
MATLAB C/C++

The Language of Technical Computing

Computation

Visualization

Programming

User’s Guide



Version 2

Graphics Library

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB C/C++ Graphics Library User’s Guide
 COPYRIGHT 1999 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 1999 New for Version 1.0, Release 11 (Online only)
January 2000 Revised for Version 1.0.2, Release 11 (Online only)
November 2000 First Printing Revised for Version 2.1 (Release 12)

i

Contents

Preface

Using This Guide . ii
Organization of the Document . ii

Typographical Conventions . iii

Related Products . iv

1
Introduction

Components of the MATLAB C/C++ Graphics Library 1-3

Restrictions . 1-6

System Requirements . 1-9

Configuring the MATLAB C/C++ Graphics Library 1-10
Configuring the Graphics Library on PCs 1-10
Configuring the Graphics Library on UNIX Systems 1-12

2
Creating Stand-Alone Graphics Applications

Overview . 2-3

Building a Stand-Alone Graphics Application 2-5
Building Graphics Applications on a PC 2-5

ii Contents

Building Graphics Applications on a UNIX System 2-7
Running the MATLAB Compiler Outside MATLAB 2-9
Compiling and Linking Without mbuild 2-9

Changes in Run-Time Behavior and Appearance 2-11
Changes to Figure Window Menu Bar Options 2-11
Changes to the Figure Window File Menu Options 2-13

Distributing Stand-Alone Graphics Applications 2-14

3
Troubleshooting

Using Unsupported MATLAB 6.0 Features 3-3

Compiling Applications Written as Scripts 3-4

Fixing Callback Problems: Missing Functions 3-6

File Menu Does Not Appear in Application 3-8

Depending on Graphics Settings in Start-Up Files 3-9

Problem Starting Graphics Application Executable 3-10

Preface

Using This Guide ii
Expected Background ii
Organization of the Document ii

Typographical Conventions iii

Related Products iv

 Preface

ii

Using This Guide

Expected Background
This document is intended as a practical introduction to creating a stand-alone
application that uses MATLAB’s graphics features. It is written primariy for
MATLAB programmers who want to create a stand-alone C or C++ application
from a MATLAB application. Knowledge of common programming techniques
is helpful, but is not essential.

To get the most out of this document, you should be familiar with the MATLAB
Compiler. See the MATLAB Compiler documentation for more information.

Organization of the Document

Chapter Description

Chapter 1 Provides an overview of the graphics library and its
components. This chapter also describes how to
configure the graphics library.

Chapter 2 Describes how to use the graphics library to build a
stand-alone application. This chapter includes
information about packaging your application for
redistribution.

Chapter 3 Provides important troubleshooting tips.

Typographical Conventions

iii

Typographical Conventions
We use some or all of these conventions in our manuals.

Item Convention to Use Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names/syntax Monospace font The cos function finds the
cosine of each array element.

Syntax line example is

MLGetVar ML_var_name

Keys Boldface with an initial
capital letter

Press the Return key.

Literal strings (in syntax
descriptions in Reference
chapters)

Monospace bold for
literals.

f = freqspace(n,'whole')

Mathematical
expressions

Variables in italics

Functions, operators, and
constants in standard text.

This vector represents the
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with

A =

5

Menu names, menu items, and
controls

Boldface with an initial
capital letter

Choose the File menu.

New terms Italics An array is an ordered
collection of information.

String variables (from a finite
list)

Monospace italics sysc = d2c(sysd, 'method')

 Preface

iv

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the MATLAB C/C++ Graphics Library.

For more information about any of these products, see either:

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section.

Product Description

MATLAB Integrated technical computing environment
that combines numeric computation, advanced
graphics and visualization, and a high-level
programming language

MATLAB Compiler Compiler for automatically converting
MATLAB M-files to C and C++ code

MATLAB C/C++ Math
Library

Library that makes MATLAB’s math functions
available to developers of C and C++
applications

1

Introduction

Components of the MATLAB C/C++ Graphics Library . 1-3
Files Installed on PCs 1-3
Files Installed on UNIX Systems 1-5

Restrictions . 1-6

System Requirements 1-9

Configuring the MATLAB C/C++ Graphics Library . . 1-10
Configuring the Graphics Library on PCs 1-10
Configuring the Graphics Library on UNIX Systems 1-12

1 Introduction

1-2

The MATLAB ® C/C++ Graphics Library is a collection of MATLAB graphics
routines distributed as a single library. The graphics library makes the
MATLAB plotting and visualization capabilities available to stand-alone C and
C++ applications.

A stand-alone C or C++ application is an executable program that can run
independently of the MATLAB interpreted environment. Stand-alone
applications are a convenient way to package and distribute custom MATLAB
applications.

Using the graphics library with the MATLAB Compiler and the MATLAB
C/C++ Math Library, you can compile M-files that include lines, text, meshes,
and polygons, as well as graphical user interface (GUI) components such as
menus, push buttons, and dialog boxes.

Note You may freely distribute applications you develop with the MATLAB
C/C+ Graphics Library, subject to The MathWorks software license
agreement.

This chapter includes the following topics:

• “Components of the MATLAB C/C++ Graphics Library”

• “Restrictions” on page 1-6

• “System Requirements” on page 1-9

After reading these sections, see “Configuring the MATLAB C/C++ Graphics
Library” on page 1-10.

Components of the MATLAB C/C++ Graphics Library

1-3

Components of the MATLAB C/C++ Graphics Library
The MATLAB C/C++ Graphics Library contains more than 100 routines,
including:

• MATLAB 6.0 built-in graphics functions, such as surf, plot, get, and set

• Some commonly used MATLAB 6.0 M-file graphics functions, such as
newplot, gcf, gca, gco, and gcbf

Note The MATLAB C/C+ Graphics Library includes only a subset of
MATLAB M-file graphics functions. If you application includes graphics
functions that are not included in the library, the MATLAB Compiler will
compile them when it creates your application. For information about
MATLAB features that are not supported by the Graphics Library, see
“Restrictions” on page 1-6.

Files Installed on PCs
Table 1-1 lists the shared libraries (DLLs), include files, and other files
installed on a PC as part of a MATLAB C/C++ Graphics Library installation.
In the table, <MATLAB> stands for your top-level MATLAB installation
directory.

For more information about the installation process, read the Installation
Guide for PC, available in PDF format from the MathWorks Web site. Click on
the Documentation link and go to the Online Manuals page to find the
documentation in PDF format.

Note On PCs, the MATLAB C/C++ Graphics Library installation includes
new versions of several standard MATLAB dynamic link libraries (DLLs).

1 Introduction

1-4

Table 1-1: List of Files Installed on PCs

Files Location Description

sgl.dll
hg_sgl.dll
uiw_sgl.dll
hardcopy_sgl.dll
gui_sgl.dll
mpath.dll

<MATLAB>\bin Shared libraries containing
stand-alone versions of
MATLAB built-in and M-file
graphics functions.

All DLLs are in WIN32
format.

sgl
sglcpp

<MATLAB>\toolbox\compiler\bundles MATLAB Compiler bundle
files, containing all the
compiler options required to
build a stand-alone graphics
application.

libsgl.h
libmwsglm.h
libmwsglm.mlib
sgl.def

<MATLAB>\extern\include Graphics library header files
(.h) and module definition file
(.def).

FigureMenuBar.fig
FigureToolBar.fig

<MATLAB>\extern\include Alternate menu bar and
toolbar files used with the
MATLAB figure window in
stand-alone applications.

flames.m
flames.mat

<MATLAB>\extern\examples\sgl The M-file and MAT-file for
the graphics library example
program.

Components of the MATLAB C/C++ Graphics Library

1-5

Files Installed on UNIX Systems
Table 1-2 lists the shared libraries, include files, and other files installed on a
UNIX system as part of a MATLAB C/C++ Graphics Library installation. In
the table, <matlab> stands for your top-level MATLAB installation directory.

For more information about the installation process, read the Installation
Guide for UNIX, available in PDF format on the Support page from the
MathWorks Web site. Click on the Documentation link and go to the Online
Manuals page to find the documentation in PDF format.

Table 1-2: List of Files Installed on UNIX Systems

File Location Description

libmwsgl.ext,

where .ext is .so on
Solaris systems and
.sl on HP 700
systems

<MATLAB>/extern/lib/<ARCH>

<ARCH> identifies the system
architecture (i.e., alpha, glnx86, sgi,
sgi64, sol2)

The graphics library binary file.

The libraries are shared
libraries for all platforms.

sgl
sglcpp

<MATLAB>/bin/toolbox/compiler/
bundles

MATLAB Compiler bundle files,
containing all the compiler
command line options required
to build a stand-alone graphics
application.

libsgl.h
libmwsglm.h
libmwsglm.mlib

<MATLAB>/extern/include The graphics library header file
that contains prototypes for both
the built-in and M-file graphics
functions.

FigureMenuBar.fig
FigureToolBar.fig

<MATLAB>/extern/include Alternate menu bar and toolbar
files used with the MATLAB
figure window in stand-alone
applications.

flames.m
flames.mat

<MATLAB>/extern/examples/sgl The M-file and MAT-file for the
graphics library example
program.

1 Introduction

1-6

Restrictions
The MATLAB C/C++ Graphics Library supports most MATLAB 6.0 features,
including multidimensional arrays, cell arrays, and structures. However, there
are some MATLAB features the graphics library does not support, including:

• MATLAB objects

• MATLAB Java objects

• plotedit command

• propedit command

In addition to these restrictions, the graphics library provides limited support
for certain callback coding practices.

Note The graphics library is subject to the same limitations as the MATLAB
Compiler. For example, MATLAB functions that require the MATLAB
interpreter, most notably eval() and input(), are not fully supported. See the
MATLAB Compiler documentation for information about their restrictions.

Graphics Library Printing Support
If your application uses default print command settings, it should require no
modification. The default print command sends the current figure to whatever
printer has been set up as the default printer on the system on which your
application is running. However, if your application uses print command
switches to specify device drivers and other options, be aware that the graphics
library supports only a subset of these switches.

For example, the graphics library supports most of the MATLAB built-in
drivers, such as the PostScript drivers, but it does not support any of the
Ghostscript drivers.

Restrictions

1-7

Table 1-3 lists the device drivers supported by the graphics library. For more
information about specifying device drivers, see the “Printing MATLAB
Graphics” section in MATLAB Graphics documentation.

In addition to device drivers, the MATLAB print command supports several
other command-line options that control various aspects of the print job, such
as the renderer used. Table 1-4 lists the subset of these options supported by

Table 1-3: Device Drivers Supported by the Graphics Library

Device Description

–dbitmap Windows Bitmap (BMP) format (Windows only).

–deps Level 1 black and white Encapsulated PostScript (EPS).

–depsc Level 1 color Encapsulated PostScript (EPS).

–deps2 Level 2 black and white Encapsulated PostScript (EPS).

–depsc2 Level 2 color Encapsulated PostScript (EPS).

–dhpgl HPGL compatible with HP 7475A plotter.

–dill Adobe Illustrator 88 compatible illustration file.

–dps Level 1 black and white PostScript.

–dpsc Level 1 color PostScript.

–dps2 Level 2 black and white PostScript.

–dpsc2 Level 2 color PostScript.

–dwin Windows black and white printing services. (Windows only)

–dwinc Windows color printing services. (Windows only)

1 Introduction

1-8

the graphics library. For a complete list of print command options, see the
“Printing MATLAB Graphics” section in MATLAB graphics documentation.

Unsupported Application Coding Practices
The graphics library does not support certain graphics M-file coding practices
that are supported in the MATLAB interpreted environment. For example,
MATLAB allows you to specify variable references and assignments in callback
property strings. The graphics library does not support this coding practice in
stand-alone graphics applications.

See Chapter 3, “Troubleshooting” for more information about unsupported
coding practices and how to work around them.

Table 1-4: print Command Line Options Supported by the Graphics Library

Option Description

–adobecset Use PostScript default character set encoding.

–append Append to existing PostScript file without overwriting.

–cmyk Use CMYK colors in PostScript instead of RGB.

–noui Suppress printing of user interface controls.

–rnumber Specify resolution in dots per inch (dpi).

–painters Render using Painter’s algorithm.

–zbuffer Render using Z-buffer.

System Requirements

1-9

System Requirements
Software. To use the MATLAB C/C++ Graphics Library to create a stand-alone
C or C++ application requires several other MATLAB products:

• MATLAB Version 6.0

• MATLAB Compiler Version 2.1

• MATLAB C/C++ Math Library Version 2.1

You must also have installed on your system an ANSI C or C++ compiler.

Hardware. The MATLAB C/C++ Graphics Library is available for these
platforms:

• PCs running Microsoft Windows or Linux

• Sun

• HP

• SGI

• Compaq Alpha UNIX platforms

On HP systems, you need an ANSI C++ compiler (aCC) to create stand-alone
graphics applications, even if you are working in C.

The MATLAB C/C++ Graphics Library is not supported on IBM RS/6000
systems.

For the most up-to-date information about the systems supported by MATLAB,
Release 12, see the System Requirements page in the Products area of the
MathWorks Web site, www.mathworks.com.

1 Introduction

1-10

Configuring the MATLAB C/C++ Graphics Library
After installing the MATLAB C/C++ Graphics Library, you should configure it
using the mbuild -setup command. When you run mbuild, you specify:

• The ANSI C or C++ compiler you intend to use to compile the code generated
by the MATLAB Compiler

• The libraries you want to link your application with; specifically, the
MATLAB C/C++ Math Library alone, or the math library and the MATLAB
C/C++ Graphics Library together.

This section includes the following topics:

• Configuring the Graphics Library on PCs

• “Configuring the Graphics Library on UNIX Systems” on page 1-12

After configuring the graphics Library, see Chapter 2, “Creating Stand-Alone
Graphics Applications”, to learn how to use it to build a stand-alone graphics
application.

Configuring the Graphics Library on PCs
To configure the graphics library on a PC running Microsoft Windows, run the
mbuild -setup command. You can run mbuild at the MATLAB prompt or in a
DOS Command Prompt window.

mbuild uses options files to specify all the compile and link command line
options necessary to create a stand-alone graphics application using a
particular compiler. When you configure the graphics library, you determine
which options file mbuild uses to create stand-alone applications.

When you run mbuild, you specify the name and version of the compiler you
intend to use. mbuild locates the options file specific to that compiler, and
creates a copy of it in your system’s user profiles directory. From then on,
whenever the MATLAB Compiler calls mbuild to invoke your C or C++
compiler, it uses this local copy of the options file.

This example illustrates how to specify a compiler running mbuild -setup on
a PC. mbuild can also determine the name and location of your C or C++
compiler automatically. To link with the graphics library, answer yes (y) when
mbuild prompts you.

Configuring the MATLAB C/C++ Graphics Library

1-11

p

Please choose your compiler for building standalone MATLAB
applications:

Would you like mbuild to locate installed compilers [y]/n? n

Select a compiler:
[1] Borland C++Builder version 5.0
[2] Borland C++Builder version 4.0
[3] Borland C++Builder version 3.0
[4] Borland C/C++ version 5.02
[5] Borland C/C++ version 5.0
[6] Borland C/C++ (free command line tools) version 5.5
[7] Lcc C version 2.4
[8] Microsoft Visual C/C++ version 6.0
[9] Microsoft Visual C/C++ version 5.0
[10] Microsoft Visual C/C++ version 4.2

[0] None

Compiler: 9

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Applications\DevStudio.
Do you want to use this compiler? [y]/n y

Would you like to link against the C/C++ Graphics Library? [y]/n y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: D:\Program Files\DevStudio6
Linking against the C/C++ Graphics Library

Are these correct?([y]/n): y

1 Introduction

1-12

When you press Enter, mbuild creates an options file in your
C:\WINNT\Profiles directory.

Configuring the Graphics Library on UNIX Systems
To configure the graphics library on a UNIX system, run the mbuild -setup
command. You can run mbuild at the MATLAB prompt or at the system
prompt.

mbuild uses options files to specify all the compile and link command line
options necessary to create a stand-alone graphics application. When you
configure the graphics library, you specify the name of the options file you want
to use.

On UNIX systems, mbuild presents a choice of two options files:
mbuildopts.sh and mbuildsglopts.sh. To create a stand-alone graphics
application, choose the mbuildsglopts.sh file (selection 2). When you select an
options file, mbuild creates a local copy of the options file in your ~/matlab
directory.

Note Even though you select the mbuildsglopts.sh options file, when
mbuild creates the local copy in ~/matlab, it renames the file to
mbuildopts.sh.

The following example illustrates running mbuild on a UNIX system. To link
with the graphics library, select option 2. If you have run mbuild before, a local
copy of the options file exists in your ~/matlab directory. When mbuild asks if
you want to overwrite this existing version of mbuildopt.sh, answer yes (y).

Configuring the MATLAB C/C++ Graphics Library

1-13

mbuild -setup

Using the 'mbuild -setup' command selects an options file that is
placed in ~/matlab and used by default for 'mbuild'. An options
file in the current working directory or specified on the command
line overrides the default options file in ~/matlab.

Options files control which compiler to use, the compiler and link
command options, and the run-time libraries to link against.

To override the default options file, use the 'mbuild -f' command
(see 'mbuild -help' for more information).

The options files available for mbuild are:

 1: /matlab/bin/mbuildopts.sh :

Build and link with MATLAB C/C++ Math Library

2: /matlab/bin/mbuildsglopts.sh :
Build and link with MATLAB C/C++ Math and Graphics

Libraries

Enter the number of the options file to use as your default options
file: 2

1 Introduction

1-14

2
Creating Stand-Alone
Graphics Applications

Overview . 2-3

Building a Stand-Alone Graphics Application 2-5
Building Graphics Applications on a PC 2-5
Building Graphics Applications on a UNIX System 2-7
Running the MATLAB Compiler Outside MATLAB 2-9
Compiling and Linking Without mbuild 2-9

Changes in Run-Time Behavior and Appearance . . . 2-11
Changes to Figure Window Menu Bar Options 2-11
Changes to the Figure Window File Menu Options 2-13
Accessing Help in Stand-Alone Applications 2-13
Ctrl+C Handling 2-13

Distributing Stand-Alone Graphics Applications . . . 2-14
Packaging the MATLAB Run-Time Libraries 2-14
Installing Your Application 2-15

2 Creating Stand-Alone Graphics Applications

2-2

This chapter describes how to use the MATLAB C/C++ Graphics Library to
build stand-alone graphics applications. It provides:

• An overview of the process

• Detailed instructions on how to build a stand-alone graphics application on
PCs or UNIX systems, including an example

• A summary of the differences in the run-time appearance and behavior of
M-file applications and their stand-alone counterparts

• Information about packaging a stand-alone graphics application for
redistribution

This chapter includes information about the MATLAB Compiler because it is a
necessary part of the process. For more detailed information about the
Compiler, see the MATLAB Compiler documentation.

Overview

2-3

Overview
You use the MATLAB Compiler (mcc) to create a stand-alone C or C++ graphics
application. In this process, the MATLAB Compiler:

• Translates the specified M-files into a C or C++ source code modules

• Generates additional C or C++ source code modules, called wrapper files,
required by stand-alone applications

• Compiles and links the source modules into a stand-alone application, by
invoking an ANSI C or C++ compiler and linker that you have installed on
your system.

The Compiler links your application with the MATLAB C/C++ Graphics
Library, several other MATLAB libraries, and an ANSI C/C++ math library.
The MATLAB API and MAT-file libraries come with MATLAB. The
MATLAB Math Built-In Library and the MATLAB Math M-file Library are
components of the MATLAB C/C++ Math Library. Figure 2-1 graphically
illustrates this process.

Note To avoid confusion between the MATLAB Compiler and an ANSI C or
C++ compiler, this documentation uses “Compiler” with a capital C to refer to
the MATLAB Compiler and “compiler” with a lowercase c refer to an ANSI C
or C++ compiler.

2 Creating Stand-Alone Graphics Applications

2-4

Figure 2-1: Creating a Stand-Alone C or C++ Graphics Applications

M-file that includes graphics functions

MATLAB Compiler

C or C++ source file version of M-file

C or C++ compiler

Object files

Linker

Stand-alone C or C++ graphics application

MATLAB Math M-file Library

MATLAB Math Built-In Library

MATLAB API Library

MATLAB MAT-File Library

ANSI C or C++ Library

MATLAB C/C++ Graphics Library

Building a Stand-Alone Graphics Application

2-5

Building a Stand-Alone Graphics Application
The best way to learn how to build a stand-alone graphics application is to see
an example. This section shows how to create a stand-alone graphics
application by converting one of the demo programs included with MATLAB,
lorenz.m. The Lorenz demo program is a good example of a graphics
application because it uses graphics functions and includes several
user-interface objects, such as push buttons. (To get more information about
the Lorenz application, type help lorenz at the MATLAB prompt.)

This section includes these topics:

• “Building Graphics Applications on a PC”

• “Building Graphics Applications on a UNIX System” on page 2-7

• “Running the MATLAB Compiler Outside MATLAB” on page 2-9

• “Compiling and Linking Without mbuild” on page 2-9

Building Graphics Applications on a PC
To create a stand-alone graphics application on a PC, you must use the
MATLAB Compiler (mcc), specifying the Compiler’s Graphics Library bundle
file.

Bundle files are ASCII text files that contain Compiler command line options
and arguments. The MATLAB Compiler supports separate bundle files for
creating C stand-alone graphics applications and C++ applications.

For example, to convert the Lorenz application into a stand-alone application,
enter these commands at the MATLAB prompt.

mbuild -setup

!copy <MATLAB>\toolbox\matlab\demos\lorenz.m .

mcc -B sgl lorenz.m

!lorenz

MATLAB Compiler’s Graphics Library Bundle Files on PCs

C applications <MATLAB>\toolbox\compiler\bundles\sgl

C++ applications <MATLAB>\toolbox\compiler\bundles\sglcpp

2 Creating Stand-Alone Graphics Applications

2-6

Note the following:

• The example uses mbuild -setup to set up the environment to create
stand-alone applications. This is only required the first time you create a
stand-alone graphics application. See “Configuring the MATLAB C/C++
Graphics Library” on page 1-10 for more information about mbuild.

• The example uses the DOS copy command to copy the Lorenz application
M-file into the current MATLAB directory. Replace <MATLAB> with the name
of your top-level MATLAB installation directory. (This is suggested because
you may not have permission to create a new file in the MATLAB demos
directory.) You can also use Microsoft Windows Explorer to copy the file.

• The example invokes the MATLAB Compiler, using the -B flag to specify the
bundle file used to create C stand-alone graphics applications, sgl.

Results of Compilation
The MATLAB Compiler generates multiple C or C++ source code modules in
your current working directory. These include wrapper files that contain
necessary components of a stand-alone application, such as a main() entry
point.

In addition, the first time you run the MATLAB Compiler to create a
stand-alone graphics application, it creates a subdirectory, named \bin, in
your current working directory. The Compiler puts in this directory versions of
the MATLAB menu bar and toolbar figure files that are used by stand-alone
graphics applications at run-time. (Stand-alone graphics applications use a
special menu bar and toolbar. For more information, see “Changes in Run-Time
Behavior and Appearance” on page 2-11.) Subsequently, whenever you run the
Compiler, it checks for the existence of these files in the \bin directory and does
not overwrite them if they exist.

Running a Stand-Alone Graphics Application
The Compiler creates the stand-alone graphics application as an executable
program in your current working directory, giving it the same name as your
M-file, but with the .exe filename extension. You can run the application at the
MATLAB command prompt if you precede the name with a ! symbol, as shown
in the example. You can also run stand-alone graphics applications outside the
MATLAB environment. However, make sure that the directory containing the
shared libraries to which your application has been linked (<MATLAB>\bin) is
on your directory search path.

Building a Stand-Alone Graphics Application

2-7

Editing the Search Path on Windows 95. On Window 95 systems, you must edit your
autoexec.bat file to add the shared library directory to the PATH variable.

Editing the Search Path on Windows NT. On Windows NT systems, go the Settings
option on the Start menu and choose Control Panel. Double-click on the
System icon to view the System Properties dialog box. Use the Environment
panel to edit the PATH variable.

Building Graphics Applications on a UNIX System
To create a stand-alone graphics application on a UNIX system, you must use
the MATLAB Compiler (mcc), specifying the Compiler’s Graphics Library
bundle file.

Bundle files are ASCII text files that contain Compiler command line options
and arguments. The MATLAB Compiler supports separate bundle files for
creating C stand-alone graphics applications and C++ applications.

For example, to convert the Lorenz application into a stand-alone application,
enter these commands at the MATLAB prompt.

mbuild -setup

!cp <MATLAB>/toolbox/matlab/demos/lorenz.m ./

mcc -B sgl lorenz.m

!lorenz

Note the following:

• The example uses mbuild -setup to set up the environment to create
stand-alone applications. This is only required the first time you create a
stand-alone graphics application. See “Configuring the MATLAB C/C++
Graphics Library” on page 1-10 for more information about mbuild.

MATLAB Compiler’s Graphics Library Bundle Files on UNIX Systems

C applications <MATLAB>/toolbox/compiler/bundles/sgl

C++ applications <MATLAB>/toolbox/compiler/bundles/sglcpp

2 Creating Stand-Alone Graphics Applications

2-8

• The example uses the UNIX cp command to copy the Lorenz application
M-file into the current MATLAB directory. Use the ! symbol to execute an
operating system command inside the MATLAB environment. (This is
suggested because you may not have permission to create a new file in the
MATLAB demos directory.) Replace <MATLAB>with the name of your top-level
MATLAB installation directory.

• The example invokes the MATLAB Compiler, using the -B flag to specify the
bundle used to create C stand-alone graphics applications, sgl

Results of Compilation
The MATLAB Compiler generates multiple C or C++ source code modules in
your current working directory. These include wrapper files that contain
necessary components of a stand-alone application, such as a main() entry
point.

In addition, the first time you run the MATLAB Compiler to create a
stand-alone graphics application, it creates a subdirectory, named /bin, in
your current working directory. The Compiler puts in this directory versions of
the MATLAB menu bar and toolbar figure files that are used by stand-alone
graphics applications at run-time. (Stand-alone graphics applications use a
special menu bar and toolbar. For more information, see “Changes in Run-Time
Behavior and Appearance” on page 2-11.) Subsequently, when you run the
Compiler, it checks for the existence of these files in the /bin directory and does
not overwrite them if they exist.

Running a Stand-Alone Graphics Application
The Compiler creates the stand-alone graphics application as an executable
program in your current working directory, giving it the same name as your
M-file. You can run your stand-alone graphics application at the MATLAB
prompt if you precede the executable name with a !, as shown in the example.
You can also run a stand-alone application outside of the MATLAB
environment. However, you must add to your path the location of the shared
libraries to which your application is linked. To set your path, use the
command from this table that is specific for your system.

Building a Stand-Alone Graphics Application

2-9

To avoid having to reissue this command at the start of each login session,
include it in a startup script such as ~/.cshrc or ~/.login. Use the ~/.login
option, if your system supports it, because it only gets executed once.

Running the MATLAB Compiler Outside MATLAB
You can run the MATLAB Compiler outside the MATLAB environment,
invoking it at the system prompt. If you do, you must use the -I option on the
Compiler command line to specify the locations of the M-files that your
application depends on. For example, the Lorenz application uses functions in
the graph2d, graphics, demos, and graph3d subdirectories of the
<MATLAB>/toolbox/matlab/ directory. When you run the Compiler from within
MATLAB, it can locate these files by referencing the MATLAB path.

A convenient way to provide the Compiler with this path information is to start
MATLAB and run the mccsavepath command. This command creates a path
information file, named mccpath, in your current directory. When you run the
Compiler outside the MATLAB environment, it automatically looks in your
local directory for this path information file.

Compiling and Linking Without mbuild
For graphics applications, you must use the MATLAB Compiler to generate C
or C++ source code modules. The graphics library does not support the direct
coding of graphics applications. You can, however, perform the compilation and
linking of your source modules without using mbuild.

Architecture Command

HP700 setenv SHLIB_PATH <MATLAB>/extern/lib/hp700:<MATLAB>/bin/
hp700:$SHLIB_PATH

All others setenv LD_LIBRARY_PATH <MATLAB>/extern/lib/<ARCH>:<MATLAB>/bin/
<ARCH>:$LD_LIBRARY_PATH

where:
<MATLAB> is the MATLAB root directory.
<ARCH> is your system architecture

2 Creating Stand-Alone Graphics Applications

2-10

To determine the libraries you need to link with, use the mbuild command with
the -n option. When you specify this option, mbuild sets up the compile and link
command lines necessary to build a stand-alone application but does not
execute the commands. View the output of mbuild -n to determine the list of
libraries you must link your application with and the order in which you must
specify them.

You can also specify this mbuild option on the MATLAB Compiler command
line by specifying -M option.

mcc -M -n -B sgl lorenz.m

Note On PCs, if you are using the Microsoft Visual C compiler, you must
manually build import libraries from the .def files using the lib command. If
you are using the Borland C compiler, you can link directly against the .def
files using the implib command. See your compiler documentation for
information about these commands.

Changes in Run-Time Behavior and Appearance

2-11

Changes in Run-Time Behavior and Appearance
Stand-alone versions of graphics applications typically look and operate the
same as their M-file counterparts. However, because stand-alone applications
run outside the MATLAB environment, there are some differences, highlighted
in these sections:

• “Changes to Figure Window Menu Bar Options”

• “Changes to the Figure Window File Menu Options” on page 2-13

• “Accessing Help in Stand-Alone Applications” on page 2-13

• “Ctrl+C Handling” on page 2-13

Changes to Figure Window Menu Bar Options
Stand-alone graphics applications use a special version of the Figure window
menu bar that contains only the File menu option. The graphics library
excludes the other standard menu bar items, such as Edit, Tools, and Help,
from the menu bar because stand-alone graphics applications cannot support
many of the options available through these menus.

To illustrate these differences, compare Figure 2-2, which shows the Lorenz
application running as an M-file on a PC, with Figure 2-3, which shows the
Lorenz application running as a stand-alone application.

2 Creating Stand-Alone Graphics Applications

2-12

Figure 2-2: M-File Version of the Lorenz Application

Figure 2-3: Stand-Alone Version of the Lorenz Application

Changes in Run-Time Behavior and Appearance

2-13

Changes to the Figure Window File Menu Options
The graphics library excludes options from the File menu that are not
supported by stand-alone applications, such as the Page Setup option.

Note The graphics library includes the Print option in the File menu of
stand-alone graphics applications. However, the Print option in stand-alone
applications does not display the Print dialog box, as it does for M-file
applications.

Accessing Help in Stand-Alone Applications
Some M-file applications include GUI components that provide access to
MATLAB help. For example, the Lorenz application includes an Info push
button that displays the M-file help for the Lorenz function in a separate
window.

The stand-alone version of the Lorenz application does not have access to
MATLAB help files. If you click on the Info button, you get this error message:

An error occurred in the callback : lorenz('info')
The error message caught was : Function "helpwin" is not

supported in standalone applications

Ctrl+C Handling
When you run a graphics application within MATLAB, you can press Ctrl+C
to break infinite loops. For example, you can press Ctrl+C to stop an
animation. When you run a C or C++ stand-alone application, Ctrl+C handling
is not supported.

2 Creating Stand-Alone Graphics Applications

2-14

Distributing Stand-Alone Graphics Applications
You may freely distribute applications you develop with the MATLAB C/C++
Graphics Library, subject to The MathWorks software license agreement.
However, when you package your application for distribution, remember to
include, along with your application executable, these additional files:

• The contents, if any, of a directory named bin, created by mbuild in the same
directory as your application executable

• Any custom MEX files your application uses

• All the MATLAB math and graphics run-time libraries

To make packaging an application easier, the graphics library has prepackaged
all the necessary MATLAB run-time libraries into a single, self-extracting
archive file. For more information about how you can use this archive, see
“Packaging the MATLAB Run-Time Libraries”. For information about how
customers who receive your application can use this archive, see “Installing
Your Application” on page 2-15.

Packaging the MATLAB Run-Time Libraries
The MATLAB C/C++ Graphics Library has prepackaged all the MATLAB math
and graphics run-time libraries required by stand-alone graphics applications
into a single, self-extracting archive file, called the MATLAB Math and
Graphics Run-Time Library Installer. Instead of including all the run-time
libraries individually in your stand-alone application distribution package, you
can simply include this archive file.

The following table lists the name of the archive file for both PCs and UNIX
systems. In the table <MATLAB> represents your MATLAB installation
directory and <ARCH> represents your UNIX platform.

Platform MATLAB Math and Graphics Run-Time Library Installer

UNIX systems <MATLAB>/extern/lib/<ARCH>/mglinstaller

PCs <MATLAB>\extern\lib\win32\mglinstaller.exe

Distributing Stand-Alone Graphics Applications

2-15

Installing Your Application
To install your application, your customers must:

• Run the MATLAB Math and Graphics Run-Time Library Installer. This
program extracts the libraries from the archive and installs them in
subdirectories of a directory specified by the user.

• Add the bin/$ARCH subdirectory to their path. This is the only MATLAB
run-time library subdirectory that needs to be added to the path.

Note If a customer already has the MATLAB math and graphics run-time
libraries installed on their system, they do not need to reinstall them. They
only need to ensure that the library search path is configured correctly.

On UNIX Systems
On UNIX systems, your customers run the MATLAB Math and Graphics
Run-Time Library Installer by executing the mglinstaller command at the
system prompt. Your customers can specify the name of the directory into
which they want to install the libraries. By default, the installer puts the files
in the current directory.

After the installer unpacks and uncompresses the libraries, your customers
must add the name of the bin/<ARCH> subdirectory to the LD_LIBRARY_PATH
environment variable. (The equivalent variable on HP-UX systems is the
SHLIB_PATH.)

For example, if your customers working on a Linux system specify the
installation directory mgl_runtime_dir, then they must add
mgl_runtime_dir/bin/glnx86 to the LD_LIBRARY_PATH environment variable.

On PCs
On PCs, your customers can run the MATLAB Math and Graphics Run-Time
Library Installer by double-clicking on the mglinstaller.exe file. Your
customers can specify the name of the directory into which they want to install
the libraries. By default, the installer puts the files in the current directory.

2 Creating Stand-Alone Graphics Applications

2-16

After the installer unpacks and uncompresses the libraries, your customers
must add the bin\win32 subdirectory to the system path variable (PATH).

For example, if your customers specify the installation directory
mgl_runtime_dir, then they must add mgl_runtime_dir\bin\win32 to PATH.

3

Troubleshooting

Using Unsupported MATLAB 6.0 Features 3-3

Compiling Applications Written as Scripts 3-4

Fixing Callback Problems: Missing Functions 3-6

File Menu Does Not Appear in Application 3-8

Depending on Graphics Settings in Start-Up Files . . . 3-9

Problem Starting Graphics Application Executable . . 3-10

3 Troubleshooting

3-2

The MATLAB Compiler can compile most M-files that use graphics into
stand-alone applications. Some M-files, however, may include coding practices
that are not supported by the Compiler or by the graphics library. In some
cases, the MATLAB Compiler may not be able to translate the M-file into C or
C++ code. In other cases, the M-file may compile successfully, but fail when run
as a stand-alone application.

This chapter describes how to diagnose and correct these problems. It includes
these sections:

• “Using Unsupported MATLAB 6.0 Features” on page 3-3

• “Compiling Applications Written as Scripts” on page 3-4

• “Fixing Callback Problems: Missing Functions” on page 3-6

• “File Menu Does Not Appear in Application” on page 3-8

• “Depending on Graphics Settings in Start-Up Files” on page 3-9

• “Problem Starting Graphics Application Executable” on page 3-10

Using Unsupported MATLAB 6.0 Features

3-3

Using Unsupported MATLAB 6.0 Features
The MATLAB Compiler supports most of the MATLAB 6.0 language features,
including multidimensional arrays, cell arrays, and structures. However, the
Compiler does not support:

• Certain uses of the MATLAB eval or input command.

• MATLAB objects

• MATLAB Java objects

See the MATLAB Compiler documentation for more information about these
limitations.

Symptom
The Compiler outputs error messages that identify which unsupported feature
prevented compilation.

Workaround
If your application uses unsupported features, the only workaround is to
remove these unsupported features by recoding your application.

3 Troubleshooting

3-4

Compiling Applications Written as Scripts
The Compiler cannot compile applications written as scripts because scripts
interact with the MATLAB base workspace, and stand-alone applications do
not have access to the MATLAB base workspace.

Symptom
If you attempt to compile a script, the Compiler outputs the error message

??? Error: File “filename” is a Script M-file and cannot be
compiled with the current Compiler.

where filename is the name of your script M-file.

Workaround
To compile an application written as a script, turn it into a MATLAB function.
To do this, include the MATLAB function prototype at the top of the file. You
must also find where the script depends on variables in the base workspace and
declare these variables as global variables.

For example, in the following script, the variable f, set by the call to the figure
function, exists in the base workspace. This variable is then passed as a
parameter to the function, my_func, specified in the callback property string.
Passing a workspace variable in a callback string is not supported by the
MATLAB Compiler.

f = figure;

p_btn = uicontrol(gcf,...
'style', 'pushbutton',...
'Position',[10 10 133 25],...
'String', 'Press Here',...
'CallBack','my_func(f);');

The following example shows this script transformed into a function.

function was_a_script()
% new function

global f;

f = figure;

Compiling Applications Written as Scripts

3-5

p_btn = uicontrol(gcf,...
'style', 'pushbutton',...
'Position',[10 10 133 25],...
'String', 'Press Here',...
'CallBack','my_callback');

In this code example, note the following:

• The example changes the script into a function by including a MATLAB
function prototype line at the top of the file.

• The example declares the variable f, formerly referenced in the base
workspace, as a global variable. This makes it accessible to the callback
routine.

• The example replaces the reference to my_func in the callback string with the
name of a new function, my_callback. This new function performs the
processing formerly done in the callback string.

Here is the new callback function. Note how the function also declares f as
a global variable.

function my_callback()
% revised callback

global f;

my_func(f);

3 Troubleshooting

3-6

Fixing Callback Problems: Missing Functions
When the Compiler creates a stand-alone application, it compiles the M-file
you specify on the command line and, in addition, it compiles any other M-files
that your M-file calls. If your application includes a call to a function in a
callback string or in a string passed as an argument to the feval function or
an ODE solver, and this is the only place in your M-file this function is called,
the Compiler will not compile the function. The Compiler does not look in these
text strings for the names of functions to compile.

Symptom
Your application runs, but an interactive user interface element, such as a
push button, is unresponsive. When you close the application, the graphics
library issues this error message:

An error occurred in the callback : change_colormap
The error message caught was : Reference to unknown function

change_colormap from FEVAL in stand-alone mode.

Workaround
To eliminate this error, create a list all of the functions that are specified only
in callback strings and pass this list to the %#function pragma. (See “Finding
Missing Functions in an M-File” on page 3-7 for hints about finding functions
in callback strings.) The Compiler processes any function listed in a
%#function pragma.

For example, the call to the change_colormap function in the sample
application, my_test, illustrates this problem. To make sure the Compiler
processes the change_colormap M-file, list the function name in the
%#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
'style', 'pushbutton',...

Fixing Callback Problems: Missing Functions

3-7

'Position',[10 10 133 25],...
'String', 'Make Black & White',...
'CallBack','change_colormap');

Note Instead of using the %#function pragma, you can specify the name of
the missing M-file on the Compiler command line. For more information about
this mechanisms, see the MATLAB Compiler documentation.

Finding Missing Functions in an M-File
To find functions in your application that may need to be listed in a %#function
pragma, search your M-file source code for text strings specified as callback
strings or as arguments to the feval, fminbnd, fminsearch, funm, and fzero
functions or any ODE solvers.

To find text strings used as callback strings, search for the characters
“Callback” or “fcn” in your M-file. This will find all the Callback properties
defined by Handle Graphics ® objects, such as uicontrol and uimenu. In
addition, this will find the properties of figures and axes that end in Fcn, such
as CloseRequestFcn, that also support callbacks.

3 Troubleshooting

3-8

File Menu Does Not Appear in Application
If you create a stand-alone application and the File menu does not appear in
the menu bar, it may indicate that the menu bar and toolbar figure files in your
application’s \bin directory (/bin on UNIX systems) are not correct. The first
time you create a graphics application, the Compiler creates this directory and
populates it with two figure files, FigureMenuBar.fig and FigureToolBar.fig.
After that, whenever you create graphics applications, the Compiler checks for
the existence of these files and, if they exist, it does not replace them. Your
application’s bin directory may contain figure files from a previous release of
the graphics library.

Workaround
Replace the menu bar and toolbar figure files in your application bin directory
with the versions of these figure files in the MATLAB installation directory
(<MATLAB>\extern\include on PCs or <MATLAB>/extern/include on UNIX
systems). When you restart your stand-alone graphics application, it will use
the new figure files.

Another way to replace your existing figure files with new figure files is to
delete your application bin directory and run the Compiler. If this directory
does not exist, the Compiler creates it and populates it with copies of the figure
files stored in the MATLAB installation directory. There is no need to
recompile your graphics M-file application, especially if this is a
time-consuming task. Compiling a trivial M-file graphics application is enough
to cause the creation of a new application bin directory.

Depending on Graphics Settings in Start-Up Files

3-9

Depending on Graphics Settings in Start-Up Files
When you start MATLAB, it executes startup.m, if it exists. Your application
may depend on Handle Graphics defaults that are set within a startup.m file.

Workaround
If your application depends on graphics settings in a startup.m file, include the
startup.m, or the portion of it your application depends on, in the group of
M-files that you compile with the MATLAB Compiler. Your application must
explicitly call these graphics settings.

3 Troubleshooting

3-10

Problem Starting Graphics Application Executable
If you are using Microsoft Visual C++ 5.0, or have the Microsoft Foundation
Class (MFC) DLL from MSVC 5.0 installed in your system directory, you may
encounter a problem starting a graphics library application.

Note Customers of your application may encounter the same problem if they
have this DLL installed on their system.

Symptom
Your application compiles and an executable is created. However, when you
invoke it, no figure window appears. If you run the application from a DOS
command window, you or one of your customers may see an error message such
as:

The UIW_SGL.DLL file is linked to missing export MFC42.DLL:####.

or

The ordinal #### could not be located in the dynamic-link library
MFC42.dll.

Workaround
To fix this problem, locate the files named MFC42.dll and MSVCRT.dll in your
Windows system directory and replace them with the versions of these files in
the <MATLAB>\bin\win32 directory, where <MATLAB> represents the name of
your MATLAB installation directory.

Your customers who encounter the same problem should also replace the
versions of these files in the Windows system directory. They can use the
versions they find in <MGLRUNTIMELIBRARY>\bin\win32 directory, where
<MGLRUNTIMELIBRARY> is the name of the directory in which they installed the
MATLAB Math and Graphics Run-Time Libraries. See ‘‘Distributing
Stand-Alone Graphics Applications’’ on page 2-14 for more information.

You may also encounter this problem with the files dforrt.dll or dformd.dll.
You can replace these files in the Windows system directory with their
counterparts in the <MGLRUNTIMELIBRARY>\bin\win32 directory.

I-1

Index

Symbols
%#function pragma 3-6
.cshrc 2-9
.login 2-9
/bin directory (UNIX)

creating 2-8
removing 3-8

\bin directory (PCs)
creating 2-6
removing 3-8

A
Adobe Illustrator

device driver 1-7
axes objects 3-7

B
-B flag

specifying bundle files on PCs 2-5
specifying bundle files on UNIX systems 2-7

building stand-alone graphics applications
on PCs 2-5
on UNIX systems 2-7
other methods 2-9

bundle files
defined 2-7

C
callback strings

passing workspace variables in 3-5
searching M-files for 3-7

color printing
support 1-7

Compiler. See MATLAB Compiler 1-9

compiling graphics applications
on PCs 2-5
on UNIX systems 2-7
without using mbuild 2-9

configuring the graphics library
on PCs 1-10
on UNIX systems 1-12

conventions in our documentation (table) iii
Ctrl+C handling

stand-alone graphics applications 2-13

D
device drivers

support 1-6
distributing applications

packaging 2-14
drivers

support 1-6
Dynamic Link Libraries (DLLs)

installed with graphics library 1-3

E
encapsulated PostScript

support 1-7
eval

in stand-alone graphics applications 3-3
restrictions 1-6

example application
flames.m 1-4, 1-5

F
figure objects 3-7
FigureMenuBar.fig 1-4, 1-5

Index

I-2

FigureToolBar.fig 1-4, 1-5
file menu

changes in run-time appearance 2-13
print option 3-8

flames.m 1-4, 1-5

G
Ghostscript drivers

support 1-6
global variables 3-4
graphics applications

build procedure 2-5
overview 2-3
run-time behavior 2-11
trouble starting 3-10
unsupported coding practices 1-8

gui_sgl.dll 1-4

H
Handle Graphics

Callback property 3-7
defaults 3-9
objects 3-7

hardcopy_sgl.dll 1-4
hardware requirements 1-9
header files

libsglm.h 1-4
sgl.h 1-5

Help
in stand-alone graphics applications 2-13

hg_sgl.dll 1-4

I
Info button

stand-alone support 2-13
installation

files installed on PCs 1-3
files installed on UNIX systems 1-5

J
Java objects

in stand-alone graphics applications 3-3

L
LD_LIBRARY_PATH

editing 2-8
run-time libraries 2-15

libmwsgl.sl 1-5
libmwsgl.so 1-5
LIBPATH

run-time libraries 2-15
library search path

specifying on PCs 2-7
specifying on UNIX systems 2-8

libsgl.h 1-4
licensing

stand-alone graphics applications 2-14
linking

stand-alone graphics applications 2-9

M
MATLAB C/C++ Graphics Library

components 1-3
configuration 1-10
overview 1-2
relationship to the MATLAB Math Libraries

2-4
restrictions 1-6

Index

I-3

MATLAB C/C++ Math Library
relationship to graphics library 2-4
restrictions 1-6
version required 1-9

MATLAB Compiler
bundle file locations 1-5
defined 2-3
restrictions 1-6
running outside the MATLAB environment

2-9
using bundle files 2-5
version required 1-9

MATLAB Math and Graphics Run-Time Library
Installer 2-14

mbuild

configuring the graphics library 1-10
options files 1-10

mbuildopts.sh 1-12
mbuildsglopts.sh 1-12
mccpath 2-9
mccsavepath 2-9
menu bar graphics files

location 1-4
location on UNIX systems 1-5

MFC42.dll 3-10
M-files

searching for callback strings 3-7
translating into C or C++ code 2-3
unsupported coding practices 1-8

mglinstaller 2-14
mglinstaller.exe 2-15
module definition file

sgl.def 1-4
mpath.dll 1-4

O
objects (Handle Graphics)

axes 3-7
controls 3-7
figures 3-7
graphics library support 1-6
in stand-alone graphics applications 3-3
menus 3-7

options files
mbuild 1-10

P
packaging stand-alone applications 2-14
painters renderer

support 1-8
path environment variable

setting on UNIX systems 2-8
PATH variable

editing on a PC 2-7
run-time libraries 2-15

plotedit command
restrictions 1-6

PostScript drivers
support 1-6

print command
options 1-8

print dialog box
in stand-alone graphics applications 2-13

printing
color support 1-7
troubleshooting 3-8

R
renderers

support 1-8

Index

I-4

restrictions 1-6
run-time

behavior of stand-alone applications 2-11
run-time libraries

distributing 2-14

S
scripts

compiling 3-4
turning into functions 3-4

sgl bundle file
installation directory on PCs 1-4
installation location on UNIX systems 1-5
using on UNIX systems 2-7
using on Windows systems 2-5

sgl.dll 1-4
sgl.h 1-5
sglcpp bundle file

installation directory on PCs 1-4
installation locaiton on UNIX systems 1-5
using on UNIX systems 2-7
using on Windows systems 2-5

shared libraries
installed with graphics library 1-3

SHLIB_PATH

run-time libraries 2-15
stand-alone graphics applications 2-9

build procedure 2-5
building on PCs 2-5
building on UNIX systems 2-7
distributing 2-14
licensing 2-14
overview 2-3
run-time behavior 2-11

startup options 2-9
startup.m

compiling 3-9
system requirements 1-9

T
toolbar graphics files

location on UNIX systems 1-5
location on Windows systems 1-4

troubleshooting
compiling scripts 3-4
dependence on startup.m 3-9
missing functions 3-6
missing print option 3-8
starting stand-alone graphics applications 3-10
unsupported MATLAB features 3-2

U
uicontrol objects 3-7
uimenu objects 3-7
uiw_sgl.dll 1-4

W
workspace variables

turning into global variables 3-4
wrapper files

generated by Compiler 2-6, 2-8

Z
zbuffer renderer

support 1-8

	Preface
	Using This Guide
	Expected Background
	Organization of the Document

	Typographical Conventions
	Related Products

	Introduction
	Components of the MATLAB C/C++ Graphics Library
	Files Installed on PCs
	Files Installed on UNIX Systems

	Restrictions
	System Requirements
	Configuring the MATLAB C/C++ Graphics Library
	Configuring the Graphics Library on PCs
	Configuring the Graphics Library on UNIX Systems

	Creating Stand-Alone Graphics Applications
	Overview
	Building a Stand-Alone Graphics Application
	Building Graphics Applications on a PC
	Building Graphics Applications on a UNIX System
	Running the MATLAB Compiler Outside MATLAB
	Compiling and Linking Without mbuild

	Changes in Run-Time Behavior and Appearance
	Changes to Figure Window Menu Bar Options
	Changes to the Figure Window File Menu Options
	Accessing Help in Stand-Alone Applications
	Ctrl+C Handling

	Distributing Stand-Alone Graphics Applications�
	Packaging the MATLAB Run-Time Libraries
	Installing Your Application

	Troubleshooting
	Using Unsupported MATLAB 6.0 Features
	Compiling Applications Written as Scripts
	Fixing Callback Problems: Missing Functions
	File Menu Does Not Appear in Application
	Depending on Graphics Settings in Start-Up Files
	Problem Starting Graphics Application Executable

	Index

