
Modeling

Simulation

Implementation

SIMULINK
Dynamic System Simulation for MATLAB

®

®

Using Simulink
Version 4

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Using Simulink
 COPYRIGHT 1990 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 1990 First printing
December 1996 Revised for Simulink 2
January 1999 Revised for Simulink 3 (Release 11)
November 2000 Revised for Simulink 4 (Release 12)

i

Contents

1
Getting Started

To the Reader . 1-2
What Is Simulink? . 1-2
How to Use This Manual . 1-3

Related Products . 1-5

2
Quick Start

Running a Demo Model . 2-2
Description of the Demo . 2-3
Some Things to Try . 2-4
What This Demo Illustrates . 2-5
Other Useful Demos . 2-5

Building a Simple Model . 2-6

Setting Simulink Preferences . 2-15
Simulink Preferences . 2-15

3
How Simulink Works

What Is Simulink . 3-2

Modeling Dynamic Systems . 3-3
Block Diagrams . 3-3
Blocks . 3-3

ii Contents

States . 3-4
System Functions . 3-4
Block Parameters . 3-5
Continuous Versus Discrete Blocks . 3-6
Subsystems . 3-6
Custom Blocks . 3-7
Signals . 3-7
Data Types . 3-7
Solvers . 3-8

Simulating Dynamic Systems . 3-9
Model Initialization Phase . 3-9
Model Execution Phase . 3-9
Processing at Each Time Step . 3-10
Determining Block Update Order . 3-11
Atomic Versus Virtual Subsystems . 3-13
Solvers . 3-13
Zero Crossing Detection . 3-14
Algebraic Loops . 3-18

Modeling and Simulating Discrete Systems 3-23
Discrete Blocks . 3-23
Sample Time . 3-23
Purely Discrete Systems . 3-23
Multirate Systems . 3-24
Determining Step Size for Discrete Systems 3-24
Sample Time Propagation . 3-26
Invariant Constants . 3-27
Mixed Continuous and Discrete Systems 3-28

4
Creating a Model

Starting Simulink . 4-2
Creating a New Model . 4-3
Editing an Existing Model . 4-3
Entering Simulink Commands . 4-4

iii

Simulink Windows . 4-5

Selecting Objects . 4-7
Selecting One Object . 4-7
Selecting More than One Object . 4-7

Blocks . 4-9
Block Data Tips . 4-9
Virtual Blocks . 4-9
Copying and Moving Blocks from One Window to Another . . 4-10
Moving Blocks in a Model . 4-12
Copying Blocks in a Model . 4-12
Block Parameters . 4-12
Setting Block-Specific Parameters . 4-13
Block Properties Dialog Box . 4-13
Deleting Blocks . 4-15
Changing the Orientation of Blocks . 4-15
Resizing Blocks . 4-16
Manipulating Block Names . 4-17
Displaying Parameters Beneath a Block’s Icon 4-18
Disconnecting Blocks . 4-18
Assigning Block Priorities . 4-18
Displaying Block Execution Order . 4-19
Using Drop Shadows . 4-20
Sample Time Colors . 4-20

Connecting Blocks . 4-22
Drawing a Line Between Blocks . 4-22
Drawing a Branch Line . 4-23
Drawing a Line Segment . 4-23
Moving a Line Segment . 4-24
Dividing a Line into Segments . 4-25
Moving a Line Vertex . 4-26
Inserting Blocks in a Line . 4-26

Working with Signals . 4-28
About Signals . 4-28
Signal Buses . 4-30
Signal Glossary . 4-31
Determining Output Signal Dimensions 4-32

iv Contents

Signal and Parameter Dimension Rules 4-33
Scalar Expansion of Inputs and Parameters 4-34
Working with Complex Signals . 4-36
Checking Signal Connections . 4-36
Setting Signal Display Options . 4-37
Signal Names . 4-37
Signal Labels . 4-37
Displaying Signals Represented by Virtual Signals 4-38
Setting Signal Properties . 4-39
Signal Properties Dialog Box . 4-39

Annotations . 4-42

Working with Data Types . 4-44
Data Types Supported by Simulink . 4-44
Block Support for Data and Numeric Signal Types 4-45
Specifying Block Parameter Data Types 4-45
Creating Signals of a Specific Data Type 4-46
Displaying Port Data Types . 4-46
Data Type Propagation . 4-46
Data Typing Rules . 4-47
Enabling Strict Boolean Type Checking 4-48
Typecasting Signals . 4-48
Typecasting Parameters . 4-48

Working with Data Objects . 4-50
Data Object Classes . 4-50
Creating Data Objects . 4-51
Accessing Data Object Properties . 4-52
Invoking Data Object Methods . 4-52
Saving and Loading Data Objects . 4-53
Using Data Objects in Simulink Models 4-53
Creating Data Object Classes . 4-55
The Simulink Data Explorer . 4-60

Summary of Mouse and Keyboard Actions 4-62

Creating Subsystems . 4-65
Creating a Subsystem by Adding the Subsystem Block 4-65

v

Creating a Subsystem by Grouping Existing Blocks 4-66
Model Navigation Commands . 4-67
Window Reuse . 4-67
Labeling Subsystem Ports . 4-68
Controlling Access to Subsystems . 4-69

Using Callback Routines . 4-70
Tracing Callbacks . 4-70
Model Callback Parameters . 4-70
Block Callback Parameters . 4-71

Tips for Building Models . 4-76

Libraries . 4-77
Terminology . 4-77
Creating a Library . 4-77
Modifying a Library . 4-78
Creating a Library Link . 4-78
Disabling Library Links . 4-79
Modifying a Linked Subsystem . 4-79
Propagating Link Modifications . 4-79
Updating a Linked Block . 4-80
Breaking a Link to a Library Block . 4-80
Finding the Library Block for a Reference Block 4-81
Library Link Status . 4-81
Displaying Library Links . 4-82
Getting Information About Library Blocks 4-82
Browsing Block Libraries . 4-83
Adding Libraries to the Library Browser 4-85

Modeling Equations . 4-86
Converting Celsius to Fahrenheit . 4-86
Modeling a Simple Continuous System 4-87

Saving a Model . 4-89

Printing a Block Diagram . 4-90
Print Dialog Box . 4-90
Print Command . 4-91

vi Contents

Specifying Paper Size and Orientation 4-92
Positioning and Sizing a Diagram . 4-93

Searching and Browsing Models . 4-94
Searching for Objects . 4-94
The Model Browser . 4-99

Managing Model Versions . 4-104
Specifying the Current User . 4-104
Model Properties Dialog . 4-106
Creating a Model Change History . 4-110
Version Control Properties . 4-111

Ending a Simulink Session . 4-113

5
Running a Simulation

Introduction . 5-2
Using Menu Commands . 5-2
Running a Simulation from the Command Line 5-3

Running a Simulation Using Menu Commands 5-4
Setting Simulation Parameters and Choosing the Solver 5-4
Applying the Simulation Parameters . 5-4
Starting the Simulation . 5-4
Simulation Diagnostics Dialog Box . 5-6

The Simulation Parameters Dialog Box 5-8
The Solver Pane . 5-8
The Workspace I/O Pane . 5-18
The Diagnostics Pane . 5-26
The Advanced Pane . 5-29

Improving Simulation Performance and Accuracy 5-34
Speeding Up the Simulation . 5-34
Improving Simulation Accuracy . 5-35

vii

Running a Simulation from the Command Line 5-36
Using the sim Command . 5-36
Using the set_param Command . 5-36
sim . 5-37
simplot . 5-39
simset . 5-41
simget . 5-45

6
Analyzing Simulation Results

Viewing Output Trajectories . 6-2
Using the Scope Block . 6-2
Using Return Variables . 6-2
Using the To Workspace Block . 6-3

Linearization . 6-4

Equilibrium Point Determination . 6-7
linfun . 6-9
trim . 6-12

7
Using Masks to Customize Blocks

Introduction . 7-2

A Sample Masked Subsystem . 7-3
Creating Mask Dialog Box Prompts . 7-4
Creating the Block Description and Help Text 7-6
Creating the Block Icon . 7-6

The Mask Editor: An Overview . 7-8

viii Contents

The Initialization Pane . 7-9
Prompts and Associated Variables . 7-9
Control Types . 7-11
Default Values for Masked Block Parameters 7-13
Tunable Parameters . 7-13
Initialization Commands . 7-14

The Icon Pane . 7-17
Displaying Text on the Block Icon . 7-17
Displaying Graphics on the Block Icon 7-19
Displaying Images on Masks . 7-20
Displaying a Transfer Function on the Block Icon 7-21
Controlling Icon Properties . 7-22

The Documentation Pane . 7-25
The Mask Type Field . 7-25
The Block Description Field . 7-25
The Mask Help Text Field . 7-26

Creating Self-Modifying Masked Blocks 7-27

Creating Dynamic Dialogs for Masked Blocks 7-28
Setting Masked Block Dialog Parameters 7-28
Predefined Masked Dialog Parameters 7-29

8
Conditionally Executed Subsystems

Introduction . 8-2

Enabled Subsystems . 8-3
Creating an Enabled Subsystem . 8-3
Blocks an Enabled Subsystem Can Contain 8-5

Triggered Subsystems . 8-8
Creating a Triggered Subsystem . 8-9
Function-Call Subsystems . 8-10

ix

Blocks That a Triggered Subsystem Can Contain 8-10

Triggered and Enabled Subsystems . 8-11
Creating a Triggered and Enabled Subsystem 8-11
A Sample Triggered and Enabled Subsystem 8-12
Creating Alternately Executing Subsystems 8-12

9
Block Reference

What Each Block Reference Page Contains 9-2

Simulink Block Libraries . 9-3
Abs . 9-11
Algebraic Constraint . 9-12
Backlash . 9-14
Band-Limited White Noise . 9-18
Bitwise Logical Operator . 9-20
Bus Selector . 9-24
Chirp Signal . 9-26
Clock . 9-28
Combinatorial Logic . 9-30
Complex to Magnitude-Angle . 9-33
Complex to Real-Imag . 9-34
Configurable Subsystem . 9-35
Constant . 9-39
Coulomb and Viscous Friction . 9-41
Data Store Memory . 9-43
Data Store Read . 9-45
Data Store Write . 9-47
Data Type Conversion . 9-49
Dead Zone . 9-51
Demux . 9-53
Derivative . 9-59
Digital Clock . 9-61
Direct Look-Up Table (n-D) . 9-62
Discrete Filter . 9-68

x Contents

Discrete Pulse Generator . 9-70
Discrete State-Space . 9-72
Discrete-Time Integrator . 9-74
Discrete Transfer Fcn . 9-82
Discrete Zero-Pole . 9-84
Display . 9-86
Dot Product . 9-89
Enable . 9-91
Fcn . 9-93
First-Order Hold . 9-95
From . 9-97
From File . 9-99
From Workspace . 9-102
Function-Call Generator . 9-106
Gain . 9-108
Goto . 9-111
Goto Tag Visibility . 9-114
Ground . 9-115
Hit Crossing . 9-116
IC . 9-118
Inport . 9-119
Integrator . 9-123
Interpolation (n-D) Using PreLook-Up 9-128
Logical Operator . 9-131
Look-Up Table . 9-133
Look-Up Table (2-D) . 9-136
Look-Up Table (n-D) . 9-139
Magnitude-Angle to Complex . 9-144
Manual Switch . 9-146
Math Function . 9-147
MATLAB Fcn . 9-149
Matrix Concatenation . 9-151
Matrix Gain . 9-153
Memory . 9-155
Merge . 9-157
MinMax . 9-160
Model Info . 9-162
Multiport Switch . 9-165
Mux . 9-167
Outport . 9-169

xi

Polynomial . 9-173
Prelook-Up Index Search . 9-175
Product . 9-178
Probe . 9-181
Pulse Generator . 9-183
Quantizer . 9-185
Ramp . 9-187
Random Number . 9-189
Rate Limiter . 9-191
Real-Imag to Complex . 9-193
Relational Operator . 9-195
Relay . 9-197
Repeating Sequence . 9-199
Reshape . 9-201
Rounding Function . 9-204
Saturation . 9-205
Scope . 9-206
Selector . 9-217
S-Function . 9-221
Sign . 9-223
Signal Generator . 9-224
Signal Specification . 9-227
Sine Wave . 9-229
Slider Gain . 9-232
State-Space . 9-234
Step . 9-236
Stop Simulation . 9-238
Subsystem . 9-239
Sum . 9-243
Switch . 9-246
Terminator . 9-248
To File . 9-249
To Workspace . 9-251
Transfer Fcn . 9-255
Transport Delay . 9-258
Trigger . 9-261
Trigonometric Function . 9-263
Uniform Random Number . 9-265
Unit Delay . 9-267
Variable Transport Delay . 9-269

xii Contents

Width . 9-272
XY Graph . 9-273
Zero-Order Hold . 9-275
Zero-Pole . 9-276

10
Model Construction Commands

Introduction . 10-2
How to Specify Parameters for the Commands 10-3
How to Specify a Path for a Simulink Object 10-3
add_block . 10-4
add_line . 10-5
bdclose . 10-6
bdroot . 10-7
close_system . 10-8
delete_block . 10-10
delete_line . 10-11
find_system . 10-12
gcb . 10-17
gcbh . 10-18
gcs . 10-19
get_param . 10-20
new_system . 10-22
open_system . 10-23
replace_block . 10-24
save_system . 10-26
set_param . 10-27
simulink . 10-29

11
Simulink Debugger

Starting the Debugger . 11-3

xiii

Starting the Simulation . 11-4

Using the Debugger’s Command-Line Interface 11-6
About Block Indexes . 11-6
Accessing the MATLAB Workspace . 11-6

Getting Online Help . 11-7

Running a Simulation . 11-8
Continuing a Simulation . 11-8
Running a Simulation Nonstop . 11-9
Advancing to the Next Block . 11-9
Advancing to the Next Time Step . 11-10

Setting Breakpoints . 11-11
Setting Breakpoints at Blocks . 11-12
Setting Breakpoints at Time Steps . 11-13
Breaking on Nonfinite Values . 11-14
Breaking on Step-Size Limiting Steps 11-14
Breaking at Zero-Crossings . 11-14

Displaying Information About the Simulation 11-15
Displaying Block I/O . 11-15
Displaying Algebraic Loop Information 11-17
Displaying System States . 11-17
Displaying Integration Information . 11-18

Displaying Information About the Model 11-19
Displaying a Model’s Block Execution Order 11-19
Displaying a Block . 11-19

Debugger Command Reference . 11-23
ashow . 11-25
atrace . 11-26
bafter . 11-27
break . 11-28
bshow . 11-29
clear . 11-30
continue . 11-31

xiv Contents

disp . 11-32
help . 11-33
ishow . 11-34
minor . 11-35
nanbreak . 11-36
next . 11-37
probe . 11-38
quit . 11-39
run . 11-40
slist . 11-41
states . 11-42
systems . 11-43
status . 11-44
step . 11-45
stop . 11-46
tbreak . 11-47
trace . 11-48
undisp . 11-49
untrace . 11-50
xbreak . 11-51
zcbreak . 11-52
zclist . 11-53

12
Performance Tools

About the Simulink Performance Tools Option 12-2

The Simulink Accelerator . 12-3
How Does It Work? . 12-3
How to Run the Simulink Accelerator 12-4
Handling Changes in Model Structure 12-5
Increasing Performance of Accelerator Mode 12-6
Blocks That Do Not Show Speed Improvements 12-7
Using the Simulink Accelerator with the Simulink Debugger 12-8
Interacting with the Simulink Accelerator Programmatically 12-9
Comparing Performance . 12-10

xv

Customizing the Simulink Accelerator Build Process 12-10
Controlling S-Function Execution . 12-11

Model Differencing Tool . 12-13
Display Options . 12-15
Model Differences Report . 12-15

Profiler . 12-17
How the Profiler Works . 12-17
Enabling the Profiler . 12-19
The Simulation Profile . 12-20

Model Coverage Tool . 12-23
How the Model Coverage Tool Works 12-23
Using the Model Coverage Tool . 12-23
Creating and Running Test Cases . 12-24
The Coverage Report . 12-26
Coverage Settings Dialog Box . 12-29
Model Coverage Commands . 12-31

A
Model and Block Parameters

Introduction . A-2

Model Parameters . A-3

Common Block Parameters . A-7

Block-Specific Parameters . A-10

Mask Parameters . A-25

xvi Contents

B Model File Format

Model File Contents . B-2
Model Section . B-3
BlockDefaults Section . B-3
AnnotationDefaults Section . B-3
System Section . B-3

1

Getting Started

To the Reader 1-2
What Is Simulink? 1-2
How to Use This Manual 1-3

Related Products 1-5

1 Getting Started

1-2

To the Reader
Welcome to Simulink®! In the last few years, Simulink has become the most
widely used software package in academia and industry for modeling and
simulating dynamical systems.

Simulink encourages you to try things out. You can easily build models from
scratch, or take an existing model and add to it. Simulations are interactive, so
you can change parameters “on the fly” and immediately see what happens.
You have instant access to all of the analysis tools in MATLAB®, so you can
take the results and analyze and visualize them. We hope that you will get a
sense of the fun of modeling and simulation, through an environment that
encourages you to pose a question, model it, and see what happens.

With Simulink, you can move beyond idealized linear models to explore more
realistic nonlinear models, factoring in friction, air resistance, gear slippage,
hard stops, and the other things that describe real-world phenomena. It turns
your computer into a lab for modeling and analyzing systems that simply
wouldn’t be possible or practical otherwise, whether the behavior of an
automotive clutch system, the flutter of an airplane wing, the dynamics of a
predator-prey model, or the effect of the monetary supply on the economy.

Simulink is also practical. With thousands of engineers around the world using
it to model and solve real problems, knowledge of this tool will serve you well
throughout your professional career.

We hope you enjoy exploring the software.

What Is Simulink?
Simulink is a software package for modeling, simulating, and analyzing
dynamical systems. It supports linear and nonlinear systems, modeled in
continuous time, sampled time, or a hybrid of the two. Systems can also be
multirate, i.e., have different parts that are sampled or updated at different
rates.

For modeling, Simulink provides a graphical user interface (GUI) for building
models as block diagrams, using click-and-drag mouse operations. With this
interface, you can draw the models just as you would with pencil and paper (or
as most textbooks depict them). This is a far cry from previous simulation
packages that require you to formulate differential equations and difference
equations in a language or program. Simulink includes a comprehensive block

To the Reader

1-3

library of sinks, sources, linear and nonlinear components, and connectors. You
can also customize and create your own blocks. For information on creating
your own blocks, see the separate Writing S-Functions guide.

Models are hierarchical, so you can build models using both top-down and
bottom-up approaches. You can view the system at a high level, then
double-click on blocks to go down through the levels to see increasing levels of
model detail. This approach provides insight into how a model is organized and
how its parts interact.

After you define a model, you can simulate it, using a choice of integration
methods, either from the Simulink menus or by entering commands in
MATLAB’s command window. The menus are particularly convenient for
interactive work, while the command-line approach is very useful for running
a batch of simulations (for example, if you are doing Monte Carlo simulations
or want to sweep a parameter across a range of values). Using scopes and other
display blocks, you can see the simulation results while the simulation is
running. In addition, you can change parameters and immediately see what
happens, for “what if” exploration. The simulation results can be put in the
MATLAB workspace for postprocessing and visualization.

Model analysis tools include linearization and trimming tools, which can be
accessed from the MATLAB command line, plus the many tools in MATLAB
and its application toolboxes. And because MATLAB and Simulink are
integrated, you can simulate, analyze, and revise your models in either
environment at any point.

How to Use This Manual
Because Simulink is graphical and interactive, we encourage you to jump right
in and try it.

For a useful introduction that will help you start using Simulink quickly, take
a look at “Running a Demo Model” in Chapter 2. Browse around the model,
double-click on blocks that look interesting, and you will quickly get a sense of
how Simulink works. If you want a quick lesson in building a model, see
“Building a Simple Model” in Chapter 2.

For a technical introduction to Simulink, see Chapter 3, “How Simulink
Works.” This chapter introduces many key concepts that you will need to
understand how to create and run Simulink models.

1 Getting Started

1-4

Chapter 4, “Creating a Model” describes in detail how to build and edit a model.
It also discusses how to save and print a model and provides some useful tips.

Chapter 5, “Running a Simulation” describes how Simulink performs a
simulation. It covers simulation parameters and the integration solvers used
for simulation, including some of the strengths and weaknesses of each solver
that should help you choose the appropriate solver for your problem. It also
discusses multirate and hybrid systems.

Chapter 6, “Analyzing Simulation Results” discusses Simulink and MATLAB
features useful for viewing and analyzing simulation results.

Chapter 7, “Using Masks to Customize Blocks” discusses methods for creating
your own blocks and using masks to customize their appearance and use.

Chapter 8, “Conditionally Executed Subsystems” describes subsystems whose
execution depends on triggering signals.

Chapter 9, “Block Reference” provides reference information for all Simulink
blocks.

Chapter 10, “Model Construction Commands” provides reference information
for commands you can use to create and modify a model from the MATLAB
command window or from an M-file.

Chapter 11, “Simulink Debugger” explains how to use the Simulink debugger
to debug Simulink models. It also documents debugger commands.

Chapter 12, “Performance Tools” explains how to use the Simulink accelerator
and other optional tools that improve the performance of Simulink models.

Appendix A, “Model and Block Parameters” lists model and block parameters.
This information is useful with the get_param and set_param commands,
described in Chapter 10.

Appendix B, “Model File Format” describes the format of the file that stores
model information.

Although we have tried to provide the most complete and up-to-date
information in this manual, some information may have changed after it was
completed. Please check the “Known Software and Documentation Problems”
in the Release Notes delivered with your Simulink system.

Related Products

1-5

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with Simulink.

For more information about any of these products, see either

• The online documentation for that product, if it is loaded or if you are reading
the documentation from the CD

• The MathWorks Web site, at www.mathworks.com; see the “products” section

See our Web page www.mathworks.com for the latest update on new products
and capabilities. Also see the connections site www.mathworks.com/products/
connections/ for third-party products compatible with Simulink.

Note The toolboxes listed below all include functions that extend the
MATLAB environment. The blocksets all include blocks that extend the
Simulink environment.

Product Description

µ-Analysis and Synthesis
Toolbox

Tools for robust control design using optimal
control and the structured singular value

CDMA Reference
Blockset

Simulink block libraries for the design and
simulation of the IS-95A wireless
communications standard

Communications
Blockset

Simulink block libraries for modeling the
physical layer of communications systems

Communications Toolbox MATLAB functions for modeling the physical
layer of communications systems

Control System Toolbox An interactive environment for classical and
modern control system design, analysis, and
modeling

1 Getting Started

1-6

Dials & Gauges Blockset Graphical instrumentation for monitoring and
controlling signals and parameters in
Simulink models

DSP Blockset Simulink block libraries for the design,
simulation, and prototyping of digital signal
processing systems

Fixed-Point Blockset Simulink blocks that model, simulate, and
automatically generate pure integer code for
fixed-point applications

Frequency Domain
System Identification
Toolbox

Tools for frequency domain model
identification and validation

Motorola DSP
Developer's Kit

Provides an object-oriented interface to
program MEX-files or S-functions that call the
appropriate Motorola Suite56TM DSP
Simulator.

Nonlinear Control
Design (NCD) Blockset

Simulink block libraries that provide a
time-domain-based optimization approach to
system design; automatically tunes
parameters based on user-defined
time-domain performance constraints

Power System Blockset Simulink block libraries for the design,
simulation, and prototyping of electrical power
systems

Real-Time Windows
Target

Tool that allows you to run Simulink models
interactively and in real time on your PC

Real-Time Workshop® Tools that generate customizable code from
Simulink and Stateflow models for targeting
real-time systems or speeding up simulations.

Product Description

Related Products

1-7

Real-Time Workshop
Ada Coder

Tool that allows you to automatically generate
Ada 95 code. It produces the code directly from
Simulink models and automatically builds
programs that can be run in real time in a
variety of environments.

Real-Time Workshop
Production Coder

Add on component for generating embeddable
production quality code from Simulink models.
Included are utilities and capabilities to verify
generated code in a co-simulation and code
generation interfacing options.

Requirements
Management Interface

This interface helps you coordinate, track, and
implement changes in design specifications
(requirements) throughout the development
cycle.

Robust Control Toolbox Tools for advanced robust multivariable
feedback control

Signal Processing
Toolbox

Tools for algorithm development, signal and
linear system analysis, and time-series data
modeling

Simulink Performance
Tools

Includes tools for comparing models and
profiling and accelerating the performance of
simulations.

Simulink Report
Generator

Tool for documenting information in MATLAB,
Simulink, and Stateflow in multiple output
formats

Stateflow Tool for graphical modeling and simulation of
complex reactive systems

Stateflow Coder Tool for generating highly readable, efficient C
code from Stateflow diagrams

Product Description

1 Getting Started

1-8

System Identification
Toolbox

An interactive environment for building
accurate, simplified models of complex systems
from noisy time-series data

Developer's Kit for
Texas Instruments DSP

Lets you generate, target, and execute
Simulink models on the Texas Instruments
(TI) C6701 Evaluation Module (C6701 EVM).

xPC Target Tools for adding I/O blocks to Simulink block
diagrams, generating code with Real-Time
Workshop, and downloading the code to a
second PC that runs the xPC Target real-time
kernel. The xPC Target is ideal for rapid
prototyping and hardware-in-the-loop testing
of control and DSP systems.

Product Description

2

Quick Start

Running a Demo Model 2-2
Description of the Demo 2-3
Some Things to Try 2-4
What This Demo Illustrates 2-5
Other Useful Demos 2-5

Building a Simple Model 2-6

Setting Simulink Preferences 2-15
Simulink Preferences 2-15

2 Quick Start

2-2

Running a Demo Model
An interesting demo program provided with Simulink models the
thermodynamics of a house. To run this demo, follow these steps:

1 Start MATLAB. See your MATLAB documentation if you’re not sure how to
do this.

2 Run the demo model by typing thermo in the MATLAB command window.
This command starts up Simulink and creates a model window that contains
this model.

3 Double-click the Scope block labeled Thermo Plots.

The Scope block displays two plots labeled Indoor vs. Outdoor Temp and
Heat Cost ($), respectively.

4 To start the simulation, pull down the Simulation menu and choose the
Start command (or, on Microsoft Windows, press the Start button on the
Simulink toolbar). As the simulation runs, the indoor and outdoor

Running a Demo Model

2-3

temperatures appear in the Indoor vs. Outdoor Temp plot and the
cumulative heating cost appears in the Heat Cost ($) plot.

5 To stop the simulation, choose the Stop command from the Simulation
menu (or press the Pause button on the toolbar). If you want to explore other
parts of the model, look over the suggestions in “Some Things to Try” on
page 2-4.

6 When you’re finished running the simulation, close the model by choosing
Close from the File menu.

Description of the Demo
The demo models the thermodynamics of a house using a simple model. The
thermostat is set to 70 degrees Fahrenheit and is affected by the outside
temperature, which varies by applying a sine wave with amplitude of 15
degrees to a base temperature of 50 degrees. This simulates daily temperature
fluctuations.

The model uses subsystems to simplify the model diagram and create reusable
systems. A subsystem is a group of blocks that is represented by a Subsystem
block. This model contains five subsystems: one named Thermostat, one named
House, and three Temp Convert subsystems (two convert Fahrenheit to
Celsius, one converts Celsius to Fahrenheit).

The internal and external temperatures are fed into the House subsystem,
which updates the internal temperature. Double-click on the House block to see
the underlying blocks in that subsystem.

House subsystem

2 Quick Start

2-4

The Thermostat subsystem models the operation of a thermostat, determining
when the heating system is turned on and off. Double-click on the block to see
the underlying blocks in that subsystem.

Both the outside and inside temperatures are converted from Fahrenheit to
Celsius by identical subsystems.

When the heat is on, the heating costs are computed and displayed on the Heat
Cost ($) plot on the Thermo Plots Scope. The internal temperature is displayed
on the Indoor Temp Scope.

Some Things to Try
Here are several things to try to see how the model responds to different
parameters:

• Each Scope block contains one or more signal display areas and controls that
enable you to select the range of the signal displayed, zoom in on a portion of
the signal, and perform other useful tasks. The horizontal axis represents
time and the vertical axis represents the signal value. For more information
about the Scope block, see Scope on page 9-206.

• The Constant block labeled Set Point (at the top left of the model) sets the
desired internal temperature. Open this block and reset the value to 80
degrees. See how the indoor temperature and heating costs change. Also,
adjust the outside temperature (the Avg Outdoor Temp block) and see how it
affects the simulation.

• Adjust the daily temperature variation by opening the Sine Wave block
labeled Daily Temp Variation and changing the Amplitude parameter.

Thermostat subsystem

Fahrenheit to Celsius conversion (F2C)

Running a Demo Model

2-5

What This Demo Illustrates
This demo illustrates several tasks commonly used when building models:

• Running the simulation involves specifying parameters and starting the
simulation with the Start command, described in “Running a Simulation
Using Menu Commands” on page 5-4.

• You can encapsulate complex groups of related blocks in a single block, called
a subsystem. See “Creating Subsystems” on page 4-65 for more information.

• You can create a customized icon and design a dialog box for a block by using
the masking feature, described in detail in Chapter 7, “Using Masks to
Customize Blocks.” In the thermo model, all Subsystem blocks have
customized icons created using the masking feature.

• Scope blocks display graphic output much as an actual oscilloscope does. See
Scope on page 9-206 for more information.

Other Useful Demos
Other demos illustrate useful modeling concepts. You can access these demos
from the Simulink block library window:

1 Type simulink3 in the MATLAB command window. The Simulink block
library window appears.

2 Double-click on the Demos icon. The MATLAB Demos window appears. This
window contains several interesting sample models that illustrate useful
Simulink features.

The Demos icon

2 Quick Start

2-6

Building a Simple Model
This example shows you how to build a model using many of the model building
commands and actions you will use to build your own models. The instructions
for building this model in this section are brief. All of the tasks are described
in more detail in the next chapter.

The model integrates a sine wave and displays the result, along with the sine
wave. The block diagram of the model looks like this.

To create the model, first type simulink in the MATLAB command window. On
Microsoft Windows, the Simulink Library Browser appears.

Building a Simple Model

2-7

On UNIX, the Simulink library window appears.

To create a new model on UNIX, select Model from the New submenu of the
Simulink library window’s File menu. To create a new model on Windows,
select the New Model button on the Library Browser’s toolbar.

New Model button

2 Quick Start

2-8

Simulink opens a new model window.

To create this model, you will need to copy blocks into the model from the
following Simulink block libraries:

• Sources library (the Sine Wave block)

• Sinks library (the Scope block)

• Continuous library (the Integrator block)

• Signals & Systems library (the Mux block)

You can copy a Sine Wave block from the Sources library, using the Library
Browser (Windows only) or the Sources library window (UNIX or Windows).

To copy the Sine Wave block from the Library Browser, first expand the
Library Browser tree to display the blocks in the Sources library. Do this by
clicking on the Sources node to display the Sources library blocks. Finally click
on the Sine Wave node to select the Sine Wave block. Here is how the Library
Browser should look after you have done this.

Building a Simple Model

2-9

Now drag the Sine Wave block from the browser and drop it in the model
window. Simulink creates a copy of the Sine Wave block at the point where you
dropped the node icon.

To copy the Sine Wave block from the Sources library window, open the Sources
window by double-clicking on the Sources icon in the Simulink library window.
(On Windows, you can open the Simulink library window by right-clicking the
Simulink node in the Library Browser and then clicking the resulting Open
Library button.) Simulink displays the Sources library window.

Simulink library

Sources library

Sine Wave block

2 Quick Start

2-10

Now drag the Sine Wave block from the Sources window to your model window.

Copy the rest of the blocks in a similar manner from their respective libraries
into the model window. You can move a block from one place in the model
window to another by dragging the block. You can move a block a short distance
by selecting the block, then pressing the arrow keys.

The Sine Wave block

Building a Simple Model

2-11

With all the blocks copied into the model window, the model should look
something like this.

If you examine the block icons, you see an angle bracket on the right of the Sine
Wave block and two on the left of the Mux block. The > symbol pointing out of
a block is an output port; if the symbol points to a block, it is an input port. A
signal travels out of an output port and into an input port of another block
through a connecting line. When the blocks are connected, the port symbols
disappear.

Now it’s time to connect the blocks. Connect the Sine Wave block to the top
input port of the Mux block. Position the pointer over the output port on the
right side of the Sine Wave block. Notice that the cursor shape changes to cross
hairs.

Hold down the mouse button and move the cursor to the top input port of the
Mux block. Notice that the line is dashed while the mouse button is down and
that the cursor shape changes to double-lined cross hairs as it approaches the
Mux block.

Output portInput port

2 Quick Start

2-12

Now release the mouse button. The blocks are connected. You can also connect
the line to the block by releasing the mouse button while the pointer is inside
the icon. If you do, the line is connected to the input port closest to the cursor’s
position.

If you look again at the model at the beginning of this section (see “Building a
Simple Model” on page 2-6), you’ll notice that most of the lines connect output
ports of blocks to input ports of other blocks. However, one line connects a line
to the input port of another block. This line, called a branch line, connects the
Sine Wave output to the Integrator block, and carries the same signal that
passes from the Sine Wave block to the Mux block.

Drawing a branch line is slightly different from drawing the line you just drew.
To weld a connection to an existing line, follow these steps:

1 First, position the pointer on the line between the Sine Wave and the Mux
block.

2 Press and hold down the Ctrl key (or click the right mouse button). Press the
mouse button, then drag the pointer to the Integrator block’s input port or
over the Integrator block itself.

Building a Simple Model

2-13

3 Release the mouse button. Simulink draws a line between the starting point
and the Integrator block’s input port.

Finish making block connections. When you’re done, your model should look
something like this.

Now, open the Scope block to view the simulation output. Keeping the Scope
window open, set up Simulink to run the simulation for 10 seconds. First, set
the simulation parameters by choosing Simulation Parameters from the
Simulation menu. On the dialog box that appears, notice that the Stop time
is set to 10.0 (its default value).

Close the Simulation Parameters dialog box by clicking on the OK button.
Simulink applies the parameters and closes the dialog box.

Stop time parameter

2 Quick Start

2-14

Choose Start from the Simulation menu and watch the traces of the Scope
block’s input.

The simulation stops when it reaches the stop time specified in the Simulation
Parameters dialog box or when you choose Stop from the Simulation menu.

To save this model, choose Save from the File menu and enter a filename and
location. That file contains the description of the model.

To terminate Simulink and MATLAB, choose Exit MATLAB (on a Microsoft
Windows system) or Quit MATLAB (on a UNIX system). You can also type
quit in the MATLAB command window. If you want to leave Simulink but not
terminate MATLAB, just close all Simulink windows.

This exercise shows you how to perform some commonly used model-building
tasks. These and other tasks are described in more detail in Chapter 4,
“Creating a Model.”

Setting Simulink Preferences

2-15

Setting Simulink Preferences
The MATLAB Preferences dialog box allows you to specify default settings for
many Simulink options. To display the Preferences dialog box, select
Preferences from the Simulink File menu.

Simulink Preferences
The Preferences dialog box allows you to specify the following Simulink
preferences.

Window reuse
Specifies whether Simulink uses existing windows or opens new windows to
display a model’s subsysems (see “Window Reuse” on page 4-67).

Model Browser
Specifies whether Simulink displays the browser when you open a model and
whether the browser shows blocks imported from subsystems and the contents
of masked subsystems (see “The Model Browser” on page 4-99).

2 Quick Start

2-16

Display
Specifies whether to use thick lines to display nonscalar connections between
blocks and whether to display port data types on the block diagram (see
“Setting Signal Display Options” on page 4-37).

Callback tracing
Specifies whether to display the model callbacks that Simulink invokes when
simulating a model (see “Using Callback Routines” on page 4-70).

Simulink Fonts
Specifies fonts to be used for block and line labels and diagram annotations.

Solver
Specifies simulation solver options (see “The Solver Pane” on page 5-8).

Workspace
Specifies workspace options for simulating a model (see “The Workspace I/O
Pane” on page 5-18).

Diagnostics
Specifies diagnostic options for simulating a model (see “The Diagnostics Pane”
on page 5-26).

3

How Simulink Works

What Is Simulink 3-2

Modeling Dynamic Systems 3-3
Block Diagrams 3-3
Blocks . 3-3
States . 3-4
System Functions 3-4
Block Parameters 3-5
Continuous Versus Discrete Blocks 3-6
Subsystems . 3-6
Custom Blocks . 3-7
Signals . 3-7
Data Types . 3-7
Solvers . 3-8

Simulating Dynamic Systems 3-9
Model Initialization Phase 3-9
Model Execution Phase 3-9
Processing at Each Time Step 3-10
Determining Block Update Order 3-11
Atomic Versus Virtual Subsystems 3-13
Solvers . 3-13
Zero Crossing Detection 3-14
Algebraic Loops 3-18

Modeling and Simulating Discrete Systems 3-23
Discrete Blocks 3-23
Sample Time . 3-23
Purely Discrete Systems 3-23
Multirate Systems 3-24
Determining Step Size for Discrete Systems 3-24
Sample Time Propagation 3-26
Invariant Constants 3-27
Mixed Continuous and Discrete Systems 3-28

3 How Simulink Works

3-2

What Is Simulink
Simulink is a software package that enables you to model, simulate, and
analyze dynamic systems, that is, systems whose outputs and states change
with time. Simulink can be used to explore the behavior of a wide range of
real-world systems, including electrical circuits, shock absorbers, braking
systems, and many other electrical, mechanical, and thermodynamic systems.

Simulating a dynamic system is a two-step process with Simulink. First, you
use Simulink’s model editor to create a model of the system to be simulated.
The model graphically depicts the time-dependent mathematical relationships
among the system’s inputs, states, and outputs (see “Modeling Dynamic
Systems” on page 3-3). Then, you use Simulink to simulate the behavior of the
system for a specified time span. Simulink uses information that you entered
into the model to perform the simulation (see “Simulating Dynamic Systems”
on page 3-9).

Modeling Dynamic Systems

3-3

Modeling Dynamic Systems
Simulink provides a library browser that allows you to select blocks from
libraries of standard blocks (see Chapter 9, “Block Reference”) and a graphical
editor that allows you to draw lines connecting the blocks (see Chapter 4,
“Creating a Model”). You can model virtually any real-world dynamic system
by selecting and interconnecting the appropriate Simulink blocks.

Block Diagrams
A Simulink block diagram is a pictorial model of a dynamic system. It consists
of a set of symbols, called blocks, interconnected by lines. Each block represents
an elementary dynamic system that produces an ouput either continuously (a
continuous block) or at specific points in time (a discrete block). The lines
represent connections of block inputs to block outputs. Every block in a block
diagram is an instance of a specific type of block. The type of the block
determines the relationship between a block’s outputs and its inputs, states,
and time. A block diagram can contain any number of instances of any type of
block needed to model a system.

Note The MATLAB Based Books page on the MathWorks Web site includes
texts that discuss the use of block diagrams in general, and Simulink in
particular, to model dynamic systems.

Blocks
Blocks represent elementary dynamic systems that Simulink knows how to
simulate. A block comprises one or more of the following: a set of inputs, a set
of states, and a set of outputs.

A block’s output is a function of time and the block’s inputs and states (if any).
The specific function that relates a block’s output to its inputs, states, and time
depends on the type of block of which the block is an instance.

x
(states)u

(input)
y

(output)

http://www.mathworks.com/support/books

3 How Simulink Works

3-4

States
Blocks can have states. A state is a variable that determines a block’s output
and whose current value is a function of the previous values of the block’s
states and/or inputs. A block that has a state must store previous values of the
state to compute its current state. States are thus said to be persisent. Blocks
with states are said to have memory because such blocks must store the
previous values of their states and/or inputs in order to compute the current
values of the states.

The Simulink Integrator block is an example of a block that has a state. The
Integrator block outputs the integral of the input signal from the start of the
simulation to the current time. The integral at the current time step depends
on the history of Integrator block’s input. The integral therefore is a state of the
Integrator block and is, in fact, its only state. Another example of a block with
states is the Simulink Memory block. A Memory block stores the values of its
inputs at the current simulation time and outputs them at a later time. The
states of a Memory block are the previous values of its inputs.

The Simulink Gain block is an example of a stateless block. A Gain block
outputs its input signal multiplied by a constant called the gain. The output of
a Gain block is determined entirely by the current value of the input and the
gain, which does not vary. A Gain block therefore has no states. Other
examples of stateless blocks include the Sum and Product blocks. The output
of these blocks is purely a function of the current values of their inputs (the
sum in one case, the product in the other). Thus, these blocks have no states.

System Functions
Each Simulink block type is associated with a set of system functions that
specify the time-dependent relationships among its inputs, states, and outputs.
The system functions include:

• An output function, fo, that relates the system’s outputs to its inputs, states,
and time

• An update function, fu, that relates the future values of the system’s discrete
states to the current time, inputs, and states

• A derivative function, fd, that relates the derivatives of the system’s
continuous states to time and the present values of the block’s states and
inputs

Modeling Dynamic Systems

3-5

Symbolically, the system functions may be expressed as follows

where t is the current time, x is the block’s states, u is the block’s inputs, y is
the block’s outputs, xd is the block’s discrete derivatives, and x'c is the
derivatives of the block’s continous states. During a simulation, Simulink
invokes the system functions to compute the values of the system’s states and
outputs.

Block Parameters
Key properties of many standard blocks are parameterized. For example, the
gain of Simulink’s standard Gain block is a parameter. Each parameterized
block has a block dialog that lets you set the values of the parameters when
editing or simulating the model. You can use MATLAB expressions to specify
parameter values. Simulink evaluates the expressions before running a
simulation. You can change the values of parameters during a simulation. This
allows you to determine interactively the most suitable value for a parameter.

A parameterized block effectively represents a family of similar blocks. For
example, when creating a model, you can set the gain parameter of each
instance of the Gain block separately so that each instance behaves differently.
Because it allows each standard block to represent a family of blocks, block
parameterization greatly increases the modeling power of Simulink’s standard
libraries.

Tunable Parameters
Many block parameters are tunable. A tunable parameter is a parameter whose
value can change while Simulink is executing a model. For example, the gain
parameter of the Gain block is tunable. You can alter the block’s gain while a
simulation is running. If a parameter is not tunable and the simulation is
running, Simulink disables the dialog box control that sets the parameter.
Simulink allows you to specify that all parameters are nontunable in your

y fo t x u, ,()=

xdk 1+
fu t x u, ,()=

x'c fd t x u, ,()=

x
xc

xdk

=where

Output function

Update function

Derivative function

3 How Simulink Works

3-6

model, except for those that you specify. This can speed up execution of large
models and enable generation of faster code from your model. See “Model
parameter configuration” on page 5–30 for more information.

Continuous Versus Discrete Blocks
Simulink’s standard block set includes continuous blocks and discrete blocks.
Continuous blocks respond continuously to continuously changing input.
Discrete blocks, by contrast, respond to changes in input only at integral
multiples of a fixed interval called the block’s sample time. Discrete blocks hold
their output constant between successive sample time hits. Each discrete block
includes a sample time parameter that allows you to specify its sample rate.
Examples of continuous blocks include the Constant block and the blocks in
Simulink’s Continuous block library. Examples of discrete blocks include the
Discrete Pulse Generator and the blocks in the Discrete block library.

Many Simulink blocks, for example, the Gain block, can be either continuous
or discrete, depending on whether they are driven by continuous or discrete
blocks. A block that can be either discrete or continuous is said to have an
implicit sample rate. The implicit sample time is continuous if any of the
block’s inputs are continuous. The implicit sample time is equal to the shortest
input sample time if all the input sample times are integral multiples of the
shortest time. Otherwise, the input sample time is equal to the fundamental
sample time of the inputs, where the fundamental sample time of a set of
sample times is defined as the greatest integer divisor of the set of sample
times.

Simulink can optionally color code a block diagram to indicate the sample times
of the blocks it contains, e.g., black (continous), magenta (constant), yellow
(hybrid), red (fastest discrete), and so on. See “Mixed Continuous and Discrete
Systems” on page 3-28 for more information.

Subsystems
Simulink allows you to model a complex system as a set of interconnected
subsystems each of which is represented by a block diagram.You create a
subsystem using Simulink’s Subsystem block and the Simulink model editor.
You can embed subsystems with subsystems to any depth to create hierarchical
models. You can create conditionally executed subsystems that are executed
only when a transition occurs on a triggering or enabling input (see Chapter 8,
“Conditionally Executed Subsystems.”).

Modeling Dynamic Systems

3-7

Custom Blocks
Simulink allows you to create libraries of custom blocks that you can then use
in your models. You can create a custom block either graphically or
programmatically. To create a custom block graphically, you draw a block
diagram representing the block’s behavior, wrap this diagram in an instance of
Simulink’s Subsystem block, and provide the block with a parameter dialog,
using Simulink’s block mask facility. To create a block programmatically, you
create an M-file or a MEX-file that contains the block’s system functions (see
Writing S-Functions). The resulting file is called an S-function. You then
associate the S-function with instances of Simulink’s S-function block in your
model. You can add a parameter dialog to your S-function block by wrapping it
in a Subsystem block and adding the parameter dialog to the Subsystem block.

Signals
Simulink uses the term signal to refer to the output values of blocks. Simulink
allows you to specify a wide range of signal attributes, including signal name,
data type (e.g., 8-bit, 16-bit, or 32-bit integer), numeric type (real or complex),
and dimensionality (one-dimensional or two-dimensional array). Many blocks
can accept or output signals of any data or numeric type and dimensionality.
Others impose restrictions on the attributes of the signals they can handle.

Data Types
The term data type refers to the internal representation of data on a computer
system. Simulink can handle parameters and signals of any built-in data type
supported by MATLAB, such as int8, double, and boolean (see “Working with
Data Types” on page 4-44). Further, Simulink defines two Simulink-specific
data types:

• Simulink.Parameter

• Simulink.Signal

These Simulink-specific data types capture Simulink-specific information that
is not captured by general-purpose numeric types, such as int32. Simulink
allows you to create and use instances of Simulink data types, called data
objects, as parameters and signals in Simulink models.

You can extend both Simulink data types to create data types that capture
information specific to your models.

3 How Simulink Works

3-8

Note The Simulink user interface and documentation also refers to the
Simulink data types as classes to distinguish them from nonextensible data
types, such as the built-in MATLAB types.

Solvers
A Simulink model specifies the time derivatives of its continuous states but not
the values of the states themselves. Thus, when simulating a sytem, Simulink
must compute continous states by numerically integrating their state
derivatives. A variety of general-purpose numerical integration techniques
exist, each having advantages in specific applications. Simulink provides
implementations, called ordinary differential equation (ODE) solvers, of the
most stable, efficient, and accurate of these numerical integration methods.
You can specify the solver to use in the model or when running a simulation.

Simulating Dynamic Systems

3-9

Simulating Dynamic Systems
Simulating a dynamic system refers to the process of computing a system’s
states and outputs over a span of time, using information provided by the
system’s model. Simulink simulates a system when you choose Start from the
model editor’s Simulation menu, with the system’s model open.

Simulation of the system occurs in two phases: model initialization and model
execution.

Model Initialization Phase
During the initialization phase, Simulink:

1 Evaluates the model’s block parameter expressions to determine their
values.

2 Flattens the model hierarchy by replacing virtual subsystems with the
blocks that they contain (see “Atomic Versus Virtual Subsystems” on
page 3-13).

3 Sorts the blocks into the order in which they need to be executed during the
execution phase (see “Determining Block Update Order” on page 3-11).

4 Determines signal attributes, e.g., name, data type, numeric type, and
dimesionality, not explicitly specified by the model and checks that each
block can accept the signals connected to its inputs.

Simulink uses a process called attribute propagation to determine
unspecified attributes. This process entails propagating the attributes of a
source signal to the inputs of the blocks that it drives.

5 Determines the sample times of all blocks in the model whose sample times
you did not explicitly specify.

6 Allocates and initializes memory used to store the current values of each
block’s states and outputs.

Model Execution Phase
The simulation now enters the model execution phase. In this phase, Simulink
successively computes the states and outputs of the system at intervals from

3 How Simulink Works

3-10

the simulation start time to the finish time, using information provided by the
model. The successive time points at which the states and outputs are
computed are called time steps. The length of time between steps is called the
step size. The step size depends on the type of solver (see “Solvers” on
page 3-13) used to compute the system’s continuous states, the system’s
fundamental sample time (see “Modeling and Simulating Discrete Systems” on
page 3-23), and whether the system’s continuous states have discontinuities
(“Zero Crossing Detection” on page 3-14).

At the start of the simulation, the model specifies the inital states and outputs
of the system to be simulated. At each step, Simulink computes new values for
the system’s inputs, states, and outputs and updates the model to reflect the
computed values. At the end of the simulation, the model reflects the final
values of the system’s inputs, states, and outputs. Simulink provides data
display and logging blocks. You can display and/or log intermediate results by
including these blocks in your model.

Processing at Each Time Step
At each time step, Simulink

1 Updates the outputs of the models’ blocks in sorted order (see “Determining
Block Update Order” on page 3-11).

Simulink computes a block’s outputs by invoking the block’s output function.
Simulink passes the current time and the block’s inputs and states to the
output function as it may require these arguments to compute the block’s
output. Simulink updates the output of a discrete block only if the current
step is an integral multiple of the block’s sample time.

2 Updates the states of the model’s blocks in sorted order.

Simulink computes a block’s discrete states by invoking its discrete state
update function. Simulink computes a block’s continuous states by
numerically integrating the time derivatives of the continuous states. It
computes the time derivatives of the states by invoking the block’s
continuous derivatives function.

Simulating Dynamic Systems

3-11

3 Optionally checks for discontinuities in the continuous states of blocks.

Simulink uses a technique called zero crossing detection to detect
discontinuities in continuous states. See “Zero Crossing Detection” on
page 3-14 for more information.

4 Computes the time for the next time step.

Simulink repeats steps 1 through 4 until the simulation stop time is reached.

Determining Block Update Order
During a simulation, Simulink updates the states and outputs of a model’s
blocks once per time step. The order in which the blocks are updated is
therefore critical to the validity of the results. In particular, if a block’s outputs
are a function of its inputs at the current time step, the block must be updated
after the blocks that drive its inputs. Otherwise, the block’s outputs will be
invalid. The order in which blocks are stored in a model file is not necessarily
the order in which they need to be updated during a simulation. Consequently,
Simulink sorts the blocks into the correct order during the model initialization
phase.

Direct Feedthrough Blocks
In order to create a valid update ordering, Simulink categorizes blocks
according to the relationship of outputs to inputs. Blocks whose current
outputs depend on their current inputs are called direct feedthrough blocks. All
other blocks are called nondirect-feedthrough blocks. Examples of
direct-feedthrough blocks include the Gain, Product, and Sum blocks.
Examples of nondirect-feedthrough blocks include the Integrator block (its
output is a function purely of its state), the Constant block (it does not have an
input), and the Memory block (its output is dependent on its input in the
previous time step).

3 How Simulink Works

3-12

Block Sorting Rules
Simulink uses the following basic update rules to sort the blocks:

• Each block must be updated before any of the direct-feedthrough blocks that
it drives.

This rule ensures that the inputs to direct-feedthrough blocks will be valid
when they are updated.

• Nondirect-feedthrough blocks can be updated in any order as long as they are
updated before any direct-feedthrough blocks that they drive.

This rule can be met by putting all nondirect-feedthrough blocks at the head
of the update list in any order. It thus allows Simulink to ignore
nondirect-feedthrough blocks during the sorting process.

The result of applying these rules is an update list in which
nondirect-feedthrough blocks appear at the head of the list in no particular
order followed by direct-feedthrough blocks in the order required to supply
valid inputs to the blocks they drive.

During the sorting process, Simulink checks for and flags the occurrence of
algebraic loops, that is, signal loops in which an output of a direct-feedthrough
block is connected directly or indirectly to one of the block’s inputs. Such loops
seemingly create a deadlock condition since Simulink needs the input of a
direct-feedthrough block in order to compute its output. However, an algebraic
loop can represent a set of simultaneous algebraic equations (hence the name)
where the block’s input and output are the unknowns. Further, these equations
can have valid solutions at each time step. Accordingly, Simulink assumes that
loops involving direct-feedthrough blocks do, in fact, represent a solvable set of
algebraic equations and attempts to solve them each time the block is updated
during a simulation. For more information, see “Algebraic Loops” on page 3-18.

Block Priorities
Simulink allows you to assign update priorities to blocks (see “Assigning Block
Priorities” on page 4-18). Simulink updates higher priority blocks before lower
priority blocks. Simulink honors the priorities only if they are consistent with
its block sorting rules.

Simulating Dynamic Systems

3-13

Atomic Versus Virtual Subsystems
Subsystems can be virtual or atomic. Simulink ignores virtual subsystem
boundaries when determining block update order. By contrast, Simulink
executes all blocks within an atomic subsystem before moving onto the next
block. Conditionally executed subsystems are atomic. Unconditionally
executed subsystems are virtual by default. You can, however, designate an
unconditionally executed subsystem as atomic (see Subsystem). This is useful
if you need to ensure that a subsystem is executed in its entirety before any
other block is executed.

Solvers
Simulink computes the current value of a block’s continuous states by
numerically integrating the state’s derivatives. The numerical integration task
is performed by a Simulink component called a solver. Simulink allows you to
choose the solver that it uses to simulate a model. The solvers that Simulink
provides fall into two classes: fixed-step solvers and variable-step solvers.

Fixed-Step Solvers
Fixed-step solvers divide the simulation timespan up into an integral number
of fixed-size intervals called time steps. Then, starting from initial estimates,
at each time step, a fixed-step solver computes the value of each of the system’s
state variables at the next time step from the variable’s current value and the
current value of its derivatives. The accuracy of the estimation depends on the
step size, that is, the time between successive time steps. Generally, a smaller
step size produces a more accurate simulation but results in a longer execution
time because more steps are required to compute a system’s states.

Variable Step Solvers
A variable step solver dynamically varies the step size to meet a specified level
of precision. Such a solver expands the step size when the state variables are
changing slowly (as indicated by the magnitude of the state derivatives) and
decreases the step size when the state variables are changing rapidly. A
variable step solver can, depending on the application, produce more accurate
results without sacrificing execution speed.

Major Versus Minor Steps
Some solvers subdivide the simulation time span into major and minor steps,
where a minor time step represents a subdivision of the major time step. The

3 How Simulink Works

3-14

solver produces a result at each major time step. It use results at the minor
time steps to improve the accuracy of the result at the major time step.

Zero Crossing Detection
When simulating a dynamic system, Simulink checks for discontinuities in the
system’s state variables at each time step, using a technique known as zero
crossing detection. If Simulink detects a discontinuity within the current time
step, it determines the precise time at which the discontinuity occurs and takes
additional time steps before and after the discontinuity. This section explains
why zero crossing detection is important and how it works.

Discontinuities in state variables often coincide with significant events in the
evolution of a dynamic system. For example, the instant when a bouncing ball
hits the floor coincides with a discontinuty in its position. Because
discontinuties often indicate a significant change in a dynamic system, it is
important to simulate points of discontinuity precisely. Otherwise, a
simulation could lead to false conclusions about the behavior of the system
under investigation. Consider, for example, a simulation of a bouncing ball. If
the point at which the ball hits the floor occurs between simulation steps, the
simulated ball appears to reverse position in midair. This might lead an
investigator to false conclusions about the physics of the bouncing ball.

To avoid such misleading conclusions, it is important that simulation steps
occur at points of discontinuity. A simulator that relies purely on solvers to
determine simulation times cannot efficiently meet this requirement.
Consider, for example, a fixed-step solver. A fixed-step solver computes the
values of state variables at integral multiples of a fixed step size. However,
there is no guarantee that a point of discontinuity will occur at an integral
multiple of the step size. You could reduce the step size to increase the
probability of hitting a discontinuity, but this would greatly increase the
execution time.

A variable step solver appears to offer a solution. A variable step solver adjusts
the step size dynamically, increasing the step size when a variable is changing
slowly and decreasing the step size when the variable changes rapidly. Around
a discontinuity, a variable changes extremely rapidly. Thus, in theory, a
variable step solver should be able to hit a discontinuity precisely. The problem
is that to locate a discontinuity accurately, a variable step solver must again
take many small steps, greatly slowing down the simulation.

Simulating Dynamic Systems

3-15

How Zero Crossing Detection Works
Simulink uses a technique known as zero crossing detection to address this
problem. With this technique, a block can register a set of zero crossing
variables with Simulink, each of which is a function of a state variable that can
have a discontinuity. The zero crossing function passes through zero from a
positive or negative value when the corresponding discontinuity occurs. At the
end of each simulation step, Simulink asks each block that has registered zero
crossing variables to update the variables. Simulink then checks whether any
variable has changed sign since the last step. Such a change indicates that a
discontinuity occurred in the current time step.

If any zero crossings are detected, Simulink interpolates between the previous
and current values of each variable that changed sign to estimate the times of
the zero crossings (e.g., discontinuities). Simulink then steps up to and over
each zero crossing in turn. In this way, Simulink avoids simulating exactly at
the discontinuity where the value of the state variable may be undefined.

zero crossing detection enables Simulink to simulate discontinuities accurately
without resorting to excessively small step sizes. Many Simulink blocks
support zero crossing detection. The result is fast and accurate simulation of
all systems, including systems with discontinuities.

Implementation Details
An example of a Simulink block that uses zero crossings is the Saturation
block. zero crossings detect these state events in the Saturation block:

• The input signal reaches the upper limit.

• The input signal leaves the upper limit.

• The input signal reaches the lower limit.

• The input signal leaves the lower limit.

Simulink blocks that define their own state events are considered to have
intrinsic zero crossings. If you need explicit notification of a zero crossing event,
use the Hit Crossing block. See “Blocks with Zero Crossings” on page 3-17 for
a list of blocks that incorporate zero crossings.

The detection of a state event depends on the construction of an internal zero
crossing signal. This signal is not accessible by the block diagram. For the
Saturation block, the signal that is used to detect zero crossings for the upper
limit is zcSignal = UpperLimit – u, where u is the input signal.

3 How Simulink Works

3-16

Zero crossing signals have a direction attribute, which can have these values:

• rising – a zero crossing occurs when a signal rises to or through zero, or when
a signal leaves zero and becomes positive.

• falling – a zero crossing occurs when a signal falls to or through zero, or when
a signal leaves zero and becomes negative.

• either – a zero crossing occurs if either a rising or falling condition occurs.

For the Saturation block’s upper limit, the direction of the zero crossing is
either. This enables the entering and leaving saturation events to be detected
using the same zero crossing signal.

If the error tolerances are too large, it is possible for Simulink to fail to detect
a zero crossing. For example, if a zero crossing occurs within a time step, but
the values at the beginning and end of the step do not indicate a sign change,
the solver will step over the crossing without detecting it.

This figure shows a signal that crosses zero. In the first instance, the integrator
“steps over” the event. In the second, the solver detects the event.

If you suspect this is happening, tighten the error tolerances to ensure that the
solver takes small enough steps. For more information, see “Error Tolerances”
on page 5–13.

Note Using the Refine option (see “Refine output” on page 5-16) will not help
locate the missed zero crossings. You should alter the maximum step size or
output times.

Caveat
It is possible to create models that exhibit high frequency fluctuations about a
discontinuity (chattering). Such systems typically are not physically realizable;

not
detected

detected

Simulating Dynamic Systems

3-17

a mass-less spring, for example. Because chattering causes repeated detection
of zero crossings, the step sizes of the simulation become very small, essentially
halting the simulation.

If you suspect that this behavior applies to your model, you can disable zero
crossings by selecting the Disable zero crossing detection option on the
Advanced pane of the Simulation Parameters dialog box (see “Zero-crossing
detection” on page 5-32). Although disabling zero crossing detection may
alleviate the symptoms of this problem, you no longer benefit from the
increased accuracy that zero crossing detection provides. A better solution is to
try to identify the source of the underlying problem in the model.

Blocks with Zero Crossings

Block Description of Zero Crossing

Abs One: to detect when the input signal crosses zero in either
the rising or falling direction.

Backlash Two: one to detect when the upper threshold is engaged,
and one to detect when the lower threshold is engaged.

Dead Zone Two: one to detect when the dead zone is entered (the input
signal minus the lower limit), and one to detect when the
dead zone is exited (the input signal minus the upper
limit).

Hit
Crossing

One: to detect when the input crosses the threshold. These
zero crossings are not affected by the Disable zero
crossing detection option in the Advanced pane of the
Simulation Parameters dialog box.

Integrator If the reset port is present, to detect when a reset occurs. If
the output is limited, there are three zero crossings: one to
detect when the upper saturation limit is reached, one to
detect when the lower saturation limit is reached, and one
to detect when saturation is left.

MinMax One: for each element of the output vector, to detect when
an input signal is the new minimum or maximum

3 How Simulink Works

3-18

Algebraic Loops
Some Simulink blocks have input ports with direct feedthrough. This means
that the output of these blocks cannot be computed without knowing the values
of the signals entering the blocks at these input ports. Some examples of blocks
with direct feedthrough inputs are:

• The Elementary Math block

• The Gain block

• The Integrator block’s initial condition ports

• The Product block

• The State-Space block when there is a nonzero D matrix

• The Sum block

• The Transfer Fcn block when the numerator and denominator are of the
same order

• The Zero-Pole block when there are as many zeros as poles

To determine whether a block has direct feedthrough, consult the
Characteristics table that describes the block, in Chapter 9, “Block Reference.”

Relay One: if the relay is off, to detect the switch on point. If the
relay is on, to detect the switch off point.

Relational
Operator

One: to detect when the output changes.

Saturation Two: one to detect when the upper limit is reached or left,
and one to detect when the lower limit is reached or left.

Sign One: to detect when the input crosses through zero.

Step One: to detect the step time.

Subsystem For conditionally executed subsystems: one for the enable
port if present, and one for the trigger port, if present.

Switch One: to detect when the switch condition occurs.

Block Description of Zero Crossing (Continued)

Simulating Dynamic Systems

3-19

An algebraic loop generally occurs when an input port with direct feedthrough
is driven by the output of the same block, either directly, or by a feedback path
through other blocks with direct feedthrough. (See “Non-algebraic
Direct-Feedthrough Loops” on page 3-20 for an example of an exception to this
general rule.) An example of an algebraic loop is this simple scalar loop.

Mathematically, this loop implies that the output of the Sum block is an
algebraic state z constrained to equal the first input u minus z (i.e. z = u – z).
The solution of this simple loop is z = u/2, but most algebraic loops cannot be
solved by inspection. It is easy to create vector algebraic loops with multiple
algebraic state variables z1, z2, etc., as shown in this model.

The Algebraic Constraint block is a convenient way to model algebraic
equations and specify initial guesses. The Algebraic Constraint block
constrains its input signal F(z) to zero and outputs an algebraic state z. This
block outputs the value necessary to produce a zero at the input. The output
must affect the input through some feedback path. You can provide an initial
guess of the algebraic state value in the block’s dialog box to improve algebraic
loop solver efficiency.

A scalar algebraic loop represents a scalar algebraic equation or constraint of
the form F(z) = 0, where z is the output of one of the blocks in the loop and the
function F consists of the feedback path through the other blocks in the loop to
the input of the block. In the simple one-block example shown on the previous

3 How Simulink Works

3-20

page, F(z) = z – (u – z). In the vector loop example shown above, the equations
are

z2 + z1 – 1 = 0
z2 – z1 – 1 = 0

Algebraic loops arise when a model includes an algebraic constraint F(z) = 0.
This constraint may arise as a consequence of the physical interconnectivity of
the system you are modeling, or it may arise because you are specifically trying
to model a differential/algebraic system (DAE).

When a model contains an algebraic loop, Simulink calls a loop solving routine
at each time step. The loop solver performs iterations to determine the solution
to the problem (if it can). As a result, models with algebraic loops run slower
than models without them.

To solve F(z) = 0, the Simulink loop solver uses Newton's method with weak
line search and rank-one updates to a Jacobian matrix of partial derivatives.
Although the method is robust, it is possible to create loops for which the loop
solver will not converge without a good initial guess for the algebraic states z.
You can specify an initial guess for a line in an algebraic loop by placing an IC
block (which is normally used to specify an initial condition for a signal) on that
line. As shown above, another way to specify an initial guess for a line in an
algebraic loop is to use an Algebraic Constraint block.

Whenever possible, use an IC block or an Algebraic Constraint block to specify
an initial guess for the algebraic state variables in a loop.

Non-algebraic Direct-Feedthrough Loops
There are exceptions to the general rule that all loops comprising
direct-feedthrough blocks are algebraic. The exceptions are:

• Loops involving triggered subsystems

• A loop from the output to the reset port of an integrator

A triggered subsystem holds its outputs constant between trigger events (see
“Triggered Subsystems” on page 8-8). Thus, a solver can safely use the output
from the system’s previous time step to compute its input at the current time
step. This is, in fact, what a solver does when it encounters a loop involving a
triggered subsystem, thus eliminating the need for an algebraic loop solver.

Simulating Dynamic Systems

3-21

Note Because a solver uses a triggered subsystem’s previous output to
compute feedback inputs, the subsystem, and any block in its feedback path,
can exhibit a one sample-time delay in its output. When simulating a system
with triggered feedback loops, Simulink displays a warning to remind you that
such delays can occur.

Consider, for example, the following system.

This system effectively solves the equation

z = 1 + u

where u is the value of z the last time the subsystem was triggered. The output
of the system is a staircase function as illustrated by the display on the
system’s scope.

3 How Simulink Works

3-22

Now consider the effect of removing the trigger from the system shown in the
previous example.

In this case, the input at the u2 port of the adder subsystem is equal to the
subsystem’s output at the current time step for every time step. The
mathematical representation of this system

z = z + 1

reveals that it has no mathematically valid solution.

Modeling and Simulating Discrete Systems

3-23

Modeling and Simulating Discrete Systems
Simulink has the ability to simulate discrete (sampled data) systems. Models
can be multirate, that is, they can contain blocks that are sampled at different
rates. Models can also be hybrid, containing a mixture of discrete and
continuous blocks.

Discrete Blocks
Each of the discrete blocks has a built-in sampler at its input, and a zero-order
hold at its output. When the discrete blocks are mixed with continuous blocks,
the output of the discrete blocks between sample times is held constant. The
outputs of the discrete blocks are updated only at times that correspond to
sample hits.

Sample Time
The Sample time parameter sets the sample time at which a discrete block’s
states are updated. Normally, the sample time is set to a scalar variable;
however, it is possible to specify an offset time (or skew) by specifying a
two-element vector in this field.

For example, specifying the Sample time parameter as the vector [Ts,offset]
sets the sample time to Ts and the offset value to offset. The discrete block is
updated on integer multiples of the sample time and offset values only

t = n * Ts + offset

where n is an integer and offset can be positive or negative, but less than the
sample time. The offset is useful if some discrete blocks must be updated sooner
or later than others.

You cannot change the sample time of a block while a simulation is running. If
you want to change a block’s sample time, you must stop and restart the
simulation for the change to take effect.

Purely Discrete Systems
Purely discrete systems can be simulated using any of the solvers; there is no
difference in the solutions. To generate output points only at the sample hits,
choose one of the discrete solvers.

3 How Simulink Works

3-24

Multirate Systems
Multirate systems contain blocks that are sampled at different rates. These
systems can be modeled with discrete blocks or both discrete and continuous
blocks. For example, consider this simple multirate discrete model.

For this example the DTF1 Discrete Transfer Fcn block’s Sample time is set to
[1 0.1], which gives it an offset of 0.1. The DTF2 Discrete Transfer Fcn block’s
Sample time is set to 0.7, with no offset.

Starting the simulation (see “Running a Simulation from the Command Line”
on page 5-3) and plotting the outputs using the stairs function

[t,x,y] = sim('multirate', 3);
stairs(t,y)

produces this plot

For the DTF1 block, which has an offset of 0.1, there is no output until t = 0.1.
Because the initial conditions of the transfer functions are zero, the output of
DTF1, y(1), is zero before this time.

Determining Step Size for Discrete Systems
Simulating a discrete system requires that the simulator take a simulation
step at every sample time hit, that is, at integral multiples of the system’s
shortest sample time. Otherwise, the simulator may miss key transitions in the
system’s states. Simulink avoids this by choosing a simulation step size to

y(1)

y(2)

Modeling and Simulating Discrete Systems

3-25

ensure that steps coincide with sample time hits. The step size that Simulink
chooses depends on the system’s fundamental sample time and the type of
solver used to simulate the system.

The fundamental sample time of a discrete system is the greatest integral
divisor of the system’s actual sample times. For example, suppose that a
system has sample times of 0.25 and 0.5 second. The fundamental sample time
in this case is 0.25 second. Suppose, instead, the sample times are 0.5 and 0.75
second. In this case, the fundamental sample time is again 0.25 second.

You can direct Simulink to use either a fixed-step or a variable-step discrete
solver to solve a discrete system. A fixed-step solver sets the simulation step
size equal to the discrete system’s fundamental sample time. A variable-step
solver varies the step size to equal the distance between actual sample time
hits. The following diagram illustrates the difference between a fixed-step and
a variable-size solver.

In the diagram, arrows indicate simulation steps and circles represent sample
time hits. As the diagram illustrates, a variable-step solver requires fewer
simulation steps to simulate a system, if the fundamental sample time is less
than any of the actual sample times of the system being simulated. On the
other hand, a fixed-step solver requires less memory to implement and is faster
if one of the system’s sample times is fundamental. This can be an advantage

0.00 0.50 0.75 1.00 1.25 1.500.25

0.00 0.50 0.75 1.00 1.25 1.500.25

Fixed-Step Solver

Variable-Step Solver

3 How Simulink Works

3-26

in applications that entail generating code from a Simulink model (using the
Real-Time Workshop).

Sample Time Propagation
The figure below illustrates a Discrete Filter block with a sample time of Ts
driving a Gain block.

Because the Gain block’s output is simply the input multiplied by a constant,
its output changes at the same rate as the filter. In other words, the Gain block
has an effective sample rate equal to that of the filter’s sample rate. This is the
fundamental mechanism behind sample time propagation in Simulink.

Simulink sets sample times for individual blocks according to these rules:

• Continuous blocks (e.g., Integrator, Derivative, Transfer Fcn, etc.) are, by
definition, continuous.

• The Constant block is, by definition, constant.

• Discrete blocks (e.g., Zero-Order Hold, Unit Delay, Discrete Transfer Fcn,
etc.) have sample times that are explicitly specified by the user on the block
dialog boxes.

• All other blocks have implicitly defined sample times that are based on the
sample times of their inputs. For instance, a Gain block that follows an
Integrator is treated as a continuous block, whereas a Gain block that follows
a Zero-Order Hold is treated as a discrete block having the same sample time
as the Zero-Order Hold block.

For blocks whose inputs have different sample times, if all sample times are
integer multiples of the fastest sample time, the block is assigned the sample
time of the fastest input. If a variable-step solver is being used, the block is
assigned the continuous sample time. If a fixed-step solver is being used and
the greatest common divisor of the sample times (the fundamental sample
time) can be computed, it is used. Otherwise continuous is used.

Under some circumstances, Simulink also backpropagates sample times to
source blocks if it can do so without affecting the output of a simulation. For
instance, in the model below, Simulink recognizes that the Signal Generator

Modeling and Simulating Discrete Systems

3-27

block is driving a Discrete-Time Integrator block so it assigns the Signal
Generator block and the Gain block the same sample time as the Discrete-Time
Integrator block.

You can verify this by selecting Sample time colors from the Simulink Format
menu and noting that all blocks are colored red. Because the Discrete-Time
Integrator block only looks at its input at its sample times, this change does not
affect the outcome of the simulation but does result in a performance
improvement.

Replacing the Discrete-Time Integrator block with a continuous Integrator
block, as shown below, and recoloring the model by choosing Update diagram
from the Edit menu cause the Signal Generator and Gain blocks to change to
continuous blocks, as indicated by their being colored black.

Invariant Constants
Blocks either have explicitly defined sample times or inherit their sample
times from blocks that feed them or are fed by them.

Simulink assigns Constant blocks a sample time of infinity, also referred to as
a constant sample time. Other blocks have constant sample time if they receive
their input from a Constant block and do not inherit the sample time of another
block. This means that the output of these blocks does not change during the
simulation unless the parameters are explicitly modified by the model user.

For example, in this model, both the Constant and Gain blocks have constant
sample time.

3 How Simulink Works

3-28

Because Simulink supports the ability to change block parameters during a
simulation, all blocks, even blocks having constant sample time, must generate
their output at the model’s effective sample time.

Note You can determine which blocks have constant sample time by selecting
Sample Time Colors from the Format menu. Blocks having constant sample
time are colored magenta.

Because of this feature, all blocks compute their output at each sample time
hit, or, in the case of purely continuous systems, at every simulation step. For
blocks having constant sample time whose parameters do not change during a
simulation, evaluating these blocks during the simulation is inefficient and
slows down the simulation.

You can set Simulink’s inline paramters option (see “Inline parameters” on
page 5-30) to remove all blocks having constant sample times from the
simulation “loop.” The effect of this feature is twofold. First, parameters for
these blocks cannot be changed during a simulation. Second, simulation speed
is improved. The speed improvement depends on model complexity, the
number of blocks with constant sample time, and the effective sampling rate of
the simulation.

Mixed Continuous and Discrete Systems
Mixed continuous and discrete systems are composed of both sampled and
continuous blocks. Such systems can be simulated using any of the integration
methods, although certain methods are more efficient and accurate than
others. For most mixed continuous and discrete systems, the Runge-Kutta
variable step methods, ode23 and ode45, are superior to the other methods in
terms of efficiency and accuracy. Due to discontinuities associated with the
sample and hold of the discrete blocks, the ode15s and ode113 methods are not
recommended for mixed continuous and discrete systems.

4

Creating a Model

Starting Simulink 4-2

Selecting Objects 4-7

Blocks . 4-9

Connecting Blocks 4-22

Working with Signals 4-28

Annotations . 4-42

Working with Data Types 4-44

Working with Data Objects 4-50

Summary of Mouse and Keyboard Actions 4-62

Creating Subsystems 4-65

Using Callback Routines 4-70

Tips for Building Models 4-76

Libraries . 4-77

Modeling Equations 4-86

Saving a Model 4-89

Printing a Block Diagram 4-90

Searching and Browsing Models 4-94

Managing Model Versions 4-104

Ending a Simulink Session 4-113

4 Creating a Model

4-2

Starting Simulink
To start Simulink, you must first start MATLAB. Consult your MATLAB
documentation for more information. You can then start Simulink in two ways:

• Click on the Simulink icon on the MATLAB toolbar.

• Enter the simulink command at the MATLAB prompt.

On Microsoft Windows platforms, starting Simulink displays the Simulink
Library Browser.

The Library Browser displays a tree-structured view of the Simulink block
libraries installed on your system. You can build models by copying blocks from
the Library Browser into a model window (this procedure is described later in
this chapter).

Starting Simulink

4-3

On UNIX platforms, starting Simulink displays the Simulink block library
window.

The Simulink library window displays icons representing the block libraries
that come with Simulink. You can create models by copying blocks from the
library into a model window.

Note On Windows, you can display the Simulink library window by
right-clicking the Simulink node in the Library Browser window.

Creating a New Model
To create a new model, click the New button on the Library Browser’s toolbar
(Windows only) or choose New from the library window’s File menu and select
Model. You can move the window as you do other windows. Chapter 2, “Quick
Start” describes how to build a simple model. “Libraries” on page 4–77
describes how to build systems that model equations.

Editing an Existing Model
To edit an existing model diagram, either:

• Click the Open button on the Library Browser’s toolbar (Windows only) or
select Open from the Simulink library window’s File menu and then choose
or enter the model filename for the model to edit.

• Enter the name of the model (without the .mdl extension) in the MATLAB
command window. The model must be in the current directory or on the path.

4 Creating a Model

4-4

Entering Simulink Commands
You run Simulink and work with your model by entering commands. You can
enter commands by:

• Selecting items from the Simulink menu bar

• Selecting items from a context-sensitive Simulink menu (Windows only)

• Clicking buttons on the Simulink toolbar (Windows only)

• Entering commands in the MATLAB command window

Using the Simulink Menu Bar to Enter Commands
The Simulink menu bar appears near the top of each model window. The menu
commands apply to the contents of that window.

Using Context-Sensitive Menus to Enter Commands
Simulink displays a context-sensitive menu when you click the right mouse
button over a model or block library window. The contents of the menu depend
on whether a block is selected. If a block is selected, the menu displays
commands that apply only to the selected block. If no block is selected, the
menu displays commands that apply to a model or library as a whole.

Using the Simulink Toolbar to Enter Commands
Model windows in the Windows version of Simulink optionally display a
toolbar beneath the Simulink menu bar. To display the toolbar, check the
Toolbar option on the Simulink View menu.

The toolbar contains buttons corresponding to frequently used Simulink
commands, such as those for opening, running, and closing models. You can

Toolbar

Starting Simulink

4-5

run such commands by clicking on the corresponding button. For example, to
open a Simulink model, click on the button containing the open folder icon. You
can determine which command a button executes by moving the mouse pointer
over the button. A small window appears containing text that describes the
button. The window is called a tooltip. Each button on the toolbar displays a
tooltip when the mouse pointer hovers over it. You can hide the toolbar by
unchecking the Toolbar option on the Simulink View menu.

Using the MATLAB Window to Enter Commands
When you run a simulation and analyze its results, you can enter MATLAB
commands in the MATLAB command window. Running a simulation is
discussed in Chapter 5, and analyzing simulation results is discussed in
Chapter 6, “Analyzing Simulation Results.”.

Undoing a Command
You can cancel the effects of up to 101 consecutive operations by choosing Undo
from the Edit menu. You can undo these operations:

• Adding or deleting a block

• Adding or deleting a line

• Adding or deleting a model annotation

• Editing a block name

• Creating a subsystem

You can reverse the effects of an Undo command by choosing Redo from the
Edit menu.

Simulink Windows
Simulink uses separate windows to display a block library browser, a block
library, a model, and graphical (scope) simulation output. These windows are
not MATLAB figure windows and cannot be manipulated using Handle
Graphics® commands.

Simulink windows are sized to accommodate the most common screen
resolutions available. If you have a monitor with exceptionally high or low
resolution, you may find the window sizes too small or too large. If this is the
case, resize the window and save the model to preserve the new window
dimensions.

4 Creating a Model

4-6

Status Bar
The Windows version of Simulink displays a status bar at the bottom of each
model and library window.

When a simulation is running, the status bar displays the status of the
simulation, including the current simulation time and the name of the current
solver. You can display or hide the status bar by checking or unchecking the
Status Bar option on the Simulink View menu.

Zooming Block Diagrams
Simulink allows you to enlarge or shrink the view of the block diagram in the
current Simulink window. To zoom a view:

• Select Zoom In from the View menu (or type r) to enlarge the view.

• Select Zoom Out from the View menu (or type v) to shrink the view.

• Select Fit System to View from the View menu (or press the space bar) to
fit the diagram to the view.

• Select Normal from the View menu to view the diagram at actual size.

By default, Simulink fits a block diagram to view when you open the diagram
either in the model browser’s content pane or in a separate window. If you
change a diagram’s zoom setting, Simulink saves the setting when you close
the diagram and restores the setting the next time you open the diagram. If you
want to restore the default behavior, choose Fit System to View from the View
menu the next time you open the diagram.

Status Bar

Selecting Objects

4-7

Selecting Objects
Many model building actions, such as copying a block or deleting a line, require
that you first select one or more blocks and lines (objects).

Selecting One Object
To select an object, click on it. Small black square “handles” appear at the
corners of a selected block and near the end points of a selected line. For
example, the figure below shows a selected Sine Wave block and a selected line.

When you select an object by clicking on it, any other selected objects become
deselected.

Selecting More than One Object
You can select more than one object either by selecting objects one at a time, by
selecting objects located near each other using a bounding box, or by selecting
the entire model.

Selecting Multiple Objects One at a Time
To select more than one object by selecting each object individually, hold down
the Shift key and click on each object to be selected. To deselect a selected
object, click on the object again while holding down the Shift key.

Selecting Multiple Objects Using a Bounding Box
An easy way to select more than one object in the same area of the window is
to draw a bounding box around the objects:

1 Define the starting corner of a bounding box by positioning the pointer at
one corner of the box, then pressing and holding down the mouse button.
Notice the shape of the cursor.

4 Creating a Model

4-8

2 Drag the pointer to the opposite corner of the box. A dotted rectangle
encloses the selected blocks and lines.

3 Release the mouse button. All blocks and lines at least partially enclosed by
the bounding box are selected.

Selecting the Entire Model
To select all objects in the active window, choose Select All from the Edit
menu. You cannot create a subsystem by selecting blocks and lines in this way.
For more information, see “Creating Subsystems” on page 4–65.

Blocks

4-9

Blocks
Blocks are the elements from which Simulink models are built. You can model
virtually any dynamic system by creating and interconnecting blocks in
appropriate ways. This section discusses how to use blocks to build models of
dynamic systems.

Block Data Tips
On Microsoft Windows, Simulink displays information about a block in a
pop-up window when you allow the pointer to hover over the block in the
diagram view. To disable this feature or control what information a data tip
includes, select Block data tips options from the Simulink View menu.

Virtual Blocks
When creating models, you need to be aware that Simulink blocks fall into two
basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play an
active role in the simulation of a system. If you add or remove a nonvirtual
block, you change the model’s behavior. Virtual blocks, by contrast, play no
active role in the simulation; they help organize a model graphically. Some
Simulink blocks are virtual in some circumstances and nonvirtual in others.
Such blocks are called conditionally virtual blocks. The following table lists
Simulink virtual and conditionally virtual blocks.

Table 4-1: Virtual and Conditionally Virtual Blocks

Block Name Condition Under Which Block Will Be Virtual

Bus Selector Always virtual.

Data Store Memory Always virtual.

Demux Always virtual.

Enable Port Always virtual.

From Always virtual.

Goto Always virtual.

Goto Tag Visibility Always virtual.

4 Creating a Model

4-10

Copying and Moving Blocks from One Window to
Another
As you build your model, you often copy blocks from Simulink block libraries or
other libraries or models into your model window. To do this, follow these steps:

1 Open the appropriate block library or model window.

2 Drag the block to copy into the target model window. To drag a block,
position the cursor over the block icon, then press and hold down the mouse
button. Move the cursor into the target window, then release the mouse
button.

You can also drag blocks from the Simulink Library Browser into a model
window. See “Browsing Block Libraries” on page 4-83 for more information.

Ground Always virtual.

Inport Virtual unless the block resides in a conditionally
executed subsystem and has a direct connection to
an outport block.

Mux Always virtual.

Outport Virtual when the block resides within any
subsystem block (conditional or not), and does not
reside in the root (top-level) Simulink window.

Selector Virtual except in matrix mode.

Subsystem Virtual except if the block is conditionally executed
and/or the block’s Treat as Atomic Unit option is
selected.

Terminator Always virtual.

Test Point Always virtual.

Trigger Port Virtual when the outport port is not present.

Table 4-1: Virtual and Conditionally Virtual Blocks (Continued)

Block Name Condition Under Which Block Will Be Virtual

Blocks

4-11

Note Simulink hides the names of Sum, Mux, Demux, and Bus Selector
blocks when you copy them from the Simulink block library to a model.This is
done to avoid unnecessarily cluttering the model diagram. (The shapes of
these blocks clearly indicates their respective functions.)

You can also copy blocks by using the Copy and Paste commands from the Edit
menu:

1 Select the block you want to copy.

2 Choose Copy from the Edit menu.

3 Make the target model window the active window.

4 Choose Paste from the Edit menu.

Simulink assigns a name to each copied block. If it is the first block of its type
in the model, its name is the same as its name in the source window. For
example, if you copy the Gain block from the Math library into your model
window, the name of the new block is Gain. If your model already contains a
block named Gain, Simulink adds a sequence number to the block name (for
example, Gain1, Gain2). You can rename blocks; see “Manipulating Block
Names” on page 4–17.

When you copy a block, the new block inherits all the original block’s parameter
values.

Simulink uses an invisible five-pixel grid to simplify the alignment of blocks.
All blocks within a model snap to a line on the grid. You can move a block
slightly up, down, left, or right by selecting the block and pressing the arrow
keys.

You can display the grid in the model window by typing the following command
in the MATLAB window.

set_param('<model name>','showgrid','on')

To change the grid spacing, type

set_param('<model name>','gridspacing',<number of pixels>)

4 Creating a Model

4-12

For example, to change the grid spacing to 20 pixels, type

set_param('<model name>','gridspacing',20)

For either of the above commands, you can also select the model, and then type
gcs instead of <model name>.

You can copy or move blocks to compatible applications (such as word
processing programs) using the Copy, Cut, and Paste commands. These
commands copy only the graphic representation of the blocks, not their
parameters.

Moving blocks from one window to another is similar to copying blocks, except
that you hold down the Shift key while you select the blocks.

You can use the Undo command from the Edit menu to remove an added block.

Moving Blocks in a Model
To move a single block from one place to another in a model window, drag the
block to a new location. Simulink automatically repositions lines connected to
the moved block.

To move more than one block, including connecting lines:

1 Select the blocks and lines. If you need information about how to select more
than one block, see “Selecting More than One Object” on page 4–7.

2 Drag the objects to their new location and release the mouse button.

Copying Blocks in a Model
You can copy blocks in a model as follows. While holding down the Ctrl key,
select the block with the left mouse button, then drag it to a new location. You
can also do this by dragging the block using the right mouse button. Duplicated
blocks have the same parameter values as the original blocks. Sequence
numbers are added to the new block names.

Block Parameters
All Simulink blocks have a common set of parameters, called block properties,
that you can set (see “Common Block Parameters” on page A-7). See “Block
Properties Dialog Box” on page 4-13 for information on setting block

Blocks

4-13

properties. In addition, many blocks have one or more block-specific
parameters that you can set (see “Block-Specific Parameters” on page A-10). By
setting these parameters, you can customize the behavior of the block to meet
the specific requirements of your model.

Setting Block-Specific Parameters
Every block that has block-specific parameters has a dialog box that you can
use to view and set the parameters. You can display this dialog by selecting the
block in the model window and choosing BLOCK Parameters from the model
window’s Edit menu or from the model window’s context (right-click) menu,
where BLOCK is the name of the block you selected, e.g., Constant
Parameters. You can also display a block’s parameter dialog box by
double-clicking its icon in the model or library window.

Note This holds true for all blocks with parameter dialog boxes except for the
Subsystem block. You must use the model window’s Edit menu or context
menu to display a Subsystem block’s parameter dialog.

For information on the parameter dialog of a specific block, see the block’s
documentation in Chapter 9, “Block Reference.”

You can set any block parameter, using the Simulink set_param command. See
set_param on page 10-27 for details.

You can use any MATLAB constant, variable, or expression that evaluates to
an acceptable result when specifying the value of a parameter in a block
parameter dialog or a set_param command. You can also use variables or
expressions that evaluate to Simulink data objects as parameters (see “Using
Data Objects as Parameters” on page 4-53).

Block Properties Dialog Box
Use this dialog box to set a block’s properties, i.e., parameters that it shares
with all blocks. To display this dialog, select the block in the model window and
then select the model window’s Edit menu. The Edit menu includes an item
BLOCK Properties, where BLOCK is the name of the block you selected, e.g.,
Constant Properties. Select this item to display the block’s property dialog
box.

4 Creating a Model

4-14

The Block Properties dialog box lets you set some common block parameters.

The dialog box contains the following fields:

Description
Brief description of the block’s purpose.

Priority
Execution priority of this block relative to other blocks in the model. See
“Assigning Block Priorities” on page 4-18 for more information.

Tag
A general text field that is saved with the block.

Open function
MATLAB (M-) function to be called when a user opens this block.

Blocks

4-15

Attributes format string
Current value of the block’s AttributesFormatString parameter. This
parameter specifies which parameters to display beneath a block’s icon.
Appendix A describes the parameters that a block can have. You can use the
AttributesFormatString parameter to display the values of specified
parameters beneath the block’s icon.

The attributes format string can be any text string that has embedded
parameter names. An embedded parameter name is a parameter name
preceded by %< and followed by >, for example, %<priority>. Simulink displays
the attributes format string beneath the block’s icon, replacing each parameter
name with the corresponding parameter value. You can use line-feed
characters (\n) to display each parameter on a separate line. For example,
specifying the attributes format string

pri=%<priority>\ngain=%<Gain>

for a Gain block displays

If a parameter’s value is not a string or an integer, Simulink displays N/S (not
supported) for the parameter’s value. If the parameter name is invalid,
Simulink displays “???”.

Deleting Blocks
To delete one or more blocks, select the blocks to be deleted and press the
Delete or Backspace key. You can also choose Clear or Cut from the Edit
menu. The Cut command writes the blocks into the clipboard, which enables
you to paste them into a model. Using the Delete or Backspace key or the
Clear command does not enable you to paste the block later.

You can use the Undo command from the Edit menu to replace a deleted block.

Changing the Orientation of Blocks
By default, signals flow through a block from left to right. Input ports are on
the left, and output ports are on the right. You can change the orientation of a
block by choosing one of these commands from the Format menu:

4 Creating a Model

4-16

• The Flip Block command rotates the block 180 degrees.

• The Rotate Block command rotates a block clockwise 90 degrees.

The figure below shows how Simulink orders ports after changing the
orientation of a block using the Rotate Block and Flip Block menu items. The
text in the blocks shows their orientation.

Resizing Blocks
To change the size of a block, select it, then drag any of its selection handles.
While you hold down the mouse button, a dotted rectangle shows the new block
size. When you release the mouse button, the block is resized.

For example, the figure below shows a Signal Generator block being resized.
The lower-right handle was selected and dragged to the cursor position. When
the mouse button is released, the block takes its new size. This figure shows a
block being resized.

1 2 3

Up

1
2

3

1 2 3

1
2
3

Rotate

RotateRotate

Rotate

Left
to

Right

Right
to

Left

Down

Flip

Blocks

4-17

Manipulating Block Names
All block names in a model must be unique and must contain at least one
character. By default, block names appear below blocks whose ports are on the
sides, and to the left of blocks whose ports are on the top and bottom, as this
figure shows.

Changing Block Names
You can edit a block name in one of these ways:

• To replace the block name on a Microsoft Windows or UNIX system, click on
the block name, then double-click or drag the cursor to select the entire
name. Then, enter the new name.

• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

When you click the pointer someplace else in the model or take any other
action, the name is accepted or rejected. If you try to change the name of a block
to a name that already exists or to a name with no characters, Simulink
displays an error message.

You can modify the font used in a block name by selecting the block, then
choosing the Font menu item from the Format menu. Select a font from the
Set Font dialog box. This procedure also changes the font of text on the block
icon.

You can cancel edits to a block name by choosing Undo from the Edit menu.

Note If you change the name of a library block, all links to that block will
become unresolved.

Changing the Location of a Block Name
You can change the location of the name of a selected block in two ways:

4 Creating a Model

4-18

• By dragging the block name to the opposite side of the block

• By choosing the Flip Name command from the Format menu. This
command changes the location of the block name to the opposite side of the
block.

For more information about block orientation, see “Changing the Orientation
of Blocks” on page 4–15.

Changing Whether a Block Name Appears
To change whether the name of a selected block is displayed, choose a menu
item from the Format menu:

• The Hide Name menu item hides a visible block name. When you select Hide
Name, it changes to Show Name when that block is selected.

• The Show Name menu item shows a hidden block name.

Displaying Parameters Beneath a Block’s Icon
You can cause Simulink to display one or more of a block’s parameters beneath
the block’s icon in a block diagram. You specify the parameters to be displayed
in the following ways:

• By entering an attributes format string in the Attributes format string field
of the block’s Block Properties dialog box (see “Block Properties Dialog Box”
on page 4-13)

• By setting the value of the block’s AttributesFormatString property to the
format string, using set_param (see set_param on page 10-27)

Disconnecting Blocks
To disconnect a block from its connecting lines, hold down the Shift key, then
drag the block to a new location.

Assigning Block Priorities
You can assign evaluation priorities to nonvirtual blocks in a model. Higher
priority blocks evaluate before lower priority blocks, though not necessarily
before blocks that have no assigned priority.

Blocks

4-19

You can assign block priorities interactively or programmatically. To set
priorities programmatically, use the command

set_param(b,'Priority','n')

where b is a block path and n is any valid integer. (Negative numbers and 0 are
valid priority values.) The lower the number, the higher the priority; that is, 2
is higher priority than 3. To set a block’s priority interactively, enter the
priority in the Priority field of the block’s Block Properties dialog box (see
“Block Properties Dialog Box” on page 4-13).

Simulink honors the block priorities that you specify only if they are consistent
with Simulink's block sorting algorithm (see “Determining Block Update
Order” on page 3-11). If the specified priorities are inconsistent, Simulink
ignores the specified priority and places the block in an appropriate location in
the block execution order. If Simulink is unable to honor a block priority, it
displays a Block Priority Violation diagnostic message (see “The
Diagnostics Pane” on page 5-26).

Displaying Block Execution Order
To display the execution order of blocks during simulation, select Execution
order from the Simulink Format menu. Selecting this option causes Simulink
to display a number in the top right corner of each block in a block diagram.

4 Creating a Model

4-20

The number indicates the execution order of the block relative to other blocks
in the diagram. For example, 1 indicates that the block is the first block
executed on every time step, 2 indicates that the block is the second block
executed on every time step, and so on.

Using Drop Shadows
You can add a drop shadow to a block by selecting the block, then choosing
Show Drop Shadow from the Format menu. When you select a block with a
drop shadow, the menu item changes to Hide Drop Shadow. The figure below
shows a Subsystem block with a drop shadow.

Sample Time Colors
Simulink can color-code the blocks and lines in your model to indicate the
sample rates at which the blocks operate.

Table 4-2: Sample Time Colors

Color Use

Black Continuous blocks

Magenta Constant blocks

Yellow Hybrid (subsystems grouping blocks, or Mux or Demux
blocks grouping signals with varying sample times)

Red Fastest discrete sample time

Green Second fastest discrete sample time

Blue Third fastest discrete sample time

Light Blue Fourth fastest discrete sample time

Dark Green Fifth fastest discrete sample time

Orange Sixth fastest discrete sample time

Cyan Blocks in triggered subsystems

Blocks

4-21

To enable the sample time colors feature, select Sample Time Colors from the
Format menu.

Simulink does not automatically recolor the model with each change you make
to it, so you must select Update Diagram from the Edit menu to explicitly
update the model coloration. To return to your original coloring, disable sample
time coloration by again choosing Sample Time Colors.

When using sample time colors, the color assigned to each block depends on its
sample time with respect to other sample times in the model.

It is important to note that Mux and Demux blocks are simply grouping
operators – signals passing through them retain their timing information. For
this reason, the lines emanating from a Demux block may have different colors
if they are driven by sources having different sample times. In this case, the
Mux and Demux blocks are color coded as hybrids (yellow) to indicate that they
handle signals with multiple rates.

Similarly, Subsystem blocks that contain blocks with differing sample times
are also colored as hybrids, because there is no single rate associated with
them. If all of the blocks within a subsystem run at a single rate, then the
Subsystem block is colored according to that rate.

Gray Fixed in minor step

Table 4-2: Sample Time Colors (Continued)

Color Use

4 Creating a Model

4-22

Connecting Blocks
You can connect an output port of one block to the input port of another block
by drawing a line between the blocks. Lines represent pathways for signals
generated by a model to travel among blocks. See “Working with Signals” on
page 4–28 for information on signals. The rest of this section explains how to
draw lines between blocks.

Drawing a Line Between Blocks
To connect the output port of one block to the input port of another block:

1 Position the cursor over the first block’s output port. It is not necessary to
position the cursor precisely on the port. The cursor shape changes to a cross
hair.

2 Press and hold down the mouse button.

3 Drag the pointer to the second block’s input port. You can position the cursor
on or near the port, or in the block. If you position the cursor in the block,
the line is connected to the closest input port. The cursor shape changes to a
double cross hair.

4 Release the mouse button. Simulink replaces the port symbols by a
connecting line with an arrow showing the direction of the signal flow. You
can create lines either from output to input, or from input to output. The
arrow is drawn at the appropriate input port, and the signal is the same.

Simulink draws connecting lines using horizontal and vertical line segments.
To draw a diagonal line, hold down the Shift key while drawing the line.

Connecting Blocks

4-23

Drawing a Branch Line
A branch line is a line that starts from an existing line and carries its signal to
the input port of a block. Both the existing line and the branch line carry the
same signal. Using branch lines enables you to cause one signal to be carried
to more than one block.

In this example, the output of the Product block goes to both the Scope block
and the To Workspace block.

To add a branch line, follow these steps:

1 Position the pointer on the line where you want the branch line to start.

2 While holding down the Ctrl key, press and hold down the left mouse button.

3 Drag the pointer to the input port of the target block, then release the mouse
button and the Ctrl key.

You can also use the right mouse button instead of holding down the left mouse
button and the Ctrl key.

Drawing a Line Segment
You may want to draw a line with segments exactly where you want them
instead of where Simulink draws them. Or, you might want to draw a line
before you copy the block to which the line is connected. You can do either by
drawing line segments.

To draw a line segment, you draw a line that ends in an unoccupied area of the
diagram. An arrow appears on the unconnected end of the line. To add another
line segment, position the cursor over the end of the segment and draw another
segment. Simulink draws the segments as horizontal and vertical lines. To
draw diagonal line segments, hold down the Shift key while you draw the lines.

4 Creating a Model

4-24

Moving a Line Segment
To move a line segment, follow these steps:

1 Position the pointer on the segment you want to move.

2 Press and hold down the left mouse button.

3 Drag the pointer to the desired location.

4 Release the mouse button.

To move the segment connected to an input port, position the pointer over the
port and drag the end of the segment to the new location. You cannot move the
segment connected to an output port.

Connecting Blocks

4-25

Dividing a Line into Segments
You can divide a line segment into two segments, leaving the ends of the line
in their original locations. Simulink creates line segments and a vertex that
joins them. To divide a line into segments, follow these steps:

1 Select the line.

2 Position the pointer on the line where you want the vertex.

3 While holding down the Shift key, press and hold down the mouse button.
The cursor shape changes to a circle that encloses the new vertex.

4 Drag the pointer to the desired location.

5 Release the mouse button and the Shift key.

4 Creating a Model

4-26

Moving a Line Vertex
To move a vertex of a line, follow these steps:

1 Position the pointer on the vertex, then press and hold down the mouse
button. The cursor changes to a circle that encloses the vertex.

2 Drag the pointer to the desired location.

3 Release the mouse button.

Inserting Blocks in a Line
You can insert a block in a line by dropping the block on the line. Simulink
inserts the block for you at the point where you drop the block. The block that
you insert can have only one input and one output.

To insert a block in a line:

1 Position the pointer over the block and press the left mouse button.

Connecting Blocks

4-27

2 Drag the block over the line in which you want to insert the block.

3 Release the mouse button to drop the block on the line. Simulink inserts the
block where you dropped it.

4 Creating a Model

4-28

Working with Signals
This section provides an overview of Simulink signals and explains how to
specify, display, and check the validity of signal connections.

About Signals
Signals are the streams of values that appear at the outputs of Simulink blocks
when a model is simulated. It is useful to think of signals as traveling along the
lines that connect the blocks in a model diagram. But note that the lines in a
Simulink model represent logical, not physical, connections among blocks.
Thus, the analogy between Simulink signals and electrical signals is not
complete. Electrical signals, for example, take time to cross a wire. The output
of a Simulink block, by contrast, appears instantaneously at the input of the
block to which it is connected.

Signal Dimensions
Simulink blocks can output one- or two-dimensional signals. A
one-dimensional (1-D) signal consists of a stream of one-dimensional arrays
output at a frequency of one array (vector) per simulation time step. A
two-dimensional (2-D) signal consists of a stream of two-dimensional arrays
emitted at a frequency of one 2-D array (matrix per block sample time. The
Simulink user interface and documentation generally refers to 1-D signals as
vectors and 2-D signals as matrices. A one-element array is frequently referred
to as a scalar. A row vector is a 2-D array that has one row. A column vector is
a 2-D array that has one column.

Simulink blocks vary in the dimensionality of the signals they can accept or
output during simulation. Some blocks can accept or output signals of any
dimensions. Some can accept or output only scalar or vector signals. To
determine the signal dimensionality of a particular block, see the block’s
description in Chapter 9, “Block Reference.” See “Determining Output Signal
Dimensions” on page 4-32 for information on what determines the dimensions
of output signals for blocks that can output nonscalar signals.

Signal Data Types
Data type refers to the format used to represent signal values internally. The
data type of Simulink signals is double by default. However, you can create
signals of other data types. Simulink supports the same range of data types as
MATLAB. See “Working with Data Types” on page 4-44 for more information.

Working with Signals

4-29

Complex Signals
The values of Simulink signals can be complex numbers. A signal whose values
are complex numbers is called a complex signal. See “Working with Complex
Signals” on page 4-36 for information on creating and manipulating complex
signals.

Virtual Signals
A virtual signal is a signal that represents another signal graphically.Virtual
blocks, such as a Mux or Subsystem block (see “Virtual Blocks” on page 4-9),
generate virtual signals. Like virtual blocks, virtual signals allow you to
simplify your model graphically. For example, using a Mux block, you can
reduce a large number of nonvirtual signals (i.e., signals originating from
nonvirtual blocks) to a single virtual signal, thereby making your model easier
to understand. You can think of a virtual signal as a tie-wrap that bundles
together a number of signals.

Virtual signals are purely graphical entities. They have no mathematical or
physical significance. Simulink ignores them when simulating a model.

Whenever you run or update a model, Simulink determines the nonvirtual
signal(s) represented by the model’s virtual signal(s), using a procedure known
as signal propagation. When running the model, Simulink uses the
corresponding nonvirtual signal(s), determined via signal propagation, to drive
the blocks to which the virtual signals are connected. For example, in the
following model,

signal s4 appears to drive Gain block G1. However, s4 is a virtual signal. The
actual signal driving Gain block G1 is signal s1. Simulink determines this
automatically whenever you update or simulate the model.

4 Creating a Model

4-30

Simulink’s Show Propagated Signals option (see “Signal Properties Dialog
Box” on page 4-39) displays the nonvirtual signals represented by virtual
signals in the labels of the virtual signals.

Note Virtual signals can represent virtual as well as nonvirtual signals. For
example, you can use a Mux block to combine multiple virtual and nonvirtual
signals into a single virtual signal. If during signal propagation, Simulink
determines that a component of a virtual signal is itself virtual, Simulink
determine its nonvirtual component(s), using signal propagation. This process
continues until Simulink has determined all nonvirtual components of a
virtual signal.

Signal Buses
You can use Mux and Demux blocks operating in bus selection mode (see
“Demux” on page 9-53 for information on bus selection mode) to create signal
buses.

Signal Bus

Working with Signals

4-31

A signal bus is a virtual signal that represents a set of signals. It is analogous
to a bundle of wires held together by tie wraps. Simulink uses a special line
style to display signal buses. If you select Signal Dimensions from Simulink’s
Format menu, Simulink displays the number of signal components carried by
the bus.

Signal Glossary
The following table summarizes the terminology used to describe signals in the
Simulink user interface and documentation.

Term Meaning

Complex signal Signal whose values are complex numbers

Data type Format used to represent signal values internally.
See “Working with Data Types” on page 4–44 for
more information.

Matrix Two-dimensional signal array

Real signal Signal whose values are real (as opposed to
complex) numbers

Scalar One-element array, i.e., a one-element, 1-D or 2-D
array

Signal bus Signal created by a Mux or Demux block.

Signal propagation Process used by Simulink to determine attributes of
signals and blocks, such as data types, labels,
sample time, dimensionality, and so on, that are
determined by connectivity

Size Number of elements that a signal contains. The size
of a matrix (2-D) signal is generally expressed as
M-by-N where M is the number of columns and N is
the number of rows making up the signal.

Vector One-dimensional signal array

4 Creating a Model

4-32

Determining Output Signal Dimensions
If a block can emit nonscalar signals, the dimensions of the signals that the
block outputs depends on the block’s parameters, if the block is a source block;
otherwise, the output dimensions depend on the dimensions of the block’s input
and parameters.

Determining the Output Dimensions of Source Blocks
A source block is a block that has no inputs. Examples of source blocks include
the Constant block and the Sine Wave block. (See Table 9-1, Sources Library
Blocks for a complete listing of Simulink source blocks.) The output dimensions
of a source block are the same as that of its output value parameter(s) if the
block’s Interpret Vector Parameters as 1-D parameter is off (i.e., not checked
in the block’s parameter dialog box). If the Interpret Vector Parameters as
1-D parameter is on, the output dimensions equal the output value parameter
dimensions except if the parameter dimensions are N-by-1 or 1-by-N. In the
latter case, the block outputs a vector signal of width N.

As an example of how a source block’s output value parameter(s) and Interpret
Vector Parameters as 1-D parameter determine the dimensionality of its
output, consider the Constant block. This block outputs a constant signal equal
to its Constant value parameter. The following table illustrates how the
dimensionality of the Constant value parameter and the setting of the
Interpret Vector Parameters as 1-D parameter determine the dimensionality
of the block’s output.

Width Size of a vector signal

Virtual signal Signal that represents another signal or set of
signals.

Constant Value Interpret vector
parameters as 1-D

Output

2-D scalar off 2-D scalar

2-D scalar on 1-D scalar

Term Meaning

Working with Signals

4-33

Simulink source blocks allow you to specify the dimensions of the signals that
they output. You can therefore use them to introduce signals of various
dimensions into your model.

Determining the Output Dimensions of Non-Source Blocks
If a block has inputs, the dimensions of its output are, after scalar expansion,
the same as those of its inputs. (All inputs must have the same dimensions as
discussed in the next section.)

Signal and Parameter Dimension Rules
When creating a Simulink model, you must observe the following rules
regarding signal and parameter dimensions.

Input Signal Dimension Rule
In general, all inputs to a block must have the same dimensions.

However, a block may have a mix of scalar and nonscalar inputs as long as all
the nonscalar inputs have the same dimensions. Simulink expands the scalar
inputs to have the same dimensions as the nonscalar inputs (see “Scalar
Expansion of Inputs” on page 4-35), thus preserving the general rule.

Block Parameter Dimension Rule
In general, a block’s parameters must have the same dimensions as the
corresponding inputs.

1-by-N matrix off 1-by-N matrix

1-by-N matrix on N-element vector

N-by-1 matrix off N-by-1 matrix

N-by-1 matrix on N-element vector

M-by-N matrix off M-by-N matrix

M-by-N matrix on M-by-N matrix

Constant Value Interpret vector
parameters as 1-D

Output

4 Creating a Model

4-34

Two seeming exceptions exist to this general rule:

• A block may have scalar parameters corresponding to nonscalar inputs. In
this case, Simulink expands the scalar parameter to have the same
dimensions as the input (see “Scalar Expansion of Parameters” on
page 4-35), thus preserving the general rule.

• If an input is a vector, the corresponding parameter may be either an Nx1 or
a 1xN matrix. In this case, Simulink applies the N matrix elements to the
corresponding elements of the input vector. This exception allows use of
MATLAB row- or column vectors, which are actually 1xN or Nx1 matrices,
respectively, to specify parameters that apply to vector inputs.

Vector or Matrix Input Conversion Rules
Simulink converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

• If a vector signal is connected to an input that requires a matrix, Simulink
converts the vector to a one-row or one-column matrix.

• If a one-column or one-row matrix is connected to an input that requires a
vector, Simulink converts the matrix to a vector.

• If the inputs to a block consist of a mixture of vectors and matrices and the
matrix inputs all have one column or one row, Simulink converts the vectors
to matrices having one column or one row, respectively.

Note You can configure Simulink to display a warning or error message if a
vector or matrix conversion occurs during a simulation. See “Configuration
options” on page 5–27 for more information.

Scalar Expansion of Inputs and Parameters
Scalar expansion is the conversion of a scalar value into a nonscalar array of
the same dimensions. Many Simulink blocks support scalar expansion of
inputs and parameters. Block descriptions in Chapter 9, “Block Reference”
indicate whether Simulink applies scalar expansion to a block’s inputs and
parameters.

Working with Signals

4-35

Scalar Expansion of Inputs
Scalar expansion of inputs refers to the expansion of scalar inputs to match the
dimensions of other nonscalar inputs or nonscalar parameters.When the input
to a block is a mix of scalar and nonscalar signals, Simulink expands the scalar
inputs into nonscalar signals having the same dimensions as the other
nonscalar inputs. The elements of an expanded signal equal the value of the
scalar from which the signal was expanded.

The following model illustrates scalar expansion of inputs. This model adds
scalar and vector inputs. The input from block Constant1 is scalar expanded to
match the size of the vector input from the Constant block. The input is
expanded to the vector [3 3 3].

When a block’s output is a function of a parameter and the parameter is
nonscalar, Simulink expands a scalar input to match the dimensions of the
parameter. For example, Simulink expands a scalar input to a Gain block to
match the dimensions of a nonscalar gain parameter.

Scalar Expansion of Parameters
If a block has a nonscalar input and a corresponding parameter is a scalar,
Simulink expands the scalar parameter to have the same number of elements
as the input. Each element of the expanded parameter equals the value of the
original scalar. Simulink then applies each element of the expanded parameter
to the corresponding input element.

This example shows that a scalar parameter (the Gain) is expanded to a vector
of identically valued elements to match the size of the block input, a
three-element vector.

4 Creating a Model

4-36

Working with Complex Signals
By default, the values of Simulink signals are real numbers. However, models
can create and manipulates signals that have complex numbers as values.

You can introduce a complex-valued signal into a model in any of the following
ways:

• Load complex-valued signal data from the MATLAB workspace into the
model via a root-level inport.

• Create a Constant block in your model and set its value to a complex number.

• Create real signals corresponding to the real and imaginary parts of a
complex signal and then combine the parts into a complex signal, using
Real-Imag to Complex conversion block.

You can manipulate complex signals via blocks that accept them. Most
Simulink blocks accept complex signals as input. If you are not sure whether a
block accepts complex signals, refer to the documentation for the block in
Chapter 9, “Block Reference.”

Checking Signal Connections
Many Simulink blocks have limitations on the types of signals they can accept.
Before simulating a model, Simulink checks all of blocks to ensure that they
can accommodate the types of signals output by the ports to which they are
connected. If any incompatibilities exist, Simulink reports an error and
terminates the simulation. To detect such errors before running a simulation,
choose Update Diagram from the Simulink Edit menu. Simulink reports any
invalid connections found in the process of updating the diagram.

Working with Signals

4-37

Setting Signal Display Options
Simulink offers the following options for displaying signal characteristics on a
block diagram.

You can set these options via either Simulink’s Format menu or its model
context (right-click) menu.

Signal Names
You can assign names to signals by

• editing the signal’s label

• editing the Name field of the signal’s property dialog (see “Signal Properties
Dialog Box” on page 4-39)

• setting the name parameter of the port or line that represents the signal,
e.g.,
p = get_param(gcb, 'PortHandles')
l = get_param(p.Inport, 'Line')
set_param(l, 'Name', 's9')

Signal Labels
A signal’s label displays the signal’s name. A virtual signal’s label optionally
displays the signals it represents in angle brackets. You can edit a signal’s
label, thereby changing the signal’s name.

Signal Display Option Description

Wide nonscalar lines Draws lines that carry vector or matrix
signal wider than lines that carry scalar
signals.

Signal dimensions Displays the dimensions of a signal next to
the line that carries it.

Port data types Displays the data type and signal type of a
signal next to the output port that emits the
signal.

4 Creating a Model

4-38

To create a signal label (and thereby name the signal), double-click on the line
that represents the signal. The text cursor appears. Type the name and click
anywhere outside the label to exit label editing mode.

Note When you create a signal label, take care to double-click on the line. If
you click in an unoccupied area close to the line, you will create a model
annotation instead.

Labels can appear above or below horizontal lines or line segments, and left or
right of vertical lines or line segments. Labels can appear at either end, at the
center, or in any combination of these locations.

To move a signal label, drag the label to a new location on the line. When you
release the mouse button, the label fixes its position near the line.

To copy a signal label, hold down the Ctrl key while dragging the label to
another location on the line. When you release the mouse button, the label
appears in both the original and the new locations.

To edit an existing signal label, select it:

• To replace the label, click on the label, then double-click or drag the cursor
to select the entire label. Then, enter the new label.

• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete all occurrences of a signal label, delete all the characters in the label.
When you click outside the label, the labels are deleted. To delete a single
occurrence of the label, hold down the Shift key while you select the label, then
press the Delete or Backspace key.

To change the font of a signal label, select the signal, choose Font from the
Format menu, then select a font from the Set Font dialog box.

Displaying Signals Represented by Virtual Signals
To display the signal(s) represented by a virtual signal, click the signal’s label
and enter an angle bracket (<) after the signal’s name. (If the signal has no

Working with Signals

4-39

name, simply enter the angle bracket.) Click anywhere outside the signal’s
label. Simulink exits label editing mode and displays the signals represented
by the virtual signal in brackets in the label.

You can also display the signals represented by a virtual signal by selecting the
Show Propagated Signals option on the signal’s property dialog (see “Signal
Properties Dialog Box” on page 4-39).

Setting Signal Properties
Signals have properties. Use Simulink’s Signal Properties dialog box to view
or set a signal’s properties. To display the dialog box, select the line that carries
the signal and choose Signal Properties from the Simulink Edit menu.

Signal Properties Dialog Box
The Signal Properties dialog box lets you view and edit signal properties.

The dialog box includes the following controls.

Signal name
Name of signal.

4 Creating a Model

4-40

Show propagated signals

Note This option appears only for signals that originate from a virtual block.

Show propagated signal names. You can select one of the following options:

Description
Enter a description of the signal in this field.

Document link
Enter a MATLAB expression in the field that displays documentation for the
signal. To display the documentation, click “Document Link.” For example,
entering the expression

web(['file:///' which('foo_signal.html')])

in the field causes MATLAB’s default Web browser to display
foo_signal.html when you click the field’s label.

Option Description

off Do not display signals represented by a virtual signal in the
signal’s label.

on Display the virtual and nonvirtual signals represented by a
virtual signal in the signal’s label. For example, suppose
that virtual signal s1 represents a nonvirtual signal s2 and
a virtual signal s3. If this option is selected, s1’s label is
s1<s2, s3>.

all Display all the nonvirtual signals that a virtual signal
represents either directly or indirectly. For example,
suppose that virtual signal s1 represents a nonvirtual
signal s2 and a virtual signal s3 and virtual signal s3
represents nonvirtual signals s4 and s5. If this option is
selected, s1’s label is s1<s2,s4,s5>.

Working with Signals

4-41

Displayable (Test Point)
Check this option to indicate that the signal can be displayed during
simulation.

Note The next two controls set properties used by the Real-Time Workshop
to generate code from the model. You can ignore them if you are not going to
generate code from the model.

RTW storage class
Select the storage class of this signal from the list. See the Real-Time Workshop
User’s Guide for an explanation of the listed options.

RTW storage type qualifier
Select the storage type of this signal from the list. See the Real-Time Workshop
User’s Guide for more information.

4 Creating a Model

4-42

Annotations
Annotations provide textual information about a model. You can add an
annotation to any unoccupied area of your block diagram.

To create a model annotation, double-click on an unoccupied area of the block
diagram. A small rectangle appears and the cursor changes to an insertion
point. Start typing the annotation contents. Each line is centered within the
rectangle that surrounds the annotation.

To move an annotation, drag it to a new location.

To edit an annotation, select it:

• To replace the annotation on a Microsoft Windows or UNIX system, click on
the annotation, then double-click or drag the cursor to select it. Then, enter
the new annotation.

• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete an annotation, hold down the Shift key while you select the
annotation, then press the Delete or Backspace key.

To change the font of all or part of an annotation, select the text in the
annotation you want to change, then choose Font from the Format menu.
Select a font and size from the dialog box.

To change the text alignment (e.g., left, center, or right) of the annotation,
select the annotation and choose Text Alignment from the model window’s

Annotations

Annotations

4-43

Format or context menu. Then choose one of the alignment options (e.g.,
Center) from the Text Alignment submenu.

4 Creating a Model

4-44

Working with Data Types
The term data type refers to the way in which a computer represents numbers
in memory. A data type determines the amount of storage allocated to a
number, the method used to encode the number’s value as a pattern of binary
digits, and the operations available for manipulating the type. Most computers
provide a choice of data types for representing numbers, each with specific
advantages in the areas of precision, dynamic range, performance, and memory
usage. To enable you to take advantage of data typing to optimize the
performance of MATLAB programs, MATLAB allows you to specify the data
type of MATLAB variables. Simulink builds on this capability by allowing you
to specify the data types of Simulink signals and block parameters.

The ability to specify the data types of a model’s signals and block parameters
is particularly useful in real-time control applications. For example, it allows a
Simulink model to specify the optimal data types to use to represent signals
and block parameters in code generated from a model by automatic
code-generation tools, such as the Real-Time Workshop available from The
MathWorks. By choosing the most appropriate data types for your model’s
signals and parameters, you can dramatically increase the performance and
decrease the size of the code generated from the model.

Simulink performs extensive checking before and during a simulation to
ensure that your model is typesafe, that is, that code generated from the model
will not overflow or underflow and thus produce incorrect results. Simulink
models that use Simulink’s default data type (double) are inherently typesafe.
Thus, if you never plan to generate code from your model or use a nondefault
data type in your models, you can skip the remainder of this section.

On the other hand, if you plan to generate code from your models and use
nondefault data types, read the remainder of this section carefully, especially
the section on data type rules (see “Data Typing Rules” on page 4-47). In that
way, you can avoid introducing data type errors that prevent your model from
running to completion or simulating at all.

Data Types Supported by Simulink
Simulink supports all built-in MATLAB data types. The term built-in data type
refers to data types defined by MATLAB itself as opposed to data types defined
by MATLAB users. Unless otherwise specified, the term data type in the

Working with Data Types

4-45

Simulink documentation refers to built-in data types. The following table lists
MATLAB’s built-in data types.

Besides the built-in types, Simulink defines a boolean (1 or 0) type, instances
of which are represented internally by uint8 values.

Block Support for Data and Numeric Signal Types
All Simulink blocks accept signals of type double by default. Some blocks
prefer boolean input and others support multiple data types on their inputs.
See Chapter 9, “Block Reference” for information on the data types supported
by specific blocks for parameter and input and output values. If the
documentation for a block does not specify a data type, the block inputs or
outputs only data of type double.

Specifying Block Parameter Data Types
When entering block parameters whose data type is user-specifiable, use the
syntax

type(value)

Name Description

double Double-precision floating point

single Single-precision floating point

int8 Signed eight-bit integer

uint8 Unsigned eight-bit integer

int16 Signed 16-bit integer

uint16 Unsigned 16-bit integer

int32 Signed 32-bit integer

uint32 Unsigned 32-bit integer

4 Creating a Model

4-46

to specify the parameter, where type is the name of the data type and value is
the parameter value. The following examples illustrate this syntax.

Creating Signals of a Specific Data Type
You can introduce a signal of a specific data type into a model in any of the
following ways:

• Load signal data of the desired type from the MATLAB workspace into your
model via a root-level inport or a From Workspace block.

• Create a Constant block in your model and set its parameter to the desired
type.

• Use a Data Type Conversion block to convert a signal to the desired data
type.

Displaying Port Data Types
To display the data types of ports in your model, select Port Data Types from
Simulink’s Format menu. Simulink does not update the port data type display
when you change the data type of a diagram element. To refresh the display,
type Ctrl+D.

Data Type Propagation
Whenever you start a simulation, enable display of port data types, or refresh
the port data type display, Simulink performs a processing step called data
type propagation. This step involves determining the types of signals whose
type is not otherwise specified and checking the types of signals and input ports
to ensure that they do not conflict. If type conflicts arise, Simulink displays an
error dialog that specifies the signal and port whose data types conflict.
Simulink also highlights the signal path that creates the type conflict.

single(1.0) Specifies a single-precision value of 1.0

int8(2) Specifies an eight-bit integer of value 2

int32(3+2i) Specifies a complex value whose real and
imaginary parts are 32-bit integers

Working with Data Types

4-47

Note You can insert typecasting (data type conversion) blocks in your model
to resolve type conflicts. See“Typecasting Signals” on page 4-48 for more
information.

Data Typing Rules
Observing the following rules will help you to create models that are typesafe
and therefore execute without error:

• Signal data types generally do not affect parameter data types, and vice
versa.

A significant exception to this rule is the Constant block whose output data
type is determined by the data type of its parameter.

• If the output of a block is a function of an input and a parameter and the
input and parameter differ in type, Simulink converts the parameter to the
input type before computing the output.

See “Typecasting Parameters” on page 4-48 for more information.

• In general, a block outputs the data type that appears at its inputs.

Significant exceptions include constant blocks and data type conversion
blocks whose output data types are determined by block parameters.

• Virtual blocks accept signals of any type on their inputs.

Examples of virtual blocks include Mux and Demux blocks and
unconditionally executed subsystems.

• The elements of a signal array connected to a port of a nonvirtual block must
be of the same data type.

• The signals connected to the input data ports of a nonvirtual block cannot
differ in type.

• Control ports (for example, Enable and Trigger ports) accept any data type.

• Solver blocks accept only double signals.

• Connecting a nondouble signal to a block disables zero-crossing detection for
that block.

4 Creating a Model

4-48

Enabling Strict Boolean Type Checking
By default, Simulink detects but does not signal an error when it detects that
double signals are connected to blocks that prefer boolean input. This ensures
compatibility with models created by earlier versions of Simulink that support
only double data type. You can enable strict boolean type checking by
unchecking the Boolean logic signals option on the Advanced panel of the
Simulation Parameters dialog box (see “The Advanced Pane” on page 5-29).

Typecasting Signals
Simulink signals an error whenever it detects that a signal is connected to a
block that does not accept the signal’s data type. If you want to create such a
connection, you must explicitly typecast (convert) the signal to a type that the
block does accept. You can use Simulink’s Data Type Conversion block to
perform such conversions (see “Data Type Conversion” on page 9-49).

Typecasting Parameters
In general, during simulation, Simulink silently converts parameter data types
to signal data types (if they differ) when computing block outputs that are a
function of an input signal and a parameter. The following exceptions occur to
this rule:

• If the signal data type cannot represent the parameter value, Simulink halts
the simulation and signals an error.

Consider, for example, the following model.

This model uses a Gain block to amplify a constant input signal. Computing
the output of the Gain block requires computing the product of the input
signal and the gain. Such a computation requires that the two values be of
the same data type. However, in this case, the data type of the signal, uint8
(unsigned 8-bit word), differs from the data type of the gain parameter, int32

Working with Data Types

4-49

(signed 32-bit integer). Thus computing the output of the gain block entails
a type conversion.

When making such conversions, Simulink always casts the parameter type
to the signal type. Thus, in this case, Simulink must convert the Gain block’s
gain value to the data type of the input signal. Simulink can make this
conversion only if the input signal’s data type (uint8) can represent the gain.
In this case, Simulink can make the conversion because the gain is 255,
which is within the range of the uint8 data type (0 to 255). Thus, this model
simulates without error. However, if the gain were slightly larger (for
example, 256), Simulink would signal an out-of-range error if you attempted
to simulate the model.

• If the signal data type can represent the parameter value but only at reduced
precision, Simulink optionally issues a warning message and continues the
simulation (see “Configuration options” on page 5-27).

Consider, for example, the following model.

In this example, the signal type accommodates only integer values while the
gain value has a fractional component. Simulating this model causes
Simulink to truncate the gain to the nearest integral value (2) and issue a
loss-of-precision warning. On the other hand, if the gain were 2.0, Simulink
would simulate the model without complaint because in this case the
conversion entails no loss of precision.

Note Conversion of an int32 parameter to a float or double can entail a
loss of precision. The loss can be severe if the magnitude of the parameter
value is large. If an int32 parameter conversion does entail a loss of precision,
Simulink issues a warning message.

4 Creating a Model

4-50

Working with Data Objects
Simulink data objects allow you to specify information about the data used in
a Simulink model (i.e., signals and parameters) and to store the information
with the data itself in the model. Simulink uses properties of data objects to
determine the tunability of parameters and the visibility of signals and to
generate code. You can use data objects to specify information important to
correct simulation of the model, such as minimum and maximum values for
parameters. Further, you can store data objects with the model. Simulink thus
allows you to create self-contained models.

Data Object Classes
A data object is an instance of another object called a data object class. A data
object class defines the properties of its instances and methods for creating and
manipulating the instances. Simulink comes with two built-in data classes,
Simulink.Parameter and Simulink.Signal, that define parameter and signal
data objects, respectively.

Data Object Properties
A property of a data object specifies an attribute of the data item that the object
describes, such as the value or storage type of the data item. Every property
has a name and a value. The value can be an array or a structure, depending
on the property.

Data Object Packages
Simulink organizes classes into groups of classes called packages. Simulink
comes with a single package named Simulink. The Simulink classes,
Simulink.Parameter and Simulink.Signal, belong to the Simulink package.
You can create additional packages and define classes that belong to those
classes.

Qualified Names
When referring to a class on the MATLAB command line or in an M-file
program, you must specify both the name of the class and the name of the
class’s package, using the following “dot” notation

PackageName.ClassName

Working with Data Objects

4-51

The PackageName.ClassName notation is called the qualified name of the class.
For example, the qualified name of the Simulink parameter class is
Simulink.Parameter.

Two packages can have identically named but distinct classes. For example,
package A and B can both have a class named C. You can refer to these classes
unambiguously on the MATLAB command line or in M-file program, using the
qualified class name for each. Packages enable you to avoid naming conflicts
when creating classes. For example, you can create your own Parameter and
Signal classes without fear of conflicting with the similarly named Simulink
classes.

Note Class and package names are case-sensitive. You cannot, for example,
use A.B and a.b interchangeably to refer to the same class.

Creating Data Objects
You can use either the Simulink Data Explorer or MATLAB commands to
create Simulink data objects. See “The Simulink Data Explorer” on page 4-60
for information on using the Data Explorer to create data objects.

Use the following syntax to create a data object at the MATLAB command line
or in a program

h = package.class(arg1, arg2, ...argn);

where h is a MATLAB variable, package is the name of the package to which
the class belongs, class is the name of the class, and arg1, arg2, ... argn,
are optional arguments passed to the object constructor. (Constructors for the
Simulink.Parameter and Simulink.Signal classes do not take arguments.)
For example, to create an instance of Simulink.Parameter class, enter

hGain = Simulink.Parameter;

at the MATLAB command line.

This command creates an instance of Simulink.Parameter and stores its
handle in gain.

4 Creating a Model

4-52

Accessing Data Object Properties
You can use either the Simulink Data Explorer (see “The Simulink Data
Explorer” on page 4-60) or MATLAB commands to get and set a data object’s
properties. See “Creating a Package” on page 4-56 for information on how to
use the Data Explorer to display and set object properties.

To access a data object’s properties at the MATLAB command line or in an
M-file program, use the following notation.

hObject.property

where hObject is the handle to the object and property is the name of the
property. For example, the following code

hGain = Simulink.Parameter;
hGain.Value = 5;

creates a Simulink block parameter object and sets the value of its Value
property to 5. You can use dot notation recursively to access the fields of
structure properties. For example, gain.RTWInfo.StorageClass returns the
StorageClass property of the gain parameter.

Invoking Data Object Methods
Use the syntax

hObject.method

or

method(hObject)

to invoke a data object method, where hObject is the object’s handle. Simulink
defines the following methods for data objects.

• get

Returns the properties of the object as a MATLAB structure
• copy

Creates a copy of the object and returns a handle to the copy.

Working with Data Objects

4-53

Saving and Loading Data Objects
You can use the MATLAB save command to save data objects in a MAT-file and
the MATLAB load command to restore them to the MATLAB workspace in the
same or a later session. Definitions of the classes of saved objects must exist on
the MATLAB path for them to be restored. If the class of a saved object acquires
new properties after the object is saved, Simulink adds the new properties to
the restored version of the object. If the class loses properties after the object is
saved, Simulink restores only the properties that remain.

Using Data Objects in Simulink Models
You can use data objects in Simulink models as parameters and signals. Using
data objects as parameters and signals allows you to specify simulation and
code generation options on an object-by-object basis.

Using Data Objects as Parameters
You can use an instance of Simulink.Parameter class or a descendant class as
a block parameter. To use a parameter object as a block parameter,

1 Create the parameter object at the MATLAB command line or in the
Simulink Data Explorer.

2 Set the value of the object’s Value property to the value you want to specify
for the block parameter.

3 Set the parameter objects storage class and type properties to select
tunability (see “Creating Data Object Classes” on page 4-55) and/or code
generation options (see the Real-Time Workshop documentation for more
information) .

4 Specify the parameter object as the block parameter in the block’s
parameter dialog box or in a set_param command.

See “Creating Persistent Parameter and Signal Objects” on page 4-55 for
information on how to create parameter objects that persist across a session.

Using Parameter Objects to Specify Parameter Tunability
If you want the parameter to be tunable even when the Inline parameters
simulation option is set (see “Model parameter configuration” on page 5-30), set

4 Creating a Model

4-54

the parameter object’s RTWInfo.StorageClass property to any value but
'Auto' (the default).

gain.RTWInfo.StorageClass = 'SimulinkGlobal';

If you set the RTWInfo.StorageClass property to any value other than Auto,
you should not include the parameter in the model’s tunable parameters table
(see “Model Parameter Configuration Dialog Box” on page 5-32).

Note Simulink halts the simulation and displays an error message if it
detects a conflict between the properties of a parameter as specified by a
parameter object and the properties of the parameter as specified in the Model
Parameter Configuration dialog box.

Using Data Objects as Signals
You can use an instance of Simulink.Signal class or a descendant class to
specify signal properties. To use a data object a signal object to specify signal
properties,

1 Create the signal data object in the model workspace.

2 Set the storage class and type properties of the signal object to specify the
visibility of the signal (see “Using Signal Objects to Specify Test Points” on
page 4-54) and code generation options (see the Real-Time Workshop
documentation for information on using signal properties to specify code
generation options).

3 Change the label of any signal that you want to have the same properties as
the signal data object to have the same name as the signal.

See “Creating Persistent Parameter and Signal Objects” on page 4-55 for
information on creating signal objects that persist across Simulink sessions.

Using Signal Objects to Specify Test Points
If you want a signal to be a test point (i.e., always available for display on a
floating scope during simulation), set the RTWInfo.StorageClass property of
the corresponding signal object to any value but auto.

Working with Data Objects

4-55

Note Simulink halts the simulation and displays an error message if it
detects a conflict between the properties of a signal as specified by a signal
object and the properties of the parameter as specified in the Signal
Properties dialog box (see “Signal Properties Dialog Box” on page 4-39).

Creating Persistent Parameter and Signal Objects
To create parameter and signal objects that persist across Simulink sessions,
first write a script that creates the objects or create the objects at the command
line and save them in a MAT-file (see “Saving and Loading Data Objects” on
page 4-53). Then use either the script or a load command as the PreLoadFcn
callback routine for the model that uses the objects. For example, suppose you
save the data objects in a file named data_objects.mat and the model to which
they apply is open and active. Then, entering the following command

set_param(gcs, 'PreLoadFcn', 'load data_objects');

at the MATLAB command line sets load data_objects as the model’s preload
function. This in turn causes the data objects to be loaded into the model
workspace whenever you open the model.

Creating Data Object Classes
Creating a new data object class entails writing M-file programs to construct
and instantiate instances of the class. If you want to create a new package to
contain the class, you must also write an M-file constructor for the new
package.

Note The Simulink demos directory (matlabroot/toolbox/simulink/
simdemos) contains a sample user-defined data object class definition called
UserDefined. You can use this class definitionas a template for creating your
own classes. You can copy and edit this sample class to create your own class.

4 Creating a Model

4-56

Package Directory Structure
You must store the programs that define a class in a directory that has a
prescribed structure.

The directory structure must mee tthe following requirements.

• Each package must have its own directory, called the package directory, on
the MATLAB command path. The package directory must be named
@PackageName where PackageName is the name of the package.

• The code for each class in a package must reside in a separate subdirectory
of the package directory called the class directory. The class directory must
be named @ClassName where ClassName is the name of the new class.

The package directory must contain an M-file program, named schema.m, that
constructs the package. Each class directory must contain a constructor,
named schema.m, and an instantiation function, named ClassName.m, where
ClassName is the name of the class.

Creating a Package
To create a package, first create a directory named @package_name in a
directory on the MATLAB path, where @PackageName is the name of the new

Working with Data Objects

4-57

package. Then create a M-file named schema.m in the package directory. The
schema.m file MATLAB function.

function schema ()
% Package constructor function

schema.package('PackageName’);

where PackageName is the name of the new package.

Creating a Class
To create a data object class,

1 Create a directory named @ClassName, where ClassName is the name of the
new class, in the directory of the package in which you want the new class
to reside.

2 Create a class constructor in the class directory.

3 Create a class instantiation function in the class directory.

Creating a Class Constructor
MATLAB finds the constructor for a class by looking for a function named
schema in the class directory. You must therefore create this function in the
class directory of the class you are creating.The constructor creates the class by
invoking the create_user_class function (see “create_user_class” on
page 4-59) as illustrated in the following example.

function schema()
% Class constructor function.

% Specify name of class to be created:
userClass = 'UserDefined.Parameter';

% Specify name of class from which user class is derived:
deriveFromClass = 'Simulink.Parameter';

% Call generalized constructor function for
% user-defined enumerations used by this class
create_user_enumtype('colors', {'red', 'green', 'blue'});

4 Creating a Model

4-58

% Specify new properties to include in user class:
addProperties = {
 'UserMATLABArray1', 'MATLAB array', []; ...
 'UserMATLABArray2', 'MATLAB array', ''; ...
 'UserDouble', 'double', 0; ...
 'UserInt32', 'int32', 0; ...
 'UserOnOff', 'on/off', 'off'; ...
 'UserString', 'string', ''; ...
 'UserColorEnum', 'colors', 'red'; ...
 };

% Call generalized class creation function (built-in)
create_user_class(userClass, deriveFromClass, addProperties);

Creating a Class Instantiation Function
Simulink uses the class instantiation function to create an instance of a class.
It finds the class instantiation function by looking in the class directory for an
M-file that has the same name as the class. For example, if the name of the
class is Parameter, Simulink looks for an M-file named Parameter.m and
containing a function named Parameter that returns a handle to the function.
A minimal instantiation function takes no arguments and simply invokes the
default instantiation function for the class as illustrated in the following
example.

function h = Parameter()
% Class instantiation function.
% Instantiate class
h = UserDefined.Parameter;

An instantiation function can optionally take a variable number of arguments.
The function can use the optional arguments to initialize the properties of the
object as illustrated in the following example.

function h = Parameter(varargin)
% Class instantiation function.
% Instantiate class
h = UserDefined.Parameter;

% Initialize property values (optional)
if nargin == 1
 % If only one argument provided, treat it as the "Value".

Working with Data Objects

4-59

 h.Value = varargin{1};
end

Creating Data Object Properties
A data object class inherits the properties of its parent class. You can define
additional properties for the class in its constructor. To do so, pass an n-by-3
cell array to the class constructor function (see “create_user_class” on
page 4-59) where n is the number of properties to be specified. Each row of the
array should specify the name (e.g., 'angle'), type (e.g., 'double'), and default
value of the corresponding property.

The Simulink.Signal and Simulink.Parameter classes are likely to acquire
new properties in future releases. Consequently, when deriving classes from
these classes, you should use property names that are not likely to conflict with
names of future properties of these classes. One approach to avoid a naming
conflict is to append your company’s name to names of properties of derived
classes.

Data Object Functions
Simulink provides the following functions for creating and manipulating
Simulink data objects and classes.

create_user_class. Use this function in a class constructor file (schema.m) to
create a new data object class. It takes three arguments

• The qualified name of the new class (e.g., 'UserDefined.Parameter')

• The qualified name of the parent of the new class (e.g.,
'Simulink.Parameter')

• A cell array specifying the properties of the new class (see “Creating Data
Object Properties” on page 4-59)

create_user_enumtype. Use this function in a class constructor to create an
enumerated data type, that is, a data type with a specified set of valid values.
You can then use the enumerated type as the type of one or more of a class’s
properties. The create_user_enumtype function takes two arguments.

• The name of the enumerated type

• A cell array specifying the set of values that are valid for instances of this
type

4 Creating a Model

4-60

For example, the following code creates an enumerated type named colors.

create_user_enumtype('colors', {'red', 'green', 'blue'});

findpackage. Returns a handle to a package object, for example,

h_SimulinkPackage = findpackage('Simulink');

findclass. Returns a handle to a class, for example,

h_SimulinkParameter = findclass(h_SimulinkPackage, 'Parameter');

findproperty. Returns a handle to an object property, for example,

h_ParamValue = findparameter(h_SimulinkParameter, 'Value');

The Simulink Data Explorer
The Simulink Data Explorer allows you to display and set the values of
variables and data objects in the MATLAB workspace. To open the Data
Explorer, choose Data explorer from the Simulink Tools menu or type
slexplr at the MATLAB prompt. The Data Explorer dialog box appears.

The Data Explorer contains two panes. The left pane lists variables defined in
the MATLAB workspace. Use the Filter option control to specify the types of
variables to be displayed (for example, all variables or Simulink data objects
only). The right pane displays the value of the variable selected in the left pane.
To create, rename, or delete an object, click the right mouse button in the left

Working with Data Objects

4-61

pane. To display the fields of a property structure, click the + button next to the
property’s name.

To change a value, click the value. If the value is a string, edit the string. If the
property must be set to one of a predefined set of values, the Data Explorer
displays a drop down list displaying valid values. Select the value you want. If
the value is an array, the Data Explorer displays an array editor

that allows you to set the dimensions of the array and the values of each
element.

4 Creating a Model

4-62

Summary of Mouse and Keyboard Actions
These tables summarize the use of the mouse and keyboard to manipulate
blocks, lines, and signal labels. LMB means press the left mouse button; CMB,
the center mouse button; and RMB, the right mouse button.

The first table lists mouse and keyboard actions that apply to blocks.

Table 4-3: Manipulating Blocks

Task Microsoft Windows UNIX

Select one block LMB LMB

Select multiple
blocks

Shift + LMB Shift + LMB; or CMB
alone

Select next block Tab Tab

Select previous
block

Shift + Tab Shift + Tab

Copy block from
another window

Drag block Drag block

Move block Drag block Drag block

Duplicate block Ctrl + LMB and drag;
or RMB and drag

Ctrl + LMB and drag;
or RMB and drag

Connect blocks LMB LMB

Disconnect block Shift + drag block Shift + drag block; or
CMB and drag

Open selected
subsystem

Enter Return

Go to parent of
selected subsystem

Esc Esc

Summary of Mouse and Keyboard Actions

4-63

The next table lists mouse and keyboard actions that apply to lines.

The next table lists mouse and keyboard actions that apply to signal labels.

Table 4-4: Manipulating Lines

Task Microsoft Windows UNIX

Select one line LMB LMB

Select multiple lines Shift + LMB Shift + LMB; or CMB
alone

Draw branch line Ctrl + drag line; or
RMB and drag line

Ctrl + drag line; or
RMB + drag line

Route lines around
blocks

Shift + draw line
segments

Shift + draw line
segments; or CMB and
draw segments

Move line segment Drag segment Drag segment

Move vertex Drag vertex Drag vertex

Create line
segments

Shift + drag line Shift + drag line; or
CMB + drag line

Table 4-5: Manipulating Signal Labels

Action Microsoft Windows UNIX

Create signal label Double-click on line,
then type label

Double-click on line,
then type label

Copy signal label Ctrl + drag label Ctrl + drag label

Move signal label Drag label Drag label

Edit signal label Click in label, then edit Click in label, then edit

Delete signal label Shift + click on label,
then press Delete

Shift + click on label,
then press Delete

4 Creating a Model

4-64

The next table lists mouse and keyboard actions that apply to annotations.

Table 4-6: Manipulating Annotations

Action Microsoft Windows UNIX

Create annotation Double-click in
diagram, then type text

Double-click in
diagram, then type text

Copy annotation Ctrl + drag label Ctrl + drag label

Move annotation Drag label Drag label

Edit annotation Click in text, then edit Click in text, then edit

Delete annotation Shift + select
annotation, then press
Delete

Shift + select
annotation, then press
Delete

Creating Subsystems

4-65

Creating Subsystems
As your model increases in size and complexity, you can simplify it by grouping
blocks into subsystems. Using subsystems has these advantages:

• It helps reduce the number of blocks displayed in your model window.

• It allows you to keep functionally related blocks together.

• It enables you to establish a hierarchical block diagram, where a Subsystem
block is on one layer and the blocks that make up the subsystem are on
another.

You can create a subsystem in two ways:

• Add a Subsystem block to your model, then open that block and add the
blocks it contains to the subsystem window.

• Add the blocks that make up the subsystem, then group those blocks into a
subsystem.

Creating a Subsystem by Adding the Subsystem
Block
To create a subsystem before adding the blocks it contains, add a Subsystem
block to the model, then add the blocks that make up the subsystem:

1 Copy the Subsystem block from the Signals & Systems library into your
model.

2 Open the Subsystem block by double-clicking on it.

Simulink opens the subsystem in the current or a new model window,
depending on the model window reuse mode that you have selected (see
“Window Reuse” on page 4-67).

3 In the empty Subsystem window, create the subsystem. Use Inport blocks to
represent input from outside the subsystem and Outport blocks to represent
external output. For example, the subsystem below includes a Sum block

4 Creating a Model

4-66

and Inport and Outport blocks to represent input to and output from the
subsystem:

Creating a Subsystem by Grouping Existing Blocks
If your model already contains the blocks you want to convert to a subsystem,
you can create the subsystem by grouping those blocks:

1 Enclose the blocks and connecting lines that you want to include in the
subsystem within a bounding box. You cannot specify the blocks to be
grouped by selecting them individually or by using the Select All command.
For more information, see “Selecting Multiple Objects Using a Bounding
Box” on page 4–7.

For example, this figure shows a model that represents a counter. The Sum
and Unit Delay blocks are selected within a bounding box.

When you release the mouse button, the two blocks and all the connecting
lines are selected.

2 Choose Create Subsystem from the Edit menu. Simulink replaces the
selected blocks with a Subsystem block. This figure shows the model after
choosing the Create Subsystem command (and resizing the Subsystem
block so the port labels are readable).

Creating Subsystems

4-67

If you open the Subsystem block, Simulink displays the underlying system, as
shown below. Notice that Simulink adds Inport and Outport blocks to
represent input from and output to blocks outside the subsystem.

As with all blocks, you can change the name of the Subsystem block. Also, you
can customize the icon and dialog box for the block using the masking feature,
described in Chapter 7, “Using Masks to Customize Blocks.”

Model Navigation Commands
Subsystems allow you to create a hierarchical model comprising many layers.
You can navigate this hierarchy, using the Simulink Model Browser (see
“Searching and Browsing Models” on page 4-94) and/or the following model
navigation commands.

• Open

The Open command opens the currently selected subsystem. To execute the
command, choose Open from the Simulink Edit menu, type Enter, or
double-click the subsystem.

• Go to Parent

The Go to Parent command displays the parent of the subsystem displayed
in the current window. To execute the command, type Esc or select Go to
Parent from the Simulink View menu.

Window Reuse
You can specify whether Simulink ‘s model navigation commands use the
current window or a new window to display a subsystem or its parent. Reusing
windows avoids cluttering your screen with windows. Creating a window for
each subsystem allows you to view subsystems side-by-side with their parents
or siblings. To specify your preference regarding window reuse, select

4 Creating a Model

4-68

Preferences from the Simulink File menu and then select one of the following
Window reuse type options listed in the Simulink Preferences dialog box.

Labeling Subsystem Ports
Simulink labels ports on a Subsystem block. The labels are the names of Inport
and Outport blocks that connect the subsystem to blocks outside the subsystem
through these ports.

You can hide (or show) the port labels by

• selecting the Subsystem block, then choosing Hide Port Labels (or Show
Port Labels) from the Format menu

• selecting an Inport or Outport block in the subsystem and choosing Hide
Name (or Show Name) from the Format menu

• Checking the Show port labels option in the Subsystem block’s parameter
dialog

Reuse
Type Open Action Go to Parent (Esc) Action

none Subsystem appears in a new
window.

Parent window moves to the
front.

reuse Subsystem replaces the
parent in the current window.

Parent window replaces
subsystem in current window

replace Subsystem appears in a new
window. Parent window
disappears.

Parent window appears.
Subsystem window
disappears.

mixed Subsystem appears in its own
window.

Parent window rises to front.
Subsystem window
disappears.

Creating Subsystems

4-69

This figure shows two models. The subsystem on the left contains two Inport
blocks and one Outport block. The Subsystem block on the right shows the
labeled ports.

Controlling Access to Subsystems
Simulink allows you to control user access to subsystems that reside in
libraries. In particular, you can prevent a user from viewing or modifying the
contents of a library subsystem while still allowing the user to employ the
subsystem in a model.

To control access to a library subsystem, open the subsystem’s parameter
dialog box and set its Access parameter to either ReadOnly or NoReadOrWrite.
The first option allows a user to view the contents of the library subsystem and
make local copies but prevents the user from modifying the original library
copy. The second option prevents the user from viewing the contents of,
creating local copies, or modifying the permissions of the library subsystem.
See Subsystem on page 9-239 for more information on subsystem access
options. Note that both options allow a user to use the library system in models
by creating links (see “Libraries” on page 4-77).

4 Creating a Model

4-70

Using Callback Routines
You can define MATLAB expressions that execute when the block diagram or
a block is acted upon in a particular way. These expressions, called callback
routines, are associated with block or model parameters. For example, the
callback associated with a block’s OpenFcn parameter is executed when the
model user double-clicks on that block’s name or path changes.

To define callback routines and associate them with parameters, use the
set_param command (see set_param on page 10-27).

For example, this command evaluates the variable testvar when the user
double-clicks on the Test block in mymodel:

set_param('mymodel/Test', 'OpenFcn', testvar)

You can examine the clutch system (clutch.mdl) for routines associated with
many model callbacks.

Tracing Callbacks
Callback tracing allows you to determine which callbacks Simulink invokes
and in what order Simulink invokes them when you open or simulate a model.
To enable callback tracking, select the Callback tracing option on the
Simulink Preferences dialog box (see “Setting Simulink Preferences” on
page 2-15) or execute set_param(0, 'CallbackTracing', 'on'). This options
causes Simulink to list callbacks in the MATLAB command window as they are
invoked.

Model Callback Parameters
This table lists the parameters for which you can define model callback
routines, and indicate when those callback routines are executed. Routines

Using Callback Routines

4-71

that are executed before or after actions take place occur immediately before or
after the action.

Block Callback Parameters
This table lists the parameters for which you can define block callback
routines, and indicate when those callback routines are executed. Routines

Parameter When Executed

CloseFcn Before the block diagram is closed.

PostLoadFcn After the model is loaded. Defining a callback
routine for this parameter might be useful for
generating an interface that requires that the
model has already been loaded.

InitFcn Called at start of model simulation.

PostSaveFcn After the model is saved.

PreLoadFcn Before the model is loaded. Defining a callback
routine for this parameter might be useful for
loading variables used by the model.

PreSaveFcn Before the model is saved.

StartFcn Before the simulation starts.

StopFcn After the simulation stops. Output is written to
workspace variables and files before the StopFcn is
executed.

4 Creating a Model

4-72

that are executed before or after actions take place occur immediately before or
after the action.

Parameter When Executed

CloseFcn When the block is closed using the close_system
command.

CopyFcn After a block is copied. The callback is recursive for
Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the CopyFcn
parameter is defined, the routine is also executed).
The routine is also executed if an add_block
command is used to copy the block.

DeleteFcn Before a block is deleted. This callback is recursive
for Subsystem blocks.

DestroyFcn When block has been destroyed.

InitFcn Before the block diagram is compiled and before
block parameters are evaluated.

LoadFcn After the block diagram is loaded. This callback is
recursive for Subsystem blocks.

ModelCloseFcn Before the block diagram is closed. This callback is
recursive for Subsystem blocks.

MoveFcn When block is moved or resized.

NameChangeFcn After a block’s name and/or path changes. When a
Subsystem block’s path is changed, it recursively
calls this function for all blocks it contains after
calling its own NameChangeFcn routine.

Using Callback Routines

4-73

OpenFcn When the block is opened. This parameter is
generally used with Subsystem blocks. The routine
is executed when you double-click on the block or
when an open_system command is called with the
block as an argument. The OpenFcn parameter
overrides the normal behavior associated with
opening a block, which is to display the block’s
dialog box or to open the subsystem.

ParentCloseFcn Before closing a subsystem containing the block or
when the block is made part of a new subsystem
using the new_system command (see new_system
on page 10-22).

PreSaveFcn Before the block diagram is saved. This callback is
recursive for Subsystem blocks.

PostSaveFcn After the block diagram is saved. This callback is
recursive for Subsystem blocks.

StartFcn After the block diagram is compiled and before the
simulation starts. In the case of an S-Function
block, StartFcn executes immediately before the
first execution of the block’s mdlProcessParameters
function. See “Overview of the C MEX S-Function
Routines” in Chapter 3 of Writing S-Functions for
more information.

StopFcn At any termination of the simulation. In the case of
an S-Function block, StopFcn executes after the
block’s mdlTerminate function executes. See
“Overview of the C MEX S-Function Routines” in
Chapter 3 of Writing S-Functions for more
information.

UndoDeleteFcn When a block delete is undone.

Parameter When Executed

4 Creating a Model

4-74

Parameter When Executed

CloseFcn When the block is closed using the close_system
command.

CopyFcn After a block is copied. The callback is recursive for
Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the CopyFcn
parameter is defined, the routine is also executed).
The routine is also executed if an add_block
command is used to copy the block.

DeleteFcn Before a block is deleted. This callback is recursive
for Subsystem blocks.

DestroyFcn When block has been destroyed.

InitFcn Before the block diagram is compiled and before
block parameters are evaluated.

LoadFcn After the block diagram is loaded. This callback is
recursive for Subsystem blocks.

ModelCloseFcn Before the block diagram is closed. This callback is
recursive for Subsystem blocks.

MoveFcn When block is moved or resized.

NameChangeFcn After a block’s name and/or path changes. When a
Subsystem block’s path is changed, it recursively
calls this function for all blocks it contains after
calling its own NameChangeFcn routine.

Using Callback Routines

4-75

OpenFcn When the block is opened. This parameter is
generally used with Subsystem blocks. The routine
is executed when you double-click on the block or
when an open_system command is called with the
block as an argument. The OpenFcn parameter
overrides the normal behavior associated with
opening a block, which is to display the block’s
dialog box or to open the subsystem.

ParentCloseFcn Before closing a subsystem containing the block or
when the block is made part of a new subsystem
using the new_system command (see new_system
on page 10-22).

PreSaveFcn Before the block diagram is saved. This callback is
recursive for Subsystem blocks.

PostSaveFcn After the block diagram is saved. This callback is
recursive for Subsystem blocks.

StartFcn After the block diagram is compiled and before the
simulation starts. In the case of an S-Function
block, StartFcn executes immediately before the
first execution of the block’s mdlProcessParameters
function. See “Overview of the C MEX S-Function
Routines” in Chapter 3 of Writing S-Functions for
more information.

StopFcn At any termination of the simulation. In the case of
an S-Function block, StopFcn executes after the
block’s mdlTerminate function executes. See
“Overview of the C MEX S-Function Routines” in
Chapter 3 of Writing S-Functions for more
information.

UndoDeleteFcn When a block delete is undone.

Parameter When Executed

4 Creating a Model

4-76

Tips for Building Models
Here are some model-building hints you might find useful:

• Memory issues

In general, the more memory, the better Simulink performs.

• Using hierarchy

More complex models often benefit from adding the hierarchy of subsystems
to the model. Grouping blocks simplifies the top level of the model and can
make it easier to read and understand the model. For more information, see
“Creating Subsystems” on page 4–65. The Model Browser (see “The Model
Browser” on page 4-99) provides useful information about complex models.

• Cleaning up models

Well organized and documented models are easier to read and understand.
Signal labels and model annotations can help describe what is happening in
a model. For more information, see “Signal Names” on page 4–37 and
“Drawing a Line Between Blocks” on page 4–22.

• Modeling strategies

If several of your models tend to use the same blocks, you might find it easier
to save these blocks in a model. Then, when you build new models, just open
this model and copy the commonly used blocks from it. You can create a block
library by placing a collection of blocks into a system and saving the system.
You can then access the system by typing its name in the MATLAB command
window.

Generally, when building a model, design it first on paper, then build it using
the computer. Then, when you start putting the blocks together into a model,
add the blocks to the model window before adding the lines that connect
them. This way, you can reduce how often you need to open block libraries.

Libraries

4-77

Libraries
Libraries enable users to copy blocks into their models from external libraries
and automatically update the copied blocks when the source blocks change.
Using libraries allows users who develop their own block libraries, or who use
those provided by others (such as blocksets), to ensure that their models
automatically include the most recent versions of these blocks.

Terminology
It is important to understand the terminology used with this feature.

Library – A collection of library blocks. A library must be explicitly created
using New Library from the File menu.

Library block – A block in a library.

Reference block – A copy of a library block.

Link – The connection between the reference block and its library block that
allows Simulink to update the reference block when the library block changes.

Copy – The operation that creates a reference block from either a library block
or another reference block.

This figure illustrates this terminology.

Creating a Library
To create a library, select Library from the New submenu of the File menu.
Simulink displays a new window, labeled Library: untitled. If an untitled
window already appears, a sequence number is appended.

You can create a library from the command line using this command.

new_system('newlib', 'Library')

link

copy
library
block

reference
block

Library (Source) Model or Library (Destination)

4 Creating a Model

4-78

This command creates a new library named 'newlib'. To display the library,
use the open_system command. These commands are described in Chapter 10,
“Model Construction Commands.”.

The library must be named (saved) before you can copy blocks from it.

Modifying a Library
When you open a library, it is automatically locked and you cannot modify its
contents. To unlock the library, select Unlock Library from the Edit menu.
Closing the library window locks the library.

Creating a Library Link
To create a link to a library block in a model, copy the block’s icon from the
library to the model (see “Copying and Moving Blocks from One Window to
Another” on page 4-10) or by dragging the block from the Library Browser (see
“Browsing Block Libraries” on page 4-83) into the model window.

When you copy a library block into a model or another library, Simulink creates
a link to the library block. The reference block is a copy of the library block. You
can change the values of the reference block’s parameters but you cannot mask
the block or, if it is masked, edit the mask. Also, you cannot set callback
parameters for a reference block. If the link is to a subsystem, you can modify
the contents of the reference subsystem (see “Modifying a Linked Subsystem”
on page 4-79).

The library and reference blocks are linked by name; that is, the reference block
is linked to the specific block and library whose names are in effect at the time
the copy is made.

If Simulink is unable to find either the library block or the source library on
your MATLAB path when it attempts to update the reference block, the link
becomes unresolved. Simulink issues an error message and displays these
blocks using red dashed lines. The error message is

Failed to find block "source-block-name"
in library "source-library-name"
referenced by block
"reference-block-path".

Libraries

4-79

The unresolved reference block is displayed like this (colored red).

To fix a bad link, you must either:

• Delete the unlinked reference block and copy the library block back into your
model.

• Add the directory that contains the required library to the MATLAB path
and select Update Diagram from the Edit menu.

• Double-click on the reference block. On the dialog box that appears, correct
the pathname and click on Apply or Close.

Disabling Library Links
Simulink allows you to disable linked blocks in a model. Simulink ignores
disabled links when simulating a model. To disable a link, select the link,
choose Link options from the model window’s Edit or context menu, then
choose Disable link. To restore a disabled link, choose Restore link from the
Link Options menu.

Modifying a Linked Subsystem
Simulink allows you to modify subsystems that are library links. If your
modifications alter the structure of the subsystem, you must disable the link
from the reference block to the library block . If you attempt to modify the
structure of a subsystem link, Simulink prompts you to disable the link.
Examples of structural modifications include adding or deleting a block or line
or change the number of ports on a block. Examples of nonstructural changes
include changes to parameter values that do not affect the structure of the
subsystem.

Propagating Link Modifications
Simulink allows a model to have active links with nonstructural but not
structural changes. If you restore a link that has structural changes, Simulink
prompts you to either propagate or discard the changes. If you choose to
propogate the changes, Simulink updates the library block with the changes

4 Creating a Model

4-80

made in the reference block. If you choose to discard the changes, Simulink
replaces the modified reference block with the original library block. In either
case, the end result is that the reference block is an exact copy of the library
block.

If you restore a link with nonstructural changes, Simulink enables the link
without prompting you to propagate or discard the changes. If you want to
propagate or discard the changes at a later time, select the reference block,
choose Link options from the model window’s Edit or context menu, then
choose Propagate/Discard changes. If you want to view the nonstructural
parameter differences between a reference block and its corresponding library
block, choose View changes from the Link options menu.

Updating a Linked Block
Simulink updates out-of-date reference blocks in a model or library at these
times:

• When the model or library is loaded

• When you select Update Diagram from the Edit menu or run the simulation

• When you query the LinkStatus parameter of a block using the get_param
command (see “Library Link Status” on page 4-81)

• When you use the find_system command

Breaking a Link to a Library Block
You can break the link between a reference block and its library block to cause
the reference block to become a simple copy of the library block, unlinked to the
library block. Changes to the library block no longer affect the block. Breaking
links to library blocks enables you to transport a model as a stand-alone model,
without the libraries.

To break the link between a reference block and its library block, first disable
the block. Then select the block and choose Break Library Link from the Link
options menu. You can also break the link between a reference block and its
library block from the command line by changing the value of the LinkStatus
parameter to 'none' using this command.

set_param('refblock', 'LinkStatus', 'none')

Libraries

4-81

You can save a system and break all links between reference blocks and library
blocks using this command.

save_system('sys', 'newname', 'BreakLinks')

Finding the Library Block for a Reference Block
To find the source library and block linked to a reference block, select the
reference block, then choose Go To Library Link from the Link options
submenu of the model window’s Edit or context menu. If the library is open,
Simulink selects the library block (displaying selection handles on the block)
and makes the source library the active window. If the library is not open,
Simulink opens it and selects the library block.

Library Link Status
All blocks have a LinkStatus parameter that indicates whether the block is a
reference block. The parameter can have these values.

Status Description

none Block is not a reference block.

resolved Link is resolved.

unresolved Link is unresolved.

implicit Block is within a linked block.

inactive Link is disabled.

4 Creating a Model

4-82

Displaying Library Links
Simulink optionally displays an arrow in the bottom left corner of each icon
that represents a library link in a model.

This arrow allows you to tell at a glance whether an icon represents a link to a
library block or a local instance of a block. To enable display of library links,
select Library Link Display from the model window’s Format menu and then
select either User (displays only links to user libraries) or All (displays all
links).

The color of the link arrow indicates the status of the link.

Getting Information About Library Blocks
Use the libinfo command to get information about reference blocks in a
system. The format for the command is

libdata = libinfo(sys)

where sys is the name of the system. The command returns a structure of size
n-by-1, where n is the number of library blocks in sys. Each element of the
structure has four fields:

• Block, the block path

Color Status

Black Active link

Grey Inactive link

Red Active and modified

library link

Libraries

4-83

• Library, the library name

• ReferenceBlock, the reference block path

• LinkStatus, the link status, either 'resolved' or 'unresolved'

Browsing Block Libraries
The Library Browser lets you quickly locate and copy library blocks into a
model. To display the Library Browser, click the Library Browser button in
the toolbar of the MATLAB desktop or Simulink model window or type
simulink at the MATLAB command line.

Note The Library Browser is available only on Microsoft Windows platforms.

The Library Browser contains three panes.

Tree Pane Icon Pane

Documentation Pane

4 Creating a Model

4-84

The tree pane displays all the block libraries installed on your system. The icon
pane displays the icons of the blocks that reside in the library currently seleted
in the tree pane. The documentation pane displays documentation for the block
selected in the icon pane.

You can locate blocks either by navigating the Library Browser’s library tree
or by using the Library Browser’s search facility.

Navigating the Library Tree
The library tree displays a list of all the block libraries installed on the system.
You can view or hide the contents of libraries by expanding or collapsing the
tree using the mouse or keyboard. To expand/collapse the tree, click the +/-
buttons next to library entries or select an entry and press the +/- or right/left
arrow key on your keyboard. Use the up/down arrow keys to move up or down
the tree.

Searching Libraries
To find a particular block, enter the block’s name in the edit field next to the
Library Browser’s Find button and then click the Find button.

Opening a Library
To open a library, right-click the library’s entry in the browser. Simulink
displays an Open Library button. Select the Open Library button to open the
library.

Creating and Opening Models
To create a model, select the New button on the Library Browser’s toolbar. To
open an existing model, select the Open button on the toolbar.

Copying Blocks
To copy a block from the Library Browser into a model, select the block in the
browser, drag the selected block into the model window, and drop it where you
want to create the copy.

Displaying Help on a Block
To display help on a block, right-click the block in the Library Browser and
select the button that subsequently pops up.

Libraries

4-85

Pinning the Library Browser
To keep the Library Browser above all other windows on your desktop, select
the PushPin button on the browser’s toolbar.

Adding Libraries to the Library Browser
If you want a library that you have created to appear in the Library Browser,
you must create an slblocks.m file that describes the library in the directory
that contains it. The easiest way to create an slblocks.m file is to use an
existing slblocks.m file as a template. You can find all existing slblocks.m
files on your system by typing

which('slblocks.m', '-all')

at the MATLAB command prompt. Copy any of the displayed files to your
library’s directory. Then, open the copy, edit it, following the instructions
included in the file, and save the result. Finally, add your library’s directory to
the MATLAB path, if necessary. The next time you open the Library Browser,
your library should appear among the libraries displayed in the browser.

4 Creating a Model

4-86

Modeling Equations
One of the most confusing issues for new Simulink users is how to model
equations. Here are some examples that may improve your understanding of
how to model equations.

Converting Celsius to Fahrenheit
To model the equation that converts Celsius temperature to Fahrenheit

TF = 9/5(TC) + 32

First, consider the blocks needed to build the model:

• A Ramp block to input the temperature signal, from the Sources library

• A Constant block to define a constant of 32, also from the Sources library

• A Gain block to multiply the input signal by 9/5, from the Math library

• A Sum block to add the two quantities, also from the Math library

• A Scope block to display the output, from the Sinks library

Next, gather the blocks into your model window.

Assign parameter values to the Gain and Constant blocks by opening
(double-clicking on) each block and entering the appropriate value. Then, click
on the Close button to apply the value and close the dialog box.

Now, connect the blocks.

Modeling Equations

4-87

The Ramp block inputs Celsius temperature. Open that block and change the
Initial output parameter to 0. The Gain block multiplies that temperature by
the constant 9/5. The Sum block adds the value 32 to the result and outputs the
Fahrenheit temperature.

Open the Scope block to view the output. Now, choose Start from the
Simulation menu to run the simulation. The simulation will run for 10
seconds.

Modeling a Simple Continuous System
To model the differential equation,

where u(t) is a square wave with an amplitude of 1 and a frequency of 1
rad/sec. The Integrator block integrates its input, x′, to produce x. Other blocks
needed in this model include a Gain block and a Sum block. To generate a
square wave, use a Signal Generator block and select the Square Wave form
but change the default units to radians/sec. Again, view the output using a
Scope block. Gather the blocks and define the gain.

In this model, to reverse the direction of the Gain block, select the block, then
use the Flip Block command from the Format menu. Also, to create the branch
line from the output of the Integrator block to the Gain block, hold down the
Ctrl key while drawing the line. For more information, see “Drawing a Branch
Line” on page 4–23. Now you can connect all the blocks.

An important concept in this model is the loop that includes the Sum block, the
Integrator block, and the Gain block. In this equation, x is the output of the
Integrator block. It is also the input to the blocks that compute x′, on which it
is based. This relationship is implemented using a loop.

x′ t() 2x t()– u t()+=

4 Creating a Model

4-88

The Scope displays x at each time step. For a simulation lasting 10 seconds, the
output looks like this.

The equation you modeled in this example can also be expressed as a transfer
function. The model uses the Transfer Fcn block, which accepts u as input and
outputs x. So, the block implements x/u. If you substitute sx for x′ in the above
equation, you get

Solving for x gives

or,

The Transfer Fcn block uses parameters to specify the numerator and
denominator coefficients. In this case, the numerator is 1 and the denominator
is s+2. Specify both terms as vectors of coefficients of successively decreasing
powers of s. In this case the numerator is [1] (or just 1) and the denominator
is [1 2]. The model now becomes quite simple.

The results of this simulation are identical to those of the previous model.

sx 2x– u+=

x u s 2+()⁄=

x u⁄ 1 s 2+()⁄=

Saving a Model

4-89

Saving a Model
You can save a model by choosing either the Save or Save As command from
the File menu. Simulink saves the model by generating a specially formatted
file called the model file (with the .mdl extension) that contains the block
diagram and block properties. The format of the model file is described in
Appendix B, “Model File Format.”

If you are saving a model for the first time, use the Save command to provide
a name and location to the model file. Model file names must start with a letter
and can contain no more than 31 letters, numbers, and underscores.

If you are saving a model whose model file was previously saved, use the Save
command to replace the file’s contents or the Save As command to save the
model with a new name or location.

Simulink follows this procedure while saving a model:

1 If the mdl file for the model already exists, it is renamed as a temporary file.

2 Simulink executes all block PreSaveFcn callback routines, then executes the
block diagram’s PreSaveFcn callback routine.

3 Simulink writes the model file to a new file using the same name and an
extension of mdl.

4 Simulink executes all block PostSaveFcn callback routines, then executes
the block diagram’s PostSaveFcn callback routine.

5 Simulink deletes the temporary file.

If an error occurs during this process, Simulink renames the temporary file to
the name of the original model file, writes the current version of the model to a
file with an .err extension, and issues an error message. Simulink performs
steps 2 through 4 even if an error occurs in an earlier step.

4 Creating a Model

4-90

Printing a Block Diagram
You can print a block diagram by selecting Print from the File menu (on a
Microsoft Windows system) or by using the print command in the MATLAB
command window (on all platforms).

On a Microsoft Windows system, the Print menu item prints the block diagram
in the current window.

Print Dialog Box
When you select the Print menu item, the Print dialog box appears. The Print
dialog box enables you to selectively print systems within your model. Using
the dialog box, you can:

• Print the current system only

• Print the current system and all systems above it in the model hierarchy

• Print the current system and all systems below it in the model hierarchy,
with the option of looking into the contents of masked and library blocks

• Print all systems in the model, with the option of looking into the contents of
masked and library blocks

• Print an overlay frame on each diagram

The portion of the Print dialog box that supports selective printing is similar
on supported platforms. This figure shows how it looks on a Microsoft Windows
system. In this figure, only the current system is to be printed.

Printing a Block Diagram

4-91

When you select either the Current system and below or All systems option,
two check boxes become enabled. In this figure, All systems is selected.

Selecting the Look Under Mask Dialog check box prints the contents of
masked subsystems when encountered at or below the level of the current
block. When printing all systems, the top-level system is considered the current
block so Simulink looks under any masked blocks encountered.

Selecting the Expand Unique Library Links check box prints the contents of
library blocks when those blocks are systems. Only one copy is printed
regardless of how many copies of the block are contained in the model. For more
information about libraries, see “Libraries” on page 4-77.

The print log lists the blocks and systems printed. To print the print log, select
the Include Print Log check box.

Selecting the Frame check box prints a title block frame on each diagram.
Enter the path to the title block frame in the adjacent edit box. You can create
a customized title block frame, using MATLAB’s frame editor. See frameedit
in the online MATLAB reference for information on using the frame editor to
create title block frames.

Print Command
The format of the print command is

print –ssys –device filename

4 Creating a Model

4-92

sys is the name of the system to be printed. The system name must be preceded
by the s switch identifier and is the only required argument. sys must be open
or must have been open during the current session. If the system name
contains spaces or takes more than one line, you need to specify the name as a
string. See the examples below.

device specifies a device type. For a list and description of device types, see
Using MATLAB Graphics.

filename is the PostScript file to which the output is saved. If filename exists,
it is replaced. If filename does not include an extension, an appropriate one is
appended.

For example, this command prints a system named untitled.

print –suntitled

This command prints the contents of a subsystem named Sub1 in the current
system.

print –sSub1

This command prints the contents of a subsystem named Requisite Friction.

print (['–sRequisite Friction'])

The next example prints a system named Friction Model, a subsystem whose
name appears on two lines. The first command assigns the newline character
to a variable; the second prints the system.

cr = sprintf('\n');
print (['–sFriction' cr 'Model'])

To print the currently selected subsystem, enter

print(['-s', gcb])

Specifying Paper Size and Orientation
Simulink lets you specify the type and orientation of the paper used to print a
model diagram. You can do this on all platforms by setting the model’s
PaperType and PaperOrientation properties, respectively (see “Model and
Block Parameters” on page A-1), using the set_param command. You can set
the paper orientation alone, using MATLAB’s orient command. On Windows,

Printing a Block Diagram

4-93

the Print and Printer Setup dialog boxes lets you set the page type and
orientation properties as well.

Positioning and Sizing a Diagram
You can use a model’s PaperPositionMode and PaperPosition parameters to
position and size the model’s diagram on the printed page. The value of the
PaperPosition parameter is a vector of form [left bottom width height].
The first two elements specify the bottom left corner of a rectangular area on
the page, measured from the page’s bottom left corner. The last two elements
specify the width and height of the rectangle. When the model’s
PaperPositionMode is manual, Simulink positions (and scales, if necessary)
the model’s diagram to fit inside the specified print rectangle. For example, the
following commands

vdp
set_param(‘vdp’, ‘PaperType’, ‘usletter’)
set_param('vdp', 'PaperOrientation', 'landscape')
set_param(‘vdp’, ‘PaperPositionMode’, ‘manual’)
set_param(‘vdp’, ‘PaperPosition’, [0.5 0.5 4 4])
print -svdp

print the block diagram of the vdp sample model in the lower left corner of a
U.S. letter-size page in landscape orientation.

If PaperPositionMode is auto, Simulink centers the model diagram on the
printed page, scaling the diagram, if necessary, to fit the page.

4 Creating a Model

4-94

Searching and Browsing Models
Simulink provides you with tools for searching and browsing models. These can
be useful when you need to view or modify an object but do not know where it
is located.

Searching for Objects
To find a block, signal, state, or other object in a model, select Find from
Simulink’s Edit menu. Simulink displays the Find dialog box.

Searching and Browsing Models

4-95

To find an object with the Find dialog box, first use the Filter options (see
“Filter Options” on page 4-96) and Search criteria (see “Search Criteria” on
page 4-96) panels to specify the characteristics of the object you want to find.
Next, if you have more than one system or subystem open, select the system or
subsystem where you want the search to begin from the Start in system list.
Finally, select the Find button. Simulink searches the selected system for
objects that meet the criteria you have specified. Any objects that satisfy the
criteria appear in the results panel at the bottom of the Find dialog box.

You can display an object by double-clicking its entry in the search results list.
Simulink opens the system or subsystem that contains the object (if necessary)
and highlights and selects the object. To sort the results list, click any of the
buttons at the top of each column. For example, to sort the results by object
type, click the Type button. Clicking a button once sorts the list in ascending
order, clicking it twice sorts it in descending order. To display an object’s
parameters or properties, select the object in the list. Then press the right
mouse button and select Parameter or Properties from the resulting context
menu.

4 Creating a Model

4-96

Filter Options
The Filter options panel allows you to specify what kinds of objects to look for
and where to search for them.

Object type list. The object type list lists the types of objects that the Simulink
can find. By unchecking a type, you can exclude it from the Finder’s search.

Look inside masked subsystem. Checking this option causes Simulink to look for
objects inside of masked subsystems.

Look inside linked systems. Checking this option causes Simulink to look for
objects inside subsystems linked to libraries.

Search Criteria
The Search criteria panel allows you to specify the criteria that objects must
meet to satisfy your search request.

Basic. The Basic panel allows you to search for objects whose name and,
optionally, dialog parameters match a specified text string. Enter the search
text in the panel’s Find what field. To display previous search text, select the
dropdown list button next to the Find what field. To reenter text, click it in the
dropdown list. Check Search block dialog parameters if you want dialog
parameters to be included in the search.

Object type list

Searching and Browsing Models

4-97

Advanced. The Advanced panel allows you to specify a set of as many as seven
properties that an object must have to satisfy your search request.

To specify a property, type its name in one of the cells in the Property column
of the Advanced pane or select the property from the cell’s property list. To
display the list, select the down arrow button next to the cell. Next enter the
value of the property in the Value column next to the property name. When you
enter a property name, the Finder checks the check box next to the property
name in the Select column. This indicates that the property is to be included
in the search. If you want to exclude the property, uncheck the check box.

Match case. Check this option if you want Simulink to consider case when
matching search text against the value of an object property.

Other match options. Next to the Match case option is a list that specifies other
match options that you can select.

• Match whole word

Specifies a match if the property value and the search text are identical
except possibly for case.

• Contains word

Specifies a match if a property value includes the search text.

4 Creating a Model

4-98

• Regular expression

Specifies that the search text should be treated as a regular expression when
matched against property values. The following characters have special
meanings when they appear in a regular expression.

Character Meaning

^ Matches start of string.

$ Matches end of string.

. Matches any character.

\ Escape character. Causes the next character to have its
ordinary meaning. For example, the regular expression \..
matches .a and .2 and any other wo-character string that
begins with a period.

* Matches zero or more instances of the preceding character.
For example, ba* matches b, ba, baa, etc.

+ Matches one or more instances of the preceding character.
For example, ba+ matches ba, baa, etc.

[] Indicates a set of characters that can match the current
character. A hyphen can be used to indicate a range of
characters. For example, [a-zA-Z0-9_]+ matches foo_bar1
but not foo$bar. A ^ indicates a match when the current
character is not one of the following characters. For
example, [^0-9] matches any character that is not a digit.

\w Matches a word character (same as [a-z_A-Z0-9]).

\W Matches a nonword character (same as [^a-z_A-Z0-9]).

\d Matches a digit (same as [0-9]).

\D Matches a nondigit (same as [^0-9]).

\s Matches white space (same as [\t\r\n\f]).

Searching and Browsing Models

4-99

The Model Browser
The Model Browser enables you to:

• Navigate a model hierarchically

• Open systems in a model directly

• Determine the blocks contained in a model

• Use your source control system to manage the model. Refer to “Interfacing
with Source Control Systems” in the MATLAB documentation.

The browser operates differently on Microsoft Windows and UNIX platforms.

Using the Model Browser on Windows
To display the Model Browser, select Model Browser from the Simulink View
menu. The model window splits into two panes. The left pane displays the
browser, a tree-structured view of the block diagram displayed in the right
pane.

Note The Browser initially visible preference causes Simulink to open
models by default in the Model Browser. To set this preference, select
Preferences from the Simulink File menu.

\S Matches nonwhite space (same as [^ \t\r\n\f]).

\<WORD\> Matches WORD where WORD is any string of word characters
surrounded by white space.

Character Meaning

4 Creating a Model

4-100

The top entry in the tree view corresponds to your model. A button next to the
model name allows you to expand or contract the tree view. The expanded view
shows the model’s subsystems. A button next to a subsystem indicates that the
subsystem itself contains subsystems. You can use the button to list the
subsystem’s children. To view the block diagram of the model or any subsystem
displayed in the tree view, select the subsystem. You can use either the mouse
or the keyboard to navigate quickly to any subsystem in the tree view.

Navigating with the Mouse. Click any subsystem visible in the tree view to select
it. Click the + button next to any subsystem to list the subsystems that it
contains. Click the button again to contract the entry.

Navigating with the Keyboard. Use the up/down arrows to move the current
selection up or down the tree view. Use the left/right arrow or +/- keys on your
numeric keypad to expand an entry that contains subsystems.

Showing Library Links. The Model Browser can include or omit library links from
the tree view of a model. Use the Simulink Preferences dialog box to specify
whether to display library links by default. To toggle display of library links,

Searching and Browsing Models

4-101

select Show library links from the Model browser options submenu of the
Simulink View menu.

Showing Masked Subsystems. The Model Browser can include or omit masked
subsystems from the tree view. If the tree view includes masked subsystems,
selecting a masked subsystem in the tree view displays its block diagram in the
diagram view. Use the Simulink Preferences dialog box to specify whether to
display masked subsystems by default. To toggle display of masked
subsystems, select Look under masks from the Model browser options
submenu of the Simulink View menu.

Using the Model Browser on UNIX
To open the Model Browser, select Show Browser from the File menu. The
Model Browser window appears, displaying information about the current
model. This figure shows the Model Browser window displaying the contents of
the clutch system.

Contents of the Browser Window
The Model Browser window consists of:

• The systems list. The list on the left contains the current system and the
subsystems it contains, with the current system selected.

Current
system and
subsystems
it contains

Blocks in
the selected
system

4 Creating a Model

4-102

• The blocks list. The list on the right contains the names of blocks in the
selected system. Initially, this window displays blocks in the top-level
system.

• The File menu, which contains the Print, Close Model, and Close Browser
menu items.

• The Options menu, which contains the menu items Open System, Look
Into System, Display Alphabetical/Hierarchical List, Expand All, Look
Under Mask Dialog, and Expand Library Links.

• The Options check boxes and buttons Look Under [M]ask Dialog and
Expand [L]ibrary Links check boxes, and Open System and Look Into
System buttons. By default, Simulink does not display contents of masked
blocks and blocks that are library links. These check boxes enable you to
override the default.

• The block type of the selected block.

• Dialog box buttons Help, Print, and Close.

Interpreting List Contents
Simulink identifies masked blocks, reference blocks, blocks with defined
OpenFcn parameters, and systems that contain subsystems using these
symbols before a block or system name:

• A plus sign (+) before a system name in the systems list indicates that the
system is expandable, which means that it has systems beneath it.
Double-click on the system name to expand the list and display its contents
in the blocks list. When a system is expanded, a minus sign (–) appears
before its name.

• [M] indicates that the block is masked, having either a mask dialog box or a
mask workspace. For more information about masking, see Chapter 7,
“Using Masks to Customize Blocks.”

• [L] indicates that the block is a reference block. For more information, see
“Connecting Blocks” on page 4-22.

• [O] indicates that an open function (OpenFcn) callback is defined for the
block. For more information about block callbacks, see “Using Callback
Routines” on page 4-70.

• [S] indicates that the system is a Stateflow block.

Searching and Browsing Models

4-103

Opening a System
You can open any block or system whose name appears in the blocks list. To
open a system:

1 In the systems list, select by single-clicking on the name of the parent
system that contains the system you want to open. The parent system’s
contents appear in the blocks list.

2 Depending on whether the system is masked, linked to a library block, or
has an open function callback, you open it as follows:

- If the system has no symbol to its left, double-click on its name or select its
name and click on the Open System button.

- If the system has an [M] or [O] before its name, select the system name and
click on the Look Into System button.

Looking into a Masked System or a Linked Block
By default, the Model Browser considers masked systems (identified by [M])
and linked blocks (identified by [L]) as blocks and not subsystems. If you click
on Open System while a masked system or linked block is selected, the Model
Browser displays the system or block’s dialog box (Open System works the
same way as double-clicking on the block in a block diagram). Similarly, if the
block’s OpenFcn callback parameter is defined, clicking on Open System while
that block is selected executes the callback function.

You can direct the Model Browser to look beyond the dialog box or callback
function by selecting the block in the blocks list, then clicking on Look Into
System. The Model Browser displays the underlying system or block.

Displaying List Contents Alphabetically
By default, the systems list indicates the hierarchy of the model. Systems that
contain systems are preceded with a plus sign (+). When those systems are
expanded, the Model Browser displays a minus sign (–) before their names. To
display systems alphabetically, select the Display Alphabetical List menu
item on the Options menu.

4 Creating a Model

4-104

Managing Model Versions
Simulink has features that help you to manage multiple versions of a model.

• As you edit a model, Simulink generates version control information about
the model, including a version number, who created and last updated the
model, and an optional change history. Simulink saves the automatically
generated version control information with the model. See “Version Control
Properties” on page 4-111 for more information.

• The Simulink Model Parameters dialog box lets you edit some of the version
control information stored in the model and select various version control
options (see “Model Properties Dialog” on page 4–106).

• The Simulink Model Info block lets you display version control information,
including information maintained by an external version control system, as
an annotation block in a model diagram (see “Model Info” on page 9-162).

• Simulink version control parameters let you access version control
information from the MATLAB command line or an M-file.

• The Source Control submenu of the Simulink File menu allows you to check
models into and out of your your source control system. See “Interfacing with
Source Control Systems,” in the MATLAB documentation for more
information.

Specifying the Current User
When you create or updates a model, Simulink logs your name in the model for
version control purposes. Simulink assumes that your name is specified by at
least one of the following environment variables: USER, USERNAME, LOGIN, or
LOGNAME. If your system does not define any of these variables, Simulink does
not update the user name in the model.

UNIX systems define the USER environment variable and set its value to the
name you use to log on to your system. Thus, if you are using a UNIX system,
you do not have to do anything to enable Simulink to identify you as the current
user. Windows systems, on the other hand, may define some or none of the
“user name” environment variables that Simulink expects, depending on the
version of Windows installed on your system and whether it is connected to a
network. Use the MATLAB command getenv to determine which of the
environment variables is defined. For example, enter

Managing Model Versions

4-105

getenv('user')

at the MATLAB command line to determine whether the USER environment
variable exists on your Windows system. If not, you must set it yourself. On
Windows 95 and 98, set the value by entering the following line

set user=yourname

in your system’s autoexec.bat file, where yourname is the name by which you
want to be identified in a model file. Save the file autoexec.bat and reboot
your computer for the changes to take effect.

Note The autoexec.bat file typically is found in the c:\ directory on your
system’s hard disk.

On Windows NT, use the Environment pane of the Windows NT System
Properties dialog box to set the USER environment variable (if it is not already
defined).

4 Creating a Model

4-106

To display the System Properties dialog box, select Start->Settings->Control
Panel to open the Control Panel. Double-click the System icon. To set the USER
variable, type USER in the Variable field and type your login name in the Value
field. Click Set to save the new environment variable. Then click OK to close
the dialog box.

Model Properties Dialog
The Model Properties dialog box allows you to edit some version control
parameters and set some related options. To display the dialog box, choose
Model Properties from the Simulink File menu.

Model Properties Pane
The Model Properties pane lets you edit the following version control
parameters.

Creator. Name of the person who created this model. Simulink sets this
property to the value of the USER environment variable when you create the
model. Edit this field to change the value.

Created. Date and time this model was created.

Managing Model Versions

4-107

Model description. Description of the model.

Options Pane
The Options pane lets you indicate a configuration manager and specify
version control information formats.

Configuration manager. Identifies the external configuration manager used to
manage this model. Selecting a configuration manager from the list allows you
to include information from the configuration manager in a Model Info block
for annotation. Setting this option does not determine or activate configuration
management for the model. The default Configuration manager setting is
Default(none), indicating that information for a Model Info block is not
available from a configuration management system. See “Model Info” on
page 9-162 for more information.

Model version format. Format used to display the model version number in the
Model Properties pane and in Model Info blocks. The value of this parameter
can be any text string. The text string can include occurrences of the tag
%<AutoIncrement:#> where # is an integer. Simulink replaces the tag with an

4 Creating a Model

4-108

integer when displaying the model’s version number. For example, it displays
the tag

1.%<AutoIncrement:2>

as

1.2

Simulink increments # by 1 when saving the model. For example, when you
save the model,

1.%<1.%<AutoIncrement:2>

becomes

1.%<1.%<AutoIncrement:3>

and Simulink reports the model version number as 1.3.

“Modified by” format. Format used to display the Last modified by value in the
History pane, in the history log, and in Model Info blocks. The value of this
field can be any string. The string can include the tag %<Auto>. Simulink
replaces occurrences of this tag with the current value of the USER environment
variable.

“Modified date” format. Format used to display the Last modified date in the
History pane, in the history log, and in Model Info blocks. The value of this
field can be any string. The string can contain the tag %<Auto>. Simulink
replaces occurrences of this tag with the current date and time.

Managing Model Versions

4-109

History Pane
The History pane allows you to enable, view, and edit this model’s change
history.

Last modified by. Name of the person who last modified this model. Simulink sets
the value of this parameter to the value of the USER environment variable when
you save a model. You cannot edit this field.

Last modified date. Date that this model was last modified. Simulink sets the
value of this parameter to the system date and time when you save a model.
You cannot edit this field.

Modified history update. Specifies whether to prompt a user for a comment when
this model is saved. If you choose Prompt for Comments When Save, Simulink
prompts you for a comment to store in the model. You would typically use the
comment to document changes you made to the model in the current session.
Simulink stores the previous value of this parameter in the model’s change
history. See “Creating a Model Change History” on page 4–110 for more
information.

4 Creating a Model

4-110

Modified history. History of modifications of this model. Simulink compiles the
history from comments entered by users when they update the model. You can
edit the history at any time by clicking Edit.

Creating a Model Change History
Simulink allows you to create and store a record of changes to a model in the
model itself. Simulink compiles the history automatically from comments that
you or other users enter when they save changes to a model.

Logging Changes
To start a change history, select Prompt for Comments When Save for the
Modified history update option from the History pane on the Simulink
Model Properties dialog box. The next time you save the model, Simulink
displays a Log Change dialog box.

To add an item to the model’s change history, enter the item in the Modified
Comments edit field and click Save. If you do not want to enter an item for this
session, clear the Include “Modified Contents” in “Modified History” option.
To discontinue change logging, clear the Show this dialog box next time
when save option.

Managing Model Versions

4-111

Editing the Change History
To edit the change history for a model, click the Edit button on the History
pane of the Simulink Model Properties dialog box. Simulink displays the
model’s history in a Modification History dialog box.

Edit the history displayed in the dialog and select Apply or OK to save the
changes.

Version Control Properties
Simulink stores version control information as model parameters in a model.
You can access this information from the MATLAB command line or from an
M-file, using the Simulink get_param command. The following table describes
the model parameters used by Simulink to store version control information.

Property Description

Created Date created.

Creator Name of the person who created this model.

ModifiedBy Person who last modified this model.

ModifiedByFormat Format of the ModifiedBy parameter. Value
can be an string. The string can include the
tag %<Auto>. Simulink replaces the tag with
the current value of the USER environment
variable.

4 Creating a Model

4-112

ModifiedDate Date modified.

ModifiedDateFormat Format of the ModifiedDate parameter.
Value can be any string. The string can
include the tag %<Auto>. Simulink replaces
the tag with the current date and time
when saving the model.

ModifiedComment Comment entered by user who last updated
this model.

ModifiedHistory History of changes to this model.

ModelVersion Version number.

ModelVersionFormat Format of model version number. Can be
any string. The string can contain the tag
%<AutoIncrement:#> where # is an integer.
Simulink replaces the tag with # when
displaying the version number. It
increments # when saving the model.

Description Description of model.

LastModificationDate Date last modified.

Property Description

Ending a Simulink Session

4-113

Ending a Simulink Session
Terminate a Simulink session by closing all Simulink windows.

Terminate a MATLAB session by choosing one of these commands from the
File menu:

• On a Microsoft Windows system: Exit MATLAB

• On a UNIX system: Quit MATLAB

4 Creating a Model

4-114

5

Running a Simulation

Introduction . 5-2
Using Menu Commands 5-2
Running a Simulation from the Command Line 5-3

Running a Simulation Using Menu Commands 5-4
Setting Simulation Parameters and Choosing the Solver . . 5-4
Applying the Simulation Parameters 5-4
Starting the Simulation 5-4
Simulation Diagnostics Dialog Box 5-6

The Simulation Parameters Dialog Box 5-8
The Solver Pane 5-8
The Workspace I/O Pane 5-18
The Diagnostics Pane 5-26
The Advanced Pane 5-29

Improving Simulation Performance and Accuracy 5-34
Speeding Up the Simulation 5-34
Improving Simulation Accuracy 5-35

Running a Simulation from the Command Line 5-36
Using the sim Command 5-36
Using the set_param Command 5-36

5 Running a Simulation

5-2

Introduction
You can run a simulation either by using Simulink menu commands or by
entering commands in the MATLAB command window.

Many users use menu commands while they develop and refine their models,
then enter commands in the MATLAB command window to run the simulation
in “batch” mode.

Using Menu Commands
Running a simulation using menu commands is easy and interactive. These
commands let you select an ordinary differential equation (ODE) solver and
define simulation parameters without having to remember command syntax.
An important advantage is that you can perform certain operations
interactively while a simulation is running:

• You can modify many simulation parameters, including the stop time, the
solver, and the maximum step size.

• You can change the solver.

• You can simulate another system at the same time.

• You can click on a line to see the signal carried on that line on a floating
(unconnected) Scope or Display block.

• You can modify the parameters of a block, as long as you do not cause a
change in:

- The number of states, inputs, or outputs

- The sample time

- The number of zero crossings

- The vector length of any block parameters

- The length of the internal block work vectors

You cannot make changes to the structure of the model, such as adding or
deleting lines or blocks, during a simulation. If you need to make these kinds
of changes, you need to stop the simulation, make the change, then start the
simulation again to see the results of the change.

Introduction

5-3

Running a Simulation from the Command Line
Running a simulation from the command line allows you to change simulation
and block parameters iteratively. For more information, see “Running a
Simulation from the Command Line” on page 5–36.

5 Running a Simulation

5-4

Running a Simulation Using Menu Commands
This section discusses how to use Simulink menu commands and the
Simulation Parameters dialog box to run a simulation.

Setting Simulation Parameters and Choosing the
Solver
You set the simulation parameters and select the solver by choosing
Parameters from the Simulation menu. Simulink displays the Simulation
Parameters dialog box, which uses three “panes” to manage simulation
parameters:

• The Solver pane allows you to set the start and stop times, choose the solver
and specify solver parameters, and choose some output options.

• The Workspace I/O pane manages input from and output to the MATLAB
workspace.

• The Diagnostics pane allows you to select the level of warning messages
displayed during a simulation.

Each pane of the dialog box, including the parameters you set on the pane, is
discussed in detail in “The Simulation Parameters Dialog Box” on page 5–8.

You can specify parameters as valid MATLAB expressions, consisting of
constants, workspace variable names, MATLAB functions, and mathematical
operators.

Applying the Simulation Parameters
After you have set the simulation parameters and selected the solver, you are
ready to apply them to your model. Press the Apply button on the bottom of the
dialog box to apply the parameters to the model. To apply the parameters and
close the dialog box, press the Close button.

Starting the Simulation
After you have applied the solver and simulation parameters to your model,
you are ready to run the simulation. Select Start from the Simulation menu to
run the simulation. You can also use the keyboard shortcut, Ctrl+T. When you
select Start, the menu item changes to Stop.

Running a Simulation Using Menu Commands

5-5

Your computer beeps to signal the completion of the simulation.

Note A common mistake that new Simulink users make is to start a
simulation while the Simulink block library is the active window. Make sure
your model window is the active window before starting a simulation.

To stop a simulation, choose Stop from the Simulation menu. The keyboard
shortcut for stopping a simulation is Ctrl+T, the same as for starting a
simulation.

You can suspend a running simulation by choosing Pause from the Simulation
menu. When you select Pause, the menu item changes to Continue. You
proceed with a suspended simulation by choosing Continue.

If the model includes any blocks that write output to a file or to the workspace,
or if you select output options on the Simulation Parameters dialog box,
Simulink writes the data when the simulation is terminated or suspended.

5 Running a Simulation

5-6

Simulation Diagnostics Dialog Box
If errors occur during a simulation, Simulink halts the simulation and displays
the errors in the Simulation Diagnostics dialog box.

The dialog box has two panes. The upper pane consist of columns that display
the following information for each error.

Message. Message type (for example, block error, warning, log)

Source. Name of the model element (for example, a block) that caused the error.

Fullpath. Path of the element that caused the error.

Summary. Error message abbreviated to fit in the column.

Reported by. Component that reported the error (for example, Simulink,
Stateflow, Real-Time Workshop, etc.).

Double-click to
display error
source.

Click to display
error source.

Click to display
error message.

Running a Simulation Using Menu Commands

5-7

The lower pane initially contains the full content of the first error message
listed in the top pane. You can display the content of other messages by
single-clicking on their entries in the upper pane.

In addition to displaying the Simulation Diagnostics dialog box, Simulink
also opens (if necessary) the diagram that contains the error source and
highlights the source.

You can similarly display other error sources by double-clicking on the
corresponding error message in the top pane, by double-clicking on the name of
the error source in the error message (highlighted in blue), or by selecting the
Open button on the dialog box.

5 Running a Simulation

5-8

The Simulation Parameters Dialog Box
This section discusses the simulation parameters, which you specify either on
the Simulation Parameters dialog box or using the sim (see sim on page 5-37)
and simset (see simset on page 5-41) commands. Parameters are described as
they appear on the dialog box panes.

This table summarizes the actions performed by the dialog box buttons that
appear on the bottom of each dialog box pane.

The Solver Pane
The Solver pane appears when you first choose Parameters from the
Simulation menu or when you select the Solver tab.

The Solver pane allows you to:

• Set the simulation start and stop times

• Choose the solver and specify its parameters

• Select output options

Table 5-1: Simulation Parameters Dialog Box Buttons

Button Action

OK Applies the parameter values and closes the dialog box. During
a simulation, the parameter values are applied immediately.

Cancel Changes the parameter values back to the values they had
when the dialog box was most recently opened and closes the
dialog box.

Help Displays help text for the dialog box pane.

Apply Applies the current parameter values and keeps the dialog box
open. During a simulation, the parameter values are applied
immediately.

The Simulation Parameters Dialog Box

5-9

Simulation Time
You can change the start time and stop time for the simulation by entering new
values in the Start time and Stop time fields. The default start time is 0.0
seconds and the default stop time is 10.0 seconds.

Simulation time and actual clock time are not the same. For example, running
a simulation for 10 seconds will usually not take 10 seconds. The amount of
time it takes to run a simulation depends on many factors, including the
model’s complexity, the solver’s step sizes, and the computer’s clock speed.

Solvers
Simulation of Simulink models involves the numerical integration of sets of
ordinary differential equations (ODEs). Simulink provides a number of solvers
for the simulation of such equations. Because of the diversity of dynamic
system behavior, some solvers may be more efficient than others at solving a
particular problem. To obtain accurate and fast results, take care when
choosing the solver and setting parameters.

You can choose between variable-step and fixed-step solvers. Variable-step
solvers can modify their step sizes during the simulation. They provide error
control and zero crossing detection. Fixed-step solvers take the same step size
during the simulation. They provide no error control and do not locate zero
crossings. For a thorough discussion of solvers, see the MATLAB
documentation.

5 Running a Simulation

5-10

Default solvers. If you do not choose a solver, Simulink chooses one based on
whether your model has states:

• If the model has continuous states, ode45 is used. ode45 is an excellent
general purpose solver. However, if you know that your system is stiff and if
ode45 is not providing acceptable results, try ode15s. For a definition of stiff,
see the note at the end of the section “Variable-step solvers” on page 5-10.

• If the model has no continuous states, Simulink uses the variable-step solver
called discrete and displays a message indicating that it is not using ode45.
Simulink also provides a fixed-step solver called discrete. This model shows
the difference between the two discrete solvers.

With sample times of 0.5 and 0.75, the fundamental sample time for the
model is 0.25 second. The difference between the variable-step and the
fixed-step discrete solvers is the time vector that each generates.

The fixed-step discrete solver generates this time vector.
[0.0 0.25 0.5 0.75 1.0 1.25 ...]

The variable-step discrete solver generates this time vector.
[0.0 0.5 0.75 1.0 1.5 2.0 2.25 ...]

The step size of the fixed-step discrete solver is the fundamental sample
time. The variable-step discrete solver takes the largest possible steps.

Variable-step solvers. You can choose these variable-step solvers: ode45, ode23,
ode113, ode15s, ode23s, and discrete. The default is ode45 for systems with
states, or discrete for systems with no states:

• ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver; that is, in computing y(tn), it
needs only the solution at the immediately preceding time point, y(tn–1). In
general, ode45 is the best solver to apply as a “first try” for most problems.

The Simulation Parameters Dialog Box

5-11

• ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It may be more efficient than ode45 at crude tolerances and in the
presence of mild stiffness. ode23 is a one-step solver.

• ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances. ode113 is a multistep
solver; that is, it normally needs the solutions at several preceding time
points to compute the current solution.

• ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). These are related to but are more efficient than the
backward differentiation formulas, BDFs (also known as Gear’s method).
Like ode113, ode15s is a multistep method solver. If you suspect that a
problem is stiff or if ode45 failed or was very inefficient, try ode15s.

• ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude tolerances. It
can solve some kinds of stiff problems for which ode15s is not effective.

• ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and you
need a solution without numerical damping.

• ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Like ode23s, this solver
may be more efficient than ode15s at crude tolerances.

• discrete (variable-step) is the solver Simulink chooses when it detects that
your model has no continuous states.

Note For a stiff problem, solutions can change on a time scale that is very
short compared to the interval of integration, but the solution of interest
changes on a much longer time scale. Methods not designed for stiff problems
are ineffective on intervals where the solution changes slowly because they
use time steps small enough to resolve the fastest possible change. Jacobian
matrices are generated numerically for ode15s and ode23s. For more
information, see Shampine, L. F., Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, 1994.

5 Running a Simulation

5-12

Fixed-step solvers. You can choose these fixed-step solvers: ode5, ode4, ode3,
ode2, ode1, and discrete:

• ode5 is the fixed-step version of ode45, the Dormand-Prince formula.

• ode4 is RK4, the fourth-order Runge-Kutta formula.

• ode3 is the fixed-step version of ode23, the Bogacki-Shampine formula.

• ode2 is Heun’s method, also known as the improved Euler formula.

• ode1 is Euler’s method.

• discrete (fixed-step) is a fixed-step solver that performs no integration. It is
suitable for models having no states and for which zero crossing detection
and error control are not important.

If you think your simulation may be providing unsatisfactory results, see
“Improving Simulation Performance and Accuracy” on page 5–34.

Solver Options
The default solver parameters provide accurate and efficient results for most
problems. In some cases, however, tuning the parameters can improve
performance. (For more information about tuning these parameters, see
“Improving Simulation Performance and Accuracy” on page 5–34). You can
tune the selected solver by changing parameter values on the Solver pane.

Step Sizes
For variable-step solvers, you can set the maximum and suggested initial step
size parameters. By default, these parameters are automatically determined,
indicated by the value auto.

For fixed-step solvers, you can set the fixed step size. The default is also auto.

Maximum step size. The Max step size parameter controls the largest time step
the solver can take. The default is determined from the start and stop times.

Generally, the default maximum step size is sufficient. If you are concerned
about the solver missing significant behavior, change the parameter to prevent
the solver from taking too large a step. If the time span of the simulation is very
long, the default step size may be too large for the solver to find the solution.

hmax

tstop tstart–

50
--------------------------------=

The Simulation Parameters Dialog Box

5-13

Also, if your model contains periodic or nearly periodic behavior and you know
the period, set the maximum step size to some fraction (such as 1/4) of that
period.

In general, for more output points, change the refine factor, not the maximum
step size. For more information, see “Refine output” on page 5–16.

Initial step size. By default, the solvers select an initial step size by examining
the derivatives of the states at the start time. If the first step size is too large,
the solver may step over important behavior. The initial step size parameter is
a suggested first step size. The solver tries this step size but reduces it if error
criteria are not satisfied.

Minimum step size. Specifies the smallest time step the solver can take. If the
solver needs to take a smaller step to meet error tolerances, it issues a warning
indicating the current effective relative tolerance. This parameter can be either
a real number greater than zero or a two-element vector where the first
element is the minimum step size and the second element is the maximum
number of minimum step size warnings to be issued before issuing an error.
Setting the second element to zero results in an error the first time the solver
must take a step smaller than the specified minimum. This is equivalent to
changing the minimum step size violation diagnostic to error on the
Diagnostics panel. Setting the second element to -1 results in an unlimited
number of warnings. This is also the default if the input is a scalar. The default
values for this parameter are a minimum step size on the order of machine
precision and an unlimited number of warnings.

Error Tolerances
The solvers use standard local error control techniques to monitor the error at
each time step. During each time step, the solvers compute the state values at
the end of the step and also determine the local error, the estimated error of
these state values. They then compare the local error to the acceptable error,
which is a function of the relative tolerance (rtol) and absolute tolerance (atol).
If the error is greater than the acceptable error for any state, the solver reduces
the step size and tries again:

• Relative tolerance measures the error relative to the size of each state. The
relative tolerance represents a percentage of the state’s value. The default,
1e-3, means that the computed state will be accurate to within 0.1%.

5 Running a Simulation

5-14

• Absolute tolerance is a threshold error value. This tolerance represents the
acceptable error as the value of the measured state approaches zero.

The error for the ith state, ei, is required to satisfy

The following figure shows a plot of a state and the regions in which the
acceptable error is determined by the relative tolerance and the absolute
tolerance.

If you specify auto (the default), Simulink sets the absolute tolerance for each
state initially to 1e-6. As the simulation progresses, Simulink resets the
absolute tolerance for each state to the maximum value that the state has
assumed thus far times the relative tolerance for that state. Thus, if a state
goes from 0 to 1 and reltol is 1e-3, then by the end of the simulation the
abstol is set to 1e-3 also. If a state goes from 0 to 1000, then the abstol is set
to 1.

If the computed setting is not suitable, you can determine an appropriate
setting yourself. You might have to run a simulation more than once to
determine an appropriate value for the absolute tolerance. If the magnitudes
of the states vary widely, it might be appropriate to specify different absolute
tolerance values for different states. You can do this on the Integrator block’s
dialog box.

The Maximum Order for ode15s
The ode15s solver is based on NDF formulas of order one through five.
Although the higher order formulas are more accurate, they are less stable. If
your model is stiff and requires more stability, reduce the maximum order to 2

ei max rtol xi atoli,×()≤

atol

rtol*|x|
Region in which rtol determines acceptable error

Region in which atol determines acceptable error

S
ta

te

Time

The Simulation Parameters Dialog Box

5-15

(the highest order for which the NDF formula is A-stable). When you choose the
ode15s solver, the dialog box displays this parameter.

As an alternative, you might try using the ode23s solver, which is a fixed-step,
lower order (and A-stable) solver.

Multitasking Options
If you select a fixed-step solver, the Solver pane of the Simulation
Parameters dialog box displays a Mode options list. The list allows you to
select one of the following simulation modes.

MultiTasking. This mode issues an error if it detects an illegal sample rate
transition between blocks, that is, a direct connection between blocks operating
at different sample rates. In real-time multitasking systems, illegal sample
rate transitions between tasks can result in a task’s output not being available
when needed by another task. By checking for such transitions, multitasking
mode helps you to create valid models of real-world multitasking systems,
where sections of your model represent concurrent tasks.

Use rate transition blocks to eliminate illegal rate transitions from your model.
Simulink provides two such blocks: Unit Delay (see Unit Delay on page 9-267)
and Zero-Order Hold (see Zero-Order Hold on page 9-275). To eliminate an
illegal slow-to-fast transition, insert a Unit Delay block running at the slow
rate between the slow output port and the fast input port. To eliminate an
illegal fast-to-slow transition, insert a Zero-Order Hold block running at the
slow rate between the fast output port and the slow input port. For more
information, see Chapter 7, “Models with Multiple Sample Rates,” in the
Real-Time Workshop Users Guide.

SingleTasking. This mode does not check for sample rate transitions among
blocks. This mode is useful when you are modeling a single-tasking system. In
such systems, task synchronization is not an issue.

Auto. This option causes Simulink to use single-tasking mode if all blocks
operate at the same rate and multitasking mode if the model contains blocks
operating at different rates.

Output Options
The Output options area of the dialog box enables you to control how much
output the simulation generates. You can choose from three options:

5 Running a Simulation

5-16

• Refine output

• Produce additional output

• Produce specified output only

Refine output. The Refine output choice provides additional output points when
the simulation output is too coarse. This parameter provides an integer
number of output points between time steps; for example, a refine factor of 2
provides output midway between the time steps, as well as at the steps. The
default refine factor is 1.

To get smoother output, it is much faster to change the refine factor instead of
reducing the step size. When the refine factor is changed, the solvers generate
additional points by evaluating a continuous extension formula at those points.
Changing the refine factor does not change the steps used by the solver.

The refine factor applies to variable-step solvers and is most useful when using
ode45. The ode45 solver is capable of taking large steps; when graphing
simulation output, you may find that output from this solver is not sufficiently
smooth. If this is the case, run the simulation again with a larger refine factor.
A value of 4 should provide much smoother results.

Note This option will not help the solver to locate zero crossings (see “Zero
Crossing Detection” on page 3-14).

Produce additional output. The Produce additional output choice enables you to
specify directly those additional times at which the solver generates output.
When you select this option, Simulink displays an Ouput Times field on the
Solver pane. Enter a MATLAB expression in this field that evaluates to an
additional time or a vector of additional times. The additional output is
produced using a continuous extension formula at the additional times. Unlike
the refine factor, this option changes the simulation step size so that time steps
coincide with the times that you have specified for additional output.

Produce specified output only. The Produce specified output only choice provides
simulation output only at the specified output times. This option changes the
simulation step size so that time steps coincide with the times that you have
specified for producing output. This choice is useful when comparing different
simulations to ensure that the simulations produce output at the same times.

The Simulation Parameters Dialog Box

5-17

Comparing Output options. A sample simulation generates output at these times.

0, 2.5, 5, 8.5, 10

Choosing Refine output and specifying a refine factor of 2 generates output at
these times.

0, 1.25, 2.5, 3.75, 5, 6.75, 8.5, 9.25, 10

5 Running a Simulation

5-18

Choosing the Produce additional output option and specifying [0:10]
generates output at these times

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

and perhaps at additional times, depending on the step-size chosen by the
variable-step solver.

Choosing the Produce Specified Output Only option and specifying [0:10]
generates output at these times.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

In general, you should specify output points as integers times a fundamental
step size, e.g.,

[1:100]*0.01

is more accurate than

[1:0.01:100]

The Workspace I/O Pane
You can direct simulation output to workspace variables and get input and
initial states from the workspace. On the Simulation Parameters dialog box,
select the Workspace I/O tab. This pane appears.

The Simulation Parameters Dialog Box

5-19

Loading Input from the Base Workspace
Simulink can apply input from a model’s base workspace to the model’s
top-level inports during a simulation run. To specify this option, check the
Input box in the Load from workspace area of the Workspace I/O pane.
Then, enter an external input specification (see below) in the adjacent edit box
and select Apply.

The external (i.e., from workspace) input can take any of the following forms.

Array. To use this format, check Input in the Load from workspace pane and
select the Matrix option from the Format list on the Workspace I/O pane.
Selecting this option causes Simulink to evaluate the expression next to the
Input check box and use the result as the input to the model.

The expression must evaluate to a real (noncomplex) matrix of data type
double. The first column of the matrix must be a vector of times in ascending
order. The remaining columns specify input values. In particular, each column
represents the input for a different Inport block signal (in sequential order) and
each row is the input value for the corresponding time point. Simulink linearly
interpolates or extrapolates input values as necessary, if the Interpolate data
option is selected for the corresponding inport (see “Interpolate data” on
page 9-122).

The total number of columns of the input matrix must equal n + 1, where n is
the total number of signals entering the model’s inports.

The default input expression for a model is [t,u] and the default input format
is Matrix. So if you define t and u in the base workspace, you need only check
the Input option to input data from the model’s base workspace. For example,
suppose that a model has two inports, one of which accepts two signals and the
other of which accepts one signal. Also, suppose that the base workspace
defines u and t as follows.

t = (0:0.1:1)';
u = [sin(t), cos(t), 4*cos(t)];

Note The matrix input format allows you to load only real (noncomplex)
scalar or vector data of type double. Use the structure format to input
complex data, matrix (2-D) data, and/or data types other than double.

5 Running a Simulation

5-20

Structure with time. Simulink can read data from the workspace in the form of a
structure whose name is specified in the Input text field. The input structure
must have two top-level fields: time and signals. The time field contains a
column vector of the simulation times. The signals field contains an array of
substructures, each of which corresponds to a model input port.

Each signals substructure must contain two fields named values and
dimensions, respectively. The values field must contain an array of inputs for
the corresponding input port where each input corresponds to a time point
specified by the time field. The dimensions field specifies the dimension(s) of
the input. If each input is a scalar or vector (1-D array) value, the dimensions
field must be a scalar value that specifies the length of the vector (1 for a
scalar). If each input is a matrix (2-D array), the dimensions field must be a
two-element vector whose first element specifies the number of rows in the
matrix and whose second element specifies the number of columns.

If the inputs for a port are scalar or vector values, the values field must be an
M-by-N array where M is the number of time points specified by the time field
and N is the length of each vector value. For example, the following code creates
an input structure for loading 11 time samples of a two-element signal vector
of type int8 into a model with a single input port.

a.time = (0:0.1:1)';
c1 = int8([0:1:10]');
c2 = int8([0:10:100]');
a.signals(1).values = [c1 c2];
a.signals(1).dimensions = 2;

To load this data into the model’s inport, you would check the Input option on
the Workspace I/O pane and enter a in the input expression field.

If the inputs for a port are matrices (2-D arrays), the values field must be an Mx
N-by-T array where M and N are the dimensions of each matrix input and T is
the number of time points. For example, suppose that you want to input 51
time samples of a 4-by-5 matrix signal into one of your model’s input ports.
Then, the corresponding dimensions field of the workspace structure must
equal [4 5] and the values array must have the dimensions 4-by-5-by-51.

The Simulation Parameters Dialog Box

5-21

As another example, consider the following model, which has two inputs.

Suppose that you want to input a sine wave into the first port and a cosine wave
into the second port. To do this, define a vector, a, as follows in the base
workspace.

a.time = (0:0.1:1)';
a.signals(1).values = sin(a.time);
a.signals(1).dimensions = 1;
a.signals(2).values = cos(a.time);
a.signals(2).dimensions = 1;

Then, check the Input box for this model, enter a in the adjacent text field, and
select StructureWithTime as the I/O format.

Note Simulink can read back simulation data saved to the workspace in the
Structure with time output format. See “Structure with time” on page 5-23
for more information.

Structure. The structure format is the same as the Structure with time format
except that time field is empty. For example, in the preceding example, you
could set the time field as follows.

a.time = []

In this case, Simulink reads the input for the first time step from the first
element of an inport’s value array, the value for the second time step from the
second element of the value array, etc.

Note Simulink can read back simulation data saved to the workspace in the
Structure output format. See “Structure” on page 5-24 for more information.

5 Running a Simulation

5-22

Per-Port Structures. This format consists of a separate structure-with-time or
structure-without-time for each port. Each port’s input data structure has only
one signals field. To specify this option, enter the names of the structures in
the Input text field as a comma-separated list in1, in2, ..., inN, where in1
is the data for your model’s first port, in2 for the second inport, and so on.

Time Expression. The time expression can be any MATLAB expression that
evaluates to a row vector equal in length to the number of signals entering the
model’s inports. For example, suppose that a model has one vector inport that
accepts two signals. Furthermore, suppose that timefcn is a user-defined
function that returns a row vector two elements long. The following are valid
input time expressions for such a model.

'[3*sin(t), cos(2*t)]'

'4*timefcn(w*t)+7'

Simulink evaluates the expression at each step of the simulation, applying the
resulting values to the model’s inports. Note that Simulink defines the variable
t when it runs the simulation. Also, you can omit the time variable in
expressions for functions of one variable. For example, Simulink interprets the
expression sin as sin(t).

Saving Output to the Workspace
You can specify return variables by selecting the Time, States, and/or Output
check boxes in the Save to workspace area of this dialog box pane. Specifying
return variables causes Simulink to write values for the time, state, and output
trajectories (as many as are selected) into the workspace.

To assign values to different variables, specify those variable names in the field
to the right of the check boxes. To write output to more than one variable,
specify the variable names in a comma-separated list. Simulink saves the
simulation times in the vector specified in the Save to Workspace area.

Note Simulink saves the output to the workspace at the base sample rate of
the model. Use a To Workspace block if you want to save output at a different
sample rate (see “To Workspace” on page 9-251).

The Simulation Parameters Dialog Box

5-23

The Save options area enables you to specify the format and restrict the
amount of output saved.

Format options for model states and outputs are listed below.

Array. If you select this option, Simulink saves a model’s states and outputs in
a state and output array, respectively.

The state matrix has the name specified in the Save to Workspace area (for
example, xout). Each row of the state matrix corresponds to a time sample of
the model’s states. Each column corresponds to an element of a state. For
example, suppose that your model has two continuous states, each of which is
a two-element vector. Then the first two elements of each row of the state
matrix contains a time sample of the first state vector. The last two elements
of each row contain a time sample of the second state vector.

The model output matrix has the name specified in the Save to Workspace
area (for example, yout). Each column corresponds to a model outport, each
row to the outputs at a specific time.

Note You can use array format to save your model’s outputs and states only if
the outputs are either all scalars or all vectors (or all matrices for states), are
either all real or all complex, and are all of the same data type. Use the
Structure or StructureWithTime output formats (see the following) if your
model’s outputs and states do not meet these conditions.

Structure with time. If you select this format, Simulink saves the model’s states
and outputs in structures having the names specified in the Save to
Workspace area (for example, xout and yout).

The structure used to save outputs has two top-level fields: time and signals.
The time field contains a vector of the simulation times. The signals field
contains an array of substructures, each of which corresponds to a model
outport. Each substructure has four fields: values, dimensions, label, and
blockName. The values field contains the outputs for the corresponding
outport. If the outputs are scalars or vectors, the values field is a matrix each
of whose rows represents an output at the time specified by the corresponding
element of the time vector. If the outputs are matrix (2-D) values, the values
field is a 3-D array of dimensions M-by-N-by-T where M-by-N is the dimensions

5 Running a Simulation

5-24

of the output signal and T is the number of output samples. If T = 1, MATLAB
drops the last dimension. Therefore, the value field will be an M-by-N matrix.
The dimensions field specifies the dimensions of the output signal. The label
field specifies the label of the signal connected to the outport or the type of state
(continuous or discrete). The blockName field specifies the name of the
corresponding outport or block with states.

The structure used to save states has a similar organization. The states
structure has two top-level fields: time and signals. The time field contains a
vector of the simulation times. The signals field contains an array of
substructures, each of which corresponds to one of the model’s states. Each
signals structure has four fields: values, dimension, label, and blockName.
The values field contains time samples of a state of the block specified by the
blockName field. The label field for built-in blocks indicates the type of state:
either CSTATE (continuous state) or DSTATE (discrete state). For S-Function
blocks, the label contains whatever name is assigned to the state by the
S-Function block.

The time samples of a state are stored in the values field as a matrix of values.
Each row corresponds to a time sample. Each element of a row corresponds to
an element of the state. If the state is a matrix, the matrix is stored in the
values array in column-major order. For example, suppose that the model
includes a 2-by-2 matrix state and that Simulink logs 51 samples of the state
during a simulation run . Then the values field for this state would contain a
51-by-4 matrix where each row corresponds to a time sample of the state and
where the first two elements of each row corresponds to the first column of the
sample and the last two elements corresponds to the second column of the
sample.

Structure. This format is the same as the preceding except that Simulink does
not store simulation times in the time field of the saved structure.

Per-Port Structures. This format consists of a separate structure-with-time or
structure-without-time for each output port. Each output data structure has
only one signals field. To specify this option, enter the names of the structures
in the Output text field as a comma-separated list out1, out2, ..., outN,
where out1 is the data for your model’s first port, out2 for the second inport,
and so on.

To set a limit on the number of data samples saved, select the check box labeled
Limit data points to last and specify the number of samples to save. To apply

The Simulation Parameters Dialog Box

5-25

a decimation factor, enter a value in the field to the right of the Decimation
label. For example, a value of 2 saves every other point generated.

Loading and Saving States
Initial conditions, which are applied to the system at the start of the
simulation, are generally set in the blocks. You can override initial conditions
set in the blocks by specifying them in the States area of this pane.

You can also save the final states for the current simulation run and apply
them to a subsequent simulation run. This feature might be useful when you
want to save a steady-state solution and restart the simulation at that known
state. The states are saved in the format that you select in the Save options
area of the Workspace I/O pane.

To save the final states (the values of the states at the termination of the
simulation), select the Final State check box and enter a variable in the
adjacent edit field.

To load states, select the Initial State check box and specify the name of a
variable that contains the initial state values. This variable can be a matrix or
a structure of the same form as is used to save final states. This allows
Simulink to set the initial states for the current session to the final states saved
in previous session, using the Structure or Structure with time format.

If the check box is not selected or the state array is empty ([]), Simulink uses
the initial conditions defined in the blocks.

5 Running a Simulation

5-26

The Diagnostics Pane
You can indicate the desired action for many types of events or conditions that
can be encountered during a simulation by selecting the Diagnostics tab on the
Simulation Parameters dialog box. This dialog box appears.

The dialog box includes the following options.

Consistency Checking
Consistency checking is a debugging tool that validates certain assumptions
made by Simulink’s ODE solvers. Its main use is to make sure that S-functions
adhere to the same rules as Simulink built-in blocks. Because consistency
checking results in a significant decrease in performance (up to 40%), it should
generally be set to off. Use consistency checking to validate your S-functions
and to help you determine the cause of unexpected simulation results.

To perform efficient integration, Simulink saves (caches) certain values from
one time step for use in the next time step. For example, the derivatives at the
end of a time step can generally be reused at the start of the next time step. The
solvers take advantage of this to avoid redundant derivative calculations.

Another purpose of consistency checking is to ensure that blocks produce
constant output when called with a given value of t (time). This is important
for the stiff solvers (ode23s and ode15s) because, while calculating the
Jacobian, the block’s output functions may be called many times at the same
value of t.

The Simulation Parameters Dialog Box

5-27

When consistency checking is enabled, Simulink recomputes the appropriate
values and compares them to the cached values. If the values are not the same,
a consistency error occurs. Simulink compares computed values for these
quantities:

• Outputs

• Zero crossings

• Derivatives

• States

Bounds Checking
This option causes Simulink to check whether a block writes outside the
memory allocated to it during simulation. Typically this can happen only if
your model includes a user-written S-function that has a bug. If enabled, this
check is performed for every block in the model every time the block is
executed. As a result, enabling this option slows down model execution
considerably. Thus, to avoid slowing down model execution needlessly, you
should enable the option only if you suspect that your model contains a
user-written S-function that has a bug. See Writing S-Functions for more
information on using this option.

Configuration options
This control lists abnormal types of events that can occur during execution of
the model For each event type, you can choose whether you want no message,
a warning message, or an error message. A warning message does not
terminate a simulation, but an error message does.

Event Description

-1 sample time in
source

A source block (e.g., a Sine Wave block) specifies a
sample time of -1.

Algebraic loop Simulink detected an algebraic loop while
simulating the model. See “Algebraic Loops” on
page 3–18 for more information.

5 Running a Simulation

5-28

Check for
singular matrix

The Product block detected a singular matrix while
inverting one of its inputs in matrix multiplication
mode (see Product on page 9-178).

Data overflow The value of a signal or parameter is too large to be
represented by the signal or parameter’s data type.
See “Working with Data Types” on page 4-44 for
more information.

int32 to float
conversion

A 32-bit integer value was converted to a
floating-point value. Such a conversion can result
in a loss of precision. See “Working with Data
Types” on page 4-44 for more information.

Min step size
violation

The next simulation step is smaller than minimum
step size specified for the model. This can occur if
the specified error tolerance for the model requires
a step size smaller than the specified minimum
step size. See “Step Sizes” on page 5–12 and “Error
Tolerances” on page 5–13 for more information.

Multitask rate
transition

An invalid rate transition occurred between two
blocks operating in multitasking mode (see
“Multitasking Options” on page 5-15).

S-function
upgrades needed

A block was encountered that has not been
upgraded to use features of the current release.

Signal label
mismatch

The simulation encountered virtual signals that
have a common source signal but different labels
(see “Virtual Signals” on page 4–29).

SingleTask rate
transition

A rate transition occurred between two blocks
operating in single-tasking mode (see
“Multitasking Options” on page 5-15).

Unconnected block
input

Model contains a block with an unconnected input.

Event Description (Continued)

The Simulation Parameters Dialog Box

5-29

The Advanced Pane
The Advanced pane allows you to set various options that affect simulation
performance.

Unconnected block
output

Model contains a block with an unconnected
output.

Unconnected line Model contains an unconnected line.

Unneeded type
conversions

A data type conversion block is used where no type
conversion is necessary. See Data Type Conversion
on page 9-49 for more information.

Vector/Matrix
conversion

A vector-to-matrix or matrix-to-vector conversion
occurred at a block input (see “Vector or Matrix
Input Conversion Rules” on page 4–34).

Block Priority
Violation

Simulink detected a block priority specification
error while simulating the model.

Event Description (Continued)

5 Running a Simulation

5-30

Model parameter configuration

Inline parameters. By default you can modify (“tune”) many block parameters
during simulation (see “Tunable Parameters” on page 3–5). Selecting this
option makes all parameters nontunable except those that you specify. Making
parameters nontunable enables Simulink to treat them as constants, thereby
speeding up simulation. Using the Model Parameter Configuration dialog
box (see “Model Parameter Configuration Dialog Box” on page 5-32) to specify
the parameters you want to remain tunable when this option is selected. To
display the dialog, select the adjacent Configure button.

When this option is selected, the only parameters that you can change during
simulation are parameters that meet the following conditions:

• The value of the parameter must be a variable defined in the MATLAB
workspace.

• The parameter must be specified as global (tunable) in the Model
Parameter Configuration dialog box.

To tune a parameter that meets these conditions, change the value of the
corresponding workspace variable and choose Update Diagram (Ctrl+D) from
the Simulink Edit menu.

If you select this option, Simulink moves constant signals out of the simulation
loop. This speeds up the simulation.

Optimizations

Block reduction. Replaces a group of blocks with a synthesized block, thereby
speeding up execution of the model.

The Simulation Parameters Dialog Box

5-31

Boolean logic signals. Causes blocks that accept Boolean signals to require
Boolean signals. If this option is off, blocks that accept inputs of type boolean
also accept inputs of type double. For example, consider the following model.

This model connects signals of type double to a Logical Operator block, which
accepts inputs of type boolean. If Boolean logic signals option is on, this
model generates an error when executed. If Boolean logic signals option is off,
this model runs without error.

Note This option allows the current version of Simulink to run models that
were created by earlier versions of Simulink that supported only signals of
type double.

Parameter pooling. This option is used for code generation (see the Real-Time
Workshop documentation for more information). Leave this option on if you are
not doing code generation.

Signal storage reuse. Causes Simulink to reuse memory buffers allocated to store
block input and output signals. If this option is off, Simulink allocates a
separate memory buffer for each block’s outputs. This can substantially
increase the amount of memory required to simulate large models. So you
should select this option only when you need to debug a model. In particular,
you should disable signal storage reuse if you need to:

• Debug a C-MEX S-function

• Use a floating Scope or Display block to inspect signals in a model that you
are debugging

5 Running a Simulation

5-32

Simulink opens an error dialog if Signal storage reuse is enabled and you
attempt to use a floating Scope or Display block to display a signal whose
buffer has been reused.

Zero-crossing detection. Enables zero crossing detection during variable-step
simulation of the model. For most models, this speeds up simulation by
enabling the solver to take larger time steps. If a model has extreme dynamic
changes, disabling this option can speed up the simulation but can also
decrease the accuracy of simulation results. See “Zero Crossing Detection” on
page 3–14 for more information.

Model Parameter Configuration Dialog Box
The Model Parameter Configuration dialog box allows you to override the
Inline parameters option (see “Model parameter configuration” on page 5–30)
for selected parameters.

The dialog box has the following controls.

Source list. Displays a list of workspace variables. The options are:

• MATLAB workspace

List all variables in the MATLAB workspace that have numeric values.

• Referenced workspace variables

List only those variables referenced by the model.

The Simulation Parameters Dialog Box

5-33

Refresh list. Updates the source list. Click on this button if you have added a
variable to the workspace since the last time the list was displayed.

Add to table. Adds the variable(s) selected in the source list to the adjacent table
of tunable parameters.

New. Defines a new parameter and adds it to the list of tunable parameters.
Use this button to create tunable parameters that are not yet defined in the
MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB
workspace. You must create the variable yourself.

Storage Class. Used for code generation. See the Real-Time Workshop
documentation for more information.

Storage type qualifier. Used for code generation. See the Real-Time Workshop
documentation for more information.

5 Running a Simulation

5-34

Improving Simulation Performance and Accuracy
Simulation performance and accuracy can be affected by many things,
including the model design and choice of simulation parameters.

The solvers handle most model simulations accurately and efficiently with
their default parameter values. However, some models will yield better results
if you adjust solver and simulation parameters. Also, if you know information
about your model’s behavior, your simulation results can be improved if you
provide this information to the solver.

Speeding Up the Simulation
Slow simulation speed can have many causes. Here are a few:

• Your model includes a MATLAB Fcn block. When a model includes a
MATLAB Fcn block, the MATLAB interpreter is called at each time step,
drastically slowing down the simulation. Use the built-in Fcn block or
Elementary Math block whenever possible.

• Your model includes an M-file S-function. M-file S-functions also cause the
MATLAB interpreter to be called at each time step. Consider either
converting the S-function to a subsystem or to a C-MEX file S-function.

• Your model includes a Memory block. Using a Memory block causes the
variable-order solvers (ode15s and ode113) to be reset back to order 1 at each
time step.

• The maximum step size is too small. If you changed the maximum step size,
try running the simulation again with the default value (auto).

• Did you ask for too much accuracy? The default relative tolerance (0.1%
accuracy) is usually sufficient. For models with states that go to zero, if the
absolute tolerance parameter is too small, the simulation may take too many
steps around the near-zero state values. See the discussion of error in “Error
Tolerances” on page 5–13.

• The time scale may be too long. Reduce the time interval.

• The problem may be stiff but you’re using a nonstiff solver. Try using ode15s.

• The model uses sample times that are not multiples of each other. Mixing
sample times that are not multiples of each other causes the solver to take
small enough steps to ensure sample time hits for all sample times.

Improving Simulation Performance and Accuracy

5-35

• The model contains an algebraic loop. The solutions to algebraic loops are
iteratively computed at every time step. Therefore, they severely degrade
performance. For more information, see “Algebraic Loops” on page 3-18.

• Your model feeds a Random Number block into an Integrator block. For
continuous systems, use the Band-Limited White Noise block in the Sources
library.

Improving Simulation Accuracy
To check your simulation accuracy, run the simulation over a reasonable time
span. Then, reduce either the relative tolerance to 1e-4 (the default is 1e-3) or
the absolute tolerance and run it again. Compare the results of both
simulations. If the results are not significantly different, you can feel confident
that the solution has converged.

If the simulation misses significant behavior at its start, reduce the initial step
size to ensure that the simulation does not “step over” the significant behavior.

If the simulation results become unstable over time:

• Your system may be unstable.

• If you are using ode15s, you may need to restrict the maximum order to 2
(the maximum order for which the solver is A-stable) or try using the ode23s
solver.

If the simulation results do not appear to be accurate:

• For a model that has states whose values approach zero, if the absolute
tolerance parameter is too large, the simulation will take too few steps
around areas of near-zero state values. Reduce this parameter value or
adjust it for individual states in the Integrator dialog box.

• If reducing the absolute tolerances do not sufficiently improve the accuracy,
reduce the size of the relative tolerance parameter to reduce the acceptable
error and force smaller step sizes and more steps.

5 Running a Simulation

5-36

Running a Simulation from the Command Line
Entering simulation commands in the MATLAB command window or from an
M-file enables you to run unattended simulations. You can perform Monte
Carlo analysis by changing the parameters randomly and executing
simulations in a loop. You can run a simulation from the command line using
the sim command or the set_param command. Both are described below.

Using the sim Command
The full syntax of the command that runs the simulation is

[t,x,y] = sim(model, timespan, options, ut);

Only the model parameter is required. Parameters not supplied on the
command are taken from the Simulation Parameters dialog box settings.

For detailed syntax for the sim command, see sim on page 5-37. The options
parameter is a structure that supplies additional simulation parameters,
including the solver name and error tolerances. You define parameters in the
options structure using the simset command (see simset on page 5-41). The
simulation parameters are discussed in “The Simulation Parameters Dialog
Box” on page 5-8.

Using the set_param Command
You can use the set_param command to start, stop, pause, or continue a
simulation, or update a block diagram. Similarly, you can use the get_param
command to check the status of a simulation. The format of the set_param
command for this use is

set_param('sys', 'SimulationCommand', 'cmd')

where 'sys' is the name of the system and 'cmd' is 'start', 'stop', 'pause',
'continue', or 'update'.

The format of the get_param command for this use is

get_param('sys', 'SimulationStatus')

Simulink returns 'stopped', 'initializing', 'running', 'paused',
'terminating', and 'external' (used with Real-Time Workshop).

sim

5-37

5simPurpose Simulate a dynamic system.

Syntax [t,x,y] = sim(model,timespan,options,ut);
[t,x,y1, y2, ..., yn] = sim(model,timespan,options,ut);

Description The sim command executes a Simulink model, using all simulation parameter
dialog settings including Workspace I/O options.

You can supply a null ([]) matrix for any right-side argument except the first
(the model name). The sim command uses default values for unspecified
arguments and arguments specified as null matrices. The default values are
the values specified by the model. You can set optional simulation parameters,
using the sim command’s options argument. Parameters set in this way
override parameters specified by the model.

If you do not specify the left side arguments, the command logs the simulation
data specified by the Workspace I/O pane of the Simulation parameters
dialog box (see “The Workspace I/O Pane” on page 5-18).

If you want to simulate a continuous system, you must specify the solver
parameter, using simset (see simset on page 5-41). The solver defaults to
VariableStepDiscrete for purely discrete models.

Arguments t Returns the simulation’s time vector.

x Returns the simulation’s state matrix consisting of continuous
states followed by discrete states.

y Returns the simulation’s output matrix. Each column contains
the output of a root-level Outport block, in port number order. If
any Outport block has a vector input, its output takes the
appropriate number of columns.

y1,...,yn Each yi returns the output of the corresponding root-level
Outport block for a model that has n such blocks.

model Name of a block diagram.

sim

5-38

Examples This command simulates the Van der Pol equations, using the vdp model that
comes with Simulink. The command uses all default parameters.

[t,x,y] = sim('vdp')

This command simulates the Van der Pol equations, using the parameter
values associated with the vdp model, but defines a value for the Refine
parameter.

[t,x,y] = sim('vdp', [], simset('Refine',2));

This command simulates the Van der Pol equations for 1,000 seconds, saving
the last 100 rows of the return variables. The simulation outputs values for t
and y only, but saves the final state vector in a variable called xFinal.

[t,x,y] = sim('vdp', 1000, simset('MaxRows', 100,
'OutputVariables', 'ty', 'FinalStateName', 'xFinal'));

See Also simset, simget

timespan Simulation start and stop time. Specify as one of these:
tFinal to specify the stop time. The start time is 0.
[tStart tFinal] to specify the start and stop times.
[tStart OutputTimes tFinal] to specify the start and stop
times and time points to be returned in t. Generally, t will
include more time points. OutputTimes is equivalent to
choosing Produce additional output on the dialog box.

options Optional simulation parameters specified as a structure
created by the simset command (see simset on page 5-41).

ut Optional external inputs to top-level Inport blocks. ut can be a
a MATLAB function (expressed as a string) that specifies the
input u = UT(t) at each simulation time step, a table of input
values versus time for all input ports, or a comma-separated
list of tables, ut1, ut2, ..., each of which corresponds to a specific
port. Tabular input for all ports may be in the form of a
MATLAB array or a structure. Tabular input for individual
ports must be in the form of a structure. See “Loading Input
from the Base Workspace” on page 5-19 for a description of the
array and structure input formats.

simplot

5-39

5simplotPurpose Plot simulation data in a figure window.

Syntax simplot(data);
simplot(time, data);

Description The simplot command plots output from a simulation in a Handle Graphics
figure window. The plot looks like the display on the screen of a Scope block.
Plotting the output on a figure window allows you to annotate and print the
output.

Arguments data Data produced by one of Simulink’s output blocks (for example,
a root-level Outport block or a To Workspace block) or in one of
the output formats used by those blocks: Array, Structure,
Structure with time (see “The Workspace I/O Pane” on page
5-18).

time The vector of sample times produced by an output block when
you have selected Array or Structure as the simulation’s
output format. The simplot command ignores this argument if
the format of the data is Structure with time.

simplot

5-40

Examples The following sequence of commands

vdp
set_param(gcs, 'SaveOutput', 'on')
set_param(gcs, ‘SaveFormat’, ‘StructureWithTime’)
sim(gcs)
simplot(yout)

plots the output of the vdp demo model on a figure window as follows.

See Also sim, set_param

simset

5-41

5simsetPurpose Create or edit simulation parameters and solver properties for the sim
command.

Syntax options = simset(property, value, ...);
options = simset(old_opstruct, property, value, ...);
options = simset(old_opstruct, new_opstruct);
simset

Description The simset command creates a structure called options, in which the named
simulation parameters and solver properties have the specified values. All
unspecified parameters and properties take their default values. It is only
necessary to enter enough leading characters to uniquely identify the
parameter or property. Case is ignored for parameters and properties.

options = simset(property, value, ...) sets the values of the named
properties and stores the structure in options.

options = simset(old_opstruct, property, value, ...) modifies the
named properties in old_opstruct, an existing structure.

options = simset(old_opstruct, new_opstruct) combines two existing
options structures, old_opstruct and new_opstruct, into options. Any
properties defined in new_opstruct overwrite the same properties defined in
old_opstruct.

simsetwith no input arguments displays all property names and their possible
values.

You cannot obtain or set values of these properties and parameters using the
get_param and set_param commands.

Parameters AbsTol positive scalar {1e-6}

Absolute error tolerance. This scalar applies to all elements of the state vector.
AbsTol applies only to the variable-step solvers.

Decimation positive integer {1}

Decimation for output variables. Decimation factor applied to the return
variables t, x, and y. A decimation factor of 1 returns every data logging time
point, a decimation factor of 2 returns every other data logging time point, etc.

simset

5-42

DstWorkspace base | {current} | parent

Where to assign variables. This property specifies the workspace in which to
assign any variables defined as return variables or as output variables on the
To Workspace block.

FinalStateName string {''}

Name of final states variable. This property specifies the name of a variable
into which Simulink saves the model’s states at the end of the simulation.

FixedStep positive scalar

Fixed step size. This property applies only to the fixed-step solvers. If the model
contains discrete components, the default is the fundamental sample time;
otherwise, the default is one-fiftieth of the simulation interval.

InitialState vector {[]}

Initial continuous and discrete states. The initial state vector consists of the
continuous states (if any) followed by the discrete states (if any). InitialState
supersedes the initial states specified in the model. The default, an empty
matrix, causes the initial state values specified in the model to be used.

InitialStep positive scalar {auto}

Suggested initial step size. This property applies only to the variable-step
solvers. The solvers try a step size of InitialStep first. By default, the solvers
determine an initial step size automatically.

MaxOrder 1 | 2 | 3 | 4 | {5}

Maximum order of ode15s. This property applies only to ode15s.

MaxDataPoints nonnegative integer {0}

Limit number of output data points. This property limits the number of data
points returned in t, x, and y to the last MaxDataPoints data logging time
points. If specified as 0, the default, no limit is imposed.

MaxStep positive scalar {auto}

Upper bound on the step size. This property applies only to the variable-step
solvers and defaults to one-fiftieth of the simulation interval.

simset

5-43

OutputPoints {specified} | all

Determine output points. When set to specified, the solver produces outputs
t, x, and y only at the times specified in timespan. When set to all, t, x, and y
also include the time steps taken by the solver.

OutputVariables {txy} | tx | ty | xy | t | x | y

Set output variables. If 't', 'x', or 'y' is missing from the property string, the
solver produces an empty matrix in the corresponding output t, x, or y.

Refine positive integer {1}

Output refine factor. This property increases the number of output points by
the specified factor, producing smoother output. Refine applies only to the
variable-step solvers. It is ignored if output times are specified.

RelTol positive scalar {1e-3}

Relative error tolerance. This property applies to all elements of the state
vector. The estimated error in each integration step satisfies

e(i) <= max(RelTol*abs(x(i)),AbsTol(i))

This property applies only to the variable-step solvers and defaults to 1e-3,
which corresponds to accuracy within 0.1%.

Solver VariableStepDiscrete |
ode45 | ode23 | ode113 | ode15s | ode23s |
FixedStepDiscrete |
ode5 | ode4 | ode3 | ode2 | ode1

Method to advance time. This property specifies which solver is used to advance
time.

SrcWorkspace {base} | current | parent

Where to evaluate expressions. This property specifies the workspace in which
to evaluate MATLAB expressions defined in the model.

Trace 'minstep', 'siminfo', 'compile' {''}

Tracing facilities. This property enables simulation tracing facilities (specify
one or more as a comma-separated list):

• The 'minstep' trace flag specifies that simulation will stop when the
solution changes so abruptly that the variable-step solvers cannot take a
step and satisfy the error tolerances. By default, Simulink issues a warning
message and continues the simulation.

simset

5-44

• The 'siminfo' trace flag provides a short summary of the simulation
parameters in effect at the start of simulation.

• The 'compile' trace flag displays the compilation phases of a block diagram
model.

ZeroCross {on} | off

Enable/disable location of zero crossings. This property applies only to the
variable-step solvers. If set to off, variable-step solvers will not detect zero
crossings for blocks having intrinsic zero crossing detection. The solvers adjust
their step sizes only to satisfy error tolerance.

Examples This command creates an options structure called myopts that defines values
for the MaxDataPoints and Refine parameters, using default values for other
parameters.

myopts = simset('MaxDataPoints', 100, 'Refine', 2);

This command simulates the vdpmodel for 10 seconds and uses the parameters
defined in myopts.

[t,x,y] = sim('vdp', 10, myopts);

See Also sim, simget

simget

5-45

5simgetPurpose Get options structure properties and parameters.

Syntax struct = simget(model)
value = simget(model, property)
value = simget(OptionStructure, property)

Description The simget command gets simulation parameter and solver property values for
the specified Simulink model. If a parameter or property is defined using a
variable name, simget returns the variable’s value, not its name. If the
variable does not exist in the workspace, Simulink issues an error message.

struct = simget(model) returns the current options structure for the
specified Simulink model. The options structure is defined using the sim and
simset commands.

value = simget(model, property) extracts the value of the named simulation
parameter or solver property from the model.

value = simget(OptionStructure, property) extracts the value of the
named simulation parameter or solver property from OptionStructure,
returning an empty matrix if the value is not specified in the structure.
property can be a cell array containing the list of parameter and property
names of interest. If a cell array is used, the output is also a cell array.

You need to enter only as many leading characters of a property name as are
necessary to uniquely identify it. Case is ignored for property names.

Examples This command retrieves the options structure for the vdp model.

options = simget('vdp');

This command retrieves the value of the Refine property for the vdp model.

refine = simget('vdp', 'Refine');

See Also sim, simset

simget

5-46

6
Analyzing Simulation
Results

Viewing Output Trajectories 6-2
Using the Scope Block 6-2
Using Return Variables 6-2
Using the To Workspace Block 6-3

Linearization . 6-4

Equilibrium Point Determination 6-7

linfun . 6-9

trim . 6-12

6 Analyzing Simulation Results

6-2

Viewing Output Trajectories
Output trajectories from Simulink can be plotted using one of three methods:

• Feeding a signal into either a Scope or an XY Graph block

• Writing output to return variables and using MATLAB plotting commands

• Writing output to the workspace using To Workspace blocks and plotting the
results using MATLAB plotting commands

Using the Scope Block
You can use display output trajectories on a Scope block during a simulation.
This simple model shows an example of the use of the Scope block.

The display on the Scope shows the output trajectory. The Scope block enables
you to zoom in on an area of interest or save the data to the workspace.

The XY Graph block enables you to plot one signal against another.

These blocks are described in Chapter 9, “Block Reference.”

Using Return Variables
By returning time and output histories, you can use MATLAB plotting
commands to display and annotate the output trajectories.

The block labeled Out is an Outport block from the Signals & Systems library.
The output trajectory, yout, is returned by the integration solver. For more
information, see “The Workspace I/O Pane” on page 5-18.

You can also run this simulation from the Simulation menu by specifying
variables for the time, output, and states on the Workspace I/O page of the
Simulation Parameters dialog box. You can then plot these results using

plot(tout,yout)

Viewing Output Trajectories

6-3

Using the To Workspace Block
The To Workspace block can be used to return output trajectories to the
MATLAB workspace. The model below illustrates this use.

The variables y and t appear in the workspace when the simulation is
complete. The time vector is stored by feeding a Clock block into a To
Workspace block. The time vector can also be acquired by entering a variable
name for the time on the Workspace I/O pane of the Simulation Parameters
dialog box for menu-driven simulations, or by returning it using the sim
command (see “The Workspace I/O Pane” on page 5-18 for more information).

The To Workspace block can accept an array input, with each input element’s
trajectory stored in the resulting workspace variable.

6 Analyzing Simulation Results

6-4

Linearization
Simulink provides the linmod and dlinmod functions to extract linear models
in the form of the state-space matrices A, B, C, and D. State-space matrices
describe the linear input-output relationship as

where x, u, and y are state, input, and output vectors, respectively. For
example, the following model is called lmod.

To extract the linear model of this Simulink system, enter this command.

[A,B,C,D] = linmod('lmod')
A =

-2 -1 -1
1 0 0
0 1 -1

B =
1
0
0

C =
0 1 0
0 0 -1

D =
0
1

Inputs and outputs must be defined using Inport and Outport blocks from the
Signals & Systems library. Source and sink blocks do not act as inputs and

x· Ax Bu+=

y Cx Du+=

Linearization

6-5

outputs. Inport blocks can be used in conjunction with source blocks using a
Sum block. Once the data is in the state-space form or converted to an LTI
object, you can apply functions in the Control System Toolbox for further
analysis:

• Conversion to an LTI object
sys = ss(A,B,C,D);

• Bode phase and magnitude frequency plot
bode(A,B,C,D) or bode(sys)

• Linearized time response
step(A,B,C,D) or step(sys)
impulse(A,B,C,D) or impulse(sys)
lsim(A,B,C,D,u,t) or lsim(sys,u,t)

Other functions in the Control System Toolbox and Robust Control Toolbox can
be used for linear control system design.

When the model is nonlinear, an operating point may be chosen at which to
extract the linearized model. The nonlinear model is also sensitive to the
perturbation sizes at which the model is extracted. These must be selected to
balance the trade-off between truncation and roundoff error. Extra arguments
to linmod specify the operating point and perturbation points.

[A,B,C,D] = linmod('sys', x, u, pert, xpert, upert)

For discrete systems or mixed continuous and discrete systems, use the
function dlinmod for linearization. This has the same calling syntax as linmod
except that the second right-hand argument must contain a sample time at
which to perform the linearization. For more information, see linfun on page
6-9.

Using linmod to linearize a model that contains Derivative or Transport Delay
blocks can be troublesome. Before linearizing, replace these blocks with
specially designed blocks that avoid the problems. These blocks are in the
Simulink Extras library in the Linearization sublibrary. You access the Extras
library by opening the Blocksets & Toolboxes icon:

• For the Derivative block, use the Switched derivative for linearization.

6 Analyzing Simulation Results

6-6

• For the Transport Delay block, use the Switched transport delay for
linearization. (Using this block requires that you have the Control System
Toolbox.)

When using a Derivative block, you can also try to incorporate the derivative
term in other blocks. For example, if you have a Derivative block in series with
a Transfer Fcn block, it is better implemented (although this is not always
possible) with a single Transfer Fcn block of the form

In this example, the blocks on the left of this figure can be replaced by the block
on the right.

s
s a+

Equilibrium Point Determination

6-7

Equilibrium Point Determination
The Simulink trim function determines steady-state equilibrium points.
Consider, for example, this model, called lmod.

You can use the trim function to find the values of the input and the states that
set both outputs to 1. First, make initial guesses for the state variables (x) and
input values (u), then set the desired value for the output (y).

x = [0; 0; 0];
u = 0;
y = [1; 1];

Use index variables to indicate which variables are fixed and which can vary.

ix = []; % Don't fix any of the states
iu = []; % Don't fix the input
iy = [1;2]; % Fix both output 1 and output 2

6 Analyzing Simulation Results

6-8

Invoking trim returns the solution. Your results may differ due to roundoff
error.

[x,u,y,dx] = trim('lmod',x,u,y,ix,iu,iy)

x =
0.0000
1.0000
1.0000

u =
2

y =
1.0000
1.0000

dx =
1.0e–015 *
-0.2220
-0.0227
0.3331

Note that there may be no solution to equilibrium point problems. If that is the
case, trim returns a solution that minimizes the maximum deviation from the
desired result after first trying to set the derivatives to zero. For a description
of the trim syntax, see trim on page 6-12.

linfun

6-9

6linfunPurpose Extract the linear state-space model of a system around an operating point.

Syntax [A,B,C,D] = linfun('sys', x, u)
[num,den] = linfun('sys', x, u)
sys_struc = linfun('sys', x, u)

Arguments

Description linmod obtains linear models from systems of ordinary differential equations
described as Simulink models. linmod returns the linear model in state-space
form, A, B, C, D, which describes the linearized input-output relationship.

Inputs and outputs are denoted in Simulink block diagrams using Inport and
Outport blocks.

[A,B,C,D] = linmod('sys', x, u) obtains the linearized model of sys around
an operating point with the specified state variables x and the input u. If you
omit x and u, the default values are zero.

[num,den] = linfun('sys', x, u) returns the linearized model in transfer
function form.

sys_struc = linfun('sys', x, u) returns a structure that contains the
linearized model, including state names, input and output names, and
information about the operating point.

Discrete-Time System Linearization
The function dlinmod can linearize discrete, multirate, and hybrid continuous
and discrete systems at any given sampling time. Use the same calling syntax
for dlinmod as for linmod, but insert the sample time at which to perform the
linearization as the second argument. For example,

linfun linmod, dlinmod, or linmod2.

sys The name of the Simulink system from which the linear model
is to be extracted.

x and u The state and the input vectors. If specified, they set the
operating point at which the linear model is to be extracted.

x· Ax Bu+=
y Cx Du+=

linfun

6-10

[Ad,Bd,Cd,Dd] = dlinmod('sys', Ts, x, u);

produces a discrete state-space model at the sampling time Ts and the
operating point given by the state vector x and input vector u. To obtain a
continuous model approximation of a discrete system, set Ts to 0.

For systems composed of linear, multirate, discrete, and continuous blocks,
dlinmod produces linear models having identical frequency and time responses
(for constant inputs) at the converted sampling time Ts, provided that:

• Ts is an integer multiple of all the sampling times in the system.

• The system is stable.

For systems that do not meet the first condition, in general the linearization is
a time-varying system, which cannot be represented with the [A,B,C,D]
state-space model that dlinmod returns.

Computing the eigenvalues of the linearized matrix Ad provides an indication
of the stability of the system. The system is stable if Ts>0 and the eigenvalues
are within the unit circle, as determined by this statement.

all(abs(eig(Ad))) < 1

Likewise, the system is stable if Ts = 0 and the eigenvalues are in the left half
plane, as determined by this statement.

all(real(eig(Ad))) < 0

When the system is unstable and the sample time is not an integer multiple of
the other sampling times, dlinmod produces Ad and Bd matrices, which may be
complex. The eigenvalues of the Ad matrix in this case still, however, provide a
good indication of stability.

You can use dlinmod to convert the sample times of a system to other values or
to convert a linear discrete system to a continuous system or vice versa.

The frequency response of a continuous or discrete system can be found by
using the bode command.

Notes By default, the system time is set to zero. For systems that are dependent on
time, you can set the variable pert to a two-element vector, where the second
element is used to set the value of t at which to obtain the linear model..

linfun

6-11

The ordering of the states from the nonlinear model to the linear model is
maintained. For Simulink systems, a string variable that contains the block
name associated with each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated
with the ith state. Inputs and outputs are numbered sequentially on the
diagram.

For single-input multi-output systems, you can convert to transfer function
form using the routine ss2tf or to zero-pole form using ss2zp. You can also
convert the linearized models to LTI objects using ss. This function produces
an LTI object in state-space form that can be further converted to transfer
function or zero-pole-gain form using tf or zpk.

Linearizing a model that contains Derivative or Transport Delay blocks can be
troublesome. For more information, see “Linearization” on page 6-4.

trim

6-12

6trimPurpose Find a trim point of a dynamic system.

Syntax [x,u,y,dx] = trim('sys')
[x,u,y,dx] = trim('sys',x0,u0,y0)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t)
[x,u,y,dx,options] = trim('sys',...)

Description A trim point, also known as an equilibrium point, is a point in the parameter
space of a dynamic system where the system is in a steady state. For example,
a trim point of an aircraft is a setting of its controls that causes the aircraft to
fly straight and level. Mathematically, a trim point is a point where the
system’s state derivatives equal zero. trim starts from an initial point and
searches, using a sequential quadratic programming algorithm, until it finds
the nearest trim point. You must supply the initial point implicitly or explicitly.
If trim cannot find a trim point, it returns the point encountered in its search
where the state derivatives are closest to zero in a min-max sense; that is, it
returns the point that minimizes the maximum deviation from zero of the
derivatives. trim can find trim points that meet specific input, output, or state
conditions and points where a system is changing in a specified manner, that
is, points where the system’s state derivatives equal specific, nonzero values.

[x,u,y] = trim('sys') finds the equilibrium point nearest to the system’s
initial state x0. Specifically, trim finds the equilibrium point that minimizes
the maximum absolute value of [x–x0,u,y]. If trim cannot find an equilibrium
point near the system’s initial state, it returns the point where the system is
nearest to equilibrium. Specifically, it returns the point that minimizes
abs(dx–0). You can obtain x0 using this command.

[sizes,x0,xstr] = sys([],[],[],0)

[x,u,y] = trim('sys',x0,u0,y0) finds the trim point nearest to x0, u0, y0,
that is, the point that minimizes the maximum value of

abs([x–x0; u–u0; y–y0])

The command

trim('sys', x0, u0, y0, ix, iu, iy)

trim

6-13

finds the trim point closest to x0, u0, y0 that satisfies a specified set of state,
input, and/or output conditions. The integer vectors ix, iu, and iy select the
values in x0, u0, and y0 that must be satisfied. If trim cannot find an
equilibrium point that satisfies the specified set of conditions exactly, it returns
the nearest point that satisfies the conditions, namely

abs([x(ix)-x0(ix); u(iu)-u0(iu); y(iy)-y0(iy)])

Use the syntax

[x,u,y,dx] = trim('sys', x0, u0, y0, ix, iu, iy, dx0, idx)

to find specific nonequilibrium points, that is, points where the system’s state
derivatives have some specified, nonzero value. Here, dx0 specifies the state
derivative values at the search’s starting point and idx selects the values in
dx0 that the search must satisfy exactly.

The optional options argument is an array of optimization parameters that
trim passes to the optimization function that it uses to find trim points. The
optimization function, in turn, uses this array to control the optimization
process and to return information about the process. trim returns the options
array at the end of the search process. By exposing the underlying optimization
process in this way, trim allows you to monitor and fine-tune the search for
trim points.

Five of the optimization array elements are particularly useful for finding trim
points. The following table describes how each element affects the search for a
trim point.

No. Default Description

1 0 Specifies display options. 0 specifies no display; 1
specifies tabular output; -1 suppresses warning
messages.

2 0.0001 Precision the computed trim point must attain to
terminate the search.

3 0.0001 Precision the trim search goal function must attain to
terminate the search.

trim

6-14

See the Optimization Toolbox User’s Guide for a detailed description of the
options array.

Examples Consider a linear state-space model

The A, B, C, and D matrices are as follows in a system called sys.

A = [-0.09 -0.01; 1 0];
B = [0 -7; 0 -2];
C = [0 2; 1 -5];
D = [-3 0; 1 0];

Example 1 To find an equilibrium point, use

[x,u,y,dx,options] = trim('sys')

x =
0
0

u =
0

y =
0
0

dx =
0
0

4 0.0001 Precision the state derivatives must attain to terminate
the search.

10 N/A Returns the number of iterations used to find a trim
point.

No. Default Description (Continued)

x· Ax Bu+=

y Cx Du+=

trim

6-15

The number of iterations taken is

options(10)
ans =

7

Example 2 To find an equilibrium point near x = [1;1], u = [1;1], enter

x0 = [1;1];
u0 = [1;1];
[x,u,y,dx,options] = trim('sys', x0, u0);

x =
 1.0e–11 ∗
-0.1167
-0.1167

u =
 0.3333
 0.0000

y =
-1.0000
 0.3333

dx =
 1.0e–11 ∗
 0.4214
 0.0003

The number of iterations taken is

options(10)
ans =

25

Example 3 To find an equilibrium point with the outputs fixed to 1, use

y = [1;1];
iy = [1;2];
[x,u,y,dx] = trim('sys', [], [], y, [], [], iy)

x =
 0.0009
-0.3075

trim

6-16

u =
-0.5383
 0.0004

y =
 1.0000
 1.0000

dx =
 1.0e-16 ∗
-0.0173
 0.2396

Example 4 To find an equilibrium point with the outputs fixed to 1 and the derivatives set
to 0 and 1, use

y = [1;1];
iy = [1;2];
dx = [0;1];
idx = [1;2];
[x,u,y,dx,options] = trim('sys',[],[],y,[],[],iy,dx,idx)

x =
 0.9752
-0.0827

u =
-0.3884
-0.0124

y =
 1.0000
 1.0000

dx =
 0.0000
 1.0000

The number of iterations taken is

options(10)
ans =

13

Limitations The trim point found by trim starting from any given initial point is only a local
value. Other, more suitable trim points may exist. Thus, if you want to find the

trim

6-17

most suitable trim point for a particular application, it is important to try a
number of initial guesses for x, u, and y.

Algorithm trim uses a sequential quadratic programming algorithm to find trim points.
See the Optimization Toolbox User’s Guide for a description of this algorithm.

trim

6-18

7
Using Masks to Customize
Blocks

Introduction . 7-2

A Sample Masked Subsystem 7-3
Creating Mask Dialog Box Prompts 7-4
Creating the Block Description and Help Text 7-6
Creating the Block Icon 7-6

The Mask Editor: An Overview 7-8

The Initialization Pane 7-9
Prompts and Associated Variables 7-9
Default Values for Masked Block Parameters 7-13
Tunable Parameters 7-13
Tunable Parameters 7-13

The Icon Pane 7-17
Displaying Text on the Block Icon 7-17
Displaying Graphics on the Block Icon 7-19
Displaying Images on Masks 7-20
Displaying a Transfer Function on the Block Icon 7-21
Controlling Icon Properties 7-22

The Documentation Pane 7-25
The Mask Type Field 7-25
The Block Description Field 7-25
The Mask Help Text Field 7-26

Creating Self-Modifying Masked Blocks 7-27

Creating Dynamic Dialogs for Masked Blocks 7-28
Setting Masked Block Dialog Parameters 7-28
Predefined Masked Dialog Parameters 7-29

7 Using Masks to Customize Blocks

7-2

Introduction
Masking is a powerful Simulink feature that enables you to customize the
dialog box and icon for a subsystem. With masking, you can:

• Simplify the use of your model by replacing many dialog boxes in a
subsystem with a single one. Instead of requiring the user of the model to
open each block and enter parameter values, those parameter values can be
entered on the mask dialog box and passed to the blocks in the masked
subsystem.

• Provide a more descriptive and helpful user interface by defining a dialog box
with your own block description, parameter field labels, and help text.

• Define commands that compute variables whose values depend on block
parameters.

• Create a block icon that depicts the subsystem’s purpose.

• Prevent unintended modification of subsystems by hiding their contents
behind a customized interface.

• Create dynamic dialogs.

A Sample Masked Subsystem

7-3

A Sample Masked Subsystem
This simple subsystem models the equation for a line, y = mx + b.

Ordinarily, when you double-click on a Subsystem block, the Subsystem block
opens, displaying its blocks in a separate window. The mx + b subsystem
contains a Gain block, named Slope, whose Gain parameter is specified as m,
and a Constant block, named Intercept, whose Constant value parameter is
specified as b. These parameters represent the slope and intercept of a line.

This example creates a custom dialog box and icon for the subsystem. One
dialog box contains prompts for both the slope and the intercept. After you
create the mask, double-click on the Subsystem block to open the mask dialog
box. The mask dialog box and icon look like this.

A user enters values for Slope and Intercept into the mask dialog box.
Simulink makes these values available to all the blocks in the underlying
subsystem. Masking this subsystem creates a self-contained functional unit
with its own application-specific parameters, Slope and Intercept. The mask
maps these mask parameters to the generic parameters of the underlying
blocks. The complexity of the subsystem is encapsulated by a new interface
that has the look and feel of a built-in Simulink block.

The mask dialog box

The block icon

7 Using Masks to Customize Blocks

7-4

To create a mask for this subsystem, you need to:

• Specify the prompts for the mask dialog box parameters. In this example, the
mask dialog box has prompts for the slope and intercept.

• Specify the variable name used to store the value of each parameter.

• Enter the documentation of the block, consisting of the block description and
the block help text.

• Specify the drawing command that creates the block icon.

• Specify the commands that provide the variables needed by the drawing
command (there are none in this example).

Creating Mask Dialog Box Prompts
To create the mask for this subsystem, select the Subsystem block and choose
Mask Subsystem from the Edit menu.

The mask dialog box shown at the beginning of this section is created largely
on the Initialization pane of the Mask Editor. For this sample model, the pane
looks like this.

Parameter fields: prompts,
types, and variables that
hold the values entered by the
user

The commands that define
variables used by the icon
drawing command or by blocks
in the masked subsystem

Where you enter and edit the
parameter field
characteristics

A Sample Masked Subsystem

7-5

The Mask Editor enables you to specify these attributes of a mask parameter:

• The prompt – the text label that describes the parameter

• The control type – the style of user interface control that determines how
parameter values are entered or selected

• The variable – the name of the variable that will store the parameter value

Generally, it is convenient to refer to masked parameters by their prompts. In
this example, the parameter associated with slope is referred to as the Slope
parameter, and the parameter associated with intercept is referred to as the
Intercept parameter.

The slope and intercept are defined as edit controls. This means that the user
types values into edit fields in the mask dialog box. These values are stored in
variables in the mask workspace (see “The Mask Workspace” on page 7-14).
Masked blocks can access variables only in the mask workspace. In this
example, the value entered for the slope is assigned to the variable m. The Slope
block in the masked subsystem gets the value for the slope parameter from the
mask workspace. This figure shows how the slope parameter definitions in the
Mask Editor map to the actual mask dialog box parameters.

After you have created the mask parameters for slope and intercept, press the
OK button. Then, double-click on the Subsystem block to open the newly
constructed dialog box. Enter 3 for the Slope and 2 for the Intercept
parameter.

7 Using Masks to Customize Blocks

7-6

Creating the Block Description and Help Text
The mask type, block description, and help text are defined on the
Documentation pane. For this sample masked block, the pane looks like this.

Creating the Block Icon
So far, we have created a customized dialog box for the mx + b subsystem.
However, the Subsystem block still displays the generic Simulink subsystem
icon. An appropriate icon for this masked block is a plot that indicates the slope
of the line. For a slope of 3, that icon looks like this.

A Sample Masked Subsystem

7-7

The block icon is defined on the Icon pane. For this block, the Icon pane looks
like this.

The drawing command plots a line from (0,0) to (1,m). If the slope is negative,
Simulink shifts the line up by 1 to keep it within the visible drawing area of the
block.

The drawing commands have access to all of the variables in the mask
workspace. As you enter different values of slope, the icon updates the slope of
the plotted line.

Select Normalized as the Drawing coordinates parameter, located at the
bottom of the list of icon properties, to specify that the icon be drawn in a frame
whose bottom-left corner is (0,0) and whose top-right corner is (1,1). See
“Displaying Graphics on the Block Icon” on page 7-19 for more information.

Drawing commands

Icon properties

7 Using Masks to Customize Blocks

7-8

The Mask Editor: An Overview
To mask a subsystem (you can only mask Subsystem blocks), select the
Subsystem block, then choose Mask Subsystem from the Edit menu. The
Mask Editor appears. The Mask Editor consists of three panes, each handling
a different aspect of the mask:

• The Initialization pane enables you to define and describe mask dialog box
parameter prompts, name the variables associated with the parameters, and
specify initialization commands.

• The Icon pane enables you to define the block icon.

• The Documentation pane enables you to define the mask type and specify
the block description and the block help.

Five buttons appear along the bottom of the Mask Editor:

• The OK button applies the mask settings on all panes and closes the Mask
Editor.

• The Cancel button closes the Mask Editor without applying any changes
made since you last pressed the Apply button.

• The Unmask button deactivates the mask and closes the Mask Editor. The
mask information is retained so that the mask can be reactivated. To
reactivate the mask, select the block and choose Create Mask. The Mask
Editor opens, displaying the previous settings. The inactive mask
information is discarded when the model is closed and cannot be recovered.

• The Help button displays the contents of this chapter.

• The Apply button creates or changes the mask using the information that
appears on all masking panes. The Mask Editor remains open.

To see the system under the mask without unmasking it, select the Subsystem
block, then choose Look Under Mask from the Edit menu. This command
opens the subsystem. The block’s mask is not affected.

The Initialization Pane

7-9

The Initialization Pane
The mask interface enables a user of a masked system to enter parameter
values for blocks within the masked system. You create the mask interface by
defining prompts for parameter values on the Initialization pane. The
Initialization pane for the mx+b sample masked system looks like this.

Prompts and Associated Variables
A prompt provides information that helps the user enter or select a value for a
block parameter. Prompts appear on the mask dialog box in the order they
appear in the Prompt list.

When you define a prompt, you also specify the variable that is to store the
parameter value, choose the style of control for the prompt, and indicate how
the value is to be stored in the variable.

If the Assignment type is Evaluate, the value entered by the user is evaluated
by MATLAB before it is assigned to the variable. If the type is Literal, the
value entered by the user is not evaluated, but is assigned to the variable as a
string.

List of prompts

Full description of each
parameter prompt

Initialization
commands

7 Using Masks to Customize Blocks

7-10

For example, if the user enters the string gain in an edit field and the
Assignment type is Evaluate, the string gain is evaluated by MATLAB and
the result is assigned to the variable. If the type is Literal, the string is not
evaluated by MATLAB so the variable contains the string 'gain'.

If you need both the string entered as well as the evaluated value, choose
Literal. Then use the MATLAB eval command in the initialization commands.
For example, if LitVal is the string 'gain', then to obtain the evaluated value,
use the command

value = eval(LitVal)

In general, most parameters use an Assignment type of Evaluate.

Creating the First Prompt
To create the first prompt in the list, enter the prompt in the Prompt field, the
variable that is to contain the parameter value in the Variable field, and
choose a control style and an assignment type.

Inserting a Prompt
To insert a prompt in the list:

1 Select the prompt that appears immediately below where you want to insert
the new prompt and click on the Add button to the left of the prompt list.

2 Enter the text for the prompt in the Prompt field. Enter the variable that is
to hold the parameter value in the Variable field.

Editing a Prompt
To edit an existing prompt:

1 Select the prompt in the list. The prompt, variable name, control style, and
assignment type appear in the fields below the list.

2 Edit the appropriate value. When you click the mouse outside the field or
press the Enter or Return key, Simulink updates the prompt.

The Initialization Pane

7-11

Deleting a Prompt
To delete a prompt from the list:

1 Select the prompt you want to delete.

2 Click on the Delete button to the left of the prompt list.

Moving a Prompt
To move a prompt in the list:

1 Select the prompt you want to move.

2 To move the prompt up one position in the prompt list, click on the Up
button to the left of the prompt list. To move the prompt down one position,
click on the Down button.

Control Types
Simulink enables you to choose how parameter values are entered or selected.
You can create three styles of controls: edit fields, check boxes, and pop-up
controls. For example, this figure shows the parameter area of a mask dialog
box which uses all three styles of controls (with the pop-up control open).

Defining an Edit Control
An edit field enables the user to enter a parameter value by typing it into a
field. This figure shows how the prompt for the sample edit control was defined.

Edit control

Check box control

Pop-up control

7 Using Masks to Customize Blocks

7-12

The value of the variable associated with the parameter (freq) is determined
by the Assignment type defined for the prompt.

Defining a Check Box Control
A check box enables the user to choose between two alternatives by selecting or
deselecting a check box. This figure shows how the sample check box control is
defined.

The value of the variable associated with the parameter (label) depends on
whether the check box is selected and the Assignment type defined for the
prompt.

Defining a Pop-Up Control
A popup enables the user to choose a parameter value from a list of possible
values. You specify the list in the Popup strings field, separating items with a
vertical line (|). This figure shows how the sample pop-up control is defined.

Assignment Value

Evaluate The result of evaluating the expression entered in the field.

Literal The actual string entered in the field.

Check Box Evaluated Value Literal Value

Checked 1 'on'

Not checked 0 'off'

The Initialization Pane

7-13

The value of the variable associated with the parameter (color) depends on the
item selected from the pop-up list and the Assignment type defined for the
prompt.

Default Values for Masked Block Parameters
To change default parameter values in a masked library block, follow these
steps:

1 Unlock the library.

2 Open the block to access its dialog box, fill in the desired default values, and
close the dialog box.

3 Save the library.

When the block is copied into a model and opened, the default values appear on
the block’s dialog box.

For more information, see “Libraries” on page 4–77.

Tunable Parameters
A tunable parameter is a parameter that a user can modify at runtime. When
you create a mask, all its parameters are tunable. You can subsequently
disable or re-enable tuning of any of a mask’s parameters via the
MaskTunableValues parameter. The value of this parameter is a cell array of
strings, each of which corresponds to one of a masked block’s parameters. The
first cell corresponds to the first parameter, the second cell to the second
parameter, and so on. If a parameter is tunable, the value of the corresponding
cell is on; otherwise, the value is off. To enable or disable tuning of a
parameter, first get the cell array, using get_param. Then, set the

Assignment Value

Evaluate The index of the value selected from the list, starting with
1. For example, if the third item is selected, the parameter
value is 3.

Literal A string that is the value selected. If the third item is
selected, the parameter value is 'green'.

7 Using Masks to Customize Blocks

7-14

corresponding cell to on or off and reset the MaskTunableValues parameter
using set_param. For example, the following commands disable tuning of the
first parameter of the currently selected masked block.

ca = get_param(gcb, 'MaskTunableValues');
ca(1) = 'off'
set_param(gcb, 'MaskTunableValues’, ca)

After changing a block’s tunable parameters, make the changes permanent by
saving the block.

Initialization Commands
Initialization commands define variables that reside in the mask workspace.
These variables can be used by all initialization commands defined for the
mask, by blocks in the masked subsystem, and by commands that draw the
block icon (drawing commands).

Simulink executes the initialization commands when:

• The model is loaded.

• The simulation is started or the block diagram is updated.

• The masked block is rotated.

• The block’s icon needs to be redrawn and the plot commands depend on
variables defined in the initialization commands.

Initialization commands are valid MATLAB expressions, consisting of
MATLAB functions, operators, and variables defined in the mask workspace.
Initialization commands cannot access base workspace variables. Terminate
initialization commands with a semicolon to avoid echoing results to the
command window.

The Mask Workspace
Simulink creates a local workspace, called a mask workspace, when either of
the following occurs:

• The mask contains initialization commands.

• The mask defines prompts and associates variables with those prompts.

The Initialization Pane

7-15

The contents of a mask workspace include the variables associated with the
mask’s parameters and variables defined by initialization commands.

In the mx + b example, described earlier in this chapter, the Mask Editor
explicitly creates m and b in the mask workspace by associating a variable with
a mask parameter. The figure below shows the mapping of values entered in
the mask dialog box to variables in the mask workspace (indicated by the solid
line) and the access of those variables by the underlying blocks (indicated by
the dashed line).

Mask workspaces are analogous to the local workspaces used by M-file
functions. You can think of the expressions entered into the dialog boxes of the
underlying blocks and the initialization commands entered on the Mask Editor
as lines of an M-file function. Using this analogy, the local workspace for this
“function” is the mask workspace.

Masked subsystems create a hierarchy of workspaces. The workspace of a
masked block is a subspace of the model workspace and of the workspaces of
any blocks that contain the masked block. A masked block can access all
variables that are uniquely defined in its workspace hierarchy. The blocks in a
masked subsystem can similarly access any uniquely defined variable in the
masked subsystem’s workspace hierarchy.

m

b

Mask
Workspace

7 Using Masks to Customize Blocks

7-16

If a variable is defined in more than one place in the hierarchy, the masked
block can access only the most local definition. For example, suppose that
model M contains masked subsystem A, which contains masked subsystem B.
Further suppose that B refers to a variable x that exists in both A’s and M’s
workspaces. In this case, the reference resolves to the value of x in A’s
workspace.

Note A masked block’s initialization code can access only variables defined in
the masked block’s local workspace.

Debugging Initialization Commands
You can debug initialization commands in these ways:

• Specify an initialization command without a terminating semicolon to echo
its results to the command window.

• Place a keyboard command in the initialization commands to stop execution
and give control to the keyboard. For more information, see the help text for
the keyboard command.

• Enter either of these commands in the MATLAB command window.

dbstop if error
dbstop if warning

If an error occurs in the initialization commands, execution stops and you
can examine the mask workspace. For more information, see the help text for
the dbstop command.

The Icon Pane

7-17

The Icon Pane
The Icon pane enables you to customize the masked block’s icon. You create a
custom icon by specifying commands in the Drawing commands field. You can
create icons that show descriptive text, state equations, images, and graphics.
This figure shows the Icon pane.

Drawing commands have access to all variables in the mask workspace.

Drawing commands can display text, one or more plots, or show a transfer
function. If you enter more than one command, the results of the commands are
drawn on the icon in the order the commands appear.

Displaying Text on the Block Icon
To display text on the icon, enter one of these drawing commands.

disp('text') or disp(variablename)

text(x, y, 'text')
text(x, y, stringvariablename)

The mask type

Commands that draw the
block icon

Parameters that control
the icon appearance

7 Using Masks to Customize Blocks

7-18

text(x, y, text, 'horizontalAlignment', halign,
'verticalAlignment', valign)

fprintf('text') or fprintf('format', variablename)

port_label(port_type, port_number, label)

The disp command displays text or the contents of variablename centered on
the icon.

The text command places a character string (text or the contents of
stringvariablename) at a location specified by the point (x,y). The units
depend on the Drawing coordinates parameter. For more information, see
“Controlling Icon Properties” on page 7–22.

You can optionally specify the horizontal and/or vertical alignment of the text
relative to the point (x, y) in the text command. For example, the command

text(0.5, 0.5, 'foobar', 'horizontalAlignment', 'center')

centers foobar in the icon.

The text command offers the following horizontal alignment options.

The text command offers the following vertical alignment options.

Option Aligns

left The left end of the text at the specified point

right The right end of the text at the specified point

center The center of the text at the specified point

Option Aligns

base The baseline of the text at the specified point

bottom The bottom line of the text at the specified point

middle The midline of the text at the specified point

The Icon Pane

7-19

The fprintf command displays formatted text centered on the icon and can
display text along with the contents of variablename.

Note While these commands are identical in name to their corresponding
MATLAB functions, they provide only the functionality described above.

To display more than one line of text, use \n to indicate a line break. For
example, the figure below shows two samples of the disp command.

The port_label command lets you specify the labels of ports displayed on the
icon. The command’s syntax is

port_label(port_type, port_number, label)

where port_type is either 'input' or 'output', port_number is an integer,
and label is a string specifying the port’s label. For example, the command

port_label('input', 1, 'a')

defines a as the label of input port 1.

Displaying Graphics on the Block Icon
You can display plots on your masked block icon by entering one or more plot
commands. You can use these forms of the plot command.

plot(Y);
plot(X1,Y1,X2,Y2,...);

plot(Y) plots, for a vector Y, each element against its index. If Y is a matrix, it
plots each column of the matrix as though it were a vector.

cap The capitals line of the text at the specified point

top The top of the text at the specified point

Option Aligns

7 Using Masks to Customize Blocks

7-20

plot(X1,Y1,X2,Y2,...) plots the vectors Y1 against X1, Y2 against X2, and so
on. Vector pairs must be the same length and the list must consist of an even
number of vectors.

For example, this command generates the plot that appears on the icon for the
Ramp block, in the Sources library. The icon appears below the command.

plot([0 1 5], [0 0 4])

Plot commands can include NaN and inf values. When NaNs or infs are
encountered, Simulink stops drawing, then begins redrawing at the next
numbers that are not NaN or inf.

The appearance of the plot on the icon depends on the value of the Drawing
coordinates parameter. For more information, see “Controlling Icon
Properties” on page 7–22.

Simulink displays three question marks (? ? ?) in the block icon and issues
warnings in these situations:

• When the values for the parameters used in the drawing commands are not
yet defined (for example, when the mask is first created and values have not
yet been entered into the mask dialog box)

• When a masked block parameter or drawing command is entered incorrectly

Displaying Images on Masks
The masked dialog functions, image and patch, enable you to display
bitmapped images and draw patches on masked block icons.

image(a) displays the image a where a is an M by N by 3 array of RGB values.
You can use the MATLAB commands, imread and ind2rgb, to read and convert
bitmap files to the necessary matrix format. For example,

image(imread('icon.tif'))

reads the icon image from a TIFF file named icon.tif in the MATLAB path.

image(a, [x, y, w, h]) creates the image at the specified position relative to
the lower left corner of the mask.

The Icon Pane

7-21

image(a, [x, y, w, h], rotation) allows you to specify whether the image
rotates ('on’) or remains stationary ('off') as the icon rotates. The default is
'off’.

patch(x, y) creates a solid patch having the shape specified by the coordinate
vectors x and y. The patch’s color is the current foreground color.

patch(x, y, [r g b]) creates a solid patch of the color specified by the vector
[r g b], where r is the red component, g the green, and b the blue. For
example,

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask’s icon.

Displaying a Transfer Function on the Block Icon
To display a transfer function equation in the block icon, enter the following
command in the Drawing commands field.

dpoly(num, den)
dpoly(num, den, 'character')

num and den are vectors of transfer function numerator and denominator
coefficients, typically defined using initialization commands. The equation is
expressed in terms of the specified character. The default is s. When the icon
is drawn, the initialization commands are executed and the resulting equation
is drawn on the icon:

• To display a continuous transfer function in descending powers of s, enter
dpoly(num, den)

For example, for num = [0 0 1]; and den = [1 2 1]; the icon looks like this.

• To display a discrete transfer function in descending powers of z, enter
dpoly(num, den, 'z')

For example, for num = [0 0 1]; and den = [1 2 1]; the icon looks like this.

7 Using Masks to Customize Blocks

7-22

• To display a discrete transfer function in ascending powers of 1/z, enter
dpoly(num, den, 'z-')

For example, for num and den as defined above, the icon looks like this.

• To display a zero-pole gain transfer function, enter
droots(z, p, k)

For example, the above command creates this icon for these values.
z = []; p = [-1 -1]; k = 1;

You can add a fourth argument ('z' or 'z-') to express the equation in terms
of z or 1/z.

If the parameters are not defined or have no values when you create the icon,
Simulink displays three question marks (? ? ?) in the icon. When the
parameter values are entered in the mask dialog box, Simulink evaluates the
transfer function and displays the resulting equation in the icon.

Controlling Icon Properties
You can control a masked block’s icon properties by selecting among the choices
below the Drawing commands field.

Icon frame
The icon frame is the rectangle that encloses the block. You can choose to show
or hide the frame by setting the Icon frame parameter to Visible or Invisible.
The default is to make the icon frame visible. For example, this figure shows
visible and invisible icon frames for an AND gate block.

Visible Invisible

The Icon Pane

7-23

Icon transparency
The icon can be set to Opaque or Transparent, either hiding or showing what
is underneath the icon. Opaque, the default, covers information Simulink
draws, such as port labels. This figure shows opaque and transparent icons for
an AND gate block. Notice the text on the transparent icon.

Icon rotation
When the block is rotated or flipped, you can choose whether to rotate or flip
the icon, or to have it remain fixed in its original orientation. The default is not
to rotate the icon. The icon rotation is consistent with block port rotation. This
figure shows the results of choosing Fixed and Rotates icon rotation when the
AND gate block is rotated.

Drawing coordinates
This parameter controls the coordinate system used by the drawing commands.
This parameter applies only to plot and text drawing commands. You can
select from among these choices: Autoscale, Normalized, and Pixel.

Opaque Transparent

Fixed Rotates

min(X), min(Y)

max(X), max(Y)

0,0

block width, block height

0,0

1,1

Autoscale Normalized Pixel

7 Using Masks to Customize Blocks

7-24

• Autoscale automatically scales the icon within the block frame. When the
block is resized, the icon is also resized. For example, this figure shows the
icon drawn using these vectors.
X = [0 2 3 4 9]; Y = [4 6 3 5 8];

The lower-left corner of the block frame is (0,3) and the upper-right corner is
(9,8). The range of the x-axis is 9 (from 0 to 9), while the range of the y-axis
is 5 (from 3 to 8).

• Normalized draws the icon within a block frame whose bottom-left corner is
(0,0) and whose top right corner is (1,1). Only X and Y values between 0 and
1 appear. When the block is resized, the icon is also resized. For example, this
figure shows the icon drawn using these vectors.

X = [.0 .2 .3 .4 .9]; Y = [.4 .6 .3 .5 .8];

• Pixel draws the icon with X and Y values expressed in pixels. The icon is not
automatically resized when the block is resized. To force the icon to resize
with the block, define the drawing commands in terms of the block size.

This example demonstrates how to create an improved icon for the mx + b
sample masked subsystem discussed earlier in this chapter. These
initialization commands define the data that enables the drawing command
to produce an accurate icon regardless of the shape of the block.
pos = get_param(gcb, 'Position');
width = pos(3) – pos(1); height = pos(4) – pos(2);
x = [0, width];
if (m >= 0), y = [0, (m*width)]; end
if (m < 0), y = [height, (height + (m*width))]; end

The drawing command that generates this icon is plot(x,y).

The Documentation Pane

7-25

The Documentation Pane
The Documentation pane enables you to define or modify the type,
description, and help text for a masked block. This figure shows how fields on
the Documentation pane correspond to the mx+b sample mask block’s dialog
box.

The Mask Type Field
The mask type is a block classification used only for purposes of
documentation. It appears in the block’s dialog box and on all Mask Editor
panes for the block. You can choose any name you want for the mask type.
When Simulink creates the block’s dialog box, it adds “(mask)” after the mask
type to differentiate masked blocks from built-in blocks.

The Block Description Field
The block description is informative text that appears in the block’s dialog box
in the frame under the mask type. If you are designing a system for others to
use, this is a good place to describe the block’s purpose or function.

7 Using Masks to Customize Blocks

7-26

Simulink automatically wraps long lines of text. You can force line breaks by
using the Enter or Return key.

The Mask Help Text Field
You can provide help text that gets displayed when the Help button is pressed
on the masked block’s dialog box. If you create models for others to use, this is
a good place to explain how the block works and how to enter its parameters.

You can include user-written documentation for a masked block’s help. You can
specify any of the following for the masked block help text:

• URL specification (a string starting with http:, www, file:, ftp:, or
mailto:)

• web command (launches a browser)

• eval command (evaluates a MATLAB string)

• Static text displayed in the Web browser

Simulink examines the first line of the masked block help text. If it detects a
URL specification, web command, or eval command, it accesses the block help
as directed; otherwise, the full contents of the masked block help text are
displayed in the browser.

These examples illustrate several acceptable commands.

web([docroot '/My Blockset Doc/' get_param(gcb,'MaskType')...
'.html'])
eval('!Word My_Spec.doc')
http://www.mathworks.com
file:///c:/mydir/helpdoc.html
www.mathworks.com

Simulink automatically wraps long lines of text.

Creating Self-Modifying Masked Blocks

7-27

Creating Self-Modifying Masked Blocks
A masked block can modify itself based on user input. In particular, a masked
block can change the contents of its underlying system block and set the
parameters of those blocks based on user input. For example, you can create a
block that adds or deletes input and output ports depending on some user
setting.

When creating a self-modifying masked block, you must set its
MaskSelfModifiable parameter to 'on'. Otherwise, Simulink generates an
error when the block tries to modify itself, that is, when any code in the masked
block’s workspace tries to add or delete blocks from the underlying system
block or modify the parameters of any blocks in the underlying system block.

To set the MaskSelfModifiable parameter, select the self-modifying block and
enter the following command

set_param(gcb, 'MaskSelfModifiable', 'on');

at the MATLAB prompt. Then, save the block.

7 Using Masks to Customize Blocks

7-28

Creating Dynamic Dialogs for Masked Blocks
Simulink allows you to create dialogs for masked blocks whose appearance
changes in response to user input. Features of masked dialog features that can
change in this way include:

• Visibility of parameter controls

Changing a parameter can cause the control for another parameter to appear
or disappear. The dialog expands or shrinks when a control appears or
disappears, respectively.

• Enabled state of parameter controls

Changing a parameter can cause the control for another parameter to be
enabled or disabled for input. Simulink grays a disabled control to indicate
visually that it is disabled.

• Parameter values

Changing a parameter can cause related parameters to be set to appropriate
values.

Creating a dynamic masked dialog entails using the mask editor in
combination with the Simulink set_param command. Specifically, you first use
the mask editor to define all the dialog’s parameters both static and dynamic.
Next you use the Simulink set_param command at the MATLAB command line
to specify callback functions that define the dialog’s response to user input.
Finally you save the model or library containing the masked subsystem to
complete the creation of the dynamic masked dialog.

Setting Masked Block Dialog Parameters
Simulink defines a set of masked block parameters that define the current
state of the masked block’s dialog. You can use the mask editor to inspect and
set many of these parameters. The Simulink get_param and set_param
commands also let you inspect and set mask dialog parameters. The
advantage? The set_param command allows you to set parameters and hence
change a dialog’s appearance while the dialog is open. This in turn allows you
to create dynamic masked dialogs.

For example, you can use the set_param command at the MATLAB command
line to specify callback functions to be invoked when a user changes the values
of user-defined parameters. The callback functions in turn can use set_param

Creating Dynamic Dialogs for Masked Blocks

7-29

commands to change the values of the masked dialog’s predefined parameters
and hence its state, for example, to hide, show, enable, or disable a user-defined
parameter control.

Predefined Masked Dialog Parameters
Simulink associates the following predefined parameters with masked dialogs.

MaskCallbacks
The value of this parameter is a cell array of strings that specify callback
expressions for the dialog’s user-defined parameter controls. The first cell
defines the callback for the first parameter’s control, the second for the second
parameter control, etc. The callbacks can be any valid MATLAB expressions,
including expressions that invoke M-file commands. This means that you can
implement complex callbacks as M-files.

The easiest way to set callbacks for a mask dialog is to first select the
corresponding masked dialog in a model or library window and then to issue a
set_param command at the MATLAB command line. For example, the
following code

set_param(gcb,'MaskCallbacks',{'parm1_callback', '',...
'parm3_callback'});

defines callbacks for the first and third parameters of the masked dialog for the
currently selected block. To save the callback settings, save the model or
library containing the masked block.

MaskDescription
The value of this parameter is a string specifying the description of this block.
You can change a masked block’s description dynamically by setting this
parameter.

MaskEnables
The value of this parameter is a cell array of strings that define the enabled
state of the user-defined parameter controls for this dialog. The first cell
defines the enabled state of the control for the first parameter, the second for
the second parameter, etc. A value of 'on' indicates that the corresponding
control is enabled for user input; a value of 'off' indicates that the control is
disabled.

7 Using Masks to Customize Blocks

7-30

You can enable or disable user input dynamically by setting this parameter in
a callback. For example, the following command in a callback

set_param(gcb,'MaskEnables',{'on','on','off'});

would disable the third control of the currently open masked block’s dialog.
Simulink colors disabled controls gray to indicate visually that they are
disabled.

MaskPrompts
The value of this parameter is a cell array of strings that specify prompts for
user-defined parameters. The first cell defines the prompt for the first
parameter, the second for the second parameter, etc.

MaskType
The value of this parameter is the mask type of the block associated with this
dialog.

MaskValues
The value of this parameter is a cell array of strings that specify the values of
user-defined parameters for this dialog. The first cell defines the value for the
first parameter, the second for the second parameter, etc.

MaskVisibilities
The value of this parameter is a cell array of strings that specify the visibility
of the user-defined parameter controls for this dialog. The first cell defines the
visibility of the control for the first parameter, the second for the second
parameter, etc. A value of 'on' indicates that the corresponding control is
visible; a value of 'off' indicates that the control is hidden.

You can hide or show user-defined parameter controls dynamically by setting
this parameter in the callback for a control. For example, the following
command in a callback

set_param(gcb,'MaskVisibilities',{'on','off','on'});

would hide the control for the currently selected block’s second user-defined
mask parameter. Simulink expands or shrinks a dialog to show or hide a
control, respectively.

8
Conditionally Executed
Subsystems

Introduction . 8-2

Enabled Subsystems 8-3
Creating an Enabled Subsystem 8-3
Blocks an Enabled Subsystem Can Contain 8-5

Triggered Subsystems 8-8
Creating a Triggered Subsystem 8-9
Function-Call Subsystems 8-10
Blocks That a Triggered Subsystem Can Contain 8-10

Triggered and Enabled Subsystems 8-11
Creating a Triggered and Enabled Subsystem 8-11
A Sample Triggered and Enabled Subsystem 8-12
Creating Alternately Executing Subsystems 8-12

8 Conditionally Executed Subsystems

8-2

Introduction
A conditionally executed subsystem is a subsystem whose execution depends on
the value of an input signal. The signal that controls whether a subsystem
executes is called the control signal. The signal enters the Subsystem block at
the control input.

Conditionally executed subsystems can be very useful when building complex
models that contain components whose execution depends on other
components.

Simulink supports three types of conditionally executed subsystems:

• An enabled subsystem executes while the control signal is positive. It starts
execution at the time step where the control signal crosses zero (from the
negative to the positive direction) and continues execution while the control
signal remains positive. Enabled subsystems are described in more detail on
“Enabled Subsystems” on page 8-3.

• A triggered subsystem executes once each time a “trigger event” occurs. A
trigger event can occur on the rising or falling edge of a trigger signal, which
can be continuous or discrete. Triggered subsystems are described in more
detail on “Triggered Subsystems” on page 8-8.

• A triggered and enabled subsystem executes once on the time step when a
trigger event occurs if the enable control signal has a positive value at that
step. See “Triggered and Enabled Subsystems” on page 8-11 for more
information.

Enabled Subsystems

8-3

Enabled Subsystems
Enabled subsystems are subsystems that execute at each simulation step
where the control signal has a positive value.

An enabled subsystem has a single control input, which can be scalar or vector
valued:

• If the input is a scalar, the subsystem executes if the input value is greater
than zero.

• If the input is a vector, the subsystem executes if any of the vector elements
is greater than zero.

For example, if the control input signal is a sine wave, the subsystem is
alternately enabled and disabled, as shown in this figure. An up arrow signifies
enable, a down arrow disable.

Simulink uses the zero-crossing slope method to determine whether an enable
is to occur. If the signal crosses zero and the slope is positive, the subsystem is
enabled. If the slope is negative at the zero crossing, the subsystem is disabled.

Creating an Enabled Subsystem
You create an enabled subsystem by copying an Enable block from the Signals
& Systems library into a subsystem. Simulink adds an enable symbol and an
enable control input port to the Subsystem block icon.

8 Conditionally Executed Subsystems

8-4

Setting Output Values While the Subsystem Is Disabled
Although an enabled subsystem does not execute while it is disabled, the
output signal is still available to other blocks. While an enabled subsystem is
disabled, you can choose to hold the subsystem outputs at their previous values
or reset them to their initial conditions.

Open each Outport block’s dialog box and select one of the choices for the
Output when disabled parameter, as shown in the dialog box below:

• Choose held to cause the output to maintain its most recent value.

• Choose reset to cause the output to revert to its initial condition. Set the
Initial output to the initial value of the output.

Setting States When the Subsystem Becomes Re-enabled
When an enabled subsystem executes, you can choose whether to hold the
subsystem states at their previous values or reset them to their initial
conditions.

To do this, open the Enable block dialog box and select one of the choices for the
States when enabling parameter, as shown in the dialog box below:

• Choose held to cause the states to maintain their most recent values.

• Choose reset to cause the states to revert to their initial conditions.

Select an option to set the
Outport output while the
subsystem is disabled.

The initial condition and the
value when reset.

Enabled Subsystems

8-5

Outputting the Enable Control Signal
An option on the Enable block dialog box lets you output the enable control
signal. To output the control signal, select the Show output port check box.

This feature allows you to pass the control signal down into the enabled
subsystem, which can be useful where logic within the enabled subsystem is
dependent on the value or values contained in the control signal.

Blocks an Enabled Subsystem Can Contain
An enabled subsystem can contain any block, whether continuous or discrete.
Discrete blocks in an enabled subsystem execute only when the subsystem
executes, and only when their sample times are synchronized with the
simulation sample time. Enabled subsystems and the model use a common
clock.

Note Enabled subsystems can contain GoTo blocks. However, only state ports
can connect to GoTo blocks in an enabled subsystem. See the Simulink demo
model, clutch, for an example of how to use GoTo blocks in an enabled
subsystem.

Select an option to set the states
when the subsystem is re-enabled.

Select this check box to show the
output port.

8 Conditionally Executed Subsystems

8-6

For example, this system contains four discrete blocks and a control signal. The
discrete blocks are:

• Block A, which has a sample time of 0.25 second

• Block B, which has a sample time of 0.5 second

• Block C, within the Enabled subsystem, which has a sample time of 0.125
second

• Block D, also within the Enabled subsystem, which has a sample time of 0.25
second

The enable control signal is generated by a Pulse Generator block, labeled
Signal E, which changes from 0 to 1 at 0.375 second and returns to 0 at 0.875
second.

Enabled Subsystems

8-7

The chart below indicates when the discrete blocks execute.

Blocks A and B execute independent of the enable signal because they are not
part of the enabled subsystem. When the enable signal becomes positive, blocks
C and D execute at their assigned sample rates until the enable signal becomes
zero again. Note that block C does not execute at 0.875 second when the enable
signal changes to zero.

Time (sec)

0 .125 .25 .375 .50 .625 .75 .875 1.0

Block B

Block C

Block D

Signal E

Block A

1

- Start of execution
for a block

0

8 Conditionally Executed Subsystems

8-8

Triggered Subsystems
Triggered subsystems are subsystems that execute each time a trigger event
occurs.

A triggered subsystem has a single control input, called the trigger input,
which determines whether the subsystem executes. You can choose from three
types of trigger events to force a triggered subsystem to begin execution:

• rising triggers execution of the subsystem when the control signal rises from
a negative or zero value to a positive value (or zero if the initial value is
negative).

• falling triggers execution of the subsystem when the control signal falls from
a positive or a zero value to a negative value (or zero if the initial value is
positive).

• either triggers execution of the subsystem when the signal is either rising or
falling.

For example, this figure shows when rising (R) and falling (F) triggers occur for
the given control signal.

A simple example of a trigger subsystem is illustrated below.

F F

0

R

Triggered Subsystems

8-9

In this example, the subsystem is triggered on the rising edge of the square
wave trigger control signal.

Creating a Triggered Subsystem
You create a triggered subsystem by copying the Trigger block from the Signals
& Systems library into a subsystem. Simulink adds a trigger symbol and a
trigger control input port to the Subsystem block icon.

To select the trigger type, open the Trigger block dialog box and select one of
the choices for the Trigger type parameter, as shown in the dialog box below:

• rising forces a trigger whenever the trigger signal crosses zero in a positive
direction.

• falling forces a trigger whenever the trigger signal crosses zero in a negative
direction.

• either forces a trigger whenever the trigger signal crosses zero in either
direction.

Simulink uses different symbols on the Trigger and Subsystem blocks to
indicate rising and falling triggers (or either). This figure shows the trigger
symbols on Subsystem blocks.

Select the trigger type from
these choices.

8 Conditionally Executed Subsystems

8-10

Outputs and States Between Trigger Events
Unlike enabled subsystems, triggered subsystems always hold their outputs at
the last value between triggering events. Also, triggered subsystems cannot
reset their states when triggered; states of any discrete blocks are held between
trigger events.

Outputting the Trigger Control Signal
An option on the Trigger block dialog box lets you output the trigger control
signal. To output the control signal, select the Show output port check box.

The Output data type field allows you to specify the data type of the output
signal as auto, int8, or double. The auto option causes the data type of the
output signal to be set to the data type (either int8 or double) of the port to
which the signal is connected.

Function-Call Subsystems
You can create a triggered subsystem whose execution is determined by logic
internal to an S-function instead of by the value of a signal. These subsystems
are called function-call subsystems. For more information about function-call
subsystems, see the companion guide Writing S-Functions.

Blocks That a Triggered Subsystem Can Contain
Triggered systems execute only at specific times during a simulation. As a
result, the only blocks that are suitable for use in a triggered subsystem are:

• Blocks with inherited sample time, such as the Logical Operator block or the
Gain block

• Discrete blocks having their sample time set to –1, which indicates that the
sample time is inherited from the driving block

Select this check box to show the
output port.

Triggered and Enabled Subsystems

8-11

Triggered and Enabled Subsystems
A third kind of conditionally executed subsystem combines both types of
conditional execution. The behavior of this type of subsystem, called a triggered
and enabled subsystem, is a combination of the enabled subsystem and the
triggered subsystem, as shown by this flow diagram.

A triggered and enabled subsystem contains both an enable input port and a
trigger input port. When the trigger event occurs, Simulink checks the enable
input port to evaluate the enable control signal. If its value is greater than zero,
Simulink executes the subsystem. If both inputs are vectors, the subsystem
executes if at least one element of each vector is nonzero.

The subsystem executes once at the time step at which the trigger event occurs.

Creating a Triggered and Enabled Subsystem
You create a triggered and enabled subsystem by dragging both the Enable and
Trigger blocks from the Signals & Systems library into an existing subsystem.
Simulink adds enable and trigger symbols and enable and trigger and enable
control inputs to the Subsystem block icon.

Execute the subsystem

Yes

Trigger event

Don’t execute the subsystem
No

Is
the enable
input signal

> 0 ?

8 Conditionally Executed Subsystems

8-12

You can set output values when a triggered and enabled subsystem is disabled
as you would for an enabled subsystem. For more information, see “Setting
Output Values While the Subsystem Is Disabled” on page 8–4. Also, you can
specify what the values of the states are when the subsystem is re-enabled. See
“Setting States When the Subsystem Becomes Re-enabled” on page 8–4.

Set the parameters for the Enable and Trigger blocks separately. The
procedures are the same as those described for the individual blocks.

A Sample Triggered and Enabled Subsystem
A simple example of a triggered and enabled subsystem is illustrated in the
model below.

Creating Alternately Executing Subsystems
You can use conditionally executed subsystems in combination with Merge
blocks to create sets of subsystems that execute alternately, depending on the
current state of the model. For example, the following figure shows a model

Triggered and Enabled Subsystems

8-13

that uses two enabled blocks and a Merge block to model an inverter, that is, a
device that converts AC current to pulsating DC current.

In this example, the block labeled “pos” is enabled when the AC waveform is
positive; it passes the waveform unchanged to its output. The block labeled
“neg” is enabled when the waveform is negative; it inverts the waveform. The
Merge block passes the output of the currently enabled block to the Mux block,
which passes the output, along with the original waveform, to the Scope block
to create the following display.

8 Conditionally Executed Subsystems

8-14

9

Block Reference

What Each Block Reference Page Contains 9-2

Simulink Block Libraries 9-3

9 Block Reference

9-2

What Each Block Reference Page Contains
Blocks appear in alphabetical order and contain this information:

• The block name, icon, and block library that contains the block

• The purpose of the block

• A description of the block’s use

• The data types and numeric type (complex or real) accepted and generated
by the block

• The block dialog box and parameters

• The block characteristics, including some or all of these, as they apply to the
block:

- Direct Feedthrough – whether the block or any of its ports has direct
feedthrough. For more information, see “Algebraic Loops” on page 3-18.

- Sample Time – how the block’s sample time is determined, whether by the
block itself (as is the case with discrete and continuous blocks) or inherited
from the block that drives it or is driven by it. For more information, see
“Sample Time” on page 3–23.

- Scalar Expansion – whether or not scalar values are expanded to arrays.
Some blocks expand scalar inputs and/or parameters as appropriate. For
more information, see “Scalar Expansion of Inputs and Parameters” on
page 4-34.

- States – the number of discrete and continuous states.

- Dimensionalized– whether the block accepts and/or generates
multidimensional signal arrays. For more information, see “Working with
Signals” on page 4–28.

- Zero Crossings – whether the block detects zero-crossing events. For more
information, see “Zero Crossing Detection” on page 3-14.

Simulink Block Libraries

9-3

Simulink Block Libraries
Simulink organizes its blocks into block libraries according to their behavior.

• The Sources library contains blocks that generate signals.

• The Sinks library contains blocks that display or write block output.

• The Discrete library contains blocks that describe discrete-time components.

• The Continuous library contains blocks that describe linear functions.

• The Math library contains blocks that describe general mathematics
functions.

• The Functions & Tables library contains blocks that describe general
functions and table look-up operations.

• The Nonlinear library contains blocks that describe nonlinear functions.

• The Signal & Systems library contains blocks that allow multiplexing and
demultiplexing, implement external input/output, pass data to other parts of
the model, create subsystems, and perform other functions.

• The Blocksets and Toolboxes library contains the Extras block library of
specialized blocks.

• The Demos library contains useful MATLAB and Simulink demos.

Note You can use either the Simulink Library Browser (Windows only) or the
MATLAB command simulink3 to display and browse the block libraries.

The following tables list contents of all libraries except the Blocksets and
Toolboxes and Demos libraries.

Table 9-1: Sources Library Blocks

Block Name Purpose

Band-Limited White Noise Introduce white noise into a continuous
system.

Chirp Signal Generate a sine wave with increasing
frequency.

9 Block Reference

9-4

Clock Display and provide the simulation time.

Constant Generate a constant value.

Digital Clock Generate simulation time at the specified
sampling interval.

Digital Pulse Generator Generate pulses at regular intervals.

From File Read data from a file.

From Workspace Read data from a variable defined in the
workspace.

Pulse Generator Generate pulses at regular intervals.

Ramp Generate a constantly increasing or
decreasing signal.

Random Number Generate normally distributed random
numbers.

Repeating Sequence Generate a repeatable arbitrary signal.

Signal Generator Generate various waveforms.

Sine Wave Generate a sine wave.

Step Generate a step function.

Uniform Random Number Generate uniformly distributed random
numbers.

Table 9-1: Sources Library Blocks (Continued)

Block Name Purpose

Simulink Block Libraries

9-5

Table 9-2: Sinks Library Blocks

Block Name Purpose

Display Show the value of the input.

Scope Display signals generated during a
simulation.

Stop Simulation Stop the simulation when the input is
nonzero.

To File Write data to a file.

To Workspace Write data to a variable in the workspace.

XY Graph Display an X-Y plot of signals using a
MATLAB figure window.

Table 9-3: Discrete Library Blocks

Block Name Purpose

Discrete Filter Implement IIR and FIR filters.

Discrete State-Space Implement a discrete state-space system.

Discrete-Time Integrator Perform discrete-time integration of a
signal.

Discrete Transfer Fcn Implement a discrete transfer function.

Discrete Zero-Pole Implement a discrete transfer function
specified in terms of poles and zeros.

First-Order Hold Implement a first-order sample-and-hold.

Unit Delay Delay a signal one sample period.

9 Block Reference

9-6

Zero-Order Hold Implement zero-order hold of one sample
period.

Table 9-4: Continuous Library Blocks

Block Name Purpose

Derivative Output the time derivative of the input.

Integrator Integrate a signal.

Memory Output the block input from the previous
time step.

State-Space Implement a linear state-space system.

Transfer Fcn Implement a linear transfer function.

Transport Delay Delay the input by a given amount of time.

Variable Transport Delay Delay the input by a variable amount of
time.

Zero-Pole Implement a transfer function specified in
terms of poles and zeros.

Table 9-5: Math Library Blocks

Block Name Purpose

Abs Output the absolute value of the input.

Algebraic Constraint Constrain the input signal to zero.

Bitwise Logical Operator Logically mask, invert, or shift the bits of
an unsigned integer signal.

Table 9-3: Discrete Library Blocks (Continued)

Block Name Purpose

Simulink Block Libraries

9-7

Combinatorial Logic Implement a truth table.

Complex to
Magnitude-Angle

Output the phase and magnitude of a
complex input signal.

Complex to Real-Imag Output the real and imaginary parts of a
complex input signal.

Derivative Output the time derivative of the input.

Dot Product Generate the dot product.

Gain Multiply block input.

Logical Operator Perform the specified logical operation on
the input.

Magnitude-Angle to
Complex

Output a complex signal from magnitude
and phase inputs.

Math Function Perform a mathematical function.

Matrix Gain Multiply the input by a matrix.

MinMax Output the minimum or maximum input
value.

Product Generate the product or quotient of block
inputs.

Real-Imag to Complex Output a complex signal from real and
imaginary inputs.

Relational Operator Perform the specified relational operation
on the input.

Rounding Function Perform a rounding function.

Sign Indicate the sign of the input.

Slider Gain Vary a scalar gain using a slider.

Table 9-5: Math Library Blocks (Continued)

Block Name Purpose

9 Block Reference

9-8

Sum Generate the sum of inputs.

Trigonometric Function Perform a trigonometric function.

Table 9-6: Functions & Tables Library Blocks

Block Name Purpose

Direct Look-Up Table (n-D)

Fcn Apply a specified expression to the input.

Look-Up Table Perform piecewise linear mapping of the
input.

Look-Up Table (2-D) Perform piecewise linear mapping of two
inputs.

Look-Up Table (n-D) Perform piecewise linear or spline mapping
of two or more inputs.

MATLAB Fcn Apply a MATLAB function or expression to
the input.

S-Function Access an S-function.

Table 9-7: Nonlinear Library Blocks

Block Name Purpose

Backlash Model the behavior of a system with play.

Coulomb & Viscous Friction Model discontinuity at zero, with linear
gain elsewhere.

Dead Zone Provide a region of zero output.

Table 9-5: Math Library Blocks (Continued)

Block Name Purpose

Simulink Block Libraries

9-9

Manual Switch Switch between two inputs.

Multiport Switch Choose between block inputs.

Quantizer Discretize input at a specified interval.

Rate Limiter Limit the rate of change of a signal.

Relay Switch output between two constants.

Saturation Limit the range of a signal.

Switch Switch between two inputs.

Table 9-8: Signals & Systems Library Blocks

Block Name Purpose

Bus Selector Output selected input signals.

Configurable Subsystem Represent any block selected from a
specified library.

Data Store Memory Define a shared data store.

Data Store Read Read data from a shared data store.

Data Store Write Write data to a shared data store.

Data Type Conversion Convert a signal to another data type.

Demux Separate a vector signal into output
signals.

Enable Add an enabling port to a subsystem.

From Accept input from a Goto block.

Goto Pass block input to From blocks.

Table 9-7: Nonlinear Library Blocks (Continued)

Block Name Purpose

9 Block Reference

9-10

Goto Tag Visibility Define the scope of a Goto block tag.

Ground Ground an unconnected input port.

Hit Crossing Detect crossing point.

IC Set the initial value of a signal.

Inport Create an input port for a subsystem or an
external input.

Matrix Concatenation Concatenate array inputs.

Merge Combine several input lines into a scalar
line.

Model Info Display revision control information in a
model.

Mux Combine several input lines into a vector
line.

Outport Create an output port for a subsystem or an
external output.

Reshape Change the dimensionality of a signal.

Probe Output an input signal’s width, sample
time, and/or signal type.

Selector Select or reorder the elements of the input
vector.

Signal Specification Specify attributes of a signal.

Subsystem Represent a system within another system.

Terminator Terminate an unconnected output port.

Trigger Add a trigger port to a subsystem.

Width Output the width of the input vector.

Table 9-8: Signals & Systems Library Blocks (Continued)

Block Name Purpose

Abs

9-11

9AbsPurpose Output the absolute value of the input.

Library Math

Description The Abs block generates as output the absolute value of the input.

Data Type
Support

An Abs block accepts a real- or complex-valued input of any type and outputs a
real value of the same data type as the input.

Dialog Box

Saturate on integer overflow
When checked (default), the block maps signed integer input elements
corresponding to the most negative value of that data type to the most positive
value of that datatype.

• For 8-bit integers, -128 is mapped to 127.

• For 16-bit integers, -32768 maps to 32767.

• For 32-bit integers, -2147483648 maps to 2147483647.

When unchecked, the behavior of the block is undefined for signed integer
input elements corresponding to the most negative value.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing Yes, to detect zero

Algebraic Constraint

9-12

9Algebraic ConstraintPurpose Constrain the input signal to zero.

Library Math

Description The Algebraic Constraint block constrains the input signal f(z) to zero and
outputs an algebraic state z. The block outputs the value necessary to produce
a zero at the input. The output must affect the input through some feedback
path. This enables you to specify algebraic equations for index 1 differential/
algebraic systems (DAEs).

By default, the Initial guess parameter is zero. You can improve the efficiency
of the algebraic loop solver by providing an Initial guess of the algebraic state
z that is close to the solution value.

For example, the model below solves these equations.

z2 + z1 = 1
z2 – z1 = 1

The solution is z2 = 1, z1 = 0, as the Display blocks show.

Data Type
Support

An Algebraic Constraint block accepts and outputs real values of type double.

Algebraic Constraint

9-13

Parameters
and Dialog Box

Initial guess
An initial guess of the solution value. The default is 0.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

Backlash

9-14

9BacklashPurpose Model the behavior of a system with play.

Library Nonlinear

Description The Backlash block implements a system in which a change in input causes an
equal change in output. However, when the input changes direction, an initial
change in input has no effect on the output. The amount of side-to-side play in
the system is referred to as the deadband. The deadband is centered about the
output. This figure shows the block’s initial state, with the default deadband
width of 1 and initial output of 0.

A system with play can be in one of three modes:

• Disengaged – in this mode, the input does not drive the output and the
output remains constant.

• Engaged in a positive direction – in this mode, the input is increasing (has a
positive slope) and the output is equal to the input minus half the deadband
width.

• Engaged in a negative direction – in this mode, the input is decreasing (has
a negative slope) and the output is equal to the input plus half the deadband
width.

If the initial input is outside the deadband, the Initial output parameter value
determines if the block is engaged in a positive or negative direction and the
output at the start of the simulation is the input plus or minus half the
deadband width.

For example, the Backlash block can be used to model the meshing of two
gears. The input and output are both shafts with a gear on one end, and the
output shaft is driven by the input shaft. Extra space between the gear teeth
introduces play. The width of this spacing is the Deadband width parameter.
If the system is disengaged initially, the output (the position of the driven gear)
is defined by the Initial output parameter.

deadband

0 0.5 1.0-0.5-1.0
Output

Backlash

9-15

The figures below illustrate the block’s operation when the initial input is
within the deadband. The first figure shows the relationship between the input
and the output while the system is in disengaged mode (and the default
parameter values are not changed).

The next figure shows the state of the block when the input has reached the end
of the deadband and engaged the output. The output remains at its previous
value.

The final figure shows how a change in input affects the output while they are
engaged.

If the input reverses its direction, it disengages from the output. The output
remains constant until the input either reaches the opposite end of the
deadband or reverses its direction again and engages at the same end of the
deadband. Now, as before, movement in the input causes equal movement in
the output.

For example, if the deadband width is 2 and the initial output is 5, the output,
y, at the start of the simulation is:

• 5 if the input, u, is between 4 and 6

• u + 1 if u < 4

• u - 1 if u > 6

0 0.5 1.0-0.5-1.0

Input within deadband

0 0.5 1.0-0.5-1.0

Input reaches end of deadband (engaged)

0 0.5 1.0-0.5-1.0

Input moves in positive direction.
Output = Input - (deadband width/2)

Backlash

9-16

This sample model and the plot that follows it show the effect of a sine wave
passing through a Backlash block.

The Backlash block parameters are unchanged from their default values (the
deadband width is 1 and the initial output is 0). Notice in the plotted output
below that the Backlash block output is zero until the input reaches the end of
the deadband (at 0.5). Now, the input and output are engaged and the output
moves as the input does until the input changes direction (at 1.0). When the
input reaches 0, it again engages the output at the opposite end of the
deadband.

Data Type
Support

A Backlash block accepts and outputs real values of type double.

Input engages in
positive direction.
Change in input causes
equal change in output.

Input disengages. Change
in input does not affect
output.

Input engages in
negative direction.
Change in input causes
equal change in output.

Input disengages. Change
in input does not affect
output.

A

B

C

D

A

B

C

D

Input

Output

Backlash

9-17

Parameters
and Dialog Box

Deadband width
The width of the deadband. The default is 1.

Initial output
The initial output value. The default is 0.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, to detect engagement with lower and upper
thresholds

Band-Limited White Noise

9-18

9Band-Limited White NoisePurpose Introduce white noise into a continuous system.

Library Sources

Description The Band-Limited White Noise block generates normally distributed random
numbers that are suitable for use in continuous or hybrid systems.

The primary difference between this block and the Random Number block is
that the Band-Limited White Noise block produces output at a specific sample
rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat power
spectral density (PSD), and a covariance of infinity. In practice, physical
systems are never disturbed by white noise, although white noise is a useful
theoretical approximation when the noise disturbance has a correlation time
that is very small relative to the natural bandwidth of the system.

In Simulink, you can simulate the effect of white noise by using a random
sequence with a correlation time much smaller than the shortest time constant
of the system. The Band-Limited White Noise block produces such a sequence.
The correlation time of the noise is the sample rate of the block. For accurate
simulations, use a correlation time much smaller than the fastest dynamics of
the system. You can get good results by specifying

where fmax is the bandwidth of the system in rad/sec.

The Algorithm Used in the Block Implementation
To produce the correct intensity of this noise, the covariance of the noise is
scaled to reflect the implicit conversion from a continuous PSD to a discrete
noise covariance. The appropriate scale factor is 1/tc, where tc is the
correlation time of the noise. This scaling ensures that the response of a
continuous system to our approximate white noise has the same covariance as
the system would have if we had used true white noise. Because of this scaling,
the covariance of the signal from the Band-Limited White Noise block is not the
same as the Noise power (intensity) dialog box parameter. This parameter is
actually the height of the PSD of the white noise. While the covariance of true

tc
1

100
---------- 2π

fmax
------------≈

Band-Limited White Noise

9-19

white noise is infinite, the approximation used in this block has the property
that the covariance of the block output is the Noise Power divided by tc.

Data Type
Support

A Band-Limited White Noise block outputs real values of type double.

Parameters
and Dialog Box

Noise power
The height of the PSD of the white noise. The default value is 0.1.

Sample time
The correlation time of the noise. The default value is 0.1.

Seed
The starting seed for the random number generator. The default value is
23341.

Characteristics

Sample Time Discrete

Scalar Expansion Of Noise power and Seed parameters and output

Dimensionalized Yes

Zero Crossing No

Bitwise Logical Operator

9-20

9Bitwise Logical OperatorPurpose Logically mask, invert, or shift the bits of an unsigned integer signal.

Library Math

Description The Bitwise Logical Operator performs any of a set of logical masking (AND,
OR, XOR) , inversion (NOT), and shifting (SHIFT_LEFT, SHIFT_RIGHT)
operations on the bits of on an unsigned integer signal. The block’s parameter
dialog lets you choose the operation to perform. You can use the Bitwise Logical
Operator block to perform bitwise operations on arrays of unsigned integer
signals.

Masking Operations
The Bitwise Logical Operator’s masking operations (AND, OR, XOR) logically
combine each bit of the input signal with the corresponding bit of a constant
operand called the mask. You specify the mask’s value and the logical
operation via the block’s parameter dialog. The mask and the logical operation
determine the value of each bit of the output signal as follows.

Operation Mask Bit Input Bit Output Bit

AND 1 1 1

1 0 0

0 1 0

0 0 0

OR 1 1 1

0 1 1

1 0 1

0 0 0

XOR 1 1 0

1 0 1

0 1 1

0 0 0

Bitwise Logical Operator

9-21

A Bitwise Operator block accepts arrays for both signals and masks. In general,
the mask must have the same dimensionality as the input signal, i.e., a 5-by-4
input signal requires a 5-by-4 mask. The block applies each element of the
mask to the corresponding input element. The following exceptions exist to the
general rule that the input and the mask must have the same dimensionality:

• If the input is scalar and the mask is an array, the block outputs an array
consisting of the result of applying each mask element to the input.

• If the input is an array and the mask is a scalar, the block outputs an array
consisting of the result of applying the mask to each element of the input.

• If the input is a 1-D array (i.e., a vector), the mask may be a row or a column
vector.

When selecting a masking operation, use the Second operand field of the
block’s parameter dialog to specify the mask or masks. You can enter any
MATLAB expression that evaluates to a scalar, matrix, or cell array. Use
strings in your mask expression to specify hexadecimal values (e.g., 'FFFF').

If necessary, the block truncates the high order bits of the mask value to fit the
word size of the input signal’s data type. For example, suppose you specify the
mask value as 'FF00' and the input signal is of type uint8. The block
truncates the specified value to '00'.

You can use matrices to specify hexadecimal masks, but beware of the pitfalls
of such an approach. For example, the MATLAB expression['00' 'FF']
represents a single string 'FF00' rather than two strings. Similarly, the
expression ['FFFF'; '0000'] represents two strings but the expression
['FFFF'; '00'] is invalid and hence causes MATLAB to signal an error. You
can avoid these pitfalls by always using cell arrays to specify hexadecimal
values, or to mix decimal and hexadecimal values, for masks. For example, the
following model

Bitwise Logical Operator

9-22

uses a cell array ({'F0' '0F'}) to specify hexadecimal values for the masks for
a two-element input vector.

Inversion Operation
The Bitwise Logical Operator’s NOT operation inverts the bits of the input
signal. In particular, it performs a one’s complement operation on the input
signal to produce an output signal each of whose bits is 1 if the corresponding
input bit is 0 and vice-versa.

Shift Operations
The Bitwise Logical Operator’s shift operations, SHIFT_LEFT and SHIFT_RIGHT,
shift the bits of the input signal left or right to produce the output signal. You
specify the amount of the shift in the Second operand field of the block’s
parameter dialog. If you specify a shift amount that is greater than the word
size of the input signal, the block uses the input word size as the shift amount,
resulting in a zero output signal. The dimensionality rules that apply to masks
and inputs also apply to shift factors and inputs.

Data Type
Support

The Bitwise Logical Operator accepts real-valued inputs of any of the unsigned
integer data types: uint8, uint16, uint32. All the elements of a vector input
must be of the same data type. The output signal is of the same data type as
the input.

Parameters
and Dialog Box

Bitwise operator
Specifies the bitwise operator applied to the input signal.

Bitwise Logical Operator

9-23

Second operand
Specifies the mask operand for masking operations and the shift amount
for shift operations. You can enter any MATLAB expression that evaluates
to a scalar, matrix, or cell array. If the block input is an array, the block
applies each parameter value to the corresponding element of the input. If
the input is a scalar, the block outputs an array, each of whose elements is
the result of applying the corresponding parameter value to the input.

Characteristics Sample Time Inherited from driving block

Scalar Expansion Of inputs and Second operand parameter

Dimensionalized Yes

States None

Zero Crossing No

Direct Feedthrough Yes

Bus Selector

9-24

9Bus SelectorPurpose Select signals from an incoming bus.

Library Signals & Systems

Description The Bus Selector block accepts input from a Mux block or another Bus Selector
block. This block has one input port. The number of output ports depends on
the state of the Muxed output check box. If you check Muxed output, then the
signals are combined at the output port and there is only one output port;
otherwise, there is one output port for each selected signal.

Note Simulink hides the name of a Bus Selector block when you copy it from
the Simulink library to a model.

Data Type
Support

A Bus Selector block accepts and outputs real or complex values of any data
type.

Parameters
and Dialog Box

Bus Selector

9-25

Signals in the bus
The Signals in the bus listbox shows the signals in the input bus. Use the
Select>> button to select output signals from the Signals in the bus
listbox.

Selected signals
The Selected signals listbox shows the output signals. You can order the
signals by using the Up, Down, and Remove buttons. Port connectivity is
maintained when the signal order is changed.

If an output signal listed in the Selected signals listbox is not an input to
the Bus Selector block, the signal name will be preceded by ???.

The signal label at the ouput port is automatically set by the block except
when you check the Muxed output check box. If you try to change this
label, you will get an error message stating that you cannot change the
signal label of a line connected to the output of a Bus Selector block.

Chirp Signal

9-26

9Chirp SignalPurpose Generate a sine wave with increasing frequency.

Library Sources

Description The Chirp Signal block generates a sine wave whose frequency increases at a
linear rate with time. You can use this block for spectral analysis of nonlinear
systems. The block generates a scalar or vector output.

The parameters, Initial frequency, Target time, and Frequency at target
time, determine the block’s output. You can specify any or all of these variables
as scalars or arrays. All of the parameters specified as arrays must have the
same dimensions. The block expands scalar parameters to have the same
dimensions as the array parameters. The block output has the same
dimensions as the parameters except if the Interpret vector parameters as
1-D option is selected. If this option is selected and the parameters are row or
column vectors, the block outputs a vector (1-D array) signal.

Data Type
Support

A Chirp Signal block outputs a real-valued signal of type double.

Parameters
and Dialog Box

Initial frequency
The initial frequency of the signal, specified as a scalar or matrix value.
The default is 0.1 Hz.

Chirp Signal

9-27

Target time
The time at which the frequency reaches the Frequency at target time
parameter value, a scalar or matrix value. The frequency continues to
change at the same rate after this time. The default is 100 seconds.

Frequency at target time
The frequency of the signal at the target time, a scalar or matrix value. The
default is 1 Hz.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Initial frequency, Target
time, and Frequency at target time parameters result in a vector output
whose elements are the elements of the row or column.

Characteristics Sample Time Continuous

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No

Clock

9-28

9ClockPurpose Display and provide the simulation time.

Library Sources

Description The Clock block outputs the current simulation time at each simulation step.
This block is useful for other blocks that need the simulation time.

When you need the current time within a discrete system, use the Digital Clock
block.

Data Type
Support

A Clock block outputs a real-valued signal of type double.

Parameters
and Dialog Box

Display time
Use the Display time check box to display the current simulation time
inside the Clock block icon.

Decimation
The Decimation parameter value is the increment at which the clock gets
updated; it can be any positive integer. For example, if the decimation is
1000, then for a fixed integration step of 1 millisecond, the clock will update
at 1 second, 2 seconds, and so on. Note that if this parameter is not zero,
the simulation must use a fixed-step solver to ensure accurate clock
updates.

Characteristics Sample Time Continuous

Scalar Expansion N/A

Clock

9-29

Dimensionalized No

Zero Crossing No

Combinatorial Logic

9-30

9Combinatorial LogicPurpose Implement a truth table.

Library Math

Description The Combinatorial Logic block implements a standard truth table for modeling
programmable logic arrays (PLAs), logic circuits, decision tables, and other
Boolean expressions. You can use this block in conjunction with Memory blocks
to implement finite-state machines or flip-flops.

You specify a matrix that defines all possible block outputs as the Truth table
parameter. Each row of the matrix contains the output for a different
combination of input elements. You must specify outputs for every combination
of inputs. The number of columns is the number of block outputs.

The relationship between the number of inputs and the number of rows is

number of rows = 2 ^ (number of inputs)

Simulink returns a row of the matrix by computing the row’s index from the
input vector elements. Simulink computes the index by building a binary
number where input vector elements having zero values are 0 and elements
having nonzero values are 1, then adds 1 to the result. For an input vector, u,
of m elements

row index = 1 + u(m)*20 + u(m–1)*21 + ... + u(1)*2m–1

Example of Two-Input AND Function
This example builds a two-input AND function, which returns 1 when both
input elements are 1, and 0 otherwise. To implement this function, specify the
Truth table parameter value as [0; 0; 0; 1]. The portion of the model that
provides the inputs to and the output from the Combinatorial Logic block
might look like this.

The table below indicates the combination of inputs that generate each output.
The input signal labeled “Input 1” corresponds to the column in the table
labeled Input 1. Similarly, the input signal “Input 2” corresponds to the column

Combinatorial Logic

9-31

with the same name. The combination of these values determines which row of
the Output column of the table gets passed as block output.

For example, if the input vector is [1 0], the input references the third row
(21*1 + 1). So, the output value is 0.

Example of Circuit
This sample circuit has three inputs: the two bits (a and b) to be summed and
a carry-in bit (c). It has two outputs, the carry-out bit (c') and the sum bit (s).
Here is the truth table and the outputs associated with each combination of
input values for this circuit.

Row Input 1 Input 2 Output

1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

Inputs Outputs

a b c c' s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Combinatorial Logic

9-32

To implement this adder with the Combinatorial Logic block, you enter the
8-by-2 matrix formed by columns c' and s as the Truth table parameter.

Sequential circuits (that is, circuits with states) can also be implemented with
the Combinatorial Logic block by including an additional input for the state of
the block and feeding the output of the block back into this state input.

Data Type
Support

The type of signals accepted by a Combinatorial Logic block depends on
whether you have selected Simulink’s Boolean logic signals option (see
“Enabling Strict Boolean Type Checking” on page 4-48). If this option is
enabled, the block accepts real signals of type boolean or double. The truth
table may have Boolean values (0 or 1) of any data type. If the table contains
nonBoolean values, the table’s data type must be double. The type of the ouput
is the same as that of the input except that the block outputs double if the
input is boolean and the truth table contains nonboolean values. If Boolean
compatibility mode is disabled, the Combinatorial Logic block accepts only
signals of type boolean. The block outputs double if the truth table contains
nonBoolean values of type double. Otherwise, the output is boolean.

Parameters
and Dialog Box

Truth table
The matrix of outputs. Each column corresponds to an element of the
output vector and each row corresponds to a row of the truth table.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes; the output width is the number of columns of the
Truth table parameter

Zero Crossing No

Complex to Magnitude-Angle

9-33

9Complex to Magnitude-AnglePurpose Compute the magnitude and/or phase angle of a complex signal.

Library Math

Description The Complex to Magnitude-Angle block accepts a complex-valued signal of type
double. It outputs the magnitude and/or phase angle of the input signal,
depending on the setting of the Output parameter. The outputs are real values
of type double. The input may be an array of complex signals, in which case the
output signals are also arrays. The magnitude signal array contains the
magnitudes of the corresponding complex input elements. The angle output
similarly contains the angles of the input elements.

Data Type
Support

See the description above.

Parameters
and Dialog Box

Output
Determines the output of this block. Choose from the following values:
MagnitudeAndAngle (outputs the input signal’s magnitude and phase angle
in radians), Magnitude (outputs the input’s magnitude), Angle (outputs the
input’s phase angle in radians).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

Complex to Real-Imag

9-34

9Complex to Real-ImagPurpose Output the real and imaginary parts of a complex input signal.

Library Math

Description The Complex to Real-Imag block accepts a complex-valued signal of any type.
It outputs the real and/or imaginary part of the input signal, depending on the
setting of the Output parameter. The real outputs are of the same data type as
the complex input. The input may be an array (vector or matrix) of complex
signals, in which case the output signals are arrays of the same dimensions.
The real array contains the real parts of the corresponding complex input
elements. The imaginary output similarly contains the imaginary parts of the
input elements.

Data Type
Support

See the description above.

Parameters
and Dialog Box

Output
Determines the output of this block. Choose from the following values:
RealAndImag (outputs the input signal’s real and imaginary parts), Real
(outputs the input’s real part), Imag (outputs the input’s imaginary part).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

Configurable Subsystem

9-35

9Configurable SubsystemPurpose Represents any block selected from a user-specified library of blocks.

Library Signals & Systems

Description A Configurable Subsystem block can represent any block contained in a
specified library of blocks. The Configurable Subsystem’s dialog box lets you
specify which block it represents and the values of the parameters of the
represented block.

Configurable Subsystem blocks simplify creation of models that represent
families of designs. For example, suppose that you want to model an automobile
that offers a choice of engines. To model such a design, you would first create a
library of models of the engine types available with the car. You would then use
a Configurable Subsystem block in your car model to represent the choice of
engines. To model a particular variant of the basic car design, a user need only
choose the engine type, using the configurable engine block’s dialog.

A Configurable Subystem block’s appearance changes depending on which
block it represents. Initially, a Configurable Subystem block represents
nothing. In this state, it has no ports and displays the icon shown at the left of
this paragraph. When you select a library and block, the Configurable
Subystem shows the icon and a set of input and output ports corresponding to
input and output ports in the selected library.

Simulink uses the following rules to map library ports to Configurable
Subystem block ports:

• Map each uniquely named input/output port in the library to a separate
input/output port of the same name on the Configurable Subystem block.

• Map all identically named input/output ports in the library to the same input
port/output on the Configurable Subystem block.

• Terminate any input/output port not used by the currently selected library
block with a Terminator/Ground block.

This mapping allows a user to change the library block represented by a
Configurable Subsystem block without having to rewire connections to the
Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and that block
A has input ports labeled a, b, and c and an output port labeled d and that block
B has input ports labeled a and b and an output port labeled e. A Configurable

Configurable Subsystem

9-36

Subsystem block based onthis library would have three input ports labeled a,
b, and c, respectively, and two output ports labeled d and e, respectively, as
illustrated in the following figure.

In this example, port a on the Configurable Subystem block connects to port a
of the selected library block no matter which block is selected. On the other
hand, port c on the Configurable Subsystem block functions only if library block
A is selected. Otherwise, it simply terminates.

Note A Configurable Subsystem block does not provide ports that correspond
to non-I/O ports, such as the trigger and enable ports on triggered and enabled
subsystems. Thus, you cannot use a Configurable Subsystem block directly to
represent blocks that have such ports. You can do so indirectly, however, by
wrapping such blocks in subsystem blocks that have input or output ports
connected to the non-I/O ports.

To create a configurable subsytem:

1 Create a library of blocks representing the various configurations of the
configurable subsystem.

2 Create an instance of the Configurable Subsystem block in the library. To do
this, drag a copy of the Configurable Subsystem block from the Simulink
Signals and Systems library into the library you created in the preceding
step.

3 Display the Configurable Subsystem block’s dialog by double-clicking it. The
dialog displays a list of the other blocks in the library.

4 Check the blocks that represent the various configurations of the
configurable subsystems you are creating.

5 Close the dialog.

Save the library.

Configurable Subsystem

9-37

Data Type
Support

A Configurable Subsystem block accepts and outputs signals of the same types
as are accepted or output by the block that it currently represents.

Parameters
and Dialog Box

A Configurable Subsystem’s dialog box changes, depending on whether the
Configurable Subystem currently represents a library and which block, if any,
the Configurable Subsystem represents. Initially a Configurable Subsystem
does not represent anything; its dialog box displays only an empty Library
name parameter.

List of block choices
Check the blocks you want to include as members of the configurable
subsystem. You can include user-defined subsystems as blocks.

Port information
Lists of input and output ports of member blocks. In the case of multiports,
you can rearrange selected port positions by pressing the Up and Down
buttons.

Note If you add or remove blocks or ports in a library, you must recreate any
Configurable Subsystem blocks that use the library.

Configurable Subsystem

9-38

The following figure shows the dialog box for a Configurable Subystem block.

Block choice
The block that this Configurable Subystem block current represents. This
menu lists all the blocks in your configurable subsystem library.

The parameters below Block choice are related to subsystem behavior.
See the Subsystem block reference page for more information.

Characteristics A Configurable Subsystem block has the characteristics of the block that it
currently represents. Double-clicking the block opens the dialog box for the
block that it currently represents.

Constant

9-39

9ConstantPurpose Generate a constant value.

Library Sources

Description The Constant block generates a specified real or complex value independent of
time. The block generates one output, which can be scalar, a vector, or a matrix,
depending on the dimensionality of the Constant value parameter and the
setting of the Interpret vector parameters as 1-D parameter. If the Interpret
vector parameters as 1-D parameter is selected and the Constant value
parameter is a column or row matrix, the output is a 1-D array (i.e., a vector)
whose elements are the elements of the parameter. Otherwise, the output is a
2-D array (i.e., a matrix) that has the same dimensions as the parameter and
whose elements are the parameter elements.

Data Type
Support

A Constant block outputs a signal whose numeric type (complex or real) and
data type are the same as that of the block’s Constant value parameter.

Parameters
and Dialog Box

Constant value
The output of the block.

Interpret vector parameters as 1-D
If selected, a column or row matrix value for the Constant value
parameter results in a vector output whose elements are the elements of
the row or column.

Constant

9-40

Characteristics Sample Time Constant

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

Coulomb and Viscous Friction

9-41

9Coulomb and Viscous FrictionPurpose Model discontinuity at zero, with linear gain elsewhere.

Library Nonlinear

Description The Coulomb and Viscous Friction block models Coulomb (static) and viscous
(dynamic) friction. The block models a discontinuity at zero and a linear gain
otherwise. The offset corresponds to the Coulombic friction; the gain
corresponds to the viscous friction. The block is implemented as

y = sign(u) * (Gain * abs(u) + Offset)

where y is the output, u is the input, and Gain and Offset are block
parameters.

The block accepts one input and generates one output.

Data Type
Support

A Coulomb and Viscous Friction block accepts and outputs real signals of type
double.

Parameters
and Dialog Box

Coulomb friction value
The offset, applied to all input values. The default is [1 3 2 0].

Coefficient of viscous friction
The signal gain at nonzero input points. The default is 1.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Coulomb and Viscous Friction

9-42

Dimensionalized Yes

Zero Crossing Yes, at the point where the static friction is overcome

Data Store Memory

9-43

9Data Store MemoryPurpose Define a data store.

Library Signals & Systems

Description The Data Store Memory block defines and initializes a named shared data
store, which is a memory region usable by the Data Store Read and Data Store
Write blocks.

Each data store must be defined by a Data Store Memory block. The location of
the Data Store Memory block that defines a data store determines the Data
Store Read and Data Store Write blocks that can access the data store:

• If the Data Store Memory block is in the top-level system, the data store can
be accessed by Data Store Read and Data Store Write blocks located
anywhere in the model.

• If the Data Store Memory block is in a subsystem, the data store can be
accessed by Data Store Read and Data Store Write blocks located in the same
subsystem or in any subsystem below it in the model hierarchy.

You initialize the data store by specifying values in the Initial value
parameter. The size of the value determines the dimensionality of the data
store. An error occurs if a Data Store Write block does not write the same
amount of data.

Data Type
Support

A Data Store Memory block stores real signals of type double.

Parameters
and Dialog Box

Data Store Memory

9-44

Data store name
The name of the data store being defined. The default is A.

Initial value
The initial values of the data store. The default value is 0.

Interpret vector parameters as 1-D
If selected, a column or row matrix value for the Initial value parameters
initializes the data store to a 1-D array (vector) whose elements are equal
to the elements of the row or column vector.

Characteristics Sample Time N/A

Dimensionalized Yes

Data Store Read

9-45

9Data Store ReadPurpose Read data from a data store.

Library Signals & Systems

Description The Data Store Read block reads data from a named data store, passing the
data as output. The data was previously initialized by a Data Store Memory
block and (possibly) written to that data store by a Data Store Write block.

The data store from which the data is read is determined by the location of the
Data Store Memory block that defines the data store. For more information, see
Data Store Memory on page 9-43.

More than one Data Store Read block can read from the same data store.

Note To avoid block output consistency errors, be careful not to set an
execution priority on a Data Store Read block such that the block reads from
the data store before the store is updated by any Data Store Write blocks that
write to the store in the same time step.

Data Type
Support

A Data Store Read block outputs a real signal of type double.

Parameters
and Dialog Box

Data store name
The name of the data store from which this block reads data.

Sample time
The sample time, which controls when the block writes to the data store.
The default, -1, indicates that the sample time is inherited.

Data Store Read

9-46

Characteristics Sample Time Continuous or discrete

Dimensionalized Yes

Data Store Write

9-47

9Data Store WritePurpose Write data to a data store.

Library Signals & Systems

Description The Data Store Write block writes the block input to a named data store.

Each write operation performed by a Data Store Write block writes over the
data store, replacing the previous contents.

The data store to which this block writes is determined by the location of the
Data Store Memory block that defines the data store. For more information, see
Data Store Memory on page 9-43. The size of the data store is set by the Data
Store Memory block that defines and initializes the data store. Each Data Store
Write block that writes to that data store must write the same amount of data.

More than one Data Store Write block can write to the same data store.
However, if two Data Store Write blocks attempt to write to the same data store
at the same simulation step, results are unpredictable.

Data Type
Support

A Data Store Write block accepts a real signal of type double.

Parameters
and Dialog Box

Data store name
The name of the data store to which this block writes data.

Sample time
The sample time, which controls when the block writes to the data store.
The default, -1, indicates that the sample time is inherited.

Data Store Write

9-48

Characteristics Sample Time Continuous or discrete

Dimensionalized Yes

Data Type Conversion

9-49

9Data Type ConversionPurpose Convert input signal to specified data type.

Library Signals & Systems

Description The Data Type Conversion block converts an input signal to the data type
specifed by the block’s Data type parameter. The input can be any real or
complex-valued signal. If the input is real, the output is real. If the input is
complex, the output is complex.

Data Type
Support

See block description above.

Parameters
and Dialog Box

Data type
Specifies the type to which to convert the input signal. The auto option
converts the input signal to the type required by the input port to which the
Data Type Conversion block’s output port is connected.

Saturate on integer overflow
This parameter is enable only for integer output. If selected, this option
causes the output of the Data Type Conversion block to saturate on integer
overflow. In particular, if the output data type is an integer type, the block
output is the maximum value representable by the output type or the
converted output, whichever is smaller in the absolute sense. If the option
is not selected, Simulink takes the action specified by Data overflow event
option on the Diagnostics page of the Simulation Parameters dialog box
(see “The Diagnostics Pane” on page 5–26).

Data Type Conversion

9-50

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

Dead Zone

9-51

9Dead ZonePurpose Provide a region of zero output.

Library Nonlinear

Description The Dead Zone block generates zero output within a specified region, called its
dead zone. The lower and upper limits of the dead zone are specified as the
Start of dead zone and End of dead zone parameters. The block output
depends on the input and dead zone:

• If the input is within the dead zone (greater than the lower limit and less
than the upper limit), the output is zero.

• If the input is greater than or equal to the upper limit, the output is the input
minus the upper limit.

• If the input is less than or equal to the lower limit, the output is the input
minus the lower limit.

This sample model uses lower and upper limits of -0.5 and +0.5, with a sine
wave as input.

This plot shows the effect of the Dead Zone block on the sine wave. While the
input (the sine wave) is between -0.5 and 0.5, the output is zero.

Data Type
Support

A Dead Zone block accepts and outputs a real signal of any data type.

Dead Zone

9-52

Parameters
and Dialog Box

Start of dead zone
The lower limit of the dead zone. The default is -0.5.

End of dead zone
The upper limit of the dead zone. The default is 0.5.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing Yes, to detect when the limits are reached

Demux

9-53

9DemuxPurpose Extract and output the elements of a bus or vector signal.

Library Signals & Systems

Description The Demux block extracts the components of an input signal and outputs the
components as separate signals. The block accepts either vector (1-D array)
signals or bus signals (see “Signal Buses” on page 4-30 for more information).
The Number of outputs parameter allows you to specify the number and,
optionally, the dimensionality of each output port. If you do not specify the
dimensionality of the outputs, the block determines the dimensionality of the
outputs for you.

The Demux block operates in either vector or bus selection mode, depending on
whether you have selected the Bus selection mode parameter. The two modes
differ in the types of signals they accept. Vector mode accepts only a vector-like
signal, that is, either a scalar (one-element array), vector (1-D array), or a
column or row vector (one row or one column 2-D array). Bus selection mode
accepts only the output of a Mux block or another Demux block.

The Demux block’s Number of outputs parameter determines the number and
dimensionality of the block’s outputs, depending on the mode in which the block
operates.

Specifying the Number of Outputs in Vector Mode
In vector mode, the value of the parameter can be a scalar specifying the
number of outputs or a vector whose elements specify the widths of the block’s
output ports. The block determines the size of the block’s outputs from the size
of the input signal and the value of the Number of outputs parameter.

Demux

9-54

The following table summarizes how the block determines the outputs for an
input vector of width n.

Parameter Value Block outputs... Comments

p = n p scalar signals. For example, if the input is
a three-element vector and
you specify three outputs,
the block outputs three
scalar signals.

p > n Error

p < n
n mod p = 0

p vector signals
each having n/p
elements

If the input is a six-element
vector and you specify three
outputs, the block outputs
three two-element vectors.

p < n
n mod p = m

m vector signals
each having (n/p)+1
elements and p-m
signals have n/p
elements.

If the input is a
five-element vector and you
specify three outputs, the
block outputs two
two-element vector signals
and one scalar signal.

[p1 p2 ... pm]
p1+p2+...+pm=n
pi > 0

m vector signals
having widths p1,
p2, ... pm

If the input is a
five-element vector and you
specify [3, 2] as the output,
the block outputs three of
the input elements on one
port and the other two
elements on the other ports.

Demux

9-55

Note that you can specify the number of outputs as less than the the number
of input elements, in which case the block distributes the elements as evenly
as possible over the outputs as illustrated in the following example.

You can use -1 in a vector expression to indicate that the block should
dynamically size the corresponding port. For example, the expression [-1, 3
-1] causes the block to output three signals in which the second signal always
has three elements while the size of the first and second signals depends on the
size of the input signal.

If a vector expression comprises positive values and -1 values, the block assigns
as many elements as needed to the ports with positive values and distributes
the remain elements as evenly as possible over the ports with -1 values. For
example, suppose that the block input is seven elements wide and you specify

[p1 p2 ... pm]
p1+p2+...+pm=n
some or all
pi = -1

m vector signals If pi is greater than zero,
the corresponding output
has width pi. If pi is -1, the
width of the corresponding
output is dynamically sized.

[p1 p2 ... pm]
p1+p2+...+pm!=n
pi = > 0

Error

Parameter Value Block outputs... Comments

Demux

9-56

the output as [-1, 3 -1]. In this case, the block outputs two elements on the
first port, three elements on the second, and two elements on the third.

Specifying the Number of Outputs in Bus Selection Mode
In bus selection mode, the value of the Number of outputs parameter can be a:

• Scalar specifying the number of output ports

The specified value must equal the number of input signals. For example, if
the input bus comprises two signals and the value of this parameter is a
scalar, the value must equal 2.

• Vector each of whose elements specifies the number of signals to output on
the corresponding port

For example, if the input bus contains five signals, you can specify the output
as [3, 2], in which case the block outputs three of the input signals on one
port and the other two signals on a second port.

• Cell array each of whose elements is a cell array of vectors specifying the
dimensions of the signals output by the corresponding port

Demux

9-57

The cell array format constrains the Demux block to accept only signals of
specified dimensions. For example, the cell array {{[2 2], 3} {1}} tells the block
to accept only a bus signal comprising a 2-by-2 matrix, a three-element vector,
and a scalar signal. You can use the value -1 in a cell array expression to let the
block determine the dimensionality of a particular output, based on the input.
For example, the following diagram uses the cell array expression {{-1}, {-1,-1}}
to specify the output of the leftmost Demux block.

In bus selection mode, if you specify the dimensionality of an output port, i.e.,
specify any other value than -1, the corresponding input element must match
the specified dimensionality.

Note Simulink hides the name of a Demux block when you copy it from the
Simulink library to a model.

Data Type
Support

A Demux block accepts and outputs signals of any numeric (complex or real)
and data type.

Demux

9-58

Parameters
and Dialog Box

Number of outputs
The number and dimensions of outputs.

Bus selection mode
Enable bus selection mode.

Derivative

9-59

9DerivativePurpose Output the time derivative of the input.

Library Continuous

Description The Derivative block approximates the derivative of its input by computing

where ∆u is the change in input value and ∆t is the change in time since the
previous simulation time step. The block accepts one input and generates one
output. The value of the input signal before the start of the simulation is
assumed to be zero. The initial output for the block is zero.

The accuracy of the results depends on the size of the time steps taken in the
simulation. Smaller steps allow a smoother and more accurate output curve
from this block. Unlike blocks that have continuous states, the solver does not
take smaller steps when the input changes rapidly.

When the input is a discrete signal, the continuous derivative of the input is an
impulse when the value of the input changes, otherwise it is 0. You can obtain
the discrete derivative of a discrete signal using

and taking the z-transform

Using linmod to linearize a model that contains a Derivative block can be
troublesome. For information about how to avoid the problem, see
“Linearization” on page 6–4.

Data Type
Support

A Derivative block accepts and outputs a real signal of type double.

∆u
∆t

y k() 1
∆t
------ u k() u k 1–()–()=

Y z()
u z()
------------ 1 z 1–

–
∆t

----------------- z 1–
∆t z⋅
-------------==

Derivative

9-60

Dialog Box

Characteristics Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion N/A

States 0

Dimensionalized Yes

Zero Crossing No

Digital Clock

9-61

9Digital ClockPurpose Output simulation time at the specified sampling interval.

Library Sources

Description The Digital Clock block outputs the simulation time only at the specified
sampling interval. At other times, the output is held at the previous value.

Use this block rather than the Clock block (which outputs continuous time)
when you need the current time within a discrete system.

Data Type
Support

A Digital Clock block outputs a real signal of type double.

Parameters
and Dialog Box

Sample time
The sampling interval. The default value is 1 second.

Characteristics Sample Time Discrete

Scalar Expansion No

Dimensionalized No

Zero Crossing No

Direct Look-Up Table (n-D)

9-62

9Direct Look-Up Table (n-D)Purpose Index into an N-dimensional table to retrieve a scalar, vector or 2-D matrix.

Library Functions & Tables

Description The Direct Look-Up Table (n-D) block uses its block inputs as zero-based
indices into an n-D table. The number of inputs varies with the shape of the
output desired. The output can be a scalar, a vector, or a 2-D matrix. The
look-up table uses zero-based indexing, so integer datatypes can fully address
their range. For example, a table dimension using the uint8 data type can
address all 256 elements.

You define a set of output values as the Table data parameter. You specify
what the output shape is: a scalar, a vector or a 2-D matrix. The first input
specifies the zero-based index to the first dimension higher than the number of
dimensions in the output, the second input specifies the index to the next table
dimension, and so on, as shown by this figure:

The figure shows a 5-D table with an output shape set to “2-D Matrix”; the
output is a 2-D Matrix with R rows and C columns.

Direct Look-Up Table (n-D)

9-63

This figure shows the set of all the different icons that the Direct Look-Up
Table block shows (depending on which options you choose in the block’s dialog
box).

With dimensions higher than 4, the icon matches the 4-D icons, but will show
the exact number of dimensions in the top text, e.g., “8-D T[k].” The top row of
icons is used when the block output is made from one or more single-element
lookups on the table. The blocks labelled “n-D Direct Table Lookup5,” 6, 8 and
12 are configured to extract a column from the table and the two blocks ending
in 7 and 9 are extracting a plane from the table. Blocks in the figure ending in
10, 11 and 12 are configured to have the table be an input instead of a
parameter.

Example
In this example, the block parameters are defined as

Invalid input value: "Clip and Warn"
Output shape: "Vector"
Table data: int16(a)

where a is a 4-D array of linearly increasing numbers calculated using
MATLAB.

Direct Look-Up Table (n-D)

9-64

a = ones(20,4,5,7); L = prod(size(a));
a(1:L) = [1:L]';

Remembering that the table indices are zero-based, the figure shows the block
outputting a vector of the 20 values in the second column of the fourth element
of the third dimension from the third element of the fourth dimension.

The output values in this example can be calculated manually in MATLAB
(which uses 1-based indexing):

a(:,1+1,1+3,1+2)

ans =

 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073

Direct Look-Up Table (n-D)

9-65

 1074
 1075
 1076
 1077
 1078
 1079
 1080

Data Type
Support

The Direct Look-Up Table (n-D) block accepts mixed-type signals of type
double, single, int8, uint8, int16, uint16, int32 and, uint32. The output
type can differ from the input type and can be any of the types listed for input;
the output type is inherited from the data type of the Table data parameter.

In the case that the table comes into the block on an input port, the output port
type is inherited from the table input port. Inputs for indexing must be real;
table data can be complex.

Dialog Box

Number of table dimensions
The number of dimensions that the Table data parameter must have. This
determines the number of independent variables for the table and hence the
number of inputs to the block The number of dimensions that the Table data
parameter must have. This determines the number of independent variables
for the table and hence the number of inputs to the block (see descriptions for
“Explicit Number of dimensions” and “Use one (vector) input port instead of N
ports,” below).

Direct Look-Up Table (n-D)

9-66

Inputs select this object from table
Specify whether the output data is a single element, an n-d column, or a
2-D matrix. The number of ports changes for each selection:

Element — # of ports = # of dimensions

Column — # of ports = # of dimensions - 1

2-D Matrix — # of ports = # of dimension -2

This numbering agrees with MATLAB’s indexing. For example, if you have
a 4-D table of data, to access a single element you must specify four indices,
as in array(1,2,3,4). To specify a column, you need three indices, as in
array(:,2,3,4). Finally, to specify a 2-D matrix, you only need two
indices, as in array(:,:,3,4).

Make table an input
Checking this box forces the Direct Look-Up Table (n-D) to ignore the Table
Data parameter. Instead, a new port appears with “T” next to it. Use this
port to input table data.

Table data
The table of output values. The matrix size must match the dimensions
defined by the N breakpoint set parameter or by the Explicit number
of dimensions parameter when the number of dimensions exceeds four.
During block diagram editing, you can leave the Table data field empty,
but for running the simulation, you must match the number of dimensions
in the Table data to the Number of table dimensions. For information
about how to construct multidimensional arrays in MATLAB, see
Multidimensional Arrays in MATLAB’s online documentation.

Action for out of range input
None, Warning, Error.

Real-Time Workshop Note: in the generated code, the “Clip and Warn”
and “Clip Index” options cause the Real-Time Workshop to generate
clipping code with no code included to generate warnings. Code generated
for the other option, “Generate Error”, has no clipping code or error
messages at all, working on the assumption that simulation during the
design phase of your project will reveal model defects leading to

Direct Look-Up Table (n-D)

9-67

out-of-range cases. This assumption helps the code generated by the
Real-Time Workshop to be highly efficient.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion For scalar lookups only (not when returning a column
or a 2-D Matrix from the table)

Dimensionalized For scalar lookups only (not when returning a column
or a 2-D Matrix from the table)

Zero Crossing No

Discrete Filter

9-68

9Discrete FilterPurpose Implement IIR and FIR filters.

Library Discrete

Description The Discrete Filter block implements Infinite Impulse Response (IIR) and
Finite Impulse Response (FIR) filters. You specify the coefficients of the
numerator and denominator polynomials in ascending powers of z-1 as vectors
using the Numerator and Denominator parameters. The order of the
denominator must be greater than or equal to the order of the numerator. See
Discrete Transfer Fcn on page 9-82 for more information about coefficients.

The Discrete Filter block represents the method often used by signal processing
engineers, who describe digital filters using polynomials in z-1 (the delay
operator). The Discrete Transfer Fcn block represents the method often used
by control engineers, who represent a discrete system as polynomials in z. The
methods are identical when the numerator and denominator are the same
length. A vector of n elements describes a polynomial of degree n-1.

The block icon displays the numerator and denominator according to how they
are specified. For a discussion of how Simulink displays the icon, see “Transfer
Fcn” on page 9-255.

Data Type
Support

A Discrete Filter block accepts and outputs a real signal of type double.

Parameters
and Dialog Box

Numerator
The vector of numerator coefficients. The default is [1].

Discrete Filter

9-69

Denominator
The vector of denominator coefficients. The default is [1 2].

Sample time
The time interval between samples.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Discrete

Scalar Expansion No

States Length of Denominator parameter -1

Dimensionalized No

Zero Crossing No

Discrete Pulse Generator

9-70

9Discrete Pulse GeneratorPurpose Generate pulses at regular intervals.

Library Sources

Description The Discrete Pulse Generator block generates a series of pulses at regular
intervals.

You can specify the following pulse parameters. The Pulse width is the
number of sample periods the pulse is high. The Period is the number of
sample periods the pulse is high and low. The Phase delay is the number of
sample periods before the pulse starts. The phase delay can be positive or
negative but must not be larger than the period. The Sample time must be
greater than zero. All the parameters must have the same dimensions after
scalar expansion of any scalar parameters.

Use the Discrete Pulse Generator block for discrete or hybrid systems. To
generate continuous signals, use the Pulse Generator block (see “Pulse
Generator” on page 9-183).

Data Type
Support

A Discrete Pulse Generator block accepts and outputs a real signal of type
double.

Parameters
and Dialog Box

Discrete Pulse Generator

9-71

Amplitude
The amplitude of the pulse. The default is 1.

Period
The pulse period in number of samples. The default is 2.

Pulse width
The number of sample periods that the pulse is high. The default is 1.

Phase delay
The delay before each pulse is generated, in number of samples. The
default is 0.

Sample time
The sample period. The default is 1.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the pulse generation
parameters result in a vector output signal.

Characteristics Sample Time Discrete

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No

Discrete State-Space

9-72

9Discrete State-SpacePurpose Implement a discrete state-space system.

Library Discrete

Description The Discrete State-Space block implements the system described by

where u is the input, x is the state, and y is the output. The matrix coefficients
must have these characteristics, as illustrated in the diagram below:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector width
is determined by the number of columns in the B and D matrices. The output
vector width is determined by the number of rows in the C and D matrices.

Simulink converts a matrix containing zeros to a sparse matrix for efficient
multiplication.

Data Type
Support

A Discrete State Space block accepts and outputs a real signal of type double.

x n 1+() Ax n() Bu n()+=

y n() Cx n() Du n()+=

A B

C D

n

n

m

r

Discrete State-Space

9-73

Parameters
and Dialog Box

A, B, C, D
The matrix coefficients, as defined in the above equations.

Initial conditions
The initial state vector. The default is 0.

Sample time
The time interval between samples.

Characteristics Direct Feedthrough Only if D ≠ 0

Sample Time Discrete

Scalar Expansion Of the initial conditions

States Determined by the size of A

Dimensionalized Yes

Zero Crossing No

Discrete-Time Integrator

9-74

9Discrete-Time IntegratorPurpose Perform discrete-time integration of a signal.

Library Discrete

Description The Discrete-Time Integrator block can be used in place of the Integrator block
when constructing a purely discrete system.

The Discrete-Time Integrator block allows you to:

• Define initial conditions on the block dialog box or as input to the block.

• Output the block state.

• Define upper and lower limits on the integral.

• Reset the state depending on an additional reset input.

These features are described below.

Integration Methods
The block can integrate using these methods: Forward Euler, Backward Euler,
and Trapezoidal. For a given step k, Simulink updates y(k) and x(k+1). T is
the sampling period (delta T in the case of triggered sampling time). Values are
clipped according to upper or lower limits. In all cases, y(0)=x(0)=IC (clipped
if necessary), i.e., the initial output of the block is always the initial condition.

• Forward Euler method (the default), also known as Forward Rectangular, or
left-hand approximation.

For this method, 1/s is approximated by T/(z–1). This gives us
y(k) = y(k–1) + T * u(k–1)

Let x(k+1) = x(k) + T*u(k), then we have:
Step 0: y(0) = x(0) = IC (clip if necessary)

x(1) = y(0) + T*u(0)

Step 1: y(1) = x(1)
x(2) = x(1) + T*u(1)

Step k: y(k) = x(k)
x(k+1) = x(k) + T*u(k) (clip if necessary)

Discrete-Time Integrator

9-75

With this method, input port 1 does not have direct feedthrough.

• Backward Euler method, also known as Backward Rectangular or
right-hand approximation.

For this method, 1/s is approximated by T*z/(z–1). This gives us
y(k) = y(k–1) + T * u(k).

Let x(k) = y(k–1), then we have:
Step 0: y(0) = x(0) = IC (clipped if necessary)

x(1) = y(0)

Step 1: y(1) = x(1) + T*u(1)
x(2) = y(1)

Step k: y(k) = x(k) + T*u(k)
x(k+1) = y(k)

With this method, input port 1 has direct feedthrough.

• Trapezoidal method. For this method, 1/s is approximated by
T/2*(z+1)/(z–1).

When T is fixed (equal to the sampling period), let
x(k) = y(k–1) + T/2 * u(k–1).

Then we have:
Step 0: y(0) = x(0) = IC (clipped if necessary)

x(1) = y(0) + T/2 * u(0)

Step 1: y(1) = x(1) + T/2 * u(1)
x(2) = y(1) + T/2 * u(1)

Step k: y(k) = x(k) + T/2 * u(k)
x(k+1) = y(k) + T/2 * u(k)

Discrete-Time Integrator

9-76

Here, x(k+1) is the best estimate of the next output. It isn’t quite the state,
in the sense that x(k) != y(k).

If T is variable (i.e. obtained from the triggering times), then we have:
Step 0: y(0) = x(0) = IC (clipped if necessary)

x(1) = y(0)

Step 1: x(1) = x(1) + T/2 * (u(1) + u(0))
x(2) = y(1)

Step k: y(k) = x(k) + T/2 * (u(k) + u(k-1))
x(k+1) = y(k)

With this method, input port 1 has direct feedthrough.

The block icon reflects the selected integration method, as this figure shows.

Defining Initial Conditions
You can define the initial conditions as a parameter on the block dialog box or
input them from an external signal:

• To define the initial conditions as a block parameter, specify the Initial
condition source parameter as internal and enter the value in the Initial
condition parameter field.

• To provide the initial conditions from an external source, specify the Initial
condition source parameter as external. An additional input port appears
under the block input, as shown in this figure.

Discrete-Time Integrator

9-77

Using the State Port
In two known situations, you must use the state port instead of the output port:

• When the output of the block is fed back into the block through the reset port
or the initial condition port, causing an algebraic loop. For an example of this
situation, see the bounce model.

• When you want to pass the state from one conditionally executed subsystem
to another, which may cause timing problems. For an example of this
situation, see the clutch model.

You can correct these problems by passing the state through the state port
rather than the output port. Although the values are the same, Simulink
generates them at slightly different times, which protects your model from
these problems. You output the block state by selecting the Show state port
check box.

By default, the state port appears on the top of the block, as shown in this
figure.

Limiting the Integral
To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter fields.
Doing so causes the block to function as a limited integrator. When the output
reaches the limits, the integral action is turned off to prevent integral wind up.
During a simulation, you can change the limits but you cannot change whether
the output is limited. The output is determined as follows:

• When the integral is less than or equal to the Lower saturation limit and
the input is negative, the output is held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the Upper
saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation limit
and the input is positive, the output is held at the Upper saturation limit.

Discrete-Time Integrator

9-78

To generate a signal that indicates when the state is being limited, select the
Show saturation port check box. A saturation port appears below the block
output port, as shown in this figure.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.

• 0 indicates that the integral is not limited.

• -1 indicates that the lower limit is being applied.

When the Limit output option is selected, the block has three zero crossings:
one to detect when it enters the upper saturation limit, one to detect when it
enters the lower saturation limit, and one to detect when it leaves saturation.

Resetting the State
The block can reset its state to the specified initial condition based on an
external signal. To cause the block to reset its state, select one of the External
reset choices. A trigger port appears below the block’s input port and indicates
the trigger type, as shown in this figure.

• Select rising to trigger the state reset when the reset signal has a rising
edge.

• Select falling to trigger the state reset when the reset signal has a falling
edge.

• Select either to trigger the reset when either a rising or falling signal
occurs.

• Select level to trigger the reset and hold the output to the initial condition
while the reset signal is nonzero.

Discrete-Time Integrator

9-79

The reset port has direct feedthrough. If the block output is fed back into this
port, either directly or through a series of blocks with direct feedthrough, an
algebraic loop results. To resolve this loop, feed the block state into the reset
port instead. To access the block’s state, select the Show state port check box.

Specifying the Absolute Tolerance for the Block State
The reset port has direct feedthrough. If the block output is fed back into this
port, either directly or through a series of blocks with direct feedthrough, an
algebraic loop results. To resolve this loop, feed the block state into the reset
port instead. To access the block’s state, select the Show state port check box.

Choosing All Options
When all options are selected, the icon looks like this.

Data Type
Support

A Discrete-Time Integrator block accepts and outputs real signals of type
double.

Discrete-Time Integrator

9-80

Parameters
and Dialog Box

Integrator method
The integration method. The default is ForwardEuler.

External reset
Resets the states to their initial conditions when a trigger event (rising,
falling, either, level) occurs in the reset signal.

Initial condition source
Gets the states’ initial conditions from the Initial condition parameter (if
set to internal) or from an external block (if set to external).

Initial condition
The states’ initial conditions. Set the Initial condition source parameter
value to internal.

Limit output
If checked, limits the states to a value between the Lower saturation limit
and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. The default is inf.

Lower saturation limit
The lower limit for the integral. The default is -inf.

Discrete-Time Integrator

9-81

Show saturation port
If checked, adds a saturation output port to the block.

Show state port
If checked, adds an output port to the block for the block’s state.

Sample time
The time interval between samples. The default is 1.

Characteristics Direct Feedthrough Yes, of the reset and external initial condition source
ports

Sample Time Discrete

Scalar Expansion Of parameters

States Inherited from driving block and parameter

Dimensionalized Yes

Zero Crossing One for detecting reset; one each to detect upper and
lower saturation limits, one when leaving saturation

Discrete Transfer Fcn

9-82

9Discrete Transfer FcnPurpose Implement a discrete transfer function.

Library Discrete

Description The Discrete Transfer Fcn block implements the z-transform transfer function
described by the following equations

where m+1 and n+1 are the number of numerator and denominator
coefficients, respectively. num and den contain the coefficients of the
numerator and denominator in descending powers of z. num can be a vector or
matrix, den must be a vector, and both are specified as parameters on the block
dialog box. The order of the denominator must be greater than or equal to the
order of the numerator.

Block input is scalar; output width is equal to the number of rows in the
numerator.

The Discrete Transfer Fcn block represents the method typically used by
control engineers, representing discrete systems as polynomials in z. The
Discrete Filter block represents the method typically used by signal processing
engineers, who describe digital filters using polynomials in z-1 (the delay
operator). The two methods are identical when the numerator is the same
length as the denominator.

The Discrete Transfer Fcn block displays the numerator and denominator
within its icon depending on how they are specified. See “Transfer Fcn” on page
9- 255 for more information.

Data Type
Support

A Discrete Transfer Function block accepts and outputs real signals of type
double.

H z() num z()
den z()

num0zn num1zn 1– … nummzn m–
+ + +

den0zn den1zn 1– … denn+ + +
---= =

Discrete Transfer Fcn

9-83

Parameters
and Dialog Box

Numerator
The row vector of numerator coefficients. A matrix with multiple rows can
be specified to generate multiple output. The default is [1].

Denominator
The row vector of denominator coefficients. The default is [1 0.5].

Sample time
The time interval between samples. The default is 1.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Discrete

Scalar Expansion No

States Length of Denominator parameter -1

Dimensionalized No

Zero Crossing No

Discrete Zero-Pole

9-84

9Discrete Zero-PolePurpose Implement a discrete transfer function specified in terms of poles and zeros.

Library Discrete

Description The Discrete Zero-Pole block implements a discrete system with the specified
zeros, poles, and gain in terms of the delay operator z. A transfer function can
be expressed in factored or zero-pole-gain form, which, for a single-input,
single-output system in MATLAB, is

where Z represents the zeros vector, P the poles vector, and K the gain. The
number of poles must be greater than or equal to the number of zeros
(n ≥ m). If the poles and zeros are complex, they must be complex conjugate
pairs.

The block icon displays the transfer function depending on how the parameters
are specified. See “Zero-Pole” on page 9-276 for more information.

Data Type
Support

A Discrete Zero-Pole block accepts and outputs real signals of type double.

Parameters
and Dialog Box

Zeros
The matrix of zeros. The default is [1].

H z() KZ z()
P z()
----------- K

z Z1–() z Z2–()… z Zm–()
z P1–() z P2–()… z Pn–()

--= =

Discrete Zero-Pole

9-85

Poles
The vector of poles. The default is [0 0.5].

Gain
The gain. The default is 1.

Sample time
The time interval between samples.

Characteristics Direct Feedthrough Yes, if the number of zeros and poles are equal

Sample Time Discrete

Scalar Expansion No

States Length of Poles vector

Dimensionalized No

Zero Crossing No

Display

9-86

9DisplayPurpose Show the value of the input.

Library Sinks

Description The Display block shows the value of its input.

You can control the display format by selecting a Format choice:

• short, which displays a 5-digit scaled value with fixed decimal point

• long, which displays a 15-digit scaled value with fixed decimal point

• short_e, which displays a 5-digit value with a floating decimal point

• long_e, which displays a 16-digit value with a floating decimal point

• bank, which displays a value in fixed dollars and cents format (but with no $
or commas)

To use the block as a floating display, select the Floating display check box.
The block’s input port disappears and the block displays the value of the signal
on a selected line. If you select the Floating display option, you must turn off
Simulink’s signal storage reuse feature. See “Signal storage reuse” on page
5-31 for more information.

The amount of data displayed and the time steps at which the data is displayed
are determined by block parameters:

• The Decimation parameter enables you to display data at every nth sample,
where n is the decimation factor. The default decimation, 1, displays data at
every time step.

• The Sample time parameter enables you to specify a sampling interval at
which to display points. This parameter is useful when using a variable-step
solver where the interval between time steps may not be the same. The
default value of –1 causes the block to ignore sampling interval when
determining which points to display.

If the block input is an array, you can resize the block to show more than just
the first element. You can resize the block vertically or horizontally; the block
adds display fields in the appropriate direction. A black triangle indicates that
the block is not displaying all input array elements. For example, the figure
below shows a model that passes a vector (1-D array) to a Display block. The

Display

9-87

top model shows the block before it is resized; notice the black triangle. The
bottom model shows the resized block displaying both input elements.

Data Type
Support

A Display block accepts and outputs real or complex signals of any data type.

Parameters
and Dialog Box

Format
The format of the data displayed. The default is short.

Decimation
How often to display data. The default value, 1, displays every input point.

Floating display
If checked, the block’s input port disappears, which enables the block to be
used as a floating Display block.

Sample time
The sample time at which to display points.

Displays only one element
of input vector but indicates

Displays both elements
of input vector

there are more

Display

9-88

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

Dot Product

9-89

9Dot ProductPurpose Generate the dot product.

Library Math

Description The Dot Product block generates the dot product of its two input vectors. The
scalar output, y, is equal to the MATLAB operation

y = sum(conj(u1) .* u2)

where u1 and u2 represent the vector inputs. If both inputs are vectors, they
must be the same length. The elements of the input vectors may be real- or
complex-valued signals of data type double. The signal type (complex or real)
of the output depends on the signal types of the inputs.

To perform element-by-element multiplication without summing, use the
Product block.

Data Type
Support

A Dot Product block accepts and outputs signals of type double.

Dialog Box

Characteristics

Input 1 Input 2 Output

real real real

real complex complex

complex real complex

complex complex complex

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dot Product

9-90

States 0

Dimensionalized Yes

Zero Crossing No

Enable

9-91

9EnablePurpose Add an enabling port to a subsystem.

Library Signals & Systems

Description Adding an Enable block to a subsystem makes it an enabled subsystem. An
enabled subsystem executes while the input received at the Enable port is
greater than zero.

At the start of simulation, Simulink initializes the states of blocks inside an
enabled subsystem to their initial conditions. When an enabled subsystem
restarts (executes after having been disabled), the States when enabling
parameter determines what happens to the states of blocks contained in the
enabled subsystem:

• reset resets the states to their initial conditions (zero if not defined).

• held holds the states at their previous values.

You can output the enabling signal by selecting the Show output port check
box. Selecting this option allows the system to process the enabling signal.

A subsystem can contain no more than one Enable block.

Data Type
Support

The data type of the input of the Enable port may be any data type. See
Chapter 8, “Conditionally Executed Subsystems” for more information about
enabled subsystems.

Parameters
and Dialog Box

States when enabling
Specifies how to handle internal states when the subsystem becomes
re-enabled.

Show output port
If checked, Simulink draws the Enable block output port and outputs the
enabling signal.

Enable

9-92

Characteristics Sample Time Determined by the signal at the enable port

Dimensionalized Yes

Fcn

9-93

9FcnPurpose Apply a specified expression to the input.

Library Functions & Tables

Description The Fcn block applies the specified C language style expression to its input.
The expression can be made up of one or more of these components:

• u — the input to the block. If u is a vector, u(i) represents the ith element
of the vector; u(1) or u alone represents the first element.

• Numeric constants

• Arithmetic operators (+ – * /)

• Relational operators (== != > < >= <=) — The expression returns 1 if the
relation is TRUE; otherwise, it returns 0.

• Logical operators (&& || !) — The expression returns 1 if the relation is
TRUE; otherwise, it returns 0.

• Parentheses

• Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos, cosh, exp,
fabs, floor, hypot, ln, log, log10, pow, power, rem, sgn, sin, sinh, sqrt, tan,
and tanh.

• Workspace variables — Variable names that are not recognized in the list of
items above are passed to MATLAB for evaluation. Matrix or vector
elements must be specifically referenced (e.g., A(1,1) instead of A for the first
element in the matrix).

The rules of precedence obey the C language standards:

1 ()

2 + – (unary)

3 pow (exponentiation)
4 !

5 * /

6 + –

7 > < <= >=

8 = !=

9 &&

10 ||

Fcn

9-94

The expression differs from a MATLAB expression in that the expression
cannot perform matrix computations. Also, this block does not support the
colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For vector
output, consider using the Math Function block. If a block is a vector and the
function operates on input elements individually (for example, the sin
function), the block operates on only the first vector element.

Data Type
Support

A Fcn block accepts and outputs signals of type double.

Parameters
and Dialog Box

Expression
The C language style expression applied to the input. Expression
components are listed above. The expression must be mathematically well
formed (i.e., matched parentheses, proper number of function arguments,
etc.).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing No

First-Order Hold

9-95

9First-Order HoldPurpose Implement a first-order sample-and-hold.

Library Discrete

Description The First-Order Hold block implements a first-order sample-and-hold that
operates at the specified sampling interval. This block has little value in
practical applications and is included primarily for academic purposes.

You can see the difference between the Zero-Order Hold and First-Order Hold
blocks by running the demo program fohdemo. This figure compares the output
from a Sine Wave block and a First-Order Hold block.

Data Type
Support

A First-Order Hold block accepts and outputs signals of type double.

Parameters
and Dialog Box

Sample time
The time interval between samples.

Characteristics Direct Feedthrough No

Sample Time Continuous

Scalar Expansion No

States 1 continuous and 1 discrete per input element

First-Order Hold

9-96

Dimensionalized Yes

Zero Crossing No

From

9-97

9FromPurpose Accept input from a Goto block.

Library Signals & Systems

Description The From block accepts a signal from a corresponding Goto block, then passes
it as output. The data type of the output is the same as that of the input from
the Goto block. From and Goto blocks allow you to pass a signal from one block
to another without actually connecting them. To associate a Goto block with a
From block, enter the Goto block’s tag in the Goto tag parameter.

A From block can receive its signal from only one Goto block, although a Goto
block can pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent to
connecting the blocks to which those blocks are connected. In the model at the
left, Block1 passes a signal to Block2. That model is equivalent to the model at
the right, which connects Block1 to the Goto block, passes that signal to the
From block, then on to Block2.

Associated Goto and From blocks can appear anywhere in a model with this
exception: if either block is in a conditionally executed subsystem, the other
block must be either in the same subsystem or in a subsystem below it in the
model hierarchy (but not in another conditionally executed subsystem).
However, if a Goto block is connected to a state port, the signal can be sent to
a From block inside another conditionally executed subsystem. For more
information about conditionally executed subsystems, see Chapter 7.

The visibility of a Goto block tag determines the From blocks that can receive
its signal. For more information, see Goto on page 9-111, and Goto Tag
Visibility on page 9-114. The block icon indicates the visibility of the Goto
block tag:

• A local tag name is enclosed in square brackets ([]).

• A scoped tag name is enclosed in braces ({}).

• A global tag name appears without additional characters.

Block1 Block2 Block1 Block2Goto From

A A

From

9-98

Data Type
Support

A From block outputs signals of any real or complex data type.

Parameters
and Dialog Box

Goto tag
The tag of the Goto block passing the signal to this From block.

Characteristics Sample Time Inherited from block driving the Goto block

Dimensionalized Yes

From File

9-99

9From FilePurpose Read data from a file.

Library Sources

Description The From File block outputs data read from a file. The block icon displays the
pathname of the file supplying the data.

The file must contain a matrix of two or more rows. The first row must contain
monotonically increasing time points. Other rows contain data points that
correspond to the time point in that column. The matrix is expected to have this
form.

The width of the output depends on the number of rows in the file. The block
uses the time data to determine its output, but does not output the time values.
This means that in a matrix containing m rows, the block outputs a vector of
length m–1, consisting of data from all but the first row of the appropriate
column.

If an output value is needed at a time that falls between two values in the file,
the value is linearly interpolated between the appropriate values. If the
required time is less than the first time value or greater than the last time
value in the file, Simulink extrapolates using the first two or last two points to
compute a value.

If the matrix includes two or more columns at the same time value,the output
is the data point for the first column encountered. For example, for a matrix
that has this data:

time values: 0 1 2 2
data points: 2 3 4 5

At time 2, the output is 4, the data point for the first column encountered at
that time value.

t1 t2 …tfinal

u11 u12 …u1final

…
un1 un2 …unfinal

From File

9-100

Simulink reads the file into memory at the start of the simulation. As a result,
you cannot read data from the same file named in a To File block in the same
model.

Using Data Saved by a To File or a To Workspace Block
The From File block can read data written by a To File block without any
modifications. To read data written by a To Workspace block and saved to a file:

• The data must include the simulation times. The easiest way to include time
data in the simulation output is to specify a variable for time on the
Workspace I/O page of the Simulation Parameters dialog box. See Chapter
4, “Creating a Model” for more information.

• The form of the data as it is written to the workspace is different from the
form expected by the From File block. Before saving the data to a file,
transpose it. When it is read by the From File block, it will be in the correct
form.

Data Type
Support

A From File block outputs real signals of type double.

Parameters
and Dialog Box

File name
The fully qualified path name or file name of the file that contains the data
used as input. The default file name is untitled.mat. If you specify a file
name, Simulink assumes the file resides in MATLAB’s working directory.
(To determine the working directory, type pwd at the MATLAB command
line.) If Simulink cannot find the specified file name in the working
directory, it displays an error message.

From File

9-101

Sample time
Sample rate of data read from the file.

Characteristics Sample Time Inherited from driven block

Scalar Expansion No

Dimensionalized 1-D array only

Zero Crossing No

From Workspace

9-102

9From WorkspacePurpose Read data from the workspace.

Library Sources

Description The From Workspace block reads data from the MATLAB workspace. The
block’s Data parameter specifies the workspace data via a MATLAB expression
that evaluates to a matrix (2-D array) or a structure containing an array of
signal values and time steps. The format of the matrix or structure is the same
as that used to load inport data from the workspace (see “Loading Input from
the Base Workspace” on page 5-19). The From Workspace icon displays the
expression in the Data parameter.

Note You must use the structure-with-time format to load matrix (2-D) data
from the workspace. You can use either the array or the structure format to
load scalar or vector (1-D) data.

The From Workspace block’s Interpolate data parameter determines the
block’s output in the time interval for which workspace data is supplied. If the
Interpolate data option is selected, the block interpolates between data values
for time steps that occur between the times for which data is supplied from the
workspace. Otherwise, the block uses the most recent data value supplied from
the workspace.

The block’s Form output after final data value by parameter determines the
block’s output after the last time step for which data is available from the
workspace. The following table summarizes the output block based on the
options that the parameter provides.

Form
Output Option

Interpolate
Option Block Output After Final Data

Extrapolate On Extrapolated from final data value

Extrapolate Off Error

SettingToZero On Zero

SettingToZero Off Zero

From Workspace

9-103

If the input array contains more than one entry for the same time step,
Simulink uses the signals specified by the last entry. For example, suppose the
input array has this data.

time: 0 1 2 2
signal: 2 3 4 5

At time 2, the output is 5, the signal value for the last entry for time 2.

Note A From Workspace block can directly read the output of a To
Workspace block (see “To Workspace” on page 9-251) if the output is in
structure-with-time format (see “Loading Input from the Base Workspace” on
page 5-19 for a description of these formats).

Data Type
Support

A From Workspace block accepts real or complex signals of any type from the
workspace. Real signals of type double may be in either structure or matrix
format. Complex signals and real signals of any type other than double must
be in structure format.

HoldingFinalValue On Final value from workspace

HoldingFinalValue Off Final value from workspace

CyclicRepetition On Error

CyclicRepetition Off Repeated from workspace. This
option is valid only for workspace
data in structure-without-time
format.

Form
Output Option

Interpolate
Option Block Output After Final Data

From Workspace

9-104

Parameters
and Dialog Box

Data
An expression that evaluates to an array or a structure containing an array
of simulation times and corresponding signal values. For example, suppose
that the workspace contains a column vector of times named T and a vector
of corresponding signal values named U. Then entering the expression,
[T,U], for this parameter yields the required input array. If the required
signal-versus-time array or structure already exists in the workspace,
simply enter the name of the structure or matrix in this field.

Sample time
Sample rate of data from workspace.

Interpolate data
This option causes the block to linearly interpolate at time steps for which
no corresponding workspace data exists. Otherwise, the current output
equals the output at the most recent time for which data exists.

Form output after final data value by
Select method for generating output after the last time point for which data
is available from the workspace.

From Workspace

9-105

Characteristics Sample Time Inherited from driven block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

Function-Call Generator

9-106

9Function-Call GeneratorPurpose Execute a function-call subsystem a specified number of times at a specified
rate.

Library Signals & Systems

Description The Function-Call Generator block executes a function-call subsystem (for
example, a Stateflow state chart configured as a function-call system) at the
rate specified by the block’s Sample time parameter. To execute multiple
function-call subsystems in a prescribed order, first connect a Function-Call
Generator block to a Demux block that has as many output ports as there are
function-call subsystems to be controlled. Then connect the outports of the
Demux block to the systems to be controlled. The system connected to the first
demux port executes first, the system connected to the second demux port
executes second, and so on.

Data Type
Support

A Function-Call block outputs a real signal of type double.

Parameters
and Dialog Box

Sample time
The time interval between samples.

Number of iterations
Number of times to execute block per time step.

Characteristics Direct Feedthrough No

Sample Time User-specified

Scalar Expansion No

Function-Call Generator

9-107

Dimensionalized Yes

Zero Crossing No

Gain

9-108

9GainPurpose Multiply block input by a specified value.

Library Math

Description The Gain block generates its output by multiplying its input by a specified gain
factor. You can enter the gain as a numeric value, or as a variable or expression
in the Gain parameter field. The input and gain can be a scalar, vector, or
matrix. The Multiplication parameter lets you specify whether to use
element-by-element or matrix multiplication of the input by the gain.

The Gain block icon displays the value entered in the Gain parameter field if
the block is large enough. If the gain is specified as a variable, the block
displays the variable’s name.

To modify the gain during a simulation using a slider control (see “Slider Gain”
on page 9-232).

Data Type
Support

The Gain block’s support for data types depends on whether you select matrix
or element-wise multiplication.

For matrix multiplication, the input and the gain must be a real or complex
scalar, vector, or matrix value of type single or double.

For element-wise multiplication, a Gain block accepts a real- or
complex-valued scalar, vector, or matrix input of any data type except boolean
and outputs a signal of the same data type as its input. The elements of an
input vector must be of the same type. A Gain block’s Gain parameter can also
be a real- or complex-valued scalar, vector, or matrix of any data type. A Gain
block observes the following type rules:

• If the input is real and the gain is complex, the output is complex.

• If the gain parameter’s data type differs from the input signal’s data type and
the input data type can represent the gain, Simulink converts the gain to the
input type before computing the output. Otherwise, Simulink halts the
simulation and signals an error. For example, if the input data type is uint8
and the gain is -1, an error results. If typecasting the gain parameter to the
input data type results in a loss of precision, Simulink issues a warning and
continues the simulation.

• If the output data type is an integer type and the gain block’s Saturate on
integer overflow option is selected, the block saturates if the output exceeds

Gain

9-109

the maximum value representable by the block’s output data type. In other
words, the block outputs one plus the maximum positive or minimum
negative value representable by the output data type. For example, if the
output type is int8, the actual output is 127 if the computed output is greater
than 127 and -128 if the computed output is less than -128.

Parameters
and Dialog Box

Multiplication
Specifies the type of operation used to multiply the input:

•K.*u (element-wise multiplication)

•K*u (matrix multiplication with the gain as the left operand)

•u*K (matrix multiplication with the gain as the right operand)

Gain
The gain, specified as a scalar, vector, matrix, variable name, or
expression. The default is 1. If not specified, the data type of the Gain
parameter is double. If the Gain parameter value is too long to be
displayed in the block and element-wise multiplication is selected, the
string –K– is displayed.

Saturate on integer overflow
This option is enable only for element-wise multiplication. If selected, this
option causes the output of the Gain block to saturate on integer overflow.
In particular, if the output data type is an integer type, the block output is
the maximum value representable by the output type or the computed
output, whichever is smaller in the absolute sense. If the option is not
selected, Simulink takes that action specified by the Data overflow event
option on the Diagnostics page of the Simulation Parameters dialog box
(see “The Diagnostics Pane” on page 5-26).

Gain

9-110

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of input and Gain parameter

States 0

Dimensionalized Yes

Zero Crossing No

Goto

9-111

9GotoPurpose Pass block input to From blocks.

Library Signals & Systems

Description The Goto block passes its input to its corresponding From blocks. The input can
be a real- or complex-valued signal or vector of any data type. From and Goto
blocks allow you to pass a signal from one block to another without actually
connecting them.

A Goto block can pass its input signal to more than one From block, although
a From block can receive a signal from only one Goto block. The input to that
Goto block is passed to the From blocks associated with it as though the blocks
were physically connected. For limitations on the use of From and Goto blocks,
see From on page 9-97. Goto blocks and From blocks are matched by the use of
Goto tags, defined as the Tag parameter.

The Tag visibility parameter determines whether the location of From blocks
that access the signal is limited:

• local, the default, means that From and Goto blocks using the tag must be
in the same subsystem. A local tag name is enclosed in square brackets ([]).

• scoped means that From and Goto blocks using the same tag must be in the
same subsystem or in any subsystem below the Goto Tag Visibility block in
the model hierarchy. A scoped tag name is enclosed in braces ({}).

• global means that From and Goto blocks using the same tag can be
anywhere in the model.

Note A scoped Goto block in a masked system is visible only in that
subsystem and in the subsystems it contains. Simulink generates an error if
you run or update a diagram that has a Goto Visibility block at a higher level
in the block diagram than the corresponding scoped Goto block in the masked
subsystem.

Use local tags when the Goto and From blocks using the same tag name reside
in the same subsystem. You must use global or scoped tags when the Goto and
From blocks using the same tag name reside in different subsystems. When
you define a tag as global, all uses of that tag access the same signal. A tag

Goto

9-112

defined as scoped can be used in more than one place in the model. This
example shows a model that uses two scoped tags with the same name (A).

Data Type
Support

A Goto block accepts real or complex signals of any data type.

Parameters
and Dialog Box

Tag
The Goto block identifier. This parameter identifies the Goto block whose
scope is defined in this block.

Tag visibility
The scope of the Goto block tag: local, scoped, or global. The default is
local.

Goto

9-113

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

Goto Tag Visibility

9-114

9Goto Tag VisibilityPurpose Define scope of Goto block tag.

Library Signals & Systems

Description The Goto Tag Visibility block defines the accessibility of Goto block tags that
have scoped visibility. The tag specified as the Goto tag parameter is
accessible by From blocks in the same subsystem that contains the Goto Tag
Visibility block and in subsystems below it in the model hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag visibility
parameter value is scoped. It is not used if the tag visibility is either local or
global. The block icon shows the tag name enclosed in braces ({}).

Data Type
Support

Not applicable.

Parameters
and Dialog Box

Goto tag
The Goto block tag whose visibility is defined by the location of this block.

Characteristics Sample Time N/A

Dimensionalized N/A

Ground

9-115

9GroundPurpose Ground an unconnected input port.

Library Signals & Systems

Description The Ground block can be used to connect blocks whose input ports are not
connected to other blocks. If you run a simulation with blocks having
unconnected input ports, Simulink issues warning messages. Using Ground
blocks to “ground” those blocks avoids warning messages. The Ground block
outputs a signal with zero value. The data type of the signal is the same as that
of the port to which it is connected.

Data Type
Support

A Ground block outputs a signal of the same numeric type (real or complex) and
data type as the port to which it is connected. For example, consider the
following model.

In this example, the output of the constant block determines the data type
(int8) of the port to which the ground block is connected. That port in turn
determines the type of the signal output by the ground block.

Parameters
and Dialog Box

Characteristics Sample Time Inherited from driven block

Dimensionalized Yes

Hit Crossing

9-116

9Hit CrossingPurpose Detect crossing point.

Library Signals & Systems

Description The Hit Crossing block detects when the input reaches the Hit crossing offset
parameter value in the direction specified by the Hit crossing direction
parameter.

The block accepts one input of type double. If the Show output port check box
is selected, the block output indicates when the crossing occurs. If the input
signal is exactly the value of the offset value after the hit crossing is detected,
the block continues to output a value of 1. If the input signals at two adjacent
points bracket the offset value (but neither value is exactly equal to the offset),
the block outputs a value of 1 at the second time step. If the Show output port
check box is not selected, the block ensures that the simulation finds the
crossing point but does not generate output.

When the block’s Hit crossing direction parameter is set to either, the block
serves as an “Almost Equal” block, useful in working around limitations in
finite mathematics and computer precision. Used for these reasons, this block
may be more convenient than adding logic to your model to detect this
condition.

The hardstop and clutch demos illustrate the use of the Hit Crossing block. In
the hardstop demo, the Hit Crossing block is in the Friction Model subsystem.
In the clutch demo, the Hit Crossing block is in the Lockup Detection
subsystem.

Data Type
Support

A Hit Crossing block outputs a signal of type boolean if Boolean logic signals
are enabled (see “Enabling Strict Boolean Type Checking” on page 4-48).
Otherwise, the block outputs a signal of type double.

Hit Crossing

9-117

Parameters
and Dialog Box

Hit crossing offset
The value whose crossing is to be detected.

Hit crossing direction
The direction from which the input signal approaches the hit crossing offset
for a crossing to be detected.

Show output port
If checked, draw an output port.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, to detect the crossing

IC

9-118

9ICPurpose Set the initial value of a signal.

Library Signals & Systems

Description The IC block sets the initial condition of the signal connected to its output port.

For example, these blocks illustrate how the IC block initializes a signal
labeled “test signal.”

At t = 0, the signal value is 3. Afterwards, the signal value is 6.

The IC block is also useful in providing an initial guess for the algebraic state
variables in the loop. For more information, see “Algebraic Loops” on page 3-18.

Data Type
Support

A IC block accepts and outputs a signal of type double.

Dialog Box

Initial value
The initial value for the signal. The default is 1.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Parameter only

States 0

Dimensionalized Yes

Zero Crossing No

Inport

9-119

9InportPurpose Create an input port for a subsystem or an external input.

Library Signals & Systems

Description Inports are the links from outside a system into the system.

Simulink assigns Inport block port numbers according to these rules:

• It automatically numbers the Inport blocks within a top-level system or
subsystem sequentially, starting with 1.

• If you add an Inport block, it is assigned the next available number.

• If you delete an Inport block, other port numbers are automatically
renumbered to ensure that the Inport blocks are in sequence and that no
numbers are omitted.

• If you copy an Inport block into a system, its port number is not renumbered
unless its current number conflicts with an Inport block already in the
system. If the copied Inport block port number is not in sequence, you must
renumber the block or you will get an error message when you run the
simulation or update the block diagram.

You can specify the dimensions of the input to the Inport block , using the Port
dimensions parameter or let Simulink determine it automatically by
providing a value of -1 (the default).

The Sample time parameter is the rate at which the signal is coming into the
system. The default (-1) causes the block to inherit its sample time from the
block driving it. It may be appropriate to set this parameter for Inport blocks
in the top-level system or in models where Inport blocks are driven by blocks
whose sample time cannot be determined.

Inport Blocks in a Subsystem
Inport blocks in a subsystem represent inputs to the subsystem. A signal
arriving at an input port on a Subsystem block flows out of the associated
Inport block in that subsystem.

The Inport block associated with an input port on a Subsystem block is the
block whose Port number parameter matches the relative position of the input
port on the Subsystem block. For example, the Inport block whose Port

Inport

9-120

number parameter is 1 gets its signal from the block connected to the top-most
port on the Subsystem block.

If you renumber the Port number of an Inport block, the block becomes
connected to a different input port, although the block continues to receive its
signal from the same block outside the subsystem.

The Inport block name appears in the Subsystem block icon as a port label. To
suppress display of the label, select the Inport block and choose Hide Name
from the Format menu. Then, choose Update Diagram from the Edit menu.

Inport Blocks in a Top-Level System
Inport blocks in a top-level system have two uses: to supply external inputs
from the workspace, which you can do by using either the Simulation
Parameters dialog box or the sim command, and to provide a means for
analysis functions to perturb the model:

• To supply external inputs from the workspace, using the Simulation
Parameters dialog (see “Loading Input from the Base Workspace” on page
5-19) or the ut argument of the sim command (see sim on page 5-37).

• To provide a means for perturbation of the model by the linmod and trim
analysis functions. Inport blocks define the points where inputs are injected
into the system. For information about using Inport blocks with analysis
commands, see Chapter 5.

Data and
Numeric Type
Support

An inport accepts real- or complex-valued signals of any data type. The data
type and numeric type of the output of an inport is the same as that of the
corresponding input signal. You can specify the signal type and data type of an
external (i.e., workspace) input to a root-level inport, using the inport’s Signal
type and Data type parameters.

The elements of a signal array connected to a root-level inport must be of the
same numeric type and data type. Signal elements connected to a subsystem
inport may be of differing numeric and data types except in one instance. If the
subsystem contains an Enable or Trigger block and the inport is connected

Inport

9-121

directly to an outport, the input elements must be of the same type. For
example, consider the follow enabled subsystem.

In this example, the elements of a signal vector connected to In1 must be of the
same type. The elements connected to In2, however, may be of differing types.

Parameters
and Dialog Box

Port number
The port number of the Inport block.

Port dimensions
Dimensions of the input signal to the Inport block. Specify -1 to have it
automatically determined.

Inport

9-122

Sample time
The rate at which the signal is coming into the system.

Data type
The data type of the external input.

Signal type
The signal type (real or complex) of the external input.

Note The next parameter applies only to root-level inports. It does not
appear on subsystem inport dialogs.

Interpolate data
Selecting this option causes this block, when loading data from the
workspace, to interpolate or extrapolate output at time steps for which no
corresponding workspace data exists. See “Loading Input from the Base
Workspace” on page 5-19 for more information.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

Integrator

9-123

9IntegratorPurpose Integrate a signal.

Library Continuous

Description The Integrator block integrates its input. The output of the integrator is simply
its state, the integral. The Integrator block allows you to:

• Define initial conditions on the block dialog box or as input to the block.

• Output the block state.

• Define upper and lower limits on the integral.

• Reset the state depending on an additional reset input.

Use the Discrete-Time Integrator block, when constructing a purely discrete
system.

Defining Initial Conditions
You can define the initial conditions as a parameter on the block dialog box or
input them from an external signal:

• To define the initial conditions as a block parameter, specify the Initial
condition source parameter as internal and enter the value in the Initial
condition parameter field.

• To provide the initial conditions from an external source, specify the Initial
condition source parameter as external. An additional input port appears
under the block input, as shown in this figure.

Using the State Port
In two known situations, you must use the state port instead of the output port:

Integrator

9-124

• When the output of the block is fed back into the block through the reset port
or the initial condition port, causing an algebraic loop. For an example of this
situation, see the bounce model.

• When you want to pass the state from one conditionally executed subsystem
to another, which may cause timing problems. For an example of this
situation, see the clutch model.

You can correct these problems by passing the state through the state port
rather than the output port. Although the values are the same, Simulink
generates them at slightly different times, which protects your model from
these problems.You output the block state by selecting the Show state port
check box. By default, the state port appears on the top of the block, as shown
in this figure.

Limiting the Integral
To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter fields.
Doing so causes the block to function as a limited integrator. When the output
reaches the limits, the integral action is turned off to prevent integral wind up.
During a simulation, you can change the limits but you cannot change whether
the output is limited. The output is determined as follows:

• When the integral is less than or equal to the Lower saturation limit and
the input is negative, the output is held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the Upper
saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation limit
and the input is positive, the output is held at the Upper saturation limit.

Integrator

9-125

To generate a signal that indicates when the state is being limited, select the
Show saturation port check box. A saturation port appears below the block
output port, as shown on this figure.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.

• 0 indicates that the integral is not limited.

• -1 indicates that the lower limit is being applied.

When this option is selected, the block has three zero crossings: one to detect
when it enters the upper saturation limit, one to detect when it enters the lower
saturation limit, and one to detect when it leaves saturation.

Resetting the State
The block can reset its state to the specified initial condition based on an
external signal. To cause the block to reset its state, select one of the External
reset choices. A trigger port appears below the block’s input port and indicates
the trigger type, as shown in this figure.

• Select rising to trigger the state reset when the reset signal has a rising
edge.

• Select falling to trigger the state reset when the reset signal has a falling
edge.

• Select either to trigger the reset when either a rising or falling signal occurs.

• Select level to trigger the reset and hold the output to the initial condition
while the reset signal is nonzero.

The reset port has direct feedthrough. If the block output is fed back into this
port, either directly or through a series of blocks with direct feedthrough, an
algebraic loop results. To resolve this loop, feed the block state into the reset
port instead. To access the block’s state, select the Show state port check box.

Integrator

9-126

Specifying the Absolute Tolerance for the Block State
When your model contains states having vastly different magnitudes, defining
the absolute tolerance for the model might not provide sufficient error control.
To define the absolute tolerance for an Integrator block’s state, provide a value
for the Absolute tolerance parameter. If the block has more than one state,
the same value is applied to all states.

For more information about error control, see “Error Tolerances” on page 5-13.

Choosing All Options
When all options are selected, the icon looks like this.

Data Type
Support

An Integrator block accepts and outputs signals of type double on its data
ports. Its external reset port accepts signals of type double or boolean.

Parameters
and Dialog Box

External reset
Resets the states to their initial conditions when a trigger event (rising,
falling, either, or level) occurs in the reset signal.

Integrator

9-127

Initial condition source
Gets the states’ initial conditions from the Initial condition parameter (if
set to internal) or from an external block (if set to external).

Initial condition
The states’ initial conditions. Set the Initial condition source parameter
value to internal.

Limit output
If checked, limits the states to a value between the Lower saturation limit
and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. The default is inf.

Lower saturation limit
The lower limit for the integral. The default is -inf.

Show saturation port
If checked, adds a saturation output port to the block.

Show state port
If checked, adds an output port to the block for the block’s state.

Absolute tolerance
Absolute tolerance for the block’s states.

Characteristics Direct Feedthrough Yes, of the reset and external initial condition source
ports

Sample Time Continuous

Scalar Expansion Of parameters

States Inherited from driving block or parameter

Dimensionalized Yes

Zero Crossing If the Limit output option is selected, one for
detecting reset; one each to detect upper and lower
saturation limits, one when leaving saturation

Interpolation (n-D) Using PreLook-Up

9-128

9Interpolation (n-D) Using PreLook-UpPurpose Perform high performance constant or linear interpolation, mapping N input
values to a sampled representation of a function in N variables via output from
PreLook-Up Index Search block.

Library Functions & Tables

Description The Interpolation (n-D) Using PreLook-Up block uses the precalculated indices
and interval fractions from the PreLook-Up Index Search block to perform the
equivalent operation that the Look-Up Table (n-D) performs. By using this
combination of blocks, multiple Interpolation (n-D) blocks can be fed by one set
of PreLook-Up Index Search blocks. In models that have many interpolation
blocks, simulation performance be greatly increased.

This block supports two interpolation methods: flat (constant) interval look-up
and linear interpolation. These operations can be applied to 1-D, 2-D, 3-D, 4-D
and higher dimensioned tables.

You define a set of output values as the Table data parameter. These table
values must correspond to the breakpoint data sets that are in the PreLook-Up
Index Search block. The block generates its output by interpolating the table
values based on the (index,fraction) pairs fed into the block by each
PreLook-Up Index Search block.

The block generates output based on the input values:

• If the inputs match breakpoint parameter values, the output is the table
value at the intersection of the row, column and higher dimensions’
breakpoints.

• If the inputs do not match row and column parameter values, the block
generates output by interpolating between the appropriate table values. If
either or both block inputs are less than the first or greater than the last row
or column parameter values, the block extrapolates from the first two or last
two points in each corresponding dimension.

Data Type
Support

An Interpolation (n-D) Using PreLook-Up block accepts signals of types double
or single, but for any given block, the inputs must all be of the same type. The
Table data parameter must be of the same type as the inputs. The output data
type is set to the Table data data type.

Interpolation (n-D) Using PreLook-Up

9-129

Parameters
and Dialog Box

Number of table dimensions
The number of dimensions that the Table data parameter must have. This
determines the number of independent variables for the table and hence the
number of inputs to the block (see descriptions for “Explicit Number of
dimensions” and “Use one (vector) input port instead of N ports,” below).

Table data
The table of output values. The matrix size must match the dimensions defined
by the N breakpoint set parameter or by the Explicit number of
dimensions parameter when the number of dimensions exceeds four. During
block diagram editing, you can leave the Table data field empty, but for
running the simulation, you must match the number of dimensions in the
Table data to the Number of table dimensions. For information about how to
construct multidimensional arrays in MATLAB, see Multidimensional Arrays
in MATLAB’s online documentation.

Interpolation method
None (flat) or Linear.

Interpolation (n-D) Using PreLook-Up

9-130

Extrapolation method
None (clip) or Linear.

Action for out of range input
None, Warning, Error.

Characteristics Direct Feedthrough Yes,

Sample Time Inherited from driving blocks

Scalar Expansion Yes

Zero Crossing No

Logical Operator

9-131

9Logical OperatorPurpose Perform the specified logical operation on the input.

Library Math

Description The Logical Operator block performs any of these logical operations on its
inputs: AND, OR, NAND, NOR, XOR, and NOT. The output depends on the
number of inputs, their dimensionality, and the selected operator. The output
is 1 if TRUE and 0 if FALSE. The block icon shows the selected operator. The
following rules apply to the inputs and outputs of the block:

• If the block has more than one input, any nonscalar inputs must have the
same dimensions. For example, if any input is a 2-by-2 array, all other
nonscalar inputs must also be 2-by-2 arrays.

• Scalar inputs are expanded to have the same dimensions as the nonscalar
inputs.

• If the block has more than one input, the output has the same dimensions as
the inputs (after scalar expansion) and each output element is the result of
applying the specified logical operation to the corresponding input elements.
For example, if the specified operation is AND and the inputs are 2-by-2
arrays, the output is a 2-by-2 array whose top, left element is the result of
applying AND to the top, left elements of the inputs, etc.

• If the block has a single input and the specified operator is not the NOT
operator, the input must be vector-like, i.e. a scalar, a 1-D array, or a one-row
or one-column 2-D array. The output is a scalar value equal to the result of
applying the operation to the elements of the input.

• If the specified operation is NOT, the block accepts only one input. The
output has the same dimensions as the input and contains the logical
complements of the elements of the input.

When configured as a multi-input XOR gate, this block performs an addition
modulo two operation as mandated by the IEEE standard for logic elements.

Data Type
Support

A Logical Operator block accepts only signals of type boolean on its input ports,
if Boolean logic signals are enabled (see “Enabling Strict Boolean Type
Checking” on page 4-48). Otherwise, the block also accepts inputs of type
double. A nonzero input of type double is treated as TRUE (1), a zero input as
FALSE (0). All inputs must be of the same type. The output of the block is of
the same type as the input.

Logical Operator

9-132

Parameters
and Dialog Box

Operator
The logical operator to be applied to the block inputs. Valid choices are the
operators listed above.

Number of input ports
The number of block inputs. The value must be appropriate for the selected
operator.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of inputs

Dimensionalized Yes

Zero Crossing No

Look-Up Table

9-133

9Look-Up TablePurpose Perform piecewise linear mapping of the input.

Library Functions & Tables

Description The Look-Up Table block maps an input to an output using linear interpolation
of the values defined in the block’s parameters.

You define the table by specifying (either as row or column vectors) the Vector
of input values and Vector of output values parameters. The block produces
an output value by comparing the block input with values in the input vector:

• If it finds a value that matches the block’s input, the output is the
corresponding element in the output vector.

• If it does not find a value that matches, it performs linear interpolation
between the two appropriate elements of the table to determine an output
value. If the block input is less than the first or greater than the last input
vector element, the block extrapolates using the first two or the last two
points.

To map two inputs to an output, use the Look-Up Table (2-D) block. For more
information, see Look-Up Table (2-D) on page 9-136.

To create a table with step transitions, repeat an input value with different
output values. For example, these input and output parameter values create
the input/output relationship described by the plot that follows:

Vector of input values: [–2 –1 –1 0 0 0 1 1 2]
Vector of output values: [–1 –1 –2 –2 1 2 2 1 1]

This example has three step discontinuities: at u = -1, 0, and +1.

the output value

Look-Up Table

9-134

When there are two points at a given input value, the block generates output
according to these rules:

• When u is less than zero, the output is the value connected with the point
first encountered when moving away from the origin in a negative direction.
In this example, when u is -1, y is -2, marked with a solid circle.

• When u is greater than zero, the output is the value connected with the point
first encountered when moving away from the origin in a positive direction.
In this example, when u is 1, y is 2, marked with a solid circle.

• When u is at the origin and there are two output values specified for zero
input, the actual output is their average. In this example, if there were no
point at u = 0 and y = 1, the output would be 0, the average of the two points
at u = 0. If there are three points at zero, the block generates the output
associated with the middle point. In this example, the output at the origin is
1.

The Look-Up Table block icon displays a graph of the input vector versus the
output vector. When a parameter is changed on the block’s dialog box, the
graph is automatically redrawn when you press the Apply or Close button.

Data Type
Support

A Look-Up Table block accepts and outputs signals of type double.

Parameters
and Dialog Box

Vector of input values
The vector of values containing possible block input values. This vector
must be the same size as the output vector. The input vector must be
monotonically increasing.

Look-Up Table

9-135

Vector of output values
The vector of values containing block output values. This vector must be
the same size as the input vector.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

Look-Up Table (2-D)

9-136

9Look-Up Table (2-D)Purpose Perform piecewise linear mapping of two inputs.

Library Functions & Tables

Description The Look-Up Table (2-D) block maps the block inputs to an output using linear
interpolation of a table of values defined by the block’s parameters.

You define the possible output values as the Table parameter. You define the
values that correspond to its rows and columns with the Row and Column
parameters. The block generates an output value by comparing the block
inputs with the Row and the Column parameters. The first input identifies a
row, and the second input identifies a column, as shown by this figure.

The block generates output based on the input values:

• If the inputs match row and column parameter values, the output is the table
value at the intersection of the row and column.

• If the inputs do not match row and column parameter values, the block
generates output by linearly interpolating between the appropriate table
values. If either or both block inputs are less than the first or greater than
the last row or column parameter values, the block extrapolates from the
first two or last two points.

If either the Row or Column parameter has a repeating value, the block
chooses a value using the technique described for the Look-Up Table block.

The Look-Up Table block allows you to map a single input value into a vector
of output values (see Look-Up Table on page 9-133).

Example
In this example, the block parameters are defined as:

Row: [1 2]
Column: [3 4]
Table: [10 20; 30 40]

Look-Up Table (2-D)

9-137

The first figure shows the block outputting a value at the intersection of block
inputs that match row and column values. The first input is 1 and the second
input is 4. These values select the table value at the intersection of the first row
(row parameter value 1) and second column (column parameter value 4).

In the second figure, the first input is 1.7 and the second is 3.4. These values
cause the block to interpolate between row and column values, as shown in the
table at the left. The value at the intersection (28) is the output value.

Data Type
Support

A Look-Up Table (2-D) block accepts and outputs signals of type double.

Parameters
and Dialog Box

Row
The row values for the table, entered as a vector. The vector values must
increase monotonically.

3 4

1 10 20

2 30 40

1

2

3 4

10 20

30 40

1.7 24 34

3.4

14

34

28

Look-Up Table (2-D)

9-138

Column
The column values for the table, entered as a vector. The vector values
must increase monotonically.

Table
The table of output values. The matrix size must match the dimensions
defined by the Row and Column parameters.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Of one input if the other is a vector

Dimensionalized Yes

Zero Crossing No

Look-Up Table (n-D)

9-139

9Look-Up Table (n-D)

Perform constant, linear or spline interpolated mapping of N input values to a
sampled representation of a function in N variables.

Library Functions & Tables

Description The Look-Up Table (n-D) block evaluates a sampled representation of a
function in N variables by interpolating between samples to give an
approximate value for , even when the function F is
known only empirically. The block efficiently maps the block inputs to the
output value using interpolation on a table of values defined by the block’s
parameters. Interpolation methods supported are:

• Flat (constant)

• Linear

• Natural (cubic) spline

You can apply any of these methods to 1-D, 2-D, 3-D or higher dimensional
tables.

You define a set of output values as the Table data parameter and the values
that correspond to its rows, columns and higher dimensions with the Nth
breakpoint set parameter. The block generates an output value by comparing
the block inputs with the breakpoint set parameters. The first input identifies
the first dimension (row) breakpoints, the second breakpoint set identifies a
column, and so on, as shown by this figure.

If you are unfamiliar with how to construct N-dimensional arrays in MATLAB,
see Multidimensional Arrays in MATLAB’s online documentation.

The block generates output based on the input values:

• If the inputs match breakpoint parameter values, the output is the table
value at the intersection of the row, column and higher dimensions
breakpoints.

y F x1 x2 x3 … xn, , , ,()=

Look-Up Table (n-D)

9-140

• If the inputs do not match row and column parameter values, the block
generates output by interpolating between the appropriate table values. If
any of the block inputs are outside the ranges of their respective breakpoint
sets, the block will limit the input values to the breakpoint set's range in that
dimension. If extrapolation is enabled, it extrapolates linearly or by using a
cubic polynomial (if you selected cubic spline extrapolation).

Note As an alternative, you can use the Look-Up Table (n-D) block with the
PreLook-Up Index Search block to have more flexibility and potentially much
higher performance for linear interpolations in certain circumstances.

For non-interpolated table look-ups, use the Direct Look-Up Table, (n-D) block
when the look-up operation is a simple array access, for example, if you have
an integer value k and you merely want the k-th element of a table, y = table(k).

Data Type
Support

An n-D Interpolated Look-Up Table block accepts signals of types double or
single, but for any given n-D Interpolated Look-Up Table block, the inputs
must all be of the same type. Table data and Breakpoint set parameters must
be of the same type as the inputs. The output data type is also set to the input
data type.

Look-Up Table (n-D)

9-141

Parameters
and Dialog Box

Number of table dimensions
The number of dimensions that the Table data parameter is to have. This
determines the number of independent variables for the table and hence
the number of inputs to the block (see descriptions for “Explicit Number of
dimensions” and “Use one (vector) input port instead of N ports”, below).

First input (row) breakpoint set
The row values represented in the table, entered as a vector. The vector
values must increase monotonically. This field is always visible.

Second (column) input breakpoint set
The column values for the table, entered as a vector. The vector values
must increase monotonically. This field is visible if the Number of table
dimensions popup is 2, 3, 4 or More.

Third ... Nth input breakpoint set
The values corresponding to the third dimension for the table, entered as a
vector. The vector values must increase monotonically. This field is visible
if the Number of table dimensions is 3, 4 or More.

Look-Up Table (n-D)

9-142

Fourth input breakpoint set
The values corresponding to the fourth dimension for the table, entered as
a vector. The vector values must increase monotonically. This field is
visible if the Number of table dimensions is 4 or More.

Fifth..Nth input breakpoint sets (cell array)
The cell array of values corresponding to the third, fourth, or higher
dimensions for the table, entered as a 1-D cell array of vectors. For
example, {[10:10:30], [0:10:100]} is a cell array of two vectors that will
be used for the fifth and sixth dimensions’ breakpoint sets. The vector
values must increase monotonically. This field is visible if the Number of
table dimensions is More.

Explicit number of dimensions
The number of table dimensions when the number is five or more. This is
indicated when you set the Numbor of table dimensions field to More.

Index search method
Choose “Evenly Spaced Points”, “Linear Search” or “Binary Search”
(default). Each search method has speed advantages over the others in
different circumstances. A suboptimal choice of index seach method can
lead to slow performance in models that rely heavily on look-up tables. If
the breakpoint data are evenly spaced, e.g., 10, 20, 30, ..., you can achieve
the greatest speed by selecting “Evenly Spaced Points” to directly calculate
the indices into the table. For irregularly spaced breakpoint sets, if the
input signals do not vary much from one time step to the next, selecting
“Linear Search” and “Begin index searches using previous index results” at
the same time will produce the best speed performance. For irregularly
spaced breakpoint sets with rapidly varying input signals that jump more
than one or two table intervals per time step, selecting “Binary Search” will
give the best speed performance. Note that the “Evenly Spaced Points”
algorithm only makes use of the first two breakpoints in determining the
offset and spacing of the rest of the points.

Begin index searches using previous index results
Activating this option will cause the block to initialize index searches using
the index found on the previous time step. This is a huge performance
improvement for the block when the input signals do not change much with
respect to its position in the table from one time step to the next. When this

Look-Up Table (n-D)

9-143

option is deactivated, the linear search and binary search methods can take
significantly longer, especially for large breakpoint data sets.

Use one (vector) input port instead of N ports
Instead of having one input port per independent variable, the block is
configured with just one input port that expects a signal that is N elements
wide for an N-dimensional table. This may be useful in removing line
clutter on a block diagram with large numbers of tables.

Table data
The table of output values. To execute a model with this block, the matrix
size must match the dimensions defined by the N breakpoint set
parameter or by the Explicit number of dimensions parameter when the
number of dimensions exceeds four. During block diagram ediig, you can
leave this field blank since only the Number of table dimensions field is
required to set the number of ports on the block.

Interpolation method
None (flat), Linear, or Cubic Spline.

Extrapolation method
None (clip), Linear, or Cubic Spline.

Action for out of range input
None, Warning, or Error. An out of range condition during simulation
results in warning messages in the command window if “Warning” is
selected, and the simulation halts with an error message if “Error” is
selected.

Characteristics
Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion No

Dimensionalized No

Zero Crossing No

Magnitude-Angle to Complex

9-144

9Magnitude-Angle to ComplexPurpose Convert a magnitude and/or a phase angle signal to a complex signal.

Library Math

Description The Magnitude-Angle to Complex block converts magnitude and/or phase
angle inputs to a complex-valued output signal. The inputs must be real-valued
signals of type double. The angle input is assumed to be in radians. The data
type of the complex output signal is double.

The inputs may be both signals of equal dimensions, or one input may be an
array and the other a scalar. If the block has an array input, the output is an
array of complex signals. The elements of a magnitude input vector are mapped
to magnitudes of the corresponding complex output elements. An angle input
vector is similarly mapped to the angles of the complex output signals. If one
input is a scalar, it is mapped to the corresponding component (magnitude or
angle) of all the complex output signals.

Data Type
Support

See block description above.

Parameters
and Dialog Box

Input
Specifies the kind of input: a magnitude input, an angle input, or both.

Angle (Magnitude)
If the input is an angle signal, specifies the constant magnitude of the
output signal. If the input is a magnitude, specifies the constant phase
angle in radians of the output signal.

Magnitude-Angle to Complex

9-145

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the input when the function requires two inputs

Dimensionalized Yes

Zero Crossing No

Manual Switch

9-146

9Manual SwitchPurpose Switch between two inputs.

Library Nonlinear

Description The Manual Switch block is a toggle switch that selects one of its two inputs to
pass through to the output. To toggle between inputs, double-click on the block
icon (there is no dialog box). The selected input is propagated to the output,
while the unselected input is discarded. You can set the switch before the
simulation is started or throw it while the simulation is executing to
interactively control the signal flow. The Manual Switch block retains its
current state when the model is saved.

Data Type
Support

A Manual Switch block accepts all input types. Both inputs must be of the same
numeric and data type. The block’s output has the same numeric type (real or
complex) and data type as its input.

Parameters
and Dialog Box

None

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

Math Function

9-147

9Math FunctionPurpose Perform a mathematical function.

Library Math

Description The Math Function block performs numerous common mathematical
functions.

You can select one of these functions from the Function list: exp, log, 10u,
log10, magnitude2, square, sqrt, pow, conj, reciprocal, hypot, rem, mod,
transpose, and hermitian. The block output is the result of the function
operating on the input or inputs.

The name of the function appears on the block icon. Simulink automatically
draws the appropriate number of input ports.

Use the Math Function block instead of the Fcn block when you want vector or
matrix output because the Fcn block can produce only scalar output.

Data Type
Support

A Math Function block accepts complex or real-valued signals or signal vectors
of type double.The output signal type is real or complex, depending on the
setting of the Output signal type parameter.

Parameters
and Dialog Box

Function
The mathematical function.

Math Function

9-148

Output signal type
The dialog allows you to select the output signal type of the Math Function
block as real, complex, or auto.

Characteristics

Input Output Signal Type

Function Signal Auto Real Complex

Exp, log, 10u, log10,
square, sqrt, pow,
reciprocal,conjugate,
transpose, hermitian

real
complex

real
complex

real
error

complex
complex

magnitude squared real
complex

real
real

real
real

complex
complex

hypot, rem, mod real
complex

real
error

real
error

complex
error

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the input when the function requires two inputs

Dimensionalized Yes

Zero Crossing No

MATLAB Fcn

9-149

9MATLAB FcnPurpose Apply a MATLAB function or expression to the input.

Library Functions & Tables

Description The MATLAB Fcn block applies the specified MATLAB function or expression
to the input. The output of the function must match the output dimensions of
the block or an error occurs.

Here are some sample valid expressions for this block.

sin
atan2(u(1), u(2))
u(1)^u(2)

Note This block is slower than the Fcn block because it calls the MATLAB
parser during each integration step. Consider using built-in blocks (such as
the Fcn block or the Math Function block) instead, or writing the function as
an M-file or MEX-file S-function, then accessing it using the S-Function block.

Data Type
Support

A MATLAB Fcn block accepts one complex- or real-valued input of type double
and generates real or complex output of type double, depending on the setting
of the Output signal type parameter.

Parameters
and Dialog Box

MATLAB Fcn

9-150

MATLAB function
The function or expression. If you specify a function only, it is not necessary
to include the input argument in parentheses.

Output dimensions
The output dimensions. If the output dimensions are to be the same as the
input dimensions, specify -1. Otherwise, you must specify the correct
dimensions or an error will result.

Output signal type
The dialog allows you to select the output signal type of the MATLAB Fcn
as real, complex, or auto. A value of auto sets the block’s output type to be
the same as the type of the input signal.

Collapse 2-D results to 1-D
Outputs a 2-D array as a 1-D array containing the 2-D array’s elements in
column-major order.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

Matrix Concatenation

9-151

9Matrix ConcatenationPurpose Concatenate inputs horizontally or vertically.

Library Signals & Systems

Description The Matrix Concatenation block concatenates input matrices u1, u2, ..., un
along rows or columns, where n is specified by the Number of inputs
parameter. The block accepts inputs with any combination of built-in Simulink
data types. If all inputs are sample-based, the output is sample-based.
Otherwise, the output is frame-based.

Horizontal Matrix Concatenation
When the Concatenation method parameter is set to Horizontal, the block
concatenates the input matrices along rows.

y = [u1 u2 u3 ... un] % Equivalent MATLAB code

For horizontal concatenation, inputs must all have the same row dimension, M,
but may have different column dimensions. The output matrix has dimension
M-by-ΣNi, where Ni is the number of columns in input ui (i = 1, 2, ..., n).

When some of the inputs are length-M 1-D vectors while others are M-by-Ni
matrices, the vector inputs are treated as M-by-1 matrices.

Vertical Matrix Concatenation
When the Concatenation method parameter is set to Vertical, the block
concatenates the input matrices along columns.

y = [u1;u2;u3;...;un] % Equivalent MATLAB code

For vertical concatenation, inputs must all have the same column
dimension, N, but may have different row dimensions. The output matrix has
dimension ΣMi-by-N, where Mi is the number of rows in input ui (i = 1, 2, ..., n).

When some of the inputs are length-Mi 1-D vectors while others are Mi-by-1
matrices, the vector inputs are treated as Mi-by-1 matrices. (1-D vector inputs
are not accepted for vertical concatenation when the other inputs have column
dimension greater than 1.)

Matrix Concatenation

9-152

1-D Vector Concatenation
When all inputs to the Matrix Concatenation block are length-Mi 1-D vectors,
the output is a ΣMi-by-1 matrix containing all input elements concatenated in
port order: the elements in the vector input to the top port appear as the first
elements in the output, and the elements in the vector input to the bottom port
appear as the last elements in the output.

Dialog Box

Number of inputs
The number of matrices to concatenate.

Concatenation method
The dimension along which to concatenate the inputs.

Matrix Gain

9-153

9Matrix GainPurpose Multiply the input by a matrix.

Library Math

Description The Matrix Gain block is the Gain block with its parameters set to default
values appropriate for a matrix gain. See the Gain block for more information.

Data Type
Support

See the Gain block.

Parameters
and Dialog Box

Gain
The gain, specified as a matrix. The default is eye(3,3). See the Gain block
for more information.

Multiplication
Type of multiplication used to multiply the input signal by the gain. The
default is set for matrix multiplication. See the Gain block for more
information.

Saturate on Integer Overflow
Applies only to element-wise multiplication. See the Gain block for more
information.

Matrix Gain

9-154

Characteristics Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion No

States 0

Dimensionalized Yes

Zero Crossing No

Memory

9-155

9MemoryPurpose Output the block input from the previous integration step.

Library Continuous

Description The Memory block outputs its input from the previous time step, applying a one
integration step sample-and-hold to its input signal.

This sample model (which, to provide more useful information, would be part
of a larger model) demonstrates how to display the step size used in a
simulation. The Sum block subtracts the time at the previous step, generated
by the Memory block, from the current time, generated by the clock.

Note Avoid using the Memory block when integrating with ode15s or
ode113, unless the input to the block does not change.

Data Type
Support

A Memory block accepts signals of any numeric type (complex or real) and data
type, including user-defined types. If the input type is user-defined, the initial
condition must be 0.

Parameters
and Dialog Box

Initial condition
The output at the initial integration step.

Inherit sample time
Check this box to cause the sample time to be inherited from the driving
block.

Memory

9-156

Characteristics Direct Feedthrough No

Sample Time Continuous, but inherited if the Inherit sample time
check box is selected

Scalar Expansion Of the Initial condition parameter

Dimensionalized Yes

Zero Crossing No

Merge

9-157

9MergePurpose Combine multiple signals into a single signal.

Library Signals & Systems

Description The Merge block combines its inputs into a single output line whose value at
any time is equal to the most recently computed output of its driving blocks.
You can specify any number of inputs by setting the block’s Number of Inputs
parameter.

Note Merge blocks facilitate creation of alternately executing subsystems.
See “Creating Alternately Executing Subsystems” on page 7-12 for an
application example.

A Merge block does not accept signals whose elements have been reordered. For
example, in the following diagram,

the Merge block does not accept the output of the Selector block because the
Selector block interchanges the first and fourth elements of the vector signal.

If the block’s Allow unequal port widths option is not selected, the block
accepts only inputs of equal dimensions and outputs a signal of the same
dimensions as the inputs. If the Allow unequal port widths option is selected,
the block accepts scalars and vectors (but not matrices) having differing
numbers of elements. Further, the block allows you to specify an offset for each

Merge

9-158

input signal relative to the beginning of the output signal. The width of the
output signal is max(w1+o1, w2+o2, ... wn+on) where w1, ... wn are the
widths of the input signals and o1, ... on are the offsets for the input signals.
For example, the Merge block in the following diagram

merges signals v1 and v2 to produce signal v3. In this example, the offset of v1
is 0 and the offset of v2 is 2, resulting in an output signal six elements wide.
The Merge block maps the elements of v1 to the first two elements of v3 and
the elements of v2 to the last four elements of v3.

You can specify an initial output value by setting the blocks Initial Output
parameter. If you do not specify an initial output and one or more of the driving
blocks do, the Merge block’s initial output equals the most recently evaluated
initial output of the driving blocks.

Data Type
Support

A Merge block accepts signals of any numeric type (complex or real) and data
type, including user-defined types. If the input type is user-defined, the initial
condition must be 0.

Merge

9-159

Parameters
and Dialog Box

Number of inputs
The number of input ports to merge.

Initial output
Initial value of output. If unspecified, the initial output equals the initial
output, if any, of one of the driving blocks.

Allow unequal port widths
Allows the block to accept inputs having different numbers of elements.

Input port offsets
Vector specifying the offset of each input signal relative to the beginning of
the output signal.

Characteristics Sample Time Inherited from the driving block

Dimensionalized Yes

Scalar Expansion No

MinMax

9-160

9MinMaxPurpose Output the minimum or maximum input value.

Library Math

Description The MinMax block outputs either the minimum or the maximum element or
elements of the input(s). You can choose which function to apply by selecting
one of the choices from the Function parameter list.

If the block has one input port, the input must be a scalar or a vector. The block
outputs a scalar equal to the minimum or maximum element of the input
vector.

If the block has multiple input ports, the nonscalar inputs must all have the
same dimensions. The block expands any scalar inputs to have the same
dimensions as the nonscalar inputs. The block outputs a signal having the
same dimensions as the input. Each output element equals the minimum or
maximum of the corresponding input elements.

Data Type
Support

A MinMax block accepts and outputs real-valued signals of any data type.

Parameters
and Dialog Box

Function
The function (min or max) to apply to the input.

Number of input ports
The number of inputs to the block.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from the driving block

MinMax

9-161

Scalar Expansion Of the inputs

Dimensionalized Yes

Zero Crossing Yes, to detect minimum and maximum values

Model Info

9-162

9Model InfoPurpose Display revision control information in a model.

Library Signals & Systems

Description The Model Info block displays revision control information about a model as an
annotation block in the model’s block diagram. The following diagram
illustrates use of a Model Info block to display information about the vdp model.

A Model Info block can show revision control information embedded in the
model itself and/or information maintained by an external revision control or
configuration management system. A Model Info block’s dialog allows you to
specify the content and format of the text displayed by the block.

Data Type
Support

Not applicable.

Model Info

9-163

Dialog Box

The Model Info block dialog box includes the following fields:

Editable text. Enter the text to be displayed by the Model Info block in this field.
You can freely embed variables of the form %<propname>, where propname is
the name of a model or revision control system property, in the entered text.
The value of the property replaces the variable in the displayed text. For
example, suppose that the current version of the model is 1.1. Then the entered
text

Version %<ModelVersion>

appears as

Version 1.1

in the displayed text. The model and revision control system properties that
you can reference in this way are listed in the Model properties and
Configuration manager properties fields.

Model properties. Lists revision control properties stored in the model. Selecting
a property and then selecting the adjacent arrow button enters the
corresponding variable in the Editable text field. For example, selecting
CreatedBy enters %<CreatedBy%> in the Editable text field. See “Version

Model Info

9-164

Control Properties” on page 4-111 for a description of the usage of the
properties specified in this field.

RCS properties. This field appears only if you previously specified an external
configuration manager for this model (see “Configuration manager” on page
4-107). The title of the field changes to reflect the selected configuration
manager (for example, RCS properties). The field lists version control
information maintained by the external system that you can include in the
Model Info block. To include an item from the list, select it and then click the
adjacent arrow button.

Note The selected item does not appear in the Model Info block until you
check the model in or out of the repository maintained by the configuration
manager and you have closed and reopened the model.

Multiport Switch

9-165

9Multiport SwitchPurpose Choose between block inputs.

Library Nonlinear

Description The Multiport Switch block chooses between a number of inputs.

The first (top) input is the control input and the other inputs are data inputs.
The value of the control input determines which data input to pass through to
the output port.

If the control input is not an integer value, the Multiport Switch truncates the
value to the nearest integer and issues a warning. If the (truncated) control
input is less than one or greater than the number of input ports, the switch
issues an out-of-bounds error. Otherwise, the switch passes the data input that
corresponds to the (truncated) control input. The following table summarizes
the Multiport Switch’s behavior.

Data inputs can be scalar or vector. The control input can be a scalar or a
vector. The block output is determined by these rules:

• If inputs are scalar, the output is a scalar.

• If the block has more than one data input, at least one of which is an array,
the output is an array. Any scalar inputs are expanded to arrays.

• If the block has only one data input, the input must be a scalar or a vector
(1-D array). If the input is a vector, the block output is the element of the
vector that corresponds to the truncated value of the control input.

(Truncated) Control Input Passes This Data Input

Less than 1 Out of bounds error

1 First input

2 Second input

etc. etc.

Greater than the number of
data inputs

Out of bounds error

Multiport Switch

9-166

Data Type
Support

The control input of a Multiport Switch block accepts a real-valued signal of
any built-in data type except boolean. The data inputs accept real- or
complex-valued inputs of any type. All data inputs must be of the same data
and numeric type. The signal type of the block’s output is the same as that of
its data inputs.

Parameters
and Dialog Box

Number of inputs
The number of data inputs to the block.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block(s)

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

Mux

9-167

9MuxPurpose Combine several input signals into a vector or bus output signal.

Library Signals & Systems

Description The Mux block combines its inputs into a single output. An input can be a
scalar, vector, or matrix signal. Depending on its inputs, the output of a Mux
block is a vector or a composite signal, i.e., a signal containing both matrix and
vector elements. If all of a Mux block’s inputs are vectors or vector-like, the
block’s output is a vector. A vector-like signal is any signal that is a scalar
(one-element vector), a vector, or a single-column or single-row matrix. If any
input is a nonvector-like matrix signal, the output of the Mux is a bus signal.
Bus signals can drive only virtual blocks, e.g., a Demux, Subsystem, or Go To
block.

The Mux block’s Number of Inputs parameter allows you to specify input
signal names and dimensionality as well as the number of inputs. You can use
any of the following formats to specify this parameter:

• Scalar

Specifies the number of inputs to the Mux block. When this format is used,
the block accepts signals of any dimensionality. Also, Simulink assigns each
input the name signalN, where N is the input port number.

• Vector

The length of the vector specifies the number of inputs. Each element
specifies the dimensionality of the corresponding input. A positive value
specifies that the corrresponding port can accept only vectors of that size. For
example [2 3] specifies two input ports of size 2 and 3, respectively. If an
input signal width does not match the expected width, Simulink displays an
error message. A value of -1 specifies that the corresponding port can accept
vectors or matrices of any dimensionality.

• Cell array

The length of the cell array specifies the number of inputs. The value of each
cell specifies the dimensionality of the corresponding input. A scalar value N
specifies a vector of size N. A vector value [M N] specifies an MxN matrix. A
value of -1 means the corresponding port can accept signals of any
dimensionality.

Mux

9-168

• Signal name list

You can enter a list of signal names separated by commas. Simulink assigns
each name to the corresponding port and signal. For example, if you enter
position,velocity, the Mux block will have two inputs, named position
and velocity.

Note Simulink hides the name of a Mux block when you copy it from the
Simulink block library to a model.

Data Type
Support

A Mux block accepts real or complex signals of any data type, including
mixed-type vectors.

Parameters
and Dialog Box

Number of inputs
The number and dimensionality of inputs. You can enter a
comma-separated list of signal names for this parameter field.

Display option
The appearance of the block icon in your model.

Display Option Appearance of Block in Model

none Mux appears inside block icon

signals Displays signal names next to each port

bar Displays the block icon in a solid foreground color

Outport

9-169

9OutportPurpose Create an output port for a subsystem or an external output.

Library Signals & Systems

Description Outports are the links from a system to a destination outside the system.

Simulink assigns Outport block port numbers according to these rules:

• It automatically numbers the Outport blocks within a top-level system or
subsystem sequentially, starting with 1.

• If you add an Outport block, it is assigned the next available number.

• If you delete an Outport block, other port numbers are automatically
renumbered to ensure that the Outport blocks are in sequence and that no
numbers are omitted.

• If you copy an Outport block into a system, its port number is not
renumbered unless its current number conflicts with an Outport block
already in the system. If the copied Outport block port number is not in
sequence, you must renumber the block or you will get an error message
when you run the simulation or update the block diagram.

Outport Blocks in a Subsystem
Outport blocks in a subsystem represent outputs from the subsystem. A signal
arriving at an Outport block in a subsystem flows out of the associated output
port on that Subsystem block. The Outport block associated with an output
port on a Subsystem block is the block whose Port number parameter matches
the relative position of the output port on the Subsystem block. For example,
the Outport block whose Port number parameter is 1 sends its signal to the
block connected to the top-most output port on the Subsystem block.

If you renumber the Port number of an Outport block, the block becomes
connected to a different output port, although the block continues to send the
signal to the same block outside the subsystem.

When you create a subsystem by selecting existing blocks, if more than one
Outport block is included in the grouped blocks, Simulink automatically
renumbers the ports on the blocks.

Outport

9-170

The Outport block name appears in the Subsystem block icon as a port label.
To suppress display of the label, select the Outport block and choose Hide
Name from the Format menu.

Outport Blocks in a Conditionally Executed Subsystem
When an Outport block is in an enabled subsystem, you can specify what
happens to its output when the subsystem is disabled: it can be reset to an
initial value or held at its most recent value. The Output when disabled
pop-up menu provides these options. The Initial output parameter is the value
of the output before the subsystem executes and, if the reset option is chosen,
while the subsystem is disabled.

Outport Blocks in a Top-Level System
Outport blocks in a top-level system have two uses: to supply external outputs
to the workspace, which you can do by using either the Simulation
Parameters dialog box or the sim command, and to provide a means for
analysis functions to obtain output from the system.

• To supply external outputs to the workspace, using the Simulation
Parameters dialog box (see “Saving Output to the Workspace” on page 5-22)
or the sim command (see sim on page 5-37). For example, if a system has
more than one Outport block and the save format is array, the following
command
[t,x,y] = sim(...);

writes y as a matrix, with each column containing data for a different
Outport block. The column order matches the order of the port numbers for
the Outport blocks.

If you specify more than one variable name after the second (state)
argument, data from each Outport block is written to a different variable.
For example, if the system has two Outport blocks, to save data from Outport
block 1 to speed and the data from Outport block 2 to dist, you could specify
this command:
[t,x,speed,dist] = sim(...);

• To provide a means for the linmod and trim analysis functions to obtain
output from the system. For more information about using Outport blocks
with analysis commands, see Chapter 5.

Outport

9-171

Numeric and
Data Type
Support

An Outport block accepts complex or real signals of any MATLAB data type as
input. The numeric and data type of the block’s output is the same as that of
its input. The elements of a signal array connected to an Outport block can be
of differing numeric and data types except in the following circumstance. If the
outport is in a conditionally executed subsystem and the initial output is
specified, all elements of an input array must be of the same numeric and data
type.

Simulink’s data type conversion rules apply to an outport’s Initial output
parameter. If the initial value is in the range of the block’s output data type,
Simulink converts the initial value to the output data type. If the specified
initial output is out of range of the output data type, Simulink halts the
simulation and signals an error. Note that the block’s output data type is the
data type of the signal connected to its input.

Parameters
and Dialog Box

Port number
The port number of the Outport block.

Output when disabled
For conditionally executed subsystems, what happens to the block output
when the system is disabled.

Initial output
For conditionally executed subsystems, the block output before the
subsystem executes and while it is disabled.

Outport

9-172

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

Polynomial

9-173

9PolynomialPurpose Perform evaluation of polynomial coefficients on input values.

Library Functions & Tables

Description The Polynomial block uses a coefficients parameter to evaluate a real
polynomial for the input value.

You define a set of polynomial coefficients in the form accepted by MATLAB's
polyval command. The block will then calculate P(u) at each time step for the
input u. Inputs and coefficients must be non-complex.

Data Type
Support

The Polynomial block accepts real signals of types double or single.The
Polynomial coefficients parameter must be of the same type as the inputs.
The output data type is set to the input data type.

Parameters
and Dialog Box

Polynomial coefficients
Values are in coefficients of a polynomial in MATLAB polyval form, with the
first coefficient representing xN, then decreasing in order until the last
cofficient, which represents the constant for the polynomial. See polyval for
more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Polynomial

9-174

Dimensionalized Yes

Zero Crossing No

Prelook-Up Index Search

9-175

9Prelook-Up Index SearchPurpose First stage of high performance constant or linear interpolation that performs
index search and interval fraction calculation for input on a breakpoint set.

Library Functions & Tables

Description The PreLook-Up Index Search block calculates the indices and interval
fractions for the input value in the Breakpoint data parameter. By using this
combination of blocks, multiple Interpolation (n-D) blocks can be ed by one set
of PreLook-Up Index Search blocks. In models that have many interpolation
blocks simulation performance be greatly increased.

To use this block, you must define a set of breakpoint values. In normal use,
this breakpoint data set corresponds to one dimension of a Table data
parameter in an Interpolation (n-D) using PreLook-Up block. The block
generates a pair of outputs for each input value by calculating the index of the
breakpoint set element that is less than or equal to the input value and the
resulting fractional value that is a number 0 ≤ f < 1 that represent's the input
value's normalized position between the index and the next index value.

For example, if the breakpoint data is:

[0 5 10 20 50 100]

and the input value u is 55, the (index, fraction) pair will be (4, 0.1), denoted as
k and f on the block icon. Note that the index value is zero-based.

Data Type
Support

A PreLook-Up Index Search block accepts signals of types double or single, but
for any given block, the inputs must all be of the same type. The Breakpoint
data parameter must be of the same type as the inputs. The output data type
is set to the input data type.

Prelook-Up Index Search

9-176

Parameters
and Dialog Box

Breakpoint data
The set of numbers to search.

Index search method
Binary search, evenly spaced points, or linear search. Use linear search in
combination with Begin index search using previous index result for higher
performance than a binary search when the input values do not change much
from one time step to the next. For large breakpoint sets ,a linear search can
be very slow if the input value changes by more than a few intervals from one
time step to the next.

Begin index search using previous index result
Check this option if you want the block to start its search using the index that
was found on the previous time step. For inputs that change slowly with
respect to the interval size, you may realize a large performance gain.

Output only the index
If this block is not being used to feed an Interpolation (n-D) using PreLook-Up
block, the interval fraction output can be dropped and the resulting index value
output is a uint32 instead.

Prelook-Up Index Search

9-177

Process out of range input
Clip to Range or Linear Extrapolation.

Action for out of range input
None, Warning, Error.

Characteristics
Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

Product

9-178

9ProductPurpose Generate the element-wise product, quotient, matrix product, or inverse of
block inputs.

Library Math

Description The Product block outputs the element-wise or matrix product of its inputs,
depending on the values of the Multiplication and Number of inputs
parameters:

• If the value of the Number of inputs parameter is a combination of * and /
symbols, the number of block inputs is equal to the number of symbols. The
block icon shows the appropriate symbol adjacent to each input port.

For example, entering */ as the parameter value results in the block icon

when the the Multiplication parameter is element-wise.

If the value of the Multiplication parameter is element-wise, the block
output is the element-by-element product of all inputs marked * divided by
all inputs marked /. For example, if the inputs are vectors of size n, the
output is a vector of size n each of whose elements equals

(To create the dot-product of input vectors, use the Dot Product block.

If any input is a matrix, all inputs must be a matrix or a scalar where a scalar
is defined as a 1-by-1 matrix or a 1-element vector. If any input is a vector,
all inputs must be vector-like. A vector-like input is any input that is either
a scalar, a vector, or a column matrix or a row matrix. All nonscalar inputs
must have the same dimension. The inputs cannot include both column and
row matrices.

If the value of the Multiplication parameter is matrix, the block output is
the matrix product of inputs marked * multiplied by the matrix inverse of
each input marked /. The order of operations is the same as the order
specified by the Number of Inputs field, for example, a value of */* results
in the matrix product AB-1C, where A, B, C are the first, second, and third

yi u1i u2i … uni×××=

Product

9-179

inputs signals, respectively. The dimensions of the matrices must be such
that the matrix product is defined.

If all inputs are scalars, the output of the block is a scalar. Otherwise, the
output is a matrix or a vector depending on whether the inputs are matrices
or vectors.

• If the value of the Number of inputs parameter is *, the value of the
Multiplication parameter is element-wise, and the input is vector-like, i.e.,
a 1-D array or a one-column or one-row 2-D array, the block outputs the
scalar product of the elements of the input.

In this case, the block icon appears as follows.

If the input is a matrix and the the Multiplication parameter is
element-wise, Simulink signals an error. If the value of the Multiplication
parameter is matrix, the block outputs the input unchanged.

• If the value of the Number of inputs parameter is /, the value of the
Multiplication parameter is element-wise, and the input is vector-like, the
block outputs the inverse of the scalar product of the input elements. If the
input is a matrix and the the Multiplication parameter is element-wise,
Simulink signals an error. If the value of the Multiplication parameter is
matrix, the block outputs the matrix inverse of the input.

• Entering a scalar value as the Number of inputs parameter is equivalent
to entering a string of * characters where the length of the string is the scalar
value.

• If the block has a single input, it must be a scalar or vector-like.

If necessary, Simulink resizes the block to show all input ports. If the number
of inputs is changed, ports are added or deleted from the bottom of the block.

Data Type
Support

The Product block accepts real- or complex-valued signals of any data type for
element-wise multiplication. All input signals must be of the same data type.
The output signal data type is the same as the input’s. The inputs must be real
or complex signals of type single or double for matrix multiplication.

y Πui=

Product

9-180

Parameters
and Dialog Box

Multiplication
Specifies whether to use element-wise or matrix multiplication to create
the product of the inputs.

Number of inputs
Either the number of inputs to the block or a combination of * and /
symbols. The default is 2.

Saturate on integer overflow
This option is enabled only for element-wise multiplication. If selected, this
option causes the output of the Product block to saturate on integer
overflow. In particular, if the output data type is an integer type, the block
output is the maximum value representable by the output type or the
computed output, whichever is smaller in the absolute sense. If the option
is not selected, Simulink takes the action specified by the Data overflow
option on the Diagnostics page of the Simulation Parameters dialog (see
“The Diagnostics Pane” on page 5-26).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

Probe

9-181

9ProbePurpose Probe a line for its width, dimensionality, sample time, and/or complex signal
flag.

Library Signals & Systems

Description The Probe block outputs selected information about the signal on its input. The
block can output the input signal’s width, dimensionality, sample time, and/or
a flag indicating whether the input is a complex-valued signal. The block has
one input port. The number of output ports depends on the information that
you select for probing, that is, signal dimensionality, sample time, and/or
complex signal flag. Each probed value is output as a separate signal on a
separate output port. The block accepts real or complex-valued signals of any
built-in data type. It outputs signals of type double. During simulation, the
block’s icon displays the probed data.

Data Type
Support

A Probe block accepts and outputs any built-in data type.

Parameters
and Dialog Box

Probe width
If checked, output width (number of elements) of probed signal.

Probe sample time
If checked, output sample time of probed signal.

Probe complex signal
If checked, output 1 if probed signal is complex; otherwise, 0.

Probe signal dimensions
If checked, output the dimensions of the probed signal.

Probe

9-182

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

Pulse Generator

9-183

9Pulse GeneratorPurpose Generate pulses at regular intervals.

Library Sources

Description The Pulse Generator block generates a series of scalar, vector, or matrix pulses
at regular intervals. The block’s Amplitude, Period, Duty cycle, and Start
time parameters determines the characteristics of the output signal. All must
have the same dimensions after scalar expansion and must be of the same data
and numeric (complex or real) type.

Use the Pulse Generator block for continuous systems. To generate discrete
signals, use the Discrete Pulse Generator block.

Data Type
Support

A Pulse Generator block outputs real or complex signals of any data type. The
data and numeric (real or complex) type of the output signal is the same as that
of the Amplitude parameter.

Parameters
and Dialog Box

Period
The pulse period in seconds. The default is 1 second.

Duty cycle
The duty cycle: the percentage of the pulse period that the signal is on. The
default is 50 percent.

Pulse Generator

9-184

Amplitude
The pulse amplitude. The default is 1.

Start time
The delay before the pulse is generated, in seconds. The default is 0
seconds.

Interpret vector parameters as 1-D
If this option is checked and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs a 1-D signal
(vector). Otherwise the output dimensionality is the same as that of the
other parameters.

Characteristics Sample Time Inherited

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No

Quantizer

9-185

9QuantizerPurpose Discretize input at a specified interval.

Library Nonlinear

Description The Quantizer block passes its input signal through a stair-step function so
that many neighboring points on the input axis are mapped to one point on the
output axis. The effect is to quantize a smooth signal into a stair-step output.
The output is computed using the round-to-nearest method, which produces an
output that is symmetric about zero

y = q * round(u/q)

where y is the output, u the input, and q the Quantization interval parameter.

Data Type
Support

A Quantizer block accepts and outputs real or complex signals of type single
or double.

Parameters
and Dialog Box

Quantization interval
The interval around which the output is quantized. Permissible output
values for the Quantizer block are n*q, where n is an integer and q the
Quantization interval. The default is 0.5.

Treat as gain when linearizing
Simulink by default treats the Quantizer block as unity gain when
linearizing. This is the large signal linearization case. If you uncheck this
box, the linearization routines assume the small signal case and set the
gain to zero.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Quantizer

9-186

Scalar Expansion Of parameter

Dimensionalized Yes

Zero Crossing No

Ramp

9-187

9RampPurpose Generate constantly increasing or decreasing signal.

Library Sources

Description The Ramp block generates a signal that starts at a specified time and value and
changes by a specified rate. The block’s Slope, Start time, Duty Cycle, and
Initial output parameters determines the characteristics of the output signal.
All must have the same dimensions after scalar expansion.

Data Type
Support

A Ramp block outputs signals of type double.

Parameters
and Dialog Box

Slope
The rate of change of the generated signal. The default is 1.

Start time
The time at which the signal begins to be generated. The default is 0.

Initial output
The initial value of the signal. The default is 0.

Interpret vector parameters as 1-D
If this option is checked and the other parameters are one-row or one-column
matrices, after scalar expansion, the block outputs a 1-D signal (vector).
Otherwise the output dimensionality is the same as that of the other
parameters.

Ramp

9-188

Characteristics Sample Time Inherited from driven block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes

Random Number

9-189

9Random NumberPurpose Generate normally distributed random numbers.

Library Sources

Description The Random Number block generates normally distributed random numbers.
The seed is reset to the specified value each time a simulation starts.

By default, the sequence produced has a mean of 0 and a variance of 1,
although you can vary these parameters. The sequence of numbers is
repeatable and can be produced by any Random Number block with the same
seed and parameters. To generate a vector of random numbers with the same
mean and variance, specify the Initial seed parameter as a vector.

To generate uniformly distributed random numbers, use the Uniform Random
Number block.

Avoid integrating a random signal because solvers are meant to integrate
relatively smooth signals. Instead, use the Band-Limited White Noise block.

All the blocks numeric parameters must be of the same dimension after scalar
expansion.

Data Type
Support

A Random Number block accepts and outputs signals of type double.

Parameters
and Dialog Box

Random Number

9-190

Mean
The mean of the random numbers. The default is 0.

Variance
The variance of the random numbers. The default is 1.

Initial seed
The starting seed for the random number generator. The default is 0.

Sample time
The time interval between samples. The default is 0, causing the block to
have continuous sample time.

Interpret vector parameters as 1-D
If this option is checked and the other parameters are one-row or one-column
matrices, after scalar expansion, the block outputs a 1-D signal (vector).
Otherwise the output dimensionality is the same as that of the other
parameters.

Characteristics Sample Time Continuous or discrete

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No

Rate Limiter

9-191

9Rate LimiterPurpose Limit the rate of change of a signal.

Library Nonlinear

Description The Rate Limiter block limits the first derivative of the signal passing through
it. The output changes no faster than the specified limit. The derivative is
calculated using this equation.

u(i) and t(i) are the current block input and time, and y(i–1) and t(i–1) are the
output and time at the previous step. The output is determined by comparing
rate to the Rising slew rate and Falling slew rate parameters:

• If rate is greater than the Rising slew rate parameter (R), the output is
calculated as

• If rate is less than the Falling slew rate parameter (F), the output is
calculated as

• If rate is between the bounds of R and F, the change in output is equal to the
change in input.

Data Type
Support

A Rate Limiter block accepts and outputs signals of type double.

Parameters
and Dialog Box

rate u i() y i 1–()–
t i() t i 1–()–
------------------------------------=

y i() ∆t R y i 1–()+⋅=

y i() ∆t F y i 1–()+⋅=

y i() u i()=

Rate Limiter

9-192

Rising slew rate
The limit of the derivative of an increasing input signal.

Falling slew rate
The limit of the derivative of a decreasing input signal.

Characteristics Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion Of input and parameters

Dimensionalized Yes

Zero Crossing No

Real-Imag to Complex

9-193

9Real-Imag to ComplexPurpose Convert a magnitude and/or a phase angle signal to a complex signal.

Library Math

Description The Real-Imag to Complex block converts real and/or imaginary inputs to a
complex-valued output signal.

The inputs may be both arrays (vectors or matrices) of equal dimensions, or one
input may be an array and the other a scalar. If the block has an array input,
the output is a complex array of the same dimensions. The elements of the real
input are mapped to real parts of the corresponding complex output elements.
The imaginary input is similarly mapped to the imaginary parts of the complex
output signals. If one input is a scalar, it is mapped to the corresponding
component (real or imaginary) of all the complex output signals.

The input signals and real or imaginary output parameter can be of any data
type. The output is of the same type as the input or parameter that determines
the output.

Data Type
Support

See description above.

Parameters
and Dialog Box

Input
Specifies the kind of input: a real input, an imaginary input, or both.

Real (Imag) part
If the input is a real-part signal, this parameter specifies the constant
imaginary part of the output signal. If the input is the imaginary part, this
parameter specifies the constant real part of the output signal. Note that
the title of this field changes to reflect its usage.

Real-Imag to Complex

9-194

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the input when the function requires two inputs

Dimensionalized Yes

Zero Crossing No

Relational Operator

9-195

9Relational OperatorPurpose Perform the specified relational operation on the input.

Library Math

Description The Relational Operator block performs a relational operation on its two inputs
and produces output according to the following table.

If the result is TRUE, the output is 1; if FALSE, it is 0. You can specify inputs
as scalars, arrays, or a combination of a scalar and an array:

• For scalar inputs, the output is a scalar.

• For array inputs, the output is an array of the same dimensions, where each
element is the result of an element-by-element comparison of the input
arrays.

• For mixed scalar/array inputs, the output is an array, where each element is
the result of a comparison between the scalar and the corresponding array
element.

The block icon displays the selected operator.

Data and
Numeric Type
Support

A Relational Operator block accepts real or complex signals of any data type.
Both inputs must be of the same data type. One input may be real and the other
complex, if the operator is == or !=. The block outputs a signal of type boolean,

Operator Output

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the second
input

>= TRUE if the first input is greater than or equal to the
second input

> TRUE if the first input is greater than the second input

Relational Operator

9-196

if Boolean logic signals are enabled (see “Enabling Strict Boolean Type
Checking” on page 4-48). Otherwise, the block outputs a signal of type double.

Parameters
and Dialog Box

Operator
The relational operator to be applied to the block inputs.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of inputs

Dimensionalized Yes

Zero Crossing Yes, to detect when the output changes

Relay

9-197

9RelayPurpose Switch output between two constants.

Library Nonlinear

Description The Relay block allows the output to switch between two specified values.
When the relay is on, it remains on until the input drops below the value of the
Switch off point parameter. When the relay is off, it remains off until the
input exceeds the value of the Switch on point parameter. The block accepts
one input and generates one output.

The Switch on point value must be greater than or equal to the Switch off
point. Specifying a Switch on point value greater than the Switch off point
value models hysteresis, whereas specifying equal values models a switch with
a threshold at that value.

Data Type
Support

A Relay block accepts and outputs real signals of type double.

Parameters
and Dialog Box

Switch on point
The on threshold for the relay. The default is eps.

Switch off point
The off threshold for the relay. The default is eps.

Output when on
The output when the relay is on. The default is 1.

Relay

9-198

Output when off
The output when the relay is off. The default is 0.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, to detect switch on and switch off points

Repeating Sequence

9-199

9Repeating SequencePurpose Generate an arbitrarily shaped periodic signal.

Library Sources

Description The Repeating Sequence block outputs a periodic scalar signal having a
waveform that you specify. You can specify any waveform, using the block
dialog’s Time values and Output values parameters. The Times value
parameter specifies a vector of sample times. The Output values parameter
specifies a vector of signal amplitudes at the corresponding sample times.
Together, the two parameters specify a sampling of the output waveform at
points measured from the beginning of the interval over which the waveform
repeats (i.e., the signal’s period). For example, by default, the Time values and
Output values parameters are both set to [0 2]. This default setting specifies
a sawtooth waveform that repeats every 2 seconds from the start of the
simulation and has a maximum amplitude of 2. The Repeating Sequence block
uses linear interpolation to compute the value of the waveform between the
specified sample points.

Data Type
Support

A Repeating Sequence block outputs real signals of type double.

Parameters
and Dialog Box

Time values
A vector of monotonically increasing time values. The default is [0 2].

Output values
A vector of output values. Each corresponds to the time value in the same
column. The default is [0 2].

Repeating Sequence

9-200

Characteristics Sample Time Continuous

Scalar Expansion No

Dimensionalized No

Zero Crossing No

Reshape

9-201

9ReshapePurpose Change the dimensionality of a signal.

Library Signals & Systems

Description The Reshape block changes the dimensionality of the input signal to a
dimensionality that you specify, using the block’s Output dimensionality
parameter. For example, you can use the block to change an N-element vector
to a 1-by-N or N-by-1 matrix signal, and vice versa.

The Output dimensionality parameter lets you select any of the following
output options.

Output
Dimensionality Description

1-D array Converts a matrix (2-D array) to a vector (1-D array)
array signal. The output vector consists of the first
column of the input matrix followed by the second
column, etc. (This option leaves a vector input
unchanged.)

Column vector Converts a vector or matrix input signal to a column
matrix, i.e., an M-by-1 matrix, where M is the number
of elements in the input signal. For matrices, the
conversion is done in column-major order.

Reshape

9-202

Data Type
Support

The Reshape block accepts and outputs signals of any type.

Parameters
and Dialog Box

Output dimensionality
The dimensionality of the output signal.

Output dimensions
Specifies a custom output dimensionality. This option is enabled only if you
select Customize as the value of the Output dimensionality parameter.

Row vector Converts a vector or matrix input signal to a row
matrix, i.e., a 1-by-N matrix where N is the number of
elements in the input signal. For matrices, the
conversion is done in column-major order.

Customize Converts the input signal to an output signal whose
dimensions you specify, using the Output dimensions
parameter. The value of the Output dimensions
parameter can be a one- or two-element vector. A value
of [N] outputs a vector of size N. A value of [M N]
outputs an M-by-N matrix. The number of elements of
the input signal must match the number of elements
specified by the Output dimensions parameter. For
matrices, the conversion is done in column-major order.

Output
Dimensionality Description

Reshape

9-203

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

Rounding Function

9-204

9Rounding FunctionPurpose Perform a rounding function.

Library Math

Description The Rounding Function block performs common mathematical rounding
functions.

You can select one of these functions from the Function list: floor, ceil,
round, and fix. The block output is the result of the function operating on the
input or inputs. The Rounding Function block accepts and outputs real- or
complex-valued signals of type double.

The name of the function appears on the block icon.

Use the Rounding Function block instead of the Fcn block when you want
Dimensionalized output because the Fcn block can produce only scalar output.

Data Type
Support

A Rounding Function block accepts and outputs real signals of type double.

Parameters
and Dialog Box

Function
The rounding function.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

Saturation

9-205

9SaturationPurpose Limit the range of a signal.

Library Nonlinear

Description The Saturation block imposes upper and lower bounds on a signal. When the
input signal is within the range specified by the Lower limit and Upper limit
parameters, the input signal passes through unchanged. When the input
signal is outside these bounds, the signal is clipped to the upper or lower bound.

When the parameters are set to the same value, the block outputs that value.

Data Type
Support

A Saturation block accepts and outputs real signals of any data type.

Parameters
and Dialog Box

Upper limit
The upper bound on the input signal. While the signal is above this value,
the block output is set to this value.

Lower limit
The lower bound on the input signal. While the signal is below this value,
the block output is set to this value.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of parameters and input

Dimensionalized Yes

Zero Crossing Yes, to detect when the signal reaches a limit, and
when it leaves the limit

Scope

9-206

9ScopePurpose Display signals generated during a simulation.

Library Sinks

Description The Scope block displays its input with respect to simulation time. The Scope
block can have multiple axes (one per port); all axes have a common time range
with independent y-axes. The Scope allows you to adjust the amount of time
and the range of input values displayed. You can move and resize the Scope
window and you can modify the Scope’s parameter values during the
simulation.

When you start a simulation, Simulink does not open Scope windows, although
it does write data to connected Scopes. As a result, if you open a Scope after a
simulation, the Scope’s input signal or signals will be displayed.

If the signal is continuous, the Scope produces a point-to-point plot. If the
signal is discrete, the Scope produces a stairstep plot.

The Scope provides toolbar buttons that enable you to zoom in on displayed
data, display all the data input to the Scope, preserve axes settings from one
simulation to the next, limit data displayed, and save data to the workspace.
The toolbar buttons are labeled in this figure, which shows the Scope window
as it appears when you open a Scope block.

Zoom in both x and y directions.

Zoom in x direction.

Zoom in y direction.

Auto-scale.

Properties.

Save axes settings.

Print.

Scope

9-207

Note Do not use Scope blocks inside of library blocks that you create.
Instead, provide the library blocks with output ports to which scopes can be
connected to display internal data.

Displaying Vector Signals
When displaying a vector signal, the Scope uses different colors in this order:
yellow, magenta, cyan, red, green, and dark blue. When more than six signals
are displayed, the Scope cycles through the colors in the order listed above.

Y-Axis Limits
You set y-limits by right clicking on an axes and choosing Properties.... The
following dialog box appears.

Y-min
Enter the minimum value for the y-axis.

Y-max
Enter the maximum value for the y-axis.

Title
Enter the title of the plot. You can include a signal label in the title by
typing %<SignalLabel> as part of the title string (%<SignalLabel> is
replaced by the signal label).

Scope

9-208

Time Offset
This figure shows the Scope block displaying the output of the vdp model. The
simulation was run for 40 seconds. Note that this scope shows the final 20
seconds of the simulation. The Time offset field displays the time
corresponding to 0 on the horizontal axis. Thus, you have to add the offset to
the fixed time range values on the x-axis to get the actual time.

Scope

9-209

Auto-Scaling the Scope Axes
This figure shows the same output after pressing the Auto-scale toolbar
button, which automatically scales both axes to display all stored simulation
data. In this case, the y-axis was not scaled because it was already set to the
appropriate limits.

If you click on the Auto-scale button while the simulation is running, the axes
are auto-scaled based on the data displayed on the current screen, and the
auto-scale limits are saved as the defaults. This enables you to use the same
limits for another simulation.

Zooming
You can zoom in on data in both the x and y directions at the same time, or in
either direction separately. The zoom feature is not active while the simulation
is running.

To zoom in on data in both directions at the same time, make sure the left-most
Zoom toolbar button is selected. Then, define the zoom region using a bounding
box. When you release the mouse button, the Scope displays the data in that
area. You can also click on a point in the area you want to zoom in on.

If the scope has multiple y-axes, and you zoom in on one set of x-y axes, the
x-limits on all sets of x-y axes are changed so that they match, since all x-y axes
must share the same time base (x-axis).

The Auto-scale button

Scope

9-210

This figure shows a region of the displayed data enclosed within a bounding
box.

This figure shows the zoomed region, which appears after you release the
mouse button.

To zoom in on data in just the x direction, click on the middle Zoom toolbar
button. Define the zoom region by positioning the pointer at one end of the
region, pressing and holding down the mouse button, then moving the pointer

Zoom in both directions

Scope

9-211

to the other end of the region. This figure shows the Scope after defining the
zoom region but before releasing the mouse button.

When you release the mouse button, the Scope displays the magnified region.
You can also click on a point in the area you want to zoom in on.

Zooming in the y direction works the same way except that you press the
right-most Zoom toolbar button before defining the zoom region. Again, you
can also click on a point in the area you want to zoom in on.

Saving the Axes Settings
The Save axes settings toolbar button enables you to store the current x- and
y-axis settings so you can apply them to the next simulation.

You might want to do this after zooming in on a region of the displayed data so
you can see the same region in another simulation. The time range is inferred
from the current x-axis limits.

Zoom in x direction

the Save axes settings button

Scope

9-212

Scope Properties
You can change axes limits, set the number of axes, time range, tick labels,
sampling parameters, and saving options by choosing the Properties toolbar
button.

When you click on the Properties button, this dialog box appears.

The dialog box has two tabs: General and Data history.

General Parameters
You can set the axes parameters, time range, and tick labels in the General
tab. You can also choose the floating scope option with this tab.

Number of axes
Set the number of y-axes in this data field. With the exception of the
floating scope, there is no limit to the number of axes the Scope block can
contain. All axes share the same time base (x-axis), but have independent
y-axes. Note that the number of axes is equal to the number of input ports.

Time range
Change the x-axis limits by entering a number or auto in the Time range
field. Entering a number of seconds causes each screen to display the
amount of data that corresponds to that number of seconds. Enter auto to
set the x-axis to the duration of the simulation. Do not enter variable
names in these fields.

Properties button

Scope

9-213

Tick labels
You can choose to have tick labels on all axes, on one axis, or on the bottom
axis only in the Tick labels drop box.

Floating scope
You can check the Floating scope check box if you want to have a floating
scope. A floating Scope is a Scope block that can display the signals carried
on one or more lines.

To add a floating Scope to a model, copy a Scope block into the model
window, then open the block. Select the Properties button on the block’s
toolbar. Then, select the General tab and select the Floating scope check
box.

To use a floating Scope during a simulation, first open the block. To display
the signals carried on a line, select the line. Hold down the Shift key while
clicking on another line to select multiple lines. It may be necessary to
press the Auto-scale data button on the Scope’s toolbar to find the signal
and adjust the axes to the signal values. Or you can use the floating Scope’s
Signal Selector (see “Signal Selector” on page 9-215) to select signals for
display. The Signal Selector allows you to select signals anywhere in your
model, including unopened subsystems.

You can have more than one floating scope in a model, but only one axes set
in one scope can be active at a given time. Active floating scopes show the
active axes by making them blue. Selecting or deselecting lines will affect
that Scope block only. Other floating Scopes will continue to display the
signals that you selected when they were active. In other words, nonactive
floating scopes are locked in that their signal displays cannot change.

If you plan to use a floating scope during a simulation, you should disable
signal storage reuse. See “Signal storage reuse” on page 5-31 for more
information.

Sampling
To specify a decimation factor, enter a number in the data field to the right
of the Decimation choice. To display data at a sampling interval, select the
Sample time choice and enter a number in the data field.

Scope

9-214

Controlling Data Collection and Display
You can control the amount of data that the Scope stores and displays by
setting fields on the Data History tab.

You can also choose to save data to the workspace in this tab. You apply the
current parameters and options by clicking on the Apply or OK button. The
values that appear in these fields are the values that will be used in the next
simulation.

Limit data points to last
You can limit the number of data points saved to the workspace by
checking the Limit data points to last check box and entering a value in
its data field. The Scope relies on its data history for zooming and
auto-scaling operations. If the number of data points is limited to 1,000 and
the simulation generates 2,000 data points, only the last 1,000 are
available for regenerating the display.

Save data to workspace
You can automatically save the data collected by the Scope at the end of the
simulation by checking the Save data to workspace check box. If you
check this option, then the Variable name and Format fields become
active.

Variable name
Enter a variable name in the Variable name field. The specified name
must be unique among all data logging variables being used in the model.
Other data logging variables are defined on other Scope blocks, To
Workspace blocks, and simulation return variables such as time, states,

Scope

9-215

and outputs. Being able to save Scope data to the workspace means that it
is not necessary to send the same data stream to both a Scope block and a
To Workspace block.

Format
Data can be saved in one of three formats: Array, Structure, or Structure
with time. Use Array only for a Scope with one axes. For Scopes with more
than one axes, use Structure if you do not want to store time data and use
Structure with time if you want to store time data.

Printing the Contents of a Scope Window
To print the contents of a Scope window, open the Scope Properties dialog by
clicking on the Print icon, the right-most icon on the Scope toolbar.

Signal Selector
The Signal Selector allows you to select the signals to be displayed in the
floating scope. You can use it to select any signal in you model, including
signals in unopened subsystems. To display the Signal Selector, first start
simulation of your model with the floating scope open. Then right click your
mouse in the floating scope and select Signal Selection from the popup menu
that appears. The Signal Selector appears.

Print icon

Scope

9-216

The Signal Selector contains contains two panes. The left pane allows you to
display signals of any subsystem in your model. The signals appear in the right
pane. The right pane allows you to select which signals to display in the
floating scope.

To select a subsystem for viewing, click its entry in the Model hierarchy tree
or use the up or down arrows on move the selection highlight to the entry, using
the up and down arrows on your keyboard. To show or hide the subsystems
contained by the currently selected subsystem, click the +/- button next to the
subsystem’s name or press the forward or backward arrow keys on your
keyboard. To view subsystems included as library links in your model, click the
Library Links button at the top of the Model hierarchy pane. To view the
subsystems contained by masked subsystems, click the Look Under Masks
button at the top of the pane.

The Signals pane shows all the signals in the currently selected subsystem by
default. To show named signals only, select Named signals only from the List
contents control at the top of the pane. To show test point signals only, select
Test point signals only from the List contents control. To show only signals
whose signals match a specified string of characters, enter the characters in
thes Show signals matching control at the bottom of the Signals pane and
press the Enter key.To show the selected types of signals for all subsystems
below the currently selected subsystem in the model hierarchy, select the
Current and Below button at the top of the Signals pane.

The Signals pane by default shows the name of each signal and the number of
the port that emits the signal. To display more information on each signal,
select the Table view button at the top of the pane. The table view shows the
path and data type of each signal and whether the signal is a test point. To
select or deselect a signal in the Signals pane, click its entry or use the arrow
keys to move the selection highlight to the signal entry and press the Enter
key. You can also move the selection highlight to a signal entry by typing the
first few characters of its name (enough to uniquely identify it).

Data Type
Support

A Scope block accepts real signals, including homogenous vectors, of any type.

Characteristics Sample Time Inherited from driving block or settable

States 0

Selector

9-217

9SelectorPurpose Select input elements from a vector or matrix signal.

Library Signals & Systems

Description The Selector block generates as output selected elements of an input vector or
matrix.

A Selector block accepts either vector or matrix signals as input. Set the Input
Type parameter to the type of signal (vector or matrix) that the block should
accept in your model. The parameter dialog box and the block icon change to
reflect the type of input that you select. The way the block determines the
elements to select differs slightly, depending on the type of input.

Vector Input
If the input type is vector, a Selector block outputs a vector of selected
elements. The block determines the indices of the elements to select either from
the block’s Elements parameter or from an external signal. Set the Source of
element indices parameter to the source (internal, i.e., parameter value, or
external) that you prefer. If you select external, the block adds an input port
for the external index signal.

In either case, the elements to be selected must be specified as a vector unless
only one element is being selected. For example, this model shows the Selector
block icon and the output for an input vector of [2 4 6 8 10] and an Elements
parameter value of [5 1 3].

The block icon displays the ordering of input vector elements graphically if the
block icon is large enough.

If you select external as the source for element indices, the block adds an input
port for the element indices signal. The signal should specify the elements to
be selected in the same way they are specified, using the Elements parameter.

If the input type is vector, you must specify the width of the input signal or -1,
using the Input port width parameter. If you specify a width greater than 0,

Selector

9-218

the width of the input signal must equal the specified width. Otherwise, the
block reports an error. If you specify a width of -1, the block accepts a vector
signal of any width.

Matrix Input
If the input type is matrix, the Selector block outputs a matrix of elements
selected from the input matrix. The block determines the row and column
indices of the elements to select either from its Rows and Columns parameters
or from external signals. Set the block’s Source of row indices and Source of
column indices to the source that you prefer (internal or external). If you set
either source to external, the block adds an input port for the external indices
signal. If you set both sources to external, the block adds two input ports.

In either case, the indices of the row and columns to be selected must be
specified as vectors (or a scalar if only one row or colum is to be selected). For
example, the Rows expression [2 1] and the Columns expression [1 3]
specifies output of a 2x2 matrix whose first row contains the first and third
elements of the input matrix’s second row and whose second row contains the
first and third elements of the input matrix’s first row.

Data Type
Support

The Selector block accepts signals of any signal and data type, including
mixed-type signal vectors. The elements of the output vector have the same
type as the corresponding selected input elements.

Parameters
and Dialog Box

The parameter dialog box appears as follows when vector input mode is
selected.

Selector

9-219

Input Type
The type of the input signal: vector or matrix.

Source of element indices
The source of the indices specifying the elements to select, either internal,
i.e., the Elements parameter, or external, i.e., an input signal.

Elements
The elements to be included in the output vector.

Input port width
The number of elements in the input vector.

The dialog box appears as follows when matrix input mode is selected.

Selector

9-220

Input Type
The type of the input signal: vector or matrix.

Source of row indices
The source of the indices specifying the rows to select from the input
matrix, either internal, i.e., the Rows parameter, or external, i.e., an
input signal.

Rows
Indices of the rows from which to select elements to be included in the
output matrix.

Source of column indices
The source of the indices specifying the columns to select from the input
matrix, either internal, i.e., the Columns parameter, or external, i.e., an
input signal.

Columns
Indices of the columns from which to select elements to be included in the
output matrix.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

S-Function

9-221

9S-FunctionPurpose Access an S-function.

Library Functions & Tables

Description The S-Function block provides access to S-functions from a block diagram. The
S-function named as the S-function name parameter can be an M-file or
MEX-file written as an S-function.

The S-Function block allows additional parameters to be passed directly to the
named S-function. The function parameters can be specified as MATLAB
expressions or as variables separated by commas. For example,

A, B, C, D, [eye(2,2);zeros(2,2)]

Note that although individual parameters can be enclosed in square brackets,
the list of parameters must not be enclosed in square brackets.

The S-Function block displays the name of the specified S-function and is
always drawn with one input port and one output port, regardless of the
number of inputs and outputs of the contained subsystem.

Vector lines are used when the S-function contains more than one input or
output. The input vector width must match the number of inputs contained in
the S-function. The block directs the first element of the input vector to the first
input of the S-function, the second element to the second input, and so on.
Likewise, the output vector width must match the number of S-function
outputs.

Data Type
Support

Depends on the implementation of the S-Function block.

Parameters
and Dialog Box

S-Function

9-222

S-function name
The S-function name.

S-function parameters
Additional S-function parameters. See the preceeding block description for
information on how to specify the parameters.

Characteristics Direct Feedthrough Depends on contents of S-function

Sample Time Depends on contents of S-function

Scalar Expansion Depends on contents of S-function

Dimensionalized Depends on contents of S-function

Zero Crossing No

Sign

9-223

9SignPurpose Indicate the sign of the input.

Library Math

Description The Sign block indicates the sign of the input:

• The output is 1 when the input is greater than zero.

• The output is 0 when the input is equal to zero.

• The output is -1 when the input is less than zero.

Data Type
Support

A Sign block accepts and outputs real signals of type double.

Dialog Box

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing Yes, to detect when the input crosses through zero

Signal Generator

9-224

9Signal GeneratorPurpose Generate various waveforms.

Library Sources

Description The Signal Generator block can produce one of three different waveforms: sine
wave, square wave, and sawtooth wave. The signal parameters can be
expressed in Hertz (the default) or radians per second. This figure shows each
signal displayed on a Scope using default parameter values.

A negative Amplitude parameter value causes a 180-degree phase shift. You
can generate a phase-shifted wave at other than 180 degrees in a variety of
ways, including inputting a Clock block signal to a MATLAB Fcn block and
writing the equation for the particular wave.

Sine Wave Square Wave

Sawtooth Wave

Signal Generator

9-225

You can vary the output settings of the Signal Generator block while a
simulation is in progress. This is useful to determine quickly the response of a
system to different types of inputs.

The block’s Amplitude and Frequency parameters determine the amplitude
and frequency of the output signal. The parameters must be of the same
dimensions after scalar expansion. If the Interpret vector parameters as 1-D
option is off, the block outputs a signal of the same dimensions as the
Amplitude and Frequency parameters (after scalar expansion). If the
Interpret vector parameters as 1-D option is on, the block outputs a vector
(1-D) signal if the Amplitude and Frequency parameters are row or column
vectors, i.e. single row or column 2-D arrays. Otherwise, the block outputs a
signal of the same dimensions as the parameters.

Data Type
Support

A Signal Generator block outputs a scalar or array of real signals of type
double.

Parameters
and Dialog Box

Wave form
The wave form: a sine wave, square wave, or sawtooth wave. The default is
a sine wave.

Amplitude
The signal amplitude. The default is 1.

Frequency
The signal frequency. The default is 1.

Signal Generator

9-226

Units
The signal units, hertz or radians/sec. The default is hertz.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Amplitude and Frequency
parameters result in a vector output signal.

Characteristics Sample Time Continuous

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No

Signal Specification

9-227

9Signal SpecificationPurpose Verify that the input signal has specified dimensions, sample time, data type,
and numeric type of a signal.

Library Signals & Systems

Description This block checks that the input signal has specified attributes. If so, the block
outputs the input signal unchanged. Otherwise, it halts the simulation and
displays an error message.

The Signal Specification block can be uses as an assert mechanism to ensure
that the attributes of a signal meet the desired attributes for certain sections
of your model. For example, consider two people working on different parts of
a model, the signal specification block is useful for indicating what attributes
various signals are needed by the different sections of the model. If there is a
miscommunication and say data types are changed unexpectedly, the
attributes will not match up and Simulink will report an appropriate error.
Using the signal specification block will help ensure you don't introduce
unexpected problems in your models. If you are familiar with the assert
mechanism in languages such as C, you will see that the signal specification
block servers a similar purpose.

The Signal Specification block can also be used to assure correct propagation of
signal attributes throughout a model. Simulink's capability of allowing many
attributes to propagate from block to block is very powerful. However, it is
possible to create models (when using user written S-functions) that don't have
enough information to correctly propagate attributes around the model. For
these cases, the signal specification block is a good way of providing the
information Simulink needs when propagating attributes from block to block.
The use of the signal specification block also helps speed up model compilation
(update diagram) when blocks are missing signal attributes.

Data Type
Support

Accepts signals of any data type that matches the data type specified by the
Data Type parameter

Signal Specification

9-228

Parameters
and Dialog Box

Dimensions
Dimensions that input signal must match. Valid values are -1 (don’t care),
n (vector signal of width n), [m n] (matrix signal having m rows and n
columns.

Sample Time
Sample time that input signal must match. Valid values are -1 (don’t care),
period >= 0, [offset, period], [0, -1], [-1, -1], where period is the
sample rate and offset is the offset of the sample period from time zero
(see “Sample Time” on page 3-23).

Data Type
Data type that input signal must match. Choices include auto (don’t care),
double, single, int8, uint8, int16, uint16, int32, uint32, and boolean.

Signal Type
Numeric type that input signal must match. Choices include auto (don’t
care), real, or complex.

Characteristics Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion No

States 0

Dimensionalized Yes

Zero Crossing No

Sine Wave

9-229

9Sine WavePurpose Generate a sine wave.

Library Sources

Description The Sine Wave block provides a sinusoid. The block can operate in either
continuous or discrete mode.

The output of the Sine Wave block is determined by

The value of the Sample time parameter determines whether the block
operates in continuous mode or discrete mode:

• 0 (the default) causes the block to operate in continuous mode.

• >0 causes the block to operate in discrete mode.

• -1 causes the block to operate in the same mode as the block receiving the
signal.

Using the Sine Wave Block in Discrete Mode
A Sample time parameter value greater than zero causes the block to behave
as if it were driving a Zero-Order Hold block whose sample time is set to that
value.

Using the Sine Wave block in this way allows you to build models with sine
wave sources that are purely discrete, rather than models that are hybrid
continuous/discrete systems. Hybrid systems are inherently more complex and,
as a result, take longer to simulate.

The Sine Wave block in discrete mode uses an incremental algorithm rather
than one based on absolute time. As a result, the block can be useful in models
intended to run for an indefinite length of time, such as in vibration or fatigue
testing.

The incremental algorithm computes the sine based on the value computed at
the previous sample time. This method makes use of the following identities.

These identities can be written in matrix form.

y Amplitude frequency time× phase+()sin×=

t ∆t+()sin t() ∆t()cossin ∆t() t()cossin+=

t ∆t+()cos t() ∆t()coscos t() ∆t()sinsin–=

Sine Wave

9-230

Since ∆t is constant, the following expression is a constant.

Therefore the problem becomes one of a matrix multiply of the value of sin(t)
by a constant matrix to obtain sin(t+∆t).

Using the Sine Wave Block in Continuous Mode
A Sample time parameter value of zero causes the block to behave in
continuous mode. When operating in continuous mode, the Sine Wave block
can become inaccurate due to loss of precision as time becomes very large.

The block’s numeric parameters must be of the same dimensions after scalar
expansion. If the Interpret vector parameters as 1-D option is off, the block
outputs a signal of the same dimensions and dimensionlity as the parameters.
If the Interpret vector parameters as 1-D option is on and the numeric
parameters are row or column vectors (i.e., single row or column 2-D arrays),
the block outputs a vector (1-D array) signal; otherwise, the block outputs a
signal of the same dimensionality and dimensions as the parameters.

Data Type
Support

A Sine Wave block accepts and outputs real signals of type double.

t ∆t+()sin
t ∆t+()cos

∆t()cos ∆t()sin
∆t()sin– ∆t()cos

t()sin
t()cos

=

∆t()cos ∆t()sin
∆t()sin– ∆t()cos

Sine Wave

9-231

Parameters
and Dialog Box

Amplitude
The amplitude of the signal. The default is 1.

Frequency
The frequency, in radians/second. The default is 1 rad/sec.

Phase
The phase shift, in radians. The default is 0 radians.

Sample time
The sample period. The default is 0.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Sine Wave block’s numeric
parameters result in a vector output signal; otherwise, the block outputs a
signal of the same dimensionality as the parameters. If this option is not
selected, the block always outputs a signal of the same dimensionality as the
block’s numeric parameters.

Characteristics Sample Time Continuous, discrete, or inherited

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No

Slider Gain

9-232

9Slider GainPurpose Vary a scalar gain using a slider.

Library Math

Description The Slider Gain block allows you to vary a scalar gain during a simulation
using a slider. The block accepts one input and generates one output.

Data Type
Support

Data type support for the Slider Gain block is the same as that for the Gain
block (see “Gain” on page 9-108).

Dialog Box

Low
The lower limit of the slider range. The default is 0.

High
The upper limit of the slider range. The default is 2.

The edit fields indicate (from left to right) the lower limit, the current value,
and the upper limit. You can change the gain in two ways: by manipulating the
slider, or by entering a new value in the current value field. You can change the
range of gain values by changing the lower and upper limits. Close the dialog
box by clicking on the Close button.

If you click on the slider’s left or right arrow, the current value changes by
about 1% of the slider’s range. If you click on the rectangular area to either side
of the slider’s indicator, the current value changes by about 10% of the slider’s
range.

To apply a vector or matrix gain to the block input, consider using the Gain
block.

Slider Gain

9-233

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the gain

States 0

Dimensionalized Yes

Zero Crossing No

State-Space

9-234

9State-SpacePurpose Implement a linear state-space system.

Library Continuous

Description The State-Space block implements a system whose behavior is defined by:

where x is the state vector, u is the input vector, and y is the output vector. The
matrix coefficients must have these characteristics, as illustrated in the
diagram below:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector width
is determined by the number of columns in the B and D matrices. The output
vector width is determined by the number of rows in the C and D matrices.

Simulink converts a matrix containing zeros to a sparse matrix for efficient
multiplication.

Data Type
Support

A State-Space block accepts and outputs real signals of type double.

x· Ax Bu+=
y Cx Du+=

A B

C D

n

n

m

r

State-Space

9-235

Parameters
and Dialog Box

A, B, C, D
The matrix coefficients.

Initial conditions
The initial state vector.

Characteristics Direct Feedthrough Only if D ≠ 0

Sample Time Continuous

Scalar Expansion Of the initial conditions

States Depends on the size of A

Dimensionalized Yes

Zero Crossing No

Step

9-236

9StepPurpose Generate a step function.

Library Sources

Description The Step block provides a step between two definable levels at a specified time.
If the simulation time is less than the Step time parameter value, the block’s
output is the Initial value parameter value. For simulation time greater than
or equal to the Step time, the output is the Final value parameter value.

The block’s numeric parameters must be of the same dimensions after scalar
expansion. If the Interpret vector parameters as 1-D option is off, the block
outputs a signal of the same dimensions and dimensionlity as the parameters.
If the Interpret vector parameters as 1-D option is on and the numeric
parameters are row or column vectors (i.e., single row or column 2-D arrays),
the block outputs a vector (1-D array) signal; otherwise, the block outputs a
signal of the same dimensionality and dimensions as the parameters.

Data Type
Support

A Step block outputs real signals of type double.

Parameters
and Dialog Box

Step time
The time, in seconds, when the output jumps from the Initial value
parameter to the Final value parameter. The default is 1 second.

Step

9-237

Initial value
The block output until the simulation time reaches the Step time
parameter. The default is 0.

Final value
The block output when the simulation time reaches and exceeds the Step
time parameter. The default is 1.

Sample time
Sample rate of step.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Step block’s numeric
parameters result in a vector output signal; otherwise, the block outputs a
signal of the same dimensionality as the parameters. If this option is not
selected, the block always outputs a signal of the same dimensionality as the
block’s numeric parameters.

Characteristics Sample Time Inherited from driven block

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing Yes, to detect step times

Stop Simulation

9-238

9Stop SimulationPurpose Stop the simulation when the input is nonzero.

Library Sinks

Description The Stop Simulation block stops the simulation when the input is nonzero.

The simulation completes the current time step before terminating. If the block
input is a vector, any nonzero vector element causes the simulation to stop.

You can use this block in conjunction with the Relational Operator block to
control when the simulation stops. For example, this model stops the
simulation when the input signal reaches 10.

Data Type
Support

A Stop Simulation block accepts real signals of type double or boolean.

Dialog Box

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

Subsystem

9-239

9SubsystemPurpose Represent a system within another system.

Library Signals & Systems

Description A Subsystem block represents a system within another system. You create a
subsystem in these ways:

• Copy the Subsystem block from the Signals & Systems library into your
model. You can then add blocks to the subsystem by opening the Subsystem
block and copying blocks into its window.

• Select the blocks and lines that are to make up the subsystem using a
bounding box, then choose Create Subsystem from the Edit menu. Simulink
replaces the blocks with a Subsystem block. When you open the block, the
window displays the blocks you selected, adding Inport and Outport blocks
to reflect signals entering and leaving the subsystem.

The number of input ports drawn on the Subsystem block’s icon corresponds to
the number of Inport blocks in the subsystem. Similarly, the number of output
ports drawn on the block corresponds to the number of Outport blocks in the
subsystem.

For more information about subsystems, see “Creating Subsystems” in
Chapter 3.

Data Type
Support

A subsystem’s enable and trigger ports accept any data type. See “Inport” on
page 9-119 for information on the data types accepted by a subsystem’s input
ports. See “Outport” on page 9-169 for information on the data types ouput by
a subsystem’s output ports.

Subsystem

9-240

Parameters
and Dialog Box

Show port labels
Causes Simulink to display the labels of the subsystem’s ports in the
subsystem’s icon.

Treat as atomic unit
Causes Simulink to treat the subsystem as a unit when determining block
execution order. When it comes time to execute the subsystem, Simulink
executes all blocks within the subsystem before executing any other block
at the same level as the subsystem block. If this option is not selected,
Simulink treats all blocks in the subsystem as being at the same level in
the model hierarchy as the subsystem when determining block execution
order. This can cause execution of blocks within the subsystem to be
interleaved with execution of blocks outside the subsystem. See “Atomic
Versus Virtual Subsystems” on page 3-13 for more information.

Subsystem

9-241

Access
Controls user access to the contents of the subsystem. You can select any
of the following values.

Name of error callback function
Name of a function to be called if an error occurs while executing the
subsystem. Simulink passes two arguments to the function: the handle of
the subsystem and a string that specifies the error type. If no function is
specified, Simulink displays a generic error message if executing the
subsystem causes an error.

Note Parameters whose names begin with RTW are used by the Real-Time
Workshop for code generation. See the Real-Time Workshop documentation
for more information.

Access Description

ReadWrite User can open and modify the contents of the
subsystem.

ReadOnly User can open but not modify the subsystem. If the
subsystem resides in a block library, a user can
create and open links to the subsystem and can
make and modify local copies of the subsystem but
cannot change the permissions or modify the
contents of the original library instance.

NoReadOrWrite User cannot open or modify the subsystem. If the
subsystem resides in a library, a user can create
links to the subsystem in a model but cannot open,
modify, change permissions, or create local copies of
the subsystem.

Subsystem

9-242

Characteristics Sample Time Depends on the blocks in the subsystem

Dimensionalized Depends on the blocks in the subsystem

Zero Crossing Yes, for enable and trigger ports if present

Sum

9-243

9SumPurpose Output the sum of inputs.

Library Math

Description The Sum block adds scalar, vector, or matrix inputs or the elements of a single
vector input. The following rules determine the block’s output:

• If the block has more than one input, all nonscalar inputs must be of the
same dimensionality and dimensions, that is, either all vectors or all
matrices of the same dimensions. For example, if any input is a 2-by-2
matrix, any other input must be a 2-by-2 matrix or a scalar.

• If any input is a scalar, it is expanded to have the same dimensions as the
nonscalar inputs. For example, if the nonscalar inputs are 2-by-2 matrices,
the scalar inputs are expanded to be 2-by-2 matrices.

• The output has the same dimensions as the inputs (after scalar expansion)
and each element is the sum of the corresponding elements of the inputs. In
other words, the output is the element-wise sum of the inputs.

• If the block has only one input, it must be either a scalar or a vector. If the
input is a vector, the output is a scalar equal to the sum of the elements of
the input vector.

Note Simulink hides the name of a Sum block when you copy it from the
Simulink block library to a model.

Data Type
Support

The Sum block accepts real- or complex-valued signals of any data type. All the
inputs must be of the same data type. The output data type is the same as the
input data type.

Sum

9-244

Parameters
and Dialog Box

Icon shape
You can choose a circular or rectangular shape for the Sum block in the
Icon shape drop box. If the Sum block has multiple inputs, it may be more
convenient to have a circular shape than a rectangular shape.

List of signs
The List of signs parameter can have a constant or a combination of +, -,
and | symbols. Specifying a constant causes Simulink to redraw the block
with that number of ports, all with positive polarity. A combination of plus
and minus signs specifies the polarity of each port, where the number of
ports equals the number of symbols used.

The Sum block draws plus and minus signs beside the appropriate ports
and redraws its ports to match the number of signs specified in the List of
signs parameter. If the number of signs is changed, ports are added or
deleted from the icon. If necessary, Simulink resizes the block to show all
input ports. You can also manipulate the position of the input ports by
inserting spacers (|) between the signs in the List of signs parameter. The
spacers create extra space between the ports. For example, ++|-- will
create an extra space between the second + port and the first - port:

Saturate on integer overflow
If selected, this option causes the output of the Sum block to saturate on
integer overflow. In particular, if the output data type is an integer type,
the block output is the maximum value representable by the output type or
the computed output, whichever is smaller in the absolute sense. If the
option is not selected, Simulink takes the action specified by Data

Sum

9-245

overflow event option on the Diagnostics page of the Simulation
Parameters dialog (see “The Diagnostics Pane” on page 5-26).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

States 0

Dimensionalized Yes

Zero Crossing No

Switch

9-246

9SwitchPurpose Switch between two inputs.

Library Nonlinear

Description The Switch block propagates one of two inputs to its output depending on the
value of a third input, called the control input. If the signal on the control
(second) input is greater than or equal to the Threshold parameter, the block
propagates the first input; otherwise, it propagates the third input. This figure
shows the use of the block ports.

To drive the switch with a logic input (i.e., 0 or 1), set the threshold to 0.5.

Data Type
Support

A Switch block accepts real- or complex-valued signals of any data type as
switched inputs (inputs 1 and 3). Both switched inputs must be of the same
type. The block output signal has the data type of the selected input. The data
type of the threshhold input must be boolean or double.

Parameters
and Dialog Box

Threshold
The value of the control (the second input) at which the switch flips to its
other state. You can specify this parameter as either a scalar or a vector
equal in width to the input vectors.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Switch

9-247

Dimensionalized Yes

Zero Crossing Yes, to detect when the switch condition occurs

Terminator

9-248

9TerminatorPurpose Terminate an unconnected output port.

Library Signals & Systems

Description The Terminator block can be used to cap blocks whose output ports are not
connected to other blocks. If you run a simulation with blocks having
unconnected output ports, Simulink issues warning messages. Using
Terminator blocks to cap those blocks avoids warning messages.

Data Type
Support

A Terminator block accepts signals of any numeric type or data type.

Parameters
and Dialog Box

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

To File

9-249

9To FilePurpose Write data to a file.

Library Sinks

Description The To File block writes its input to a matrix in a MAT-file. The block writes
one column for each time step: the first row is the simulation time; the
remainder of the column is the input data, one data point for each element in
the input vector. The matrix has this form.

The From File block can use data written by a To File block without any
modifications. However, the form of the matrix expected by the From
Workspace block is the transpose of the data written by the To File block.

The block writes the data as well as the simulation time after the simulation is
completed. The block icon shows the name of the specified output file.

The amount of data written and the time steps at which the data is written are
determined by block parameters:

• The Decimation parameter allows you to write data at every nth sample,
where n is the decimation factor. The default decimation, 1, writes data at
every time step.

• The Sample time parameter allows you to specify a sampling interval at
which to collect points. This parameter is useful when using a variable-step
solver where the interval between time steps may not be the same. The
default value of -1 causes the block to inherit the sample time from the
driving block when determining which points to write.

If the file exists at the time the simulation starts, the block overwrites its
contents.

Data Type
Support

A To File block accepts real signals of type double.

t1 t2 …tfinal

u11 u12 …u1final

…
un1 un2 …unfinal

To File

9-250

Parameters
and Dialog Box

Filename
The name of the MAT-file that holds the matrix.

Variable name
The name of the matrix contained in the named file.

Decimation
A decimation factor. The default value is 1.

Sample time
The sample time at which to collect points.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

To Workspace

9-251

9To WorkspacePurpose Write data to the workspace.

Library Sinks

Description The To Workspace block writes its input to the workspace. The block writes its
output to an array or structure that has the name specified by the block’s
Variable name parameter. The Save format parameter determines the output
format.

Array
Selecting this option causes the To Workspace block to save the input as an
N-dimensional array where N is one more than the number of dimensions of
the input signal. For example, if the input signal is a 1-D array (i.e., a vector),
the resulting workspace array is two-dimensional. If the input signal is a 2-D
array (i.e., a matrix), the array is three-dimensional.

The way samples are stored in the array depends on whether the input signal
is a scalar or vector or a matrix. If the input is a scalar or a vector, each input
sample is output as a row of the array. For example, suppose that the name of
the output array is simout. Then, simout(1,:) corresponds to the first sample,
simout(2,:) corresponds to the second sample, etc. If the input signal is a
matrix, the third dimension of the workspace array corresponds to the values
of the input signal at specified sampling point. For example, suppose again that
simout is the name of the resulting workspace array. Then, simout(:,:,1) is
the value of the input signal at the first sample point; simout(:,:,2) is the
value of the input signal at the second sample point; etc.

The amount of data written and the time steps at which the data is written are
determined by block parameters:

• The Limit data points to last parameter indicates how many sample points
to save. If the simulation generates more data points than the specified
maximum, the simulation saves only the most recently generated samples.
To capture all the data, set this value to inf.

• The Decimation parameter allows you to write data at every nth sample,
where n is the decimation factor. The default decimation, 1, writes data at
every time step.

• The Sample time parameter allows you to specify a sampling interval at
which to collect points. This parameter is useful when using a variable-step

To Workspace

9-252

solver where the interval between time steps may not be the same. The
default value of -1 causes the block to inherit the sample time from the
driving block when determining which points to write.

During the simulation, the block writes data to an internal buffer. When the
simulation is completed or paused, that data is written to the workspace. The
block icon shows the name of the array to which the data is written.

Structure
This format consists of a structure with three fields: time, signals, and
blockName. The time field is empty. The blockName field contains the name of
the To Workspace block. The signals field contains a structure with three
fields: values, dimensions, and label. The values field contains the array of
signal values. The dimensions field specifies the dimensions of the values
array. The label field contains the label of the input line.

Structure with Time
This format is the same as Structure except that the time field contains a
vector of simulation time steps.

Using Saved Data with a From Workspace Block
If the data written using a To Workspace block is intended to be “played back”
in another simulation using a From Workspace block, use the Structure with
Time format to save the data.

Examples
In a simulation where the start time is 0, the Maximum number of sample
points is 100, the Decimation is 1, and the Sample time is 0.5. The To
Workspace block collects a maximum of 100 points, at time values of 0, 0.5, 1.0,
1.5, … seconds. Specifying a Decimation of 1 directs the block to write data at
each step.

In a similar example, the Maximum number of sample points is 100 and the
Sample time is 0.5, but the Decimation is 5. In this example, the block collects
up to 100 points, at time values of 0, 2.5, 5.0, 7.5, … seconds. Specifying a
Decimation of 5 directs the block to write data at every fifth sample. The
sample time ensures that data is written at these points.

To Workspace

9-253

In another example, all parameters are as defined in the first example except
that the Limit data points to last is 3. In this case, only the last three sample
points collected are written to the workspace. If the simulation stop time is 100,
data corresponds to times 99.0, 99.5, and 100.0 seconds (three points).

Data Type
Support

A To Workspace block can save input of any real or complex data type to the
MATLAB workspace.

Parameters
and Dialog Box

Variable name
The name of the array that holds the data.

Limit data points to last
The maximum number of input samples to be saved. The default is 1000
samples.

Decimation
A decimation factor. The default is 1.

Sample time
The sample time at which to collect points.

Save format
Format in which to save simulation output to the workspace. The default
is structure.

To Workspace

9-254

Characteristics Sample Time Inherited

Dimensionalized Yes

Transfer Fcn

9-255

9Transfer FcnPurpose Implement a linear transfer function.

Library Continuous

Description The Transfer Fcn block implements a transfer function where the input (u) and
output (y) can be expressed in transfer function form as the following equation

where nn and nd are the number of numerator and denominator coefficients,
respectively. num and den contain the coefficients of the numerator and
denominator in descending powers of s. num can be a vector or matrix, den
must be a vector, and both are specified as parameters on the block dialog box.
The order of the denominator must be greater than or equal to the order of the
numerator.

A Transfer Fcn block takes a scalar input. If the numerator of the block’s
transfer function is a vector, the block’s output is also scalar. However, if the
numerator is a matrix, the transfer function expands the input into an output
vector equal in width to the number of rows in the numerator. For example, a
two-row numerator results in a block with scalar input and vector output. The
width of the output vector is two.

Initial conditions are preset to zero. If you need to specify initial conditions,
convert to state-space form using tf2ss and use the State-Space block. The
tf2ss utility provides the A, B, C, and D matrices for the system. For more
information, type help tf2ss or consult the Control System Toolbox
documentation.

The Transfer Fcn Block Icon
The numerator and denominator are displayed on the Transfer Fcn block icon
depending on how they are specified:

• If each is specified as an expression, a vector, or a variable enclosed in
parentheses, the icon shows the transfer function with the specified
coefficients and powers of s. If you specify a variable in parentheses, the
variable is evaluated. For example, if you specify Numerator as [3,2,1] and

H s() y s()
u s()
----------- num s()

den s()
--------------------- num 1()snn 1– num 2()snn 2– … num nn()+ + +

den 1()snd 1– den 2()snd 2– … den nd()+ + +
---= = =

Transfer Fcn

9-256

Denominator as (den) where den is [7,5,3,1], the block icon looks like
this:

• If each is specified as a variable, the icon shows the variable name followed
by “(s)”. For example, if you specify Numerator as num and Denominator as
den, the block icon looks like this:

Data Type
Support

A Transfer Fcn block accepts and outputs signals of type double.

Parameters
and Dialog Box

Numerator
The row vector of numerator coefficients. A matrix with multiple rows can
be specified to generate multiple output. The default is [1].

Denominator
The row vector of denominator coefficients. The default is [1 1].

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Continuous

Scalar Expansion No

States Length of Denominator -1

Transfer Fcn

9-257

Dimensionalized Yes, in the sense that the block expands scalar input
into vector output when the transfer function
numerator is a matrix. See block description above.

Zero Crossing No

Transport Delay

9-258

9Transport DelayPurpose Delay the input by a given amount of time.

Library Continuous

Description The Transport Delay block delays the input by a specified amount of time. It
can be used to simulate a time delay.

At the start of the simulation, the block outputs the Initial input parameter
until the simulation time exceeds the Time delay parameter, when the block
begins generating the delayed input. The Time delay parameter must be
nonnegative.

The block stores input points and simulation times during a simulation in a
buffer whose initial size is defined by the Initial buffer size parameter. If the
number of points exceeds the buffer size, the block allocates additional memory
and Simulink displays a message after the simulation that indicates the total
buffer size needed. Because allocating memory slows down the simulation,
define this parameter value carefully if simulation speed is an issue. For long
time delays, this block might use a large amount of memory, particularly for a
dimensionalized input.

When output is required at a time that does not correspond to the times of the
stored input values, the block interpolates linearly between points. When the
delay is smaller than the step size, the block extrapolates from the last output
point, which may produce inaccurate results. Because the block does not have
direct feedthrough, it cannot use the current input to calculate its output value.
To illustrate this point, consider a fixed-step simulation with a step size of 1
and the current time at t = 5. If the delay is 0.5, the block needs to generate a
point at t = 4.5. Because the most recent stored time value is at t = 4, the block
performs forward extrapolation.

The Transport Delay block does not interpolate discrete signals. Instead, it
returns the discrete value at t - tdelay.

This block differs from the Unit Delay block, which delays and holds the output
on sample hits only.

Using linmod to linearize a model that contains a Transport Delay block can be
troublesome. For more information about ways to avoid the problem, see
“Linearization” in Chapter 5.

Transport Delay

9-259

Data Type
Support

A Transport Delay block accepts and outputs real signals of type double.

Parameters
and Dialog Box

Time delay
The amount of simulation time that the input signal is delayed before
propagating it to the output. The value must be nonnegative.

Initial input
The output generated by the block between the start of the simulation and
the Time delay.

Initial buffer size
The initial memory allocation for the number of points to store.

Pade order (for linearization)
The order of the Pade approximation for linearization routines. The default
value is 0, which results in a unity gain with no dynamic states. Setting the
order to a positive integer n adds n states states to your model, but results
in a more accurate linear model of the transport delay.

Characteristics Direct Feedthrough No

Sample Time Continuous

Scalar Expansion Of input and all parameters except Initial buffer size

Transport Delay

9-260

Dimensionalized Yes

Zero Crossing No

Trigger

9-261

9TriggerPurpose Add a trigger port to a subsystem.

Library Signals & Systems

Description Adding a Trigger block to a subsystem makes it a triggered subsystem. A
triggered subsystem executes once on each integration step when the value of
the signal that passes through the trigger port changes in a specifiable way
(described below). A subsystem can contain no more than one Trigger block.
For more information about triggered subsystems, see Chapter 7.

The Trigger type parameter allows you to choose the type of event that
triggers execution of the subsystem:

• rising triggers execution of the subsystem when the control signal rises
from a negative or zero value to a positive value (or zero if the initial value
is negative).

• falling triggers execution of the subsystem when the control signal falls
from a positive or a zero value to a negative value (or zero if the initial value
is positive).

• either triggers execution of the subsystem when the signal is either rising
or falling.

• function-call causes execution of the subsystem to be controlled by logic
internal to an S-function (for more information, see “Function-Call
Subsystems” in Chapter 7).

You can output the trigger signal by selecting the Show output port check box.
Selecting this option allows the system to determine what caused the trigger.
The width of the signal is the width of the triggering signal. The signal value is:

• 1 for a signal that causes a rising trigger

• -1 for a signal that causes a falling trigger

• 0 otherwise

Data Type
Support

A Trigger block accepts signals of any data type.

Trigger

9-262

Parameters
and Dialog Box

Trigger type
The type of event that triggers execution of the subsystem

Show output port
If checked, Simulink draws the Trigger block output port and outputs the
trigger signal.

Output data type
Specifies the data type (double or int8) of the trigger output. If you select
auto, Simulink sets the data type to be the same as that of the port to which
the output is connected.If the port’s data type is not double or int8,
Simulink signals an error.

Characteristics Sample Time Determined by the signal at the trigger port

Dimensionalized Yes

Trigonometric Function

9-263

9Trigonometric FunctionPurpose Perform a trigonometric function.

Library Math

Description The Trigonometric Function block performs numerous common trigonometric
functions.

You can select one of these functions from the Function list: sin, cos, tan,
asin, acos, atan, atan2, sinh, cosh, and tanh. The block output is the result of
the function operating on the input or inputs.

The name of the function appears on the block icon. Simulink automatically
draws the appropriate number of input ports. The block accepts and outputs
real or complex signals of type double.

Use the Trigonometric Function block instead of the Fcn block when you want
dimensionalized output because the Fcn block can produce only scalar output.

Data Type
Support

A Trigonometric Function block accepts and outputs real or complex signals of
type double.

Parameters
and Dialog Box

Function
The trigonometric function.

Output signal type
Type of signal (complex or real) to output.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the input when the function requires two inputs

Trigonometric Function

9-264

Dimensionalized Yes

Zero Crossing No

Uniform Random Number

9-265

9Uniform Random NumberPurpose Generate uniformly distributed random numbers.

Library Sources

Description The Uniform Random Number block generates uniformly distributed random
numbers over a specifiable interval with a specifiable starting seed. The seed
is reset each time a simulation starts. The generated sequence is repeatable
and can be produced by any Uniform Random Number block with the same
seed and parameters. To generate normally distributed random numbers, use
the Random Number block.

Avoid integrating a random signal because solvers are meant to integrate
relatively smooth signals. Instead, use the Band-Limited White Noise block.

The block’s numeric parameters must be of the same dimensions after scalar
expansion. If the Interpret vector parameters as 1-D option is off, the block
outputs a signal of the same dimensions and dimensionlity as the parameters.
If the Interpret vector parameters as 1-D option is on and the numeric
parameters are row or column vectors (i.e., single row or column 2-D arrays),
the block outputs a vector (1-D array) signal; otherwise, the block outputs a
signal of the same dimensions as the parameters.

Data Type
Support

A Uniform Random Number block outputs a real signal of type double.

Parameters
and Dialog Box

Uniform Random Number

9-266

Minimum
The minimum of the interval. The default is -1.

Maximum
The maximum of the interval. The default is 1.

Initial seed
The starting seed for the random number generator. The default is 0.

Sample time
The sample period. The default is 0.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Step block’s numeric
parameters result in a vector output signal; otherwise, the block outputs a
signal of the same dimensionality as the parameters. If this option is not
selected, the block always outputs a signal of the same dimensionality as the
block’s numeric parameters.

Characteristics Sample Time Continuous, discrete, or inherited

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

Unit Delay

9-267

9Unit DelayPurpose Delay a signal one sample period.

Library Discrete

Description The Unit Delay block delays and holds its input signal by one sampling
interval. If the input to the block is a vector, all elements of the vector are
delayed by the same sample delay. This block is equivalent to the z-1

discrete-time operator.

If an undelayed sample-and-hold function is desired, use a Zero-Order Hold
block, or if a delay of greater than one unit is desired, use a Discrete Transfer
Fcn block. (See the description of the Transport Delay block for an example
that uses the Unit Delay block.)

Data Type
Support

A Unit block accepts real or complex signals of any data type, including
user-defined types. If the data type of the input signal is user-defined, the
initial condition must be 0.

Parameters
and Dialog Box

Initial condition
The block output for the first simulation period, during which the output of
the Unit Delay block is undefined. Careful selection of this parameter can
minimize unwanted output behavior during this time. The default is 0.

Sample time
The time interval between samples. The default is 1.

Characteristics Direct Feedthrough No

Sample Time Discrete

Scalar Expansion Of the Initial condition parameter or the input

Unit Delay

9-268

States Inherited from driving block or parameters

Dimensionalized Yes

Zero Crossing No

Variable Transport Delay

9-269

9Variable Transport DelayPurpose Delay the input by a variable amount of time.

Library Continuous

Description The Variable Transport Delay block can be used to simulate a variable time
delay. The block might be used to model a system with a pipe where the speed
of a motor pumping fluid in the pipe is variable.

The block accepts two inputs: the first input is the signal that passes through
the block; the second input is the time delay, as show in this icon.

The Maximum delay parameter defines the largest value the time delay input
can have. The block clips values of the delay that exceed this value. The
Maximum delay must be greater than or equal to zero. If the time delay
becomes negative, the block clips it to zero and issues a warning message.

During the simulation, the block stores time and input value pairs in an
internal buffer. At the start of the simulation, the block outputs the Initial
input parameter until the simulation time exceeds the time delay input. Then,
at each simulation step the block outputs the signal at the time that
corresponds to the current simulation time minus the delay time.

When output is required at a time that does not correspond to the times of the
stored input values, the block interpolates linearly between points. If the time
delay is smaller than the step size, the block extrapolates an output point. This
may result in less accurate results. The block cannot use the current input to
calculate its output value because the block does not have direct feedthrough
at this port. To illustrate this point, consider a fixed-step simulation with a step
size of 1 and the current time at t = 5. If the delay is 0.5, the block needs to
generate a point at t = 4.5. Because the most recent stored time value is at t = 4,
the block performs forward extrapolation.

The Variable Transport Delay block does not interpolate discrete signals.
Instead, it returns the discrete value at t - tdelay.

Variable Transport Delay

9-270

Data Type
Support

A Variable Transport Delay block accepts and outputs real signals of type
double.

Parameters
and Dialog Box

Maximum delay
The maximum value of the time delay input. The value cannot be negative.
The default is 10.

Initial input
The output generated by the block until the simulation time first exceeds
the time delay input. The default is 0.

Buffer size
The number of points the block can store. The default is 1024.

Pade order (for linearization)
The order of the Pade approximation for linearization routines. The default
value is 0, which results in a unity gain with no dynamic states. Setting the
order to a positive integer n adds n states states to your model, but results in a
more accurate linear model of the transport delay.

Characteristics Direct Feedthrough Yes, of the time delay (second) input

Sample Time Continuous

Scalar Expansion Of input and all parameters except Buffer size

Variable Transport Delay

9-271

Dimensionalized Yes

Zero Crossing No

Width

9-272

9WidthPurpose Output the width of the input vector.

Library Signals & Systems

Description The Width block generates as output the width of its input vector.

Data Type
Support

The Width block accepts real- or complex-valued signals of any data type,
including mixed-type signal vectors. A Width block outputs real signals of type
double.

Parameters
and Dialog Box

Characteristics Sample Time Constant

Dimensionalized Yes

XY Graph

9-273

9XY GraphPurpose Display an X-Y plot of signals using a MATLAB figure window.

Library Sinks

Description The XY Graph block displays an X-Y plot of its inputs in a MATLAB figure
window.

The block has two scalar inputs. The block plots data in the first input (the x
direction) against data in the second input (the y direction). This block is useful
for examining limit cycles and other two-state data. Data outside the specified
range is not displayed.

Simulink opens a figure window for each XY Graph block in the model at the
start of the simulation.

For a demo that illustrates the use of the XY Graph block, enter lorenzs in the
command window.

Data Type
Support

An XY Graph block accepts real signals of type double.

Parameters
and Dialog Box

x-min
The minimum x-axis value. The default is -1.

x-max
The maximum x-axis value. The default is 1.

XY Graph

9-274

y-min
The minimum y-axis value. The default is -1.

y-max
The maximum y-axis value. The default is 1.

Sample time
The time interval between samples. The default is -1, which means that
the sample time is determined by the driving block.

Characteristics Sample Time Inherited from driving block

States 0

Zero-Order Hold

9-275

9Zero-Order HoldPurpose Implement zero-order hold of one sample period.

Library Discrete

Description The Zero-Order Hold block implements a sample-and-hold function operating
at the specified sampling rate. The block accepts one input and generates one
output, both of which can be scalar or vector..

This block provides a mechanism for discretizing one or more signals or
resampling the signal at a different rate. You can use it in instances where you
need to model sampling without requiring one of the other more complex
discrete function blocks. For example, it could be used in conjunction with a
Quantizer block to model an A/D converter with an input amplifier.

Data Type
Support

A Zero-Order Hold block accepts real- or complex-valued signals of any data
type.

Parameters
and Dialog Box

Sample time
The time interval between samples. The default is 1.

Characteristics Direct Feedthrough Yes

Sample Time Discrete

Scalar Expansion Yes

States 0

Dimensionalized Yes

Zero Crossing No

Zero-Pole

9-276

9Zero-PolePurpose Implement a transfer function specified in terms of poles and zeros.

Library Continuous

Description The Zero-Pole block implements a system with the specified zeros, poles, and
gain in terms of the Laplace operator s.

A transfer function can be expressed in factored or zero-pole-gain form, which,
for a single-input single-output system in MATLAB, is

where Z represents the zeros vector, P the poles vector, and K the gain. Z can
be a vector or matrix, P must be a vector, K can be a scalar or vector whose
length equals the number of rows in Z. The number of poles must be greater
than or equal to the number of zeros. If the poles and zeros are complex, they
must be complex conjugate pairs.

Block input and output widths are equal to the number of rows in the zeros
matrix.

The Zero-Pole Block Icon
The Zero-Pole block displays the transfer function in its icon depending on how
the parameters are specified:

• If each is specified as an expression or a vector, the icon shows the transfer
function with the specified zeros, poles, and gain. If you specify a variable in
parentheses, the variable is evaluated.

For example, if you specify Zeros as [3,2,1], Poles as (poles), where poles
is defined in the workspace as [7,5,3,1], and Gain as gain, the icon looks
like this:

H s() KZ s()
P x()
------------ K s Z 1()–() s Z 2()–()… s Z m()–()

s P 1()–() s P 2()–()… s P n()–()
---= =

Zero-Pole

9-277

• If each is specified as a variable, the icon shows the variable name followed
by “(s)” if appropriate. For example, if you specify Zeros as zeros, Poles as
poles, and Gain as gain, the icon looks like this.

Data Type
Support

A Zero-Pole block accepts real signals of type double.

Parameters
and Dialog Box

Zeros
The matrix of zeros. The default is [1].

Poles
The vector of poles. The default is [0 -1].

Gain
The vector of gains. The default is [1].

Characteristics Direct Feedthrough Only if the lengths of the Poles and Zeros
parameters are equal

Sample Time Continuous

Scalar Expansion No

States Length of Poles vector

Zero-Pole

9-278

Dimensionalized No

Zero Crossing No

10
Model Construction
Commands

Introduction . 10-2
How to Specify Parameters for the Commands 10-3
How to Specify a Path for a Simulink Object 10-3
add_block . 10-4
add_line . 10-5
bdclose . 10-6
bdroot . 10-7
close_system . 10-8
delete_block . 10-10
delete_line . 10-11
find_system . 10-12
gcb . 10-17
gcbh . 10-18
gcs . 10-19
get_param . 10-20
new_system . 10-22
open_system 10-23
replace_block 10-24
save_system . 10-26
set_param . 10-27
simulink . 10-29

10 Model Construction Commands

10-2

Introduction
This table indicates the tasks performed by the commands described in this
chapter. The reference section of this chapter lists the commands in
alphabetical order.

Task Command

Create a new Simulink system. new_system

Open an existing system. open_system

Close a system window. close_system, bdclose

Save a system. save_system

Find a system, block, line, or annotation. find_system

Add a new block to a system. add_block

Delete a block from a system. delete_block

Replace a block in a system. replace_block

Add a line to a system. add_line

Delete a line from a system. delete_line

Get a parameter value. get_param

Set parameter values. set_param

Get the pathname of the current block. gcb

Get the pathname of the current system. gcs

Get the handle of the current block. gcbh

Get the name of the root-level system. bdroot

Open the Simulink block library. simulink

Introduction

10-3

How to Specify Parameters for the Commands
The commands described in this chapter require that you specify arguments
that describe a system, block, or block parameter. Appendix A, “Model and
Block Parameters” provides comprehensive tables of model and block
parameters.

How to Specify a Path for a Simulink Object
Many of the commands described in this chapter require that you identify a
Simulink system or block. Identify systems and blocks by specifying their
paths:

• To identify a system, specify its name, which is the name of the file that
contains the system description, without the mdl extension.
system

• To identify a subsystem, specify the system and the hierarchy of subsystems
in which the subsystem resides.
system/subsystem1/.../subsystem

• To identify a block, specify the path of the system that contains the block and
specify the block name.
system/subsystem1/.../subsystem/block

If the block name includes a newline or carriage return, specify the block name
as a string vector and use sprintf('\n') as the newline character. For
example, these lines assign the newline character to cr, then get the value for
the Signal Generator block’s Amplitude parameter.

cr = sprintf('\n');
get_param(['untitled/Signal',cr,'Generator'],'Amplitude')
ans =

1

If the block name includes a slash character (/), you repeat the slash when you
specify the block name. For example, to get the value of the Location
parameter for the block named Signal/Noise in the mymodel system.

get_param('mymodel/Signal//Noise','Location')

add_block

10-4

10add_block

10

Purpose Add a block to a Simulink system.

Syntax add_block('src', 'dest')
add_block('src', 'dest', 'parameter1', value1, ...)

Description add_block('src', 'dest') copies the block with the full pathname 'src' to
a new block with the full path name 'dest'. The block parameters of the new
block are identical to those of the original. The name 'built–in' can be used
as a source system name for all Simulink built-in blocks (blocks available in
Simulink block libraries that are not masked blocks).

add_block('src', 'dest_obj', 'parameter1', value1, ...) creates a copy
as above, in which the named parameters have the specified values. Any
additional arguments must occur in parameter-value pairs.

Examples This command copies the Scope block from the Sinks subsystem of the
simulink system to a block named Scope1 in the timing subsystem of the
engine system.

add_block('simulink/Sinks/Scope', 'engine/timing/Scope1')

This command creates a new subsystem named controller in the F14 system.

add_block('built-in/SubSystem', 'F14/controller')

This command copies the built-in Gain block to a block named Volume in the
mymodel system and assigns the Gain parameter a value of 4.

add_block('built-in/Gain', 'mymodel/Volume', 'Gain', '4')

See Also delete_block, set_param

add_line

10-5

10add_linePurpose Add a line to a Simulink system.

Syntax h = add_line('sys', 'oport', 'iport')
h = add_line('sys', points)

Description The add_line command adds a line to the specified system and returns a
handle to the new line. The line can be defined in two ways:

• By naming the block ports that are to be connected by the line

• By specifying the location of the points that define the line segments

add_line('sys', 'oport', 'iport') adds a straight line to a system from the
specified block output port 'oport' to the specified block input port 'iport'.
'oport' and 'iport' are strings consisting of a block name and a port
identifier in the form 'block/port'. Most block ports are identified by
numbering the ports from top to bottom or from left to right, such as 'Gain/1'
or 'Sum/2'. Enable, Trigger, and State ports are identified by name, such as
'subsystem_name/Enable', 'subsystem_name/Trigger', or
'Integrator/State'.

add_line(system, points) adds a segmented line to a system. Each row of the
points array specifies the x and y coordinates of a point on a line segment. The
origin is the top left corner of the window. The signal flows from the point
defined in the first row to the point defined in the last row. If the start of the
new line is close to the output of an existing block or line, a connection is made.
Likewise, if the end of the line is close to an existing input, a connection is
made.

Examples This command adds a line to the mymodel system connecting the output of the
Sine Wave block to the first input of the Mux block.

add_line('mymodel','Sine Wave/1','Mux/1')

This command adds a line to the mymodel system extending from (20,55) to
(40,10) to (60,60).

add_line('mymodel',[20 55; 40 10; 60 60])

See Also delete_line

bdclose

10-6

10bdclose

10
Purpose Close any or all Simulink system windows unconditionally.

Syntax bdclose
bdclose('sys')
bdclose('all')

Description bdclose with no arguments closes the current system window unconditionally
and without confirmation. Any changes made to the system since it was last
saved are lost.

bdclose('sys') closes the specified system window.

bdclose('all') closes all system windows.

Examples This command closes the vdp system.

bdclose('vdp')

See Also close_system, new_system, open_system, save_system

bdroot

10-7

10bdrootPurpose Return the name of the top-level Simulink system.

Syntax bdroot
bdroot('obj')

Description bdroot with no arguments returns the top-level system name.

bdroot('obj') where 'obj' is a system or block pathname, returns the name
of the top-level system containing the specified object name.

Examples This command returns the name of the top-level system that contains the
current block.

bdroot(gcb)

See Also find_system, gcb

close_system

10-8

10close_systemPurpose Close a Simulink system window or a block dialog box.

Syntax close_system
close_system('sys')
close_system('sys', saveflag)
close_system('sys', 'newname')
close_system('blk')

Description close_system with no arguments closes the current system or subsystem
window. If the current system is the top-level system and it has been modified,
then close_system asks if the changed system should be saved to a file before
removing the system from memory. The current system is defined in the
description of the gcs command.

close_system('sys') closes the specified system or subsystem window.

close_system('sys', saveflag) closes the specified top-level system window
and removes it from memory:

• If saveflag is 0, the system is not saved.

• If saveflag is 1, the system is saved with its current name.

close_system('sys', 'newname') saves the specified top-level system to a file
with the specified new name, then closes the system.

close_system('blk') where 'blk' is a full block pathname, closes the dialog
box associated with the specified block or calls the block’s CloseFcn callback
parameter if one is defined. Any additional arguments are ignored.

Examples This command closes the current system.

close_system

This command closes the vdp system.

close_system('vdp')

This command saves the engine system with its current name, then closes it.

close_system('engine', 1)

close_system

10-9

This command saves the mymdl12 system under the new name testsys, then
closes it.

close_system('mymdl12', 'testsys')

This command closes the dialog box of the Unit Delay block in the Combustion
subsystem of the engine system.

close_system('engine/Combustion/Unit Delay')

See Also bdclose, gcs, new_system, open_system, save_system

delete_block

10-10

10delete_blockPurpose Delete a block from a Simulink system.

Syntax delete_block('blk')

Description delete_block('blk') where 'blk' is a full block pathname, deletes the
specified block from a system.

Example This command removes the Out1 block from the vdp system.

delete_block('vdp/Out1')

See Also add_block

delete_line

10-11

10delete_linePurpose Delete a line from a Simulink system.

Syntax delete_line('sys', 'oport', 'iport')

Description delete_line('sys', 'oport', 'iport') deletes the line extending from the
specified block output port 'oport' to the specified block input port 'iport'.
'oport' and 'iport' are strings consisting of a block name and a port
identifier in the form 'block/port'. Most block ports are identified by
numbering the ports from top to bottom or from left to right, such as 'Gain/1'
or 'Sum/2'. Enable, Trigger, and State ports are identified by name, such as
'subsystem_name/Enable', 'subsystem_name/Trigger' , or
'Integrator/State'.

delete_line('sys', [x y]) deletes one of the lines in the system that
contains the specified point (x,y), if any such line exists.

Example This command removes the line from the mymodel system connecting the Sum
block to the second input of the Mux block.

delete_line('mymodel','Sum/1','Mux/2')

See Also add_line

find_system

10-12

10find_systemPurpose Find systems, blocks, lines, ports, and annotations.

Syntax find_system(sys, 'c1', cv1, 'c2', cv2,...'p1', v1, 'p2', v2,...)

Description find_system(sys, 'c1', cv1, 'c2', cv2,...'p1', v1, 'p2', v2,...)
searches the system(s) or subsystems specified by sys, using the constraint(s)
specified by c1, c2, etc., and returns handles or paths to the objects having the
specified parameter values v1, v2, etc. sys can be a pathname (or cell array of
pathnames), a handle (or vector of handles), or omitted. If sys is a pathname
or cell array of pathnames , find_system returns a cell array of pathnames of
the objects it finds. If sys is a handle or a vector of handles, find_system
returns a vector of handles to the objects that it finds. If sys is omitted,
find_system searches all open systems and returns a cell array of pathnames.

Case is ignored for parameter names. Value strings are case sensitive by
default (see the 'CaseSensitive' search constraint for more information). Any
parameters that correspond to dialog box entries have string values. See
Appendix A, “Model and Block Parameters,” for a list of model and block
parameters.

You can specify any of the following search constraints.

Name Value Type Description

'SearchDepth' scalar Restricts the search depth to the
specified level (0 for open systems
only, 1 for blocks and subsystems
of the top-level system , 2 for the
top-level system and its children,
etc.) Default is all levels.

'LookUnderMasks' 'none' Search skips masked blocks.

{'graphical'} Search includes masked blocks
that have no workspace and no
dialog. This is the default

find_system

10-13

The table encloses default constraint values in brackets. If a 'constraint' is
omitted, find_system uses the default constraint value.

Examples This command returns a cell array containing the names of all open systems
and blocks.

find_system

This command returns the names of all open block diagrams.

open_bd = find_system('type', 'block_diagram')

This command returns the names of all Goto blocks that are children of the
Unlocked subsystem in the clutch system.

'functional' Search includes masked blocks
that do not have a dialog.

'all' Search includes all masked blocks.

'FollowLinks' 'on'| {'off'} If 'on', search follows links into
library blocks. Default is 'off'.

'FindAll' 'on'| {'off'} If 'on', search extends to lines,
ports, and annotations within
systems. Default is 'off'. Note
that find_system returns a vector
of handles when this option is
'on', regardless of the array type
of sys.

'CaseSensitive' {'on'}| 'off' If 'on', search considers case
when matching search strings.
Default is 'on'.

'RegExp' 'on'| {'off'} If 'on', search treats search
expressions as regular
expressions. Default is 'off'.

Name Value Type Description

find_system

10-14

find_system('clutch/
Unlocked','SearchDepth',1,'BlockType','Goto')

These commands return the names of all Gain blocks in the vdp system having
a Gain parameter value of 1.

gb = find_system('vdp', 'BlockType', 'Gain')
find_system(gb, 'Gain', '1')

The above commands are equivalent to this command.

find_system('vdp', 'BlockType', 'Gain', 'Gain', '1')

These commands obtain the handles of all lines and annotations in the vdp
system.

sys = get_param('vdp', 'Handle');
l = find_system(sys, 'FindAll', 'on', 'type', 'line');
a = find_system(sys, 'FindAll', 'on', 'type', 'annotation');

Searching with
Regular
Expressions

If you specify the 'RegExp'constraint as 'on', find_system treats search value
strings as regular expressions. A regular expression is a string of characters in
which some characters have special pattern-matching significance. For
example, a period (.) in a regular expression matches not only itself but any
other character.

Regular expressions greatly expand the types of searches you can perform with
find_system. For example, regular expressions allow you to do partial word
searches. You can search for all objects that have a specified parameter that
contains or begins or ends with a specified string of characters.

To use regular expressions effectively, you need to learn the meanings of the
special characters that regular expressions can contain. The following table
lists the special characters supported by find_subystem and explains their
usage.

find_system

10-15

Expression Usage

. Matches any character. For example, the string 'a.'
matches 'aa', 'ab', 'ac', etc.

* Matches zero or more of preceding character. For example,
'ab*' matches 'a', 'ab', 'abb', etc. The expression '.*'
matches any string, including the empty string.

+ Matches one or more of preceding character. For example,
'ab+' matches 'ab', 'abb', etc.

^ Matches start of string. For example, '^a.*' matches any
string that starts with 'a'.

$ Matches end of string. For example, '.*a$' matches any
string that ends with 'a'.

\ Causes the next character to be treated as an ordinary
character. This “escape” character lets regular expressions
match expressions that contain special characters. For
example, the search string '\\' matches any string
containing a \ character.

[] Matches any one of a specified set of characters. For
example, 'f[oa]r' matches 'for' and 'far'. Some
characters have special meaning within brackets. A hyphen
(-) indicates a range of characters to match. For example,
'[a-zA-Z1-9]' matches any alphanumeric character. A
circumflex (^) indicates characters that should not produce
a match. For example, 'f[^i]r' matches 'far' and 'for'
but not 'fir'.

\w Matches a word character. (This is a shorthand expression
for [a-z_A-Z0-9].) For example, '^\w' matches 'mu' but
not '&mu'.

\d Matches any digit (shorthand for [0-9]). For example,
'\d+’ matches any integer.

find_system

10-16

To use regular expressions to search Simulink systems, specify the 'regexp'
search constraint as 'on' in a find_system command and use a regular
expression anywhere you would use an ordinary search value string.

For example, the following command finds all the inport and outport blocks in
the clutch model demo provided with Simulink.

find_system('clutch', 'regexp', 'on', 'blocktype', 'port')

See Also get_param, set_param

\D Matches any non-digit (shorthand for [^0-9]).

\s Matches a white space (shorthand for [\t\r\n\f]).

\S Matches a non-white-space (shorthand for[^ \t\r\n\f]).

\<WORD\> Matches WORD exactly, where WORD is a string of characters
separated by white space from other words. For example,
'\<to\>' matches 'to' but not 'today'.

Expression Usage

gcb

10-17

10gcbPurpose Get the pathname of the current block.

Syntax gcb
gcb('sys')

Description gcb returns the full block path name of the current block in the current system.

gcb('sys') returns the full block path name of the current block in the
specified system.

The current block is one of these:

• During editing, the current block is the block most recently clicked on.

• During simulation of a system that contains S-Function blocks, the current
block is the S-Function block currently executing its corresponding MATLAB
function.

• During callbacks, the current block is the block whose callback routine is
being executed.

• During evaluation of the MaskInitialization string, the current block is
the block whose mask is being evaluated.

Examples This command returns the path of the most recently selected block.

gcb
ans =

clutch/Locked/Inertia

This command gets the value of the Gain parameter of the current block.

get_param(gcb,'Gain')
ans =

1/(Iv+Ie)

See Also gcbh, gcs

gcbh

10-18

10gcbhPurpose Get the handle of the current block.

Syntax gcbh

Description gcbh returns the handle of the current block in the current system.

You can use this command to identify or address blocks that have no parent
system. The command should be most useful to blockset authors.

Examples This command returns the handle of the most recently selected block.

gcbh

ans =

281.0001

See Also gcb

gcs

10-19

10gcsPurpose Get the pathname of the current system.

Syntax gcs

Description gcs returns the full path name of the current system.

The current system is:

• During editing, the current system is the system or subsystem most recently
clicked in.

• During simulation of a system that contains S-Function blocks, the current
system is the system or subsystem containing the S-Function block that is
currently being evaluated.

• During callbacks, the current system is the system containing any block
whose callback routine is being executed.

• During evaluation of the MaskInitialization string, the current system is
the system containing the block whose mask is being evaluated.

The current system is always the current model or a subsystem of the current
model. Use bdroot to get the current model.

Examples This example returns the path of the system that contains the most recently
selected block.

gcs
ans =

clutch/Locked

See Also gcb, bdroot

get_param

10-20

10get_paramPurpose Get system and block parameter values.

Syntax get_param('obj', 'parameter')
get_param({ objects }, 'parameter')
get_param(handle, 'parameter')
get_param('obj', ‘ObjectParameters’)
get_param('obj', 'DialogParameters')

Description get_param('obj', 'parameter'), where 'obj' is a system or block path
name, returns the value of the specified parameter. Case is ignored for
parameter names.

get_param({ objects }, 'parameter') accepts a cell array of full path
specifiers, enabling you to get the values of a parameter common to all objects
specified in the cell array.

get_param(handle, 'parameter') returns the specified parameter of the
object whose handle is handle.

get_param('obj', 'ObjectParameters') returns a structure that describes
obj’s parameters. Each field of the returned structure corresponds to a
particular parameter and has the parameter’s name. For example, the Name
field corresponds to the object’s Name parameter. Each parameter field itself
contains three fields, Name, Type, and Attributes, that specify the parameter’s
name (for example, “Gain”), data type (for example, string), and attributes (for
example, read-only), respectively.

get_param('obj', 'DialogParameters') returns a cell array containing the
names of the dialog parameters of the specified block.

Appendix A, “Model and Block Parameters,” contains lists of model and block
parameters.

Examples This command returns the value of the Gain parameter for the Inertia block in
the Requisite Friction subsystem of the clutch system.

get_param('clutch/Requisite Friction/Inertia','Gain')
ans =

1/(Iv+Ie)

get_param

10-21

These commands display the block types of all blocks in the mx+b system (the
current system), described in “A Sample Masked Subsystem” on page 7–3.

blks = find_system(gcs, 'Type', 'block');
listblks = get_param(blks, 'BlockType')

listblks =

'SubSystem'
'Inport'
'Constant'
'Gain'
'Sum'
'Outport'

This command returns the name of the currently selected block.

get_param(gcb, 'Name')

The following commands gets the attributes of the currently selected block’s
Name parameter.

p = get_param(gcb, 'ObjectParameters');
a = p.Name.Attributes

ans =
 'read-write' 'always-save'

The following command gets the dialog parameters of a Sine Wave block.

p = get_param('untitled/Sine Wave', 'DialogParameters')
p =
 'Amplitude'
 'Frequency'
 'Phase'
 'SampleTime'

See Also find_system, set_param

new_system

10-22

10new_systemPurpose Create an empty Simulink system.

Syntax new_system('sys')

Description new_system('sys')creates a new empty system with the specified name. If 'sys'
specifies a path, the new system will be a subsystem of the system specified in
the path. new_system does not open the system window.

See Appendix A, “Model and Block Parameters,” for a list of the default
parameter values for the new system.

Example This command creates a new system named 'mysys'.

new_system('mysys')

This command creates a new subsystem named 'mysys' in the vdp system.

new_system('vdp/mysys')

See Also close_system, open_system, save_system

open_system

10-23

10open_systemPurpose Open a Simulink system window or a block dialog box.

Syntax open_system('sys')
open_system('blk')
open_system('blk', 'force')

Description open_system('sys') opens the specified system or subsystem window.

open_system('blk'), where 'blk' is a full block pathname, opens the dialog
box associated with the specified block. If the block’s OpenFcn callback
parameter is defined, the routine is evaluated.

open_system('blk', 'force'), where 'blk' is a full pathname or a masked
system, looks under the mask of the specified system. This command is
equivalent to using the Look Under Mask menu item.

Example This command opens the controller system in its default screen location.

open_system('controller')

This command opens the block dialog box for the Gain block in the controller
system.

open_system('controller/Gain')

See Also close_system, new_system, save_system

replace_block

10-24

10replace_blockPurpose Replace blocks in a Simulink model.

Syntax replace_block('sys', 'blk1', 'blk2', 'noprompt')
replace_block('sys', 'Parameter', 'value', 'blk', ...)

Description replace_block('sys', 'blk1', 'blk2') replaces all blocks in 'sys' having
the block or mask type 'blk1' with 'blk2'. If 'blk2' is a Simulink built-in
block, only the block name is necessary. If 'blk' is in another system, its full
block pathname is required. If 'noprompt' is omitted, Simulink displays a
dialog box that asks you to select matching blocks before making the
replacement. Specifying the 'noprompt' argument suppresses the dialog box
from being displayed. If a return variable is specified, the paths of the replaced
blocks are stored in that variable.

replace_block('sys', 'Parameter', 'value', ..., 'blk') replaces all
blocks in 'sys' having the specified values for the specified parameters with
'blk'. You can specify any number of parameter name/value pairs.

Note Because it may be difficult to undo the changes this command makes, it
is a good idea to save your system first.

Example This command replaces all Gain blocks in the f14 system with Integrator
blocks and stores the paths of the replaced blocks in RepNames. Simulink lists
the matching blocks in a dialog box before making the replacement.

RepNames = replace_block('f14','Gain','Integrator')

This command replaces all blocks in the Unlocked subsystem in the clutch
system having a Gain of 'bv' with the Integrator block. Simulink displays a
dialog box listing the matching blocks before making the replacement.

replace_block('clutch/Unlocked','Gain','bv','Integrator')

This command replaces the Gain blocks in the f14 system with Integrator
blocks but does not display the dialog box.

replace_block('f14','Gain','Integrator','noprompt')

replace_block

10-25

See Also find_system, set_param

save_system

10-26

10save_systemPurpose Save a Simulink system.

Syntax save_system
save_system('sys')
save_system('sys', 'newname')

Description save_system saves the current top-level system to a file with its current name.

save_system('sys') saves the specified top-level system to a file with its
current name. The system must be open.

save_system('sys', 'newname') saves the specified top-level system to a file
with the specified new name. The system must be open.

Example This command saves the current system.

save_system

This command saves the vdp system.

save_system('vdp')

This command saves the vdp system to a file with the name 'myvdp'.

save_system('vdp', 'myvdp')

See Also close_system, new_system, open_system

set_param

10-27

10set_paramPurpose Set Simulink system and block parameters.

Syntax set_param('obj', 'parameter1', value1, 'parameter2', value2, ...)

Description set_param('obj', 'parameter1', value1, 'parameter2', value2, ...),
where 'obj' is a system or block path, sets the specified parameters to the
specified values. Case is ignored for parameter names. Value strings are case
sensitive. Any parameters that correspond to dialog box entries have string
values. Model and block parameters are listed in Appendix A.

You can change block parameter values in the workspace during a simulation
and update the block diagram with these changes. To do this, make the
changes in the command window, then make the model window the active
window, then choose Update Diagram from the Edit menu.

Note Most block parameter values must be specified as strings. Two
exceptions are the Position and UserData parameters, common to all blocks.

Examples This command sets the Solver and StopTime parameters of the vdp system.

set_param('vdp', 'Solver', 'ode15s', 'StopTime', '3000')

This command sets the Gain parameter of block Mu in the vdp system to 1000
(stiff).

set_param('vdp/Mu', 'Gain', '1000')

This command sets the position of the Fcn block in the vdp system.

set_param('vdp/Fcn', 'Position', [50 100 110 120])

This command sets the Zeros and Poles parameters for the Zero-Pole block in
the mymodel system.

set_param('mymodel/Zero-Pole','Zeros','[2 4]','Poles','[1 2 3]')

This command sets the Gain parameter for a block in a masked subsystem. The
variable k is associated with the Gain parameter.

set_param('mymodel/Subsystem', 'k', '10')

set_param

10-28

This command sets the OpenFcn callback parameter of the block named
Compute in system mymodel. The function 'my_open_fcn' executes when the
user double-clicks on the Compute block. For more information, see “Using
Callback Routines” on page 4–70.

set_param('mymodel/Compute', 'OpenFcn', 'my_open_fcn')

See Also get_param, find_system

simulink

10-29

10simulinkPurpose Open the Simulink block library.

Syntax simulink

Description On Microsoft Windows, the simulink command opens (or activates) the
Simulink block library browser. On UNIX, the command opens the Simulink
library window.

simulink

10-30

11

Simulink Debugger

Starting the Debugger 11-3

Starting the Simulation 11-4

Using the Debugger’s Command-Line Interface 11-6

Getting Online Help 11-7

Running a Simulation 11-8

Setting Breakpoints 11-11

Displaying Information About the Simulation 11-15

Displaying Information About the Model 11-19

Debugger Command Reference 11-23

11 Simulink Debugger

11-2

The Simulink debugger is a tool for locating and diagnosing bugs in a Simulink
model. It enables you to pinpoint problems by running simulations step-by-step
and displaying intermediate block states and input and outputs. The Simulink
debugger has both a graphical and a command-line user interface. The
graphical interface allows you to access the debugger’s most commonly used
features. The command-line interface gives you access to all the debugger’s
capabilities. Wherever you can use either interface to perform a task, the
documentation shows you first how to use the graphical interface and then the
command-line interface to perform the task.

Starting the Debugger

11-3

Starting the Debugger
To start the debugger, open the model you want to debug and select Debugger
from the Simulink Tools menu. The debugger window appears.

You can also start the debugger from the MATLAB command line, using the
sldebug command or the debug option of the sim command to start a model
under debugger control. (See sim on page 5-37 for information on specifying sim
options.) For example, either the command

sim('vdp',[0,10],simset('debug','on'))

or the command

sldebug 'vdp’

loads the Simulink demo model, vdp, into memory, starts the simulation, and
stops the simulation at the first block in the model’s execution list.

Note When running the debugger in Graphical User Interface (GUI) mode,
you must explicitly start the simulation. See “Starting the Simulation” on
page 11–4 for more information.

11 Simulink Debugger

11-4

Starting the Simulation
To start the simulation, select the Start/Continue button in the debugger’s
toolbar.

The simulation starts and stops at the first block to be executed. The debugger
opens the model window’s browser pane and highlights the block at which
model execution has stopped.

The debugger displays the simulation start time and a debug command prompt
in the MATLAB command window when the debugger is running in

Start/Continue button

First block to be
executed.

Starting the Simulation

11-5

command-line mode or in the debugger’s output pane when the debugger is
running in GUI mode.

The command prompt displays the block index (see “About Block Indexes” on
page 11–6) and name of the first block to be executed.

Note When you start the debugger in GUI mode, the debugger’s
command-line interface is also active in the MATLAB command window.
However, you should avoid using the command-line interface to prevent
synchronization errors between the graphical and command line interfaces.

At this point, you can set breakpoints, run the simulation step-by-step,
continue the simulation to the next breakpoint or end, examine data, or
perform other debugging tasks. The following sections explain how to use the
debugger’s graphical controls to perform these debugging tasks.

11 Simulink Debugger

11-6

Using the Debugger’s Command-Line Interface
In command-line mode, you control the debugger by entering commands at the
debugger command line in the MATLAB command window. The debugger
accepts abbreviations for debugger commands. See “Debugger Command
Reference” on page 11-23 for a list of command abbreviations and repeatable
commands. You can repeat some commands by entering an empty command
(i.e., by pressing the Return key) at the MATLAB command line.

About Block Indexes
Many Simulink debugger commands and messages use block indexes to refer
to blocks. A block index has the form s:b where s is an integer identifying a
system in the model being debugged and b is an integer identifying a block
within that system. For example, the block index 0:1 refers to block 1 in the
model’s 0 system. The slist command shows the block index for each block in
the model being debugged (see slist on page 11-41).

Accessing the MATLAB Workspace
You can type any MATLAB expression at the sldebug prompt. For example,
suppose you are at a breakpoint and you are logging time and output of your
model as tout and yout. Then, the following command

(sldebug ...) plot(tout, yout)

creates a plot. Suppose you would like to access a variable whose name is the
same as the complete or incomplete name of an sldebug command, for
example, s, which is a partial completion for the step command. Typing an s
at the sldebug prompt steps the model However,

(sldebug...) eval(‘s’)

displays the value of the variable s.

Getting Online Help

11-7

Getting Online Help
You can get online help on using the debugger’s by selecting the Help button
on the debugger’s toolbar or by pressing the F1 key when the text cursor is in
a debugger panel or text field. Pressing the Help button

displays help for the debugger in the MATLAB Help browser. Pressing the F1
key displays help for the debugger panel or text field that currently has the
keyboard input focus. In command-line mode, you can get a brief description of
the debugger commands by typing help at the debug prompt.

Help button

11 Simulink Debugger

11-8

Running a Simulation
The Simulink debugger lets you run a simulation from the point at which it is
currently suspended to the:

• End of the simulation

• Next breakpoint (see “Setting Breakpoints” on page 11–11)

• Next block

• Next time step

You select the amount to advance by selecting the appropriate button on the
debugger toolbar in GUI mode

or by entering the appropriate debugger command in command-line mode.

Continuing a Simulation
In GUI mode, the debugger colors the Run/Continue button red when it has
suspended the simulation for any reason. To continue the simulation, select the
Run/Continue button. In command-line mode, enter continue to continue the
simulation. The debugger continues the simulation to the next breakpoint (see
“Setting Breakpoints” on page 11–11) or to the end of the simulation,
whichever comes first.

Command Advances a Simulation...

step One block

next One time step

continue To next breakpoint

run To end of simulation, ignoring breakpoints

StopStart/Continue

Next Block Next Time Step

Running a Simulation

11-9

Running a Simulation Nonstop
The run command lets you run a program from the current point in the
simulation to the end, skipping any intervening breakpoints. At the end of the
simulation, the debugger returns you to the MATLAB command line. To
continue debugging a model, you must restart the debugger.

Advancing to the Next Block
To advance a simulation one block, click on the debugger toolbar or, if the
debugger is running in command-line mode, enter step at the debugger
prompt. The debugger executes the current block, stops, and highlights the
next block in the model’s block execution order (see “Displaying a Model’s Block
Execution Order” on page 11-19). For example, the following figure shows the
vdp block diagram after execution of the model’s first block.

If the next block to be executed occurs in a subsystem block, the debugger opens
the subsystem’s block diagram and highlights the next block.

After executing a block, the debugger prints the block’s inputs (U) and outputs
(Y) and redisplays the debug command prompt in the debugger output panel (in
GUI mode) or in the MATLAB command window (in command-line mode). The
debugger prompt shows the next block to be evaluated.

(sldebug @0:0 'vdp/Integrator1'): step
 U1 = [0]
 Y1 = [2]
(sldebug @0:1 'vdp/Out1'):

11 Simulink Debugger

11-10

Crossing a Time Step Boundary
After executing the last block in the model’s block execution list, the debugger
advances the simulation to the next time step and halts the simulation. To
signal that you have crossed a time step boundary, the debugger prints the
current time in the debugger output panel in GUI mode or in the MATLAB
command window in command-line mode. For example, stepping through the
last block of the first time step of the vdp model results in the following output
in the debugger output panel or the MATLAB command window.

(sldebug @0:8 'vdp/Sum'): step
 U1 = [2]
 U2 = [0]
 Y1 = [-2]
[Tm=0.0001004754572603832] **Start** of system 'vdp' outputs

Stepping by Minor Time Steps
You can step by blocks within minor time steps, as well as within major steps.
To step by blocks within minor time steps, check the Minor time steps option
on the debugger’s Break on conditions panel or enter minor at the debugger
command prompt.

Advancing to the Next Time Step
To advance to the next time step, click or enter the next command at the
debugger command line. The debugger executes the remaining blocks in the
current time step and advances the simulation to the beginning of the next
time step. For example, entering next after starting the vdp model in debug
mode causes the following message to appear in the MATLAB command
window.

[Tm=0.0001004754572603832] **Start** of system 'vdp' outputs

Setting Breakpoints

11-11

Setting Breakpoints
The Simulink debugger allows you to define stopping points in a simulation
called breakpoints. You can then run a simulation from breakpoint to
breakpoint, using the debugger’s continue command. The debugger lets you
define two types of breakpoints: unconditional and conditional. An
unconditional breakpoint occurs whenever a simulation reaches a block or time
step that you specified previously. A conditional breakpoint occurs when a
condition that you specified in advance arises in the simulation.

Breakpoints come in handy when you know that a problem occurs at a certain
point in your program or when a certain condition occurs. By defining an
appropriate breakpoint and running the simulation via the continue
command, you can skip immediately to the point in the simulation where the
problem occurs.

You set a breakpoint by clicking the breakpoint button on the debugger toolbar

or checking the appropriate breakpoint conditions (GUI mode)

or entering the appropriate breakpoint command (command-line mode).

Command Causes Simulation to Stop...

break <gcb | s:b> At the beginning of a block

bafter <gcb | s:b> At the end of a block

tbreak [t] At a simulation time step

Breakpoint

11 Simulink Debugger

11-12

Setting Breakpoints at Blocks
The debugger lets you specify a breakpoint at the beginning of the execution of
a block or at the end of the execution of a block (command-line mode only).

Specifying a Breakpoint at the Start of a Block’s Execution
Setting a breakpoint at the beginning of a block causes the debugger to stop the
simulation when it reaches the block on each time step. You can specify the
block on which to set the breakpoint graphically or via a block index in
command-line mode. To set a breakpoint graphically at the beginning of a
block’s execution, select the block in the model window and click on the
debugger’s toolbar or enter

break gcb

at the debugger command line. To specify the block via its block index
(command-line mode only), enter

break s:b

where s:b is the block’s index (see “About Block Indexes” on page 11-6).

Note You cannot set a breakpoint on a virtual block. A virtual block is a block
whose function is purely graphical: it indicates a grouping or relationship
among a model’s computational blocks. The debugger warns you if you
attempt to set a breakpoint on a virtual block. You can obtain a listing of a
model’s nonvirtual blocks, using the slist command (see “Displaying a
Model’s Nonvirtual Blocks” on page 11–20).

nanbreak At the occurrence of an underflow or overflow
(NaN) or infinite (Inf) value

xbreak When the simulation reaches the state that
determines the simulation step size.

zcbreak When a zero-crossing occurs between
simulation time steps.

Command Causes Simulation to Stop...

Setting Breakpoints

11-13

In GUI mode, the debugger’s Watch points panel displays the blocks where
breakpoints exist.

Setting a Breakpoint at the End of a Block’s Execution
In command-line mode, the debugger allows you to set a breakpoint at the end
of a block’s execution, using the bafter command. As with break, you can
specify the block graphically or via its block index.

Clearing Breakpoints from Blocks
To clear a breakpoint temporarily, uncheck the first checkbox next to the
breakpoint in the Watch points panel (GUI mode only). To clear a breakpoint
permanently in GUI mode, select the breakpoint in the Watch points panel
and click the Remove watch point button. In command-line mode use the
clear command to clear breakpoints. You can specify the block by entering its
block index or by selecting the block in the model diagram and entering gcb as
the argument of the clear command.

Setting Breakpoints at Time Steps
To set a breakpoint at a time step, enter a time in the debugger’s Stop at time
field (GUI mode) or enter the time, using the tbreak command. The debugger
to stop the simulation at the beginning of the first time step that follows the
specified time. For example, starting vdp in debug mode and entering the
commands

tbreak 9
continue

causes the debugger to halt the simulation at the beginning of time step 9.0785
as indicated by the output of the continue command.

[Tm=9.07847133212036] **Start** of system 'vdp' outputs

11 Simulink Debugger

11-14

Breaking on Nonfinite Values
Checking the debugger’s NaN values option or entering the nanbreak
command causes the simulation to stop when a computed value is infinite or
outside the range of values that can be represented by the machine running the
simulation. This option is useful for pinpointing computational errors in a
Simulink model.

Breaking on Step-Size Limiting Steps
Checking the Step size limited by state option or entering the xbreak
command causes the debugger to stop the simulation when the model uses a
variable-step solver and the solver encounters a state that limits the size of the
steps that it can take. This command is useful in debugging models that appear
to require an excessive number of simulation time steps to solve.

Breaking at Zero-Crossings
Checking the Zero crossings option or entering the zcbreak command causes
the simulation to halt when Simulink detects a non-sampled zero crossing in a
model that includes blocks where zero-crossings can arise. After halting,
Simulink prints the location in the model, the time, and the type (rising or
falling) of the zero-crossing. For example, setting a zero-crossing break at the
start of execution of the zeroxing demo model

sldebug zeroxing
[Tm=0] **Start** of system 'zeroxing' outputs
(sldebug @0:0 'zeroxing/Sine Wave'): zcbreak
Break at zero crossing events is enabled.

and continuing the simulation

(sldebug @0:0 'zeroxing/Sine Wave'): continue

results in a rising zero-crossing break at

[Tm=0.34350110879329] Breaking at block 0:2

[Tm=0.34350110879329] Rising zero crossing on 3rd zcsignal
in block 0:2 'zeroxing/Saturation'

If a model does not include blocks capable of producing nonsampled
zero-crossings, the command prints a message advising you of this fact.

Displaying Information About the Simulation

11-15

Displaying Information About the Simulation
The Simulink debugger provides a set of commands that allow you to display
block states, block inputs and outputs, and other information while running a
model.

Displaying Block I/O
The debugger allows you to display block I/O by selecting the appropriate
buttons on the debugger toolbar

or by entering the appropirate debugger command.

Displaying I/O of Selected Block
To display the I/O of a block, select the block and click in GUI mode or enter
the probe command in command-line mode.

Command Displays a Block’s I/O...

probe Immediately

disp At every breakpoint

trace Whenever the block executes

Command Description

probe Enter or exit probe mode. In probe mode, the debugger
displays the current inputs and outputs of any block that
you select in the model’s block diagram. Typing any
command causes the debugger to exit probe mode.

Watch Block I/O Display Block I/O

11 Simulink Debugger

11-16

The debugger prints the current inputs and outputs of the selected block in the
debugger output pane (GUI mode) or the MATLAB command window.

The probe command comes in handy when you need to examine the I/O of a
block whose I/O is not otherwise displayed. For example, suppose you are using
the step command to run a model block by block. Each time you step the model,
the debugger displays the inputs and outputs of the current block. The probe
command lets you examine the I/O of other blocks as well. Similarly, suppose
you are using the next command to step through a model by time steps. The
next command does not display block I/O. However, if you need to examine a
block’s I/O after entering a next command, you can do so, using the probe
command.

Displaying Block I/O Automatically at Breakpoints
The disp command causes the debugger to display a specified block’s inputs
and outputs whenever it halts the simulation. You can specify a block either by
entering its block index or by selecting it in the block diagram and entering gcb
as the disp command argument. You can remove any block from the debugger’s
list of display points, using the undisp command. For example, to remove
block 0:0, either select the block in the model diagram and enter undisp gcb
or simply enter undisp 0:0.

Note Automatic display of block I/O at breakpoints is not available in the
debugger’s GUI mode.

The disp command is useful when you need to monitor the I/O of a specific
block or set of blocks as you step through a simulation. Using the disp
command, you can specify the blocks you want to monitor and the debugger will
then redisplay the I/O of those blocks on every step. Note that the debugger
always displays the I/O of the current block when you step through a model

probe gcb Displays I/O of selected block.

probe s:b Prints the I/O of the block specified by system number s
and block number b.

Command Description

Displaying Information About the Simulation

11-17

block by block, using the step command. So, you do not need to use the disp
command if you are interested in watching only the I/O of the current block.

Watching Block I/O
To watch a block, select the block and click in the debugger toolbar or enter
the trace command. In GUI mode, if a breakpoint exists on the block, you can
set a watch on it as well by checking the watch checkbox for the block in the
Watch points pane. In command-line mode, you can also specify the block by
specifying its block index in the trace command. You can remove a block from
the debugger’s list of trace points, using the untrace command.

The debugger displays a watched block’s I/O whenever the block executes.
Watching a block allows you obtain a complete record of the block’s I/O without
having to stop the simulation.

Displaying Algebraic Loop Information
The atrace command causes the debugger to display information about a
model’s algebraic loops (see “Algebraic Loops” on page 3-18) each time they are
solved. The command takes a single argument that specifies the amount of
information to display.

Displaying System States
The states debug command lists the current values of the system’s states in
the MATLAB command window. For example, the following sequence of
commands shows the states of the Simulink bouncing ball demo (bounce) after
its first and second time-steps.

Command Displays for Each Algebraic Loop

atrace 0 No information

atrace 1 The loop variable solution, the number of iterations
required to solve the loop, and the estimated solution error

atrace 2 Same as level 1

atrace 3 Level 2 plus the Jacobian matrix used to solve loop

atrace 4 Level 3 plus intermediate solutions of the loop variable

11 Simulink Debugger

11-18

sldebug bounce
[Tm=0] **Start** of system 'bounce' outputs
(sldebug @0:0 'bounce/Position'): states
Continuous state vector (value,index,name):
 10 0 (0:0 'bounce/Position')
 15 1 (0:5 'bounce/Velocity')
(sldebug @0:0 'bounce/Position'): next
[Tm=0.01] **Start** of system 'bounce' outputs
(sldebug @0:0 'bounce/Position'): states
Continuous state vector (value,index,name):
 10.1495095 0 (0:0 'bounce/Position')
 14.9019 1 (0:5 'bounce/Velocity')

Displaying Integration Information
The ishow command toggles display of integration information. When enabled,
this option causes the debugger to print a message each time that the
simulation takes a time step or encounters a state that limits the size of a time
step. In the first case, the debugger prints the size of the time step, for example,

[Tm=9.996264188473381] Step of 0.01 was taken by integrator

In the second case, the debugger displays the state that currently determines
the size of time steps, for example,

[Ts=9.676264188473388] Integration limited by 1st state of
block 0:0 'bounce/Position'

Displaying Information About the Model

11-19

Displaying Information About the Model
In addition to providing information about a simulation, the debugger can
provide you with information about the model that underlies the simulation.

Displaying a Model’s Block Execution Order
Simulink determines the order in which to execute blocks at the beginning of a
simulation run, during model initialization. During simulation, Simulink
maintains a list of blocks sorted by execution order. This list is called the sorted
list. In GUI mode, the debugger displays the sorted list in its Execution Order
panel. In command-line mode, the slist command displays the model’s block
execution order in the MATLAB command window. The list includes the block
index for each command.

---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks,
directFeed=0]
 0:0 'vdp/Integrator1' (Integrator)
 0:1 'vdp/Out1' (Outport)
 0:2 'vdp/Integrator2' (Integrator)
 0:3 'vdp/Out2' (Outport)
 0:4 'vdp/Fcn' (Fcn)
 0:5 'vdp/Product' (Product)
 0:6 'vdp/Mu' (Gain)
 0:7 'vdp/Scope' (Scope)
 0:8 'vdp/Sum' (Sum)

Displaying a Block
To determine which block in a model’s diagram corresponds to a particular
index, type bshow s:b at the command prompt, where s:b is the block index.
The bshow command opens the system containing the block (if necessary) and
selects the block in the system’s window.

Displaying a Model’s Nonvirtual Systems
The systems command prints a list of the nonvirtual systems in the model
being debugged. For example, the Simulink clutch demo (clutch) contains the
following systems.

sldebug clutch
[Tm=0] **Start** of system 'clutch' outputs

11 Simulink Debugger

11-20

(sldebug @0:0 'clutch/Clutch Pedal'): systems
 0 'clutch'
 1 'clutch/Locked'
 2 'clutch/Unlocked'

Note The systems command does not list subsystems that are purely
graphical in nature, that is, subsystems that the model diagram represents as
Subsystem blocks but which Simulink solves as part of a parent system. In
Simulink models, the root system and triggered or enabled subsystems are
true systems. All other subsystems are virtual (that is, graphical) and hence
do not appear in the listing produced by the systems command.

Displaying a Model’s Nonvirtual Blocks
The slist command displays a list of the nonvirtual blocks in a model. The
listing groups the blocks by system. For example, the following sequence of
commands produces a list of the nonvirtual blocks in the Van der Pol (vdp)
demo model.

sldebug vdp
[Tm=0] **Start** of system 'vdp' outputs
(sldebug @0:0 'vdp/Integrator1'): slist
---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks,
directFeed=0]
 0:0 'vdp/Integrator1' (Integrator)
 0:1 'vdp/Out1' (Outport)
 0:2 'vdp/Integrator2' (Integrator)
 0:3 'vdp/Out2' (Outport)
 0:4 'vdp/Fcn' (Fcn)
 0:5 'vdp/Product' (Product)
 0:6 'vdp/Mu' (Gain)
 0:7 'vdp/Scope' (Scope)
 0:8 'vdp/Sum' (Sum)

Displaying Information About the Model

11-21

Note The slist command does not list blocks that are purely graphical in
nature, that is, blocks that indicate relationships or groupings among
computational blocks.

Displaying Blocks with Potential Zero-Crossings
The zclist prints a list of blocks in which nonsampled zero-crossings can occur
during a simulation. For example, zclist prints the following list for the clutch
sample model.

(sldebug @0:0 'clutch/Clutch Pedal'): zclist
 2:3 'clutch/Unlocked/Sign' (Signum)
 0:4 'clutch/Lockup Detection/Velocities Match' (HitCross)
 0:10 'clutch/Lockup Detection/Required Friction
 for Lockup/Abs' (Abs)
 0:11 'clutch/Lockup Detection/Required Friction for
 Lockup/ Relational Operator' (RelationalOperator)
 0:18 'clutch/Break Apart Detection/Abs' (Abs)
 0:20 'clutch/Break Apart Detection/Relational Operator'
 (RelationalOperator)
 0:24 'clutch/Unlocked' (SubSystem)
 0:27 'clutch/Locked' (SubSystem)

Displaying Algebraic Loops
The ashow command highlights a specified algebraic loop or the algebraic loop
that contains a specified block. To highlight a specified algebraic loop, type
ashow s#n, where s is the index of the system (see “Displaying a Model’s Block
Execution Order” on page 11-19) that contains the loop and n is the index of the
loop in the system. To display the loop that contains the currently selected
block, enter ashow gcb. To show a loop that contains a specified block, type
ashow s:b, where s:b is the block’s index. To clear algebraic-loop highlighting
from the model diagram, enter ashow clear.

Displaying Debugger Status
In GUI mode, the debugger displays the settings of various debug options, such
as conditional breakpoints, in its Status panel. In command-line mode, the

11 Simulink Debugger

11-22

status command displays debuggers settings. For example, the following
sequence of commands displays the initial debug settings for the vdp model.

sim('vdp',[0,10],simset('debug','on'))
[Tm=0] **Start** of system 'vdp' outputs
(sldebug @0:0 'vdp/Integrator1'): status
 Current simulation time: 0 (MajorTimeStep)
 Last command: ""
 Stop in minor times steps is disabled.
 Break at zero crossing events is disabled.
 Break when step size is limiting by a state is disabled.
 Break on non-finite (NaN,Inf) values is disabled.
 Display of integration information is disabled.
 Algebraic loop tracing level is at 0.

Debugger Command Reference

11-23

Debugger Command Reference
The following table lists the debugger commands. The table’s Repeat column
specifies whether pressing the Return key at the command line repeats the
command. Detailed descriptions of the commands follow the table.

Command
Short
Form Repeat Description

ashow as No Show an algebraic loop.

atrace at No Set algebraic loop trace level.

bafter ba No Insert a breakpoint after execution of a
block.

break b No Insert a breakpoint before execution of a
block.

bshow bs No Show a specified block.

clear cl No Clear a breakpoint from a block.

continue c Yes Continue the simulation.

disp d Yes Display a block’s I/O when the
simulation stops.

help ? or h No Display help for debugger commands.

ishow i No Enable or disable display of integration
information.

minor m No Enable or disable minor step mode.

nanbreak na No Set or clear break on nonfinite value.

next n Yes Go to start of the next time step.

probe p No Display a block’s I/O.

quit q No Abort simulation.

run r No Run the simulation to completion.

11 Simulink Debugger

11-24

slist sli No List a model’s nonvirtual blocks.

states state No Display current state values.

status stat No Display debugging options in effect.

step s Yes Step to next block.

stop sto No Stop the simulation.

systems sys No List a model’s nonvirtual systems.

tbreak tb No Set or clear a time breakpoint.

trace tr Yes Display a block’s I/O each time it
executes.

undisp und Yes Remove a block from the debugger’s list
of display points.

untrace unt Yes Remove a block from the debugger’s list
of trace point.

xbreak x No Break when the debugger encounters a
step-size-limiting state.

zcbreak zcb No Break at nonsampled zero-crossing
events.

zclist zcl No List blocks containing nonsampled zero
crossings.

Command
Short
Form Repeat Description

ashow

11-25

11ashowPurpose Show an algebraic loop.

Syntax ashow <gcb | s:b | s#n | clear>

Arguments

Description ashow gcb or ashow s:b highlights the algebraic loop that contains the
specified block. ashow s#n highlights the nth algebraic loop in system s.
ashow clear removes algebraic loop highlights from the model diagram.

See Also atrace, slist

s:b The block whose system index is s and block index is b.

gcb Current block.

s#n The algebraic loop numbered n in system s.

clear Switch that clears loop coloring.

atrace

11-26

11atracePurpose Set algebraic loop trace level.

Syntax atrace level

Arguments

Description The atrace command sets the algebraic loop trace level for a simulation.

See Also systems, states

level Trace level (0 = none, 4 = everything).

Command Displays for Each Algebraic Loop

atrace 0 No information

atrace 1 The loop variable solution, the number of iterations
required to solve the loop, and the estimated solution error

atrace 2 Same as level 1

atrace 3 Level 2 plus Jacobian matrix used to solve loop

atrace 4 Level 3 plus intermediate solutions of the loop variable

bafter

11-27

11bafterPurpose Insert a break point after a block is executed.

Syntax bafter gcb
bafter s:b

Arguments

Description The bafter command inserts a breakpoint after execution of the specified
block.

See Also break, xbreak, tbreak, nanbreak, zcbreak, slist

s:b The block whose system index is s and block index is b.

gcb Current block.

break

11-28

11breakPurpose Insert a break point before a block is executed.

Syntax break gcb
break s:b

Arguments

Description The break command inserts a breakpoint before execution of the specified
block.

See Also bafter, tbreak, xbreak, nanbreak, zcbreak, slist

s:b The block whose system index is s and block index is b.

gcb Current block.

bshow

11-29

11bshowPurpose Show a specified block.

Syntax bshow s:b

Arguments

Description This command opens the model window containing the specified block and
selects the block.

See Also slist

s:b The block whose system index is s and block index is b.

clear

11-30

11clearPurpose Clear a breakpoint from a block.

Syntax clear gcb
clear s:b

Arguments

Description The clear command clears a breakpoint from the specified block.

See Also bafter, slist

s:b The block whose system index is s and block index is b.

gcb Current block.

continue

11-31

11continuePurpose Continue the simulation.

Syntax continue

Description The continue command continues the simulation from the current breakpoint.
The simulation continues until it reaches another breakpoint or its final time
step.

See Also run, stop, quit

disp

11-32

11dispPurpose Display a block’s I/O when the simulation stops.

Syntax disp gcb
disp s:b
disp

Arguments

Description The disp command registers a block as a display point. The debugger displays
the inputs and outputs of all display points in the MATLAB command window
whenever the simulation halts. Invoking disp without arguments shows a list
of display points. Use undisp to unregister a block.

See Also undisp, slist, probe, trace

s:b The block whose system index is s and block index is b.

gcb Current block.

help

11-33

11helpPurpose Display help for debugger commands.

Syntax help

Description The help command displays a list of debugger commands in the command
window. The list includes the syntax and a brief description of each command.

ishow

11-34

11ishowPurpose Enable or disable display of integration information.

Syntax ishow

Description The ishow command toggles display of integration information during a
simulation.

See Also atrace

minor

11-35

11minorPurpose Enable or disable minor step mode.

Syntax minor

Description The minor command causes the debugger to enter or exit minor step mode. In
minor step mode, the step command advances the simulation by blocks within
a minor step. In minor step mode, after executing the last block in the model’s
sorted block list, the step command advances the simulation to the next minor
time step, if any minor time steps remain in the current major time step;
otherwise, the step command advances the simulation to the first minor time
step in the next major time step.

See Also step

nanbreak

11-36

11nanbreakPurpose Set or clear nonfinite value break mode.

Syntax nanbreak

Description The nanbreak command causes the debugger to break whenever the simulation
encounters a nonfinite (NaN or Inf) value. If nonfinite break mode is set,
nanbreak clears it.

See Also break, bafter, xbreak, tbreak, zcbreak

next

11-37

11nextPurpose Go to start of the next time step.

Syntax next

Description The next command evaluates all of the blocks remaining to be evaluated in the
current time step, stopping at the start of the next time step. After executing
the next command, the debugger highlights the first block to be evaluated on
the next time step and displays the time of the next step.

See Also step

probe

11-38

11probePurpose Displays a block’s state.

Syntax probe [<s:b | gcb>] [level io | (all)]

Arguments

Description probe causes the debugger to enter or exit probe mode. In probe mode, the
debugger displays the I/O of any block you select. To exit probe mode, type any
command. probe gcb displays the I/O of the currently selected block. probe
s:b displays the I/O of the block whose index is s:b.

See Also disp, trace

s:b The block whose system index is s and block index is b.

gcb Current block.

level io Display block’s I/O.

level all Display all information regarding a block’s current state,
including inputs and outputs, states, and zero crossings.

quit

11-39

11quitPurpose Abort simulation.

Syntax quit

Description The quit command terminates the current simulation.

See Also stop

run

11-40

11runPurpose Run the simulation to completion.

Syntax run

Description The run command runs the simulation from the current breakpoint to its final
time step. It ignores breakpoints and display points.

See Also continue, stop, quit

slist

11-41

11slistPurpose List a model’s nonvirtual blocks.

Syntax slist

Description The slist command lists the nonvirtual blocks in the model being debugged.
The list shows the block index and name of each listed block.

See Also systems

states

11-42

11statesPurpose Display current state values.

Syntax states

Description The states command displays a list of the current states of the model. The
display lists the value, index, and name of each state.

See Also ishow

systems

11-43

11systemsPurpose List a model’s nonvirtual systems.

Syntax systems

Description The systems command lists a model’s nonvirtual systems in the MATLAB
command window.

See Also slist

status

11-44

11statusPurpose Display debugging options in effect.

Syntax status

Description The status command displays a list of the debugging options in effect.

step

11-45

11stepPurpose Step to next block.

Syntax step

Description The step command evaluates the next block to be evaluated in the current time
step. After executing the step command, the debugger highlights the next block
to be evaluated and its output signal lines. It also displays the name of the next
block as part of the debugger command-line prompt.

See Also next

stop

11-46

11stopPurpose Stop the simulation.

Syntax stop

Description The stop command stops the simulation.

See Also continue, run, quit

tbreak

11-47

11tbreakPurpose Set or clear a time breakpoint.

Syntax tbreak t
tbreak

Description The tbreak command sets a breakpoint at the specified time step. If a
breakpoint already exists at the specified time, tbreak clears the breakpoint.
If you do not specify a time, tbreak toggles a breakpoint at the current time
step.

See Also break, bafter, xbreak, nanbreak, zcbreak

trace

11-48

11tracePurpose Display a block’s I/O each time the block executes.

Syntax trace gcb
trace s:b

Arguments

Description The trace command registers a block as a trace point. The debugger displays
the I/O of each registered block each time the block executes.

See Also disp, probe, untrace, slist

s:b The block whose system index is s and block index is b.

gcb Current block.

undisp

11-49

11undispPurpose Remove a block from the debugger’s list of display points.

Syntax undisp gcb
undisp s:b

Arguments

Description The undisp command removes the specified block from the debugger’s list of
display points.

See Also disp, slist

s:b The block whose system index is s and block index is b.

gcb Current block.

untrace

11-50

11untracePurpose Remove a block from the debugger’s list of trace points.

Syntax untrace gcb
untrace s:b

Arguments

Description The untrace command removes the specified block from the debugger’s list of
trace points.

See Also trace, slist

s:b The block whose system index is s and block index is b.

gcb Current block.

xbreak

11-51

11xbreakPurpose Break when the debugger encounters a step-size-limiting state.

Syntax xbreak

Description The xbreak command pauses execution of the model when the debugger
encounters a state that limits the size of the steps that the solver takes. If
xbreak mode is already on, xbreak turns the mode off.

See Also break, bafter, zcbreak, tbreak, nanbreak

zcbreak

11-52

11zcbreakPurpose Toggle breaking at nonsampled zero-crossing events.

Syntax zcbreak

Description The zcbreak command causes the debugger to break when a nonsampled
zero-crossing event occurs. If zero-crossing break mode is already on, zcbreak
turns the mode off.

See Also break, bafter, xbreak, tbreak, nanbreak, zclist

zclist

11-53

11zclistPurpose List blocks containing nonsampled zero crossings.

Syntax zclist

Description The zclist command prints a list of blocks in which nonsampled zero crossings
can occur. The command prints the list in the MATLAB command window.

See Also zcbreak

zclist

11-54

12

Performance Tools

About the Simulink Performance Tools Option 12-2

The Simulink Accelerator 12-3
How Does It Work? 12-3
How to Run the Simulink Accelerator 12-4
Handling Changes in Model Structure 12-5
Increasing Performance of Accelerator Mode 12-6
Blocks That Do Not Show Speed Improvements 12-7
Using the Simulink Accelerator with the Simulink Debugger 12-8
Interacting with the Simulink Accelerator Programmatically 12-9
Comparing Performance 12-10
Customizing the Simulink Accelerator Build Process . . . 12-10
Controlling S-Function Execution 12-11

Model Differencing Tool 12-13
Display Options 12-15
Model Differences Report 12-15

Profiler . 12-17
How the Profiler Works 12-17
Enabling the Profiler 12-19
The Simulation Profile 12-20

Model Coverage Tool 12-23
How the Model Coverage Tool Works 12-23
Using the Model Coverage Tool 12-23
Creating and Running Test Cases 12-24
The Coverage Report 12-26
Coverage Settings Dialog Box 12-29
Model Coverage Commands 12-31

12 Performance Tools

12-2

About the Simulink Performance Tools Option
The Simulink Performance Tools product includes the following tools:

• Simulink Accelerator

• Model Differencing Tool

• Profiler

• Model Coverage Tool

Note You must have the Performance Tools option installed on your system
to use these tools.

The Simulink Accelerator

12-3

The Simulink Accelerator
The Simulink Accelerator speeds up the execution of Simulink models. The
Accelerator uses portions of the Real-Time Workshop, a MathWorks product
that automatically generates C code from Simulink models, and your C
compiler to create an executable. Note that although the Simulink Accelerator
takes advantage of Real-Time Workshop technology, the Real-Time Workshop
is not required to run it. Also, if you do not have a C compiler installed on your
Windows PC, you can use the lcc compiler provided by The MathWorks.

Note You must have the Simulink Performance Tools option installed on
your system to use the accelerator.

How Does It Work?
The Simulink Accelerator works by creating and compiling C code that takes
the place of the interpretive code that Simulink uses when in Normal mode
(that is, when Simulink is not in Accelerator mode). The Accelerator generates
the C code from your Simulink model, and MATLAB’s mex function invokes
your compiler and dynamically links the generated code to Simulink.

The Simulink Accelerator removes much of the computational overhead
required by Simulink models when in Normal mode. It works by replacing
blocks that are designed to handle any possible configuration in Simulink with
compiled versions customized to your particular model’s configuration.
Through this method, the Accelerator is able to achieve substantial
improvements in performance for larger Simulink models. The performance
gains are tied to the size and complexity of your model. In general, as size and
complexity grow, so do gains in performance. Typically, you can expect a
2X-to-6X gain in performance for models that use built-in Simulink blocks.

12 Performance Tools

12-4

How to Run the Simulink Accelerator
To activate the Simulink Accelerator, select Accelerator under the
Simulation menu for your model. This picture shows the procedure using the
F14 flight control model.

Figure 12-1: Selecting Accelerator Mode in Simulink

Alternatively, you can select Accelerator from the menu located on the
right-hand side of the toolbar.

To begin the simulation, select Start from the Simulation menu. When you
start the simulation, the Accelerator generates the C code and compiles it. The
Accelerator then does the following:

• Places the generated code in a subdirectory called modelname_accel_rtw (in
this case, f14_accel_rtw)

• Places a compiled MEX-file in the current working directory

• Runs the compiled model

The Simulink Accelerator

12-5

Note If your code does not compile, the most likely reason is that you have
not set up the mex command correctly. Run mex -setup at the MATLAB
prompt and select your C compiler from the list shown during the setup.

The Accelerator uses Real-Time Workshop technology to generate the code
used to accelerate the model. However, the generated code is suitable only for
acceleration of the model. If you want to generate code for other purposes, you
must use the Real-Time Workshop.

Handling Changes in Model Structure
After you have used the Simulink Accelerator to simulate a model, the
MEX-file containing the compiled version of the model remains available for
use in later simulations. Even if you exit MATLAB, you can reuse the MEX-file
in later MATLAB or Simulink sessions.

If you alter the structure of your Simulink model, for example, by adding or
deleting blocks, the Accelerator automatically regenerates the C code and
updates (overwrites) the existing MEX-file.

Examples of model structure changes that require the Accelerator to rebuild
include:

• Changing the method of integration

• Adding or deleting blocks or connections between blocks

• Changing the number of inputs or outputs of blocks, even if the connectivity
is vectorized

• Changing the number of states in the model

• Changing function in the Trigonometric Function block

• Changing the signs used in a Sum block

• Adding a Target Language Compiler™ (TLC) file to inline an S-function

The Simulink Accelerator displays a warning when you attempt any
impermissible model changes during simulation. The warning will not stop the
current simulation. To make the model alterations, stop the simulation, make
the changes, and restart.

12 Performance Tools

12-6

Some changes are permitted in the middle of simulation. Simple changes like
adjusting the value of a Gain block do not cause a warning. When in doubt, try
to make the change. If you do not see a warning, the Accelerator accepted the
change.

Note that the Accelerator does not display warnings that blocks generate
during simulation. Examples include divide-by-zero and integer overflow. This
is a different set of warnings that those discussed above.

Increasing Performance of Accelerator Mode
In general, the Simulink Accelerator creates code optimized for speed with
most blocks available in Simulink. There are situations, however, where you
can further improve performance by adjusting your simulation or being aware
of Accelerator behavior. These include:

• Simulation Parameters Pane — The options in the Simulation
Parameters Diagnostics and Advanced panes can affect Accelerator
performance. To increase the performance:

- Disable Consistency checking and Bounds checking on the Diagnostics
pane

- Set Signal storage reuse on in the Advanced pane

• Stateflow — The Accelerator is fully compatible with Stateflow, but it does
not improve the performance of the Stateflow portions of models. Disable
Stateflow debugging and animation to increase performance of models that
include Stateflow blocks.

• User-written S-functions — The Accelerator cannot improve simulation
speed for S-functions unless you inline them using the Target Language
Compiler. Inlining refers to the process of creating TLC files that direct
Real-Time Workshop to create C code for the S-function. This eliminates
unnecessary calls to the Simulink application program interface (API).

For information on how to inline S-functions, consult the Target Language
Compiler Reference Guide, which is available on the MathWorks Web site,
www.mathworks.com. It is also available on the documentation CD provided
with MATLAB.

• S-functions supplied by Simulink and blocksets — Although the Simulink
Accelerator is compatible with all the blocks provided with Simulink and

The Simulink Accelerator

12-7

blocksets, it does not improve the simulation speed for M-file or C-MEX
S-Function blocks that do not have an associated inlining TLC file.

• Logging large amounts of data — If you use Workspace I/O, To Workspace,
To File, or Scope blocks, large amounts of data will slow the Accelerator
down. Try using decimation or limiting outputs to the last N data points.

• Large models — In both Accelerator and Normal mode, Simulink can take
significant time to initialize large models. Accelerator speed up can be
minimal if run times (from start to finish of a single simulation) are small.

Blocks That Do Not Show Speed Improvements
The Simulink Accelerator is compatible with all MathWorks blocksets, but only
two, the Fixed Point Blockset and the DSP Blockset, achieve significantly
improved performance with the Accelerator.

Although you can greatly improve simulation performance of your models that
use Simulink, Fixed Point Blockset, and DSP Blockset blocks, there is a subset
of Simulink and DSP Blockset blocks that are currently not sped up by the
Accelerator. The following table lists these blocks.

Table 12-1: Blocks That Do Not Achieve Performance Increases

Simulink Blocks DSP Blockset Blocks

Display Biquadratic Filter

From File Convolution

From Workspace Direct-Form II Transpose Filter

Inport (root level only) Dyadic Analysis Filter Bank/
Dyadic Synthesis Filter Bank

MATLAB Fcn FIR Decimation/FIR Interpolation/
FIR Rate Conversion

Outport (root level only) From Wave Device/From Wave File

Scope Integer Delay/Variable Integer Delay

To File Matrix Multiply/Matrix To Workspace

12 Performance Tools

12-8

In addition, the Accelerator does not speed up user-written S-Function blocks
unless you inline them using the Target Language Compiler and have set
SS_OPTION_USE_TLC_WITH_ACCELERATOR in the S-function itself. See
“Controlling S-Function Execution” on page 12-11 for more information.

Using the Simulink Accelerator with the Simulink
Debugger
If you have large and complex models that you need to debug, the Simulink
Accelerator can shorten the length of your debugging sessions. For example, if
you need to set a time break that is very large, you can use the Accelerator to
reach the breakpoint more quickly.

To run the Simulink debugger while in Accelerator mode:

• Select Accelerator from the Simulation menu, then type
sldebug modelname

at the MATLAB prompt.

• At the debugger prompt, set a time break,
tbreak 10000
continue

• Once you reach the breakpoint, use the debugger command emode (execution
mode) to toggle between Accelerator and Normal mode. Note that when the
execution is set to Accelerator, block stepping is not permitted.

To Workspace Triggered Signal To Workspace/
Triggered Signal From Workspace

Transport Delay Time-Varying Direct-Form II Transpose
Filter

Variable Transport Delay To Wave File/To Wave Device

XY Graph Wavelet Analysis/Wavelet Synthesis

Zero Pad

Table 12-1: Blocks That Do Not Achieve Performance Increases (Continued)

Simulink Blocks DSP Blockset Blocks

The Simulink Accelerator

12-9

For more information on the Simulink debugger, see Chapter 11, “Simulink
Debugger.”

Interacting with the Simulink Accelerator
Programmatically
Using three commands, set_param, sim, and accelbuild, you can control the
execution of your model from the MATLAB prompt or from M-files. This section
describes the syntax for these commands and the options available.

Controlling the Simulation Mode
You can control the simulation mode from the MATLAB prompt using

set_param(gcs,'simulationmode','mode')

or

set_param(modelname,'simulationmode','mode')

You can use gcs (“get current system”) to set parameters for the currently
active model (i.e., the active model window) and modelname if you want to
specify the model name explicitly. The simulation mode can be either normal
or accelerator.

Simulating an Accelerated Model
You can also simulate an accelerated model using

sim(gcs); % Blocks the MATLAB prompt until simulation complete

or

set_param(gcs,'simulationcommand','start'); % Returns to the
% MATLAB prompt
% immediately

Again, you can substitute the modelname for gcs if you prefer to specify the
model explicitly.

Building Simulink Accelerator MEX-Files Independent of Simulation
You can build the Simulink Accelerator MEX-file without actually simulating
the model by using the accelbuild command, for example,

accelbuild f14

12 Performance Tools

12-10

Creating the Accelerator MEX-files in batch mode using accelbuild allows you
to build the C code and executables prior to running your simulations. When
you use the Accelerator interactively at a later time, it does not need to
generate or compile MEX-files at the start of the accelerated simulations.

You can use the accelbuild command to specify build options such as turning
on debugging symbols in the generated MEX-file.

accelbuild f14 OPT_OPTS=-g

Comparing Performance
If you want to compare the performance of the Simulink Accelerator to
Simulink in Normal mode, use tic, toc, and the sim command. To run the F14
example, use this code (make sure you’re in Normal mode).

tic,[t,x,y]=sim('f14',1000);toc

elapsed_time =

 14.1080

In Accelerator mode, this is the result.

elapsed_time =

 6.5880

The results above were achieved on a Windows PC with a 233 MHz Pentium
processor.

Note that for models with very short run times, the Normal mode simulation
may be faster, since the Accelerator checks at the beginning of any run to see
if it must regenerate the MEX-file. This adds a small overhead to the run-time.

Customizing the Simulink Accelerator Build Process
Typically no customization is necessary for the Simulink Accelerator build
process. Since, however, the Accelerator uses the same underlying mechanisms
as the Real-Time Workshop to generate code and build the MEX-file, you can
use three parameters to control the build process.

AccelMakeCommand
AccelSystemTargetFile

The Simulink Accelerator

12-11

AccelTemplateMakeFile

The three options allow you to specify custom Make command, System target,
and Template makefiles. Each of these parameters governs a portion of the
code generation process. Using these options requires an understanding of how
the Real-Time Workshop generates code. For a description of the Make
command, the System target file, and Template makefile, see the Real-Time
Workshop User’s Guide, which is available on the MathWorks Web site,
www.mathworks.com, and on the documentation CD provided with MATLAB.

The syntax for setting these parameters is

set_param(gcs, 'parameter', 'string')

or

set_param(modelname, 'parameter', 'string’)

where gcs (“get current system”) is the currently active model and
'parameter’ is one of the three parameters listed above. Replace string with
your string that defines a custom value for that parameter.

Controlling S-Function Execution
Inlining S-functions using the Target Language Compiler increases
performance when used with the Simulink Accelerator. By default, however,
the Accelerator ignores an inlining TLC file for an S-function, even though the
file exists.

One example of why this default was chosen is a device driver S-Function block
for an I/O board. The S-function TLC file is typically written to access specific
hardware registers of the I/O board. Since the Accelerator is not running on a
target system, but rather is a simulation on the host system, it must avoid
using the inlined TLC file for the S-function.

Another example is when the TLC file and MEX-file versions of an S-function
are not compatible in their use of work vectors, parameters, and/or
initialization.

If your inlined S-function is not complicated by these issues, you can direct the
Accelerator to use the TLC file instead of the S-function MEX-file by specifying
SS_OPTION_USE_TLC_WITH_ACCELERATOR in the mdlInitializeSizes function
of the S-function. When set, the Accelerator uses the inlining TLC file and full
performance increases are realized.

12 Performance Tools

12-12

For example,

static void mdlInitializeSizes(SimStruct *S)
{
/* Code deleted */
ssSetOptions(S, SS_OPTION_USE_TLC_WITH_ACCELERATOR);
}

Model Differencing Tool

12-13

Model Differencing Tool
The Model Differencing Tool finds and displays differences between two
Simulink models. This allows you to determine quickly the differences
between, for example, versions of the same model.

Note You must have the Simulink Performance Tools option installed on
your system to use this tool.

To use the tool, open one of two models to be compared and select Model
differences from the Simulink Tools menu. The Model Differencing Tool
appears along with a Select Second Model dialog box.

12 Performance Tools

12-14

Use the Select Second Model dialog box to select the other model to be
compared. The Model Differences Tool opens the second model, if necessary,
and arranges itself alongside the two models.

The Model Differences Tool contains three panes. The top left pane displays
the contents of the first model as an expandable list. The top right pane
displays the contents of the second model. Colors indicate differences between
the two models.

• Blue marks the blocks that appear in only one of the two models.

• Red marks the blocks that appear in both models but with different
parameter values or content (in the case of subsystems).

• Green marks blocks that are identical in both models.

Clicking on a block in either pane highlights the corresponding block icon(s) in
the model view(s). The bottom pane displays parameter differences between
versions of a selected block that exists in both models.

Model Differencing Tool

12-15

Display Options
The tool offers some display options. Select Show items with differences only
from the Options menu to omit blocks that do not differ in the two models.
Select Include only non-graphical differences to display only blocks that
differ in parameter values or content. This option omits subsystem blocks that
contain only graphical differences, such as block location or background color.

Model Differences Report
Select HTML Report from the View menu to display an HTML report
summarizing the differences between the two models.

12 Performance Tools

12-16

The report starts by listing all the blocks that differ between the two models.
This summary is followed by difference reports for each block that has different
instances in the two models.

Profiler

12-17

Profiler
The Simulink simulation profiler collects performance data while simulating
your model and generates a report, called a simulation profile, based on the
data. The simulation profile generated by the profiler shows you how much
time Simulink spends executing each function required to simulate your
model. The profile enables you to determine which parts of your model require
the most time to simulate and hence where to focus your model optimization
efforts.

Note You must have the Simulink Performance Tools option installed on
your system to use the profiler.

How the Profiler Works
The following pseudocode summarizes the execution model on which the
profiler is based.

Sim()
ModelInitialize().
ModelExecute()

for t = tStart to tEnd
Output()
Update()
Integrate()

Compute states from derivs by repeatedly calling:
MinorOutput()
MinorDeriv()

Locate any zero crossings by repeatedly calling:
MinorOutput()
MinorZeroCrossings()

EndIntegrate
Set time t = tNew.

EndModelExecute
ModelTerminate

EndSim

12 Performance Tools

12-18

According to this conceptual model, Simulink executes a Simulink model by
invoking the following functions zero, one, or more times, depending on the
function and the model.

Function Purpose Level

sim Simulate the model. This top-level
function invokes the other functions
required to simulate the model. The
time spent in this function is the
total time required to simulate the
model.

System

ModelInitialize Set up the model for simulation. System

ModelExecute Execute the model by invoking the
output, update, integrate, etc.,
functions for each block at each
time step from the start to the end
of simulation.

System

Output Compute the outputs of a block at
the current time step.

Block

Update Update a block’s state at the
current time step.

Block

Integrate Compute a block’s continuous states
by integrating the state derivatives
at the current time step.

Block

MinorOutput Compute a block’s output at a
minor time step.

Block

MinorDeriv Compute a block’s state derivatives
at a minor time step.

Block

MinorZeroCrossings Compute a block’s zero crossing
values at a minor time step.

Block

Profiler

12-19

The profiler measures the time required to execute each invocation of these
functions and generates a report at the end of the model that details how much
time was spent in each function.

Enabling the Profiler
To profile a model, open the model and select Profiler from the Simulink Tools
menu. Then start the simulation. When the simulation finishes, Simulink
generates and displays the simulation profile for the model in the MATLAB
help browser.

ModelTerminate Free memory and perform any
other end-of-simulation cleanup.

System

Nonvirtual Subsystem Compute the output of a nonvirtual
subsystem (see “Atomic Versus
Virtual Subsystems” on page 3-13)
at the current time step by invoking
the output, update, integrate, etc.,
functions for each block that it
contains. The time spent in this
function is the time required to
execute the nonvirtual subsystem.

Block

Function Purpose Level

12 Performance Tools

12-20

The Simulation Profile
Simulink stores the simulation profile in the MATLAB working directory.

The report has two sections: a summary and a detailed report.

Summary Section
The summary file displays the following performance totals.

Item Description

Total Recorded Time Total time required to simulate the model.

Number of Block Methods Total number of invocations of block-level
functions (e.g., Output())

Profiler

12-21

The summary section then shows summary profiles for each function invoked
to simulate the model. For each function listed, the summary profile specifies
the following information.

Number of Internal
Methods

Total number of invocations of system-level
functions (e.g., ModelExecute)

Number of Nonvirtual
Subsystem Methods

Total number of invocations of nonvirtual
subsystem functions

Clock Precision Precision of the profiler’s time
measurement

Item Description

Name Name of function. This item is a hyperlink. Clicking it
displays a detailed profile of this function.

Time Total time spent executing all invocations of this function
as an absolute value and as a percentage of the total
simulation time

Calls Number of times this function was invoked

Time/Call Average time required for each invocation of this function,
including the time spent in functions invoked by this
function

Self Time Average time required to execute this function, excluding
time spent in functions called by this function

Location Specifies the block or model executed for which this
function is invoked. This item is a hyperlink. Clicking it
highlights the corresponding icon in the model diagram.
Note that the link works only if you are viewing the profile
in the MATLAB help browser.

Item Description

12 Performance Tools

12-22

Detailed Profile Section
This section contains detailed profiles for each function invoked to simulate the
model. Each detailed profile contains all the information shown in the
summary profile for the function. In addition, the detailed profile displays the
function (parent function) that invoked the profiled function and the functions
(child functions) invoked by the profiled function. Clicking on the name of the
parent or a child function takes you to the detailed profile for that function.

Model Coverage Tool

12-23

Model Coverage Tool
The Model Coverage Tool determines the extent to which a model test case
exercises simulation pathways through a model. The percentage of pathways
that a test case exercises is called its model coverage. Model coverage is a
measure of how thoroughly a test tests a model. The Model Coverage Tool
therefore helps you to validate your model tests.

Note You must have the Simulink Performance Tools option installed on
your system to use the Model Coverage Tool.

How the Model Coverage Tool Works
The Model Coverage Tool works by analyzing the execution of blocks that serve
as decision points in your model. The block types that represent decision points
include

• Switch

• Multiport Switch

• Triggered subsystem (Subsystem containing a Trigger block)

• Enabled subsystem (Subsystem containing an Enable block)

• Absolute Value

• Saturation

If a model includes Stateflow charts, the tool also analyzes the states and
transitions of those charts. During a simulation run, the tool records changes
of state of the branch blocks and of states and transitions. At the end of the
simulation, the tool computes for each decision point block and for each state
and transition, the ratio of actual branches versus potential branches.

Using the Model Coverage Tool
To develop effective tests with the Model Coverage Tool,

1 Develop one or more test cases for your model (see “Creating and Running
Test Cases” on page 12-24).

12 Performance Tools

12-24

2 Run the test cases to verify that the model behavior is correct.

3 Analyze the coverage reports produced by Simulink.

4 Using the information in the coverage reports, modify the test cases to
increase their coverage or add new test cases that cover areas not covered by
the current set of test cases.

5 Repeat the preceding steps until you are satisfied with the coverage of your
test set.

Note Simulink comes with an online demonstration of the use of the Model
Coverage Tool to validate model tests. To run the demo, type simcovdemo at
the MATLAB command prompt.

Creating and Running Test Cases
The Test Coverage Tool provides two MATLAB commands, cvtest and cvsim,
for creating and running test cases. The cvtest command creates test cases to
be run by the cvsim command (see “cvsim” on page 12-33 and “cvtest” on
page 12-33).

You can also run the coverage tool interactively. To do so, select Coverage
Settings from the Simulink Tools menu. Simulink displays the Coverage
Settings dialog box (see “Coverage Settings Dialog Box” on page 12-29). Check
Enable Coverage Reporting and select OK to dismiss the dialog. Then select
Start from the Simulation menu or the start button on the Simulink toolbar.

By default, Simulink saves the data as a workspace object named covdata and
displays the data as an HTML report at the end of the simulation run. You can
select other options for generating, saving, and reporting coverage data. See
the “Coverage Settings Dialog Box” on page 12-29 for more information.

Model Coverage Tool

12-25

Note You cannot run simulations with both model coverage reporting and
acceleration options enabled. Simulink disables coverage reporting if the
accelerator is enabled. If a model includes links to Stateflow library charts
and you want the Model Coverage Tool to include the charts in its coverage
report, you must open the library charts before starting the simulation. If a
referenced library chart is not open, the tool omits the chart from its report.

12 Performance Tools

12-26

The Coverage Report
The coverage report generated by the Model Coverage Tool contains the
following sections.

Coverage Summary
The coverage summary sections has three subsections.

• The “Summary” section gives the total coverage of all test cases for the entire
model.

• The “Tests” section lists the simulation start and stop time of each test case
and any setup commands that preceded the simulation. The heading for the

Model Coverage Tool

12-27

each test case includes the test case label, e.g., “Test throttle,” specified using
the cvtest command.

• The “Model Systems” section summarizes the results for each subsystem.
Clicking on the name of the subsystem takes you to a detailed report for that
subsystem.

Details Section
The “Details” section reports the model coverage results in detail.

The “Details” section starts with a summary of results for the model as a whole
followed by a list of subsystems and charts that the model contains.
Subsections on each subsystem and chart follow. Clicking on the name of a

12 Performance Tools

12-28

subsystem or chart in the model summary takes you to a detailed report on that
subsystem or chart.

Subsystem Report
The section for each subsystem starts with a summary of the test coverage
results for the subsystem and a list of the subsystems that it contains. The
overview is followed by block reports, one for each block that represents a
decision point in the subsystem.

Block Report
The section for each block has a table that lists possible decision outcomes and
the number of times that an outcome occurred in each test simulation. The
report highlights outcomes that did not occur in red. Clicking on the block
name causes Simulink to display the block diagram containing the block.
Simulink also highlights the block to help you find it in the diagram.

Note The hyperlinks to the model are valid only for the current MATLAB
session. To restore the hyperlinks in a subsequent session, regenerate the
report.

The section for each block contains a backward and a forward arrow. Clicking
the forward arrow takes you to the next section in the report that lists an
uncovered outcome. Clicking the back arrow takes you back to the previous
uncovered outcome in the report.

Chart Report
The detailed report for each Stateflow chart has a similar format, with decision
tables for each state and transition in the chart.

Model Coverage Tool

12-29

Coverage Settings Dialog Box
The Coverage Settings dialog box allows you to select model coverage
reporting options.

The dialog box includes the following options.

Enable Coverage Reporting
Causes Simulink to gather and report model coverage data during simulation.

12 Performance Tools

12-30

Coverage Instrumentation Path
Path of the subsystem for which Simulink gathers and reports coverage data.
By default, Simulink generates coverage data for the entire model. To restrict
coverage reporting to a particular subsystem, select Browse.

Simulink displays a System Selector dialog.

Select the subsystem for which you want coverage reporting to be enabled.
Click OK to dismiss the dialog.

Save to workspace
Name of workspace object containing coverage data generated by Simulink.

Increment variable name with each simulation
If selected, this option causes Simulink to increment the name of the coverage
data object with each simulation. This prevents the current simulation run
from overwriting the results of the previous run.

Generate HTML report
Causes Simulink to create an HTML report containing the coverage data.
Simulink displays the report in the MATLAB help browser at the end of the
simulation.

Additional data to include in report
Names of coverage data from previous runs to include in the current report
along with the current coverage data. This option and the previous option allow

Model Coverage Tool

12-31

you to generate a single report containing the results of multiple simulation
runs.

Model Coverage Commands

cvhtml
Produce an HTML report of cvdata object(s).

cvhtml(file,data)

Create an HTML report of the coverage results in the cvdata object data. The
report will be written to file.

cvhtml(file,data1,data2,...)

Create a combined report of several data objects. The results from each object
will be displayed in a separate column. Each data object must correspond to the
same root subsystem or the function will produce errors.

cvhtml(file,data,data2,...,detail)

Specify the detail level of the report with the value of detail, an integer
between 0 and 3. Greater numbers indicate greater detail. The default value is
2.

cvload
Load coverage tests and results from file.

[TESTS, DATA] = CVLOAD(FILENAME)

Load the tests and data stored in the text file FILENAME.CVT. The tests that are
successfully loaded are returned in TESTS, a cell array of cvtest objects. DATA is
a cell array of cvdata objects that were successfully loaded. DATA has the same
size as TESTS but may contain empty elements if a particular test has no
results.

Special considerations:

• If a model with the same name exists in the coverage database, only the
compatible results will be loaded from file and they will reference the
existing model to prevent duplication.

12 Performance Tools

12-32

• If the Simulink models referenced from the file are open but do not exist in
the coverage database, the coverage tool resolves the links to the existing
models.

• When loading several files that reference the same model, only the results
that are consistent with the earlier files will be loaded.

cvreport
Report the information in a cvdata object. This command has the following
forms.

cvreport(file,data)

Create a text report of the coverage results in the cvdata object data. The
report will be written to file. If file is empty the report will be displayed at
the command prompt.

cvreport(file,data1,data2,...)

Create a combined report of several test objects. The results from each object
will be displayed in a separate column. Each data object must correspond to the
same root subsystem or the function will produce errors.

cvreport(file,data1,data2,...,detail)

Specify the detail level of the report with the value of detail, an integer
between 0 and 3. Greater numbers indicate greater detail. The default value is
2.

cvsave
Save coverage tests and results to file.

cvsave(filename,model)

Save all the tests and results related to model in the text file filename.cvt.

cvsave(filename, test1, test2, ...)

Save the specified tests in the text file filename.cvt. Information about the
referenced model(s) is also saved.

cvsave(filename, data1, data2, ...)

Model Coverage Tool

12-33

Save the specified data objects, the tests that created them, and the referenced
model(s) structure in the text file filename.cvt.

cvsim
Run a test case.

Note You do not have to enable model coverage reporting (see “Creating and
Running Test Cases” on page 12-24) to use this command.

This command can take the following forms.

data = cvsim(test)

Execute the cvtest object test by starting a simulation run for the
corresponding model. The results are returned in a cvdata object.

[data,t,x,y] = cvsim(test)

Returns the simulation time vector, t, state values, x, and output values, y.

[data,t,x,y] = cvsim(test, timespan, options)

Override the default simulation values. For more information see the sim
command.

[data1, data2, ...] = cvsim(test1, test2, ...)

Execute a set of tests and return the results in cvdata objects.

[data1,t,x,y] = cvsim(root, label, setupcmd)

Create and execute a cvtest object.

cvtest
Creates a test case. This command has the following syntax.

test = cvtest(root, label, setupcmd)

where root is the name or handle to the model or subsystem to be tested, label
is a string that identifies the test case, and setupcmd is a MATLAB command
that cvsim executes in the base workspace before running the instrumented

12 Performance Tools

12-34

model. The second two arguments are optional. The cvtest command returns
a handle to the registered test case.

A
Model and Block
Parameters

Introduction . A-2

Model Parameters A-3

Common Block Parameters A-7

Block-Specific Parameters A-10

Mask Parameters A-25

A Model and Block Parameters

A-2

Introduction
This appendix lists model, block, and mask parameters. The tables that list the
parameters provide enough information to enable you to modify models from
the command line, using the set_param command. See set_param on
page 10-27 for more information on this command.

Model Parameters

A-3

Model Parameters
This table lists and describes parameters that describe a model. The
parameters appear in the order they are defined in the model file, described in
Appendix B. The table also includes model callback parameters, described in
“Using Callback Routines” on page 4–70. The Description column indicates
where you can set the value on the Simulation Parameters dialog box. Model
parameters that are simulation parameters are described in more detail in
“The Simulation Parameters Dialog Box” on page 5-8. Examples showing how
to change parameters follow the table.

Parameter values must be specified as quoted strings. The string contents
depend on the parameter and can be numeric (scalar, vector, or matrix), a
variable name, a filename, or a particular value. The Values column shows the
type of value required, the possible values (separated with a vertical line), and
the default value, enclosed in braces.

Table A-1: Model Parameters

Parameter Description Values

AbsTol Absolute error tolerance scalar {1e–6}

AlgebraicLoopMsg Algebraic loop diagnostic none | {warning} | error

ArrayBoundsChecking Enable array bounds checking 'none' | 'warning' | 'error'

BooleanDataType Enable Boolean mode on | {off}

BufferReuse Enable reuse of block I/O buffers {on} | off

CloseFcn Close callback command or variable

ConfigurationManager Configuration manager for this model. text

ConsistencyChecking Consistency checking on | {off}

Created Date and time model was created. text

Creator Name of model creator. text

Decimation Decimation factor scalar {1}

Description Description of this model. text

ExternalInput Time and input variable names scalar or vector [t, u]

A Model and Block Parameters

A-4

FinalStateName Final state name variable {xFinal}

FixedStep Fixed step size scalar {auto}

InitialState Initial state name or values variable or vector {xInitial}

InitialStep Initial step size scalar {auto}

InvariantConstants Invariant constant setting on | {off}

LimitDataPoints Limit output on | {off}

LoadExternalInput Load input from workspace on | {off}

LoadInitialState Load initial state on | {off}

MaxDataPoints Maximum number of output data points
to save

scalar {1000}

MaxOrder Maximum order for ode15s 1 | 2 | 3 | 4 | {5}

MaxStep Maximum step size scalar {auto}

MinStepSizeMsg Minimum step size diagnostic {warning} | error

ModelVersionFormat Format of model’s version number. text

ModifiedBy Last modifier of this model. text

ModifiedDateFormat Format of modified date. text

Name Model name text

ObjectParameters Names/attributes of model parameters. structure

OutputOption Output option AdditionalOutputTimes |
{RefineOutputTimes} |
SpecifiedOutputTimes

OutputSaveName Simulation output name variable {yout}

OutputTimes Values for chosen OutputOption vector {[]}

PaperOrientation Printing paper orientation portrait | {landscape}

PaperPosition Position of diagram on paper [left, bottom, width, height]

Table A-1: Model Parameters (Continued)

Parameter Description Values

Model Parameters

A-5

PaperPositionMode Paper position mode auto | {manual}

PaperSize Size of PaperType in PaperUnits [width height] (read only)

PaperType Printing paper type {usletter} | uslegal | a0 |
a1 | a2 | a3 | a4 | a5 | b0 |
b1 | b2 | b3 | b4 | b5 |
arch-A | arch-B | arch-C |
arch-D | arch-E | A | B | C |
D | E | tabloid

PaperUnits Printing paper size units normalized | {inches} |
centimeters | points

PostLoadFcn Post-load callback command or variable

PreLoadFcn Pre-load callback command or variable

Refine Refine factor scalar {1}

RelTol Relative error tolerance scalar {1e–3}

SampleTimeColors Sample Time Colors menu option on | {off}

SaveFcn Save callback command or variable

SaveFinalState Save final state on | {off}

SaveFormat Format used to save data to the MATLAB
workspace

Array | Structure |
StructureWithTime

SaveOutput Save simulation output {on} | off

SaveState Save states on | {off}

SaveTime Save simulation time {on} | off

ShowLineWidths Show Line Widths menu option on | {off}

SimParamPage Simulation Parameters dialog box page
to display (page last displayed)

{Solver} | WorkspaceI/O |
Diagnostics

Table A-1: Model Parameters (Continued)

Parameter Description Values

A Model and Block Parameters

A-6

These examples show how to set model parameters for the mymodel system.

This command sets the simulation start and stop times.

set_param('mymodel','StartTime','5','StopTime','100')

This command sets the solver to ode15s and changes the maximum order.

set_param('mymodel','Solver','ode15s','MaxOrder','3')

This command associates a SaveFcn callback.

set_param('mymodel','SaveFcn','my_save_cb')

Solver Solver {ode45} | ode23 | ode113 |
ode15s | ode23s | ode5 | ode4
| ode3 | ode2 | ode1 |
FixedStepDiscrete |
VariableStepDiscrete

StartFcn Start simulation callback command or variable

StartTime Simulation start time scalar {0.0}

StateSaveName State output name variable {xout}

StopFcn Stop simulation callback command or variable

StopTime Simulation stop time scalar {10.0}

TimeSaveName Simulation time name variable {tout}

UnconnectedInputMsg Unconnected input ports diagnostic none | {warning} | error

UnconnectedLineMsg Unconnected lines diagnostic none | {warning} | error

UnconnectedOutputMsg Unconnected output ports diagnostic none | {warning} | error

Version Simulink version used to modify the
model (read-only)

(release)

WideVectorLines Wide Vector Lines menu option on | {off}

ZeroCross Intrinsic zero crossing detection (see “Zero
Crossing Detection” on page 3–14)

{on} | off

Table A-1: Model Parameters (Continued)

Parameter Description Values

Common Block Parameters

A-7

Common Block Parameters
This table lists the parameters common to all Simulink blocks, including block
callback parameters, which are described in “Using Callback Routines” on page
4–70. Examples of commands that change these parameters follow this table.

Table A-2: Common Block Parameters

Parameter Description Values

AttributesFormat
String

Specifies parameters to be dis-
played below block in a block
diagram

string

BackgroundColor Block icon background black | {white} | red | green | blue |
cyan | magenta | yellow | gray |
lightBlue | orange | darkGreen

BlockDescription Block description text

BlockType Block type text

CloseFcn Close callback MATLAB expression

CompiledPortWidths Structure of port widths scalar and vector

CopyFcn Copy callback MATLAB expression

DeleteFcn Delete callback MATLAB expression

Description User-specifiable description text

DialogParameters Names/attributes of parame-
ters in blocks parameter
dialog,

structure

DropShadow Display drop shadow {off} | on

FontAngle Font angle (system-dependent) {normal} | italic |
oblique

FontName Font {Helvetica}

FontSize Font size {10}

FontWeight Font weight (system-dependent) light | {normal} | demi
| bold

A Model and Block Parameters

A-8

ForegroundColor Block name, icon, outline,
output signals, and signal
label

{black} | white | red | green | blue |
cyan | magenta | yellow | gray |
lightBlue | orange | darkGreen

InitFcn Initialization callback MATLAB expression

InputPorts Array of input port locations [h1,v1; h2,v2; ...]

LinkStatus Link status of block. none |resolved | unresolved | implicit

LoadFcn Load callback MATLAB expression

ModelCloseFcn Model close callback MATLAB expression

Name Block’s name string

NameChangeFcn Block name change callback MATLAB expression

NamePlacement Position of block name {normal} | alternate

ObjectParameters Names/attributes of block’s
parameters

structure

OpenFcn Open callback MATLAB expression

Orientation Where block faces {right} | left | down | up

OutputPorts Array of output port locations [h1,v1; h2,v2; ...]

Parent Name of the system that owns
the block

string

ParentCloseFcn Parent subsystem close call-
back

MATLAB expression

Position Position of block in model
window

vector [left top right bottom]
not enclosed in quotes

PostSaveFcn Post-save callback MATLAB expression

PreSaveFcn Pre-save callback MATLAB expression

Selected Block selected state on | {off}

ShowName Display block name {on} | off

Table A-2: Common Block Parameters (Continued)

Parameter Description Values

Common Block Parameters

A-9

These examples illustrate how to change these parameters.

This command changes the orientation of the Gain block in the mymodel system
so it faces the opposite direction (right to left).

set_param('mymodel/Gain','Orientation','left')

This command associates an OpenFcn callback with the Gain block in the
mymodel system.

set_param('mymodel/Gain','OpenFcn','my_open_cb')

This command sets the Position parameter of the Gain block in the mymodel
system. The block is 75 pixels wide by 25 pixels high. The position vector is not
enclosed in quotes.

set_param('mymodel/Gain','Position',[50 250 125 275])

StartFcn Start simulation callback MATLAB expression

StopFcn Termination of simulation
callback

MATLAB expression

Tag User-defined string ' '

Type Simulink object type
(read-only)

'block'

UndoDeleteFcn Undo block delete callback MATLAB expression

UserData Any MATLAB data type (not
saved in the mdl file)

[]

Table A-2: Common Block Parameters (Continued)

Parameter Description Values

A Model and Block Parameters

A-10

Block-Specific Parameters
These tables list block-specific parameters for all Simulink blocks. The type of
the block appears in parentheses after the block name. Some Simulink blocks
are implemented as masked subsystems. The tables indicate masked blocks by
adding the designation “masked” after the block type.

Note The type listed for nonmasked blocks is the value of the block’s
BlockType parameter; the type listed for masked blocks is the value of the
block’s MaskType parameter. For more information, see “Mask Parameters” on
page A-25.

The Dialog Box Prompt column indicates the text of the prompt for the
parameter on the block’s dialog box. The Values column shows the type of
value required (scalar, vector, variable), the possible values (separated with a
vertical line), and the default value (enclosed in braces).

Table A-3: Sources Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Band-Limited White Noise (Continuous White Noise) (masked)

Chirp Signal (chirp) (masked)

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Clock (Clock) (no block-specific parameters)

Constant (Constant)

Value Constant value scalar or vector {1}

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Digital Clock (DigitalClock)

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Block-Specific Parameters

A-11

Digital Pulse Generator

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

From File (FromFile)

FileName Filename filename {untitled.mat}

From Workspace (FromWorkspace)

VariableName Matrix table matrix {[T,U]}

Pulse Generator (Pulse Generator) (masked)

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Ramp (Ramp) (masked)

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Random Number (RandomNumber)

Seed Initial seed scalar or vector {0}

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Repeating Sequence (Repeating table) (masked)

Signal Generator (SignalGenerator)

WaveForm Wave form {sine} | square | sawtooth |
random

Amplitude Amplitude scalar or vector {1}

Frequency Frequency scalar or vector {1}

Units Units {Hertz} | rad/sec

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Table A-3: Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

A Model and Block Parameters

A-12

Sine Wave (Sin)

Amplitude Amplitude scalar or vector {1}

Frequency Frequency scalar or vector {1}

Phase Phase scalar or vector {0}

SampleTime Sample time scalar (sample period) {–1}
or vector [period offset]

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Step (Step)

Time Step time scalar or vector {1}

Before Initial value scalar or vector {0}

After Final value scalar or vector {1}

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Uniform Random Number (Uniform RandomNumber)

Minimum Minimum scalar or vector {–1}

Maximum Maximum scalar or vector {1}

Seed Initial Seed scalar or vector {0}

SampleTime Sample Time scalar or vector {0}

VectorParams1D Interpret vector parame-
ters as 1-D

off {on}

Table A-3: Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Block-Specific Parameters

A-13

Table A-4: Sinks Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Display (Display)

Format Format {short} | long | short_e | long_e
| bank

Decimation Decimation scalar {1}

Floating Floating display {off} on

SampleTime Sample time scalar (sample period) {–1}
or vector [period offset]

Scope (Scope)

Location Position of Scope window
on screen

vector {[left top right bottom]}

Open (If Scope open when the
model is opened. Cannot
set from dialog box)

{off} | on

NumInputPorts Number of Axes positive integer > 0

TickLabels Hide tick labels {on} | off

ZoomMode (Zoom button initially
pressed)

{on} | xonly | yonly

AxesTitles Title (on right click axes) scalar {auto}

Grid (for future use) {on} | off

TimeRange Time range scalar {auto}

YMin Y min scalar {–5}

YMax Y max scalar {5}

SaveToWorkspace Save data to workspace {off} | on

SaveName Variable name variable {ScopeData}

DataFormat Format {matrix | structure}

A Model and Block Parameters

A-14

LimitMaxRows Limit rows to last {on} | off

MaxRows (no label) scalar {5000}

Decimation (Value if Decimation
selected)

scalar {1}

SampleInput (Toggles with Decimation) {off} | on

SampleTime (SampleInput value) scalar (sample period) {0}
or vector [period offset]

Stop Simulation (StopSimulation) (no block-specific parameters)

To File (ToFile)

Filename Filename filename {untitled.mat}

MatrixName Variable name variable {ans}

Decimation Decimation scalar {1}

SampleTime Sample time scalar (sample period) {–1}
or vector [period offset]

To Workspace (ToWorkspace)

VariableName Variable name variable {simout}

Buffer Maximum number of
rows

scalar {inf}

Decimation Decimation scalar {1}

SampleTime Sample time scalar (sample period) {–1}
or vector [period offset]

XY Graph (XY scope.) (masked)

Table A-4: Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Block-Specific Parameters

A-15

Table A-5: Discrete Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Discrete Filter (DiscreteFilter)

Numerator Numerator vector {[1]}

Denominator Denominator vector {[1 2]}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Discrete State-Space (DiscreteStateSpace)

A A matrix {1}

B B matrix {1}

C C matrix {1}

D D matrix {1}

X0 Initial conditions vector {0}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Discrete-Time Integrator (DiscreteIntegrator)

IntegratorMethod Integrator method {ForwardEuler} | BackwardEuler |
Trapezoidal

ExternalReset External reset {none} | rising | falling | either

InitialConditionSource Initial condition source {internal} | external

InitialCondition Initial condition scalar or vector {0}

LimitOutput Limit output {off} | on

UpperSaturationLimit Upper saturation limit scalar or vector {inf}

LowerSaturationLimit Lower saturation limit scalar or vector {–inf}

ShowSaturationPort Show saturation port {off} | on

ShowStatePort Show state port {off} | on

A Model and Block Parameters

A-16

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Discrete Transfer Fcn (DiscreteTransferFcn)

Numerator Numerator vector {[1]}

Denominator Denominator vector {[1 0.5]}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Discrete Zero-Pole (DiscreteZeroPole)

Zeros Zeros vector {[1]}

Poles Poles vector [0 0.5]

Gain Gain scalar {1}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

First-Order Hold (First Order Hold) (masked)

Unit Delay (UnitDelay)

X0 Initial condition scalar or vector {0}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Zero-Order Hold (ZeroOrderHold)

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Table A-5: Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Block-Specific Parameters

A-17

Table A-6: Continuous Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Derivative (Derivative) (no block-specific parameters)

Integrator (Integrator)

ExternalReset External reset {none} | rising | falling | either

InitialConditionSource Initial condition source {internal} | external

InitialCondition Initial condition scalar or vector {0}

LimitOutput Limit output {off} | on

UpperSaturationLimit Upper saturation limit scalar or vector {inf}

LowerSaturationLimit Lower saturation limit scalar or vector {–inf}

ShowSaturationPort Show saturation port {off} | on

ShowStatePort Show state port {off} | on

AbsoluteTolerance Absolute tolerance scalar {auto}

Memory (Memory)

X0 Initial condition scalar or vector {0}

InheritSampleTime Inherit sample time {off} | on

State-Space (StateSpace)

A A matrix {1}

B B matrix {1}

C C matrix {1}

D D matrix {1}

X0 Initial conditions vector {0}

Transfer Fcn (TransferFcn)

Numerator Numerator vector or matrix {[1]}

A Model and Block Parameters

A-18

Denominator Denominator vector {[1 1]}

Transport Delay (TransportDelay)

DelayTime Time delay scalar or vector {1}

InitialInput Initial input scalar or vector {0}

BufferSize Initial buffer size scalar {1024}

Variable Transport Delay (VariableTransportDelay)

MaximumDelay Maximum delay scalar or vector {10}

InitialInput Initial input scalar or vector {0}

MaximumPoints Buffer size scalar {1024}

Zero-Pole (ZeroPole)

Zeros Zeros vector {[1]}

Poles Poles vector {[0 –1]}

Gain Gain vector {[1]}

Table A-6: Continuous Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table A-7: Math Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Abs (Abs) (no block-specific parameters)

Algebraic Constraint (Algebraic Constraint) (masked)

Combinatorial Logic (CombinatorialLogic)

TruthTable Truth table matrix {[0 0;0 1;0 1;1 0;
0 1;1 0;1 0;1 1]}

Complex to Magnitude-Angle

Complex to Real-Imag

Block-Specific Parameters

A-19

Dot Product (Dot Product) (masked)

Gain (Gain)

Gain Gain scalar or vector {1}

Logical Operator (Logic)

Operator Operator {AND} | OR | NAND | NOR | XOR | NOT

Inputs Number of input ports scalar {2}

Magnitude-Angle to Complex

Math Function (Math)

Operator Function {exp} | log | log10 | square | sqrt
| pow | reciprocal | hypot | rem |
mod

Matrix Gain (Matrix Gain) (masked)

MinMax (MinMax)

Function Function {min} | max

Inputs Number of input ports scalar {1}

Product (Product)

Inputs Number of inputs scalar {2}

Relational Operator (RelationalOperator)

Operator Operator == | != | < | {<=} | >= | >

Relational Operator (RelationalOperator)

Operator Operator == | != | < | {<=} | >= | >

Rounding Function (Rounding)

Operator Function {floor} | ceil | round | fix

Sign (Signum) (no block-specific parameters)

Slider Gain (SliderGain) (masked)

Table A-7: Math Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

A Model and Block Parameters

A-20

Sum (Sum)

Inputs List of signs scalar or list of signs {++}

Trigonometric Function (Trigonometry)

Operator Function {sin} | cos | tan | asin | acos |
atan | atan2 | sinh | cosh | tanh

Table A-7: Math Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table A-8: Functions and Tables Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Fcn (Fcn)

Expr Expression expression
{sin(u(1)*exp(2.3*(–u(2))))}

Look-up Table (Lookup)

InputValues Vector of input values vector {[–5:5]}

OutputValues Vector of output values vector {tanh([–5:5])}

Look-Up Table (2-D) (Lookup Table (2-D)) (masked)

RowIndex Row vector

ColumnIndex Column vector

OutputValues Table 2-D matrix

MATLAB Fcn (MATLABFcn)

MATLABFcn MATLAB function MATLAB function {sin}

OutputWidth Output width scalar or vector {–1}

S-Function (S-Function)

FunctionName S-function name name {system}

Parameters S-function parameters additional parameters if needed

Block-Specific Parameters

A-21

Table A-9: Nonlinear Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Backlash (Backlash)

BacklashWidth Deadband width scalar or vector {1}

InitialOutput Initial output scalar or vector {0}

Coulomb & Viscous Friction (Coulombic and Viscous Friction) (masked)

Dead Zone (DeadZone)

LowerValue Start of dead zone scalar or vector {–0.5}

UpperValue End of dead zone scalar or vector {0.5}

Manual Switch (Manual Switch) (masked)

Multiport Switch (MultiPortSwitch)

Inputs Number of inputs scalar or vector {3}

Quantizer (Quantizer)

QuantizationInterval Quantization interval scalar or vector {0.5}

Rate Limiter (RateLimiter)

RisingSlewLimit Rising slew rate scalar or vector {1.}

FallingSlewLimit Falling slew rate scalar or vector {–1.}

Relay (Relay)

OnSwitchValue Switch on point scalar or vector {eps}

OffSwitchValue Switch off point scalar or vector {eps}

OnOutputValue Output when on scalar or vector {1}

OffOutputValue Output when off scalar or vector {0}

Saturation (Saturate)

UpperLimit Upper limit scalar or vector {0.5}

LowerLimit Lower limit scalar or vector {–0.5}

S-Function (S-Function)

A Model and Block Parameters

A-22

FunctionName S-function name name {system}

Parameters S-function parameters additional parameters if needed

Sign (Signum) (no block-specific parameters)

Switch (Switch)

Threshold Threshold scalar or vector {0}

Table A-9: Nonlinear Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table A-10: Signals & Systems Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Bus Selector (BusSelector)

InputSignals cell array of the input signals nested to
reflect the signal hierarchy

Configurable Subsystem (mask)

Choice Block choice string

LibraryName Library name string

Data Store Memory (DataStoreMemory)

DataStoreName Data store name tag {A}

InitialValue Initial value vector {0}

Data Store Read (DataStoreRead)

DataStoreName Data store name tag {A}

SampleTime Sample time scalar (sample period) {–1}
or vector [period offset]

Data Store Write (DataStoreWrite)

DataStoreName Data store name tag {A}

Block-Specific Parameters

A-23

SampleTime Sample time scalar (sample period) {–1}
or vector [period offset]

Data Type Conversion

Demux (Demux)

Outputs Number of outputs scalar or vector {3}

Enable (EnablePort)

StatesWhenEnabling States when enabling {held} | reset

ShowOutputPort Show output port {off} | on

From (From)

GotoTag Goto tag tag {A}

Goto (Goto)

GotoTag Tag tag {A}

TagVisibility Tag visibility {local} | scoped | global

Goto Tag Visibility (GotoTagVisibility)

GotoTag Goto tag tag {A}

Ground (Ground) (no block-specific parameters)

Hit Crossing (HitCross)

HitCrossingOffset Hit crossing offset scalar or vector {0}

HitCrossingDirection Hit crossing direction rising | falling | {either}

ShowOutputPort Show output port {on} | off

IC (InitialCondition)

Value Initial value scalar or vector {1}

In (Inport)

Port Port number scalar {1}

Table A-10: Signals & Systems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

A Model and Block Parameters

A-24

PortWidth Port width scalar {–1}

SampleTime Sample time scalar (sample period) {–1}
or vector [period offset]

Merge

Model Info (CMBlock) (mask)

Mux (Mux)

Inputs Number of inputs scalar or vector {3}

Out (Outport)

Port Port number scalar {1}

OutputWhenDisabled Output when disabled {held} | reset

InitialOutput Initial output scalar or vector {0}

Probe (Probe)

ProbeWidth Probe width {on} | off

ProbeSampleTime Probe sample time {on} | off

ProbeCompexSignal Probe complex signal {on} | off

Subsystem (SubSystem)

ShowPortLabels Show/Hide Port Labels
Format menu item

{on} | off

Terminator (Terminator) (no block-specific parameters)

Trigger (TriggerPort)

TriggerType Trigger type {rising} | falling | either |
function-call

ShowOutputPort Show output port {off} | on

Width (Width) (no block-specific parameters)

Table A-10: Signals & Systems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Mask Parameters

A-25

Mask Parameters
This section lists parameters that describe masked blocks. This table lists
masking parameters, which correspond to Mask Editor dialog box parameters.

Table A-11: Mask Parameters

Parameter Description/Prompt Values

Mask Turns mask on or off. {on} | off

MaskCallbackString Mask parameter callbacks delimited string

MaskCallbacks Mask parameter callbacks cell array

MaskDescription Block description string

MaskDisplay Drawing commands display commands

MaskEditorHandle Mask editor figure handle (for
internal use)

handle

MaskEnableString Mask parameter enable status delimited string

MaskEnables Mask parameter enable status cell array of strings, each either 'on' or
'off'

MaskHelp Block help string

MaskIconFrame Icon frame (Visible is on, Invisible is
off)

{on} | off

MaskIconOpaque Icon transparency (Opaque is on,
Transparent is off)

{on} | off

MaskIconRotate Icon rotation (Rotates is on, Fixed is
off)

on | {off}

MaskIconUnits Drawing coordinates Pixel | {Autoscale} | Normalized

MaskInitialization Initialization commands MATLAB command

MaskNames

MaskPrompts Prompt (see below) cell array of strings

MaskPromptString Prompt (see below) delimited string

A Model and Block Parameters

A-26

When you use the Mask Editor to create a dialog box parameter for a masked
block, you provide this information:

• The prompt, which you enter in the Prompt field

• The variable that holds the parameter value, which you enter in the
Variable field

• The type of field created, which you specify by selecting a Control type

• Whether the value entered in the field is to be evaluated or stored as a literal,
which you specify by selecting an Assignment type

The mask parameters, listed in the table on the previous page, store the values
specified for the dialog box parameters in these ways:

• The Prompt field values for all dialog box parameters are stored in the
MaskPromptString parameter as a string, with individual values separated
by a vertical bar (|), as shown in this example.

MaskPropertyNameSt
ring

MaskSelfModifiable Indicates that the block can modify
itself.

on | {off}

MaskStyles Control type (see below) cell array {Edit} | Checkbox | Popup

MaskStyleString Control type (see below) {Edit} | Checkbox | Popup

MaskTunableValues Tunable parameter attributes cell array of strings

MaskTunableValue
String

Tunable parameter attributes delimited string

MaskType Mask type string

MaskValues Block parameter values (see below) cell array of strings

MaskValueString Block parameter values (see below) delimited string

MaskVariables Variable (see below) string

MaskVisibilities Specifies visibility of parameters

Table A-11: Mask Parameters (Continued)

Parameter Description/Prompt Values

Mask Parameters

A-27

"Slope:|Intercept:"

• The Variable field values for all dialog box parameters are stored in the
MaskVariables parameter as a string, with individual assignments
separated by a semi-colon. A sequence number indicates which prompt is
associated with a variable. A special character preceding the sequence
number indicates the Assignment type: @ indicates Evaluate, & indicates
Literal.

For example, "a=@1;b=&2;" indicates that the value entered in the first
parameter field is assigned to variable a and is evaluated in MATLAB before
assignment, and the value entered in the second field is assigned to variable
b and is stored as a literal, which means that its value is the string entered
in the dialog box.

• The Control type field values for all dialog box parameters are stored in the
MaskStyleString parameter as a string, with individual values separated by
a comma. The Popup strings values appear after the popup type, as shown
in this example:
"edit,checkbox,popup(red|blue|green)"

• The parameter values are stored in the MaskValueString mask parameter
as a string, with individual values separated by a vertical bar. The order of
the values is the same as the order the parameters appear on the dialog box.
For example, these statements define values for the parameter field prompts
and the values for those parameters.
MaskPromptString "Slope:|Intercept:"
MaskValueString "2|5"

A Model and Block Parameters

A-28

B

Model File Format

Model File Contents B-2
Model Section . B-3
BlockDefaults Section B-3
AnnotationDefaults Section B-3
System Section B-3

B Model File Format

B-2

Model File Contents
A model file is a structured ASCII file that contains keywords and
parameter-value pairs that describe the model. The file describes model
components in hierarchical order.

The structure of the model file is as follows.

Model {
<Model Parameter Name> <Model Parameter Value>
...
BlockDefaults {
<Block Parameter Name> <Block Parameter Value>
...

}
AnnotationDefaults {
<Annotation Parameter Name> <Annotation Parameter Value>
...

}
System {
<System Parameter Name> <System Parameter Value>
...
Block {
<Block Parameter Name> <Block Parameter Value>
...

}
Line {
<Line Parameter Name> <Line Parameter Value>
...
Branch {

<Branch Parameter Name> <Branch Parameter Value>
...

}
}
Annotation {
<Annotation Parameter Name> <Annotation Parameter Value>
...

}
}

}

Model File Contents

B-3

The model file consists of sections that describe different model components:

• The Model section defines model parameters.

• The BlockDefaults section contains default settings for blocks in the model.

• The AnnotationDefaults section contains default settings for annotations in
the model.

• The System section contains parameters that describe each system
(including the top-level system and each subsystem) in the model. Each
System section contains block, line, and annotation descriptions.

All model and block parameters are described in Appendix A.

Model Section
The Model section, located at the top of the model file, defines the values for
model-level parameters. These parameters include the model name, the
version of Simulink used to last modify the model, and simulation parameters.

BlockDefaults Section
The BlockDefaults section appears after the simulation parameters and
defines the default values for block parameters within this model. These values
can be overridden by individual block parameters, defined in the Block
sections.

AnnotationDefaults Section
The AnnotationDefaults section appears after the BlockDefaults section.
This section defines the default parameters for all annotations in the model.
These parameter values cannot be modified using the set_param command.

System Section
The top-level system and each subsystem in the model are described in a
separate System section. Each System section defines system-level parameters
and includes Block, Line, and Annotation sections for each block, line, and
annotation in the system. Each Line that contains a branch point includes a
Branch section that defines the branch line.

B Model File Format

B-4

I-1

Index

A
Abs block 9-11

zero crossings 3-17
absolute tolerance

definition of 5-14
simset parameter 5-41
simulation accuracy 5-35
specifying for a block state 9-126

absolute value, generating 9-11
Adams-Bashforth-Moulton PECE solver 5-11
add_block command 10-4
add_line command 10-5
adding

block inputs 9-243
blocks 10-4
lines 10-5

Algebraic Constraint block 9-12
algebraic equations, modeling 9-12
algebraic loops 3-18

integrator block reset or IC port 9-77
simulation speed 5-35

aligning blocks 4-11
analysis functions, perturbing model 9-120
AND operator 9-20
AnnotationDefaults section of mdl file B-3
annotations

annotation block, see Model Info block 9-162
changing font 4-42
creating 4-42
definition 4-42
deleting 4-42
editing 4-42
manipulating with mouse and keyboard 4-64
moving 4-42
using to document models 4-76

Apply button on Mask Editor 7-8
ashow debug command 11-25

Assignment mask parameter 7-9
atrace debug command 11-26
attributes format string 4-18
AttributesFormatString block parameter 4-15,

4-18
Autoscale icon drawing coordinates 7-24
auto-scaling Scope axes 9-209

B
Backlash block 9-14

zero crossings 3-17
backpropagating sample time 3-26
Backspace key

deleting annotations 4-42
deleting blocks 4-15
deleting labels 4-38

Backward Euler method 9-75
Backward Rectangular method 9-75
bafter debug command 11-27
Band-Limited White Noise block 9-18, 9-189,

9-265
simulation speed 5-35

bdclose command 10-6
bdroot command 10-7
Bitwise Logical Operator block 9-20
block callback parameters 4-71
Block data tips 4-9
block descriptions

creating 7-6
entering 7-25

block diagrams, printing 4-90
block dialog boxes

closing 10-8
opening 10-23

block icons

Index

I-2

displaying execution order on 4-19
drawing coordinates 7-23
font 4-17
icon frame property 7-22
icon rotation property 7-23
icon transparency property 7-23
properties 7-22
question marks in 7-20, 7-22
transfer functions on 7-20

block indexes 11-6
block libraries

Blocksets and Toolboxes 9-3
Demos 9-3
Discrete 9-5
Extras 9-3
Linear 9-6
Nonlinear 9-8
Sinks 9-5
Sources 9-3

block names
changing location 4-17
copied blocks 4-11
editing 4-17
flipping location 4-18
font 4-17
generated for copied blocks 4-11
hiding and showing 4-18
location 4-17
newline character in 10-3
rules 4-17
slash character in 10-3

block parameters A-7, A-10-A-12
about 4-12
changing during simulation 10-27
Continuous library A-17
Discrete library A-15
displaying beneath a block icon 4-18

Functions and Tables library A-20
Math library A-18
modifying 5-2
Nonlinear library A-21
prompts 7-9
scalar expansion 4-34
setting 4-13
Signals and Systems library A-22
Sinks library A-13
Sources library A-10

block priorities
assigning 4-18

Block Properties dialog box 4-13
block type of masked block 7-25
BlockDefaults section of mdl file B-3
blocks 4-9-4-21

adding to model 10-4
aligning 4-11
callback routines 4-70
connecting 2-11, 4-22
connections, checking 3-9
copying from Library Browser 4-84
copying into models 4-10
copying to other applications 4-12
current 10-17
deleting 4-15, 10-10
disconnecting 4-18
discrete 3-23
drop shadows 4-20
duplicating 4-12
grouping to create subsystem 4-66
handle of current 10-18
library 4-77
moving between windows 4-12
moving in a model 2-10, 4-12
orientation 4-15, 4-16
path 10-3

Index

I-3

reference 4-77, 4-78
replacing 10-24
resizing 4-16
reversing signal flow through 4-87
signal flow through 4-15
under mask 7-8
updating 3-9

Blocksets and Toolboxes library 9-3
bode function 6-10
Bogacki-Shampine formula 5-11, 5-12
Boolean expressions, modeling 9-30
boolean type checking 5-29
bounding box

grouping blocks for subsystem 4-66
selecting objects 4-7

branch lines 4-23, 4-87
break debug command 11-28
Break Library Link menu item 4-80
breaking link to library block 4-80
breakpoints

clearing from blocks 11-13
setting 11-11
setting at beginning of a block 11-12
setting at end of block 11-13
setting at timesteps 11-13
setting on nonfinite values 11-14
setting on step-size limiting steps 11-14
setting on zero crossings 11-14

Browser 4-99
bshow debug command 11-29
building models

exercise 2-6
tips 4-76

C
callback routines 4-70

callback tracing 4-70
canceling a command 4-7
capping unconnected blocks 9-248
changing

annotations, font 4-42
block icons, font 4-17
block names, font 4-17
block names, location 4-17
block size 4-16
sample time during simulation 3-23
signal labels, font 4-38

check box control type 7-12
Chirp Signal block 9-26
clear debug command 11-30
Clear menu item 4-15
Clock block 9-28

example 6-3
Close Browser menu item 4-102
Close button on Mask Editor 7-8
Close menu item 2-3
Close Model menu item 4-102
close_system command 10-8
CloseFcn block callback parameter 4-72, 4-74
CloseFcn model callback parameter 4-71
closing

block dialog boxes 10-8
model windows 10-6
system windows 10-8

clutch demo 9-116
colors for sample times 3-27
Combinatorial Logic block 9-30
combining input lines into vector line 9-167
Complex to Magnitude-Angle block 9-33
Complex to Real-Imag block 9-34
composite signals 4-30
concatenating matrices 9-151
conditionally executed subsystems 8-2

Index

I-4

Configurable Subsystem block 9-35
configuration manager 4-107
connecting blocks 2-11, 4-22
connecting lines to input ports 2-12
consistency checking 5-26
Constant block 9-39
constant sample time 3-27
constant value, generating 9-39
continue debug command 11-31
Continue menu item 5-5
Continuous block library

block parameters A-17
control input 8-2
control signal 8-2
Control System Toolbox

linearization 6-5
control type 7-11

check box 7-12
edit 7-11
pop-up 7-12

Copy menu item 4-11, 4-12
copy, definition 4-77
CopyFcn block callback parameter 4-72, 4-74
copying

blocks 4-10
signal labels 4-38

Coulomb and Viscous Friction block 9-41
Create Mask menu item 7-8
Create Subsystem menu item 4-66, 9-239
Created model parameter 4-111
creating

annotations 4-42
block libraries 4-77
first mask prompt 7-10
masked block descriptions 7-6
masked block icons 7-6
models 4-3, 10-22

signal labels 4-37
subsystems 4-65-4-76

Creator model parameter 4-111
current block 10-17

handle 10-18
current system 10-19
Cut menu item 4-12, 4-15
cvhtml 12-31
cvload 12-31
cvreport 12-32
cvsave 12-32
cvsim 12-31, 12-33
cvtest 12-33

D
Data Explorer 4-55
data object classes 4-50
data object properties, accessing 4-52
data objects 3-7

creating 4-51
Data Store Memory block 9-43
Data Store Read block 9-45
Data Store Write block 9-47
Data Type Conversion block 9-49
data types 3-7, 4-44-4-48

displaying 4-46
propagation 4-46
specifying 4-45

data types, Simulink 3-7
dbstop if error command 7-16
dbstop if warning command 7-16
Dead Zone block 9-51

zero crossings 3-17
deadband 9-14
debug commands

ashow 11-25

Index

I-5

atrace 11-26
bafter 11-27
break 11-28
bshow 11-29
clear 11-30
continue 11-31
disp 11-32
help 11-33
ishow 11-34
minor 11-35
nanbreak 11-36
next 11-37
probe 11-38
quit 11-39
run 11-40
slist 11-41
states 11-42
status 11-44
step 11-45
stop 11-46
systems 11-43
tbreak 11-47
trace 11-48
undisp 11-49
untrace 11-50
xbreak 11-51
zcbreak 11-52
zclist 11-53

debugger
getting command help 11-3
starting 11-6

debugging initialization commands 7-16
decimation factor 5-41

saving simulation output 5-25
decision tables, modeling 9-30
default

solvers 5-10

defining
mask type 7-6, 7-25
masked block descriptions 7-25
masked block help text 7-6

delaying
and holding input signals 9-267
input by specified sample time 9-275
input by variable amount 9-269

Delete key 4-15, 4-38, 4-42
delete_block command 10-10
delete_line command 10-11
DeleteFcn block callback parameter 4-72, 4-74
deleting

annotations 4-42
blocks 4-15, 10-10
lines 10-11
mask prompts 7-11
signal labels 4-38

demo model, running 2-2, 12-30
Demos library 9-3
Demux block 9-53
Derivative block 9-59

accuracy of 9-59
linearization 6-5

derivatives
calculating 9-59
limiting 9-191

Description model parameter 4-112
description of masked blocks 7-25
Diagnostics page of Simulation Parameter dialog

box 5-26
diagonal line segments 4-23
diagonal lines 4-22
dialogs

creating for masked blocks 7-28-7-30
differential/algebraic systems, modeling 9-12
Digital Clock block 9-61

Index

I-6

disabled subsystem, output 8-4
disabling zero crossing detection 3-17, 5-30
disconnecting blocks 4-18
Discrete block library 9-5

block parameters A-15
discrete blocks 3-23

in enabled subsystem 8-5
in triggered systems 8-10

Discrete Filter block 9-68
Discrete Pulse Generator block 9-70
discrete solver 5-10, 5-11, 5-12
Discrete State-Space block 9-72
discrete state-space model 6-10
Discrete Transfer Fcn block 9-82, 9-267
Discrete Zero-Pole block 9-84
Discrete-Time Integrator block 9-74

sample time colors 3-26
discrete-time systems 3-23

linearization 6-9
disp command 7-17
disp debug command 11-32
Display Alphabetical List menu item 4-102
Display block 9-86
Display Hierarchical List menu item 4-102
displaying

output trajectories 6-2
output values 9-86
signals graphically 9-206
transfer functions on masked block icons 7-20
vector signals 9-207
X-Y plot of signals 9-273

dlinmod function 6-4, 6-9
dlinmod2 function 6-9
documentation page of Mask Editor 7-8
Dormand-Prince

formula 5-12
pair 5-10

Dot Product block 9-89
dpoly command 7-21
drawing coordinates 7-23

Autoscale 7-24
normalized 7-7, 7-24
Pixel 7-24

droots command 7-22
drop shadows 4-20
duplicating blocks 4-12

E
edit control type 7-11
editing

annotations 4-42
block names 4-17
mask prompts 7-10
models 4-3
signal labels 4-38

eigenvalues of linearized matrix 6-10
either trigger type 8-9
Elementary Math block

algebraic loops 3-18
Enable block 9-91

creating enabled subsystems 8-3
outputting enable signal 8-5
states when enabling 8-4

enabled subsystems 8-2, 8-3, 9-91
setting states 8-4

ending Simulink session 4-113
equations, modeling 4-86
equilibrium point determination 6-7
error tolerance 5-13

simulation accuracy 5-35
simulation speed 5-34

Euler’s method 5-12
eval command and masked block help 7-26

Index

I-7

Evaluate Assignment type 7-9
examples

Clock block 6-3
continuous system 4-87
converting Celsius to Fahrenheit 4-86
equilibrium point determination 6-7
linearization 6-4
masking 7-3
multirate discrete model 3-24
return variables 6-2
Scope block 6-2
To Workspace block 6-3
Transfer Function block 4-88

execution order, displaying 4-19
Exit MATLAB menu item 2-14, 4-113
Expand All menu item 4-102
Expand Library Links menu item 4-102
expressions, applying to block inputs 9-93, 9-149
external inputs 5-38

from workspace 9-120
extracting linear models 6-4, 6-9
Extras block library 9-3

F
falling trigger 8-9
Fcn block 9-93

compared to Math Function block 9-147
compared to Rounding Function block 9-204
compared to Trigonometric Function block

9-263
simulation speed 5-34

file
reading from 9-99
writing to 5-5, 9-249

final states, saving 5-25
find_system command 10-12

finding library block 4-81
finding objects 10-12
Finite Impulse Response filter 9-68
finite-state machines, implementing 9-30
First-Order Hold block 9-95

compared to Zero-Order Hold block 9-95,
9-106

fixed icon rotation 7-23
fixed step size 5-12, 5-42
fixed-step solvers 5-9, 5-12
Flip Block menu item 4-16, 4-87
Flip Name menu item 4-18
flip-flops, implementing 9-30
floating Display block 5-2, 9-86
floating Scope block 5-2, 9-213
fohdemo demo 9-95, 9-106
font

annotations 4-42
block icons 4-17
block names 4-17
signal labels 4-38

Font menu item 4-17, 4-38
Forward Euler method 9-74
Forward Rectangular method 9-74
fprintf command 7-18
From block 9-97
From File block 9-99
From Workspace block 9-102
Function-Call Generator block 9-106
Functions and Tables block library

block parameters A-20
fundamental sample time 5-10

G
Gain block 9-108

and algebraic loops 3-18

Index

I-8

gain, varying during simulation 9-232
Gaussian number generator 9-189
gcb command 10-17
gcbh command 10-18
gcs command 10-19
get_param command 10-20

checking simulation status 5-36, 12-11
global Goto tag visibility 9-97, 9-111
Go To Library Link menu item 4-81
Goto block 9-111
Goto Tag Visibility block 9-114
Ground block 9-115
grouping blocks 4-65

H
handle of current block 10-18
handles on selected object 4-7
hardstop demo 9-116
held output of enabled subsystem 8-4
held states of enabled subsystem 8-4
Help button on Mask Editor 7-8
help debug command 11-33
help text for masked blocks 7-6, 7-26
Heun’s method 5-12
Hide Name menu item 4-18, 4-68, 9-170
Hide Port Labels menu item 4-68
hiding block names 4-18
hierarchy of model 3-9, 4-76
Hit Crossing block 9-116

zero crossings 3-15, 3-17
hybrid systems

integrating 3-28
linearization 6-9
simulating 3-23

I
IC block 9-118
icon frame mask property 7-22
icon page of Mask Editor 7-8
icon rotation mask property 7-23
icon transparency mask property 7-23
icons

creating for masked blocks 7-6, 7-17
displaying graphics on 7-19
displaying images on 7-20
displaying text on 7-17
transfer functions on 7-20

improved Euler formula 5-12
inf values in mask plotting commands 7-20
Infinite Impulse Response filter 9-68
InitFcn block callback parameter 4-72, 4-74
InitFcn model callback parameter 4-71
initial conditions

setting 9-118
specifying 5-25

initial states 5-42
initial step size 5-12, 5-13, 5-42

simulation accuracy 5-35
initialization commands 7-14

debugging 7-16
initialization page of Mask Editor 7-8
Inport block 9-119

in subsystem 4-65, 4-67, 9-239
linearization 6-4
linmod function 6-9
supplying input to model 5-19

input ports, unconnected 9-115
inputs

adding 9-243
applying expressions to 9-93
applying MATLAB function to 9-93, 9-149
choosing between 9-165

Index

I-9

combining into vector line 9-167
delaying and holding 9-267
delaying by specified time 9-275
delaying by variable amount 9-269
external 5-38
from outside system 9-119
from previous time step 9-155
from workspace 9-120
generating step between two levels 9-236
loading from base workspace 5-19
logical operations on 9-131
mixing vector and scalar 4-35
multiplying 9-108
outputting minimum or maximum 9-160
passing through stair-step function 9-185
piecewise linear mapping 9-133, 9-136, 9-139
plotting 9-273
reading from file 9-99
scalar expansion 4-34
sign of 9-223
width of 9-272

inserting mask prompts 7-10
integration

block input 9-123
discrete-time 9-74

Integrator block 9-123
algebraic loops 3-18
example 4-87
sample time colors 3-27
simulation speed 5-35
zero crossings 3-17

invariant constants 3-27
inverting signal bits 9-20
invisible icon frame 7-22
ishow debug command 11-34

J
Jacobian matrices 5-11
Jacobians 6-9

K
keyboard actions, summary 4-62
keyboard command 7-16

L
labeling signals 4-37
labeling subsystem ports 4-68
LastModificationDate model parameter 4-112
left-hand approximation 9-74
libinfo command 4-82
libraries 4-22-4-85

creating 4-77
modifying 4-78
searching 4-84

library block
definition 4-77
finding 4-81

library blocks, getting information about 4-81
Library Browser 4-83

adding libraries to 4-85
copying blocks from 4-84

library link
creating 4-78
definition 4-77
disabling 4-79
displaying 4-82
modifying 4-79
propagating changes to 4-79
showing in Model Browser 4-100
status of 4-81
unresolved 4-78

Index

I-10

library, definition 4-77
limit rows to last check box 5-24
limiting

derivative of signal 9-191
integral 9-124
signals 9-205

line segments 4-23
creating 4-25
diagonal 4-23
moving 4-24

line vertices, moving 4-26
Linear block library 9-6
linear models, extracting 6-4, 6-9
linearization 6-4, 6-9

discrete-time systems 6-9
linearized matrix, eigenvalues 6-10
lines ??-4-27

adding 10-5
branch 4-23, 4-87
carrying the same signal 2-12
connecting to input ports 2-12
deleting 10-11
diagonal 4-22
dividing into segments 4-25
manipulating with mouse and keyboard 4-63
signals carried on 5-2

link
breaking 4-80
to library block 4-78

LinkStatus block parameter 4-81
linmod function 6-4, 6-9, 9-120

Transport Delay block 9-258
Literal Assignment type 7-9
load initial check box 5-25
LoadFcn block callback parameter 4-72, 4-74
loading from base workspace 5-19
loading initial states 5-25

local Goto tag visibility 9-97, 9-111
location of block names 4-17
logic circuits, modeling 9-30
Logical Operator block 9-131
Look Into System menu item 4-102
Look Under Mask Dialog menu item 4-102
Look Under Mask menu item 7-8
Look-Up Table (2-D) block 9-136, 9-139
Look-Up Table block 9-133
loops, algebraic 3-18
lorenzs demo 9-273

M
Magnitude-Angle to Complex block 9-144
Manual Switch block 9-146
manual, organization 1-3
Mask Editor 7-8
mask help text 7-6
Mask Subsystem menu item 7-4, 7-8
mask type 7-6, 7-25
mask workspace 7-5, 7-14
masked blocks

block descriptions 7-6
control types 7-11
description 7-25
dialogs

creating dynamic 7-28-7-30
setting parameters for 7-28

documentation 7-25
help text 7-26

Index

I-11

icons
creating 7-6, 7-17
displaying a transfer function on 7-21
displaying graphics on 7-19
displaying images on 7-20
displaying text on 7-17
setting properties of 7-22

initialization commands 7-14
looking under 7-8
parameters 7-3, A-25

assigning values to 7-9
default values 7-13
predefined 7-29
prompts for 7-9
tunable 7-13
undefined 7-22

ports
displaying labels of 7-19

question marks in icon 7-20, 7-22
self-modifying 7-27
showing in Model Browser 4-101
type 7-25
unmasking 7-8

masked subsystems
showing in Model Browser 4-101

masking signal bits 9-20
MaskSelfModifiable parameter 7-27
Math block library

block parameters A-18
Math Function block 9-147
mathematical functions, performing 9-147, 9-201,

9-204, 9-263
MATLAB Fcn block 9-149

simulation speed 5-34
MATLAB function, applying to block input 9-93,

9-149
matrices

concatenation 9-151
Matrix Concatenation block 9-151
Matrix Gain block 9-153
matrix, writing to 9-251
maximum number of output rows 5-42
maximum order of ode15s solver 5-14, 5-42
maximum step size 5-12, 5-42
maximum step size parameter 5-12
mdl file 4-89, B-2
Memory block 9-155

simulation speed 5-34
memory issues 4-76
memory region, shared 9-43, 9-45, 9-47
menus 4-4
Merge block 9-157
M-file S-functions

simulation speed 5-34
MinMax block 9-160

zero crossings 3-17
minor debug command 11-35
mixed continuous and discrete systems 3-28
Model Browser 4-99

showing library links in 4-100
showing masked subsystems in 4-101

model callback parameters 4-70
model differencing tool 4-113
model files 4-89, B-2

names 4-89
Model Info block 9-162
model navigation commands 4-67
model parameters for version control 4-111
ModelCloseFcn block callback parameter 4-72,

4-74
modeling

equations 4-86
strategies 4-76

models

Index

I-12

building 2-6
callback routines 4-70
closing 10-6
comparing 4-113
creating 4-3, 10-22
creating change histories for 4-110
editing 4-3
name, getting 10-7
navigating 4-67
organizing and documenting 4-76
parameters A-3
printing 4-90
properties of 4-106
saving 2-14, 4-89
selecting entire 4-8
simulating 5-37
tips for building 4-76
version control properties of 4-111

ModelVersion model parameter 4-112
ModelVersionFormat model parameter 4-112
ModifiedBy model parameter 4-111
ModifiedByFormat model parameter 4-111
ModifiedComment model parameter 4-112
ModifiedDate model parameter 4-112
ModifiedDateFormat model parameter 4-112
ModifiedHistory> model parameter 4-112
modifying libraries 4-78
Monte Carlo analysis 5-36
mouse actions, summary 4-62
MoveFcn block callback parameter 4-72, 4-74
moving

annotations 4-42
blocks and lines 4-12
blocks between windows 4-12
blocks in a model 2-10, 4-12
line segments 4-24
line vertices 4-26

mask prompts 7-11
signal labels 4-38

multiplying block inputs
by constant, variable, or expression 9-108
by matrix 9-153
during simulation 9-232
together 9-178

Multiport Switch block 9-165
multirate systems 3-23, 3-24

linearization 6-9
Mux block 9-167

changing number of input ports 2-11

N
NameChangeFcn block callback parameter 4-72,

4-74
names

blocks 4-17
copied blocks 4-11
model files 4-89

Nan values in mask plotting commands 7-20
nanbreak debug command 11-36
New Library menu item 4-77
New menu item 4-3
new_system command 4-77, 10-22
newline in block name 10-3
next debug command 11-37
Nonlinear block library 9-8

block parameters A-21
nonlinear systems, spectral analysis of 9-26
normalized icon drawing coordinates 7-7, 7-24
normally distributed random numbers 9-189
NOT operator 9-20
numerical differentiation formula 5-11
numerical integration 3-9

Index

I-13

O
objects

finding 10-12
path 10-3
selecting more than one 4-7
selecting one 4-7

ode1 solver 5-12
ode113 solver 5-11

hybrid systems 3-28
Memory block 5-34, 9-155

ode15s solver 5-10, 5-11, 5-34
hybrid systems 3-28
maximum order 5-14, 5-42
Memory block 5-34, 9-155
unstable simulation results 5-35

ode2 solver 5-12
ode23 solver 5-11

hybrid systems 3-28
ode23s solver 5-11, 5-15, 5-35
ode3 solver 5-12
ode4 solver 5-12
ode45 solver 5-10

hybrid systems 3-28
ode5 solver 5-12
offset to sample time 3-23
opaque icon 7-23
Open menu item 4-3
Open System menu item 4-102
open_system command 10-23
OpenFcn block callback parameter 4-73, 4-75,

4-102
OpenFcn model callback parameter 4-103
opening

block dialog boxes 10-23
Simulink block library 10-29
Subsystem block 4-67
system windows 10-23

operating point 6-9
options structure

getting values 5-45
setting values 5-41

OR operator 9-20
organization of manual 1-3
orientation of blocks 4-15
Outport block 9-169

example 6-2
in subsystem 4-65, 4-67, 9-239
linearization 6-4
linmod function 6-9

output
additional 5-16
between trigger events 8-10
disabled subsystem 8-4
displaying values of 9-86
enable signal 8-5
maximum rows 5-42
options 5-15
outside system 9-169
refine factor 5-43
saving to workspace 5-22
selected elements of input vector 9-217
smoother 5-16
specifying for simulation 5-16
specifying points 5-43
switching between inputs 9-246
switching between values 9-197
trajectories, viewing 6-2
trigger signal 8-10
variables 5-43
writing to file 5-5, 9-249
writing to workspace 5-5, 5-22, 9-251
zero within range 9-51

output ports
capping unconnected 9-248

Index

I-14

Enable block 8-5
Trigger block 8-10

P
PaperOrientation model parameter 4-92
PaperPosition model parameter 4-93
PaperPositionMode model parameter 4-93
PaperType model parameter 4-92
parameter, Simulink data type for 3-7
parameters

block 4-12
blocks A-7, A-10-A-12
getting values of 10-20
masked blocks A-25
model A-3
setting values of 4-13, 10-27
tunable 3-5, 5-30, 7-13

Parameters menu item 2-13, 5-4, 5-8
ParentCloseFcn block callback parameter 4-73,

4-75
Paste menu item 4-11, 4-12
path, specifying 10-3
Pause menu item 5-5
phase-shifted wave 9-224
piecewise linear mapping 9-133, 9-136, 9-139
Pixel icon drawing coordinates 7-24
plot command and masked block icon 7-19
plotting input signals 9-206, 9-273
plotting simulation data 5-39
pop-up control type 7-12
port labels 9-170, 9-239

displaying 7-19
ports

block orientation 4-16
labeling in subsystem 4-68

PostLoadFcn model callback parameter 4-71

PostSaveFcn block callback parameter 4-73, 4-75
PostSaveFcn model callback parameter 4-71
PostScript file, printing to 4-92
preferences 2-15
PreLoadFcn model callback parameter 4-71
PreSaveFcn block callback parameter 4-73, 4-75
PreSaveFcn model callback parameter 4-71
Print (Browser) menu item 4-102
print command 4-90
Print menu item 4-90
printing

block diagrams 4-90
to PostScript file 4-92

Priority block parameter 4-18
probe debug command 11-38
proceeding with suspended simulation 5-5
produce additional output option 5-16
produce specified output only option 5-16
Product block 9-178, 9-181

algebraic loops 3-18
programmable logic arrays, modeling 9-30
prompts

control types 7-11
creating 7-10
deleting 7-11
editing 7-10
inserting 7-10
masked block parameters 7-9
moving 7-11

propagation of signal labels 4-39
properties of Scope block 9-212
Pulse Generator block 9-183
purely discrete systems 3-23

Q
Quantizer block 9-185

Index

I-15

modeling A/D converter 9-275
question marks in masked block icon 7-20, 7-22
quit debug command 11-39
Quit MATLAB menu item 2-14, 4-113

R
randn function 9-189
random noise, generating 9-189
Random Number block 9-189

and Band-Limited White Noise block 9-18
simulation speed 5-35

random numbers, generating normally distributed
9-18

Rate Limiter block 9-191
reading data

from data store 9-45
from file 9-99
from workspace 9-102

Real-Imag to Complex block 9-193
Redo menu item 4-5
reference block 4-78

definition 4-77
refine factor 5-16, 5-43
region of zero output 9-51
regular expressions 10-14
Relational Operator block 9-195

zero crossings 3-18
relative tolerance 5-13, 5-43

simulation accuracy 5-35
Relay block 9-197

zero crossings 3-18
Repeating Sequence block 9-199
replace_block command 10-24
replacing blocks in model 10-24
reset

output of enabled subsystem 8-4

states of enabled subsystem 8-4
resetting state 9-125
resizing blocks 4-16
return variables, example 6-2
reversing direction of signal flow 4-87
Revert button on Mask Editor 7-8
right-hand approximation 9-75
rising trigger 8-8, 8-9
Rosenbrock formula 5-11
Rotate Block menu item 4-16
rotates icon rotation 7-23
Rounding Function block 9-201, 9-204
run debug command 11-40
Runge-Kutta (2,3) pair 5-11
Runge-Kutta (4,5) formula 5-10
Runge-Kutta fourth-order formula 5-12
running the simulation 2-13

S
sample model 2-6
sample time 3-23

backpropagating 3-26
changing during simulation 3-23
colors 3-27
constant 3-27
fundamental 5-10
offset 3-23
parameter 3-23
simulation speed 5-34

Sample Time Colors menu item 3-28, 4-21
sample-and-hold, applying to block input 9-155
sample-and-hold, implementing 9-275
sampled data systems 3-23
sampling interval, generating simulation time

9-61
Saturation block 9-205

Index

I-16

zero crossings 3-15, 3-18
Save As menu item 4-89
Save menu item 2-14, 4-89
save options area 5-23
save to workspace area 5-22
save_system command 4-81, 10-26
saving

axes settings on Scope 9-211
final states 5-25
models 2-14, 4-89
output to workspace 5-22
systems 10-26

sawtooth wave, generating 9-224
scalar expansion 4-34
Scope block 9-206

example 4-88, 6-2
properties 9-212

scoped Goto tag visibility 9-97, 9-111
Select All menu item 4-8
selecting

model 4-8
more than one object 4-7
one object 4-7

Selector block 9-217
separating vector signal 9-53
sequence of signals 9-70, 9-183, 9-199
sequential circuits, implementing 9-32
Set Font dialog box 4-17
set_param command 4-80, 10-27

running a simulation 5-36
setting breakpoints 11-11
setting parameter values 10-27
S-Function block 9-221
Shampine, L. F. 5-11
shared data store 9-43, 9-45, 9-47
SHIFT_LEFT operator 9-20
SHIFT_RIGHT operator 9-20

shifting signal bits 9-20
Show Browser menu item 4-101
Show Name menu item 4-18
show output port

Enable block 8-5
Trigger block 8-10

Show Propagated Signals menu item 4-40
showing block names 4-18
Sign block 9-223

zero crossings 3-18
signal buses 4-31
signal flow through blocks 4-15
Signal Generator block 9-224
signal labels

changing font 4-38
copying 4-38
creating 4-37
deleting 4-38
editing 4-38
moving 4-38
propagation 4-39
using to document models 4-76

signal propagation 4-29
signal properties

setting 4-39
Signal Properties Dialog 4-39
Signal Selector 9-215
Signal Specification block 9-227
signals

composite 4-30
delaying and holding 9-267
displaying vector 9-207
labeling 4-37
labels 4-37
limiting 9-205
limiting derivative of 9-191
names 4-37

Index

I-17

passed from Goto block 9-97
passing to From block 9-111
plotting 9-206, 9-273
pulses 9-70, 9-183
repeating 9-199
showing propagated 4-40
virtual 4-29

Signals and Systems block library
block parameters A-22

signals, Simulink data type for 3-7
sim command 5-36, 5-37
simget command 5-45
simplot command 5-39
simset command 5-41
simulating models 5-37
simulation

command line 5-36
displaying information about

algebraic loops 11-15, 11-17, 11-21
block execution order 11-19
block I/O 11-15
debug settings 11-21
integration 11-18
nonvirtual blocks 11-20
nonvirtual systems 11-19
system states 11-17
zero crossings 11-21

menu 5-4
proceeding with suspended 5-5
running 2-13
running incrementally 11-8
speed 5-34
starting 5-4
stepping by blocks 11-9
stepping by breakpoints 11-11
stepping by time steps 11-10
stopping 2-14, 5-5, 9-238

suspending 5-5
simulation accuracy 5-35
Simulation Diagnostics Dialog Box 5-6
simulation parameters 5-8

setting 5-4
specifying 2-13, 5-4
specifying using simset command 5-41

Simulation Parameters dialog box 2-13, 5-4,
5-8-??, A-3

simulation time
compared to clock time 5-9
generating at sampling interval 9-61
outputting 9-28
writing to workspace 5-22

Simulink
ending session 4-113
icon 4-2
menus 4-4
starting 4-2
windows and screen resolution 4-5

Simulink block library 4-2
opening 10-29

simulink command 4-2, 10-29
Simulink data objects 3-7
Simulink data types 3-7
Simulink data types, extending 3-7
Simulink preferences 2-15
Simulink.Parameter 3-7
Simulink.Signal 3-7
sine wave

generating 9-224, 9-229
generating with increasing frequency 9-26

Sine Wave block 9-229
Sinks block library 9-5

block parameters A-13
size of block, changing 4-16
slash in block name 10-3

Index

I-18

sldebug command 11-3
Slider Gain block 9-232
slist debug command 11-41
Solver page of Simulation Parameters dialog box

5-8
solver properties, specifying 5-41
solvers 5-9-5-12

changing during simulation 5-2
choosing 5-4
default 5-10
discrete 5-10, 5-11, 5-12
fixed-step 5-9, 5-12
ode1 5-12
ode113 5-11, 5-34
ode15s 5-10, 5-11, 5-14, 5-34, 5-35
ode2 5-12
ode23 5-11
ode23s 5-11, 5-15, 5-35
ode3 5-12
ode4 5-12
ode45 5-10
ode5 5-12
specifying using simset command 5-43
variable-step 5-9, 5-10

Source Control menu item 4-104
Sources block library 9-3

block parameters A-10
spectral analysis of nonlinear systems 9-26
speed of simulation 5-34
square wave, generating 9-224
ss2tf function 6-11
ss2zp function 6-11
stairs function 3-24
stair-step function, passing signal through

9-185
Start menu item 2-2, 2-13, 4-87, 5-4
start time 5-9

StartFcn block callback parameter 4-73, 4-75
StartFcn model callback parameter 4-71
starting Simulink 4-2
state derivatives, setting to zero 6-12
state space in discrete system 9-72
states

absolute tolerance for 9-126
between trigger events 8-10
initial 5-42
loading initial 5-25
outputting 5-43
resetting 9-125
saving at end of simulation 5-42
saving final 5-25
updating 3-23
when enabling 8-4
writing to workspace 5-22

states debug command 11-42
State-Space block 9-234

algebraic loops 3-18
Status bar 4-6
status debug command 11-44
Step block 9-236

zero crossings 3-18
step debug command 11-45
step size 5-12

simulation speed 5-34
stiff problems 5-11
stiff systems and simulation time 5-34
stop debug command 11-46
Stop menu item 2-3, 2-14, 5-5
Stop Simulation block 9-238
stop time 5-9
Stop Time parameter 2-14
StopFcn block callback parameter 4-73, 4-75
StopFcn model callback parameter 4-71
stopping simulation 9-238

Index

I-19

Subsystem block 9-239
adding to create subsystem 4-65
opening 4-67
zero crossings 3-18

subsystems
and Inport blocks 9-119
controlling access to 4-69
creating 4-65-4-76
displaying parent of 4-67
labeling ports 4-68
model hierarchy 4-76
opening 4-67
path 10-3
underlying blocks 4-67

Sum block 9-243
algebraic loops 3-18

summary of mouse and keyboard actions 4-62
suspending simulation 5-5
Switch block 9-246

zero crossings 3-18
switching output between inputs 9-146, 9-246
switching output between values 9-197
System section of mdl file B-3
systems

current 10-19
path 10-3

systems debug command 11-43

T
tbreak debug command 11-47
terminating MATLAB 2-14
terminating Simulink 2-14
terminating Simulink session 4-113
Terminator block 9-248
test case

creating 12-33

test case, running 12-31
text command 7-17
tf2ss utility 9-255
time delay, simulating 9-258
time interval and simulation speed 5-34
tips for building models 4-76
To File block 9-249
To Workspace block 9-251

example 6-3
trace debug command 11-48
tracing facilities 5-43
Transfer Fcn block 9-255

algebraic loops 3-18
example 4-88
linearization 6-5

transfer function form, converting to 6-11
transfer functions

discrete 9-82
linear 9-255
masked block icons 7-20
poles and zeros 9-276
poles and zeros, discrete 9-84

transparent icon 7-23
Transport Delay block 9-258

linearization 6-5
Trapezoidal method 9-75
trigger

control signal, outputting 8-10
events 8-2, 8-8
falling 8-9
input 8-8
rising 8-8, 8-9
type parameter 8-9

Trigger block 9-261
creating triggered subsystem 8-9
outputting trigger signal 8-10
showing output port 8-10

Index

I-20

trigger type
either 8-9

triggered and enabled subsystems 8-2, 8-11
triggered subsystems 8-2, 8-8, 9-261
Trigonometric Function block 9-263
trim function 6-7, 6-12, 9-120
truth tables, implementing 9-30
tunable parameters 3-5, 5-30, 7-13

U
unconnected input ports 9-115
unconnected output ports, capping 9-248
undisp debug command 11-49
Undo menu item 4-7
UndoDeleteFcn block callback parameter 4-73,

4-75
Uniform Random Number block 9-265
uniformly distributed random numbers 9-265
Unit Delay block 9-267

compared to Transport Delay block 9-258
Unmask button on Mask Editor 7-8
unstable simulation results 5-35
untrace debug command 11-50
Update Diagram menu item 4-21, 4-79, 4-80,

10-27
updating states 3-23
URL specification in block help 7-26
user

specifying current 4-104

V
variable time delay 9-269
Variable Transport Delay block 9-269
variable-step solvers 5-9, 5-10
vdp model

using Scope block 9-208
vector length, checking 3-9
vector signals

displaying 9-207
generating from inputs 9-167
separating 9-53

version control model parameters 4-111
vertices, moving 4-26
viewing output trajectories 6-2
virtual blocks 4-9
virtual signals 4-29
viscous friction 9-41
visibility of Goto tag 9-114
visible icon frame 7-22

W
web command and masked block help 7-26
white noise, generating 9-18
Width block 9-272
window reuse 4-67
workspace

destination 5-42
loading from 5-19
mask 7-5, 7-14
reading data from 9-102
saving to 5-22
source 5-43
writing output to 9-251
writing to 5-5

Workspace I/O page of Simulation Parameters dia-
log box 5-18

writing
data to data store 9-47
output to file 9-249
output to workspace 9-251

Index

I-21

X
xbreak debug command 11-51
XOR operator 9-20
XY Graph block 9-273

Z
zcbreak debug command 11-52
zclist debug command 11-53
zero crossings 3-15-3-18

detecting 5-44, 9-116
disabling detection of 5-30

zero output in region, generating 9-51
zero-crossing slope method 8-3
zero-crossings

disabled by nondouble data types 4-47
Zero-Order Hold block 9-267, 9-275

compared to First-Order Hold block 9-95,
9-106

Zero-Pole block 9-276
algebraic loops 3-18

zero-pole form, converting to 6-11
Zooming block diagrams 4-6
zooming in on displayed data 9-209

Index

I-22

	Getting Started
	To the Reader
	What Is Simulink?
	How to Use This Manual

	Related Products

	Quick Start
	Running a Demo Model
	Description of the Demo
	Some Things to Try
	What This Demo Illustrates
	Other Useful Demos

	Building a Simple Model
	Setting Simulink Preferences
	Simulink Preferences

	How Simulink Works
	What Is Simulink
	Modeling Dynamic Systems
	Block Diagrams
	Blocks
	States
	System Functions
	Block Parameters
	Continuous Versus Discrete Blocks
	Subsystems
	Custom Blocks
	Signals
	Data Types
	Solvers

	Simulating Dynamic Systems
	Model Initialization Phase
	Model Execution Phase
	Processing at Each Time Step
	Determining Block Update Order
	Atomic Versus Virtual Subsystems
	Solvers
	Zero Crossing Detection
	Algebraic Loops

	Modeling and Simulating Discrete Systems
	Discrete Blocks
	Sample Time
	Purely Discrete Systems
	Multirate Systems
	Determining Step Size for Discrete Systems
	Sample Time Propagation
	Invariant Constants
	Mixed Continuous and Discrete Systems

	Creating a Model
	Starting Simulink
	Creating a New Model
	Editing an Existing Model
	Entering Simulink Commands
	Simulink Windows

	Selecting Objects
	Selecting One Object
	Selecting More than One Object

	Blocks
	Block Data Tips
	Virtual Blocks
	Copying and Moving Blocks from One Window to Another
	Moving Blocks in a Model
	Copying Blocks in a Model
	Block Parameters
	Setting Block-Specific Parameters
	Block Properties Dialog Box
	Deleting Blocks
	Changing the Orientation of Blocks
	Resizing Blocks
	Manipulating Block Names
	Displaying Parameters Beneath a Block’s Icon
	Disconnecting Blocks
	Assigning Block Priorities
	Displaying Block Execution Order
	Using Drop Shadows
	Sample Time Colors

	Connecting Blocks
	Drawing a Line Between Blocks
	Drawing a Branch Line
	Drawing a Line Segment
	Moving a Line Segment
	Dividing a Line into Segments
	Moving a Line Vertex
	Inserting Blocks in a Line

	Working with Signals
	About Signals
	Signal Buses
	Signal Glossary
	Determining Output Signal Dimensions
	Signal and Parameter Dimension Rules
	Scalar Expansion of Inputs and Parameters
	Working with Complex Signals
	Checking Signal Connections
	Setting Signal Display Options
	Signal Names
	Signal Labels
	Displaying Signals Represented by Virtual Signals
	Setting Signal Properties
	Signal Properties Dialog Box

	Annotations
	Working with Data Types
	Data Types Supported by Simulink
	Block Support for Data and Numeric Signal Types
	Specifying Block Parameter Data Types
	Creating Signals of a Specific Data Type
	Displaying Port Data Types
	Data Type Propagation
	Data Typing Rules
	Enabling Strict Boolean Type Checking
	Typecasting Signals
	Typecasting Parameters

	Working with Data Objects
	Data Object Classes
	Creating Data Objects
	Accessing Data Object Properties
	Invoking Data Object Methods
	Saving and Loading Data Objects
	Using Data Objects in Simulink Models
	Creating Data Object Classes
	The Simulink Data Explorer

	Summary of Mouse and Keyboard Actions
	Creating Subsystems
	Creating a Subsystem by Adding the Subsystem Block
	Creating a Subsystem by Grouping Existing Blocks
	Model Navigation Commands
	Window Reuse
	Labeling Subsystem Ports
	Controlling Access to Subsystems

	Using Callback Routines
	Tracing Callbacks
	Model Callback Parameters
	Block Callback Parameters

	Tips for Building Models
	Libraries
	Terminology
	Creating a Library
	Modifying a Library
	Creating a Library Link
	Disabling Library Links
	Modifying a Linked Subsystem
	Propagating Link Modifications
	Updating a Linked Block
	Breaking a Link to a Library Block
	Finding the Library Block for a Reference Block
	Library Link Status
	Displaying Library Links
	Getting Information About Library Blocks
	Browsing Block Libraries
	Adding Libraries to the Library Browser

	Modeling Equations
	Converting Celsius to Fahrenheit
	Modeling a Simple Continuous System

	Saving a Model
	Printing a Block Diagram
	Print Dialog Box
	Print Command
	Specifying Paper Size and Orientation
	Positioning and Sizing a Diagram

	Searching and Browsing Models
	Searching for Objects
	The Model Browser

	Managing Model Versions
	Specifying the Current User
	Model Properties Dialog
	Creating a Model Change History
	Version Control Properties

	Ending a Simulink Session

	Running a Simulation
	Introduction
	Using Menu Commands
	Running a Simulation from the Command Line

	Running a Simulation Using Menu Commands
	Setting Simulation Parameters and Choosing the Solver
	Applying the Simulation Parameters
	Starting the Simulation
	Simulation Diagnostics Dialog Box

	The Simulation Parameters Dialog Box
	The Solver Pane
	The Workspace I/O Pane
	The Diagnostics Pane
	The Advanced Pane

	Improving Simulation Performance and Accuracy
	Speeding Up the Simulation
	Improving Simulation Accuracy

	Running a Simulation from the Command Line
	Using the sim Command
	Using the set_param Command

	sim
	simplot
	simset
	simget

	Analyzing Simulation Results
	Viewing Output Trajectories
	Using the Scope Block
	Using Return Variables
	Using the To Workspace Block

	Linearization
	Equilibrium Point Determination
	linfun
	trim

	Using Masks to Customize Blocks
	Introduction
	A Sample Masked Subsystem
	Creating Mask Dialog Box Prompts
	Creating the Block Description and Help Text
	Creating the Block Icon

	The Mask Editor: An Overview
	The Initialization Pane
	Prompts and Associated Variables
	Control Types
	Default Values for Masked Block Parameters
	Tunable Parameters
	Initialization Commands

	The Icon Pane
	Displaying Text on the Block Icon
	Displaying Graphics on the Block Icon
	Displaying Images on Masks
	Displaying a Transfer Function on the Block Icon
	Controlling Icon Properties

	The Documentation Pane
	The Mask Type Field
	The Block Description Field
	The Mask Help Text Field

	Creating Self-Modifying Masked Blocks
	Creating Dynamic Dialogs for Masked Blocks
	Setting Masked Block Dialog Parameters
	Predefined Masked Dialog Parameters

	Conditionally Executed Subsystems
	Introduction
	Enabled Subsystems
	Creating an Enabled Subsystem
	Blocks an Enabled Subsystem Can Contain

	Triggered Subsystems
	Creating a Triggered Subsystem
	Function-Call Subsystems
	Blocks That a Triggered Subsystem Can Contain

	Triggered and Enabled Subsystems
	Creating a Triggered and Enabled Subsystem
	A Sample Triggered and Enabled Subsystem
	Creating Alternately Executing Subsystems

	Block Reference
	What Each Block Reference Page Contains
	Simulink Block Libraries
	Abs
	Algebraic Constraint
	Backlash
	Band-Limited White Noise
	Bitwise Logical Operator
	Bus Selector
	Chirp Signal
	Clock
	Combinatorial Logic
	Complex to Magnitude-Angle
	Complex to Real-Imag
	Configurable Subsystem
	Constant
	Coulomb and Viscous Friction
	Data Store Memory
	Data Store Read
	Data Store Write
	Data Type Conversion
	Dead Zone
	Demux
	Derivative
	Digital Clock
	Direct Look-Up Table (n-D)
	Discrete Filter
	Discrete Pulse Generator
	Discrete State-Space
	Discrete-Time Integrator
	Discrete Transfer Fcn
	Discrete Zero-Pole
	Display
	Dot Product
	Enable
	Fcn
	First-Order Hold
	From
	From File
	From Workspace
	Function-Call Generator
	Gain
	Goto
	Goto Tag Visibility
	Ground
	Hit Crossing
	IC
	Inport
	Integrator
	Interpolation (n-D) Using PreLook-Up
	Logical Operator
	Look-Up Table
	Look-Up Table (2-D)
	Look-Up Table (n-D)
	Magnitude-Angle to Complex
	Manual Switch
	Math Function
	MATLAB Fcn
	Matrix Concatenation
	Matrix Gain
	Memory
	Merge
	MinMax
	Model Info
	Multiport Switch
	Mux
	Outport
	Polynomial
	Prelook-Up Index Search
	Product
	Probe
	Pulse Generator
	Quantizer
	Ramp
	Random Number
	Rate Limiter
	Real-Imag to Complex
	Relational Operator
	Relay
	Repeating Sequence
	Reshape
	Rounding Function
	Saturation
	Scope
	Selector
	S-Function
	Sign
	Signal Generator
	Signal Specification
	Sine Wave
	Slider Gain
	State-Space
	Step
	Stop Simulation
	Subsystem
	Sum
	Switch
	Terminator
	To File
	To Workspace
	Transfer Fcn
	Transport Delay
	Trigger
	Trigonometric Function
	Uniform Random Number
	Unit Delay
	Variable Transport Delay
	Width
	XY Graph
	Zero-Order Hold
	Zero-Pole

	Model Construction Commands
	Introduction
	How to Specify Parameters for the Commands
	How to Specify a Path for a Simulink Object

	add_block
	add_line
	bdclose
	bdroot
	close_system
	delete_block
	delete_line
	find_system
	gcb
	gcbh
	gcs
	get_param
	new_system
	open_system
	replace_block
	save_system
	set_param
	simulink

	Simulink Debugger
	Starting the Debugger
	Starting the Simulation
	Using the Debugger’s Command-Line Interface
	About Block Indexes
	Accessing the MATLAB Workspace

	Getting Online Help
	Running a Simulation
	Continuing a Simulation
	Running a Simulation Nonstop
	Advancing to the Next Block
	Advancing to the Next Time Step

	Setting Breakpoints
	Setting Breakpoints at Blocks
	Setting Breakpoints at Time Steps
	Breaking on Nonfinite Values
	Breaking on Step-Size Limiting Steps
	Breaking at Zero-Crossings

	Displaying Information About the Simulation
	Displaying Block I/O
	Displaying Algebraic Loop Information
	Displaying System States
	Displaying Integration Information

	Displaying Information About the Model
	Displaying a Model’s Block Execution Order
	Displaying a Block

	Debugger Command Reference
	ashow
	atrace
	bafter
	break
	bshow
	clear
	continue
	disp
	help
	ishow
	minor
	nanbreak
	next
	probe
	quit
	run
	slist
	states
	systems
	status
	step
	stop
	tbreak
	trace
	undisp
	untrace
	xbreak
	zcbreak
	zclist

	Performance Tools
	About the Simulink Performance Tools Option
	The Simulink Accelerator
	How Does It Work?
	How to Run the Simulink Accelerator
	Handling Changes in Model Structure
	Increasing Performance of Accelerator Mode
	Blocks That Do Not Show Speed Improvements
	Using the Simulink Accelerator with the Simulink Debugger
	Interacting with the Simulink Accelerator Programmatically
	Comparing Performance
	Customizing the Simulink Accelerator Build Process
	Controlling S-Function Execution

	Model Differencing Tool
	Display Options
	Model Differences Report

	Profiler
	How the Profiler Works
	Enabling the Profiler
	The Simulation Profile

	Model Coverage Tool
	How the Model Coverage Tool Works
	Using the Model Coverage Tool
	Creating and Running Test Cases
	The Coverage Report
	Coverage Settings Dialog Box
	Model Coverage Commands

	Model and Block Parameters
	Introduction
	Model Parameters
	Common Block Parameters
	Block-Specific Parameters
	Mask Parameters

	Model File Format
	Model File Contents
	Model Section
	BlockDefaults Section
	AnnotationDefaults Section
	System Section

	Index

