Heat /Power_on.High

switch_cold /Power_on.Low /Power_on.Low.Heat /Power_on.Low.Cold

States

7-7

States

Overview
A state describes a mode of a reactive system. States in a Stateflow diagram
represent these modes. The activity or inactivity of the states dynamically
changes based on events and conditions.

Every state has hierarchy. In a Stateflow diagram consisting of a single state,
that state’s parent is the Stateflow diagram itself. A state also has history that
applies to its level of hierarchy in the Stateflow diagram. States can have
actions that are executed in a sequence based upon action type. The action
types are: entry, during, exit, or on event_name actions.

This table shows the button icon and a short description of a state.

Superstate
A state is a superstate if it contains other states, called substates.

Substate
A state is a substate if it exists in another state.

State Decomposition
A state has a decomposition when it consists of one or more substates. A
Stateflow diagram that contains at least one state also has decomposition.
Representing hierarchy necessitates some rules around how states can be
grouped in the hierarchy. A superstate has either parallel (AND) or exclusive
(OR) decomposition. When looking at any one point in the hierarchy, all
substates of a superstate must be of the same type.

Name Button Icon Description

State Use a state to depict a mode of the
system.

7 Notations

7-8

Parallel (AND) State Decomposition
Parallel (AND) state decomposition is indicated when states have dashed
borders. This representation is appropriate if all states at that same level in the
hierarchy are active at the same time. The activity within parallel states is
essentially independent. The children of parallel (AND) decomposition parents
are AND states.

Exclusive (OR) State Decomposition
Exclusive (OR) state decomposition is represented by states with solid borders.
Exclusive (OR) decomposition is used to describe system modes that are
mutually exclusive. When a state has exclusive (OR) decomposition, only one
substate can be active at a time. The children of exclusive (OR) decomposition
parents are OR states.

Active and Inactive States
States have the Boolean characteristic of being active or inactive. The
occurrence of events drives the execution of the Stateflow diagram. At any
point in the execution of a Stateflow diagram, there will be some combination
of active and inactive states. These are some possible combinations:

• Multiple active states with parallel (AND) decomposition

In this example, when state A is active, A1 and A2 are active.

States

7-9

• An active state with parallel (AND) decomposition and an active state with
exclusive (OR) decomposition

In this example, state B, state C, and C.C2 or state B, state C, and C.C1 are active
at the same time.

• One active state with exclusive (OR) decomposition

In this example, state B or state A.A1 or state A.A2 is active at any one time.

When a given state is active, all of its ancestor states are also active. See
“Semantics of Active and Inactive States” on page 8-5 for more information.

Combination States
When a Stateflow diagram has states with parallel (AND) decomposition,
multiple states can be active simultaneously. A combination state is a
notational representation of those multiple states. For example, a Stateflow
diagram could have two active states with parallel (AND) decomposition, A.B
and X.Y. Using combination state notation, the activity of the Stateflow
diagram is denoted by (A.B,X.Y).

A state is characterized by its label. The label consists of the name of the state
optionally followed by a / character and additional keywords defined below. The
label appears on the top left-hand corner of the state rectangle.

7 Notations

7-10

Labeling a State
The ? character is the default state label. State labels have this general format:

name/
entry:
during:
exit:
on event_name:

The keywords entry (shorthand en), during (shorthand du), exit (shorthand
ex), and on identify actions associated with the state. You can specify multiple
actions by separating them by any of these:

• Carriage return

• Semicolon

• Comma

Specify multiple on event_name actions for different events by adding multiple
on event_name lines specifying unique values for event_name.

Each keyword is optional and positionally independent. You can specify none,
some, or all of them. The colon after each keyword is required. The slash
following the state name is optional as long as it is followed by a carriage
return.

If you enter the name and slash followed directly by an action or actions
(without the entry keyword), the action(s) is interpreted as entry action(s).
This shorthand is useful if you are only specifying entry actions.

See “What Is an Action Language?” on page 7-37 for more information on the
action language.

States

7-11

Example: Labeling a State
This example shows the state labeling formats and explains the components of
the label.

Name. The name of the state forms the first part of the state label. Valid state
names consist of alphanumeric characters and can include the _ character, e.g.,
Transmission or Green_on.

The use of hierarchy provides some flexibility in the naming of states. The
name that you enter as part of the label must be unique when preceded by the
hierarchy of its ancestor states. The name as stored in the data dictionary
consists of the text you entered as the label on the state, preceded by the
hierarchy of its ancestor states separated by periods. States can have the same
name appear on the graphical representation of the state, as long as the full
names within the data dictionary are unique. The parser indicates an error if
a state does not have a unique name entry in the data dictionary for that
Stateflow diagram.

See “Example: Unique State Names” on page 7-12 for an example of uniquely
named states.

In this example, the state names are On and Off.

Entry Action. In the example, state On has entry action on_count=0. The value
of on_count is reset to 0 whenever state On’s entry action is executed.

See “Semantics of State Actions” on page 8-7 for information on how and when
entry actions are executed.

7 Notations

7-12

During Action. In the example, state On has two during actions light_on() and
on_count++. These actions are executed whenever state On’s during action is
executed.

See “Semantics of State Actions” on page 8-7 for information on how and when
during actions are executed.

Exit Action. In the example, state Off has exit action light_off(). This action
is executed whenever state Off’s exit action is executed.

See “Semantics of State Actions” on page 8-7 for information on how and when
exit actions are taken.

On Event_name Action. In the example, state Off has the on event_name,
power_outage. When the event power_outage occurs, the action
handle_outage() is executed.

See “Semantics of State Actions” on page 8-7 for information on how and when
on event_name actions are taken.

Example: Unique State Names
This example shows how hierarchy supports unique naming of states.

Each of these states has a unique name because of the hierarchy of the
Stateflow diagram. Although the name portion of the label on the state itself is
not unique, when the hierarchy is prepended to the name in the data
dictionary, the result is unique. The full names for the states as seen in the
data dictionary are:

• Ride1.On

• Ride1.Off

States

7-13

• Ride2.On

• Ride2.Off

Although the names On and Off are duplicated, the full names are unique
because of the hierarchy of the Stateflow diagram. The example intentionally
contains only states for simplification purposes.

7 Notations

7-14

Transitions
In most cases, a transition represents the passage of the system from a source
object to a destination object. There are transitions between states. There are
also transitions between junctions and states. A transition is represented by a
line segment ending with an arrow drawn from a source object to the
destination object. This is an example of a transition from a source state, On, to
a destination state, Off.

Junctions divide a transition into segments. Each segment is evaluated in the
process of determining the validity of the transition from a source to a
destination. This is an example of a transition with segments.

A default transition is one special type of transition that has no source object.

Transitions

7-15

Labeling a Transition
A transition is characterized by its label. The label can consist of an event, a
condition, a condition action, and/or a transition action. The ? character is the
default transition label. Transition labels have this general format.

event [condition]{condition_action}/transition_action

Replace, as appropriate, your names for event, condition, condition action, and
transition action. Each part of the label is optional.

Example: Transition Label
This example shows the format of a transition label.

Event. The specified event is what causes the transition to be taken, provided
the condition, if specified, is true. Specifying an event is optional. Absence of an
event indicates that the transition is taken upon the occurrence of any event.
Multiple events are specified using the OR logical operator (|).

In this example, the broadcast of event E, triggers the transition from On to Off,
provided the condition, [off_count==0], is true.

Condition. A condition is a Boolean expression to specify that a transition occurs
given that the specified expression is true. Enclose the condition in square
brackets. See “Conditions” on page 7-59 for information on the condition
notation.

In this example, the condition [off_count==0] must evaluate as true for the
condition action to be executed and for transition from the source to the
destination to be valid.

7 Notations

7-16

Condition Action. The condition action is executed as soon as the condition, if
specified, is evaluated as true and before the transition destination has been
determined to be valid.

If the transition consists of multiple segments, the condition action is executed
as soon as the condition, if specified, is evaluated as true and before the entire
transition is determined as valid. Enclose the condition action in curly
brackets. See “Action Language” on page 7-37 for more information on the
action language.

If no condition is specified, the implied condition is always evaluated as true.

In this example, if the condition [off_count==0] is true, the condition action,
off_count++ is immediately executed.

Transition Action. The transition action is executed after the transition
destination has been determined to be valid provided the condition, if specified,
is true. If the transition consists of multiple segments, the transition action is
only executed when the entire transition path to the final destination is
determined as valid. Precede the transition action with a backslash. See
“Action Language” on page 7-37 for more information on the action language.

In this example, if the condition [off_count==0] is true, and the destination
state Off is valid, the transition action Light_off is executed.

Valid Transitions
In most cases, a transition is valid when the source state of the transition is
active and the transition label is valid. Default transitions are slightly different
because there is no source state. Validity of a default transition to a substate is
evaluated when there is a transition to its superstate assuming the superstate
is active. This labeling criterion applies to both default transitions and general
case transitions. These are possible combinations of valid transition labels.

Transition Label Is Valid If:

Event only That event occurs

Event and condition That event occurs and the condition is true

Condition only Any event occurs and the condition is true

Transitions

7-17

Types of Transitions
The notation supports these transition types:

• Transitions to and from exclusive (OR) states

See “Example: Transitions to and from Exclusive (OR) States” on page 7-18
for an example of this type of transition.

• Transitions to and from junctions

See “Example: Transitions to and from Junctions” on page 7-18 for an
example of this type of transition.

• Transitions to and from exclusive (OR) superstates

See “Example: Transitions to and from Exclusive OR Superstates” on
page 7-19 for an example of this type of transition.

• Transitions from no source to an exclusive (OR) state (default transitions)

See “Default Transitions” on page 7-21 for examples of this type of
transition.

• Inner state transitions

See “What Is an Inner Transition?” on page 7-24 for examples of this type of
transition.

• Self loop transitions

See “What Is a Self Loop Transition?” on page 7-27 for examples of this type
of transition.

Action only Any event occurs

Not specified Any event occurs

Transition Label Is Valid If:

7 Notations

7-18

Example: Transitions to and from Exclusive (OR) States
This example shows simple transitions to and from exclusive (OR) states.

The transition On→Off is valid when state On is active and the event
Switch_off occurs. The transition Off→On is valid when state Off is active and
event Switch_on occurs.

See “Transitions to and from Exclusive (OR) States” on page 8-8 for more
information on the semantics of this notation.

Example: Transitions to and from Junctions
This example shows transitions to and from a connective junction.

This is a Stateflow diagram of a soda machine. The Stateflow diagram is called
when the external event Selection_made occurs. The Stateflow diagram

State On is initially active.

State Waiting is initially active.

Transitions

7-19

awakens with the Waiting state active. The Waiting state is a common source
state. When the event Selection_made occurs, the Stateflow diagram
transitions from the Waiting state to one of the other states based on the value
of the variable select. One transition is drawn from the Waiting state to the
connective junction. Four additional transitions are drawn from the connective
junction to the four possible destination states.

See “Example: Transitions from a Common Source to Multiple Destinations” on
page 8-36 for more information on the semantics of this notation.

Example: Transitions to and from Exclusive OR Superstates
This example shows transitions to and from an exclusive (OR) superstate and
the use of a default transition.

This is an expansion of the soda machine Stateflow diagram that includes the
initial example of the On and Off exclusive (OR) states. On is now a superstate
containing the Waiting and soda choices states. The transition Off→On is valid
when state Off is active and event Switch_on occurs. Now that On is a
superstate, this is an explicit transition to the On superstate.

To be a valid transition to a superstate, the destination substate must be
implicitly defined. By defining that the Waiting substate has a default
transition, the destination substate is implicitly defined. This notation defines
that the resultant transition is Off→ On.Waiting.

7 Notations

7-20

The transition On→Off is valid when state On is active and event Switch_off
occurs. When the Switch_off event occurs, no matter which of the substates of
On is active, we want to transition to the Off state. This top-down approach
supports the ability to simplify the Stateflow diagram by looking at the
transitions out of the superstate without considering all the details of states
and transitions within the superstate.

See “Default Transitions” on page 8-18 for more information on the semantics
of this notation.

Example: Transitions to and from Substates
This example shows transitions to and from exclusive (OR) substates.

Two of the substates of the On superstate are further defined to be superstates
of their own. The Stateflow diagram shows a transition from one OR substate
to another OR substate. The transition Waiting.Ready→Orange.In_motion is
valid when state Waiting.Ready is active and event Selection_made occurs,
providing that the select variable equals one. This transition defines an explicit
exit from the Waiting.Ready state and an implicit exit from the Waiting
superstate. On the destination side, this transition defines an implicit entry
into the Orange superstate and an explicit entry into the Orange.In_motion
substate.

See “Example: Transition from a Substate to a Substate” on page 8-11 for more
information on the semantics of this notation.

State Waiting is active initially.
State Ready is active initially.

Transitions

7-21

Default Transitions
Default transitions are primarily used to specify which exclusive (OR) state is
to be entered when there is ambiguity among two or more neighboring
exclusive (OR) states. For example, default transitions specify which substate
of a superstate with exclusive (OR) decomposition the system enters by default
in the absence of any other information such as a history junction. Default
transitions are also used to specify that a junction should be entered by default.
The default transition object is a transition with a destination but no source
object.

Click on the Default transition button in the toolbar, and click on a location in
the drawing area close to the state or junction you want to be the destination
for the default transition. Drag the mouse to the destination object to attach
the default transition. In some cases it is useful to label default transitions.

One of the most common Stateflow programming mistakes is to create multiple
exclusive (OR) states without a default transition. In the absence of the default
transition, there is no indication of which state becomes active by default. Note
that this error is flagged when you simulate the model using the Debugger with
the State Inconsistencies option enabled.

This table shows the button icon and briefly describes a default transition.

Labeling Default Transitions
In some circumstances, you may want to label default transitions. You can
label default transitions as you would other transitions. For example, you may
want to specify that one state or another should become active depending upon
the event that has occurred. In another situation, you may want to have
specific actions take place that are dependent upon the destination of the
transition.

Name Button Icon Description

Default
transition

Use a default transition to indicate, when
entering this level in the hierarchy, which
object becomes active by default.

7 Notations

7-22

Note When labeling default transitions, take care to ensure that there will
always be at least one valid default transition. Otherwise, the state machine
can transition into an inconsistent state.

Example: Use of Default Transitions
This example shows a use of default transitions.

When the Stateflow diagram is first awakened, the default transition to
superstate S defines that of states S and B; the transition to state S is valid.
State S has two substates, A and D. Which substate does the system transfer to?
It cannot transfer to both of them since A and D are not parallel (AND) states.
Again, this kind of ambiguity is cleared up by defining a default transition to
substate D.

Suppose at a different execution point, the Stateflow diagram is awakened by
the occurrence of event d and state B is active. The transition B→S is valid.
When the system enters state S, it enters substate D because the default
transition is defined.

See “Default Transitions” on page 8-18 for more information on the semantics
of this notation.

The default transitions are required for the Stateflow diagram to execute.
Without the default transition to state S, when the Stateflow diagram is
awakened, none of the states become active. You can detect this situation at
runtime by checking for state inconsistencies. See “Animation Controls” on
page 10-8 for more information.

Transitions

7-23

Example: Default Transition to a Junction
This example shows a default transition to a connective junction.

In this example, the default transition to the connective junction defines that
upon entering the Counting state, the destination is determined by the
condition on each transition segment.

See “Example: Default Transition to a Junction” on page 8-19 for more
information on the semantics of this notation.

Example: Default Transition with a Label
This example shows a use of labeling default transitions.

7 Notations

7-24

If state A is initially active and either e1 or e2 occurs, the transition from state
A to superstate B is valid. The substates B1 and B2 both have default
transitions. The default transitions are labeled to specify the event that
triggers the transition. If event e1 occurs, the transition A→B1 is valid. If event
e2 occurs, the transition A→B2 is valid.

See “Example: Labeled Default Transitions” on page 8-21 for more information
on the semantics of this notation.

What Is an Inner Transition?
An inner transition is a transition that does not exit the source state. Inner
transitions are most powerful when defined for superstates with exclusive (OR)
decomposition. Use of inner transitions can greatly simplify a Stateflow
diagram.

Example One: Before Using an Inner Transition
This is an example of a Stateflow diagram that could be simplified by using an
inner transition.

Transitions

7-25

Any event occurs and awakens the Stateflow diagram. The default transition
to the connective junction is valid. The destination of the transition is
determined by [C_one] and [C_two]. If [C_one] is true, the transition to A1 is
true. If [C_two] is true, the transition to A2 is valid. If neither [C_one] nor
[C_two] is true, the transition to A3 is valid. The transitions among A1, A2, and
A3 are determined by E_one, [C_one], and [C_two].

Example One: Inner Transition to a Connective Junction
This example shows a solution to the same problem (Example One) using an
inner transition to a connective junction.

Any event occurs and awakens the Stateflow diagram. The default transition
to the connective junction is valid. The destination of the transitions is
determined by [C_one] and [C_two].

The Stateflow diagram is simplified by using an inner transition in place of the
many transitions amongst all the states in the original example. If state A is
already active, the inner transition is used to re-evaluate which of the
substates of state A is to be active. When event E_one occurs, the inner
transition is potentially valid. If [C_one] is true, the transition to A1 is valid. If
[C_two] is true, the transition to A2 is valid. If neither [C_one] nor [C_two] is
true, the transition to A3 is valid. This solution is much simpler than the
previous one.

See “Example: Processing One Event with an Inner Transition to a Connective
Junction” on page 8-26 for more information on the semantics of this notation.

State A1 is

active.
initially

7 Notations

7-26

Example: Inner Transition to a History Junction
This example shows an inner transition to a history junction.

State Power_on.High is initially active. When event Reset occurs, the inner
transition to the history junction is valid. Because the inner transition is valid,
the currently active state, Power_on.High, will be exited. When the inner
transition to the history junction is processed, the last active state,
Power_on.High, becomes active (is re-entered). If Power_on.Low was active
under the same circumstances, Power_on.Low would be exited and re-entered
as a result. The inner transition in this example is equivalent to drawing an
outer self-loop transition on both Power_on.Low and Power_on.High.

See “Example: Use of History Junctions” on page 7-35 for another example
using a history junction.

See “Example: Inner Transition to a History Junction” on page 8-29 for more
information on the semantics of this notation.

Transitions

7-27

What Is a Self Loop Transition?
A transition segment from a state to a connective junction that has an outgoing
transition segment from the connective junction back to itself is a self loop. This
is an example of a self loop.

See these sections for examples of self loops:

• “Example: Connective Junction Special Case - Self Loop” on page 7-30

See “Example: Self Loop” on page 8-32 for information on the semantics of
this notation.

• “Example: Connective Junction and For Loops” on page 7-31

See “Example: For Loop Construct” on page 8-33 for information on the
semantics of this notation.

7 Notations

7-28

Connective Junctions

What Is a Connective Junction?
A connective junction is used to represent a decision point in the Stateflow
diagram. The connective junction enables representation of different transition
paths. Connective junctions are used to help represent:

• Variations of an if-then-else decision construct by specifying conditions on
some or all of the outgoing transitions from the connective junction.

• A self loop back to the source state if none of the outgoing transitions is valid.

• Variations of a for loop construct by having a self loop transition from the
connective junction back to itself.

• Transitions from a common source to multiple destinations.

• Transitions from multiple sources to a common destination.

• Transitions from a source to a destination based on common events

See “Connective Junctions” on page 8-31 for a summary of the semantics of
connective junctions.

What Is Flow Diagram Notation?
Flow diagram notation is essentially logic represented without the use of
states. In some cases, using flow diagram notation is a closer representation of
the system’s logic and avoids the use of unnecessary states. Flow diagram
notation is an effective way to represent common code structures like for loops
and if-then-else constructs. The use of flow diagram notation in a Stateflow
diagram can produce more efficient code optimized for memory use. Reducing
the number of states optimizes memory use.

Flow diagram notation is represented through combinations of self-loops to
connective junctions, transitions to and from connective junctions, and inner
transitions to connective junctions. The key to representing flow diagram
notation is in the labeling of the transitions (specifically the use of action
language).

Flow diagram notation and state-to-state transition notation seamlessly
coexist in the same Stateflow diagram.

Connective Junctions

7-29

Example: Connective Junction with All Conditions Specified
When event e occurs, state A transfers to D, E, or F depending on which of the
conditions [c1], [c2], or [c3] is met. With the alternative representation,
using a connective junction, the transition from A to the connective junction
occurs first, provided the event has occurred. A destination state is then
determined based on which of the conditions [c1], [c2], or [c3] is satisfied.
The transition from the source state to the connective junction is labeled by the
event, and those from the connective junction to the destination states by the
conditions. No event is applicable in a transition from a connective junction to
a destination state.

See “Example: If-Then-Else Decision Construct” on page 8-31 for information
on the semantics of this notation.

Example: Connective Junction with One Unconditional Transition
The transition A→B is valid when A is active, event E_one occurs, and [C_one]
is true. The transition A→C is valid when A is active, event E_one occurs, and
[C_two] is true. Otherwise, given A is active and event E_one occurs, the

7 Notations

7-30

transition A→D is valid. If you do not explicitly specify condition [C_three], it
is implicit that the transition condition is not [C_one] and not [C_two].

See “Example: If-Then-Else Decision Construct” on page 8-31 for information
on the semantics of this notation.

Example: Connective Junction Special Case - Self Loop
In some situations, the transition event occurs, but the condition is not met.
The transition cannot be taken, but an action is generated. You can represent
this situation by using a connective junction or a self loop (transition from state
to itself).

In state A, event e occurs. If condition [c1] is met, transition A→B is taken,
generating action a1. The transition A→A is valid if event e occurs and [c1] is
not true. In this self loop, the system exits and re-enters state A, and executes
action a2. An alternative representation using a connective junction is shown.

Connective Junctions

7-31

The two representations are equivalent; in the one that uses a connective
junction, it is not necessary to specify condition [~c1]explicitly, as it is implied.

See “Example: Self Loop” on page 8-32 for information on the semantics of this
notation.

Example: Connective Junction and For Loops
This example shows a combination of flow diagram notation and state
transition notation. Self loops to connective junctions can be used to represent
for loop constructs.

In state A, event E occurs. The transition from state A to state B is valid if the
conditions along the transition path are true. The first segment of the
transition does not have a condition, but does have a condition action. The
condition action, {i=0}, is executed. The condition on the self loop is evaluated
as true and the condition actions {i++;func1()} execute. The condition
actions execute until the condition, [i<10], is false. The condition actions on
both the first segment and the self loop to the connective junction effectively
execute a for loop (for i values 0 to 9 execute func1()). The for loop is
executed outside of the context of a state. The remainder of the path is

7 Notations

7-32

evaluated. Since there are no conditions, the transition completes at the
destination, state B.

See “Example: For Loop Construct” on page 8-33 for information on the
semantics of this notation.

Example: Flow Diagram Notation
This example shows a real-world use of flow diagram notation and state
transition notation. This Stateflow diagram models an 8-bit analog-to-digital
converter (ADC).

Consider the case when state Sensor.Low is active and event UPDATE occurs.
The inner transition from Sensor to the connective junction is valid. The next
transition segment has a condition action, {start_adc()}, which initiates a
reading from the ADC. The self-loop on the second connective junction
repeatedly tests the condition [adc_busy()]. This condition evaluates as true
once the reading settles (stabilizes) and the loop completes. This self loop is
used to introduce the delay needed for the ADC reading to settle. The delay
could have been represented by using another state with some sort of counter.
Using flow notation in this example avoids an unnecessary use of a state and
produces more efficient code.

The next transition segment condition action, {sensorValue=read_adc()},
puts the new value read from the ADC in the data object sensorValue. The
final transition segment is determined by the value of sensorValue. If
[sensorValue <100] is true, the state Sensor.Low is the destination. If

Connective Junctions

7-33

[sensorValue >200] is true, the state Sensor.High is the destination.
Otherwise, state Sensor.Normal is the destination state.

See “Example: Flow Diagram Notation” on page 8-34 for information on the
semantics of this notation.

Example: Connective Junction from a Common Source to Multiple
Destinations
Transitions A→B and A→C share a common source state A. An alternative
representation uses one arrow from A to a connective junction, and multiple
arrows labeled by events from the junction to the destination states B and C.

See “Example: Transitions from a Common Source to Multiple Destinations” on
page 8-36 for information on the semantics of this notation.

7 Notations

7-34

Example: Connective Junction Common Events
Suppose, for example, that when event e1 occurs, the system, whether it is in
state A or B, will transfer to state C. Suppose that transitions A→C and B→C are
triggered by the same event e1, so that both destination state and trigger event
are common between the transitions. There are three ways to represent this:

• By drawing transitions from A and B to C, each labeled with e1

• By placing A and B in one superstate S, and drawing one transition from S to
C, labeled with e1

• By drawing transitions from A and B to a connective junction, then drawing
one transition from the junction to C, labeled with e1

This Stateflow diagram shows the simplification using a connective junction.

See “Example: Transitions from a Source to a Destination Based on a Common
Event” on page 8-38 for information on the semantics of this notation.

History Junctions

7-35

History Junctions
A history junction is used to represent historical decision points in the
Stateflow diagram. The decision points are based on historical data relative to
state activity. Placing a history junction in a superstate indicates that
historical state activity information is used to determine the next state to
become active. The history junction applies only to the level of the hierarchy in
which it appears.

Example: Use of History Junctions
This example shows a use of history junctions.

Superstate Power_on has a history junction and contains two substates. If
state Power_off is active and event switch_on occurs, the system could enter
either Power_on.Low or Power_on.High. The first time superstate Power_on is
entered, substate Power_on.Low will be entered because it has a default
transition. At some point afterwards, if state Power_on.High is active and event
switch_off occurs, superstate Power_on is exited and state Power_off
becomes active. Then event switch_on occurs. Since Power_on.High was the
last active state, it becomes active again. After the first time Power_on becomes
active, the choice between entering Power_on.Low or Power_on.High is
determined by the history junction.

See “Example: Default Transition and a History Junction” on page 8-20 for
more information on the semantics of this notation.

History Junctions and Inner Transitions
By specifying an inner transition to a history junction, you can specify that,
based on a specified event and/or condition, the active state is to be exited and
then immediately re-entered.

7 Notations

7-36

See “Example: Inner Transition to a History Junction” on page 7-26 for an
example of this notation.

See “Example: Inner Transition to a History Junction” on page 8-29 for more
information on the semantics of this notation.

Action Language

7-37

Action Language

What Is an Action Language?
You sometimes want actions to take place as part of Stateflow diagram
execution. The action can be executed as part of a transition from one state to
another, or it can depend on the activity status of a state. Transitions can have
condition actions and transition actions. States can have entry, during, exit,
and, on event_name actions.

An action can be a function call, an event to be broadcast, a variable to be
assigned a value, etc. The action language defines the categories of actions you
can specify and their associated notations. Violations of the action language
notation are flagged as errors by the parser. This section describes the action
language notation rules.

Objects with Actions
This Stateflow diagram shows examples of the possible transition and state
actions.

Transition
action

State exit
action

State during
action

Condition
action

State entry
and on

action
event_name

7 Notations

7-38

Transition Action Notation
Actions can be associated with transitions via the transition’s label. The
general format of a transition label is shown below.

When the event occurs, the transition is evaluated. The condition action is
executed as soon as the condition is evaluated as true and before the transition
destination has been determined to be valid. Enclose the condition action in
curly brackets. Specifying a transition action means that the action is executed
when the transition is taken, provided the condition, if specified, is true.

State Action Notation
Actions can be associated with states via the state’s label by defining entry,
during, exit, and on event_name keywords. The general format of a state label
is shown below.

The / (forward slash) following the state name is optional. See “Semantics of
State Actions” on page 8-7 for information on the semantics of state actions.
See the examples of the semantics of state actions in Chapter 8, “Semantics,” .

Action Language

7-39

Keywords
These Stateflow keywords have special meaning in the notation.

Keyword Shorthand Meaning

change(data_name) chg(data_name) Generates a local event when
the value of data_name
changes.

during du Actions that follow are
executed as part of a state’s
during action.

entry en Actions that follow are
executed as part of a state’s
entry action.

entry(state_name) en(state_name) Generates a local event when
the specified state_name is
entered.

exit ex Actions that follow are
executed as part of a state’s
exit action.

exit(state_name) ex(state_name) Generates a local event when
the specified state_name is
exited.

in(state_name) none A condition function that is
evaluated as true when the
state_name specified as the
argument is active.

on event_name none Actions that follow are
executed when the
event_name specified as an
argument to the on keyword
is broadcast.

7 Notations

7-40

Note Use of these keywords in any way other than their intended meaning
within the rules of the notation will cause unpredictable results.

Action Language Components
See the following sections for descriptions and usage of action language
components:

• “Bit Operations” on page 7-41

• “Binary Operations” on page 7-42

• “Unary Operations” on page 7-44

• “Unary Actions” on page 7-44

• “User-Written Functions” on page 7-45

• “ml() Functions” on page 7-47

• “MATLAB Name Space Operator” on page 7-50

• “Data and Event Arguments” on page 7-53

• “Arrays” on page 7-53

• “Pointer and Address Operators” on page 7-54

• “Hexadecimal Notation” on page 7-55

• “Typecast Operators” on page 7-55

• “Event Broadcasting” on page 7-56

send(event_name,state_name) none Send the event_name
specified to the state_name
specified (directed event
broadcasting).

matlab(evalString,arg1,arg2,...) ml() Action specifies a call using
MATLAB function notation.

matlab.MATLAB_workspace_data ml. Action specifies a call using
the ml name space notation.

Keyword Shorthand Meaning

Action Language

7-41

• “Directed Event Broadcasting” on page 7-57

• “Conditions” on page 7-59

• “Time Symbol” on page 7-60

• “Literals” on page 7-60

• “Continuation Symbols” on page 7-61

• “Comments” on page 7-61

• “Use of the Semicolon” on page 7-61

• “Temporal Logic Operators” on page 7-61

• “Temporal Logic Events” on page 7-66

Bit Operations
You can enable C-like bit operations. See “Preserve symbol names” on
page 9-14 for more information. If you have bitops enabled, some of the logical
binary operators and unary operators are interpreted as bitwise operators. See
“Binary Operations” on page 7-42 and “Unary Operations” on page 7-44 for
specific interpretations.

7 Notations

7-42

Binary Operations
Binary operations fall into these categories.

Numerical

Logical
(The default setting; bit operations are not enabled.)

Example Description

a + b Addition of two operands

a - b Subtraction of one operand from the other

a * b Multiplication of two operands

a / b Division of one operand by the other

a %% b Modulus

Example Description

a == b Comparison of equality of two operands

a & b

a && b

Logical AND of two operands

a | b

a || b

Logical OR of two operands

a ~= b

a != b

Comparison of inequality of two operands

a > b Comparison of the first operand greater than the
second operand

a < b Comparison of the first operand less than the
second operand

Action Language

7-43

Logical
(Bit operations are enabled.)

a >= b Comparison of the first operand greater than or
equal to the second operand

a <= b Comparison of the first operand less than or equal
to the second operand

Example Description

a == b Comparison of equality of two operands

a && b Logical AND of two operands

a & b Bitwise AND of two operands

a || b Logical OR of two operands

a | b Bitwise OR of two operands

a ~= b

a != b

a <> b

Comparison of inequality of two operands

a > b Comparison of the first operand greater than the
second operand

a < b Comparison of the first operand less than the
second operand

a >= b Comparison of the first operand greater than or
equal to the second operand

a <= b Comparison of the first operand less than or equal
to the second operand

a ^ b Bitwise XOR of two operands

Example Description

7 Notations

7-44

Unary Operations
These unary operations are supported: ~, !, -.

Unary Actions
These unary actions are supported.

Assignment Operations
These assignment operations are supported.

Example Description

~a Logical not of a

Complement of a (if bitops is enabled)

!a Logical not of a

-a Negative of a

Example Description

a++ Increment a

a-- Decrement a

Example Description

a = expression Simple assignment

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

Action Language

7-45

These additional assignment operations are supported when bit operations are
enabled.

User-Written Functions
You can specify calls to user-written functions in the action language. These
guidelines apply to user-written function calls:

• Define a function by its name, any arguments in parenthesis, and an
optional semicolon.

• String parameters to user-written functions are passed between single
quotes. For example, func(‘string’).

• An action can nest function calls.

• An action can invoke functions that return a scalar value (of type double in
the case of MATLAB functions and of any type in the case of C user-written
functions).

Example: Function Call Transition Action
These are example formats of function calls using transition action notation.

Example Description

a |= expression Equivalent to a = a | expression (bit operation)

a &= expression Equivalent to a = a & expression (bit operation)

a ^= expression Equivalent to a = a ^ expression (bit operation)

7 Notations

7-46

If S1 is active, event e occurs, c is true, and the transition destination is
determined, then a function call is made to function_name with arg1, arg2,
and arg3. The transition action in the transition from S2 to S3 shows a function
call nested within another function call.

Example: Function Call State Action
These are example formats of function calls using state action notation.

When the default transition into S1 occurs, S1 is marked active and then its
entry action, a function call to function_name1 with the specified arguments,
is executed and completed. If S2 is active and an event occurs, the during
action, a function call to function_name3 with the specified arguments,
executes and completes.

Passing Arguments by Reference
A Stateflow action can pass arguments to a user-written function by reference
rather than by value. In particular, an action can pass a pointer to a value
rather than the value itself. For example, an action could contain the following
call.

f(&x);

where f is a custom-code C-function that expects a pointer to x as an argument.

If x is the name of a data item defined in the SF data dictionary, the following
rules apply.

Action Language

7-47

• Do not use pointers to pass data items input from Simulink.

If you need to pass an input item by reference, for example, an array, assign
the item to a local data item and pass the local item by reference.

• If x is a Simulink output data item having a data type other than double, the
chart property Use strong data typing with Simulink IO must be on (see
“Specifying Chart Properties” on page 3-30).

• If the data type of x is boolean, the coder option Use bitsets to store
state-configuration must be turned off (see “Use bitsets for storing state
configuration” on page 9-16).

• If x is an array with its first index property set to zero (see “Array” on
page 4-17), then the function must be called as follows.
f(&(x[0]));

This will pass a pointer to the first element of x to the function.

• If x is an array with its first index property set to a non-zero number (for
example, 1), the function must be called in the following way.

f(&(x[1]));

This will pass a pointer to the first element of x to the function.

ml() Functions
You can specify calls to MATLAB functions that return scalars (of type double)
in the action language.

ml() Function Format
The format of the ml() function is

ml(evalString, arg1, arg2, arg3,...);

where the return value is scalar (of type double).

If the result returned is:

• A vector, then the first element is returned.

• A void, then an appropriate format must be used (an assignment statement
cannot be used).

• A string, a structure, or a cell array, then the behavior is undefined.

7 Notations

7-48

evalString is a string that is evaluated in the MATLAB workspace with
formatted substitutions of arg1, arg2, arg3, etc.

Example One: ml() Function Call
This is an example of an ml() function call as part of a condition action.

If S1 is active, an event occurs, and if [c_one] is true, the expression sin(x) is
evaluated in the MATLAB workspace and the return value assigned to a. (x
must be a variable in the MATLAB workspace and a is a data object in the
Stateflow diagram). The result of the evaluation must be a scalar. If x is not
defined in the MATLAB workspace, a runtime error is generated.

Example Two: ml() Function Call
This is an example of a ml() function call that passes Stateflow data as
arguments. Notice the use of format specifiers %g and %d as are used in the C
language function printf.

Action Language

7-49

These data objects are defined:

• d1 and a are Local data objects of type double in the Stateflow diagram

• d2 is an Output to Simulink data object of type integer in the Stateflow
diagram

• x must be defined in the MATLAB workspace prior to the execution of the
condition action where it is used; if it is not defined, a runtime error is
generated.

These three values are passed as arguments to a user-written function. The %g
and %d characters are format specifiers that print the current values of d1 and
d2 into evalString at appropriate locations.

For example if d1 equals 3.4 and d2 equals 5, using the format specifiers these
are mapped into my_func(3.4,x,5). This string is then sent to MATLAB and
is executed in the MATLAB workspace.

Example Three: ml() Function Call
This is an example of a ml() function call with string arguments.

These data objects are defined in the Stateflow diagram:

• d1 is a Local data object of type double

• d2 is an Output to Simulink data object of type integer

The user-written function my_string_func expects four arguments, where the
second argument is a string. The %g and %d characters are format specifiers
that print the current values of d1 and d2 into evalString at appropriate
locations. Notice that the string is enclosed in two single quotes.

7 Notations

7-50

Use Guidelines
These guidelines apply to ml() functions:

• The first argument must be a string.

• If there are multiple arguments, ensure that the number and types of format
specifiers (%g, %d, etc.) match the actual number and types of the
arguments. These format specifiers are the same as those used in the C
function printf.

• A scalar (of type double) is returned.

• ml() function calls can be nested.

• Calls to ml() functions should be avoided if you plan to build an RTW target
that includes code from Stateflow Coder.

MATLAB Name Space Operator
The MATLAB name space operator, ml, is used to get and set variables in the
MATLAB workspace. The ml operator can also be used to access MATLAB
functions that operate on scalars in a convenient format.

Use the notation, a = ml.func_name();, to call a MATLAB function that does
not accept any arguments. Omission of the empty brackets causes a search for
a variable of the name specified. The variable will not be found and a runtime
error is encountered during simulation.

Use of the ml name space operator should be avoided if you plan to build a
Real-Time Workshop target that includes code from Stateflow Coder.

Action Language

7-51

Example: Using the ml Operator to Access MATLAB Workspace Variables
This is an example of using the ml operator to get and set variables in the
MATLAB workspace.

These data objects are defined in the Stateflow diagram:

• d1 and d2 are Local data objects

• a, x, and y must be defined in the MATLAB workspace prior to starting the
simulation; otherwise a runtime error is generated at the execution time of
the transition

The values of a and y are accessed in the MATLAB workspace and used in the
expression with the Local data objects d1 and d2. The result of the expression
is assigned to the MATLAB workspace variable x. If x does not exist, it is
automatically created in the MATLAB workspace.

Example: Using the ml Operator to Access MATLAB Functions
This is an example of using the ml operator to access MATLAB functions.

7 Notations

7-52

These data objects are defined:

• d1 and d2 are Local data objects defined in the Stateflow diagram

• x is assumed to be a two dimensional array in the MATLAB workspace

• y is assumed to be a MATLAB workspace vector.

• z is assumed to be a MATLAB workspace scalar variable.

x, y, and z must be defined in the MATLAB workspace prior to starting the
simulation; otherwise a runtime error is generated at the execution time of the
transition.

A MATLAB function named my_func is called with these arguments:

1 x(1,3)

2 y(3)

3 z

4 d1

5 d2

6 string 'abcdefgh'

The result of my_func() (if it is a scalar) is assigned to element (5, 6, 7) of a
multidimensional matrix v in the MATLAB workspace. If v does not exist prior
to the execution of this statement, then it is automatically created by MATLAB
workspace.

If my_func() returns a vector, the first element is assigned to v(5,6,7). If it is
a structure, a cell array, or a string, the result is undefined.

The ml() Function Versus ml Name Space Operator
It is recommended to use the ml name space operator wherever possible. The
ml name space operator is faster and more robust than the ml() function. If you
need to work with MATLAB matrices instead of scalars, then use the ml()
function.

Action Language

7-53

In this example, the ml() function must be used to specify an array argument.

a = ml('my_function([1:4],%g)',d1);

x is a MATLAB workspace matrix. my_function is a MATLAB function that
expects a vector as its first argument and a scalar as a second argument.

Data and Event Arguments
Unqualified data and event objects are assumed to be defined at the same level
in the hierarchy as the reference to them in the action language. Stateflow will
attempt to resolve the object name by searching up the hierarchy. If the data
or event object is parented elsewhere in the hierarchy, you need to define the
hierarchy path explicitly.

Arrays
You can use arrays in the action language.

Examples of Array Assignments
Use C style syntax in the action language to access array elements.

local_array[1][8][0] = 10;

local_array[i][j][k] = 77;

var = local_array[i][j][k];

As an exception to this style, scalar expansion is available within the action
language. This statement assigns a value of 10 to all of the elements of the
array local_array.

local_array = 10;

Scalar expansion is available for performing general operations. This
statement is valid if the arrays array_1, array_2 and array_3 have the same
value for the Sizes property.

array_1 = (3*array_2) + array_3;

7 Notations

7-54

Using Arrays with Simulink
Array data objects that have a scope of Input from Simulink or Output to
Simulink are constrained to one dimension. Use a single scalar value for the
Sizes property of these arrays.

Arrays and Custom Code
The action language provides the same syntax for Stateflow arrays and custom
code arrays. Any array variable that is referred to in a Stateflow chart but is
not defined in the data dictionary is identified as a custom code variable.

Pointer and Address Operators
The Stateflow action language includes address and pointer operators. The
address operator is available for use with both custom code variables and
Stateflow variables. The pointer operator is available for use with custom code
variables only.

Syntax Examples
These examples show syntax that is valid for use with custom code variables
only.

varStruct.field = <expression>;

(*varPtr) = <expression>;

varPtr->field = <expression>;

myVar = varPtr->field;

varPtrArray[index]->field = <expression>;

varPtrArray[expression]->field = <expression>;

myVar = varPtrArray[expression]->field;

These examples show syntax that is valid for use with both custom code
variables and Stateflow variables.

varPtr = &var;

Action Language

7-55

ptr = &varArray[<expression>];

*(&var) = <expression>;

function(&varA, &varB, &varC);

function(&sf.varArray[<expr>]);

Syntax Error Detection
The action language parser uses a relaxed set of restrictions. As a result, many
syntax errors will not be trapped until compilation.

Hexadecimal Notation
The action language supports C style hexadecimal notation (for example,
0xFF). You can use hexadecimal values wherever you can use decimal values.

Typecast Operators
A typecast operator converts a value to a specified data type. Stateflow typecast
operators have the same notation as MATLAB typecast operators:

op(v)

where op is the typecast operator (e.g, int8, int16, int32, single, double) and
v is the value to be converted.

Normally you do not need to use typecast operators in actions. This is because
Stateflow checks whether the types involved in a variable assignment differ
and, if so, inserts a typecast operator in the generated code. (Stateflow uses the
typecast operator of the language in which the target is generated, typically C.)
However, if external code defines either or both types, Stateflow cannot
determine which typecast, if any, is required. If a type conversion is necessary,
you must use a Stateflow action language typecast operator to tell Stateflow
which target language typecast operator to generate.

For example, suppose varA is a data dictionary value of type double and y is an
external variable of type 32-bit integer. The following notation

y = int32(varA)

7 Notations

7-56

tells Stateflow to generate a typecast operator that converts the value of varA
to a 32-bit integer before the value is assigned to y.

Event Broadcasting
You can specify an event to be broadcast in the action language. Events have
hierarchy (a parent) and scope. The parent and scope together define a range
of access to events. It is primarily the event’s parent that determines who can
trigger on the event (has receive rights). See “Name” on page 4-5 for more
information.

Broadcasting an event in the action language is most useful as a means of
synchronization amongst AND (parallel) states. Recursive event broadcasts
can lead to definition of cyclic behavior. Cyclic behavior can be detected only
during simulation.

Example: Event Broadcast State Action
This is an example of the event broadcast state action notation.

See “Example: Event Broadcast State Action” on page 8-42 for information on
the semantics of this notation.

Action Language

7-57

Example: Event Broadcast Transition Action
This is an example of the event broadcast transition action notation.

See “Example: Event Broadcast Transition Action (Nested Event Broadcast)”
on page 8-46 for information on the semantics of this notation.

Directed Event Broadcasting
You can specify a directed event broadcast in the action language. Using a
directed event broadcast, you can broadcast a specific event to a specific
receiver state. Directed event broadcasting is a more efficient means of
synchronization amongst AND (parallel) states. Using directed event
broadcasting improves the efficiency of the generated code. As is true in event
broadcasting, recursive event broadcasts can lead to definition of cyclic
behavior.

Note An action in one chart cannot broadcast events to states defined in
another chart.

The format of the directed broadcast is

send(event_name,state_name)

7 Notations

7-58

where event_name is broadcast to state_name (and any offspring of that state
in the hierarchy). The state_name argument can include a full hierarchy path.
For example,

send(event_name, chart_name.state_name1.state_name2)

The state_name specified must be active at the time the send is executed for
the state_name to receive and potentially act on the directed event broadcast.

Example: Directed Event Broadcast Using send
This is an example of a directed event broadcast using the
send(event_name,state_name) transition action as a transition action.

In this example, event E_one must be visible in both A and B. See “Example:
Directed Event Broadcasting Using Qualified Event Names” on page 8-56 for
information on the semantics of this notation.

Action Language

7-59

Example: Directed Event Broadcast Using Qualified Event Names
This example illustrates use of a qualified event name to in an event broadcast.

See “Example: Directed Event Broadcasting Using Qualified Event Names” on
page 8-56 for information on the semantics of this notation.

Conditions
You sometimes want transitions or actions associated with transitions to take
place only if a certain condition is true. Conditions are placed within []. These
are some guidelines for defining conditions:

• The expression must be a Boolean expression of some kind. The condition
must evaluate to either true (1) or false(0).

• The expression can consist of:

- Boolean operators that make comparisons between data and numeric
values

7 Notations

7-60

- Any function that returns a Boolean value

- The In(state_name)condition function that is evaluated as true when the
state specified as the argument is active. The full state name, including
any ancestor states, must be specified to avoid ambiguity.

Note A chart cannot use the In condition function to trigger actions based
on the activity of states in other charts.

- Temporal conditions (see “Temporal Logic Operators” on page 7-61)

• The condition expression should not call a function that causes the Stateflow
diagram to change state or modify any variables.

• Boolean expressions can be grouped using & for expressions with AND
relationships and | for expressions with OR relationships.

• Assignment statements are not valid condition expressions.

• Unary increment and decrement actions are not valid condition expressions.

Time Symbol
You can use the letter t to represent absolute time in simulation targets. This
simulation time is inherited from Simulink.

For example, the condition [t - On_time > Duration] specifies that the
condition is true if the value of On_time subtracted from the simulation time t,
is greater than the value of Duration.

The meaning of t for nonsimulation targets is undefined since it is dependent
upon the specific application and target hardware.

Literals
Place action language you want the parser to ignore but you want to appear as
entered in the generated code within $ characters. For example,

$
ptr -> field = 1.0;
$

The parser is completely disabled during the processing of anything between
the $ characters. Frequent use of literals is discouraged.

Action Language

7-61

Continuation Symbols
Enter the characters ... at the end of a line to indicate the expression continues
on the next line.

Comments
These comment formats are supported:

• % MATLAB comment line

• // C++ comment line

• /* C comment line */

Use of the Semicolon
Omitting the semicolon after an expression displays the results of the
expression in the MATLAB command window. If you use a semicolon, the
results are not displayed.

Temporal Logic Operators
Temporal logic operators are Boolean operators that operate on recurrence
counts of Stateflow events. Stateflow defines the following temporal operators

• after
• before
• at
• every

The following sections explain the syntax and meaning of these operators and
gives examples of their usage.

Usage Rules
The following rules apply generally to use of temporal logic operators.

• The recurring event on which a temporal operator operates is called the base
event. Any Stateflow event can serve as a base event for a temporal operator.

Note that temporal logic operators cannot operate on recurrences of implicit
events, such as state entry or exit events.

7 Notations

7-62

• Temporal logic operators can appear only in conditions on transitions
originating from states and in state actions.

Note that this means you cannot use temporal logic operators as conditions
on default transitions or flow graph transitions.

The state on which the temporally conditioned transition originates or in
whose during action the condition appears is called the temporal operator’s
associated state.

• You must use event notation (see “Temporal Logic Events” on page 7-66) to
express temporal logic conditions on events in state during actions.

The following diagram illustrates the usage and terminology that apply to
temporal logic operators.

After Operator

Syntax
after(n, E)

where E is the base event for the operator and n is any expression that
evaluates to a positive integer value.

Conditional
Notation Associated State

Base Event

Event Notation

Action Language

7-63

Semantics
The after operator is true if the base event E has occurred n times since the
operator’s associated state was activated. Otherwise, it is false.

Note The after operator resets its counter for E to 0 each time the associated
state is activated.

Usage
The following example illustrate use of the after operator in a transition
expression.

CLK[after(10, CLK) && temp == COLD]

This example permits a transition out of the associated state only if there have
been 10 occurrences of the CLK event since the state was activated and the temp
data item has the value COLD.

The next example illustrates usage of event notation for temporal logic
conditions in transition expressions.

after(10, CLK)[temp == COLD]

This example is semantically equivalent to the first example.

The next example illustrates setting a transition condition for any event visible
in the associated state while it is activated.

[after(10, CLK)]

This example permits a transition out of the associated state on any event after
10 occurrences of the CLK event since activation of the state.

The next two examples underscore the semantic distinction between an after
condition on its own base event and an after condition on a nonbase event.

CLK[after(10,CLK)]
ROTATE[after(10,CLK]

The first expression says that the transition must occur as soon as 10 CLK
events have occurred after activation of the associated state. The second
expression says that the transition may occur no sooner than 10 CLK events

7 Notations

7-64

after activation of the state, but possibly later, depending on when the
ROTATION event occurs.

The next example illustrates usage of an after event in a state’s during action.

Heater_on
on after(5*BASE_DELAY, CLK): status('heater on');

This example causes the Heater_on state to display a status message each CLK
cycle, starting 5*BASE_DELAY clock cycles after activation of the state. Note the
use of event notation to express the after condition in this example. Use of
conditional notation is not allowed in state during actions.

Before Operator

Syntax
before(n, E)

where E is the base event for the operator and n is any expression that
evaluates to a positive integer value.

Semantics
The before operator is true if the base event E has occurred less than n times
since the operator’s associated state was activated. Otherwise, it is false.

Note The before operator resets its counter for E to 0 each time the
associated state is activated.

Usage
The following example illustrate use of the before operator in a transition
expression.

ROTATION[before(10, CLK)]

This expression permits a transition out of the associated state only on
occurrence of a ROTATION event but no later than 10 CLK cycles after activation
of the state.

The next example illustrates usage of a before event in a state’s during action.

Action Language

7-65

Heater_on
on before(MAX_ON_TIME, CLK): temp++;

This example causes the Heater_on state to increment the temp variable once
per CLK cycle until the MAX_ON_TIME limit is reached.

At Operator

Syntax
at(n, E)

where E is the base event for the at operator and n is any expression that
evaluates to an integer value.

Semantics
The at operator is true only at the nth occurrence of the base event E since
activation of the associated state.

Note The at operator resets its counter for E to 0 each time the associated
state is activated.

Usage
The following example illustrate use of the at operator in a transition
expression.

ROTATION[at(10, CLK)]

This expression permits a transition out of the associated state only if a
ROTATION event occurs exactly 10 CLK cycles after activation of the state.

The next example illustrates usage of a before event in a state’s during action.

Heater_on
on at(10, CLK): status(“heater on”);

This example causes the Heater_on state to display a status message 10 CLK
cycles after activation of the associated state.

7 Notations

7-66

Every Operator

Syntax
every(n, E)

where E is the base event for the at operator and n is any expression that
evaluates to an integer value.

Semantics
The at operator is true at every nth occurrence of the base event E since
activation of the associated state.

Note The every operator resets its counter for E to 0 each time the associated
state is activated. As a result, this operator is useful only in state during
actions.

Usage
The following example illustrate use of the at operator in a state during.

Heater_on
on every(10, CLK): status(“heater on”;

This example causes the Heater_on state to display a status message every 10
CLK cycles after activation of the associated state.

Temporal Logic Events
Stateflow treats the following notations as equivalent

E[to(n, E) && C]
to(n, E)[C]

where to is a temporal operator (after, before, at, every), E is the operator’s
base event, n is the operator’s occurrence count, and C is any conditional
expression. For example, the following expressions are functionally equivalent
in Stateflow.

CLK[after(10, CLK) && temp == COLD]
after(10, CLK)[temp == COLD]

Action Language

7-67

The first notation is referred to as the conditional notation for temporal logic
operators and the second notation as the event notation.

Note You can use conditional and event notation interchangeably in
transition expressions. However, you must use the event notation in state
during actions.

Although temporal logic does not introduce any new events into a Stateflow
model, it is useful to think of the change of value of a temporal logic condition
as an event. For example, suppose that you want a transition to occur from
state A exactly 10 clock cycles after activation of the state. One way to achieve
this would be to define an event called ALARM and to broadcast this event 10 CLK
events after state A is entered. You would then use ALARM as the event that
triggers the transition out of state A.

An easier way to achieve the same behavior is to set a temporal logic condition
on the CLK event that triggers the transition out of state A.

CLK[after(10, CLK)]

Note that this approach does not require creation of any new events.
Nevertheless, conceptually it is useful to think of this expression as equivalent
to creation of an implicit event that triggers the transition. Hence, Stateflow’s
support for the equivalent event notation.

after(10, CLK)

Note that the event notation allows you to set additional constraints on the
implicit temporal logic “event,” for example,

after(10, CLK)[temp == COLD]

This expression says, “Exit state A if the temperature is cold but no sooner than
10 clock cycles.”

7 Notations

7-68

8

Semantics

Overview . 8-2

Event-Driven Effects on Semantics 8-5

Transitions to and from Exclusive (OR) States 8-8

Condition Actions 8-13

Default Transitions 8-18

Inner Transitions 8-23

Connective Junctions 8-31

Event Actions 8-40

Parallel (AND) States 8-42

Directed Event Broadcasting 8-54

Execution Order 8-58

Semantic Rules Summary 8-62

8 Semantics

8-2

Overview
Semantics describe how the notation is interpreted and implemented. A
completed Stateflow diagram communicates how the system will behave. A
Stateflow diagram contains actions associated with transitions and states. The
semantics describe in what sequence these actions take place during Stateflow
diagram execution.

Knowledge of the semantics is important to make sound Stateflow diagram
design decisions for code generation. Different use of notations results in
different ordering of simulation and generated code execution.

Stateflow semantics consist of rules for:

• Event broadcasting

• Processing states

• Processing transitions

• Taking transition paths

The details of Stateflow semantics are described largely by examples in this
chapter. The examples cover a range of various notations and combinations of
state and transition actions.

See “Semantic Rules Summary” on page 8-62 for a summary of the semantics.

List of Semantic Examples
This is a list of the semantic examples provided in this chapter.

Transitions to and from Exclusive (OR) States

• “Example: Processing of One Event” on page 8-8

• “Example: Processing of a Second Event” on page 8-9

• “Example: Processing of a Third Event” on page 8-10

• “Example: Transition from a Substate to a Substate” on page 8-11

Condition Actions

• “Example: Actions Specified as Condition Actions” on page 8-13

Overview

8-3

• “Example: Actions Specified as Condition and Transition Actions” on
page 8-14

• “Example: Using Condition Actions in For Loop Construct” on page 8-15

• “Example: Using Condition Actions to Broadcast Events to Parallel (AND)
States” on page 8-16

• “Example: Cyclic Behavior to Avoid When Using Condition Actions” on
page 8-17

Default Transitions

• “Example: Default Transition in an Exclusive (OR) Decomposition” on
page 8-18

• “Example: Default Transition to a Junction” on page 8-19

• “Example: Default Transition and a History Junction” on page 8-20

• “Example: Labeled Default Transitions” on page 8-21

Inner Transitions

• “Example: Processing One Event Within an Exclusive (OR) State” on
page 8-23

• “Example: Processing a Second Event Within an Exclusive (OR) State” on
page 8-24

• “Example: Processing a Third Event Within an Exclusive (OR) State” on
page 8-25

• “Example: Processing One Event with an Inner Transition to a Connective
Junction” on page 8-26

• “Example: Processing a Second Event with an Inner Transition to a
Connective Junction” on page 8-27

• “Example: Inner Transition to a History Junction” on page 8-29

Connective Junctions

• “Example: If-Then-Else Decision Construct” on page 8-31

• “Example: Self Loop” on page 8-32

• “Example: For Loop Construct” on page 8-33

• “Example: Flow Diagram Notation” on page 8-34

8 Semantics

8-4

• “Example: Transitions from a Common Source to Multiple Destinations” on
page 8-36

• “Example: Transitions from Multiple Sources to a Common Destination” on
page 8-37

• “Example: Transitions from a Source to a Destination Based on a Common
Event” on page 8-38

Event Actions

• “Example: Event Actions and Superstates” on page 8-40

Parallel (AND) States
• “Example: Event Broadcast State Action” on page 8-42

• “Example: Event Broadcast Transition Action (Nested Event Broadcast)” on
page 8-46

• “Example: Event Broadcast Condition Action” on page 8-50

Directed Event Broadcasting

• “Example: Directed Event Broadcast Using send” on page 8-54

• “Example: Directed Event Broadcasting Using Qualified Event Names” on
page 8-56

Event-Driven Effects on Semantics

8-5

Event-Driven Effects on Semantics

What Does Event-Driven Mean?
The Stateflow diagram executes only when an event occurs; an event occurs
and the Stateflow diagram is awakened to respond to the event. Exactly what
executes depends on the circumstances when the event occurs. Actions that are
to take place based on an event are atomic to that event. Once an action is
initiated, it is completed unless interrupted by an early return.

Top-Down Processing of Events
When an event occurs, it is processed from the top or root of the Stateflow
diagram down through the hierarchy of the Stateflow diagram. At each level in
the hierarchy, any during and on event_name actions for the active state are
executed and completed and then a check for the existence of a valid explicit or
implicit transition among the children of the state is conducted. The examples
in this chapter demonstrate the top-down processing of events.

Semantics of Active and Inactive States
This example shows the semantics of active and inactive states.

Initially the Stateflow diagram is asleep and both states are inactive. An event
occurs and the Stateflow diagram is awakened. This is the semantic sequence:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of the event. A valid default transition to state A is detected.

8 Semantics

8-6

2 State A is marked active.

3 State A entry actions execute and complete (entA()).

4 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

Event E_one occurs and the Stateflow diagram is awakened. State A is active.
This is the semantic sequence:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A valid transition is detected from state A to state B.

2 State A exit actions execute and complete (exitA()).

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions execute and complete (entB()).

6 The Stateflow diagram goes back to sleep, to be awakened by the next event.

State B is marked active.

State A is marked inactive.

Event-Driven Effects on Semantics

8-7

Semantics of State Actions
An entry action is executed as a result of any transition into the state. The
state is marked active before its entry action is executed and completed.

A during action executes to completion when that state is active and an event
occurs that does not result in an exit from that state. An on event_name action
executes to completion when the event specified, event_name, occurs and that
state is active. An active state executes its during and on event_name actions
before processing any of its children’s valid transitions. During and on
event_name actions are processed based on their order of appearance in the
state label.

An exit action is executed as a result of any transition out of the state. The
state is marked inactive after the exit action has executed and completed.

Semantics of Transitions
Transitions play a large role in defining the animation or execution of a system.
Transitions have sources and destinations; thus any actions associated with
the sources or destinations are related to the transition that joins them. The
type of the source and destination is equally important to define the semantics.

The examples provided in this chapter show how the semantics are defined.

8 Semantics

8-8

Transitions to and from Exclusive (OR) States

Example: Processing of One Event
This example shows the semantics of a simple transition focusing on the
implications of states being active or inactive.

Initially the Stateflow diagram is asleep. State On and state Off are OR states.
State On is active. Event E_one occurs and awakens the Stateflow diagram.
Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A valid transition from state On to state Off is detected.

2 State On exit actions execute and complete (ExitOn()).

3 State On is marked inactive.

4 The event E_one is broadcast as the transition action. The second generation
of event E_one is processed but because neither state is active, it has no
effect. (Had a valid transition been possible as a result of the broadcast of
E_one, the processing of the first broadcast of E_one would be preempted by
the second broadcast of E_one.)

5 State Off is marked active.

6 State Off entry actions execute and complete (entOff()).

State On is active.

Transitions to and from Exclusive (OR) States

8-9

7 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of the Stateflow diagram associated
with event E_one when state On was active.

Example: Processing of a Second Event
Using the same example, what happens when the next event, E_one, occurs?

Again, initially the Stateflow diagram is asleep. State Off is active. Event
E_one occurs and awakens the Stateflow diagram. Event E_one is processed
from the root of the Stateflow diagram down through the hierarchy of the
Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A valid transition from state Off to state On is detected.

2 State Off exit actions execute and complete (exitOff()).

3 State Off is marked inactive.

4 State On is marked active.

5 State On entry actions execute and complete (entOn()).

6 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State Off is active.

8 Semantics

8-10

This sequence completes the execution of the Stateflow diagram associated
with the second event E_one when state Off was active.

Example: Processing of a Third Event
Using the same example, what happens when a third event, E_two, occurs?

Again, initially the Stateflow diagram is asleep. State On is active. Event E_two
occurs and awakens the Stateflow diagram. Event E_two is processed from the
root of the Stateflow diagram down through the hierarchy of the Stateflow
diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_two. There is none.

2 State On during actions execute and complete (durOn()).

3 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of the Stateflow diagram associated
with event E_two when State On was active.

State On is active.

Transitions to and from Exclusive (OR) States

8-11

Example: Transition from a Substate to a Substate
This example shows the semantics of a transition from an OR substate to an
OR substate.

Initially the Stateflow diagram is asleep. State A.A1 is active. Event E_one
occurs and awakens the Stateflow diagram. Condition C_one is true. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition from state A.A1 to state B.B1.
(Condition C_one is true.)

2 State A executes and completes during actions (durA()).

3 State A.A1 executes and completes exit actions (exitA1()).

4 State A.A1 is marked inactive.

5 State A executes and completes exit actions (exitA()).

6 State A is marked inactive.

7 The transition action, A, is executed and completed.

8 State B is marked active.

9 State B executes and completes entry actions (entB()).

10 State B.B1 is marked active.

State A1 is
active.

8 Semantics

8-12

11 State B.B1 executes and completes entry actions (entB1()).

12 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Condition Actions

8-13

Condition Actions

Example: Actions Specified as Condition Actions
This example shows the semantics of a simple condition action in a multiple
segment transition.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Conditions C_one and C_two are false.
Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A valid transition segment from state A to a connective
junction is detected. The condition action, A_one, is detected on the valid
transition segment and is immediately executed and completed. State A is
still active.

2 Since the conditions on the transition segments to possible destinations are
false, none of the complete transitions is valid.

3 State A remains active. State A during action executes and completes
(durA()).

4 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State A is
active.

8 Semantics

8-14

This sequence completes the execution of the Stateflow diagram associated
with event E_one when state A was active.

Example: Actions Specified as Condition and Transition Actions
This example shows the semantics of a simple condition and transition action
specified on a transition from one exclusive (OR) state to another.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Condition C_one is true. Event E_one is
processed from the root of the Stateflow diagram down through the hierarchy
of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A valid transition from state A to state B is detected. The
condition, C_one is true. The condition action, A_one, is detected on the valid
transition and is immediately executed and completed. State A is still active.

2 State A exit actions execute and complete (ExitA()).

3 State A is marked inactive.

4 The transition action, A_two, is executed and completed.

5 State B is marked active.

6 State B entry actions execute and complete (entB()).

7 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State A is
active.

Condition Actions

8-15

This sequence completes the execution of the Stateflow diagram associated
with event E_one when state A was active.

Example: Using Condition Actions in For Loop Construct
Condition actions and connective junctions are used to design a for loop
construct. This example shows the use of a condition action and connective
junction to create a for loop construct.

See “Example: For Loop Construct” on page 8-33 to see the semantics of this
example.

State A is
active.

8 Semantics

8-16

Example: Using Condition Actions to Broadcast Events to Parallel (AND)
States
Condition actions can be used to broadcast events immediately to parallel
(AND) states. This example shows this use.

See “Example: Event Broadcast Condition Action” on page 8-50 to see the
semantics of this example.

State A2a
is active.is active.

State A1a

Condition Actions

8-17

Example: Cyclic Behavior to Avoid When Using Condition Actions
This example shows a notation to avoid when using event broadcasts as
condition actions because the semantics result in cyclic behavior.

Initially the Stateflow diagram is asleep. State On is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A valid transition from state On to state Off is detected. A
condition action, broadcast of event E_one, is detected on the valid transition
and is immediately executed. State On is still active.

The broadcast of event E_one awakens the Stateflow diagram a second time.
The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. The transition from state On to state Off is still valid. The
condition action, broadcast of event E_one, is immediately executed again.

2 Step 1 continues to execute in a cyclical manner. The transition label
indicating a trigger on the same event as the condition action broadcast
event results in unrecoverable cyclic behavior.

This sequence never completes when event E_one is broadcast and state On is
active.

State On is active.

8 Semantics

8-18

Default Transitions

Example: Default Transition in an Exclusive (OR) Decomposition
This example shows a transition from an OR state to a superstate with
exclusive (OR) decomposition, where a default transition to a substate is
defined.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition from state A to superstate B.

2 State A exit actions execute and complete (exitA()).

3 State A is marked inactive.

4 The transition action, A, is executed and completed.

5 State B is marked active.

6 State B entry actions execute and complete (entB()).

7 State B detects a valid default transition to state B.B1.

8 State B.B1 is marked active.

9 State B.B1 entry actions execute and complete (entB1()).

State A is
active.

Default Transitions

8-19

10 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Example: Default Transition to a Junction
This example shows the semantics of a default transition to a connective
junction.

Initially the Stateflow diagram is asleep. State B.B1 is active. An event occurs
and awakens the Stateflow diagram. Condition [C_two] is true. The event is
processed from the root of the Stateflow diagram down through the hierarchy
of the Stateflow diagram:

1 State B checks to see if there is a valid transition as a result of any event.
There is none.

2 State B1 during actions execute and complete (durB1()).

This sequence completes the execution of this Stateflow diagram associated
with the occurrence of any event.

State B1 is
active.

8 Semantics

8-20

Example: Default Transition and a History Junction
This example shows the semantics of a superstate and a history junction.

Initially the Stateflow diagram is asleep. State A is active. There is a history
junction and state B4 was the last active substate of superstate B. Event E_one
occurs and awakens the Stateflow diagram. Event E_one is processed from the
root of the Stateflow diagram down through the hierarchy of the Stateflow
diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is valid transition from state A to superstate B.

2 State A exit actions execute and complete (exitA()).

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions execute and complete (entB()).

6 State B detects and uses the history junction to determine which substate is
the destination of the transition into the superstate. The history junction
indicates substate B.B4 was the last active substate, and thus the
destination of the transition.

State A is
active.

Default Transitions

8-21

7 State B.B4 is marked active.

8 State B.B4 entry actions execute and complete (entB4()).

9 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Example: Labeled Default Transitions
This example shows the use of a default transition with a label.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
awakening the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

State A is
active.

8 Semantics

8-22

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition from state A to superstate B. A
pipe is used to represent that the transition is valid if event E_one or E_two
occurs.

2 State A exit actions execute and complete (exitA()).

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions execute and complete (entB()).

6 State B detects a valid default transition to state B.B1. The default transition
is valid as a result of E_one.

7 State B.B1 is marked active.

8 State B.B1 entry actions execute and complete (entB1()).

9 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Inner Transitions

8-23

Inner Transitions

Example: Processing One Event Within an Exclusive (OR) State
This example shows the semantics of an inner transition.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Condition [C_one] is false. Event E_one
is processed from the root of the Stateflow diagram down through the hierarchy
of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. A potentially valid transition from state A to state B is
detected. However the transition is not valid because [C_one] is false.

2 State A during actions execute and complete (durA()).

3 State A checks its children for a valid transition and detects a valid inner
transition.

4 State A remains active. The inner transition action, A_two, is executed and
completed. Because it is an inner transition, state A’s exit and entry actions
are not executed.

5 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

State A is
active.

8 Semantics

8-24

Example: Processing a Second Event Within an Exclusive (OR) State
Using the same example, what happens when a second event, E_one, occurs?

Initially the Stateflow diagram is asleep. State A is still active. Event E_one
occurs and awakens the Stateflow diagram. Condition [C_one] is true. Event
E_one is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. The transition from state A to state B is now valid because
[C_one] is true.

2 State A exit actions execute and complete (exitA()).

3 State A is marked inactive.

4 The transition action A_one is executed and completed.

5 State B is marked active.

6 State B entry actions execute and complete (entB()).

7 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

State A is still
active.

Inner Transitions

8-25

Example: Processing a Third Event Within an Exclusive (OR) State
Using the same example, what happens when a third event, E_two, occurs?

Initially the Stateflow diagram is asleep. State B is now active. Event E_two
occurs and awakens the Stateflow diagram. Condition [C_two] is false. Event
E_two is processed from the root of the Stateflow diagram down through the
hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_two. A potentially valid transition from state B to state A is
detected. The transition is not valid because [C_two] is false. However,
active state B has a valid self loop transition.

2 State B exit actions execute and complete (exitB()).

3 State B is marked inactive.

4 The self loop transition action, A_four, executes and completes.

5 State B is marked active.

6 State B entry actions execute and complete (entB()).

7 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State B is
marked active.

8 Semantics

8-26

This sequence completes the execution of this Stateflow diagram associated
with event E_two. This example shows the difference in semantics between
inner transitions and self loop transitions.

Example: Processing One Event with an Inner Transition to a Connective
Junction
This example shows the semantics of an inner transition to a connective
junction.

Initially the Stateflow diagram is asleep. State A1 is active. Event E_one occurs
and awakens the Stateflow diagram. Condition [C_two] is true. Event E_one is
processed from the root of the Stateflow diagram down through the hierarchy
of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition at the
root level, as a result of E_one. There is no valid transition.

2 State A during actions execute and complete (durA()).

3 State A checks itself for valid transitions and detects there is a valid inner
transition to a connective junction. The conditions are evaluated to
determine if one of the transitions is valid. The segments labeled with a
condition are evaluated before the unlabeled segment. The evaluation starts
from a twelve o’clock position on the junction and progresses in a clockwise
manner. Since [C_two] is true, the inner transition to the junction and then
to state A.A2 is valid.

State A1 is
marked
active.

Inner Transitions

8-27

4 State A.A1 exit actions execute and complete (exitA1()).

5 State A.A1 is marked inactive.

6 State A.A2 is marked active.

7 State A.A2 entry actions execute and complete (entA2()).

8 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when condition C_two is true.

Example: Processing a Second Event with an Inner Transition to a
Connective Junction
This example shows the semantics of an inner transition to a junction when a
second event, E_one, occurs.

Initially the Stateflow diagram is asleep. State A2 is active. Event E_one occurs
and awakens the Stateflow diagram. Neither [C_one] nor [C_two] is true.
Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

State A2 is
active.

8 Semantics

8-28

1 The Stateflow diagram root checks to see if there is a valid transition at the
root level, as a result of E_one. There is no valid transition.

2 State A during actions execute and complete (durA()).

3 State A checks itself for valid transitions and detects a valid inner transition
to a connective junction. The segments labeled with a condition are
evaluated before the unlabeled segment. The evaluation starts from a twelve
o’clock position on the junction and progresses in a clockwise manner. Since
neither [C_one] nor [C_two] is true, the unlabeled transition segment is
evaluated and is determined to be valid. The full transition from the inner
transition to state A.A3 is valid.

4 State A.A2 exit actions execute and complete (exitA2()).

5 State A.A2 is marked inactive.

6 State A.A3 is marked active.

7 State A.A3 entry actions execute and complete (entA3()).

8 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one when neither [C_one] nor [C_two] is true.

Inner Transitions

8-29

Example: Inner Transition to a History Junction
This example shows the semantics of an inner transition to a history junction.

Initially the Stateflow diagram is asleep. State A.A1 is active. There is history
information since superstate A is active. Event E_one occurs and awakens the
Stateflow diagram. Event E_one is processed from the root of the Stateflow
diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is no valid transition.

2 State A during actions execute and complete (durA()).

3 State A checks itself for valid transitions and detects there is a valid inner
transition to a history junction. According to the semantics of history
junctions, the last active state, A.A1, is the destination state.

4 State A.A1 exit actions execute and complete (exitA1()).

5 State A.A1 is marked inactive.

6 State A.A1 is marked active.

7 State A.A1 entry actions execute and complete (entA1()).

8 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State A1 is
active

8 Semantics

8-30

This sequence completes the execution of this Stateflow diagram associated
with event E_one when there is an inner transition to a history junction and
state A.A1 is active.

Connective Junctions

8-31

Connective Junctions

Example: If-Then-Else Decision Construct
This example shows the semantics of an if-then-else decision construct.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Condition [C_two] is true. Event E_one is
processed from the root of the Stateflow diagram down through the hierarchy
of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition segment from state A to the
connective junction. The transition segments beginning from a twelve
o’clock position on the connective junction are evaluated for validity. The
first transition segment labeled with condition [C_one] is not valid. The next
transition segment labeled with the condition [C_two] is valid. The complete
transition from state A to state C is valid.

2 State A executes and completes exit actions (exitA()).

3 State A is marked inactive.

4 State C is marked active.

State A is
active

8 Semantics

8-32

5 State C executes and completes entry actions (entC()).

6 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Example: Self Loop
This example shows the semantics of a self loop using a connective junction.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Condition [C_one] is false. Event E_one is
processed from the root of the Stateflow diagram down through the hierarchy
of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition segment from state A to the
connective junction. The transition segment labeled with a condition and
action is evaluated for validity. Since the condition [C_one] is not valid, the
complete transition from state A to state B is not valid. The transition
segment from the connective junction back to state A is valid.

2 State A executes and completes exit actions (exitA()).

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State A is marked active.

State A is
active.

Connective Junctions

8-33

6 State A executes and completes entry actions (entA()).

7 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Example: For Loop Construct
This example shows the semantics of a for loop.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram.

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition segment from state A to the
connective junction. The transition segment condition action, i = 0, is
executed and completed. Of the two transition segments leaving the
connective junction, the transition segment that is a self loop back to the
connective junction is evaluated next for validity. That segment takes
priority in evaluation because it has a condition specified whereas the other
segment is unlabeled.

2 The condition [i < 10] is evaluated as true. The condition actions, i++, and
a call to func1 are executed and completed until the condition becomes false.
A connective junction is not a final destination; thus the transition
destination remains to be determined.

State A is
active.

8 Semantics

8-34

3 The unconditional segment to state B is now valid. The complete transition
from state A to state B is valid.

4 State A executes and completes exit actions (exitA()).

5 State A is marked inactive.

6 State B is marked active.

7 State B executes and completes entry actions (entB()).

8 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Example: Flow Diagram Notation
This example shows the semantics of a Stateflow diagram that uses flow
notation.

Initially the Stateflow diagram is asleep. State A.A1 is active. The condition
[C_one()] is initially true. Event E_one occurs and awakens the Stateflow
diagram. Event E_one is processed from the root of the Stateflow diagram down
through the hierarchy of the Stateflow diagram:

State A1 is
active.

Connective Junctions

8-35

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is no valid transition.

2 State A checks itself for valid transitions and detects a valid inner transition
to a connective junction.

3 The next possible segments of the transition are evaluated. There is only one
outgoing transition and it has a condition action defined. The condition
action is executed and completed.

4 The next possible segments are evaluated. There are two outgoing
transitions; one is a conditional self loop and the other is an unconditional
transition segment. The conditional transition segment takes precedence.
The condition [C_one()] is tested and is true; the self loop is taken. Since a
final transition destination has not been reached, this self loop continues
until [C_one()] is false. Assume that after five loops [C_one()] is false.

5 The next possible transition segment (to the next connective junction) is
evaluated. It is an unconditional transition segment with a condition action.
The transition segment is taken and the condition action, {d=my_func()}, is
executed and completed. The returned value of d is 84.

6 The next possible transition segment is evaluated. There are three possible
outgoing transition segments to consider. Two are conditional; one is
unconditional. The segment labeled with the condition [d<100] is evaluated
first based on the geometry of the two outgoing conditional transition
segments. Since the return value of d is 84, the condition [d<100] is true and
this transition (to the destination state A.A1) is valid.

7 State A.A1 exit actions execute and complete (exitA1()).

8 State A.A1 is marked inactive.

9 State A.A1 is marked active.

10 State A.A1 entry actions execute and complete (entA1()).

11 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

8 Semantics

8-36

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Example: Transitions from a Common Source to Multiple Destinations
This example shows the semantics of transitions from a common source to
multiple destinations.

Initially the Stateflow diagram is asleep. State A is active. Event E_two occurs
and awakens the Stateflow diagram. Event E_two is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_two. There is a valid transition segment from state A to the
connective junction. Given that the transition segments are equivalently
labeled, evaluation begins from a twelve o’clock position on the connective
junction and progresses clockwise. The first transition segment labeled with
event E_one is not valid. The next transition segment labeled with event
E_two is valid. The complete transition from state A to state C is valid.

2 State A executes and completes exit actions (exitA()).

3 State A is marked inactive.

4 State C is marked active.

5 State C executes and completes entry actions (entC()).

State A is
active.

Connective Junctions

8-37

6 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_two.

Example: Transitions from Multiple Sources to a Common Destination
This example shows the semantics of transitions from multiple sources to a
single destination.

Initially the Stateflow diagram is asleep. State A is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram.

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition segment from state A to the
connective junction and from the junction to state C.

2 State A executes and completes exit actions (exitA()).

3 State A is marked inactive.

4 State C is marked active.

5 State C executes and completes entry actions (entC()).

6 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State A is
active.

8 Semantics

8-38

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

Example: Transitions from a Source to a Destination Based on a Common
Event
This example shows the semantics of transitions from multiple sources to a
single destination based on the same event.

Initially the Stateflow diagram is asleep. State B is active. Event E_one occurs
and awakens the Stateflow diagram. Event E_one is processed from the root of
the Stateflow diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is a valid transition segment from state B to the
connective junction and from the junction to state C.

2 State B executes and completes exit actions (exitB()).

3 State B is marked inactive.

4 State C is marked active.

5 State C executes and completes entry actions (entC()).

6 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State A is
active.

Connective Junctions

8-39

This sequence completes the execution of this Stateflow diagram associated
with event E_one.

8 Semantics

8-40

Event Actions

Example: Event Actions and Superstates
This example shows the semantics of event actions within superstates.

Initially the Stateflow diagram is asleep. State A.A1 is active. Event E_three
occurs and awakens the Stateflow diagram. Event E_three is processed from
the root of the Stateflow diagram down through the hierarchy of the Stateflow
diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_three. There is no valid transition.

2 State A executes and completes during actions (durA()).

3 State A executes and completes the on event E_three action (A_one).

4 State A checks its children for valid transitions. There are no valid
transitions.

5 State A1 executes and completes during actions (durA1()).

6 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State A1 is
active.

Event Actions

8-41

This sequence completes the execution of this Stateflow diagram associated
with event E_three.

8 Semantics

8-42

Parallel (AND) States

Example: Event Broadcast State Action
This example shows the semantics of event broadcast state actions.

Initially the Stateflow diagram is asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the Stateflow diagram.
Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition at the
root level, as a result of E_one. There is no valid transition.

2 State A executes and completes during actions (durA()).

3 State A’s children are parallel (AND) states. They are evaluated and
executed from left to right and top to bottom. State A.A1 is evaluated first.

State A1a
is active. State A2a

is active.

Parallel (AND) States

8-43

State A.A1 executes and completes during actions (durA1()). State A.A1
executes and completes the on E_one action and broadcasts event E_two.
during and on event_name actions are processed based on their order of
appearance in the state label.

a The broadcast of event E_two awakens the Stateflow diagram a second
time. The Stateflow diagram root checks to see if there is a valid
transition as a result of E_two. There is no valid transition.

b State A executes and completes during actions (durA()).

c State A checks its children for valid transitions. There are no valid
transitions.

d State A’ s children are evaluated starting with state A.A1. State A.A1
executes and completes during actions (durA1()). State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

e State A.A2 is evaluated. State A.A2 executes and completes during actions
(durA2()). State A.A2 checks for valid transitions. State A.A2 has a valid
transition as a result of E_two from state A.A2.A2a to state A.A2.A2b.

f State A.A2.A2a exit actions execute and complete (exitA2a()).

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions execute and complete (entA2b()). The
Stateflow diagram activity now looks like this

8 Semantics

8-44

.

4 State A.A1.A1a executes and completes exit actions (exitA1a).

5 The processing of E_one continues once the on event broadcast of E_two has
been processed. State A.A1 checks for any valid transitions as a result of
event E_one. There is a valid transition from state A.A1.A1a to state A.A1.A1b.

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b executes and completes entry actions (entA1b()).

8 State A.A1.A1b is marked active.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions execute and
complete (durA2()). There are no valid transitions as a result of E_one.

State A1a
is active.

State A2b
is active.

Parallel (AND) States

8-45

10 State A.A2.A2b, now active as a result of the processing of the on event
broadcast of E_two, executes and completes during actions (durA2b()).

11 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one and the on event broadcast to a parallel state of event E_two.
The final Stateflow diagram activity looks like this.

State A1b
is active.

State A2b
is active.

8 Semantics

8-46

Example: Event Broadcast Transition Action (Nested Event Broadcast)
This example shows the semantics of an event broadcast transition action that
includes nested event broadcasts.

Start of event E_one Processing
Initially the Stateflow diagram is asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the Stateflow diagram.
Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is no valid transition.

2 State A executes and completes during actions (durA()).

State A2a
is active.is active.

State A1a

Parallel (AND) States

8-47

3 State A’s children are parallel (AND) states. They are evaluated and
executed from left to right and top to bottom. State A.A1 is evaluated first.
State A.A1 executes and completes during actions (durA1()).

4 State A.A1 checks for any valid transitions as a result of event E_one. There
is a valid transition from state A.A1.A1a to state A.A1.A1b.

5 State A.A1.A1a executes and completes exit actions (exitA1a).

6 State A.A1.A1a is marked inactive.

Event E_two Preempts E_one

7 Transition action generating event E_two is executed and completed.

a The transition from state A1a to state A1b (as a result of event E_one) is
now preempted by the broadcast of event E_two.

b The broadcast of event E_two awakens the Stateflow diagram a second
time. The Stateflow diagram root checks to see if there is a valid
transition as a result of E_two. There is no valid transition.

c State A executes and completes during actions (durA()).

d State A’ s children are evaluated starting with state A.A1. State A.A1
executes and completes during actions (durA1()). State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

e State A.A2 is evaluated. State A.A2 executes and completes during actions
(durA2()). State A.A2 checks for valid transitions. State A.A2 has a valid
transition as a result of E_two from state A.A2.A2a to state A.A2.A2b.

f State A.A2.A2a exit actions execute and complete (exitA2a()).

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions execute and complete (entA2b()).

8 Semantics

8-48

Event E_two Processing Ends

The Stateflow diagram activity now looks like this.

8 State A.A1.A1b is marked active.

Event E_one Processing Resumes

9 State A.A1.A1b executes and completes entry actions (entA1b()).

10 Parallel state A.A2 is evaluated next. State A.A2 during actions execute and
complete (durA2()). There are no valid transitions as a result of E_one.

11 State A.A2.A2b, now active as a result of the processing of the transition
action event broadcast of E_two, executes and completes during actions
(durA2b()).

State A2b
is active.

Parallel (AND) States

8-49

12 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

This sequence completes the execution of this Stateflow diagram associated
with event E_one and the transition action event broadcast to a parallel state
of event E_two. The final Stateflow diagram activity now looks like this.

State A2b
is active

State A1b
is active

8 Semantics

8-50

Example: Event Broadcast Condition Action
This example shows the semantics of condition action event broadcast in
parallel (AND) states.

Initially the Stateflow diagram is asleep. Parallel substates A.A1.A1a and
A.A2.A2a are active. Event E_one occurs and awakens the Stateflow diagram.
Event E_one is processed from the root of the Stateflow diagram down through
the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of E_one. There is no valid transition.

2 State A executes and completes during actions (durA()).

3 State A’s children are parallel (AND) states. Parallel states are evaluated
and executed from top to bottom. In the case of a tie, they are evaluated from
left to right. State A.A1 is evaluated first. State A.A1 executes and completes
during actions (durA1()).

State A2a
is active.is active.

State A1a

Parallel (AND) States

8-51

4 State A.A1 checks for any valid transitions as a result of event E_one. There
is a valid transition from state A.A1.A1a to state A.A1.A1b. There is also a
valid condition action. The condition action event broadcast of E_two is
executed and completed. State A.A1.A1a is still active.

a The broadcast of event E_two awakens the Stateflow diagram a second
time. The Stateflow diagram root checks to see if there is a valid
transition as a result of E_two. There is no valid transition.

b State A executes and completes during actions (durA()).

c State A’ s children are evaluated starting with state A.A1. State A.A1
executes and completes during actions (durA1()). State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

d State A.A2 is evaluated. State A.A2 executes and completes during actions
(durA2()). State A.A2 checks for valid transitions. State A.A2 has a valid
transition as a result of E_two from state A.A2.A2a to state A.A2.A2b.

e State A.A2.A2a exit actions execute and complete (exitA2a()).

f State A.A2.A2a is marked inactive.

g State A.A2.A2b is marked active.

h State A.A2.A2b entry actions execute and complete (entA2b()).

8 Semantics

8-52

The Stateflow diagram activity now looks like this.

5 State A.A1.A1a executes and completes exit actions (exitA1a).

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b executes and completes entry actions (entA1b()).

8 State A.A1.A1b is marked active.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions execute and
complete (durA2()). There are no valid transitions as a result of E_one.

10 State A.A2.A2b, now active as a result of the processing of the condition action
event broadcast of E_two, executes and completes during actions (durA2b()).

11 The Stateflow diagram goes back to sleep waiting to be awakened by another
event.

State A2b
is active.

State A1a
is active.

Parallel (AND) States

8-53

This sequence completes the execution of this Stateflow diagram associated
with event E_one and the condition action event broadcast to a parallel state of
event E_two. The final Stateflow diagram activity now looks like this.

State A2b
is active.

State A1b
is active.

8 Semantics

8-54

Directed Event Broadcasting

Example: Directed Event Broadcast Using send
This example shows the semantics of directed event broadcast using
send(event_name,state_name) in a transition action.

Initially the Stateflow diagram is asleep. Parallel substates A.A1 and B.B1 are
active. By definition, this implies parallel (AND) superstates A and B are active.
An event occurs and awakens the Stateflow diagram. The condition
[data1==1] is true. The event is processed from the root of the Stateflow
diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of the event. There is no valid transition.

State A1
is active.

State B1
is active.

Directed Event Broadcasting

8-55

2 State A checks for any valid transitions as a result of the event. Since the
condition [data1==1] is true, there is a valid transition from state A.A1 to
state A.A2.

3 State A.A1 exit actions execute and complete (exitA1()).

Start of E_one Event Processing

4 State A.A1 is marked inactive.

5 The transition action, send(E_one,B) is executed and completed.

a The broadcast of event E_one awakens state B. (This is a nested event
broadcast.) Since state B is active, the directed broadcast is received and
state B checks to see if there is a valid transition. There is a valid
transition from B.B1 to B.B2.

b State B.B1 executes and completes exit actions (exitB1()).

c State B.B1 is marked inactive.

d State B.B2 is marked active.

e State B.B2 executes and completes entry actions (entB2()).

End of Event E_one Processing

6 State A.A2 is marked active.

7 State A.A2 entry actions execute and complete (entA2()).

This sequence completes the execution of this Stateflow diagram associated
with an event broadcast and the directed event broadcast to a parallel state of
event E_one.

8 Semantics

8-56

Example: Directed Event Broadcasting Using Qualified Event Names
This example shows the semantics of directed event broadcast using a qualified
event name in a transition action.

Initially the Stateflow diagram is asleep. Parallel substates A.A1 and B.B1 are
active. By definition, this implies parallel (AND) superstates A and B are active.
An event occurs and awakens the Stateflow diagram. The condition
[data1==1] is true. The event is processed from the root of the Stateflow
diagram down through the hierarchy of the Stateflow diagram:

1 The Stateflow diagram root checks to see if there is a valid transition as a
result of the event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Since the
condition [data1==1] is true, there is a valid transition from state A.A1 to
state A.A2.

State A1
is active.

State B1
is active.

Directed Event Broadcasting

8-57

3 State A.A1 exit actions execute and complete (exitA1()).

4 State A.A1 is marked inactive.

5 The transition action, a qualified event broadcast of event E_one to state B
(represented by the notation B.E_one), is executed and completed.

a The broadcast of event E_one awakens state B. (This is a nested event
broadcast.) Since state B is active, the directed broadcast is received and
state B checks to see if there is a valid transition. There is a valid
transition from B.B1 to B.B2.

b State B.B1 executes and completes exit actions (exitB1()).

c State B.B1 is marked inactive.

d State B.B2 is marked active.

e State B.B2 executes and completes entry actions (entB2()).

6 State A.A2 is marked active.

7 State A.A2 entry actions execute and complete (entA2()).

This sequence completes the execution of this Stateflow diagram associated
with an event broadcast using a qualified event name to a parallel state.

8 Semantics

8-58

Execution Order

Overview
In a single processor environment, sequential execution order is the only
option. In this case, it may be necessary for you to know the implicit ordering
determined by a Stateflow diagram. The ordering is specific to transitions
originating from the same source. Knowing the order of execution for Stateflow
diagrams with more than one parallel (AND) state may be important.

Do not design your Stateflow diagram based on an expected execution order.

Execution Order Guidelines
Execution order of transitions originating from the same source is based on
these guidelines. The guidelines appear in order of their precedence:

1 Transitions are evaluated, based on hierarchy, in a top-down manner. In
this example, when an event occurs and state A.A1 is active, the transition
from state A.A1 to state B is valid and takes precedence over the transition
from state A.A1 to state A.A2 based on the hierarchy.

2 Transitions are evaluated based on their labels.

a Labels with events and conditions

b Labels with events

State A1
is active.

Execution Order

8-59

c Labels with conditions

d No label

3 Equivalent transitions (based on their labels) are evaluated based on the
geometry of the outgoing transitions. The geometry of junctions and states
is considered separately.

Junctions
Multiple outgoing transitions from junctions that are of equivalent label
priority are evaluated in a clockwise progression starting from a twelve o’clock
position on the junction.

In this example, the transitions are of equivalent label priority. The conditions
[C_three == 3]and [C_four == 4] are both true. Given that, the outgoing
transitions from the junction are evaluated in this order:

1 A –> B

Since the condition [C_one == 1] is false, this transition is not valid.

2 A –> C

Since the condition [C_two == 2] is false, this transition is not valid.

8 Semantics

8-60

3 A –> D

Since the condition [C_three == 3] is true, this transition is valid and is
taken.

4 A –> E

This transition, even though it too is valid, is not evaluated since the
previous transition evaluated was valid.

States
Multiple outgoing transitions from states that are of equivalent label priority
are evaluated in a clockwise progression starting at the upper, left corner of the
state.

In this example, the transitions are of equivalent label priority. The conditions
[C_two == 2] and [C_three == 3] are both true and [C_one = = 1] is false. Given
that, the outgoing transitions from the state are evaluated in this order:

1 A –> B

Since the condition [C_one == 1] is false, this transition is not valid.

2 A –> C

Since the condition [C_two == 2] is true, this transition is valid and is taken.

Execution Order

8-61

3 A –> D

This transition, even though it too is valid, is not evaluated since the
previous transition evaluated was valid.

Parallel (AND) States
Parallel (AND) states are evaluated and executed first from top to bottom and
then from left to right in the case of a tie. In this example, assuming that A and
B, and C and D are exactly equivalent from top-down, the parallel (AND) states
are executed in this order: A, B, D,C.

8 Semantics

8-62

Semantic Rules Summary

Entering a Chart
The set of default flow paths is executed (see “Executing a Set of Flow Graphs”
on page 8-63). If this does not cause a state entry and the chart has parallel
decomposition, then each parallel state is entered (see “Entering a State”).

If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Executing an Active Chart
If the chart has no states, each execution is equivalent to initializing a chart.
Otherwise, the active children are executed. Parallel states are executed in the
same order that they are entered.

Entering a State

1 If the parent of the state is not active, perform steps 1-4 for the parent.

2 If this is a parallel state, check that all siblings with a higher (i.e., earlier)
entry order are active. If not, perform all entry steps for these states first.

3 Mark the state active.

4 Perform any entry actions.

5 Enter children, if needed:

a If the state contains a history junction and there was an active child of
this state at some point after the most recent chart initialization, perform
the entry actions for that child. Otherwise, execute the default flow paths
for the state.

b If this state has parallel decomposition, i.e., has children that are parallel
states, perform entry steps 1-5 for each state according to its entry order.

6 If this is a parallel state, perform all entry actions for the sibling state next
in entry order if one exists.

Semantic Rules Summary

8-63

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

Executing an Active State

1 The set of outer flow graphs is executed (see “Executing a Set of Flow
Graphs”). If this causes a state transition, execution stops. (Note that this
step is never required for parallel states)

2 During actions and valid on-event actions are preformed.

3 The set of inner flow graphs is executed. If this does not cause a state
transition, the active children are executed, starting at step 1. Parallel
states are executed in the same order that they are entered.

Exiting an Active State

1 If this is a parallel state, make sure that all sibling states that were entered
after this state have already been exited. Otherwise, perform all exiting
steps on those sibling states.

2 If there are any active children perform the exit steps on these states in the
reverse order they were entered.

3 Perform any exit actions.

4 Mark the state as inactive.

Executing a Set of Flow Graphs
Flow graphs are executed by starting at step 1 below with a set of starting
transitions. The starting transitions for inner flow graphs are all transition
segments that originate on the respective state and reside entirely within that
state. The starting transitions for outer flow graphs are all transition segments
that originate on the respective state but reside at least partially outside that
state. The starting transitions for default flow graphs are all default transition
segments that have starting points with the same parent:

1 A set of transition segments is ordered.

8 Semantics

8-64

2 While there are remaining segments to test, a segment is tested for validity.
If the segment is invalid, move to the next segment in order. If the segment
is valid, execution depends on the destination:

States

a No more transition segments are tested and a transition path is formed
by backing up and including the transition segment from each preceding
junction until the respective starting transition.

b The states that are the immediate children of the parent of the transition
path are exited (see “Exiting an Active State”).

c The transition action from the final transition segment is executed.

d The destination state is entered (see “Entering a State”).

Junctions with no outgoing transition segments

Testing stops without any states being exited or entered.

Junctions with outgoing transition segments

Step 1 is repeated with the set of outgoing segments from the junction.

3 After testing all outgoing transition segments at a junction, back up the
incoming transition segment that brought you to the junction and continue
at step 2, starting with the next transition segment after the back up
segment. The set of flow graphs is done executing when all starting
transitions have been tested.

Executing an Event Broadcast
Output edge trigger event execution is equivalent to changing the value of an
output data value. All other events have the following execution:

1 If the receiver of the event is active, then it is executed (see “Executing an
Active Chart”on page 8-62 and “Executing an Active State” on page 8-63).
(The event receiver is the parent of the event unless the event was explicitly
directed to a receiver using the send() function.)

If the receiver of the event is not active, nothing happens.

Semantic Rules Summary

8-65

2 After broadcasting the event, the broadcaster performs early return logic
based on the type of action statement that caused the event.

Action Type Early Return Logic

State Entry If the state is no longer active at the end of the event
broadcast, any remaining steps in entering a state
are not performed.

State Exit If the state is no longer active at the end of the event
broadcast, any remaining exit actions and steps in
state transitioning are not performed.

State During If the state is no longer active at the end of the event
broadcast, any remaining steps in executing an active
state are not performed.

Condition If the origin state of the inner or outer flow graph or
parent state of the default flow graph is no longer
active at the end of the event broadcast, the
remaining steps in the execution of the set of flow
graphs are not performed.

Transition If the parent of the transition path is not active or if
that parent has an active child, the remaining
transition actions and state entry are not performed.

8 Semantics

8-66

9

Building Targets

Overview . 9-2
Target Types . 9-2
Building a Target 9-2
How Stateflow Builds Targets 9-3

Setting Up Target Build Tools 9-5
Setting Up Build Tools on UNIX 9-5
Setting Up Build Tools on Windows 9-5

Starting a Build 9-7
Starting from a Target Builder Dialog Box 9-8

Configuring a Target 9-9
Specifying Code Generation Options 9-11
Simulation Coder Options Dialog Box 9-14
RTW Coder Options Dialog Box 9-15
Specifying Custom Code Options 9-17

Parsing . 9-20
Parser . 9-20
Parse the Machine or the Stateflow Diagram 9-20

Error Messages 9-24
Parser Error Messages 9-24
Code Generation Error Messages 9-25
Compilation Error Messages 9-25

Integrating Custom and Generated Code 9-26
Invoking Graphical Functions 9-26

9 Building Targets

9-2

Overview
A target is a program that executes a Stateflow model or a Simulink model
containing a Stateflow state machine. Stateflow and companion tools can build
targets for virtually any computer.

Target Types
Simulink and its companion tools can build the following types of targets:

• Simulation target

A simulation target is a compiled Simulink S-function (MEX file) that
enables Simulink to simulate a Stateflow model. See “Parsing” on page 9-20
for more information.

• RTW target

An RTW target is an executable program that implements a Simulink model.
The model represented by an RTW target can include non-Stateflow as well
as Stateflow blocks. An RTW target can also run on computers that do not
have a floating-point instruction set. Building an RTW target requires the
Real-Time Workshop and Stateflow Coder.

Building a Target
Building a target involves the following steps:

1 Configure the target.

See “Configuring a Target” on page 9-9 for more information. You need to
perform this step only if you are building a stand-alone or RTW target or are
including custom code in the target. See “Building Custom Code into the
Target” on page 9-3.

2 Start the build process.

Stateflow automatically builds or rebuilds simulation targets, when you
initiate simulation of a state machine. You must explicitly initiate the build
process for other types of targets. See “Starting a Build” on page 9-7 for more
information.

Overview

9-3

Configuring and building a target requires a basic understanding of how
Stateflow builds targets, in the case of simulation and stand-alone targets, and
how Real-Time Workshop builds targets, in the case of RTW targets. See “How
Stateflow Builds Targets” on page 9-3 for information on how Stateflow builds
targets. Real-Time Workshop uses basically the same process for building
targets that contain state machines as it uses for building targets that do not.
See the Real-Time Workshop User’s Guide for information on how Real-Time
Workshop builds targets.

Rebuilding a Target
You can rebuild a target at any time by repeating step 2. When rebuilding a
target, Stateflow rebuilds only those parts corresponding to charts that have
changed logically since the last build. When rebuilding a target, you need to
perform step 1 only if you want to change the target’s custom code or
configuration.

Building Custom Code into the Target
You can configure the target build process to include to build custom code, that
is, C code supplied by you, into the target (see “Specifying Custom Code
Options” on page 9-17). This capability facilitates creation of applications that
integrate Stateflow state machines. In particular, it allows you to use Stateflow
or Real-Time Workshop to build the entire application, including both the
portions that you supply and the state machine target code generated by
Stateflow (or by Real-Time Workshop and Stateflow, when building
applications that include other types of Simulink blocks).

How Stateflow Builds Targets
Stateflow builds a target for a particular state machine as follows. It begins by
parsing the charts that represent the state machine to ensure that the
machine’s logic is valid. If any errors occur, Stateflow displays the errors in the
MATLAB command window (see “Parsing” on page 9-20) and halts.

If the charts parse, Stateflow next invokes a code generator to convert the state
machine into C source code. The code generator accepts various options that
control the code generation process. You can specify these options via the
Stateflow user interface (see “Adding a Target to a State Machine’s Target
List” on page 9-9).

9 Building Targets

9-4

The code generator also generates a makefile to build the generated source
code into an executable program. The generated makefile can optionally build
custom code that you specify into the target (see “Specifying Custom Code
Options” on page 9-17).

Finally Stateflow builds the target, using a C compiler and make utility that
you specify (see “Setting Up Target Build Tools” on page 9-5 for more
information).

Setting Up Target Build Tools

9-5

Setting Up Target Build Tools
Building Simulink targets may require some initial build tool setup, depending
on the platform you are using and the tools you want to use. Typically you need
to perform the setup only once.

Setting Up Build Tools on UNIX
To build targets on UNIX:

1 Install the C compiler you want Stateflow to use to build targets on your
system.

You can use any compiler supported by MATLAB for building MATLAB
extension (MEX) files. See the MATLAB Application Program Interface
Guide for information on C compilers supported by MATLAB. To access the
online version of this guide, choose Help Desk from the MATLAB Help
window.

Note Stateflow supports building targets with Microsoft Visual C/C++ 5.0
only if you have installed the Service Pack 3 updates for that product.

2 Set up MATLAB to build MEX files, using the compiler installed in step 1.

See “System Setup” in the MATLAB Application Program Interface Guide
for information on setting up MATLAB to build MEX files. Stateflow uses
the compiler that you specify to build MEX files to build Stateflow targets.

Setting Up Build Tools on Windows
The Microsoft Windows version of Stateflow comes with a C compiler (lcc.exe)
and make utility (lccmake). Both tools are installed in the directory
matlabroot\sys\lcc. If you have not configured MATLAB to use any other
compiler, Stateflow uses lcc to build targets. Thus, you do not have to perform
any tool setup to build targets with the Windows version of Stateflow. If you
want to use a compiler other than lcc, however, you must do some initial setup.

9 Building Targets

9-6

To use a compiler other than lcc:

1 Install the compiler on your system.

You can use any compiler supported by MATLAB for building MATLAB
extension (MEX) files. See the “External Interfaces/API Reference” section
of the online MATLAB documentation for more information for information
on C compilers supported by MATLAB.

2 Set up MATLAB to build MEX files, using the compiler installed in step 1.

See “Building MEX Files” in the “External Interfaces” section of the “Using
MATLAB” section of the online documentation. Stateflow uses the compiler
that you specify to build MEX files to build Stateflow targets.

If you want to use a compiler that you supply to build some targets and lcc to
build other targets, first set up MATLAB to use the compiler you supply. Then,
check the Use lcc compiler option on the Coder dialog box (see “Simulation
Coder Options Dialog Box” on page 9-14) for each target that you want to be
built with lcc.

Starting a Build

9-7

Starting a Build
You can start a target build in the following ways:

• By selecting Start from the Stateflow or Simulink editor’s Simulation menu
or Debug from the Stateflow editor’s Tools menu.

This option lets you use a single command to build and run a simulation
target. Use the next option if you want to build a simulation target without
running it. You would typically want to do this to ensure that Stateflow can
build a target containing custom code.

• By selecting the Build or Build RTW (for RTW targets) button on the Target
Builder dialog box for the target

You must use this option to build stand-alone targets. You can also use this
option to build simulation targets and RTW targets. Using the target builder
to launch the build allows you to choose between full build, incremental
build, and code generation only options. See “Starting from a Target Builder
Dialog Box” on page 9-8 for more information.

• By selecting the Build button on the RTW panel of Simulink’s Simulation
Parameters dialog box (for RTW targets)

While building a target, Stateflow displays a stream of progress messages in
the MATLAB command window. You can determine the success or failure of
the build by examining these messages (see “Parsing” on page 9-20).

9 Building Targets

9-8

Starting from a Target Builder Dialog Box
To build a target from the Target Builder dialog box:

1 Open the Target Builder dialog box for the target you want to build.

You can do this by selecting the appropriate item, for example, Open
Simulation Target, from the Stateflow editor’s Tools menu or by clicking
on the simulation target in the Stateflow Explorer.

The dialog box for the selected target appears, for example,

2 Select one of the following build options from the drop-down list next to the
Build button.

- incremental to rebuild only those portions of the target corresponding to
charts that have changed logically since the last build.

- all to rebuild the target, including chart libraries, from scratch.

- code to regenerate code corresponding to charts that have changed
logically since the rebuild.

3 Select the Build button to begin the build process.

Configuring a Target

9-9

Configuring a Target
Configuring a target entails some or all of the following steps:

1 Add the target, if necessary, to the state machine’s target list.

See “Adding a Target to a State Machine’s Target List” on page 9-9 for
instructions on how to add targets to a state machine’s target list.

2 Specify code generation options.

See “Specifying Code Generation Options” on page 9-11 for more
information.

3 Specify custom code options.

See “Specifying Custom Code Options” on page 9-17 for more information.

4 Check “Apply to all Libraries” on the Target Builder dialog box if you want
the selected options to apply to the code generated for charts imported from
chart libraries.

Configuring an RTW target may require additional steps. See the Real-Time
Workshop User’s Guide for more information.

Adding a Target to a State Machine’s Target List
Building an Real-Time Workshop target requires that you first add the target
to the list of potential targets maintained by Stateflow for a particular model.

9 Building Targets

9-10

To add a target:

1 Select Explore from the Stateflow editor’s Tools menu.

The Stateflow Explorer appears.

The Explorer object hierarchy shows the state machines currently loaded in
memory.

2 Select the state machine to which you want to add the Real-Time Workshop
target.

The Explorer displays the selected state machine’s data, events, and targets
in the contents pane.

3 Select Target from the Explorer’s Add menu to add a target with the default
name “untitled” to the selected machine.

4 Rename the target.

You must name the target rtw. (A state machine can have only one
Real-Time Workshop target.)

Configuring a Target

9-11

Renaming the Target
To rename the target:

1 Select the target in the Explorer’s content pane and press the right mouse
button.

A pop-up menu appears.

2 Select Rename from the pop-up menu.

The Explorer redisplays the selected target’s name in an edit box.

3 Change the target’s name in the edit box.

4 Click outside the edit box to close it.

Specifying Code Generation Options
Specifying code generation options differs slightly depending on whether you
are specifying options for a simulation target or an RTW target.

Simulation Target
To specify code generation options for a simulation target:

1 Open the target builder dialog for the target.

You can do this by selecting Open Simulation Target from the graphics
editor’s Tools menu or by clicking on the target in the Stateflow Explorer.

9 Building Targets

9-12

The Simulation Target Builder dialog box for the simulation target
appears.

2 Select Coder Options....

The Simulation Coder Options dialog box appears (see “Simulation Coder
Options Dialog Box” on page 9-14).

3 Check the desired options.

4 Select Apply to apply the selected options or OK to apply the options and
close the dialog.

RTW Target
To specify code generation options for an RTW target:

1 Open the target builder dialog for the RTW target.

You can do this by selecting Open RTW Target from the graphics editor’s
Tools menu or by clicking on the target in the Stateflow Explorer.

Configuring a Target

9-13

The RTW Target Builder dialog box for the simulation target appears.

2 Select Coder Options....

The RTW Coder Options dialog box appears (see “RTW Coder Options
Dialog Box” on page 9-15).

3 Check the desired options.

4 Select Apply to apply the selected options or OK to apply the options and
close the dialog.

9 Building Targets

9-14

Simulation Coder Options Dialog Box
The Stateflow simulation coder provides the following options.

Enable Debugging/Animation. Enables chart animation and debugging. Stateflow
enables debugging code generation when you use the debugger to start a model
simulation. You can enable or disable chart animation separately in the
debugger. (The Stateflow debugger does not work with stand-alone and RTW
targets. Therefore, Stateflow and Real-Time Workshop do not generate
debugging/animation code for these targets, even if this option is enabled.)

Comments in generated code. Include comments from generated code.

Echo expressions without semicolons. Display runtime output in the MATLAB
command window, specifically actions that are not terminated by a semicolon.

Enable C-like bit operations. Recognize C bit-wise operators (~, &, |, ^, >>, etc.) in
action language statements and encode these operators as C bit-wise
operations.

Preserve symbol names. Preserve symbol names (names of states and data) when
generating code. This is useful when the target contains custom code that
accesses state machine data. Note that this option can generate duplicate C
symbols if the source chart contains duplicate symbols, for example, two
substates with identical names. Enable the next option to avoid duplicate
substate names.

Configuring a Target

9-15

Append symbol names with parent names. Generates a state or data name by
appending the name of the item’s parent to the item’s name.

Use chart names with no mangling. Exports the names of generated functions so
that they can be invoked by user-written C code.

Use bitsets for storing state configuration. Use bitsets for storing state configuration
variables. This can significantly reduce the amount of memory required to
store the variables. However, it can increase the amount of memory required
to store target code if the target processor does not include instructions for
manipulating bitsets.

Generate Visual C++ 5.0 project file. Generates a Microsoft Visual C++ 5.0 project
file for the simulation target. This simplifies use of Visual C++ to debug targets
that include custom code.

Use Lcc-win32 compiler installed with MATLAB. Use the lcc compiler to build this
target. See “Setting Up Build Tools on Windows” on page 9-5 for more
information. (This option appears only on the Windows version of Stateflow.)

RTW Coder Options Dialog Box
The RTW Coder Options dialog box provides the following options.

Comments in generated code. Include comments in the generated code.

Enable C-like bit operations. Recognize C bit-wise operators (~, &, |, ^, >>, etc.) in
action language statements and encode these operators as C bit-wise
operations.

9 Building Targets

9-16

Preserve symbol names. Preserve symbol names (names of states and data) when
generating code. This is useful when the target contains custom code that
accesses state machine data. Note that this option can generate duplicate C
symbols if the source chart contains duplicate symbols, for example, two
substates with identical names. Enable the next option to avoid duplicate
substate names.

Append symbol names with parent names. Generates a state or data name by
appending the name of the item’s parent to the item’s name.

Use chart names with no mangling. Exports the names of generated functions so
that they can be invoked by user-written C code.

Use bitsets for storing state configuration. Use bitsets for storing state configuration
variables. This can significantly reduce the amount of memory required to
store the variables. However, it can increase the amount of memory required
to store target code if the target processor does not include instructions for
manipulating bitsets.

Configuring a Target

9-17

Specifying Custom Code Options
You must specify various configuration options (see “Custom Code Options” on
page 9-18) to build custom code into a simulation target.

To specify the custom code options:

1 Open the Target Builder dialog box for the target in which you want to
include custom code.

You can do this by selecting the appropriate open target item (e.g., Open
Simulation Target) from the Stateflow editor’s Tools menu or by clicking
on the simulation target in the Stateflow Explorer.

The Target Builder dialog box appears, for example,

2 Select Target Options from the dialog.

The Target Options dialog box appears.

9 Building Targets

9-18

The dialog box contains a drop-down list listing various options for
specifying what code to include in the target and where the code is located.
The edit box below the list displays the setting for the current option.

3 Select the options required to specify your code and enter the specifications
in the edit box.

See “Custom Code Options” on page 9-18 for information on how to use these
options to specify your custom code.

4 Select Apply to apply the specification to the target or OK to apply the
specifications and close the dialog.

Custom Code Options
The target options dialog provides the following options for specifying custom
code to be built into a simulation target:

Custom code included at the top of generate code. Custom C code to be included at
the top of a generated header file that is included at the top of all generated
source code files. In other words, all generated code sees code specified by this
option. Use this option to include header files that declare custom functions
and data used by generated code.

Custom include directory paths. Space-separated list of paths of directories
containing custom header files to be included either directly (see first option
above) or indirectly in the compiled target.

Custom source files. Space separated list of source files to be compiled and linked
into the target.

Note Stateflow ignores the preceding two options when building RTW
targets. This means that all source files required for building custom code into
an RTW target must reside in MATLAB’s working directory.

Custom libraries. Space-separated list of libraries containing custom object code
to be linked into the target.

Configuring a Target

9-19

Custom make files. Space-separated list of custom makefiles. The Stateflow code
generator includes these makefiles at the head of the makefile it generates to
build the simulation target. You can use this option to include makefiles for
building custom code required by the target.

Build command. The MATLAB command used to build the target.

Code command. The MATLAB command used to invoke the code generator (sfc,
by default). You can add command-line arguments for sfc options not reflected
on the Coder Options dialog box for the target.

Custom initialization code. Code statements that are executed once at the start of
simulation. You can use this initialization code to invoke functions that
allocate memory or perform other initializations of your custom code.

Custom termination code. Code statements that are executed at the end of
simulation. You can use this code to invoke functions that free memory
allocated by custom code or perform other cleanup tasks.

9 Building Targets

9-20

Parsing

Parser
The parser evaluates the graphical and nongraphical objects in each Stateflow
machine against the supported Stateflow notation and the action language
syntax.

Parse the Machine or the Stateflow Diagram
Explicitly parse each Stateflow diagram in the machine by choosing Parse
from the graphics editor Tools menu. Explicitly parse the current Stateflow
diagram by choosing Parse Diagram from the graphics editor Tools menu. The
machine is implicitly parsed when you simulate a model, build a target, or
generate code.

In all cases, a pop-up information window is displayed when the parsing is
complete. If the parsing is unsuccessful, one error at a time is displayed (in red)
in the informational window. The Stateflow diagram automatically selects and
pans to the object containing the parse error. Double-click on the error in the
information window to bring the Stateflow diagram to the forefront, zoom (fit
to view), and select the object containing the parse error. Press the space bar
to zoom back out. Fix the error and reparse the Stateflow diagram.
Informational messages are also displayed in the MATLAB command window.

These steps describe parsing, assuming this Stateflow diagram.

Parsing

9-21

1 Parse the Stateflow diagram.

Choose Parse Diagram from the graphics editor Tools menu to parse the
Stateflow diagram. State A in the upper left-hand corner is selected and this
message is displayed in the pop-up window and the MATLAB command
window.

2 Fix the parse error.

In this example, there are two states with the name A. Edit the Stateflow
diagram and label the duplicate state with the text B.

The Stateflow diagram should look similar to this.

9 Building Targets

9-22

3 Reparse.

Choose Parse Diagram from the graphics editor Tools menu. This message
is displayed in the pop-up menu and the MATLAB command window.

4 Fix the parse error.

In this example, the state with the question mark needs to be labeled with
at least a state name. Edit the Stateflow diagram and label the state with
the text C. The Stateflow diagram should look similar to this.

Parsing

9-23

5 Reparse.

Choose Parse Diagram from the graphics editor Tools menu. This message
is displayed in the pop-up window and the MATLAB command window.

6 Fix the parse error.

In this example, the transition label contains a syntax error. The closing
bracket of the condition is missing. Edit the Stateflow diagram and add the
closing bracket so that the label is E_one [C_one].

7 Reparse.

Choose Parse Diagram from the graphics editor Tools menu. This message
is displayed in the pop-up window and the MATLAB command window.

The Stateflow diagram has no parse errors.

9 Building Targets

9-24

Error Messages
When building a target, you may see error messages from any of the following
sources: the parser, the code generator, or from external build tools (make
utility, C compiler, linker). Stateflow displays errors in a dialog box and in the
MATLAB command window. Double-clicking on a message in the error dialog
zooms the Stateflow diagram to the object that caused the error.

Parser Error Messages
The Stateflow parser flags syntax errors in a state chart. For example, using a
backward slash (\) instead of a forward slash (/) to separate the transition
action from the condition action generates a general parse error message.

Typical parse error messages include:

• "Invalid state name xxx" or "Invalid event name yyy" or "Invalid data
name zzz"

A state, data, or event name contains a nonalphanumeric character other
than underscore.

• "State name xxx is not unique in objects #yyy and #zzz"

Two or more states at the same hierarchy level have the same name.

• "Invalid transition out of AND state xxx (#yy)"

A transition originates from an AND (parallel) state.

• "Invalid intersection between states xxx and yyy"

Neighboring state borders intersect. If the intersection is not apparent,
consider the state to be a cornered rectangle instead of a rounded rectangle.

• "Junction #x is sourcing more than one unconditional transition"

More than one unconditional transition originates from a connective
junction.

• "Multiple history junctions in the same state #xxx"

A state contains more than one history junction.

Error Messages

9-25

Code Generation Error Messages
Typical code generation error messages include:

• "Failed to create file: modelName_sfun.c"

The code generator does not have permission to generate files in the current
directory.

• "Another unconditional transition of higher priority shadows
transition # xx"

More than one unconditional inner, default, or outer transition originates
from the same source.

• "Default transition cannot end on a state that is not a substate
of the originating state."

A transition path starting from a default transition segment in one state
completes at a destination state that is not a substate of the original state.

• "Input data xxx on left hand side of an expression in yyy"

A Stateflow expression assigns a value to an Input from Simulink data
object. By definition, Stateflow cannot change the value of a Simulink input.

Compilation Error Messages
If compilation errors indicate the existence of undeclared identifiers, verify
that variable expressions in state, condition, and transition actions are defined.

Consider, for example, an action language expression such as a=b+c. In
addition to entering this expression in the Stateflow diagram, you must create
data objects for a, b, and c using the Explorer. If the data objects are not
defined, the parser assumes that these unknown variables are defined in the
Custom code portion of the target (which is included at the beginning of the
generated code). This is why the error messages are encountered at compile
time and not at code generation time.

9 Building Targets

9-26

Integrating Custom and Generated Code
The MATLAB Digest article, “Integrating Custom C-Code Using Stateflow
2.0,” explains in detail how to integrate code that you write with code generated
by Stateflow. This article is available at http://www.mathworks.com/
company/digest/june99/stateflow/.

This section provides additional information on integrating code that you
create with code generated by Stateflow from a Stateflow model.

Invoking Graphical Functions
To call a graphical function from your custom code:

1 Create the graphical function at the root level of the chart that defines the
function (see “Creating a Graphical Function” on page 3-34).

2 Export the function from the chart that defines the function (see “Exporting
Graphical Functions” on page 3-39).

This option implicitly forces the chart and function names to be preserved.

3 Include the generated header file chart_name.h at the top of your custom
code, where chart_name is the name of the chart that contains the graphical
function.

The chart header file contains the prototypes for the graphical functions that
the chart defines.

10

Debugging

Overview . 10-2

Stateflow Debugger User Interface 10-5

Debugging Runtime Errors 10-10

Debugging State Inconsistencies 10-14

Debugging Conflicting Transitions 10-16

Debugging Data Range Violations 10-18

Debugging Cyclic Behavior 10-19

10 Debugging

10-2

Overview
Use the Stateflow Debugger to debug and animate the Stateflow diagrams in a
particular machine.

It is a good idea to include debugging options in preliminary simulation target
builds to ensure that the model is behaving as you expect, to evaluate code
coverage, and to perform dynamic checking.

When you save the Stateflow diagram, all of the Debugger settings (including
breakpoints) are saved.

Generally speaking, debugging options should be disabled for Real-Time
Workshop and stand-alone targets. The Debugger does not interact with
Real-Time Workshop or stand-alone targets and the overhead incurred from
the added instrumented code is undesirable.

Typical Debugging Tasks
These are some typical debugging tasks you might want to accomplish:

• Animate Stateflow diagrams, set breakpoints, and debug runtime errors

• Evaluate coverage

• State inconsistencies

• Conflicting transitions

• Data range violations

• Cyclic behavior

Including Debugging in the Target Build
These debugging options require supporting code additions to the target code
generated:

• State inconsistency

• Transition conflict

• Data range violations

To include the supporting code for these debugging options, you must check
Enable debugging and animation in the Coder Options dialog box. See
“Specifying Code Generation Options” on page 9-11. You must rebuild the

Overview

10-3

target for any changes made to the settings in the Target Builder properties
dialog box to take effect. See “Target Types” on page 9-2, and “Configuring a
Target” on page 9-9 for more information.

Breakpoints
A breakpoint indicates where and when the Debugger should break execution
of a Stateflow diagram. The Debugger supports global and local breakpoints.
Global breakpoints halt execution on any occurrence of the specific type of
breakpoint. Local breakpoints halt execution on a specific object instance.
When simulation execution is halted at a breakpoint, you can:

• Examine the current status of the Stateflow diagram

• Step through the execution of the Stateflow diagram

• Specify display of one of these options at a time: the call stack, code coverage,
data values, or active states

The breakpoints can be changed during runtime and are immediately enforced.
When you save the Stateflow diagram, all of the debugger settings (including
breakpoints) are saved so that the next time you open the model, the
breakpoints remain as you left them.

Runtime Debugging
Once the target is built with the debugging code, you can then optionally enable
or disable the associated runtime options in the Debugger. Enabling or
disabling the options in the Debugger window affects the Debugger output
display results. Enabling/disabling the options in the Debugger window affects
the target code and can cause the target to be rebuilt when you start the
simulation from the debugger.

There are also some runtime debugging options that do not require supporting
code in the target. These options can be dynamically set:

• Enable/disable cycle detection in the Debugger window

• Set global breakpoints at:

- Any chart entry

- Any event broadcast

- Any state entry

10 Debugging

10-4

• Enable/disable local Debugger breakpoints at specific chart or state action
execution points in these appropriate property dialog boxes:

- Chart (see “Specifying Chart Properties” on page 3-30)

- State (see “Changing Event Properties” on page 4-4)

• Enable/disable local Debugger breakpoints at a specific transition (either
when the transition is tested or when it is determined to be valid) in the
Transition property dialog box (see “Using the Transition Properties
Dialog” on page 3-25)

• Enable/disable local Debugger breakpoints based on a specific event
broadcast (see “Event Dialog Box” on page 4-5)

Stateflow Debugger User Interface

10-5

Stateflow Debugger User Interface

Debugger Main Window
This is the Debugger main window as it appears when first invoked.

10 Debugging

10-6

This is the Debugger main window as it appears when a debug session is active.

Status Display Area
Once a debugging session is in progress, these status items are displayed in the
upper portion of the Debugger window:

• The currently executing model is displayed in the Executing field.

• The execution point that the Debugger is halted at is displayed in the
Stopped field. Consecutive displays of this field show each semantic step
being executed.

• The event being processed is displayed in the Current Event field.

• The current simulation time is displayed in the Simulink Time field.

• The percentage of code that has been covered thus far in the simulation is
displayed in the Code Coverage field.

Breakpoint Controls
Use the Breakpoint controls to specify global breakpoints. When a global
breakpoint is encountered normal simulation execution stops and the
Debugger takes control on any:

Stateflow Debugger User Interface

10-7

• Chart entry

Click on the Chart Entry check box (check is displayed when enabled) to
enable this type of breakpoint.

• Event broadcast

Click on the Event Broadcast check box (check is displayed when enabled)
to enable this type of breakpoint.

• State entry

Click on the State Entry check box (check is displayed when enabled) to
enable this type of breakpoint.

The breakpoints can be changed during runtime and are immediately enforced.
When you save the Stateflow diagram, the breakpoint settings are saved.

Debugger Action Control Buttons
Use these buttons when debugging a Stateflow machine to control the
Debugger’s actions:

• Continue

Click on the Go button to have simulation execution proceed until a
breakpoint (global or local) is reached. Once the Go button has been clicked,
the Stateflow diagram is marked read-only. The appearance of the graphics
editor toolbar and menus changes so that object creation is not possible.
When the graphics editor is in this read-only mode, it is called “iced.”

• Step

Click on the Step button to single step through the simulation execution.

• Break

Click on the Break button to suspend the simulation and transfer control to
the debugger.

• Stop Simulation

Click on the Stop Simulation button to stop the simulation execution and
relinquish debugging control. Once the debug session is stopped, the
graphics editor toolbar and menus return to their normal appearance and
operation so that object creation is again possible.

10 Debugging

10-8

Animation Controls
Activating animation causes visual color changes (objects are highlighted in
the selection color) in the Stateflow diagram based on the simulation execution.

Activate animation by turning on the Enabled check box. Deactivate
animation by turning on the Disabled check box. You can specify the
animation speed from a range of 0 (fast; the default) to 1 (slow) seconds.

Display Controls
Use these buttons to control the output display:

• Call Stack

Click on the Call Stack button to display a sequential list of the Stopped and
Current Event status items that occur when single stepping through the
simulation.

• Coverage

The Coverage button displays the current percentage of unprocessed
transitions, states, etc. at that point in the simulation. Click on the button’s
drop down list icon to display a list of coverage options: coverage for the
current chart only, for all loaded charts, or for all charts in the model.

• Browse Data

Click on the Browse Data button to display the current value of any defined
data objects.

• Active States

The Active States button displays a list of active states in the display area.
Double-clicking on any state causes the graphics editor to display that state.
The drop-down list button on the Active States button lets you specify the
extent of the display: active states in the current chart only, in all loaded
charts, or for all charts in the model.

• Breakpoints

Click on the Breakpoints button to display a list of the set breakpoints. The
drop-down list button on the Breakpoints button lets you specify the extent
of the display: breakpoints in the current chart only or in all loaded charts.

Once you have selected an output display button, that type of output is
displayed until you choose a different display type. You can clear the display
by selecting Clear Display from the Debugger’s File menu.

Stateflow Debugger User Interface

10-9

MATLAB Command Field
Direct access to the MATLAB command window is not possible while the
Debugger is stopped at a breakpoint. If you need to enter any MATLAB
commands during a debugging session, enter them into the MATLAB
Command field and press the Return key.

10 Debugging

10-10

Debugging Runtime Errors

Example Stateflow Diagram
This example Simulink model and Stateflow diagram is used to show how to
debug some typical runtime errors.

Debugging Runtime Errors

10-11

The Stateflow diagram has two states at the highest level in the hierarchy,
Power_off and Power_on. By default Power_off is active. The event Switch
toggles the system between being in Power_off and Power_on. Switch is
defined as an Input from Simulink event. Power_on has three substates,
First, Second, and Third. By default, when Power_on becomes active, First
also becomes active. Shift is defined as an Input from Simulink data object.
When Shift equals 1, the system transitions from First to Second, Second to
Third, Third to First, and then the pattern repeats.

In the Simulink model, there is an event input and a data input. A Sine wave
block is used to generate a repeating input event that corresponds with the
Stateflow event Switch. The Step block is used to generate a repeating pattern
of 1 and 0 that corresponds with the Stateflow data object Shift. Ideally, the
Switch event occurs in a frequency that allows at least one cycle through First,
Second, and Third.

Typical Scenario to Debug Runtime Errors
These steps describe a typical debugging scenario to resolve runtime errors in
the example model:

1 Create the Simulink model and Stateflow diagram (including defining the
event and data objects).

2 Ensure the sfun target includes debugging options.

3 Invoke the Debugger and choose debugging options.

4 Start the simulation.

5 Debug the simulation execution.

6 Resolve runtime error, and repeat from step 3.

Create the Model and Stateflow Diagram
Using the sample (see “Example Stateflow Diagram” on page 10-10) as a guide,
create the Simulink model and Stateflow diagram. Using the graphics editor
Add menu, add the Switch Input from Simulink event and the Shift Input
from Simulink data object.

10 Debugging

10-12

Define the sfun Target
Choose Open Simulation Target from the Tools menu of the graphics editor.
Ensure that the check box to Enable Debugging/Animation is enabled
(checked). Click on the Close button to apply the changes and close the dialog
box.

Invoke the Debugger and Choose Debugging
Options
Choose Debug from the Tools menu of the graphics editor. Click on the Chart
entry option under the Break Controls border. When the simulation begins,
it will break on the entry into the chart. Click on the Enabled radio button
under the Animation border to turn animation on.

Start the Simulation
Click on the Go button to start the simulation. Informational messages are
displayed in the MATLAB command window. The graphics editor toolbar and
menus change appearance to indicate a read-only interface. The Stateflow
diagram is parsed, the code is generated, and the target is built. Because you
have specified a breakpoint on chart entry, the execution stops at that point
and the Debugger display status indicates

Stopped: Just after entering during function of Chart debug__power

Executing: sf_debug_ex_debug_power

Current Event: Input event Switch

Debug the Simulation Execution
At this point, you can single step through the simulation and see whether the
behavior is what you expect. Click on the Step button and watch the Stateflow
diagram animation and the Debugger status area to see the sequence of
execution.

Single stepping shows that the desired behavior is not occurring. The
transitions from Power_on.First to Power_on.Second, etc., are not occurring
because the transition from Power_on to Power_off takes priority. The output
display of code coverage also confirms this observation.

Debugging Runtime Errors

10-13

Resolve Runtime Error and Repeat
Choose Stop from the Simulation menu of the graphics editor. The Stateflow
diagram is now writeable. The generation of event Switch is driving the
simulation and the simulation time is passing too quickly for the input data
object Shift to have an effect. The model may need to be completely rethought.

In the meantime, there is a test that verifies the conclusion. Modify the
transition from Power_on to Power_off to include a condition. The transition is
not to be taken until simulation time is greater than 10.0. Make this
modification and click on the Go button to start the simulation again. Repeat
the debugging single stepping and observe the behavior.

Solution Stateflow Diagram
This is the corrected Stateflow diagram with the condition added to the
transition from Power_on to Power_off.

10 Debugging

10-14

Debugging State Inconsistencies
Stateflow notations specify that states are consistent if:

• An active state (consisting of at least one substate) with XOR decomposition
has exactly one active substate

• All substates of an active state with AND decomposition are active

• All substates of an inactive state with either XOR or AND decomposition are
inactive

A state inconsistency error has occurred, if after a Stateflow diagram completes
an update, the diagram violates any these notation rules.

Causes of State Inconsistency
State inconsistency errors are most commonly caused by the omission of a
default transition to a substate in superstates with XOR decomposition.

Design errors in complex Stateflow diagrams can also result in state
inconsistency errors. These errors may only be detectable using the Debugger
at runtime.

Detecting State Inconsistency
To detect the state inconsistency during a simulation:

1 Build the target with debugging enabled

2 Invoke the Debugger and enable State Inconsistency checking

3 Start the simulation

Debugging State Inconsistencies

10-15

Example: State Inconsistency
This Stateflow diagram has a state inconsistency.

In the absence of a default transition indicating which substate is to become
active, the simulation encounters a runtime state inconsistency error.

Adding a default transition to one of the substates resolves the state
inconsistency.

10 Debugging

10-16

Debugging Conflicting Transitions
A transition conflict exists if, at any step in the simulation, there are two
equally valid transition paths from the same source. In the case of a conflict,
equivalent transitions (based on their labels) are evaluated based on the
geometry of the outgoing transitions. See “Execution Order” on page 8-58 for
more information.

Detecting Conflicting Transitions
To detect conflicting transitions during a simulation:

1 Build the target with the debugging enabled

2 Invoke the Debugger and enable Transition Conflict checking

3 Start the simulation

Example: Conflicting Transition
This Stateflow diagram has a conflicting transition.

The default transition to state A assigns data a equal to 1 and data b equal to
10. State A’s during action increments a and decrements b. The transition from
state A to state B is valid if the condition [a > 4] is true. The transition from
state A to state C is valid if the condition [b < 7] is true. As the simulation

Debugging Conflicting Transitions

10-17

proceeds, there is a point where state A is active and both conditions are true.
This is a transition conflict.

Multiple outgoing transitions from states that are of equivalent label priority
are evaluated in a clockwise progression starting from the twelve o’clock
position on the state. In this example, the transition from state A to state B is
taken.

Although the geometry is used to continue after the transition conflict, it is not
recommended to design your Stateflow diagram based on an expected
execution order.

10 Debugging

10-18

Debugging Data Range Violations
Each Data property dialog box has fields for an Initial, Minimum, and
Maximum value. If the data object equals a value outside of this range,
enabling data range checking will detect the error.

Detecting Data Range Violations
To detect data range violations during a simulation:

1 Build the target with debugging enabled

2 Invoke the Debugger and enable Data Range checking

3 Start the simulation

Example: Data Range Violation
This Stateflow diagram has a data range violation.

The data a is defined to have an Initial and Minimal value of 0 and a
Maximum value of 2. Each time an event awakens this Stateflow diagram and
state A is active, a is incremented. The value of a quickly becomes a data range
violation.

Debugging Cyclic Behavior

10-19

Debugging Cyclic Behavior
When a step or sequence of steps is indefinitely repeated (recursive), this is
called cyclic behavior. The Debugger cycle detection algorithms detect a class
of infinite recursions caused by event broadcasts.

Detecting Cyclic Behavior
To detect cyclic behavior during a simulation:

1 Build the target with debugging enabled

2 Invoke the Debugger and enable Detect Cycles

3 Start the simulation

Example: Cyclic Behavior
This Stateflow diagram shows a typical example of a cycle created by infinite
recursions caused by an event broadcast.

10 Debugging

10-20

When state C during action executes event E1 is broadcast. The transition from
state A.A1 to state A.A2 becomes valid when event E1 is broadcast. Event E2 is
broadcast as a condition action of that transition. The transition from state
B.B1 to state B.B2 becomes valid when event E2 is broadcast. Event E1 is
broadcast as a condition action of the transition from state B.B1 to state B.B2.
Because these event broadcasts of E1 and E2 are in condition actions, a
recursive event broadcast situation occurs. Neither transition can complete.

Example: Flow Cyclic Behavior Not Detected
This Stateflow diagram shows an example of cyclic behavior in a flow diagram
that is not detected by the Debugger.

The data object i is set to zero in the condition action of the default transition.
i is incremented in the next transition segment condition action. The
transition to the third connective junction is valid only when the condition
[i < 0] is true. This condition will never be true in this flow diagram and there
is a cycle.

This cycle is not detected by the Debugger because it does not involve event
broadcast recursion. Detecting cycles that are involved with data values is not
currently supported.

Debugging Cyclic Behavior

10-21

Example: Noncyclic Behavior Flagged as a Cycle
This Stateflow diagram shows an example of noncyclic behavior that the
Debugger flags as being cyclic.

State A becomes active and i is initialized to zero. When the transition is
tested, the condition [i < 5] is true. The condition actions, increment i and
broadcast event E, are executed. The broadcast of E when state A is active
causes a repetitive testing (and incrementing of i) until the condition is no
longer true. The Debugger flags this as a cycle when in reality the apparent
cycle is broken when i becomes greater than 5.

10 Debugging

10-22

11

Function Reference

11 Function Reference

11-2

This chapter contains detailed descriptions of Stateflow functions.

These functions operate on the machine.

This function operates on a Stateflow diagram.

This function is independent of models and Stateflow diagrams.

Functions

sfexit Closes all Stateflow diagrams, Simulink models containing
Stateflow diagrams, and exits the Stateflow environment.

sfnew Creates and displays a new Simulink model containing an
empty Stateflow block.

sfsave Saves the current machine and Simulink model.

stateflow Opens the Stateflow model window. See stateflow.

Functions

sfprint Prints the visible portion of a Stateflow diagram.

Functions

sfhelp Displays Stateflow online help in the MATLAB help
browser.

sfnew

11-3

11sfnewPurpose Create a Simulink model containing an empty Stateflow block.

Syntax sfnew

sfnew modelname

Description sfnew creates and displays an untitled Simulink model containing an empty
Stateflow block.

sfnew modelname creates a Simulink model with the title specified.

Example Create an untitled Simulink model that contains an empty Stateflow block.

sfnew

The new model appears.

sfexit

11-4

11sfexitPurpose Close all Simulink models containing Stateflow diagrams and exit the
Stateflow environment.

Syntax sfexit

sfsave

11-5

11sfsavePurpose Save a state machine and Simulink model.

Syntax sfsave

sfsave ('machinename')

sfsave ('machine', 'saveasname')

sfsave ('defaults')

Description sfsave saves the current machine and Simulink model.

sfsave ('machinename')saves the specified machine and its Simulink model.

sfsave ('machine', 'saveasname')saves the specified machine and its
Simulink model with the specified name.

sfsave ('defaults')saves the current environement default settings in the
defaults file.

stateflow

11-6

11stateflowPurpose Open the Stateflow model window.

Syntax stateflow

Description stateflow opens the Stateflow model window. The model contains an untitled
Stateflow block, an Examples block, and a manual switch. The Stateflow block
is a masked Simulink model and is equivalent to an empty, untitled Stateflow
diagram. Use the Stateflow block to include a Stateflow diagram in a Simulink
model.

Every Stateflow block has a corresponding S-function. This S-function is the
agent Simulink interacts with for simulation and analysis.

The control behavior that Stateflow models complements the algorithmic
behavior modeled in Simulink block diagrams. By incorporating Stateflow
blocks into Simulink models, you can add event-driven behavior to Simulink
simulations. You create models that represent both data and control flow by
combining Stateflow blocks with the standard Simulink and toolbox blocksets.
These combined models are simulated using Simulink.

Example This example shows how to open the Stateflow model window and use a
Stateflow block to create a Simulink model:

1 Invoke Stateflow.
stateflow

The Stateflow model window and an untitled Simulink model containing a
Stateflow block are displayed.

stateflow

11-7

2 Double-click on the untitled Stateflow block in the untitled Simulink model
to invoke a Stateflow editor window.

stateflow

11-8

3 Create the underlying Stateflow diagram.

sfprint

11-9

11sfprintPurpose Print the visible portion of a Stateflow diagram.

Syntax sfprint

sfprint ('diagram_name','ps')

sfprint ('diagram_name','psc')

sfprint ('diagram_name','tif')

sfprint ('diagram_name','clipboard')

Description sfprint prints the visible portion of the current Stateflow diagram. A
read-only preview window appears while the print operation is in progress. An
informational box appears indicating the printing operation is starting.

See “Printing the Current View” on page 3-55, for information on printing
Stateflow diagrams that are larger than the editor display area.

sfprint ('diagram_name','ps') prints the visible portion of the specified
Stateflow diagram to a postscript file.

sfprint ('diagram_name','psc') prints the visible portion of the specified
Stateflow diagram to a color postscript file.

sfprint ('diagram_name','tif') prints the visible portion of the specified
Stateflow diagram to a .tif file.

sfprint ('diagram_name','clipboard') prints the visible portion of the
specified Stateflow diagram to a clipboard bitmap (PC version only).

sfhelp

11-10

11sfhelpPurpose Display Stateflow online help.

Syntax sfhelp

A

Glossary

A Glossary

A-2

Actions
Actions take place as part of Stateflow diagram execution. The action can be
executed as part of a transition from one state to another, or depending on the
activity status of a state. Transitions can have condition actions and transition
actions. For example,

States can have entry, during, exit, and, on event_name actions. For example,

If you enter the name and backslash followed directly by an action or actions
(without the entry keyword), the action(s) are interpreted as entry action(s).
This shorthand is useful if you are only specifying entry actions.

The action language defines the categories of actions you can specify and their
associated notations. An action can be a function call, an event to be broadcast,
a variable to be assigned a value, etc. For more information, see the section
titled “Action Language” on page 7-37.

Condition Transition
actionaction

A-3

Chart Instance
A chart instance is a link from a Stateflow model to a chart stored in a Simulink
library. A chart in a library can have many chart instances. Updating the chart
in the library automatically updates all the instances of that chart.

Condition
A condition is a Boolean expression to specify that a transition occurs given
that the specified expression is true. For example,

The action language defines the notation to define conditions associated with
transitions. See the section titled “Action Language” on page 7-37 for more
information.

Connective Junction
Connective junctions are decision points in the system. A connective junction is
a graphical object that simplifies Stateflow diagram representations and
facilitates generation of efficient code. Connective junctions provide alternative
ways to represent desired system behavior.

[speed>threshold] is a
condition

A Glossary

A-4

This example shows how connective junctions (displayed as small circles) are
used to represent the flow of an if code structure.

See the section titled “Connective Junctions” on page 7-28 for more
information.

Data
Data objects store numerical values for reference in the Stateflow diagram.

See “Defining Data” on page 4-13 for more information on representing data
objects.

Data Dictionary
The data dictionary is a database where Stateflow diagram information is
stored. When you create Stateflow diagram objects, the information about

Name Button Icon Description

Connective
junction

One use of a Connective junction is to
handle situations where transitions
out of one state into two or more
states are taken based on the same
event but guarded by different
conditions.

if [c1]{
a1
if [c2]{

a2
else if [c3]{
a3

}

}

}

A-5

those objects is stored in the data dictionary once you save the Stateflow
diagram.

Debugger
See “Stateflow Debugger” on page A-11.

Decomposition
A state has a decomposition when it consists of one or more substates. A
Stateflow diagram that contains at least one state also has decomposition.
Representing hierarchy necessitates some rules around how states can be
grouped in the hierarchy. A superstate has either parallel (AND) or exclusive
(OR) decomposition. All substates at a particular level in the hierarchy must
be of the same decomposition.

Parallel (AND) State Decomposition. Parallel (AND) state decomposition is indicated
when states have dashed borders. This representation is appropriate if all
states at that same level in the hierarchy are active at the same time. The
activity within parallel states is essentially independent.

Exclusive (OR) State Decomposition. Exclusive (OR) state decomposition is
represented by states with solid borders. Exclusive (OR) decomposition is used
to describe system modes that are mutually exclusive. Only one state, at the
same level in the hierarchy, can be active at a time.

Default Transition
Default transitions are primarily used to specify which exclusive (OR) state is
to be entered when there is ambiguity among two or more neighboring
exclusive (OR) states. For example, default transitions specify which substate
of a superstate with exclusive (OR) decomposition the system enters by default
in the absence of any other information. Default transitions are also used to
specify that a junction should be entered by default. A default transition is
represented by selecting the default transition object from the toolbar and then

A Glossary

A-6

dropping it to attach to a destination object. The default transition object is a
transition with a destination but no source object.

See the section titled “Default Transitions” on page 7-21 for more information.

Events
Events drive the Stateflow diagram execution. All events that affect the
Stateflow diagram must be defined. The occurrence of an event causes the
status of the states in the Stateflow diagram to be evaluated. The broadcast of
an event can trigger a transition to occur and/or can trigger an action to be
executed. Events are broadcast in a top-down manner starting from the event’s
parent in the hierarchy.

Events are added, removed and edited through the Stateflow Explorer. See the
section titled “Defining Events” on page 4-2 for more information.

Explorer
See “Stateflow Explorer” on page A-11.

Finder
See “Stateflow Finder” on page A-12.

Finite State Machine
A finite state machine (FSM) is a representation of an event-driven system.
FSMs are also used to describe reactive systems. In an event-driven or reactive
system, the system transitions from one mode or state, to another prescribed
mode or state, provided that the condition defining the change is true.

Flow Graph
A flow graph is the set of flow paths that start from a transition segment that,
in turn, starts from a state or a default transition segment.

Name Button Icon Description

Default
transition

Use a Default transition to indicate,
when entering this level in the
hierarchy, which state becomes active
by default.

A-7

Flow Path
A flow path is an ordered sequence of transition segments and junctions where
each succeeding segment starts on the junction that terminated the previous
segment.

Flow Subgraph
A flow subgraph is the set of flow paths that that start on the same transition
segment.

Graphical Function
A graphical function is a function whose logic is defined by a flow graph. See
“Working with Graphical Functions” on page 3-34.

Hierarchy
Hierarchy enables you to organize complex systems by placing states within
other higher-level states. A hierarchical design usually reduces the number of
transitions and produces neat, more manageable diagrams. See the section
titled “Hierarchy” on page 2-11 for more information.

History Junction
A History junction provides the means to specify the destination substate of a
transition based on historical information. If a superstate has a History
junction, the transition to the destination substate is defined to be the substate
that was most recently visited. The History junction applies to the level of the
hierarchy in which it appears.

See these sections for more information:

• “History Junctions” on page 7-35

Name Button Icon Description

History
junction

Use a History junction to indicate,
when entering this level in the
hierarchy, that the last state that was
active becomes the next state to be
active.

A Glossary

A-8

• “Example: Default Transition and a History Junction” on page 8-20

• “Example: Labeled Default Transitions” on page 8-21

• “Example: Inner Transition to a History Junction” on page 8-29

Inner Transitions
An inner transition is a transition that does not exit the source state. Inner
transitions are most powerful when defined for superstates with XOR
decomposition. Use of inner transitions can greatly simplify a Stateflow
diagram.

See the sections titled “What Is an Inner Transition?” on page 7-24 and
“Example: Inner Transition to a History Junction” on page 8-29 for more
information.

Library Link
A library link is a link to a chart that is stored in a library model in a Simulink
block library.

Library Model
A Stateflow library model is a Stateflow model that is stored in a Simulink
library. You can include charts from a library in your model by copying them.
When you copy a chart from a library into your model, Stateflow does not
physically include the chart in your model. Instead, it creates a link to the
library chart. You can create multiple links to a single chart. Each link is called
a chart instance. When you include a chart from a library in your model, you
also include its state machine. Thus, a Stateflow model that includes links to
library charts has multiple state machines. When Stateflow simulates a model
that includes charts from a library model, it includes all charts from the library
model even if there are links to only some of its models. However, when
Stateflow generates a stand-alone or RTW target, it includes only those charts
for which there are links. A model that includes links to a library model can be
simulated only if all charts in the library model are free of parse and compile
errors.

Machine
A machine is the collection of all Stateflow blocks defined by a Simulink model
exclusive of chart instances (library links). If a model includes any library

A-9

links, it also includes the state machines defined by the models from wich the
links originate.

Notation
A notation defines a set of objects and the rules that govern the relationships
between those objects. Stateflow notation provides a common language to
communicate the design information conveyed by a Stateflow diagram.

Stateflow notation consists of:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

Parallelism
A system with parallelism can have two or more states that can be active at the
same time. The activity of parallel states is essentially independent.
Parallelism is represented with a parallel (AND) state decomposition.

See the section titled “State Decomposition” on page 7-7 for more information.

Real-Time Workshop
The Real-Time Workshop is an automatic C language code generator for
Simulink. It produces C code directly from Simulink block diagram models and
automatically builds programs that can be run in real-time in a variety of
environments.

See the Real-Time Workshop User’s Guide for more information.

RTW Target
An RTW target is an executable built from code generated by the Real-Time
Workshop. See Chapter 9, “Building Targets” for more information.

S-Function
When using Simulink together with Stateflow for simulation, Stateflow
generates an S-function (MEX-file) for each Stateflow machine to support
model simulation. This generated code is a simulation target and is called the
sfun target within Stateflow.

For more information, see Using Simulink.

A Glossary

A-10

Semantics
Semantics describe how the notation is interpreted and implemented behind
the scenes. A completed Stateflow diagram communicates how the system will
behave. A Stateflow diagram contains actions associated with transitions and
states. The semantics describe in what sequence these actions take place
during Stateflow diagram execution.

Simulink
Simulink is a software package for modeling, simulating, and analyzing
dynamic systems. It supports linear and nonlinear systems, modeled in contin-
uous time, sampled time, or a hybrid of the two. Systems can also be multirate,
i.e., have different parts that are sampled or updated at different rates.

It allows you to represent systems as block diagrams that you build using your
mouse to connect blocks and your keyboard to edit block parameters. Stateflow
is part of this environment. The Stateflow block is a masked Simulink model.
Stateflow builds an S-function that corresponds to each Stateflow machine.
This S-function is the agent Simulink interacts with for simulation and
analysis.

The control behavior that Stateflow models complements the algorithmic
behavior modeled in Simulink block diagrams. By incorporating Stateflow
diagrams into Simulink models, you can add event-driven behavior to
Simulink simulations. You create models that represent both data and control
flow by combining Stateflow blocks with the standard Simulink blocksets.
These combined models are simulated using Simulink.

The Using Simulink document describes how to work with Simulink. It
explains how to manipulate Simulink blocks, access block parameters, and
connect blocks to build models. It also provides reference descriptions of each
block in the standard Simulink libraries.

State
A state describes a mode of a reactive system. A reactive system has many
possible states. States in a Stateflow diagram represent these modes. The
activity or inactivity of the states dynamically changes based on transitions
among events and conditions.

Every state has hierarchy. In a Stateflow diagram consisting of a single state,
that state’s parent is the Stateflow diagram itself. A state also has history that
applies to its level of hierarchy in the Stateflow diagram. States can have

A-11

actions that are executed in a sequence based upon action type. The action
types are: entry, during, exit, or on event_name actions.

Stateflow Block
The Stateflow block is a masked Simulink model and is equivalent to an empty,
untitled Stateflow diagram. Use the Stateflow block to include a Stateflow
diagram in a Simulink model.

The control behavior that Stateflow models complements the algorithmic
behavior modeled in Simulink block diagrams. By incorporating Stateflow
blocks into Simulink models, you can add complex event-driven behavior to
Simulink simulations. You create models that represent both data and control
flow by combining Stateflow blocks with the standard Simulink and toolbox
block libraries. These combined models are simulated using Simulink.

Stateflow Debugger
Use the Stateflow Debugger to debug and animate your Stateflow diagrams.
Each state in the Stateflow diagram simulation is evaluated for overall code
coverage. This coverage analysis is done automatically when the target is
compiled and built with the debug options. The Debugger can also be used to
perform dynamic checking. The Debugger operates on the Stateflow machine.

Stateflow Diagram
Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is also a
graphical representation of a finite state machine wherestates and transitions
form the basic building blocks of the system. See the section titled “Anatomy of
a Model and Machine” on page 2-4 for more information on Stateflow diagrams.

Stateflow Explorer
Use the Explorer to add, remove, and modify data, event, and target objects.
See, “Exploring Charts” on page 6-3 for more information.

Name Button Icon Description

State Use a state to depict a mode of the system.

A Glossary

A-12

Stateflow Finder
Use the Finder to display a list of objects based on search criteria you specify.
You can directly access the properties dialog box of any object in the search
output display by clicking on that object. See “Searching Charts” on page 6-8
for more information.

Subchart
A subchart is a chart contained by another chart. See “Working with Graphical
Functions” on page 3-34.

Substate
A state is a substate if it is contained by a superstate.

Superstate
A state is a superstate if it contains other states, called substates.

Supertransition
A supertransition is a transition between objects residing in different
subcharts. See “Working with Supertransitions” on page 3-48 for more
information.

A-13

Target
A target is an executable program built from code generated by Stateflow or the
Real-Time Workshop. See Chapter 9, “Building Targets” for more information.

Topdown Processing
Topdown processing refers to the way in which Stateflow processes states and
events. In particular, Stateflow processes superstates before states. Stateflow
processes a state only if its superstate is activated first.

Transition
A transition describes the circumstances under which the system moves from
one state to another. Either end of a transition can be attached to a source and
a destination object. The source is where the transition begins and the
destination is where the transition ends. It is often the occurrence of some
event that causes a transition to take place.

Transition Path
A transition path is a flow path that starts and ends on a state.

Transition Segment
A transition segment is a single directed edge on a Stateflow diagram.
Transition segments are sometimes loosely referred to as transitions.

Virtual Scrollbar
A virtual scrollbar enables you to set a value by scrolling through a list of
choices. When you move the mouse over a menu item with a virtual scrollbar,
the cursor changes to a line with a double arrowhead. Virtual scrollbars are
either vertical or horizontal. The direction is indicated by the positioning of the
arrowheads. Drag the mouse either horizontally or vertically to change the
value.

See the section titled “Exploring Objects in the Editor Window” on page 3-12
for more information.

A Glossary

A-14

I-1

Index

A
action language

array arguments 7-53
assignment operations 7-44
binary operations 7-42
bit operations 7-41
comments 7-61
components 7-39
continuation symbols 7-61
data and event arguments 7-53
definition 2-15
directed event broadcasting 7-57
event broadcasting 7-56
glossary definition A-2
literals 7-60
ml() versus ml. 7-52
objects with actions 7-37
pointer and address operators 7-54
semicolon in 7-61
state action notation 7-38
time symbol 7-61
transition action notation 7-38
unary operations 7-44
user-written functions 7-45

actions
definition 2-14
glossary definition A-2

address operators 7-54
after operator 7-62
animation

debugger control 10-8
array arguments 7-53
assignment operations 7-44
at operator 7-65

B
before operator 7-64
binary operations 7-42
bit operations 7-41
breakpoints 10-3
breakpoints, global 10-3

chart entry 10-7
event broadcast 10-7
state entry 10-7

breakpoints, local 10-3

C
chart (Stateflow diagram)

debugger breakpoint property 3-31
description property 3-31
document link 3-31
editor property 3-31
name property 3-30
parent property 3-30
printing, large 3-55
sample time property 3-31
Simulink subsystem property 3-30
update method property 3-30
update methods for defining interface 5-4

code generation
error messages 9-25

code generation related error messages 9-24
compilation error messages 9-25
condition

definition 2-12
glossary definition A-3
notation overview 7-59

condition action examples
actions specified as condition actions 8-13

Index

I-2

actions specified as condition and transition
actions 8-14

cyclic behavior to avoid 8-17
using condition actions in for loop construct

8-15
conflicting transitions, debugging 10-16
connective junction

definition 2-17
glossary definition A-3
notation overview 7-28

connective junction, examples of
common destination 7-33
common events 7-34
flow diagram 8-34
for loop construct 8-33
for loops 7-31
from a common source 7-33
if-then-else decision construct 8-31
self loop 7-30, 8-32
transitions based on a common event 8-38
transitions from a common source to multiple

destinations 8-36
transitions from multiple sources 8-37
with all conditions specified 7-29
with one unconditional transition 7-29

continuation symbols 7-61
cyclic behavior, debugging 10-19

D
data

constant 4-17
definition 2-11
description property 4-19
exported 5-26
exported to an external code source 4-17
glossary definition A-4

imported 5-28
imported from an external code source 4-17
input from Simulink 4-17
local 4-16
output to Simulink 4-17
temporary 4-17
workspace 4-17

data dictionary
glossary definition A-4

data input from Simulink
add and choose a parent task 5-17
apply and save task 5-18
choose scope task 5-17
specify data attributes task 5-18
tasks 5-17

data output to Simulink
add and choose a parent task 5-20
apply and save task 5-21
choose scope task 5-20
specify data attributes task 5-20
tasks 5-20

data range violation, debugging 10-18
data scope and parent combinations 4-21
Debugger

action control buttons 10-7
active states display 10-8
animation controls 10-8
break button 10-7
break on controls 10-6
breakpoints 10-3
breakpoints display 10-8
browse data display 10-8
call stack display 10-8
clear output display 10-8
coverage display 10-8
display controls 10-8
Dynamic Checker options 10-8

Index

I-3

glossary definition A-11
Go button 10-7
including in the target build 10-2
main window 10-5
MATLAB command field 10-9
overview 10-2
status display area 10-6
Step button 10-7
Stop simulation button 10-7
typical tasks 10-2
user interface 10-5
using 10-10

decomposition
glossary definition A-5
specifying 3-15

default transition
creating 3-23
definition 2-16
glossary definition A-5
labeling notation 7-21
notation example 7-22

default transition notation, examples of
to a junction 7-23
with a label 7-23

default transition semantics, examples of
and a history junction 8-20
in an exclusive (OR) decomposition 8-18
labeled default transition 8-21
to a junction 8-19

directed event broadcasting notation, examples
of

using qualified event names 7-59
using send 7-58

directed event broadcasting semantics, examples
of

send 8-54
using qualified event names 8-56

E
either edge trigger 4-10
error messages

code generation 9-25
code generation related 9-24
compilation 9-25
parsing 9-24
target building 9-25

event
broadcasting 7-56
definition 2-10
directed event broadcast using qualified names

7-59
directed event broadcasting 7-57
exported 5-23
imported 5-25
index property 4-8
representing hierarchy 7-6
trigger property 4-8

event actions and superstates semantics example
8-40

event broadcast
state action notation example 7-56
transition action notation example 7-57

event input from Simulink
add and choose parent task 5-15
apply the changes task 5-16
choose scope task 5-15
select the trigger task 5-16
tasks 5-15

event output to Simulink
add and choose a parent task 5-19
apply and save task 5-19
choose scope task 5-19
task overview 5-9
tasks 5-19

event triggers

Index

I-4

defining 5-12
defining function call 5-9
defining output to Simulink 5-8
function call example 5-9
function call semantics 5-10

events
glossary definition A-6

every operator 7-66
exclusive (OR) state notation 7-8
Explorer

contents of list 6-4
deleting objects from 6-5
main window 6-3
moving objects to change index and port order

6-5
moving objects to change parents 6-5
object hierarchy list 6-4
overview 6-2
user interface 6-3

exploring and searching overview 6-2
exported

data 5-26
event 5-23

external code sources
defining interface for 5-23
definition 5-23

F
falling edge trigger 4-10
Finder

dialog box 6-8
clear button 6-11
close button 6-11
display area 6-12
help button 6-11
matches field 6-10

object type 6-10
refine button 6-11
representing hierarchy 6-13
search button 6-10
search history list 6-11
search method 6-9
string criteria field 6-8

glossary definition A-12
overview 6-2
user interface 6-8

finite state machine
glossary definition A-6
references 2-3
representations 2-2
what is 2-2

flow diagram
for loop notation example 7-31
notation example 7-32
notation overview 7-28
overview example 7-32

for loop
notation example 7-31
semantics example 8-33

function call
defining output event 5-9
example output event semantics 5-10
output event example 5-9

functions
graphical, see graphical functions
sfexit 11-4
sfhelp 11-10
sfprint 11-9
sfsave 11-5
stateflow 11-6
user-written 7-45

Index

I-5

G
graphical functions 3-34–3-41

creating 3-34
exporting 3-39
invoking from charts 3-38
invoking from custom code 9-26
properties 3-40

graphical objects
copying 3-11
cutting and pasting 3-10

graphics editor
object button modes 3-14

H
Hexadecimal 7-55
hexadecimal notation 7-55
hierarchy 2-11

definition 2-11
events 7-6
glossary definition A-7
state 7-5
transition 7-6

history junction
and a default transition semantics example

8-20
and an inner transition semantics example

8-29
definition 2-13
glossary definition A-7
use of history junctions notation example 7-35

I
I/O event triggers 4-10
if-then-else

another notation example 7-29

notation example 7-29
semantics example 8-31

implicit local events
example 4-12
overview 4-11

imported
data 5-28
event 5-25

inner transition
before using an inner transition(1) notation

example 7-24
glossary definition A-8
notation overview 7-24
processing a second event with an inner

transition to a connective junction
semantics example 8-27

processing a second event within an exclusive
(OR) state semantics example 8-24

processing a third event within an exclusive
(OR) state semantics example 8-25

processing one event with an inner transition to
a connective junction semantics example
8-26

processing one event within an exclusive (OR)
state semantics example 8-23

to a connective junction(1) notation example
7-25

to a history junction notation example 7-26
to a history junction semantics example 8-29

installation xix

J
junction

changing incoming arrowhead size 3-28
changing size 3-27
description property 3-29

Index

I-6

document link property 3-29
editing properties 3-28
moving 3-28
parent property 3-29
properties 3-29

K
keywords

change(data_name) 7-39
during 7-39
entry 7-39
entry(state_name) 7-39
exit 7-39
exit(state_name) 7-39
in(state_name) 7-39
matlab() 7-40
matlab. 7-40
on event_name 7-39
send(event_name,state_name) 7-40
summary list 7-39

L
literals 7-60

M
machine

glossary definition A-8
MATLAB

requirements for xiv
ml() functions 7-47
ml. name space operator 7-50

N
notation

connective junction overview 7-28
definition 2-3, 7-2
flow diagram overview 7-28
glossary definition A-9
graphical objects 7-3
history junctions and inner transitions overview

7-35
how is the notation checked 7-2
inner transition overview 7-24
keywords 7-39
motivation for 7-2
representing hierarchy 7-4
self loop transition overview 7-27
state

during action 7-12
entry action 7-11
exit action 7-12
labeling example 7-11
name 7-11
on action 7-12

transition
label example 7-15
labeling 7-15

transition label
condition 7-15
condition action 7-16
event 7-15
transition action 7-16

transition types 7-17

O
output events

defining edge-triggered 5-12

Index

I-7

P
parallel (AND) state

event broadcast condition action semantics
example 8-50

event broadcast state action semantics example
8-42

event broadcast transition action semantics
example 8-46

notation 7-8
parallelism

definition 2-15
glossary definition A-9

parsing
error messages 9-24
how to 9-20
tasks 9-20

Pointer 7-54
pointer operators 7-54
prerequisites xiv

Q
quick start

creating a Simulink model 1-6
creating a Stateflow diagram 1-9
debugging the Stateflow diagram 1-16
defining the Stateflow interface 1-12
generating code 1-18
overview 1-5, 2-28
running a simulation 1-14
sample solution 1-5
Stateflow typical tasks 1-5

R
Real-Time Workshop

glossary definition A-9

references 2-3
regular expressions 6-9
renaming objects 6-6
rising edge trigger 4-10
RTW target A-9
rtw target 1-4

S
searching

Finder user interface 6-8
self loop

notation example 7-30
notation overview 7-27

semantics
definition 2-3
execution order 8-58
glossary definition A-10

send

keyword 7-40
notations example 7-58
semantics example 8-54

sfexit 11-4
sfhelp 11-10
sfprint 11-9
sfprj directory 1-16
sfsave 11-5
S-function glossary definition A-9
Simulink

glossary definition A-10
requirements for xiv

Simulink model and Stateflow machine
relationship between 2-4

state
active and inactive notation 7-8
active notation 7-8

Index

I-8

changing incoming transition arrowhead size
3-20

debugger breakpoint property 3-18
definition 2-8
description property 3-18, 3-41
document link property 3-18, 3-41
editing properties 3-22
exclusive (OR) decomposition notation 7-8
glossary definition A-10
grouping and ungrouping 3-20
inactive notation 7-8
label property 3-18
labeling notation 7-10
moving 3-22
name property 3-18
notation

during action 7-12
entry action 7-11
exit action 7-12
labeling example 7-11
name 7-11
on action 7-12

notation overview 7-7
operations 3-15
parallel (AND) decomposition notation 7-8
representing hierarchy 7-5
resizing 3-15
specifying decomposition 3-15
unique name notation example 7-12

state inconsistencies, debugging 10-14
state label

changing font size 3-20
Stateflow 3-55

applications, types of 1-2
component overview 1-3
defining interfaces overview 2-6
design approaches 1-3

feature overview 1-2
representations 2-2

stateflow 11-6
Stateflow block

considerations in choosing continuous update
5-7

continuous 5-4
continuous example 5-8
defining a continuous 5-7
defining a sampled 5-5
defining a triggered 5-5
defining an inherited 5-6
inherited 5-4
inherited example 5-6
sampled 5-4
sampled example 5-6
triggered 5-4
triggered example 5-5
update methods 5-4

Stateflow diagram
glossary definition A-11
graphical components 2-8
objects 2-7
update methods 5-4

Stateflow interfaces
overview 5-2
typical tasks to define 5-2

subcharts 3-34
creating 3-43
editing 3-46
opening 3-45

substate glossary definition A-12
superstate glossary definition A-12
supertransitions 3-48

labeling 3-53
Symbol Autocreation Wizard 4-25

Index

I-9

T
target

building error messages 9-25
temporal logic operators 7-61

after 7-62
at operator 7-65
before operator 7-64
every operator 7-66
usage rules 7-61

time 7-61
transition

changing arrowhead size 3-24
creating and deleting 3-22
debugger breakpoint property 3-26
debugging conflicting 10-16
default 3-22
definition 2-9
description property 3-26
destination property 3-26
document link property 3-26
editing attach points 3-23
editing properties 3-25
glossary definition A-13
label format 3-23
label property 3-26
labeling 3-23
notation

label example 7-15
labeling 7-15
types 7-17

operations 3-22
parent property 3-26
properties 3-26
representing hierarchy 7-6
source property 3-26
to and from exclusive (OR) states(1) semantics

example 8-8

to and from exclusive (OR) states(2) semantics
example 8-9

to and from exclusive (OR) states(3) semantics
example 8-10

to and from junctions notation example 7-18
to and from OR states notation example 7-18
to and from OR superstates notation example

7-19
to and from substates notation example 7-20
valid labels 3-24

transition label
changing font size 3-24
condition 3-23
condition action 3-23
event 3-23
moving 3-25
notation

condition 7-15
condition action 7-16
event 7-15
transition action 7-16

transition action 3-23
typecast operators 7-55
typographical conventions xvii

U
unary actions 7-44
unary operations 7-44
user-written functions 7-45

V
virtual scrollbar

glossary definition A-13

Index

I-10

W
wormhole 3-50

	Preface
	System Requirements
	Using Stateflow on a Laptop Computer
	Related Products
	Using This Guide
	Chapter Quick Reference
	Typographical Conventions

	Installing Stateflow

	Introduction
	Overview
	What Is Stateflow?
	Examples of Stateflow Applications
	Stateflow Components
	Design Approaches

	Quick Start
	The Power Switch Model
	Creating a Simulink Model
	Creating a Stateflow Diagram
	Defining Input Events
	Defining the Stateflow Interface
	Defining Simulink Parameters
	Parsing the Stateflow Diagram
	Running a Simulation
	Debugging
	Generating Code

	How Stateflow Works
	Finite State Machine Concepts
	What Is a Finite State Machine?
	FSM Representations
	Stateflow Representations
	Notations
	Semantics
	References

	Anatomy of a Model and Machine
	The Simulink Model and Stateflow Machine
	Defining Stateflow Interfaces
	Stateflow Diagram Objects

	Exploring a Real-World Stateflow Application
	Analysis and Physics
	Control Logic
	Running the Model

	Creating Charts
	Creating a Chart
	Using the Stateflow Editor
	Displaying Shortcut Menus
	Drawing Objects
	Specifying Object Styles
	Selecting and Deselecting Objects
	Cutting and Pasting Objects
	Copying Objects
	Editing Object Labels
	Exploring Objects in the Editor Window
	Zooming a Diagram

	Creating States
	Moving and Resizing States
	Creating Substates
	Grouping States
	Specifying State Decomposition
	Specifying Activation Order for Parallel States
	Labeling States
	Using the State Properties Dialog Box
	Naming States
	Defining State Actions
	Outputting State Activity to Simulink

	Creating Boxes
	Creating Transitions
	What Is a Default Transition?
	Creating Default Transitions
	Editing Transition Attach Points
	Labeling Transitions
	Valid Labels
	Changing Arrowhead Size
	Moving Transition Labels
	Using the Transition Properties Dialog

	Creating Junctions
	Changing Size
	Changing Arrowhead Size
	Moving a Junction
	Editing Junction Properties

	Specifying Chart Properties
	Waking Up Charts
	Working with Graphical Functions
	Creating a Graphical Function
	Invoking Graphical Functions
	Exporting Graphical Functions
	Specifying Graphical Function Properties

	Working with Subcharts
	Creating a Subchart
	Manipulating Subcharts as Objects
	Opening a Subchart
	Navigating Subcharts
	Editing a Subchart

	Working with Supertransitions
	About Supertransitions
	Drawing a Supertransition
	Labeling Supertransitions

	Creating Chart Libraries
	Stateflow Printing Options
	Printing the Current View
	Printing a Stateflow Book

	Defining Events and Data
	Defining Events
	Adding Events to the Data Dictionary
	Changing Event Properties
	Event Dialog Box
	Naming Events
	Defining Local Events
	Defining Input Events
	Defining Output Events
	Exporting Events
	Importing Events
	Specifying Trigger Types
	Describing Events
	Documenting Events
	Implicit Events

	Defining Data
	Adding Data to the Data Dictionary
	Setting Data Properties
	Data Dialog Box
	Defining Data Arrays
	Defining Input Data
	Defining Output Data
	Associating Ports with Data
	Defining Temporary Data
	Exporting Data
	Importing Data
	Documenting Data

	Symbol Autocreation Wizard

	Defining Stateflow Interfaces
	Overview
	Interfaces to Stateflow
	Typical Tasks to Define Stateflow Interfaces
	Where to Find More Information on Events and Data

	Defining the Stateflow Block Update Method
	Stateflow Block Update Methods
	Defining a Triggered Stateflow Block
	Defining a Sampled Stateflow Block
	Defining an Inherited Stateflow Block
	Defining a Continuous Stateflow Block

	Defining Output to Simulink Event Triggers
	Overview
	Defining Function Call Output Events
	Defining Edge-Triggered Output Events

	Inputting Events from Simulink
	Add an Event Choosing a Chart as the Parent
	Choose Input from Simulink as the Scope
	Select the Trigger
	Apply the Changes

	Inputting Data from Simulink
	Add a Data Object Choosing a Chart as the Parent
	Choose Input from Simulink as the Scope
	Specify Data Attributes
	Apply and Save the Changes

	Outputting Events to Simulink
	Add an Event Parented by the Chart
	Choose Output to Simulink as the Scope
	Apply the Changes

	Outputting Data to Simulink
	Add a Data Object Parented by the Chart
	Choose Output to Simulink as the Scope
	Specify Data Attributes
	Apply the Changes

	MATLAB Workspace
	What Is the MATLAB Workspace?
	Using the MATLAB Workspace

	Defining the Interface to External Sources
	What Are External Sources?
	Exported Events
	Imported Events
	Exported Data
	Imported Data

	Exploring and Searching Charts
	Overview
	Exploring Charts
	Explorer Main Window
	Moving Objects/Changing Parent
	Moving Objects/Changing Index and Port Order
	Deleting Objects
	Editing Objects
	Setting Properties
	Renaming Objects
	Transferring Object Properties

	Searching Charts
	Stateflow Finder
	Finder Display Area

	Notations
	Overview
	What Is Meant by Notation?
	Motivation Behind the Notation
	How the Notation Checked Is Checked
	Graphical Objects
	The Data Dictionary
	How Hierarchy Is Represented

	States
	Overview
	State Decomposition
	Active and Inactive States
	Combination States
	Labeling a State

	Transitions
	Labeling a Transition
	Valid Transitions
	Types of Transitions
	Default Transitions
	Labeling Default Transitions
	What Is an Inner Transition?
	What Is a Self Loop Transition?

	Connective Junctions
	What Is a Connective Junction?
	What Is Flow Diagram Notation?

	History Junctions
	History Junctions and Inner Transitions

	Action Language
	What Is an Action Language?
	Objects with Actions
	Transition Action Notation
	State Action Notation
	Keywords
	Action Language Components
	Bit Operations
	Binary Operations
	Unary Operations
	Unary Actions
	Assignment Operations
	User-Written Functions
	ml() Functions
	MATLAB Name Space Operator
	The ml() Function Versus ml Name Space Operator
	Data and Event Arguments
	Arrays
	Pointer and Address Operators
	Hexadecimal Notation
	Typecast Operators
	Event Broadcasting
	Directed Event Broadcasting
	Conditions
	Time Symbol
	Literals
	Continuation Symbols
	Comments
	Use of the Semicolon
	Temporal Logic Operators
	After Operator
	Before Operator
	At Operator
	Every Operator
	Temporal Logic Events

	Semantics
	Overview
	List of Semantic Examples

	Event-Driven Effects on Semantics
	What Does Event-Driven Mean?
	Top-Down Processing of Events
	Semantics of Active and Inactive States
	Semantics of State Actions
	Semantics of Transitions

	Transitions to and from Exclusive (OR) States
	Condition Actions
	Default Transitions
	Inner Transitions
	Connective Junctions
	Event Actions
	Parallel (AND) States
	Directed Event Broadcasting
	Execution Order
	Overview
	Execution Order Guidelines
	Parallel (AND) States

	Semantic Rules Summary
	Entering a Chart
	Executing an Active Chart
	Entering a State
	Executing an Active State
	Exiting an Active State
	Executing a Set of Flow Graphs
	Executing an Event Broadcast

	Building Targets
	Overview
	Target Types
	Building a Target
	How Stateflow Builds Targets

	Setting Up Target Build Tools
	Setting Up Build Tools on UNIX
	Setting Up Build Tools on Windows

	Starting a Build
	Starting from a Target Builder Dialog Box

	Configuring a Target
	Specifying Code Generation Options
	Simulation Coder Options Dialog Box
	RTW Coder Options Dialog Box
	Specifying Custom Code Options

	Parsing
	Parser
	Parse the Machine or the Stateflow Diagram

	Error Messages
	Parser Error Messages
	Code Generation Error Messages
	Compilation Error Messages

	Integrating Custom and Generated Code
	Invoking Graphical Functions

	Debugging
	Overview
	Typical Debugging Tasks
	Including Debugging in the Target Build
	Breakpoints
	Runtime Debugging

	Stateflow Debugger User Interface
	Debugger Main Window
	Status Display Area
	Breakpoint Controls
	Debugger Action Control Buttons
	Animation Controls
	Display Controls
	MATLAB Command Field

	Debugging Runtime Errors
	Example Stateflow Diagram
	Typical Scenario to Debug Runtime Errors
	Create the Model and Stateflow Diagram
	Define the sfun Target
	Invoke the Debugger and Choose Debugging Options
	Start the Simulation
	Debug the Simulation Execution
	Resolve Runtime Error and Repeat
	Solution Stateflow Diagram

	Debugging State Inconsistencies
	Causes of State Inconsistency
	Detecting State Inconsistency

	Debugging Conflicting Transitions
	Detecting Conflicting Transitions

	Debugging Data Range Violations
	Detecting Data Range Violations

	Debugging Cyclic Behavior
	Detecting Cyclic Behavior

	Function Reference
	sfnew
	sfexit
	sfsave
	stateflow
	sfprint
	sfhelp

	Glossary
	Index

