
Computation

Visualization

Programming

The Language of Technical Computing

MATLAB®

Runtime Server

Application Developer’s Guide
Version 6

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB Runtime Server Application Developer’s Guide
 COPYRIGHT 1984 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 1997 First printing New for MATLAB 5.1
May 1998 Second printing Revised for MATLAB 5.2
January 1999 Third printing Revised for MATLAB 5.3 (Release 11)
September 2000 Fourth printing Revised for MATLAB 6.0 (Release 12)

☎PHONE

FAX

✉MAIL

INTERNET

@
E-MAIL

runtime_for_pdf.book Page 2 Wednesday, September 13, 2000 10:55 AM

iii

Contents

Preface

What Is the MATLAB Runtime Server? viii
Key Features of the MATLAB Runtime Server viii
Overview of MATLAB Runtime Applications viii

Related Products . x

Using This Guide . xi

Configuration Information . xii
Password Consistency Rules . xiii

Technical Conventions . xiv

Typographical Conventions . xv

1
Design Issues for a Runtime Application

Preventing Command Window Input/Output 1-3
Disabling Default Menu Options Selectively 1-3

Providing a Way to Exit the Application 1-6
Using the CloseRequestFcn to Exit the Application 1-6
Using a Uicontrol or Uimenu to Exit the Application 1-7

Trapping Errors . 1-9

Setting the Global Error Behavior on a PC 1-10
Ignore Errors . 1-10

runtime_for_pdf.book Page iii Wednesday, September 13, 2000 10:55 AM

iv Contents

Prompt to Quit . 1-11
Prompt to Choose Between Continuing and Quitting 1-12

Setting the Global Warning Behavior on UNIX 1-14

2
Developing a MATLAB Runtime GUI Application

Process: MATLAB Runtime GUI Application 2-2
Overview of This Chapter . 2-2
Organizing Files and Managing Startup Tasks (GUI) 2-2
Compiling the Application (GUI) . 2-6
Testing While Emulating the Runtime Server (GUI) 2-10
Testing with the Runtime Server Variant (GUI) 2-15

Example: MATLAB Runtime GUI Application 2-16
Installing the Example Files . 2-16
Overview of the Application . 2-17
Adapting the Design for Runtime Execution 2-20
Organizing Files and Managing Startup Tasks 2-21
Compiling the Application . 2-22
Testing While Emulating the Runtime Server 2-22
Testing with the Runtime Server Variant 2-23

Summary List: MATLAB Runtime GUI Application 2-24

3
Developing a MATLAB Runtime Engine Application

Process: MATLAB Runtime Engine Application 3-2
Overview of This Chapter . 3-2
Computation and the MATLAB Engine API 3-3
Parts of a MATLAB Runtime Engine Application 3-3
Organizing Files and Managing Startup Tasks 3-3

runtime_for_pdf.book Page iv Wednesday, September 13, 2000 10:55 AM

v

Compiling the Application . 3-6
Testing While Emulating the Runtime Server 3-6
Testing with the Runtime Server Variant 3-8

ActiveX Automation Example . 3-9
Installing the Example Files . 3-9
Adapting the Design for Runtime Execution 3-11
Organizing Files and Managing Startup Tasks 3-18
Compiling the Application . 3-19
Testing with the Runtime Server Variant 3-20

Engine API Example . 3-21
Preparing the Example Files . 3-22
Adapting the Design for Runtime Execution 3-23
Organizing Files and Managing Startup Tasks 3-25
Compiling the Application . 3-26
Testing with the Runtime Server Variant 3-27

Summary List: MATLAB Runtime Engine Application . . . 3-29

4
Shipping a MATLAB Runtime Application

Shipping a MATLAB Runtime Application 4-2
Splash Screen . 4-2
Organizing Files for Shipping . 4-2
Automatically Packaging Files for Shipping 4-3
Manually Packaging Files for Shipping (PC) 4-6
Installing and Running the Application 4-7
Final Testing . 4-9

runtime_for_pdf.book Page v Wednesday, September 13, 2000 10:55 AM

vi Contents

5
Reference

Functions by Category . 5-3

Alphabetical List of Functions . 5-5
buildp . 5-6
cleanp . 5-8
depdir . 5-9
depfun . 5-10
dirlist . 5-14
inmem . 5-16
isruntime . 5-17
pcode . 5-18
pcodeall . 5-20
runtime . 5-21

runtime_for_pdf.book Page vi Wednesday, September 13, 2000 10:55 AM

Preface

What Is the MATLAB Runtime Server? viii
Key Features of the MATLAB Runtime Server viii
Overview of MATLAB Runtime Applications viii

Related Products x

Using This Guide xi

Configuration Informationxii
Password Consistency Rules xiii

Technical Conventions xiv

Typographical Conventions xv

runtime_for_pdf.book Page vii Wednesday, September 13, 2000 10:55 AM

 Preface

viii

What Is the MATLAB Runtime Server?
The MATLAB Runtime Server is a variant of MATLAB® that software
developers can ship together with an application that uses MATLAB. The
MATLAB Runtime Server contains all of the computational and graphical
capabilities of commercial MATLAB, but is designed to run stand-alone
applications that are based on MATLAB. End users of Runtime Server
applications do not need to own MATLAB and do not need any specific
knowledge about MATLAB. They cannot access the source code of Runtime
Server applications.

Key Features of the MATLAB Runtime Server
The key features that distinguish the Runtime Server from commercial
MATLAB are:

• On startup, the Runtime Server shows a developer-designated splash screen
instead of the standard MATLAB splash screen.

• The MATLAB command window is not available for end users of Runtime
Server applications. This means that when you develop an application for
use with the MATLAB Runtime Server, you must supply a graphical user
interface (GUI) or other interface for the end user.

• The Runtime Server recognizes neither M-files nor standard P-files. It can
execute only built-in MATLAB functions, MEX-files and runtime P-files.

Runtime P-files are generated by using the buildp function, described in
“Compiling the Application with One Command” on page 2-7. The section
“Configuration Information” on page xii discusses the difference between
runtime P-files and standard P-files.

• On startup, the Runtime Server executes matlabrt.p instead of matlabrc.m.

Overview of MATLAB Runtime Applications
It is easy to adapt an application based on MATLAB so that it will run with the
Runtime Server. The instructions in this Application Developer’s Guide assume
that you already have a working application that uses MATLAB and that you
want the Runtime Server to execute. If you are still planning and building your
MATLAB based application, then the instructions in this guide will still be
useful because they can help shape your design process.

runtime_for_pdf.book Page viii Wednesday, September 13, 2000 10:55 AM

What Is the MATLAB Runtime Server?

ix

The MATLAB Runtime Server can perform two categories of tasks:

• Run an entire application by executing MEX-files and runtime P-files. This
type of runtime application is called a MATLAB runtime GUI application. Its
front end is usually a MATLAB GUI. For information about developing
GUI-based applications in MATLAB, see the MATLAB documentation set.

• Act as the computational engine for an application that is dependent on
MATLAB and that is partially written in another language. In this case, the
application’s front end is developed in a language such as Visual Basic, and
MATLAB is incorporated as part of the application’s back end. After its
adaptation for use with the Runtime Server, this type of application is called
a MATLAB runtime engine application. For information about using
MATLAB as a computational engine, see the MATLAB documentation set.

These two types of MATLAB runtime applications share some common
features, but also differ in several important ways. The next section explains
how to use this book for the type of runtime application you want to develop.

Note Because the MATLAB command window is inactive in the runtime
variant, MATLAB runtime applications must provide their own user
interfaces for the end users. For example, these front-end user interfaces
might be GUIs created with MATLAB Handle Graphics® or with other visual
development tools.

Note The MATLAB Runtime Server supports the Engine Application
Program Interface (API) Library, pipes on UNIX, and ActiveX on PC. It does
not support dynamic data exchange (DDE), the MATLAB Notebook, or
Simulink®.

runtime_for_pdf.book Page ix Wednesday, September 13, 2000 10:55 AM

 Preface

x

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the MATLAB Runtime Server.

For more information about any of these products, see either:

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section.

Product Description

Database Toolbox Tool for connecting to, and interacting with,
most ODBC/JDBC databases from within
MATLAB

Financial Time Series
Toolbox

Tool for analyzing time series data in the
financial markets

GARCH Toolbox MATLAB functions for univariate Generalized
Autoregressive Conditional Heteroskedasticity
(GARCH) volatility modeling

MATLAB Compiler Compiler for automatically converting
MATLAB M-files to C and C++ code

MATLAB C/C++ Math
Library

Library for automatically converting MATLAB
applications that contain math and graphics to
C and C++ code for stand-alone applications

MATLAB C/C++
Graphics Library

Library for automatically compiling MATLAB
programs that contain graphics and graphical
user interfaces (GUIs) into complete
stand-alone applications

MATLAB Web Server Tool for the development and distribution of
Web-based MATLAB applications

runtime_for_pdf.book Page x Wednesday, September 13, 2000 10:55 AM

Using This Guide

xi

Using This Guide
This guide includes instructions for developing both MATLAB runtime GUI
applications and MATLAB runtime engine applications. Therefore, depending
on which type of runtime application you are developing, certain sections might
not apply to your project. The table below provides some suggestions for which
sections you should read, and which you might be able to skip.

For a... Do this:

MATLAB
runtime
GUI
application

• Read Chapter 2, “Developing a MATLAB Runtime GUI
Application.”

• Skip Chapter 3, “Developing a MATLAB Runtime Engine
Application.”

• Read Chapter 4, “Shipping a MATLAB Runtime
Application.”

MATLAB
runtime
engine
application

• Read most of Chapter 2, “Developing a MATLAB Runtime
GUI Application” but skip the example in the section
“Example: MATLAB Runtime GUI Application” on page
2-16.

• Read Chapter 3, “Developing a MATLAB Runtime Engine
Application.”

• Read Chapter 4, “Shipping a MATLAB Runtime
Application.”

runtime_for_pdf.book Page xi Wednesday, September 13, 2000 10:55 AM

 Preface

xii

Configuration Information
Before you use the Runtime Server, you must install it and also stamp it with
a password that you choose. First follow the instructions in the MATLAB
Installation Guide for your platform. Your toolbox directory now contains a
runtime subdirectory. This subdirectory contains tools for developing and
debugging MATLAB runtime applications, along with some sample files.

To stamp MATLAB with your password, follow these instructions:

1 Go to the system prompt.

2 If matlabroot is the directory in which you installed MATLAB, then
navigate to

matlabroot\toolbox\runtime\bin\win32 (PC)

matlabroot/toolbox/runtime (UNIX)

3 At the system prompt, type

rtsetup -f matlabroot\bin\win32\matlab.exe -s string (PC)

rtsetup (UNIX)

where string is a password that you choose. On UNIX platforms, rtsetup
is an interactive script that prompts you for the password; for more details,
see the text file matlabroot/toolbox/runtime/README.

The utility rtsetup stamps your copy of MATLAB with this password. The
password can be up to 32 characters long and may include spaces.

Note You cannot restamp a previously stamped copy of MATLAB.

If you anticipate creating multiple runtime applications, each with a different
password, then you might want to preserve an unstamped copy of
matlabroot\bin\win32\matlab.exe (PC) or matlabroot/bin/arch/matlab
(UNIX, where arch is a directory name specific to your architecture). Then
whenever you need to change the password, copy the unstamped file into its
proper place and run rtsetup. Alternatively, you can reinstall MATLAB and
run rtsetup each time you want to change the password.

runtime_for_pdf.book Page xii Wednesday, September 13, 2000 10:55 AM

Configuration Information

xiii

Password Consistency Rules
Your runtime application will work properly on the end-user’s machine only if
you follow these consistency rules:

Rule 1. Stamp your development copy of MATLAB before converting to P-files
any of the files that you will be testing or shipping with the Runtime Server. If
you or others on your development team use several copies of MATLAB for a
single runtime application, then stamp all of them with the same password.
The stamping procedure was described in “Configuration Information”.

Rule 2. When you generate runtime P-files for use with the Runtime Server,
generate them using a stamped development copy that has the same password
mentioned in Rule 1. The generation of runtime P-files is described in
“Compiling the Application (GUI)” in Chapter 2.

Rule 3. When you duplicate MATLAB files for shipping, duplicate those of a
stamped development copy that has the same password mentioned in Rule 1.
Duplication of files for shipping is described in “Automatically Packaging Files
for Shipping” in Chapter 4.

runtime_for_pdf.book Page xiii Wednesday, September 13, 2000 10:55 AM

 Preface

xiv

Technical Conventions
In this Application Developer’s Guide, an application based on MATLAB that
you create, or adapt, for use with the Runtime Server is called a MATLAB
runtime application. The section “Overview of MATLAB Runtime
Applications” on page viii introduces the two types of MATLAB runtime
applications.

The commercial MATLAB that you use to develop the application is called your
development copy of MATLAB or just MATLAB. The subset of your
development copy of MATLAB that you ship as part of your MATLAB runtime
application is called the runtime variant or the shipping variant.

The executable file named either matlab.exe on PC platforms or matlab on
UNIX platforms is called the MATLAB executable.

runtime_for_pdf.book Page xiv Wednesday, September 13, 2000 10:55 AM

Typographical Conventions

xv

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention to Use Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names/syntax Monospace font The cos function finds the
cosine of each array element.

Syntax line example is

MLGetVar ML_var_name

Keys Boldface with an initial
capital letter

Press the Return key.

Literal strings (in syntax
descriptions in Reference
chapters)

Monospace bold for
literals

f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables

Standard text font for
functions, operators, and
constants

This vector represents the
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with

A =

5

Menu names, menu items, and
controls

Boldface with an initial
capital letter

Choose the File menu.

New terms Italics An array is an ordered
collection of information.

String variables (from a finite
list)

Monospace italics sysc = d2c(sysd, 'method')

runtime_for_pdf.book Page xv Wednesday, September 13, 2000 10:55 AM

 Preface

xvi

runtime_for_pdf.book Page xvi Wednesday, September 13, 2000 10:55 AM

1
Design Issues for a
Runtime Application

Preventing Command Window Input/Output 1-3
Disabling Default Menu Options Selectively 1-3

Providing a Way to Exit the Application 1-6
Using the CloseRequestFcn to Exit the Application 1-6
Using a Uicontrol or Uimenu to Exit the Application 1-7

Trapping Errors 1-9

Setting the Global Error Behavior on a PC 1-10
Ignore Errors . 1-10
Prompt to Quit 1-11
Prompt to Choose Between Continuing and Quitting 1-12

Setting the Global Warning Behavior on UNIX 1-14

runtime_for_pdf.book Page 1 Wednesday, September 13, 2000 10:55 AM

1 Design Issues for a Runtime Application

1-2

This chapter discusses design issues that you should keep in mind while
developing an application for runtime use. If you already have an application
that you want to use with the Runtime Server, then this chapter can help you
determine whether it needs any adaptations.

The following sections cover these issues:

• “Preventing Command Window Input/Output” on page 1-3 describes how to
make your application independent of the command window.

• “Providing a Way to Exit the Application” on page 1-6 discusses a few
additions that allow your end user to exit the application (and Runtime
Server).

• “Trapping Errors” on page 1-9 reviews the techniques for trapping errors in
a Runtime Server application.

• “Setting the Global Error Behavior on a PC” on page 1-10 explains how you
can control the Runtime Server’s response to untrapped errors.

• “Setting the Global Warning Behavior on UNIX” on page 1-14 shows how to
prevent the display of warning messages in the terminal window.

runtime_for_pdf.book Page 2 Wednesday, September 13, 2000 10:55 AM

Preventing Command Window Input/Output

1-3

Preventing Command Window Input/Output
The MATLAB Runtime Server does not provide a command-line interface to
the end user, so your application should not depend on the command window.
To eliminate dependence on the command window, you should:

• Make certain that your application does not require input via the command
window, and does not direct output to the command window.

- To avoid the need for command-line input, make sure the user can control
the application solely through its graphical user interface (GUI). For
example, if your application uses the MATLAB input function to acquire
command-line input from the user, replace it with the inputdlg function,
which uses a dialog box instead.

- To prevent command window output, trap errors where possible, and use
the semicolon (;) operator at the end of statements to suppress the display
of results to the command window. Use the GUI window, or additional
figure windows and dialog boxes, to display results, error messages, help
text, etc. See “Trapping Errors” on page 1-9 for more information about
handling errors. Also, see “Setting the Global Warning Behavior on UNIX”
on page 1-14 for information about UNIX warnings.

If you need to use an evaluation function, then use evalc instead of eval,
thus capturing output text. However, be aware that evaluation functions
can make it more difficult to determine which files the application depends
on. See “Analyzing Functions Called by eval” in Chapter 2 for information.

• Disable most or all default menu options on all figure windows that your
application uses.

- (Recommended) To disable the default menus completely, set the figure’s
Menubar property to 'none'. You can still add your own menus.

- To disable some default menu options but not others, see “Disabling
Default Menu Options Selectively” on page 1-3. This option requires you to
maintain your application carefully if you use it with future versions of
MATLAB. See the cautionary note in that section.

Disabling Default Menu Options Selectively
You may want to take advantage of the built-in MATLAB tools for tasks such
as printing the contents of figure windows that your application uses. This

runtime_for_pdf.book Page 3 Wednesday, September 13, 2000 10:55 AM

1 Design Issues for a Runtime Application

1-4

section describes how to include selected functionality from MATLAB figure
menus in your own application.

Note If you use menu callbacks from the default MATLAB figure menus and
later ship your application with a future version of MATLAB, then you should
test those callbacks with the future version. The names and functionality of
MATLAB default menu callbacks are not guaranteed to remain unchanged
from one version of MATLAB to the next.

You must disable these default menu options:

• From the File menu:

- New Figure
- Preferences...

• Edit menu

• View menu

• Insert menu

• From the Tools menu:

- Select & Edit
- Move Camera
- Camera Motion
- Camera Axis
- Camera Reset
- Basic Fitting
- Data Statistics

• Window menu

• Help menu

To use a menu bar on your own figure window that is a modification of the
default menu bar:

1 Close all figures that may have been open from previous MATLAB work in
the current session.

2 Prepare a modified version of the default menu bar by navigating to your
application’s working directory and executing these commands.

runtime_for_pdf.book Page 4 Wednesday, September 13, 2000 10:55 AM

Preventing Command Window Input/Output

1-5

figure('menubar','figure','toolbar','none')
set(findall(gcf),'handlevisibility','on','serializable','on')
m = get(gcf,'children');
figure('menubar','none','toolbar','none')
copyobj(flipud(m),2)
set(findobj(gcf,'label','&Edit'),'visible','off')
set(findobj(gcf,'label','&View'),'visible','off')
set(findobj(gcf,'label','&Insert'),'visible','off')
set(findobj(gcf,'label','&Window'),'visible','off')
set(findobj(gcf,'label','&Help'),'visible','off')
set(findobj(gcf,'label','&New Figure'),'visible','off')
set(findobj(gcf,'label','Pre&ferences...'),'separator',...

'off','visible','off')
set(findobj(gcf,'label','Select && &Edit'),'visible','off')
set(findobj(gcf,'label','Move &Camera'),'visible','off')
set(findobj(gcf,'label','Camera &Motion'),'visible','off')
set(findobj(gcf,'label','Camera A&xis'),'visible','off')
set(findobj(gcf,'label','Camera Re&set'),'visible','off')
set(findobj(gcf,'label','&Basic Fitting'),'visible','off')
set(findobj(gcf,'label','&Data Statistics'),'visible','off')
hgsave(gcf,'mymenufile.fig')
close gcf; close gcf

3 In your application, issue this command to open a new figure window with
the customized menu.

newfig = hgload('mymenufile.fig');

You can also make other modifications using MATLAB’s layout tools, such as
changing the callbacks for menu options that are not disabled, and adding new
menu options of your own. See “Creating GUIs” for details on using the layout
tools.

runtime_for_pdf.book Page 5 Wednesday, September 13, 2000 10:55 AM

1 Design Issues for a Runtime Application

1-6

Providing a Way to Exit the Application
Since the user cannot access the command window to type the usual MATLAB
quit command, you need to provide a mechanism for the user to exit the
application (including quitting MATLAB). Two common ways to do this are by
setting the GUI’s CloseRequestFcn property to quit the application, and by
providing buttons and menus on the interface that enable the user to quit the
application. Both techniques are described below.

Tip You might want the exit mechanism to quit MATLAB for the end user but
not quit your own MATLAB session while you’re still developing the
application. If so, use the isruntime function to test whether or not the
application is running with commercial MATLAB. For example, your GUI
might have a button whose callback function includes lines like these:

if isruntime
 close all
 quit force
else
 close all
end

Using the CloseRequestFcn to Exit the Application
As a minimal measure, you should configure the CloseRequestFcn property of
the main GUI figure window to exit the application. This allows the user to exit
the application by clicking the GUI window’s Close box.

Close box

runtime_for_pdf.book Page 6 Wednesday, September 13, 2000 10:55 AM

Providing a Way to Exit the Application

1-7

Note The default CloseRequestFcn for a MATLAB GUI is the function
closereq.m, which simply deletes the figure window. Since deleting the main
GUI window leaves the user with no means to exit the Runtime Server, you
should substitute an alternate CloseRequestFcn for the main GUI figure
window. If you do not want the GUI’s Close box to exit the application (as
shown below), you can specify some other action for the CloseRequestFcn (use
an empty CloseRequestFcn string to disable the Close box entirely).

For example, the following command creates a GUI window whose Close box
executes a function called shutdown when clicked.

fig = figure('HandleVisibility','Callback','Menubar','none',...
'CloseRequestFcn','shutdown');

This shut-down function, which you write, can perform final operations (such
as saving the user’s work and settings) and then explicitly execute the quit
command. Note that the shut-down function should close the GUI figure
window before executing the quit command. This prevents possible recursion
between the quit function and CloseRequestFcn.

Using a Uicontrol or Uimenu to Exit the Application
In addition to adapting the CloseRequestFcn, you might want to provide a
button or menu option on the GUI that allows the user to exit the Runtime
Server.

For example, a common GUI convention on most platforms is a File menu
containing a Quit option. You can create a menu like this by using a uimenu
object with 'shutdown' as the callback, where shutdown.m is a shut-down
function that you write. For example,

fig = figure('HandleVisibility','Callback','Menubar','none',...
'CloseRequestFcn','shutdown');
filemmenu = uimenu(fig,'Label','&File');
quitmenu = uimenu(filemmenu,'Label','&Quit',...
'Accelerator','Q','Callback','shutdown');

runtime_for_pdf.book Page 7 Wednesday, September 13, 2000 10:55 AM

1 Design Issues for a Runtime Application

1-8

Note Although MATLAB figure windows are created with a default File
menu that includes a Quit option, you may have disabled this menu by setting
the figure’s Menubar property to 'none' (see “Preventing Command Window
Input/Output” on page 1-3).

You can create a Quit button in a similar way.

fig = figure('HandleVisibility','Callback','Menubar','none',...
'CloseRequestFcn','shutdown');
uicontrol(fig,'Style','Pushbutton','String','Quit',...
'Callback','shutdown')

runtime_for_pdf.book Page 8 Wednesday, September 13, 2000 10:55 AM

Trapping Errors

1-9

Trapping Errors
Error trapping helps suppress command-window output and helps your
Runtime Server application run more smoothly. It also allows you to design
user-friendly features such as context-sensitive error dialog boxes. Wherever
the application executes a MATLAB command that could potentially generate
an error, use a try-catch-end structure.

In a try-catch-end structure (below), the try block contains the MATLAB
commands that you want the application to evaluate and execute (expression1
and expression2). If the try block executes successfully, then the catch block
is ignored. If the try block generates an error during execution, then the catch
block (expression3 and expression4) is executed in its place, and the error is
suppressed. Use the lasterr command to find out what the error was.

try
 expression1;
 expression2;
catch
 expression3;
 expression4;
end

Tip Even if you avoid using the error command, you might invoke MATLAB
functions that use it. Therefore, you should use these error trapping
techniques at a high structural level in your application so that the
application can trap all errors and handle them in an appropriate way.

runtime_for_pdf.book Page 9 Wednesday, September 13, 2000 10:55 AM

1 Design Issues for a Runtime Application

1-10

Setting the Global Error Behavior on a PC
When an untrapped error occurs on PC platforms, the Runtime Server reacts
with the error behavior that you specify in the matlabrt.m file. The syntax is

runtime errormode mode

The three possible mode values and the corresponding responses to an
untrapped error are in the table below.

The Runtime Server defaults to the dialog mode if matlabrt does not specify
an error behavior; dialog is the recommended error behavior for a runtime
application.

These three modes are described below. Note that the error mode setting is only
effective when the application runs with the Runtime Server; if the application
is running in commercial MATLAB, whether MATLAB emulates the Runtime
Server or not, then untrapped errors are displayed in the command window.
The difference between the Runtime Server and commercial MATLAB’s
runtime emulation is explained in “Emulating the Runtime Server” on page
2-10. Also, the error mode setting does not apply to the execution of the
matlabrt file. When executing matlabrt, the Runtime Server always halts
when an error occurs.

Ignore Errors
In continue mode, the Runtime Server does not suspend execution when an
error is encountered, and does not inform the user of the error. As a result of
the error, the application might lose some portion of its functionality. The
degree to which the application is affected typically depends on the source of
the error; a few possibilities are:

Table 1-1: Values of mode and Responses to Untrapped Errors

mode Response to Untrapped Error

continue Ignore the error; do not inform the user

quit Prompt the user to quit the application

dialog Prompt the user to choose between ignoring the error
and quitting the application

runtime_for_pdf.book Page 10 Wednesday, September 13, 2000 10:55 AM

Setting the Global Error Behavior on a PC

1-11

• Limited loss of application functionality. For example, if a button callback
string contains a misspelled function name, the Runtime Server might
generate the following error when the button is pressed:
??? Undefined function or variable 'function'.
??? Error while evaluating uicontrol Callback.

The error message is not visible to the user, and the error itself does not
impact any other area of the application, although the affected button might
be unresponsive.

• Unexpected application behavior. For example, if an error is generated as
the result of invalid input to a mathematical function, the application might
generate inaccurate results. Since the error message is suppressed, the user
might not be aware that a problem has occurred.

• Failure of the application. A severe error might lead to a substantial loss of
functionality. The user might be forced to quit the application.

Prompt to Quit
In quitmode, every untrapped error generates an error dialog box (like the one
shown below) containing MATLAB’s usual diagnostic message.

runtime_for_pdf.book Page 11 Wednesday, September 13, 2000 10:55 AM

1 Design Issues for a Runtime Application

1-12

When the user dismisses this dialog the application quits.

Use the “Prompt to Quit” error mode if you want to ensure that the user is not
able to continue using the application after an error occurs.

Note Use the “Prompt to Quit” error mode for backwards-compatibility with
version 5.1 Runtime Server applications.

Prompt to Choose Between Continuing and Quitting
In dialog mode, every untrapped error generates an error dialog box (like the
one shown below) containing MATLAB’s usual diagnostic message and two
buttons, Continue and Quit.

If the user selects Continue, then the dialog box disappears and the Runtime
Server continues running the application. If the user selects Quit, then the
application quits.

runtime_for_pdf.book Page 12 Wednesday, September 13, 2000 10:55 AM

Setting the Global Error Behavior on a PC

1-13

Since the user might not be able to distinguish a superficial error from a
serious one, you should not rely on this global error setting as a substitute for
trapping errors locally.

runtime_for_pdf.book Page 13 Wednesday, September 13, 2000 10:55 AM

1 Design Issues for a Runtime Application

1-14

Setting the Global Warning Behavior on UNIX
The UNIX Runtime Server’s default warning behavior, like that of commercial
MATLAB, directs warning messages to the command window. Since a Runtime
Server application displays these warning messages in the terminal window,
you might want to change the application’s warning behavior.

You can instruct the Runtime Server to suppress warning messages by using
the statement warning off in matlabrt.m, instead of warning backtrace.

runtime_for_pdf.book Page 14 Wednesday, September 13, 2000 10:55 AM

2
Developing a MATLAB
Runtime GUI Application

Process: MATLAB Runtime GUI Application 2-2
Overview of This Chapter 2-2
Organizing Files and Managing Startup Tasks (GUI) 2-2
Compiling the Application (GUI) 2-6
Testing While Emulating the Runtime Server (GUI) 2-10
Testing with the Runtime Server Variant (GUI) 2-15

Example: MATLAB Runtime GUI Application 2-16
Installing the Example Files 2-16
Overview of the Application 2-17
Adapting the Design for Runtime Execution 2-20
Organizing Files and Managing Startup Tasks 2-21
Compiling the Application 2-22
Testing While Emulating the Runtime Server 2-22
Testing with the Runtime Server Variant 2-23

Summary List: MATLAB Runtime GUI Application . . 2-24

runtime_for_pdf.book Page 1 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-2

Process: MATLAB Runtime GUI Application
Now that you have a MATLAB application that you developed while
considering the design issues from Chapter 1, “Design Issues for a Runtime
Application,” these steps will convert it into a MATLAB runtime GUI
application:

• Organizing files and managing startup tasks

• Compiling the application M-files into runtime P-files that the MATLAB
Runtime Server recognizes

• Testing and debugging the application

- By having commercial MATLAB emulate the Runtime Server

- With the Runtime Server variant (See also “Final Testing” on page 4-9)

Overview of This Chapter
This chapter discusses these steps as they relate to MATLAB runtime GUI
applications. The example in the section “Example: MATLAB Runtime GUI
Application” on page 2-16 works through the first three steps for a sample
MATLAB runtime GUI application. The section “Summary List: MATLAB
Runtime GUI Application” on page 2-24 summarizes the process of converting
an application into a MATLAB runtime GUI application, for quick reference.

Organizing Files and Managing Startup Tasks (GUI)
This section discusses the locations of the files you write for the runtime
application. It also discusses the special startup and path definition functions
that the Runtime Server invokes when it first runs. These utility functions,
matlabrt and pathdefrt, are variations of the functions matlabrc and pathdef
that commercial MATLAB invokes upon startup. The table below compares the
startup sequences of the two versions of MATLAB; the file shown to the left of
an arrow (->) launches the file shown to the right.

MATLAB Variant Startup Sequence

Commercial matlab -> matlabrc.m -> pathdef.m

Runtime Server matlab -> matlabrt.p -> pathdefrt.p

runtime_for_pdf.book Page 2 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime GUI Application

2-3

Where to Place Your Files
When you package and ship the application, your files must reside in some
directory underneath MATLAB’s toolbox directory. This restriction has two
important consequences, however:

• Because MATLAB caches the functions underneath toolbox, each time you
change a file there you must either restart MATLAB or execute the
command
rehash toolboxreset

to register the changes. In particular, this applies if you edit, recompile,
delete, or move a file.

• If you decide to keep your own files in another location while developing the
application (in order to avoid having to use rehash frequently) and move the
P-files at the last minute to a subdirectory of toolbox, then you must
remember to:

- List the destination subdirectory in the path definition P-file pathdefrt.p.
The pathdefrt function is discussed below in “Creating the Path
Definition Function” on page 2-4.

- Move the P-files to their toolbox destination during your testing process.
Then use rehash toolboxreset to register the changes.

- Delete, regenerate, and move P-files to their toolbox destination each
time you change the source M-files. Use rehash toolboxreset as
necessary to register the changes to toolbox subdirectories.

Tip You should avoid having multiple files on your path with the same name.
You can use the which fun -all syntax to find out whether you have multiple
functions named fun on your path.

Creating the Startup Function
The utility function matlabrt, essential for a MATLAB Runtime Server
application, is a variation of the matlabrc function that commercial MATLAB
uses. To create a matlabrt function for your application, you can modify the
template toolbox\runtime\matlabrt_template.m, and place the modified file
in toolbox\local. This section describes the properties that your matlabrt
function should have.

runtime_for_pdf.book Page 3 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-4

Properties of the matlabrt Function. The matlabrt function must:

• Reside in the toolbox\local directory

• Perform the ordinary startup tasks of matlabrc, such as calling the path
definition function

• Launch the rest of the application, because matlabrt.p is the only file that
the Runtime Server directly calls. For example, if your top-level application
M-file is called myapp.m, then matlabrt.m should contain the line

myapp

You can also choose to have matlabrt perform these optional tasks:

• (PC only) Set the global error behavior for the application. Include the
command
runtime errormode mode

in matlabrt.m, where mode can be continue, quit, or dialog. This setting
controls how the Runtime Server responds to untrapped errors: by ignoring
them, prompting the user to quit, or prompting the user to decide between
continuing and quitting. See “Setting the Global Error Behavior on a PC” on
page 1-10 for a complete description of these options. If you do not specify the
global error behavior in matlabrt.m, then the Runtime Server defaults to the
dialog setting.

• (UNIX only) Set the application’s warning behavior. You might want to
replace the warning backtrace statement in matlabrt.m with warning off.
See “Setting the Global Warning Behavior on UNIX” on page 1-14 and the
sample matlabrt.m file.

Creating the Path Definition Function
The utility function pathdefrt, essential for a MATLAB Runtime Server
application, is a variation of the pathdef function that commercial MATLAB
uses. This section describes the variations involved and gives information on
how you should design pathdefrt.

Properties of the pathdefrt Function. The pathdefrt function should reside in the
toolbox\local directory. It stores the path information and is called from
matlabrt when the Runtime Server starts up.

All files that your application uses need to be on the Runtime Server path so
that the Runtime Server can find them. This path should include only

runtime_for_pdf.book Page 4 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime GUI Application

2-5

directories under the toolbox directory. For example, perhaps your own files
will reside in toolbox\myapp in the end user’s installation and perhaps your
files depend on MATLAB functions from toolbox\matlab\general,
toolbox\matlab\ops, etc.

The path should also include toolbox\local. Furthermore, if an application
uses files from private or class directories (which depfun and depdir will
indicate), then these directories should not be added to the path. However,
their parent directories should be included on the path. For example, if depdir
lists

C:\matlab\toolbox\matlab\funfun\@inline

then the path should include the toolbox\matlab\funfun directory.

Private and class directories are described in the “Programming and Data
Types” part of the MATLAB documentation. To find out whether your
application uses private or class directories, apply depfun or depdir to the
top-level application file and check the results for directories that either are
named private or have the @ symbol at the beginning of their names.

Creating the pathdefrt.m Function. You can adapt the template
pathdefrt_template.m provided in the toolbox\runtime directory. To modify
it for your application:

1 Copy pathdefrt_template.m into toolbox\local and rename it
pathdefrt.m.

2 Use the depdir function to find out which directories contain necessary
application files. If matlabrt.m is the top-level M-file for your application,
then use the command below.

list = depdir('matlabrt');

3 Omit private and class directories from list.

4 Paste the contents of list into the pathdefrt.m file that you are building,
and edit the lines as necessary to adjust formatting. Path elements should
have the form

'$toolbox/matlab/general:'

and not something like 'C:\Apps\matlab\toolbox\matlab\general'

runtime_for_pdf.book Page 5 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-6

5 If your own application files are not currently in a subdirectory of toolbox,
then add entries to reflect your ultimate shipping structure. See “Where to
Place Your Files” on page 2-3 for more information about where to place your
application files.

Other Path Specification Considerations
The Runtime Server generates warnings if it cannot locate all of the directories
that are specified on the runtime path. For example, if you specify the specfun
directory on the runtime path but do not ship it, then the Runtime Server
generates the following warning at startup.

Name is nonexistent or not a directory:
C:\matlab\toolbox\matlab\specfun

However, on PC platforms, this warning message is not actually visible to your
end user because the command window is minimized. On UNIX platforms, if
the warning level is not set to off, then the message is displayed in the
terminal window.

Compiling the Application (GUI)
In order for the application to work with the MATLAB Runtime Server, you
must compile the application M-files into runtime P-files. A runtime P-file
differs from a standard P-file in that the former is stamped with the same
password that you used when executing rtsetup.

This section discusses:

• The compilation process in general

• How to compile the application with one command

• How to compile selected M-files

• How to remove compiled files

Overview of Compilation
A shipping runtime application contains compiled versions of these files:

• Files you write for your application

• M-files from toolbox\matlab that your application uses

• matlabrt.m and pathdefrt.m

runtime_for_pdf.book Page 6 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime GUI Application

2-7

Note Runtime P-files can be created only by a stamped commercial copy of
MATLAB. Also, the Runtime Server inherits the password of its commercial
MATLAB parent and can execute only those runtime P-files having that same
password. See “Password Consistency Rules” on page xiii to ensure
compatibility. (Commercial MATLAB can execute both standard and runtime
P-files.)

Note Purchase of the MATLAB Runtime Server does not imply a license to
compile and ship functions from MATLAB add-on products. Please contact
The MathWorks for information on shipping components of add-on products.

The easiest way to compile the application is to use the buildp function. This
function determines which files to compile and compiles them. Thus you do not
have to compile each file individually. To learn about this approach, see
“Compiling the Application with One Command” on page 2-7 below.

Alternatively, you can use depfun in conjunction with pcode. To learn about
this approach, see “Compiling Selected M-Files” on page 2-9.

Tips for Compiling. Here are a few tips to keep in mind when compiling M-files:

• Before compiling files or seeking dependencies, you should use cleanp to
remove all files with a .p extension on the MATLAB path. This function also
removes .p files in the current directory.

• If you do not remove existing P-files, then buildp and pcode overwrite them
if necessary.

• To register the changes after creating or deleting P-files, you should execute
a rehash toolboxreset command or restart MATLAB. If you use cleanp or
buildp, then you do not need to issue this command since cleanp and buildp
do it for you.

Compiling the Application with One Command
The buildp function creates P-code for an entire runtime application once you
specify the key files in the application. Typically, you specify only the top-level
file, though you might need to specify a small number of other files, as

runtime_for_pdf.book Page 7 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-8

mentioned in the troubleshooting section below. The buildp function
determines which files to compile, compiles them into runtime P-files, and
places the runtime-ready files alongside their uncompiled counterparts.

The buildp command below creates P-code for a runtime application whose
top-level file is matlabrt.m.

log = buildp({'matlabrt'});

The output log is a string containing the name of a file that details the various
phases of execution of buildp.

Troubleshooting After Using buildp. For some applications, one call to buildp
creates the entire set of runtime-ready files. However, for some applications,
you might need to use buildp more than once to determine the best input list
for buildp. Check the the log file (whose filename is the output string log)
and/or the output for information and diagnostics. Here are some
troubleshooting tips in case buildp either fails, indicates a potential problem,
or gives incomplete results:

• If your application uses toolbar items from MATLAB’s default figure
window, then include 'FigureToolBar.fig' in the first input argument of
buildp.

• If your application uses menu items from MATLAB’s default figure window,
then include 'FigureMenuBar.fig' in the first input argument of buildp.

• If your application uses GUI elements and creates .fig files, then include
those .fig files in the first input argument of buildp.

• If buildp cannot parse a file or cannot resolve a symbol, then its results
might be incomplete. Check your files for syntax errors, misspelled variable
or function names, and other errors. Then invoke buildp again.

• If your application (including functions on which the application depends)
uses an evaluation function (eval, evalc, evalin, or feval), then buildp
cannot determine whether the evaluation string contains the name of a
function that needs to be compiled. buildp reports instances of evaluation
functions. You should check each instance manually and decide whether any

runtime_for_pdf.book Page 8 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime GUI Application

2-9

additional files should be compiled. Then invoke buildp again and include
those additional files in the first input argument.

For example, if you use an evaluation command to execute either comp1.m or
comp2.m, then you can modify a buildp command like
log = buildp({'matlabrt'});

so that it becomes
log = buildp({'matlabrt','comp1','comp2'});

For additional suggestions for dealing with evaluation functions, see
“Analyzing Functions Called by eval” on page 2-13.

Compiling Selected M-Files
To compile selected M-files into runtime P-files, use the pcode command with
the runtime flag. The runtime flag tells MATLAB to create a runtime P-file,
instead of the standard P-file. Other flags and options can control which files
are compiled and where the runtime P-files are placed, as explained below.

Use the -inplace flag with the pcode command, as follows. For the file
myfile.m, type

pcode myfile -inplace -runtime

To compile the entire application, apply depfun to the top-level M-file
(matlabrt.m) and then apply pcode to the output. This is an alternative to
using the buildp command as explained earlier. Here, the purpose of using
depfun is to determine which M-files to compile. The commands are below.

list = depfun('matlabrt');
pcode(list{:},'-inplace','-runtime')

Troubleshooting After Using pcode. If your application uses toolbar or menu items
from MATLAB’s default figure window, then you need to include
'FigureMenuBar.fig' and 'FigureToolBar.fig' in your input to depfun. If
your application uses GUI elements and creates .fig files, then you should
include those .fig files in your input to depfun as well.

Also note that there are some circumstances in which depfun provides an
incomplete list. For details, see “Analyzing Functions Called by eval” on page
2-13.

runtime_for_pdf.book Page 9 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-10

Removing P-Files
To remove all files with a .p extension on the path and in the current directory,
type

cleanp

Caution cleanp looks only at names, not contents, of files. Use caution if you
have files other than MATLAB P-files that use a .p filename extension.

Testing While Emulating the Runtime Server (GUI)
Once you have compiled all of the M-files of a MATLAB runtime GUI
application, you can test the application with the Runtime Server. However,
since the Runtime Server does not provide a command window, for the purpose
of debugging it is much easier to have your development version of MATLAB
emulate the Runtime Server as a first step in the testing process. You should
still test the application with the actual Runtime Server variant later. This
section discusses both kinds of testing and includes a troubleshooting section.

Moving P-Files to Final Locations
If you store your source M-files outside of the toolbox directory, then at some
point during your testing you should move the corresponding P-files to their
final destinations under toolbox. Then use rehash toolboxreset to register
the changes.

Each time you change the source M-files, remember to delete, regenerate, and
move the P-files to their toolbox destination. Again, use rehash toolboxreset
as necessary to register the changes to toolbox subdirectories.

Emulating the Runtime Server
Commercial MATLAB can emulate the Runtime Server environment by
disabling MATLAB’s ability to read M-files and standard P-files. The command
window remains active, however. This section describes the procedure and
some tips for testing while MATLAB emulates the Runtime Server.

To test and debug while MATLAB emulates the Runtime Server, follow this
procedure:

runtime_for_pdf.book Page 10 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime GUI Application

2-11

1 At the MATLAB prompt, type

runtime on

to start emulating the Runtime Server.

To find out whether MATLAB is emulating the Runtime Server at a given
time, type

runtime status

at the command line.

2 Run your application from the command line. For the most accurate
simulation of the Runtime Server environment, launch the application
through matlabrt.p, as the Runtime Server does. At the command line type

matlabrt

3 If there are errors, the usual error report in the MATLAB command window
shows you where they occurred. To execute M-files and debug your
functions, first turn off Runtime Server emulation by typing

runtime off

and then debug the problematic M-files as you normally would.

4 Whenever you change an M-file, be sure that runtime MATLAB registers
those changes: If the M-file is under the toolbox directory, then use rehash
toolboxreset. Then, use buildp to recompile the M-file into a runtime
P-file. Finally, test the application again with MATLAB emulating the
Runtime Server.

5 To exit the application without quitting MATLAB, close the application’s
GUI from the command line by typing

close force

Runtime Server Emulation Considerations
There are a few things you should keep in mind when using MATLAB to
emulate the Runtime Server:

runtime_for_pdf.book Page 11 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-12

• Even when emulating the Runtime Server, commercial MATLAB displays
untrapped errors in the command window. To see the effects of the global
error behavior that you specified in matlabrt.m, you must run the
application with the Runtime Server variant, as described in “Testing with
the Runtime Server Variant (GUI)” on page 2-15.

• It might help to clear memory-resident functions by typing rehash
toolboxreset before starting to emulate the Runtime Server. This ensures
that MATLAB does not use a P-file already in memory from an earlier run.

• You might want to save your development path before running the
application, since matlabrt replaces it with the runtime path. Type

devpath = path;
save devpath devpath

After ending Runtime Server emulation, you can restore your development
path by typing
load devpath
path(devpath)

If the path.m function is not on the runtime path, then you can use
matlabpath(devpath) instead. Restarting MATLAB also restores your
original path.

Troubleshooting
If the application runs normally with commercial MATLAB but does not run as
expected with MATLAB emulating the Runtime Server, then the problem
might be one of the following:

• Some M-files did not compile. If necessary M-files were not specified in the
compile list for any reason, then the corresponding P-files will be missing
and the application might not run properly.

- If you did not use cleanp before compiling, then the application might be
using a P-file that was not generated from the current version of the M-file.
When this happens, you might need to delete all P-files and recompile
them.

- If your application uses toolbar or menu items from MATLAB’s default
figure window, then you need to include 'FigureMenuBar.fig' and
'FigureToolBar.fig' in your input to buildp or depfun. If your

runtime_for_pdf.book Page 12 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime GUI Application

2-13

application uses GUI elements and creates .fig files, then you should
include those .fig files in your input to buildp or depfun as well.

• Some directories are missing from the path. If the path specified in
pathdefrt is lacking directories that contain application files, then the
application might not run properly.

You might be able to determine the source of the problem by running the
application using the runtime path with commercial MATLAB. Type

runtime off
rehash toolboxreset
matlabrt

If the application now runs as expected, then there are probably uncompiled
M-files. If the problem persists even with commercial MATLAB, then the path
specification in pathdefrt might be incomplete. In either case, MATLAB’s
error messages should provide a good indication of which files are not being
found.

Analyzing Functions Called by eval. Calls to buildp or depfun might not find
functions whose names are assembled at runtime within the calling function,
and which are executed using eval, evalc, or evalin. For example, if your
application calls a function named action1.m by concatenating the strings
'action' and '1' in an eval statement,

x = 1;
eval(strcat('action',int2str(x)));

then depfun does not recognize that there is a function called action1.m.

To make certain that depfun does analyze this file, insert the following code in
one of the other application files, such as matlabrt.

if 0
 action1
end

The if statement above does not execute at runtime, but it allows depfun to see
the full action1 function name when it analyzes matlabrt.

Using inmem to Find Files That depfun Misses. To find out whether buildp or depfun
is missing certain application functions, you can compare the depfun
diagnostics to the list of functions that are in MATLAB’s memory after the

runtime_for_pdf.book Page 13 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-14

application is executed. You can view this list by using the inmem function, as
described below.

1 Type rehash toolboxreset to renew the session, and then type

matlabrt

to launch the application.

2 Use the application as thoroughly as possible by pressing buttons, selecting
menus, etc. The goal of this is to force MATLAB to load all or most of the
application’s functions into memory. If there is a particular area of the
application that is a source of problems for depfun, then use it especially
heavily to make sure that MATLAB loads all the relevant functions.

3 When you have used the application sufficiently to load the relevant
functions into memory, quit the application without exiting MATLAB.

4 Generate the list of functions in memory by typing

memlist = inmem

The listed functions are those that MATLAB used to carry out the tasks that
you just performed in Step 2.

5 Use depfun, as before, to generate a list of the application’s dependent
functions.

list = depfun('matlabrt')

6 Compare the functions in list and memlist. You can do this visually, or by
using a script like the one below.

% Extract filenames from DEPFUN output
for i = 1:length(list)
 [path,name,ext,ver] = fileparts(list{i});
 list{i} = name;
end

% DEPFUN results not listed by INMEM:
depfiles = setdiff(char(list),char(memlist),'rows')

% INMEM results not listed by DEPFUN:
memfiles = setdiff(char(memlist),char(list),'rows')

runtime_for_pdf.book Page 14 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime GUI Application

2-15

The memfiles variable contains a list of functions that were found by inmem but
not by depfun. To force depfun to analyze these functions, you can place a
nonexecuting if conditional in an application file such as matlabrt.m, as
illustrated in the section “Analyzing Functions Called by eval” on page 2-13.

The depfiles variable contains a list of functions that were found by depfun
but not by inmem. These are probably valid application files that were not called
by MATLAB (and not loaded into memory) when you ran the application
earlier.

Compiling Extra M-Files. If you cannot anticipate what functions might be invoked
via an evaluation command, then you might decide to compile some extra
M-files. As a last resort, you can compile all functions on the path and in the
current directory, using the pcodeall function.

Testing with the Runtime Server Variant (GUI)
Although commercial MATLAB can emulate the Runtime Server environment,
testing your application with the actual Runtime Server variant is important.
To launch the application with the Runtime Server, use this command at the
system prompt.

matlab -runtime

The -runtime flag is an argument that tells your development copy of
MATLAB to start itself as the Runtime Server. Use this flag while testing your
application, typically in the final stages of testing. The end user’s syntax for
invoking MATLAB does not need to use the -runtime flag. This is because the
absence of a license.dat file already signals that that copy of MATLAB must
be a Runtime Server variant instead of commercial MATLAB.

runtime_for_pdf.book Page 15 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-16

Example: MATLAB Runtime GUI Application
This example illustrates these typical steps involved in preparing a MATLAB
runtime GUI application for the Runtime Server:

• Organizing files and managing startup tasks

• Compiling the application M-files into runtime P-files that the MATLAB
Runtime Server recognizes

• Testing and debugging the application

- By having commercial MATLAB emulate the Runtime Server

- With the Runtime Server variant (See also “Final Testing” on page 4-9)

This section begins with instructions for installing the example files included
in the software and an overview of the example application.

While the example as described here is structured as a runtime GUI
application, you can also use the same set of M-files to form the back end of a
runtime engine application. See the file
toolbox\runtime\examples\activex\Readme for more details.

Installing the Example Files
The example consists of seven files that can be found in the
toolbox\runtime\examples\gui directory.

File Description

amortsched.m MATLAB Runtime Server application files

amortsched_cb.m

datagrid.m

datagrid_cb.m

loansched.m

matlabrt.m MATLAB Runtime Server startup files

pathdefrt.m

runtime_for_pdf.book Page 16 Wednesday, September 13, 2000 10:55 AM

Example: MATLAB Runtime GUI Application

2-17

Follow the instructions below to install the files. To prevent any confusion
about which files you are working with, try to avoid having duplicates of these
files in other locations on your path.

1 Move matlabrt.m and pathdefrt.m from toolbox\runtime\examples\gui
into the toolbox\local directory of your development copy of MATLAB.

2 Add the directory containing the other example files to the MATLAB path
using the command below.

addpath(fullfile(matlabroot,'toolbox','runtime','examples','gui'));

Directory Structure of Application
This example maintains the existing directory structure throughout the
compiling and testing process. Compiled versions of the M-files in
toolbox\runtime\examples\gui reside there; compiled versions of any other
M-files that the application uses (e.g., functions in toolbox\matlab) reside
alongside their respective M-files.

Overview of the Application
This example is a simple GUI-driven application that calculates and displays
an amortization schedule. If you have added toolbox\runtime\examples\gui
to the MATLAB path, then you can run the application by typing

amortsched

at the command line. At first, the GUI looks like this.

runtime_for_pdf.book Page 17 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-18

To use the application, enter expressions in the GUI fields and press the
Calculate button. After you enter values and press Calculate, the GUI looks
like this.

The Clear button deletes the numbers that you entered in the four input fields.
The Close button exits the application. If the application is running with the
Runtime Server or with commercial MATLAB in runtime emulation mode,
then the Close button also exits MATLAB.

runtime_for_pdf.book Page 18 Wednesday, September 13, 2000 10:55 AM

Example: MATLAB Runtime GUI Application

2-19

How the Application Files Interact
If you run the application with the Runtime Server, then the Runtime Server
first executes matlabrt, which in turn invokes pathdefrt. The function
matlabrt also executes amortsched, which sets up the GUI and the buttons’
callback functions. Below is an excerpt from amortsched.m.

h0 = figure('Color',[0.8 0.8 0.8], ...
'CloseRequestFcn','amortsched_cb(''close_amortsched'')', ...
'MenuBar','none', ...
'Name','Amort Sched 1.0', ...
'NumberTitle','off', ...
'PaperPosition',[18 180 576 432], ...
'PaperUnits','points', ...
'Units','characters', ...
'Position',[68.6 7.3077 136 21.7692], ...
'Resize','off', ...
'Tag','Fig1', ...
'ToolBar','none');

h1 = uicontrol('Parent',h0, ...
etc...

Pressing the buttons invokes amortsched_cb with an argument indicating
which button was pressed. The function amortsched_cb uses a switch
structure to perform the actions associated with each GUI button. The lines
below show the structure of amortsched_cb.m.

switch action
case 'clear_values'

% Insert code here that clears the GUI fields.
case 'calculate_values'

% Insert code here that calculates and displays
% the amortization schedule.

case 'close_amortsched'
% Insert code here that exits the application.

end

When necessary, amortsched_cb invokes other functions to compute or display
results.

The figure below illustrates schematically which functions call each other in
this application.

runtime_for_pdf.book Page 19 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-20

Adapting the Design for Runtime Execution
Although amortsched is a simple application, its files incorporate several
adaptations for Runtime Server execution:

• The figure command in amortsched.m includes the 'Menubar','none'
specification. This deactivates the GUI’s default menus, as discussed in
“Preventing Command Window Input/Output” on page 1-3.

• The application requires no input from the command window and sends no
output to the command window. It uses a dialog box to display errors.

• The figure window definition in amortsched.m specifies a CloseRequestFcn.
Since the Amort Sched 1.0 window is the top-level GUI figure window, its
Close button exits the application.

Note The code that the CloseRequestFcn executes avoids quitting MATLAB
when commercial MATLAB is not in runtime emulation mode. Logic such as

close('force','Amort Sched 1.0') % Close the GUI window.
if isruntime, exit, end

conveniently prevents you from having to restart MATLAB many times while
your application is in an early development stage.

matlab.exe

pathdefrt.p

matlabrt.p

amortsched.p

other application files

matlabrt.p calls all other application files
indirectly (e.g., through amortsched.p) or
directly.

runtime_for_pdf.book Page 20 Wednesday, September 13, 2000 10:55 AM

Example: MATLAB Runtime GUI Application

2-21

Organizing Files and Managing Startup Tasks
This example keeps its own non-startup files in
toolbox\runtime\examples\gui during the entire development, compilation,
and testing process. If you change any application files while exploring this
example, then use rehash toolboxreset to register the changes.

The Startup Function
The example matlabrt.m file, which the section “Installing the Example Files”
on page 2-16 instructed you to install in the toolbox\local directory, is
appropriate for this application because it:

• Does not display anything in the command window

• Sets the global error behavior for the application

• Sets the warning level to off

• Invokes pathdefrt (not pathdef)

• Launches the top-level application function, amortsched

Creating the Path Definition Function
The example pathdefrt.m file that you installed in toolbox\local uses paths
relative to the MATLAB root directory. Each distinct directory that contains a
function used in this application is included on the runtime path.

Notice that the list of directories in the example pathdefrt.m matches the list
of (non-private, non-class) directories in the output of the depdir function.

cleanp; % Remove all .p files from path.
p = depdir('matlabrt')

p =

 'C:\matlab\toolbox\matlab\datafun'
 'C:\matlab\toolbox\matlab\datafun\@cell'
 'C:\matlab\toolbox\matlab\datatypes'
 'C:\matlab\toolbox\matlab\elfun'
 'C:\matlab\toolbox\matlab\elmat'
 'C:\matlab\toolbox\matlab\general'
 'C:\matlab\toolbox\matlab\general\@char'
 'C:\matlab\toolbox\matlab\graph3d'
 'C:\matlab\toolbox\matlab\graphics'

runtime_for_pdf.book Page 21 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-22

 'C:\matlab\toolbox\matlab\graphics\private'
 'C:\matlab\toolbox\matlab\iofun'
 'C:\matlab\toolbox\matlab\lang'
 'C:\matlab\toolbox\matlab\ops'
 'C:\matlab\toolbox\matlab\ops\@cell'
 'C:\matlab\toolbox\matlab\specfun'
 'C:\matlab\toolbox\matlab\strfun'
 'C:\matlab\toolbox\matlab\strfun\@cell'
 'C:\matlab\toolbox\matlab\uitools'
 'C:\matlab\toolbox\local'
 'C:\matlab\toolbox\runtime\examples\gui'

The path omits private and class directories, while listing their parent
directories instead. For example, pathdefrt.m lists toolbox\matlab\ops, but
not toolbox\matlab\ops\@cell.

Compiling the Application
This example uses the buildp function to place each P-file in the same
directory as its uncompiled counterpart. Since matlabrt.m is the top-level
M-file that invokes all other M-files, the command below compiles the entire
application.

[log,depfunout,pcodeout] = buildp({'matlabrt'});

The output indicates that there might be problem symbols or eval-like
constructs.

BUILDP finished but there may be file(s) with either problem symbols
or EVAL-like constructs. Check BUILDP log for details.

This is normal for this example, since the example uses files that contain eval
commands.

Testing While Emulating the Runtime Server
It is useful to test and debug an application while your development copy of
MATLAB emulates the Runtime Server, before actually running the
application with the Runtime Server. Follow these steps:

1 If you have just compiled P-files in a toolbox directory, then restart
MATLAB or type rehash toolboxreset. Either action updates the internal
file list.

runtime_for_pdf.book Page 22 Wednesday, September 13, 2000 10:55 AM

Example: MATLAB Runtime GUI Application

2-23

2 Save your development path so that you can restore it later. Type

devpath = path;
save devpath devpath

3 Tell MATLAB to start emulating the Runtime Server. Type

runtime on

4 Run the example application by typing

matlabrt

The example’s GUI opens. Test the application by filling in the GUI fields
and pressing the Calculate button.

5 Exit the application by typing close force at the MATLAB command line.
This closes the figure window without quitting MATLAB.

6 Tell MATLAB to stop emulating the Runtime Server. Type

runtime off

7 Restore the development path by typing

load devpath
path(devpath)

Testing with the Runtime Server Variant
To launch the application with the actual Runtime Server variant, use the
command

matlab -runtime

instead of the ordinary command matlab.

runtime_for_pdf.book Page 23 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-24

Summary List: MATLAB Runtime GUI Application
This list summarizes the steps for creating a MATLAB runtime GUI
application from a GUI-based application in MATLAB. The hyperlinks lead to
the sections that describe the steps in more detail.

1 Stamp your development copy of MATLAB.

2 Adapt the design of the MATLAB portion of the application as necessary.
See Chapter 1, “Design Issues for a Runtime Application.”

3 Decide where to place the files you write for the runtime application.

- If you keep all files under toolbox, then remember to use rehash
toolboxreset to register each change you make.

- If you keep the M-files outside of toolbox and move the P-files under
toolbox only towards the end of your development and testing process,
then remember to include the final destination directories in pathdefrt.

4 Create the startup function matlabrt.m by copying
toolbox\runtime\matlabrt_template.m to toolbox\local and renaming
it matlabrt.m. Then modify it as necessary and use rehash toolboxreset
to register the change. It must:

- Invoke pathdefrt.

- Launch the application.

5 Create the path definition function pathdefrt.m by copying
toolbox\runtime\pathdefrt_template.m to toolbox\local and renaming
it pathdefrt.m. Then modify it as necessary:

- Use cleanp to remove any .p files from your path and current directory.

- Use depdir('matlabrt') to determine the runtime path.

- If you plan to move your P-files under toolbox later on, then include their
destination directories in the runtime path.

- Use rehash toolboxreset to register the change in pathdefrt.m.

6 Use buildp to compile all application M-files into runtime P-files.

Possible complications: toolbar or menu items, functions invoked by eval,
MATLAB add-on products

runtime_for_pdf.book Page 24 Wednesday, September 13, 2000 10:55 AM

Summary List: MATLAB Runtime GUI Application

2-25

7 Test the application:

- With your P-files in their final locations under toolbox, if they are not
already there. After moving them, use rehash toolboxreset to register
the changes.

- By having MATLAB emulate the Runtime Server. Use runtime on and
runtime off.

- With the Runtime Server variant.

Return to earlier steps as necessary. When debugging, remember to stay
current by deleting old P-files, producing new P-files whenever an M-file
changes and using rehash toolboxreset as necessary to register changes.

runtime_for_pdf.book Page 25 Wednesday, September 13, 2000 10:55 AM

2 Developing a MATLAB Runtime GUI Application

2-26

runtime_for_pdf.book Page 26 Wednesday, September 13, 2000 10:55 AM

3
Developing a MATLAB
Runtime Engine
Application

Process: MATLAB Runtime Engine Application 3-2
Overview of This Chapter 3-2
Computation and the MATLAB Engine API 3-3
Parts of a MATLAB Runtime Engine Application 3-3
Organizing Files and Managing Startup Tasks 3-3
Compiling the Application 3-6
Testing While Emulating the Runtime Server 3-6
Testing with the Runtime Server Variant 3-8

ActiveX Automation Example 3-9
Installing the Example Files 3-9
Adapting the Design for Runtime Execution 3-11
Organizing Files and Managing Startup Tasks 3-18
Compiling the Application 3-19
Testing with the Runtime Server Variant 3-20

Engine API Example 3-21
Preparing the Example Files 3-22
Adapting the Design for Runtime Execution 3-23
Organizing Files and Managing Startup Tasks 3-25
Compiling the Application 3-26
Testing with the Runtime Server Variant 3-27

Summary List: MATLAB Runtime Engine Application . 3-29

runtime_for_pdf.book Page 1 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-2

Process: MATLAB Runtime Engine Application
If you have an application that uses MATLAB and that you developed while
considered the design issues mentioned in Chapter 1, “Design Issues for a
Runtime Application,” then the process of converting it into a MATLAB
runtime engine application is largely the same as the corresponding process for
a MATLAB runtime GUI application. (See “Overview of MATLAB Runtime
Applications” on page viii for definitions of the two types of runtime
applications.)

As with a MATLAB runtime GUI application, there are four main steps in
converting an application that uses MATLAB into a MATLAB runtime engine
application:

• Organizing files and managing startup tasks

• Compiling the application M-files into runtime P-files that the MATLAB
Runtime Server recognizes

• Testing and debugging the application

- By having commercial MATLAB emulate the Runtime Server

- With the Runtime Server variant (See also “Final Testing” on page 4-9)

Overview of This Chapter
This chapter discusses the relationship between the Runtime Server and the
MATLAB Engine API, describes the two parts of a MATLAB runtime engine
application, and then discusses the steps listed above. It also highlights the
important differences between developing a MATLAB runtime GUI
application and developing a MATLAB runtime engine application. The
examples in:

• “ActiveX Automation Example” on page 3-9 and

• “Engine API Example” on page 3-21

work through the first three steps for sample MATLAB runtime engine
applications. For an additional example of a runtime engine application that
uses ActiveX Automation, see the description in the file
toolbox\runtime\examples\activex\Readme. Finally, the section “Summary
List: MATLAB Runtime Engine Application” on page 3-29 summarizes the
process of converting an application into a MATLAB runtime engine
application, for quick reference.

runtime_for_pdf.book Page 2 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime Engine Application

3-3

Computation and the MATLAB Engine API
The MATLAB Runtime Server uses the same MATLAB Engine Application
Program Interface (API) that commercial MATLAB uses. The MATLAB
documentation contains useful information about the MATLAB Engine API
and interprocess communication. You might need to consult MATLAB
documentation while developing your MATLAB runtime engine application.
However, some special issues affect the design, coding, testing, and packaging
of applications that are destined for use with the Runtime Server rather than
with the full MATLAB Engine API. This chapter describes such special issues
as they relate to MATLAB runtime engine applications.

Note MATLAB runtime engine applications can communicate with
MATLAB via routines from the Engine API library (e.g., engGetArray) or via
other means such as ActiveX and pipes.

Parts of a MATLAB Runtime Engine Application
A typical MATLAB runtime engine application has two distinct parts:

• The front-end GUI, which is usually implemented in a GUI-oriented
language like Visual Basic

• The back-end computational engine, which is implemented with MEX-files
and/or MATLAB runtime P-files

If the front-end GUI that you are planning to use together with the MATLAB
runtime engine application already works with commercial MATLAB, then you
do not need to change this front-end code for Runtime Server operation.

The back-end MATLAB part of the application should comply with the design
principles discussed in Chapter 1, “Design Issues for a Runtime Application.”

Organizing Files and Managing Startup Tasks
This section discusses the locations of the files you write for the runtime
application, and special startup issues. The startup issues include the startup
and path definition functions that the Runtime Server invokes when it first
runs. These utility functions, matlabrt and pathdefrt, are variations of the

runtime_for_pdf.book Page 3 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-4

functions matlabrc and pathdef that commercial MATLAB invokes upon
startup. This section also discusses startup considerations for PC applications.

Where to Place Your Files
You can arrange the MATLAB portion of your application just as you would in
the case of a runtime GUI application. This is described in the earlier section
“Where to Place Your Files” on page 2-3. MATLAB places no restriction on the
directory structure of the non-MATLAB portion of your application and no
restriction on the relative locations of the MATLAB and non-MATLAB portions
of your application.

Creating the Startup Function
The startup function matlabrt is the runtime analogue of matlabrc. When the
front end of the application launches MATLAB, MATLAB executes
matlabrt.p. Furthermore, matlabrt acts as the gateway to the MATLAB
portion of the application.

The matlabrt.p file should reside in the toolbox\local directory, and should
perform these tasks (in addition to ordinary tasks that matlabrc performs):

• (PC) Set global error behavior for the MATLAB portion of the application.
Include the command

runtime errormode mode

in matlabrt.m, where mode can be continue, quit, or dialog. See “Setting
the Global Error Behavior on a PC” on page 1-10 for more information. If you
do not specify the global error behavior in matlabrt.m, then the Runtime
Server defaults to the dialog setting.

• (UNIX) Set global warning behavior. You might want to replace the warning
backtrace statement in matlabrt.m with warning off. See “Setting the
Global Warning Behavior on UNIX” on page 1-14 and the sample
matlabrt.m file.

• Invoke the path definition function, pathdefrt

• (Optional) Include a variant test using the isruntime function, if it is
important that the application not use commercial MATLAB

• Invoke other MATLAB functions as necessary

Either matlabrt or another M-file should be a top-level M-file in the sense that
it acts as an intermediary between the front end and the application’s M-file

runtime_for_pdf.book Page 4 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime Engine Application

3-5

functions. The front end then communicates only with this top-level M-file.
When an event occurs in the front end that requires a MATLAB function to
execute, the front end calls the top-level M-file with a switch that indicates
which action should occur. The top-level M-file then executes the appropriate
function to accomplish the action.

Creating the Path Definition Function
The startup function matlabrt invokes the path definition function pathdefrt.
Create pathdefrt as described in “Creating the Path Definition Function” in
Chapter 2.

PC Startup Considerations
During a MATLAB runtime engine application, MATLAB registers itself as an
as an Automation server.

Default Executable. If MATLAB is not currently running as an Automation server
on the system, then the MATLAB executable file (matlab.exe) that is launched
by the controller is the one most recently run. If MATLAB is already running
on the system, then the ActiveX controller uses the currently running instance
of MATLAB.

Users Who Have MATLAB Installed on the System. If a copy of commercial MATLAB is
installed on the same system as the Runtime Server application (for example,
if the user works with MATLAB), then there is a possibility that your
application will invoke commercial MATLAB instead of the Runtime Server.
This will happen if the user launches the application while commercial
MATLAB is running as an Automation server, or when commercial MATLAB
was run as an Automation server more recently than the MATLAB Runtime
Server.

The application should run normally with commercial MATLAB, although
certain Runtime Server adaptations will be absent (splash screen, global error
behavior, etc.). If it is important that the application not use commercial
MATLAB, then you can include a variant test in the startup procedure using
the isruntime command.

Handling Multiple Application Instances and Multiple Versions of MATLAB. Your
application can launch the MATLAB Automation server either as a
multiple-client server or as a dedicated server. Also, if a user of your
application has two different versions of MATLAB installed, then your

runtime_for_pdf.book Page 5 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-6

application can launch either the default version, as described above, or a
specific version. You make these choices when you decide what ProgID to use
when coding your application. The possible values for ProgID, and the
corresponding results when MATLAB is launched, are summarized in the table
below.

Suppose that the user starts up multiple instances of the application. If you
have chosen to use a multiple-client server, then each new client instance
shares the same instance of the Runtime Server. You should therefore either
design the MATLAB side of the application to service multiple clients, or
prevent multiple clients from simultaneously using the Runtime Server. If, on
the other hand, you have chosen to use a dedicated server, then each instance
will be served by a different instance of the Runtime Server.

Compiling the Application
Compiling M-files into runtime P-files is the same for a MATLAB runtime
engine application as for a MATLAB runtime GUI application; see the earlier
section “Compiling the Application (GUI)” on page 2-6.

Testing While Emulating the Runtime Server
The procedure for testing the MATLAB portion of a MATLAB runtime engine
application while commercial MATLAB emulates the Runtime Server is
slightly different from that for a MATLAB runtime GUI application. This
section discusses Runtime Server emulation on PC and UNIX platforms, as
well as testing with the Runtime Server variant. See “Troubleshooting” on page
2-12, in the earlier section “Testing While Emulating the Runtime Server
(GUI),” if the application does not run as expected.

ProgID Version of MATLAB
Launched

Type of Server

Matlab.Application Default Multiple-client

Matlab.Application.6 Version 6 Multiple-client

Matlab.Application.Single Default Dedicated

Matlab.Application.Single.6 Version 6 Dedicated

runtime_for_pdf.book Page 6 Wednesday, September 13, 2000 10:55 AM

Process: MATLAB Runtime Engine Application

3-7

Moving P-Files to Final Locations
If you store your source M-files outside of the toolbox directory, then at some
point during your testing you should move the corresponding P-files to their
final destinations under toolbox. Then use rehash toolboxreset to register
the changes.

Each time you change the source M-files, remember to delete, regenerate, and
move the P-files to their toolbox destination. Again, use rehash toolboxreset
as necessary to register the changes to toolbox subdirectories.

Emulating the Runtime Server Using ActiveX Automation (PC)
Type the following two commands at the MATLAB prompt to start emulating
the Runtime Server and to set the runtime path.

runtime on
matlabrt

Then launch the application by starting up the front-end executable file. The
application now uses the running MATLAB as its Automation server, and you
can test the program by making the appropriate call to the runtime
application.

To execute M-files and debug your functions, tell MATLAB to stop emulating
the Runtime Server by typing

runtime off

Emulating the Runtime Server Using Engine API Commands
If your application is based on the MATLAB Engine API, then Runtime Server
emulation enables you to test only the back-end MATLAB portion of your
application. To test the front and back ends together, MATLAB must execute
as a Runtime Server variant, as described in “Testing with the Runtime Server
Variant” on page 3-8.

To test the MATLAB portion while MATLAB emulates the Runtime Server,
follow these steps:

1 Type

runtime on

at the MATLAB prompt to start emulating the Runtime Server.

runtime_for_pdf.book Page 7 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-8

2 Type

matlabrt

to set the runtime path, perform other startup tasks, and invoke your
application P-files.

3 To execute M-files and debug your functions, first turn off Runtime Server
emulation by typing

runtime off

Then use commercial MATLAB as you ordinarily would.

Testing with the Runtime Server Variant
Although commercial MATLAB can emulate the Runtime Server environment,
testing your application with the actual Runtime Server variant is still
important.

On UNIX, type

matlab -runtime -c dummy

at the system prompt. Then start the front end (without quitting MATLAB).

On PC, rename the license file, launch MATLAB, and then start the front end.
The license file on PC is matlabroot\bin\win32\license.dat. Remember to
restore the license file when you want to use commercial MATLAB.

runtime_for_pdf.book Page 8 Wednesday, September 13, 2000 10:55 AM

ActiveX Automation Example

3-9

ActiveX Automation Example
This example illustrates the steps involved in preparing an ActiveX
Automation-based Visual Basic application for the MATLAB Runtime Server
on PC platforms. The major steps in the procedure are the same as those for
the MATLAB GUI example in Chapter 2, “Developing a MATLAB Runtime
GUI Application”:

• Creating the startup files matlabrt.m and pathdefrt.m

• Compiling the application with the buildp command

• Testing the application with the Runtime Server variant

The example application uses two of the MATLAB Engine’s ActiveX API
methods, Execute and GetFullMatrix. The Execute method accepts a string
argument and evaluates it in the MATLAB workspace. The GetFullMatrix
method returns the real and imaginary components of a workspace matrix in
two separate variables. See the Application Program Interface Guide for more
information about these methods.

Note This example works with version 5 and later of Microsoft Visual Basic.

This section begins with instructions for installing the example files included
in the software.

Installing the Example Files
This example consists of the files listed below, located in
toolbox\runtime\examples\activex directory.

File Description

myappVB.frm Visual Basic files

myappVB.vbp

myappVB.vbw

runtime_for_pdf.book Page 9 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-10

To install the files, follow the instructions below. To prevent any confusion
about which files you are working with, try to avoid having duplicates of these
files in other locations on your path.

Visual Basic Files. Move the Visual Basic files to any convenient location on your
hard disk. For example, you can put them in a directory called c:\myappVB.

MATLAB Application Files. Create a directory called mydir in the toolbox directory
of your development copy of MATLAB.

Add it to the MATLAB path using the command below.

addpath(fullfile(matlabroot,'toolbox','mydir'));

The new mydir directory should be at the same level as the toolbox\local and
toolbox\runtime directories. Move the following files from
toolbox\runtime\examples\activex into toolbox\mydir.

myapp.m
myapp_init.m
myapp_draw.m
myapp_erase.m

MATLAB Startup Functions. Move matlabrt.m and pathdefrt.m into the
toolbox\local directory of your development copy of MATLAB, alongside the
matlabrc.m and pathdef.m files.

myapp.m MATLAB Runtime Server application files

myapp_init.m

myapp_draw.m

myapp_erase.m

matlabrt.m MATLAB Runtime Server startup files

pathdefrt.m

File Description

runtime_for_pdf.book Page 10 Wednesday, September 13, 2000 10:55 AM

ActiveX Automation Example

3-11

Adapting the Design for Runtime Execution
Two aspects of this example make it suitable for runtime execution:

• The way its front-end GUI design passes information among the user, the
Visual Basic portion, and the MATLAB portion

• The way its top-level M-file passes information between the Visual Basic
portion and the rest of the MATLAB portion

This section describes each of these two aspects in turn.

The Front-End GUI
This example is a simple GUI-driven application that evaluates and plots a
MATLAB expression. Its GUI is shown below.

To use the application, enter a valid MATLAB expression in the Plot field of
the GUI and press the Draw button. The application opens a MATLAB figure
window containing the plot, and the Draw button becomes inactive.

When you press the Erase button, the plot is erased and the Erase button
becomes inactive. This illustrates how the Runtime Server can return
information to the Visual Basic controller.

The following sections discuss the Visual Basic code that is executed for the
GUI events and form initialization. You can look at the code (as well as the
objects’ properties) by opening project myappVB.Frm in Visual Basic 5 or later.

Note You can view the available Automation methods for MATLAB from
within the Visual Basic environment. First check the Matlab Application
(Version 6.0) Type Library in the References dialog box (from the Project
menu). Then use the Object Browser (from the View menu) to list the
members of the MLApp library.

runtime_for_pdf.book Page 11 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-12

General Declarations Section. This section makes four declarations. MatLab is
declared as a variable of type Object, MLResReal and MLResImag are declared
as variables of type Double, and MLStatus is declared as a variable of type
String.

Option Explicit
Option Base 1

Dim MatLab As Object

Dim MLResReal(1) As Double
Dim MLResImag(1) As Double
Dim MLStatus(1) As String

MatLab is the Visual Basic variable that represents the MATLAB Automation
object; the actual assignment is made in the Form_Load procedure below.
MLResReal and MLResImag are the Visual Basic variables that will contain the
real and imaginary parts of MATLAB workspace variables returned by the
GetFullMatrix Engine method. MLStatus is the String variable that will
contain any error message returned from MATLAB.

Declaring these variables in the General Declarations section (outside of any
Visual Basic functions) ensures that they do not lose scope during program
execution, which is especially important for the MATLAB Automation object.

Form Load Procedure: Form_Load. The Form_Load procedure is executed as the
Visual Basic program starts up.

Private Sub Form_Load()

Set MatLab = CreateObject("MatLab.Application")
MatLab.Execute ("myapp('init')")

End Sub

The MATLAB Automation object is now assigned to the MatLab variable, which
causes MATLAB to launch. The copy of MATLAB that launches at this time is
the copy that was most recently run as an Automation server on the system. If
MATLAB is currently running as an Automation server on the system, the
running MATLAB is used by the Automation controller.

The MatLab.Execute statement contains a function call to the top-level M-file,
myapp. The string "myapp('init')" is evaluated in the MATLAB workspace,

runtime_for_pdf.book Page 12 Wednesday, September 13, 2000 10:55 AM

ActiveX Automation Example

3-13

and myapp is called with the argument 'init'. See “Initialization Function:
myapp_init” on page 3-16 for more information about this function call.

Button Draw Procedure: btn_Draw_Click. The btn_Draw_Click procedure is
executed when a button-click event occurs at the Draw button.

Private Sub btn_Draw_Click()

Dim MsgBoxText As String
Dim MsgBoxReturn As Integer

MatLab.Execute ("myapp('draw','" + txt_Input.Text + "')")
Call MatLab.GetFullMatrix("draw", "base", MLResReal, MLResImag)

If MLResReal(1) = 1 Then
 btn_Draw.Enabled = False
 btn_Erase.Enabled = True
Else
 MLStatus(1) = MatLab.Execute("disp(lasterr)")
 MsgBoxText = "Myapp cannot evaluate your input." _
 + Chr(13) & Chr(10) + _
 Left(MLStatus(1), (Len(MLStatus(1)) - 1))
 MsgBoxReturn = MsgBox(MsgBoxText, 0, "Error")
 btn_Draw.Enabled = True
 btn_Erase.Enabled = False
End If

End Sub

The first Execute command (line 6) evaluates the string
“myapp('draw','input')” in the MATLAB workspace, where input is the
expression the user enters in the Plot field. This calls myapp with two
arguments. The first argument, 'draw', instructs myapp to pass the second
argument, 'input', to function myapp_draw (see “Draw Function: myapp_draw”
on page 3-17). myapp_draw attempts to plot the expression, and stores a value
of 1 in the base workspace variable draw if it is successful. If plotting generates
an error, myapp_draw stores a value of 0 in draw instead.

The GetFullMatrix statement then retrieves the value of draw into MLResReal;
MLResImag remains empty because there is no imaginary component.

The If-Then-Else statement checks the value of MLResReal to determine the
result of the plotting operation:

runtime_for_pdf.book Page 13 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-14

• If successful (MLResReal=1), the following statements change the state of the
buttons accordingly.
btn_Draw.Enabled = False
btn_Erase.Enabled = True

• If an error occurred (MLResReal=0), the Else block performs the following
operations:

- Evaluate the string “disp(lasterr)” in the MATLAB workspace. Since
the disp command here is invoked via the Engine’s Execute method, its
output is returned in variable MLStatus rather than being displayed in the
command window. MLStatus therefore contains the text of the most recent
MATLAB error message.

- Compose an error message (MsgBoxText) based on the contents of
MLStatus

- Display the message in a Visual Basic message box

- Change the state of the buttons appropriately

Button Erase Procedure: btn_Erase_Click. The btn_Erase_Click procedure is
executed when a button-click event occurs at the Erase button. Its Execute
command passes the 'erase' argument to myapp, and again changes the state
of the buttons depending on the value of draw in the workspace (see “Erase
Function: myapp_erase” on page 3-17).

Private Sub btn_Erase_Click()

MatLab.Execute ("myapp('erase')")
Call MatLab.GetFullMatrix("draw", "base", MLResReal, MLResImag)

If MLResReal(1) = 1 Then
 btn_Draw.Enabled = False
 btn_Erase.Enabled = True
Else
 btn_Draw.Enabled = True
 btn_Erase.Enabled = False
End If

End Sub

Button Quit Procedure: btn_Quit_Click. The btn_Quit_Click procedure is executed
when a button-click event occurs at the Quit button.

runtime_for_pdf.book Page 14 Wednesday, September 13, 2000 10:55 AM

ActiveX Automation Example

3-15

Private Sub btn_Quit_Click()

Form_Terminate

End Sub

The Form_Terminate function (see below) quits the Visual Basic application.

Menu Quit Procedure: menu_Quit_Click. The menu_Quit_Click procedure is
executed when the Quit menu item is selected.

Private Sub menu_Quit_Click()

Form_Terminate

End Sub

The Form_Terminate function (see below) quits the Visual Basic application.

Form Terminate Procedure: Form_Terminate. The Form_Terminate procedure is
executed when the Visual Basic GUI’s Close box is clicked (or when this
procedure is called from btn_Quit_Click or menu_Quit_Click). The End
command quits the Visual Basic application.

Private Sub Form_Terminate()

End

End Sub

The MATLAB Runtime Server detects that the Automation controller has quit,
and automatically quits as well.

Creating the Top-Level M-File
This example uses a top-level M-file, myapp, to act as an intermediary between
the Visual Basic front end and the application’s M-files (runtime P-files, when
compiled). The contents of this function are shown below. When an event
occurs in the GUI that requires a MATLAB function to execute, the GUI calls
myapp with an appropriate argument indicating the action to be taken. This
function is the only MATLAB function that this application’s GUI calls directly.

function myapp(action,varargin)
% Top-level M-file for an Engine-based Visual Basic application.

runtime_for_pdf.book Page 15 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-16

switch action

case 'init'
 myapp_init

case 'draw'
 myapp_draw(varargin{:})

case 'erase'
 myapp_erase

end

% Other application M-files, not called from myapp.m
if 0
 matlabrt
end

This top-level M-file responds to three possible calls from the Visual Basic
controller: 'init', 'draw', and 'erase'. Depending on which of these action
arguments Visual Basic calls it with, myapp executes one of three functions:
myapp_init, myapp_draw, or myapp_erase. When myapp calls myapp_draw, it
also passes the string in cell array varargin, which is the expression in the
GUI’s Plot field.

These three functions are discussed below. Note that the top-level M-file here
does not create a GUI, since this has already been done by the Visual Basic
front end.

One additional feature of the myapp function is the nonexecuting if statement
containing a call to matlabrt. By including a dummy invocation of matlabrt in
myapp, you can avoid having to use buildp or depfun on both files in order to
analyze the entire application – you only need to apply those functions to
myapp.m. The if statement is ignored at runtime.

Initialization Function: myapp_init. This function sets up the figure window.

function myapp_init
%MYAPP_INIT Initialize the Figure window.

fig = figure('Units','points','Position',[36 560 420 315],...
'Resize','off','HandleVisibility','on','Menubar','none',...
'NumberTitle','off','Name','Myapp',...
'CloseRequestFcn','close force');

runtime_for_pdf.book Page 16 Wednesday, September 13, 2000 10:55 AM

ActiveX Automation Example

3-17

ax = axes('Parent',fig,'Units','points',...
'Position',[42 50 335 230],'HandleVisibility','on','Box','on');

The figure command in the above code specifies a CloseRequestFcn for the
figure and includes the 'Menubar','none' specification to deactivate the
default menus.

Draw Function: myapp_draw. This function evaluates and plots the expression
contained in the plottext input argument.

function myapp_draw(plottext)
%MYAPP_DRAW Evaluate input string and plot in the Figure window.

Out = evalc('figure(findobj(''Name'',''Myapp''))',...
'myapp(''init'')');

try
 plot(eval(plottext));
 evalin('base','draw = 1;');
catch
 evalin('base','draw = 0;');
end

The 'try' part of the evalc('try','catch') statement in the definition of Out
makes the Myapp figure window active if it already exists. If it does not, the
'catch' calls myapp with the 'init' switch to create a new Myapp figure
window.

The try block of code then attempts to plot the plottext expression (which
contains the string in the GUI’s Plot field). If the plotting operation is
successful, the second line sets the value of the workspace variable draw to 1.
The Visual Basic application uses this as an indication that the expression was
plotted. If an error occurs during plotting, the catch block of code sets the value
of draw to 0. The Visual Basic application uses this as an indication that an
error occurred and the expression was not drawn; see “Button Draw Procedure:
btn_Draw_Click” on page 3-13.

Erase Function: myapp_erase. This function clears the axes in the figure window.

function myapp_erase
%MYAPP_ERASE Erase the plot in the Figure window.

Out = evalc('figure(findobj(''Name'',''Myapp''))',...

runtime_for_pdf.book Page 17 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-18

'myapp(''init'')');

cla;

evalin('base','draw = 0;');

The eval('try','catch') statement is the same as that in function
myapp_draw. After making Myapp the active figure window, the function clears
the axes and sets the value of the workspace variable draw to 0. The Visual
Basic application uses this as an indication that the plot area was erased; see
“Button Erase Procedure: btn_Erase_Click” on page 3-14.

Organizing Files and Managing Startup Tasks
This example places its own MATLAB files in toolbox\mydir during the entire
development, compilation, and testing process. If you change any application
file while exploring this example, use rehash toolboxreset to register the
changes.

The Visual Basic files for this example can be in any convenient location.

The Startup Function
The example matlabrt.m file, which the section “MATLAB Startup Functions”
on page 3-10 instructed you to install in the toolbox\local directory, is
appropriate for this application because it:

• Does not display anything in the command window

• Does not set the global error behavior for the application. MATLAB errors do
not suspend execution of a MATLAB runtime engine application; that is, the
error behavior of the application is fixed in 'continue' mode.

• Sets the warning level to off

• Invokes pathdefrt (not pathdef)

• Does not launch other MATLAB application functions because the front end
of this application ultimately launches myapp.p

Creating the Path Definition Function
The example pathdefrt.m file that you installed in toolbox\local uses paths
relative to the MATLAB root directory. Each distinct directory that contains a
function used in this application is included on the runtime path.

runtime_for_pdf.book Page 18 Wednesday, September 13, 2000 10:55 AM

ActiveX Automation Example

3-19

Notice that the list of directories in the example pathdefrt.m matches the list
of (non-private, non-class) directories in the output of the depdir function.

cleanp; % Remove all .p files from path
p = depdir('myapp')

p = ['$toolbox/local:',...
 '$toolbox/mydir:',...
 '$toolbox/matlab/graphics:',...
 '$toolbox/matlab/uitools:',...
 '$toolbox/matlab/graph3d:',...
 '$toolbox/matlab/general:',...
 '$toolbox/matlab/lang:',...
 '$toolbox/matlab/specfun:',...
 '$toolbox/matlab/strfun:',...
 '$toolbox/matlab/ops:',...
 '$toolbox/matlab/datafun:',...
 '$toolbox/matlab/elmat:'];

Compiling the Application
Because this runtime engine application has a top-level M-file, myapp, that
calls all other application M-files, it is easy to create all necessary P-files by
applying the buildp function to myapp. The command below compiles the entire
MATLAB portion of the application.

[log,depfunout,pcodeout] = buildp({'myapp'});

matlab.exe

pathdefrt.p

matlabrt.p myapp.p

other application files

myapp.p directly or indirectly calls all
other application P-files, including
matlabrt.p (from within a
nonexecuting if conditional). Apply
depfun to myapp to analyze the
entire application.

myappVB.exe

runtime_for_pdf.book Page 19 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-20

Testing with the Runtime Server Variant
To ensure that the application’s front end launches the Runtime Server instead
of commercial MATLAB, rename matlabroot/bin/win32/license.dat, which
is the license file. Then launch MATLAB and start the front end of the
application.

Exit the application by selecting Quit from the File menu, or by clicking the
Quit button or Close box. This will quit both the Visual Basic application and
MATLAB. Clicking the Close box in the figure window will only close that
window, and will not quit the application.

When you want to use commercial MATLAB again, restore the license file.

runtime_for_pdf.book Page 20 Wednesday, September 13, 2000 10:55 AM

Engine API Example

3-21

Engine API Example
This example illustrates how to prepare an engine application for the MATLAB
Runtime Server when the application uses the MATLAB Engine API library.
The major steps in the procedure are:

• Creating the startup files matlabrt.m and pathdefrt.m

• Compiling the application with the buildp command

• Testing the application with the Runtime Server variant

The example application uses two of the MATLAB Engine API library
commands, engOpen and engClose. These commands open and close,
respectively, a communications link between the front-end C program and the
back-end MATLAB engine. See the Application Program Interface Guide for
more information about the Engine API library commands.

This section begins with instructions for installing the example files included
in the software.

runtime_for_pdf.book Page 21 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-22

Preparing the Example Files
The example consists of these nine files, located in the
toolbox\runtime\examples\engineAPI directory.

C File. Compile and link the C program, DrawApp.c, which is in the directory
toolbox\runtime\examples\engineAPI. Keep the compiled file in the same
directory.

For example, on Solaris machines, use these two commands at the system
prompt.

setenv LD_LIBRARY_PATH matlabroot/extern/lib/sol2:$LD_LIBRARY_PATH
cc -Imatlabroot/extern/include -o DrawApp DrawApp.c

-Lmatlabroot/extern/lib/sol2 -leng -lmx

Here, matlabroot is the directory in which MATLAB is installed.

As another example, on Windows NT 4.0 using Microsoft Visual C 6.0, execute
the following commands at the MATLAB prompt.

opts = [matlabroot '/bin/win32/mexopts/msvc60engmatopts.bat'];
out = [matlabroot '/toolbox/runtime/examples/engineAPI'];

File Description

Readme_win,
Readme_unix

Platform-specific ASCII file with information
about the example

DrawAppWin.c,
DrawApp.c

Platform-specific C file

myapp.m MATLAB Runtime Server application files

myapp_draw.m

myapp_erase.m

myapp_error.m

myapp_quit.m

matlabrt.m MATLAB Runtime Server startup files

pathdefrt.m

runtime_for_pdf.book Page 22 Wednesday, September 13, 2000 10:55 AM

Engine API Example

3-23

cfile = [matlabroot ...
'/toolbox/runtime/examples/engineAPI/DrawAppWin.c'];
mex -f opts -outdir out cfile

MATLAB Startup Functions. Move matlabrt.m and pathdefrt.m into the
toolbox\local directory of your development copy of MATLAB, alongside the
matlabrc.m and pathdef.m files.

MATLAB Application Files. To prepare to use these files, start MATLAB and
execute this command.

cd(fullfile(matlabroot,'toolbox','runtime','examples','engineAPI'))

Since the runtime P-files that you create will reside in the
toolbox\runtime\examples\engineAPI directory, it is important that this
directory is either:

• The one from which MATLAB is launched, or

• Part of the runtime path

In this example, toolbox\runtime\examples\engineAPI is the directory from
which the C program will launch MATLAB.

On PC platforms, you should also modify the DOS path so that MATLAB can
find all the files it needs. At the DOS prompt, type

path = matlabroot/bin/win32;%path%

where matlabroot is the directory in which MATLAB is installed.

Adapting the Design for Runtime Execution
This example is a simple GUI-driven application that evaluates and plots a
MATLAB expression. Its GUI is shown below.

runtime_for_pdf.book Page 23 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-24

Note Quitting the myapp application by any of the means provided on the
GUI (Quit button, Quit menu item, or Close box) causes MATLAB to quit. To
exit the application without exiting MATLAB, type close force at the
command line.

To use the application, enter a valid MATLAB expression in the Plot field of
the GUI and press the Draw button. The application plots the expression in its
GUI. To erase the plot, press the Erase button.

runtime_for_pdf.book Page 24 Wednesday, September 13, 2000 10:55 AM

Engine API Example

3-25

Overview of Adaptations
myapp.m incorporates several adaptations for Runtime Server execution:

• Its figure command includes the 'Menubar','none' specification. This
deactivates the GUI’s default menus, as discussed in “Preventing Command
Window Input/Output” on page 1-3.

• The call to myapp_draw.m is embedded within an eval(try,catch)
statement in order to trap possible errors. If MATLAB encounters an error
while trying to evaluate or plot the expression in myapp_draw, then it
executes the catch expression, which calls myapp_error.m to display an
appropriate error message.

• The figure window definition specifies a CloseRequestFcn. Since the Myapp
window is the top-level GUI figure window, its CloseRequestFcn exits the
application by calling myapp_quit.m.

Also, the C program for this example is adapted for Runtime Server execution
because its engOpen command uses one of the flags

-runtime (PC)
-runtime -c dummy (UNIX)

when invoking MATLAB.

Organizing Files and Managing Startup Tasks
This example’s own MATLAB files are in
toolbox\runtime\examples\engineAPI during the entire development,
compilation, and testing process. If you change any application file while
exploring this example, use rehash toolboxreset to register the changes.

The C files for this example are in toolbox\runtime\examples\engineAPI.

The Startup Function
The matlabrt.m file that you moved from the directory
toolbox\runtime\examples\engineAPI is similar to the one described in
Chapter 2, “Developing a MATLAB Runtime GUI Application.” See the GUI
example section “The Startup Function” on page 2-21.

runtime_for_pdf.book Page 25 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-26

Creating the Path Definition Function
The example pathdefrt.m file that you moved into toolbox\local for this
example uses paths relative to the MATLAB root directory. Each distinct
directory that contains a function used in this application is included on the
runtime path.

Notice that the list of directories in the example pathdefrt.m matches the list
of (non-private, non-class) directories in the output of the depdir function.

cleanp; % Remove all .p files from path
p = depdir('matlabrt')

p =

 'C:\matlab\toolbox\local'
 'C:\matlab\toolbox\matlab\datafun'
 'C:\matlab\toolbox\matlab\datafun\@cell'
 'C:\matlab\toolbox\matlab\datatypes'
 'C:\matlab\toolbox\matlab\elmat'
 'C:\matlab\toolbox\matlab\general'
 'C:\matlab\toolbox\matlab\general\@char'
 'C:\matlab\toolbox\matlab\graph3d'
 'C:\matlab\toolbox\matlab\graphics'
 'C:\matlab\toolbox\matlab\graphics\private'
 'C:\matlab\toolbox\matlab\iofun'
 'C:\matlab\toolbox\matlab\lang'
 'C:\matlab\toolbox\matlab\ops'
 'C:\matlab\toolbox\matlab\ops\@cell'
 'C:\matlab\toolbox\matlab\specfun'
 'C:\matlab\toolbox\matlab\strfun'
 'C:\matlab\toolbox\matlab\strfun\@cell'
 'C:\matlab\toolbox\matlab\uitools'
 'C:\matlab\toolbox\runtime\examples\engineAPI'

Compiling the Application
Because matlabrt directly or indirectly calls all other M-files in this runtime
application, you can compile all application M-files with a single buildp
command.

[log,depfunout,pcodeout] = buildp({'matlabrt'});

runtime_for_pdf.book Page 26 Wednesday, September 13, 2000 10:55 AM

Engine API Example

3-27

The figure below indicates schematically which parts of this application invoke
which other parts.

Testing with the Runtime Server Variant
To test the application by using the Runtime Server variant, follow these steps:

1 (PC only) Rename the license file, which is
matlabroot\bin\win32\license.dat

2 Start the MATLAB Runtime Server by using this command at the system
prompt.

matlab -runtime (PC)
matlab -runtime -c dummy (UNIX)

3 From the system prompt, navigate to the
toolbox\runtime\examples\engineAPI directory

4 Type DrawAppWin (PC), or DrawApp (UNIX)

The C program displays this message in the Xterm or DOS window.

Press Enter or Return to exit engine application.

pathdefrt.p

matlab

myapp.p

other application files

matlabrt.p directly or indirectly
calls all other application P-files. Apply
depfun to matlabrt.m to analyze
the entire application.

DrawApp

matlabrt.p

runtime_for_pdf.book Page 27 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-28

The program also invokes MATLAB, which in turn invokes myapp.p and the
application’s other P-files as appropriate.

You should see the application’s GUI and figure window. Test the application
by typing expressions in the Plot field and pressing the buttons. To quit the
DrawApp application, activate the system window from which you started
DrawApp, and press the Enter or Return key.

Remember to restore the license file when you want to use commercial
MATLAB.

runtime_for_pdf.book Page 28 Wednesday, September 13, 2000 10:55 AM

Summary List: MATLAB Runtime Engine Application

3-29

Summary List: MATLAB Runtime Engine Application
This list summarizes the steps for creating a MATLAB runtime engine
application. The hyperlinks lead to the sections that describe the steps in more
detail. Note that some links point to the chapter about MATLAB runtime GUI
applications because the topic is the same for both types of application.

1 Stamp your development copy of MATLAB.

2 Adapt the design of the MATLAB portion of the application as necessary.
See Chapter 1, “Design Issues for a Runtime Application.”

3 Decide where to place the MATLAB files you write for the runtime
application.

- If you keep all files under toolbox, then remember to use rehash
toolboxreset to register each change you make.

- If you keep the M-files outside of toolbox and move the P-files under
toolbox only towards the end of your development and testing process,
then remember to include the final destination directories in pathdefrt.

MATLAB places no restriction on the directory structure of the
non-MATLAB portion of your application and no restriction on the relative
locations of the MATLAB and non-MATLAB portions of your application.

4 Create the startup function matlabrt.m by copying
toolbox\runtime\matlabrt_template.m to toolbox\local and renaming
it matlabrt.m. Then modify it as necessary and use rehash toolboxreset
to register the change.

Note that PC applications have special startup considerations arising from
multiple versions or instances of MATLAB.

5 Create the path definition function pathdefrt.m by copying
toolbox\runtime\pathdefrt_template.m to toolbox\local and renaming
it pathdefrt.m. Then modify it as necessary and use rehash toolboxreset
to register the change.

- Use cleanp to remove any .p files from your path and current directory.

- Use depdir to determine the runtime path.

runtime_for_pdf.book Page 29 Wednesday, September 13, 2000 10:55 AM

3 Developing a MATLAB Runtime Engine Application

3-30

- If you plan to move your P-files under toolbox later on, then include their
destination directories in the runtime path.

- Place pathdefrt.m in toolbox\local and use rehash toolboxreset to
register the change.

6 Use buildp to compile all application M-files into runtime P-files.

- Possible complications: toolbar or menu items, functions invoked by eval,
MATLAB P-files, MATLAB add-on products

- Also see the buildp log file for information about the compilation process

7 Test the application.

- With your P-files in their final locations under toolbox, if they are not
already there. After moving them, use rehash toolboxreset to register
the changes.

- Test the MATLAB portion by having MATLAB emulate the Runtime
Server (different procedures for ActiveX and Engine API applications).

- Test the entire application with the Runtime Server variant.

Return to earlier steps as necessary. When debugging, remember to stay
current by deleting old P-files, producing new P-files whenever an M-file
changes, and using rehash toolboxreset as necessary to register changes.

runtime_for_pdf.book Page 30 Wednesday, September 13, 2000 10:55 AM

4
Shipping a MATLAB
Runtime Application

Shipping a MATLAB Runtime Application 4-2
Splash Screen . 4-2
Organizing Files for Shipping 4-2
Automatically Packaging Files for Shipping 4-3
Manually Packaging Files for Shipping (PC) 4-6
Installing and Running the Application 4-7
Final Testing . 4-9

runtime_for_pdf.book Page 1 Wednesday, September 13, 2000 10:55 AM

4 Shipping a MATLAB Runtime Application

4-2

Shipping a MATLAB Runtime Application
This chapter includes some final considerations for packaging and shipping a
professional-looking product.

Splash Screen
A MATLAB runtime GUI application can display a custom splash screen at
startup. The splash screen image is shown for a few seconds, and typically
contains the product name and logo, company name, and copyright
information.

Creating the Splash Screen
You can create a splash screen with MATLAB’s imwrite function, or with any
graphics application that can save an image file in the BMP format (8-bit).
Name the splash screen file splash.bmp, and place it in either the
toolbox\local directory or the startup directory. An example splash.bmp file
is included in the toolbox\runtime directory. Note that the amount of space
that the splash screen occupies on the user’s display depends on the resolution
of the device. Note also that on both UNIX and PC platforms, if the splash
screen has an 8-bit image (256 colors or fewer), then it will still look right even
if your users have only 256 colors available.

Note The MATLAB Runtime Server does not display a splash screen if
neither the toolbox\local directory nor the startup directory contains a
splash.bmp file.

Organizing Files for Shipping
Your MATLAB files must reside in some directory underneath MATLAB’s
toolbox directory. If you kept them somewhere else while developing the
application, then you must move them under toolbox before you package the
application for shipping.

A large MATLAB runtime engine application might have non-MATLAB
application files (for example, Visual Basic files, libraries, or data files) that
require a particular organizational structure. See the documentation for your
development environment to find out more about organizing those files. Note

runtime_for_pdf.book Page 2 Wednesday, September 13, 2000 10:55 AM

Shipping a MATLAB Runtime Application

4-3

that the two file sets are generally independent. For example, an application’s
Visual Basic files do not need to know where the application’s MATLAB P-files
are, and vice versa, because the Automation controller locates the Automation
server by checking the Windows Registry instead of by searching a predefined
file path.

Automatically Packaging Files for Shipping
The Runtime Server software includes a packaging utility that can
automatically archive your application files and create all the executable files
that your users need in order to install your application on their machines.

The packaging utility is called package and is located in the
toolbox\runtime\oem directory. When you execute package, it prompts you for
all necessary information. It reports all relevant information to you, including
the files it creates and the instructions that you should follow in order to test
the installation. These are the same instructions that end users need to follow
in order to install your application. “Installing and Running the Application”
on page 4-7 contains more information about the installer software.

The rest of this section contains more detail for PC and UNIX versions of
package.

Packaging Utility on PC
To run the automatic packaging utility on PC platforms, follow these steps:

1 Create a configuration file, which is a text file that lists the names of all files
that your application uses. This should include runtime P-files and any
MEX-files that your application depends on.

Note If buildp or depfun indicates that your application uses Java classes,
then your configuration file must include:
matlabroot\toolbox\local\classpath.txt,
matlabroot\sys\java\jre\win32\jre*, as well as whatever files your
application requires from the matlabroot\java\jar and
matlabroot\java\jarext hierarchies of directories.

runtime_for_pdf.book Page 3 Wednesday, September 13, 2000 10:55 AM

4 Shipping a MATLAB Runtime Application

4-4

A sample configuration file is toolbox\runtime\oem\user.config_pc.
Notice from the sample user.config_pc file that the path of each listed file
starts from toolbox (for example, toolbox\local\matlabrt.p).

If you used the buildp function to create P-code for your application, then
you can use a text editor to adapt the output variable depfunout{1} to turn
it into a valid configuration file. When you adapt the contents of
depfunout{1}, remember to change .m into .p because you have presumably
compiled each M-file into a P-file. Also remember to use the .dll extension
for MEX-files.

When preparing the configuration file, you may use * as a wildcard, # to
preface comments, and blank lines to improve readability.

2 Go to the system prompt and navigate to the toolbox\runtime\oem
directory. Run the packaging utility using one of the commands below.

package (if your application does not use Java classes)

package -java (if your application uses Java classes)

The packaging utility prompts you for:

a The path to your stamped MATLAB root directory

b The path of your configuration file

c A name for your application. This is the name of the batch file that the
automatic installer creates when your end users install your application.
If you do not specify a name, then the batch file is called demo_app.bat.

Alternatively, the syntaxes below eliminate the need for prompts.

package -r matlabroot -c config_file -n app_name

package -java -r matlabroot -c config_file -n app_name

The packaging utility produces a file called setup.exe in the directory from
which it was launched. This is the file you should ship to end users.

runtime_for_pdf.book Page 4 Wednesday, September 13, 2000 10:55 AM

Shipping a MATLAB Runtime Application

4-5

Packaging Utility on UNIX
To run the automatic packaging utility on UNIX platforms, follow these steps:

1 Create a configuration file, which is a text file that lists the names of all files
that your application uses. This should include runtime P-files and any
MEX-files that your application depends on.

Note If buildp or depfun indicates that your application uses Java classes,
then your configuration file must include:
matlabroot/toolbox/local/classpath.txt;
matlabroot/sys/java/jre/arch/jre and the directory that this symbolic
link points to; and whatever files your application requires from the
matlabroot/java/jar and matlabroot/java/jarext hierarchies of
directories. Here, arch is an architecture-specific directory name.

Note If you use MEX-files on multiple UNIX platforms, then you must
package the files that are appropriate for each of the platforms. For example,
if you use buildp on a Solaris machine and the depfunout output indicates
that your application uses myapp.mexsol, then your shipping version for
Linux users must include myapp.mexglx. In the configuration file for the
packaging utility, you can use wildcards, as in myapp.mex*, to avoid omitting
any files.

A sample configuration file is toolbox/runtime/oem/user.files. When you
adapt user.files for your own application, you should preserve the lines

runtime_for_pdf.book Page 5 Wednesday, September 13, 2000 10:55 AM

4 Shipping a MATLAB Runtime Application

4-6

that package install_rt, user.install, and user.app. You may change
the part after that, using the format

name_of_source_file location_of_source_file target_location

where target_location refers to the destination directory in the end user’s
installation, relative to the directory from which the user runs the installer
program.

In your configuration file, you can use $SCRIPTDIR to indicate the directory
location of the package script and $MATLAB to indicate the MATLAB root
directory. You can also use Bourne shell wildcards in filenames.

2 Run the script

toolbox/runtime/oem/package

using the -java switch if your application uses Java classes. The script
prompts you for the MATLAB root directory, the architecture, and the name
of your configuration file.

The package script produces two files:

• app.tar.files, which lists the files in the application

• app.tar, which is a tar file made from the application

You should ship app.tar to end users. For more details about the UNIX
packaging utility, see the README file in toolbox/runtime/oem.

Manually Packaging Files for Shipping (PC)
On PC platforms, you can archive your files either by using the provided
automatic packaging utility, or by copying them manually. If you copy them
manually, then you should ship the files whose names are listed in:

• matlabroot\toolbox\runtime\oem\bin\win32\binaries.lst
• matlabroot\toolbox\runtime\oem\bin\win32\stubs.lst

Do not modify binaries.lst or stubs.lst if you expect to use the automatic
packaging utility in the future.

Of course, you also need to ship the application-specific files that you wrote.

runtime_for_pdf.book Page 6 Wednesday, September 13, 2000 10:55 AM

Shipping a MATLAB Runtime Application

4-7

Additional Files for Applications Using Java
If buildp or depfun indicates that your application uses Java classes, then you
must also include these files among the files that you ship and that your
installer copies:

• matlabroot\toolbox\local\classpath.txt

• matlabroot\sys\java\jre\win32\jre*

• Whatever files your application requires from the matlabroot\java\jar and
matlabroot\java\jarext hierarchies of directories

Installing and Running the Application
This section discusses the installers provided on PC and UNIX platforms, tips
for building an installer yourself for PC applications, and other special
considerations for PC applications.

Automatically Built Installer on PC
If you use package to organize your files for shipping, then it automatically
builds an installer for your end user. To install the application in a given
directory, copy setup.exe into that directory and execute setup.exe. This
creates a batch file whose name is the application name that you specified
when you first used package. To launch the application, type the application
name.

Sample Installer on UNIX
When you use package to organize your files for shipping, your user.files
listing includes a file called user.install. This file is a sample installer for
your end users. If your application has any special installation or execution
requirements, then you might need to modify user.install accordingly. When
your end users want to install and run your application, they should follow
these instructions:

1 Unpackage the application with these commands.

mkdir prog
cd prog
tar -xvf ../app.tar

2 Run the installer program with this command.

runtime_for_pdf.book Page 7 Wednesday, September 13, 2000 10:55 AM

4 Shipping a MATLAB Runtime Application

4-8

user.install `/bin/pwd`

3 Run the application with this command.

user.app

user.app requires that DISPLAY be set. Alternatively, pass the DISPLAY
value as an argument.

The sample files user.install and user.app are in toolbox/runtime/oem.
For more details, see the README file in toolbox/runtime/oem.

Manually Building an Installer on PC
If you copied and organized your files manually, then you need to create an
installer for your application. The key consideration for the installation process
is that the Runtime Server should be able to locate the application files when
it is launched. To be certain of this:

• Make sure that your application directories are on the runtime path, as
discussed in the section “Creating the Path Definition Function” on page 2-4.

• Make sure that the Runtime Server can find matlabrt.p and pathdefrt.p.
These startup files need to be in the toolbox\local directory or the current
directory.

Associating Files with the MATLAB Runtime Server on PC
In addition to installing the files, the installer software can associate the
application files with the Runtime Server executable. This allows the user to
launch the application (without explicitly launching the Runtime Server) by
clicking on an application file icon or typing the application name.

To create custom icons for the application files, the installer should register the
file extensions of all related files to open with the Runtime Server. Clicking on
any file will then launch the Runtime Server and start the application. You
might also want the installer to create a shortcut to launch the application.

Registering MATLAB as an Automation Server on PC
If you are shipping a MATLAB runtime engine application for PC platforms,
then the Runtime Server needs to be registered in the Microsoft Windows
Registry on the user’s computer as an Automation Server. The Runtime Server

runtime_for_pdf.book Page 8 Wednesday, September 13, 2000 10:55 AM

Shipping a MATLAB Runtime Application

4-9

will register itself with this designation each time it is run with the
/Automation flag.

To register the Runtime Server, your installer software should run the
Runtime Server executable once as the last step of the installation. Because the
Runtime Server cannot be launched through the Engine API commands until
it is registered, the installer needs to launch the Runtime Server executable
explicitly with the /Automation flag.

During this initial run, the application’s matlabrt.p file needs to provide a
mechanism for the Runtime Server to quit. You can build in this facility by
making one change to the matlabrt file, and by installing an extra file in the
toolbox\local directory.

Follow these steps:

1 Add the following lines at the beginning of the matlabrt.m file, right after
the function header.

if exist('register.txt') == 2
 delete('register.txt');
 quit;
end

This causes the Runtime Server to look on the path for a file called
register.txt. If the file exists, the Runtime Server deletes the file and
quits. This brief execution is enough for the Runtime Server to register itself
as an Automation server.

2 Create the file register.txt, or instruct the installer software to create it.
It should be installed in the toolbox\local directory (along with
matlabrt.p). It will be deleted when the installer initially runs the Runtime
Server, so the contents of the file are not important.

Final Testing
Finally, test the installed application with the Runtime Server. For complete
accuracy, you should test the application, including installation, with the same
platform/installation that the end user has. You should test the application on
machines that do not have any copies of MATLAB installed, as well as those
that do. Launch the application while running a commercial copy of MATLAB

runtime_for_pdf.book Page 9 Wednesday, September 13, 2000 10:55 AM

4 Shipping a MATLAB Runtime Application

4-10

on the same system, as well as before and after, to make sure that the
application runs with the Runtime Server under all circumstances.

runtime_for_pdf.book Page 10 Wednesday, September 13, 2000 10:55 AM

5

Reference

runtime_for_pdf.book Page 1 Wednesday, September 13, 2000 10:55 AM

5 Reference

5-2

This chapter contains detailed descriptions of all MATLAB Runtime Server
functions. The reference entries are in alphabetical order, following these two
lists:

• “Functions by Category”

• “Alphabetical List of Functions”

runtime_for_pdf.book Page 2 Wednesday, September 13, 2000 10:55 AM

Functions by Category

5-3

5. Reference

Functions by Category
The tables below list the functions commonly used in the development of
runtime applications. Some functions, such as buildp, are part of the Runtime
Server Distribution Kit and reside in the toolbox\runtime directory. Others,
such as inmem, are standard MATLAB functions.

Table 5-1: General Tools

 Function Purpose

isruntime True if MATLAB is the Runtime Server or is
emulating the Runtime Server

runtime Emulate the runtime environment in MATLAB and
set the global error mode

Table 5-2: P-Code Generation Tools

 Function Purpose

buildp Generate runtime P-code for application

cleanp Delete all P-files on the path and in the current
directory

depdir List the dependent directories of an M-file or P-file

depfun List the dependent functions of an M-file or P-file

inmem List functions in memory

pcode Create a preparsed pseudocode file (P-file)

pcodeall Compile all M-files on the path and current directory
into P-files

runtime_for_pdf.book Page 3 Wednesday, September 13, 2000 10:55 AM

5 Reference

5-4

Table 5-3: Utilities

 Function Purpose

dirlist List all files in directories on the current path

runtime_for_pdf.book Page 4 Wednesday, September 13, 2000 10:55 AM

Alphabetical List of Functions

5-5

Alphabetical List of Functions 5

buildp . 5-6
cleanp . 5-8
depdir . 5-9
depfun . 5-10
dirlist . 5-14
inmem . 5-16
isruntime . 5-17
pcode . 5-18
pcodeall . 5-20
runtime . 5-21

runtime_for_pdf.book Page 5 Wednesday, September 13, 2000 10:55 AM

buildp

5-6

5buildpPurpose Generate runtime P-code for application

Syntax [log,depfunout,pcodeout] = buildp(files);
[log,depfunout,pcodeout] = buildp(files,'develStruct','',verbose);

Description The buildp function generates runtime P-code for a runtime application based
on the filenames listed in files. The outputs report status and possible
problems.

[log,depfunout,pcodeout] = buildp(files) determines the direct and
indirect dependencies of the filenames listed in the cell array files. For each
subordinate M-file, this command generates a runtime P-file and places it in
the same directory with the M-file.

[log,depfunout,pcodeout] = buildp(files,'develStruct','',verbose)
is the same as the first syntax, except that if verbose is 1, then buildp sends
output to the command window.

Inputs
files is a cell array of strings. Each string is the name of a file that is part of
your runtime application. If one function in your application depends on
another, then you do not need to list the subordinate function when invoking
buildp.

If verbose is 1, then buildp sends output to the command window; if verbose
is 0 or absent, then buildp suppresses such output.

Outputs
The output log is a string containing the name of a file that details the various
phases of execution of buildp.

The outputs depfunout and pcodeout are cell arrays that give information
about what happens when buildp invokes depfun and pcode while executing.
depfunout contains the output from depfun, which indicates possible problems
finding or parsing the runtime application’s files. pcodeout indicates whether
buildp had problems creating P-files for the application.

These outputs are useful for troubleshooting, and for checking whether you
need to consider functions that your application invokes via an eval command.

runtime_for_pdf.book Page 6 Wednesday, September 13, 2000 10:55 AM

buildp

5-7

Note If your application uses toolbar items from MATLAB’s default figure
window, then you must include 'FigureToolBar.fig' in your input to buildp.
If your application uses menu items from MATLAB’s default figure window,
then you must include 'FigureMenuBar.fig' in your input to buildp.

Example The command

[log,depfunout,pcodeout] = buildp({'matlabrt'});

creates P-code for the runtime application whose top-level file is matlabrt.

Suppose the log file from the command above indicates that some file in the
runtime application includes an evalc command. If you examine the instance
and determine that the command might invoke either of the files comp1 and
comp2, then you can issue this second buildp command to complete the
building of the runtime application.

[log,depfunout,pcodeout] = buildp({'comp1','comp2'});

Example The command

[log,depfunout,pcodeout] = buildp({'startup\matlabrt',...
'mainfiles\myapp'});

creates P-code for a runtime application whose top-level files are the two
independent files startup\matlabrt and mainfiles\myapp. (If matlabrt
invokes myapp, then you do not need to list myapp in the call to buildp.
Similarly, if myapp invokes matlabrt, then you do not need to list matlabrt in
the call to buildp.)

See Also depfun, pcode

runtime_for_pdf.book Page 7 Wednesday, September 13, 2000 10:55 AM

cleanp

5-8

5cleanpPurpose Delete all P-files on the path and in the current directory

Syntax cleanp

Description cleanp deletes all files whose names end with .p on the current MATLAB path
and in the current directory. This includes the toolbox/runtime directory if it
is the current directory or on the path. This also includes private and class
directories whose parent directories are either the current directory or on the
MATLAB path. Use this command to remove P-files generated with the
pcodeall or pcode command.

Caution cleanp looks only at names, not contents, of files. Use caution if you
have files other than MATLAB P-files that use a .p filename extension.

See Also pcode, pcodeall, rehash

runtime_for_pdf.book Page 8 Wednesday, September 13, 2000 10:55 AM

depdir

5-9

5depdirPurpose List the dependent directories of an M-file or P-file

Syntax list = depdir('file_name');
[list,prob_files,prob_sym,prob_strings] = depdir('file_name');
[...] = depdir('file_name1','file_name2',...);

Description The depdir function lists the directories of all of the functions that a specified
M-file or P-file needs to operate. This function is useful for finding all of the
directories that need to be included with a runtime application and for
determining the runtime path.

list = depdir('file_name') creates a cell array of strings containing the
directories of all the M-files and P-files that file_name.m or file_name.p uses.
This includes the second-level files that are called directly by file_name, as
well as the third-level files that are called by the second-level files, and so on.

[list,prob_files,prob_sym,prob_strings] = depdir('file_name')
creates three additional cell arrays containing information about any problems
with the depdir search. prob_files contains filenames that depdir was
unable to parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to parse.

[...] = depdir('file_name1','file_name2',...) performs the same
operation for multiple files. The dependent directories of all files are listed
together in the output cell arrays.

Example list = depdir('mesh')

See Also depfun

runtime_for_pdf.book Page 9 Wednesday, September 13, 2000 10:55 AM

depfun

5-10

5depfunPurpose List the dependent functions of an M-file or P-file

Syntax list = depfun('file_name');
[list,builtins,classes] = depfun('file_name');
[list,builtins,classes,prob_files,prob_sym,eval_strings,...

called_from,java_classes] = depfun('file_name');
[...] = depfun('file_name1','file_name2',...);
[...] = depfun('fig_file_name');
[...] = depfun(...,'-toponly');

Description The depfun function lists all of the functions and scripts, as well as built-in
functions, that a specified M-file needs to operate. This is useful for finding all
of the M-files that you need to compile for a MATLAB runtime application.

list = depfun('file_name') creates a cell array of strings containing the
paths of all the files that file_name.m uses. This includes the second-level files
that are called directly by file_name.m, as well as the third-level files that are
called by the second-level files, and so on.

Note If depfun reports that “These files could not be parsed:” or if the
prob_files output below is nonempty, then the rest of the output of depfun
might be incomplete. You should correct the problematic files and invoke
depfun again.

[list,builtins,classes] = depfun('file_name') creates three cell arrays
containing information about dependent functions. list contains the paths of
all the files that file_name and its subordinates use. builtins contains the
built-in functions that file_name and its subordinates use. classes contains
the MATLAB classes that file_name and its subordinates use.

[list,builtins,classes,prob_files,prob_sym,eval_strings,...
called_from,java_classes] = depfun('file_name') creates additional cell
arrays or structure arrays containing information about any problems with the
depfun search and about where the functions in list are invoked. The
additional outputs are:

runtime_for_pdf.book Page 10 Wednesday, September 13, 2000 10:55 AM

depfun

5-11

• prob_files, which indicates which files depfun was unable to parse, find, or
access. Parsing problems can arise from MATLAB syntax errors. prob_files
is a structure array whose fields are:

- name, which gives the names of the files

- listindex, which tells where the files appeared in list

- errmsg, which describes the problems

• prob_sym, which indicates which symbols depfun was unable to resolve as
functions or variables. It is a structure array whose fields are:

- fcn_id, which tells where the files appeared in list

- name, which gives the names of the problematic symbols

• eval_strings, which indicates usage of these evaluation functions: eval,
evalc, evalin, feval. When preparing a runtime application, you should
examine this output to determine whether an evaluation function invokes a
function that does not appear in list. The output eval_strings is a
structure array whose fields are:

- fcn_name, which give the names of the files that use evaluation functions

- lineno, which gives the line numbers in the files where the evaluation
functions appear

• called_from, a cell array of the same length as list. This cell array is
arranged so that list(called_from{i}) returns all functions in file_name
that invoke the function list{i}.

• java_classes, a cell array of Java class names that file_name and its
subordinates use

[...] = depfun('file_name1','file_name2',...) performs the same
operation for multiple files. The dependent functions of all files are listed
together in the output arrays.

[...] = depfun('fig_file_name') looks for dependent functions among the
callback strings of the GUI elements that are defined in the .fig or .mat file
named fig_file_name.

[...] = depfun(...,'-toponly') differs from the other syntaxes of depfun
in that it examines only the files listed explicitly as input arguments. It does
not examine the files on which they depend. In this syntax, the flag '-toponly'
must be the last input argument.

runtime_for_pdf.book Page 11 Wednesday, September 13, 2000 10:55 AM

depfun

5-12

Notes

1 If depfun does not find a file called hginfo.mat on the path, then it creates
one. This file contains information about Handle Graphics callbacks.

2 If your application uses toolbar items from MATLAB’s default figure
window, then you must include 'FigureToolBar.fig' in your input to
depfun.

3 If your application uses menu items from MATLAB’s default figure window,
then you must include 'FigureMenuBar.fig' in your input to depfun.

4 Because many built-in Handle Graphics functions invoke newplot, the list
produced by depfun always includes the functions on which newplot is
dependent:
- 'matlabroot\toolbox\matlab\graphics\newplot.m'
- 'matlabroot\toolbox\matlab\graphics\closereq.m'
- 'matlabroot\toolbox\matlab\graphics\gcf.m'
- 'matlabroot\toolbox\matlab\graphics\gca.m'
- 'matlabroot\toolbox\matlab\graphics\private\clo.m'
- 'matlabroot\toolbox\matlab\general\@char\delete.m'
- 'matlabroot\toolbox\matlab\lang\nargchk.m'
- 'matlabroot\toolbox\matlab\uitools\allchild.m'
- 'matlabroot\toolbox\matlab\ops\setdiff.m'
- 'matlabroot\toolbox\matlab\ops\@cell\setdiff.m'
- 'matlabroot\toolbox\matlab\iofun\filesep.m'
- 'matlabroot\toolbox\matlab\ops\unique.m'
- 'matlabroot\toolbox\matlab\elmat\repmat.m'
- 'matlabroot\toolbox\matlab\datafun\sortrows.m'
- 'matlabroot\toolbox\matlab\strfun\deblank.m'
- 'matlabroot\toolbox\matlab\ops\@cell\unique.m'
- 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'
- 'matlabroot\toolbox\matlab\datafun\@cell\sort.m'
- 'matlabroot\toolbox\matlab\strfun\cellstr.m'
- 'matlabroot\toolbox\matlab\datatypes\iscell.m'
- 'matlabroot\toolbox\matlab\strfun\iscellstr.m'
- 'matlabroot\toolbox\matlab\datatypes\cellfun.dll'

Example list = depfun('mesh'); % Files mesh.m depends on

runtime_for_pdf.book Page 12 Wednesday, September 13, 2000 10:55 AM

depfun

5-13

list = depfun('mesh','-toponly') % Files mesh.m invokes directly
[list,builtins,classes] = depfun('gca');

See Also depdir, dirlist

runtime_for_pdf.book Page 13 Wednesday, September 13, 2000 10:55 AM

dirlist

5-14

5dirlistPurpose List all files in directories on the current path

Syntax [w,wc,wp] = dirlist;

Description [w,wc,wp] = dirlist returns three structure arrays containing information
about all of the directories on the path and in the current directory. Each
structure array (w, wc, and wp) has the same fields as the structure array
produced by MATLAB’s what command.

w provides this information for every standard directory on the path and in the
current directory. wc provides this information for every class directory on the
path and in the current directory. wp provides this information for every private
directory on the path and in the current directory.

The length of w is the same as the number of standard directories, the length of
wc is the same as the number of class directories, and the length of wp is the
same as the number of private directories.

Field Description

path The directory path (a string)

m The names of the M-files in the directory (a cell array of
strings)

mat The names of the MAT-files in the directory (a cell array
of strings)

mex The names of the MEX-files in the directory (a cell array
of strings)

mdl The names of the Simulink model files in the directory (a
cell array of strings)

p The names of the P-files in the directory (a cell array of
strings)

classes The names of the class directories in the directory (a cell
array of strings)

runtime_for_pdf.book Page 14 Wednesday, September 13, 2000 10:55 AM

dirlist

5-15

Example [w,wc,wp] = dirlist;

To see the dirlist information for private directories on the path, look at wp.
The output shown below is for a typical MATLAB installation.

wp =
14x1 struct array with fields:
 path
 m
 mat
 mex
 mdl
 p
 classes

This means that there are 14 private directories on the path and in the current
directory. To see what the third one is, type

wp(3)
ans =
 path: 'c:\matlab\toolbox\matlab\uitools\private'
 m: {12x1 cell}
 mat: { 2x1 cell}
 mex: { 1x1 cell}
 mdl: {}
 p: {12x1 cell}
 classes: {}

The directory is toolbox\matlab\uitools\private, and it contains 12 M-files,
2 MAT-files, 1 MEX-file, and 12 P-files. There are no Simulink model files or
class directories in the uitools\private directory. To see the MAT-files in
uitools\private, look at wp(3).mat.

wp(3).mat
ans =
 'algnbtn.mat'
 'toolbtn.mat'

See Also depdir, depfun

runtime_for_pdf.book Page 15 Wednesday, September 13, 2000 10:55 AM

inmem

5-16

5inmemPurpose List functions in memory

Syntax M = inmem;
[M,mexfiles] = inmem;
[M,mexfiles,jclasses] = inmem;

Description M = inmem returns a cell array of strings containing the names of the M-files
that are in the P-code buffer.

[M,mexfiles] = inmem returns also a cell array, mexfiles, containing the
names of the MEX-files that are currently loaded.

[M,mexfiles,jclasses] = inmem returns also a cell array, jclasses,
containing the names of the Java classes that are currently loaded.

Example rehash toolboxreset % Refresh cache
erf(.5)
M = inmem

M =
 'repmat'
 'erfcore'
 'erf'

These are the M-files that were required to run erf.

See Also depdir, depfun, rehash

runtime_for_pdf.book Page 16 Wednesday, September 13, 2000 10:55 AM

isruntime

5-17

5isruntimePurpose True if MATLAB is the Runtime Server or is emulating the Runtime Server

Syntax isruntime

Description isruntime returns logical true (1) if MATLAB is either commercial MATLAB
currently emulating the Runtime Server, or the Runtime Server variant.
isruntime returns logical false (0) otherwise.

Example runtime on
isruntime

ans =
 1

runtime off
isruntime

ans =
 0

See Also runtime

runtime_for_pdf.book Page 17 Wednesday, September 13, 2000 10:55 AM

pcode

5-18

5pcodePurpose Create a preparsed pseudocode file (P-file)

Syntax pcode fun
pcode *.m
pcode fun1 fun2 ...
pcode ... -inplace
pcode ... -runtime
pcode ... -inplace -runtime

Description pcode fun parses the M-file fun.m into the P-file fun.p. If fun.m is not in a
class or private directory, then fun.p is placed in the current directory.
Otherwise, fun.p is placed in a class or private subdirectory of the current
directory, which pcode automatically creates if necessary. The original M-file
can be anywhere on the search path.

pcode *.m creates P-files for all the M-files that are in the current directory.
The location of the new P-files is as described above.

pcode fun1 fun2 ... creates P-files for the listed functions. The location of
the new P-files is as described above.

pcode ... -inplace creates P-files in the same directory as the corresponding
M-files.

pcode ... -runtime creates runtime P-files. If fun.m is not in a class or
private directory, then fun.p is placed in the current directory. Otherwise,
fun.p is placed in a class or private subdirectory of the current directory, which
pcode automatically creates if necessary. The pcode.m file itself cannot be
compiled into a runtime P-file.

pcode ... -inplace -runtime creates runtime P-files in the same directory
as the corresponding M-files. The pcode.m file itself cannot be compiled into a
runtime P-file.

runtime_for_pdf.book Page 18 Wednesday, September 13, 2000 10:55 AM

pcode

5-19

Note In order for runtime P-files to work with a runtime application, the
shipping version of MATLAB must have the same password stamp as the
development version of MATLAB that created the runtime P-file. See
“Password Consistency Rules” on page xiii for more details.

See Also cleanp, pcodeall

runtime_for_pdf.book Page 19 Wednesday, September 13, 2000 10:55 AM

pcodeall

5-20

5pcodeallPurpose Compile all M-files on the path and current directory into P-files

Syntax pcodeall
pcodeall -runtime

Description pcodeall compiles all M-files on the current MATLAB path and in the current
directory into standard P-files (preparsed MATLAB code), including those in
private and class directories.

pcodeall -runtime compiles all M-files on the current MATLAB path and in
the current directory into runtime P-files, including those in private and class
directories. MEX-files and runtime P-files are the only executable files that the
MATLAB Runtime Server recognizes.

Each generated P-file resides in the same directory as its corresponding M-file.

Note In order for runtime P-files to work with a runtime application, the
shipping version of MATLAB must have the same password stamp as the
development version of MATLAB that created the runtime P-file. See
“Password Consistency Rules” on page xiii for more details.

See Also cleanp, pcode

runtime_for_pdf.book Page 20 Wednesday, September 13, 2000 10:55 AM

runtime

5-21

5runtimePurpose Emulate the runtime environment in MATLAB and set the global error mode

Syntax runtime on
runtime off
runtime status
runtime errormode mode

Description The runtime command lets you emulate the Runtime Server environment in
commercial MATLAB. On PC platforms, it also sets the global error mode for a
runtime application. Because the Runtime Server disables the command
window, it is generally much more convenient to test and debug with MATLAB
emulating the Runtime Server than with the Runtime Server variant itself.

runtime on tells commercial MATLAB to begin emulating the Runtime
Server. This means that MATLAB executes neither M-files nor standard
P-files. The command line remains accessible.

runtime off returns MATLAB to its ordinary state.

runtime status indicates whether MATLAB is emulating the Runtime Server
or not.

runtime errormode mode sets the global error mode to mode on PC platforms.
The value of mode can be either continue, quit, or dialog. However, dialog is
both the default error mode and the recommended one.

The error mode setting is only effective when the application runs with the
Runtime Server; when the application runs with commercial MATLAB
emulating the Runtime Server, untrapped errors are always displayed in the
command window. For details about error modes, see “Setting the Global Error
Behavior on a PC” on page 1-10.

runtime_for_pdf.book Page 21 Wednesday, September 13, 2000 10:55 AM

runtime

5-22

runtime_for_pdf.book Page 22 Wednesday, September 13, 2000 10:55 AM

I-1

Index

A
ActiveX ix

controller
starting 3-5

See also Automation
agreement of passwords xiii
API, MATLAB Engine

commands 3-21
connection with Runtime Server 3-3
methods 3-11

in runtime example 3-9
support in Runtime Server ix

applications
launching runtime 2-4

associating files 4-8
automatic packaging of files 4-3

and installers
on PC 4-7
on UNIX 4-7

Automation
methods 3-11
object, declaring 3-12
server

MATLAB as 3-5
multiple-client versus dedicated 3-5
registering MATLAB as 4-8
with runtime emulation 3-7

B
back-end computational engine 3-3
backwards compatibility with Runtime Server 5.1

1-12
buildp 5-6
button-click events

in runtime engine application 3-13

C
class directories

not on runtime path 2-5
cleanp 5-8
clear functions command

before emulating Runtime Server 2-12
troubleshooting using 2-12

close force command, for runtime testing 2-11
closereq

in runtime applications 1-7
CloseRequestFcn property

configuring to quit 1-6
default 1-7
specifying in example runtime engine

application 3-17
command window

eliminating reliance on 1-3
commercial MATLAB xiv

compared to Runtime Server viii
installed on runtime user’s machine 3-5

compatibility with Runtime Server 5.1, backwards
1-12

compiling
individual M-files 2-9
missing M-files 2-12
runtime engine application 3-6
runtime GUI applications 2-6

composing function names at runtime 2-13
computational engine ix
consistency rules for passwords xiii
controller, ActiveX

starting 3-5
custom icons, creating 4-8

runtime_for_pdf.book Page 1 Wednesday, September 13, 2000 10:55 AM

Index

I-2

D
debugging runtime applications

while emulating the Runtime Server
engine application 3-20
GUI application 2-10

dedicated server 3-5
default menu options

and dependent functions 2-9
and stability of callbacks 1-4
necessary to disable for runtime applications

1-3
depdir 5-9

and class/private directories 2-5
identifying runtime path using 2-21

dependent directories 2-21
depfun 5-10

and class/private directories 2-5
and missing files 2-13

development copy of MATLAB xiv
development path, saving 2-12
dialog boxes

for acquiring input in runtime applications
1-3

directories in runtime applications
class, not on runtime path 2-5
listing dependent 2-21
MATLAB root xii
missing from runtime application 2-13
parent, on runtime path 2-5
private, not on runtime path 2-5

dirlist 5-14
disabling M-files and standard P-files 2-10
dummy functions 3-16

E
emulating the Runtime Server

in runtime engine application 3-6
in runtime GUI application 2-10

engClose API library command 3-21
Engine API, MATLAB

commands 3-21
connection with Runtime Server 3-3
methods

in runtime example 3-9
viewing 3-11

support in Runtime Server ix
engOpen API library command 3-21
errors in runtime applications

runtime emulation 2-12
trapping 1-9
untrapped 1-10

continuing after 1-10
default response 1-10
prompt to quit or continue after 1-12
prompting to quit after 1-11
recommended behavior 1-10
specifying response to 2-4

eval

and runtime troubleshooting 2-13
eval(try,catch) command

in example runtime application 3-17
evalc

and runtime troubleshooting 2-13
evalc(try,catch) command

in runtime applications 1-3
evalin

and runtime troubleshooting 2-13
events, button-click

in runtime engine application 3-13
examples

runtime engine application

runtime_for_pdf.book Page 2 Wednesday, September 13, 2000 10:55 AM

Index

I-3

PC 3-9
UNIX 3-21

runtime GUI application 2-16
Visual Basic 3-9

Execute API method 3-12
in runtime example 3-9

exiting an application
techniques for 1-6
without quitting MATLAB 2-11

F
figure

using in runtime applications 2-20, 3-25
figure menu options

and dependent functions 2-9
necessary to disable for runtime applications

1-3
figure menus

default callback stability in 1-4
default, in runtime applications 1-3

figure toolbar options
and dependent functions 2-9

file structures
independence of 4-3

files in runtime applications
.fig 2-9
organizing for shipping 4-2

Form_Load procedure 3-12
Form_Terminate procedure 3-15
front-end GUIs in runtime applications 3-3
function names, composed at runtime 2-13
functions

dummy 3-16
list of Runtime-Server-related 5-3
See also individual function names

G
GetFullMatrix API method

in button draw procedure 3-13
global error behavior 1-10
GUIs viii
GUIs in runtime applications

and dependent functions 2-9
front-end 3-3
Visual Basic 3-11

I
icons, creating 4-8
inputdlg, in runtime applications 1-3
installer software

creating automatically
on PC 4-7
on UNIX 4-7

creating manually 4-8
installing

example files
for runtime GUI example 2-16

runtime example files
for PC runtime engine example 3-9

J
Java, packaging automatically in runtime

applications
PC 4-3
UNIX 4-5

Java, packaging manually in runtime applications
4-7

runtime_for_pdf.book Page 3 Wednesday, September 13, 2000 10:55 AM

Index

I-4

L
languages, non-MATLAB ix
launching runtime applications 2-4
listing

dependent directories 2-21
local directory, See toolbox\local directory

M
MATLAB

Application Type Library 3-11
Automation object, declaring 3-12
commercial xiv
development copy xiv
Engine API

commands 3-21
methods 3-11

runtime variant xiv
MATLAB runtime application, definition xiv
MatLab variable 3-12
MATLAB-based applications xiv
matlabroot directory xii

See also MATLAB, root directory
matlabrt 2-3

and errors 1-10
and warnings 1-14
creating from matlabrc 2-4
for MATLAB runtime engine applications 3-4
in UNIX runtime engine example 3-25
prematurely terminating 4-9

Menubar property, in runtime applications 1-3
menus in runtime applications

default callback stability 1-4
default, in runtime appliactions 1-3
necessary to disable options in 1-3

M-files
disabling reading of 2-10

not specified on compile list 2-12
top-level

example 3-15
missing

directories/files in runtime application 2-13
MLApp library 3-11
MLResImag variable 3-12
MLResReal variable 3-12
multiple

application instances 3-5
development copies of MATLAB xiii
versions of MATLAB 3-5

multiple-client server 3-5

O
Object variable 3-12
organizing files 4-2

P
packaging utility 4-3

installers built by
on PC 4-7
on UNIX 4-7

parent directories, on runtime path 2-5
password stamping

consistency rules xiii
of MATLAB xii
of multiple copies of MATLAB xiii
of P-files xiii, 2-6
using rtsetup xii

path definition function 2-4
pathdefrt 2-4

creating 2-4
for runtime engine application 3-5
missing directories in 2-13

runtime_for_pdf.book Page 4 Wednesday, September 13, 2000 10:55 AM

Index

I-5

paths in runtime applications 2-4
saving 2-12
specifying

in PC runtime engine example 3-18
in UNIX runtime engine example 3-26

pcode

for individual M-files in runtime applications
2-9

for runtime applications 5-18
pcodeall 5-20
P-files ix

disabling reading of 2-10
missing 2-12
not generated from current M-files 2-12
removing all 2-10
runtime viii

compared to standard 2-6
compiling 2-6

private directories
not on runtime path 2-5

ProgID options 3-6

Q
quitting

a Visual Basic application 3-20
Runtime Server 3-20
techniques for 1-6

using uicontrols 1-7
using uimenus 1-7

R
recompiling 2-11
registering file extensions 4-8
Registry, Windows

and organization of runtime engine
applications 4-3

and runtime application installers 4-8
removing all P-files 2-10
rtsetup file, for stamping MATLAB xii
runtime application, definition xiv
runtime emulation

errors 2-12
status 2-11

runtime engine application
and pathdefrt 3-5
compiling 3-6
definition ix
parts of 3-3
PC example 3-9
registering 4-8
testing 3-6
UNIX example 3-21

runtime engine applications 3-2
-runtime flag

with pcode function 2-9
runtime function-name building 2-13
runtime GUI applications

compiling 2-6
definition of ix
development process for 2-2

runtime P-files viii
compared to standard 2-6
compiling 2-6

Runtime Server
compared to MATLAB viii
emulating 2-10
Engine API 3-3
key features viii
overview viii
path

in PC runtime engine example 3-18

runtime_for_pdf.book Page 5 Wednesday, September 13, 2000 10:55 AM

Index

I-6

in UNIX runtime engine example 3-26
runtime variant of MATLAB xiv

See also Runtime Server

S
scope, variable 3-12
server, multiple-client vs. dedicated 3-5
shipping runtime applications

final steps before 4-2
shipping variant of MATLAB xiv
single-client server 3-5
splash screens

displaying 4-2
not displayed 4-2

splash.bmp file 4-2
stamping

consistency rules xiii
of MATLAB xii
of multiple copies of MATLAB xiii
of P-files 2-6

consistency rules for xiii
using rtsetup xii

startup function
in runtime GUI application 2-3
in UNIX runtime engine example 3-25

switching between variants of MATLAB
for testing runtime engine example 3-8
for testing runtime GUI applications 2-15

switchyard function 3-5
in example runtime application 3-16

T
testing runtime applications

engine application 3-6
final 4-9

GUI application 2-10
while emulating the Runtime Server 2-22

engine application 3-20
GUI application 2-10

with the Runtime Server
engine applications 3-8
GUI applications 2-15

with the Runtime Server variant 2-23
toolbox/local directory

installing the splash screen in 4-2
top-level M-files in runtime applications

in PC runtime engine example 3-15
trapping errors 1-9
troubleshooting while emulating the Runtime

Server
in runtime GUI applications 2-12

try-catch-end structures, in runtime applications
1-9

U
uicontrols, for quitting runtime applications 1-7
uimenus

for quitting runtime applications 1-7
untrapped errors

setting response to 2-4

V
variables

MatLab 3-12
MLResImag 3-12
MLResReal 3-12
Object 3-12
scope of 3-12

variant, runtime
See also Runtime Server

runtime_for_pdf.book Page 6 Wednesday, September 13, 2000 10:55 AM

Index

I-7

versions of MATLAB, multiple 3-5
Visual Basic ix

example 3-9
GUI 3-11

W
warning, in runtime applications 1-14
warnings in runtime applications

invisibility of 2-6
suppressing 1-14

Windows Registry
and organization of runtime engine

applications 4-3
and runtime application installers 4-8

runtime_for_pdf.book Page 7 Wednesday, September 13, 2000 10:55 AM

	Preface
	What Is the MATLAB Runtime Server?
	Key Features of the MATLAB Runtime Server
	Overview of MATLAB Runtime Applications

	Related Products
	Using This Guide
	Configuration Information
	Password Consistency Rules
	Rule 1
	Rule 2
	Rule 3

	Technical Conventions
	Typographical Conventions

	Design Issues for a Runtime Application
	Preventing Command Window Input/Output
	Disabling Default Menu Options Selectively

	Providing a Way to Exit the Application
	Using the CloseRequestFcn to Exit the Application
	Using a Uicontrol or Uimenu to Exit the Application

	Trapping Errors
	Setting the Global Error Behavior on a PC
	Ignore Errors
	Prompt to Quit
	Prompt to Choose Between Continuing and Quitting

	Setting the Global Warning Behavior on UNIX

	Developing a MATLAB Runtime GUI Application
	Process: MATLAB Runtime GUI Application
	Overview of This Chapter
	Organizing Files and Managing Startup Tasks (GUI)
	Where to Place Your Files
	Creating the Startup Function
	Properties of the matlabrt Function

	Creating the Path Definition Function
	Properties of the pathdefrt Function
	Creating the pathdefrt.m Function

	Other Path Specification Considerations

	Compiling the Application (GUI)
	Overview of Compilation
	Tips for Compiling

	Compiling the Application with One Command
	Troubleshooting After Using buildp

	Compiling Selected M-Files
	Troubleshooting After Using pcode

	Removing P-Files

	Testing While Emulating the Runtime Server (GUI)
	Moving P-Files to Final Locations
	Emulating the Runtime Server
	Runtime Server Emulation Considerations
	Troubleshooting
	Analyzing Functions Called by eval
	Using inmem to Find Files That depfun Misses
	Compiling Extra M-Files

	Testing with the Runtime Server Variant (GUI)

	Example: MATLAB Runtime GUI Application
	Installing the Example Files
	Directory Structure of Application

	Overview of the Application
	How the Application Files Interact

	Adapting the Design for Runtime Execution
	Organizing Files and Managing Startup Tasks
	The Startup Function
	Creating the Path Definition Function

	Compiling the Application
	Testing While Emulating the Runtime Server
	Testing with the Runtime Server Variant

	Summary List: MATLAB Runtime GUI Application

	Developing a MATLAB Runtime Engine Application
	Process: MATLAB Runtime Engine Application
	Overview of This Chapter
	Computation and the MATLAB Engine API
	Parts of a MATLAB Runtime Engine Application
	Organizing Files and Managing Startup Tasks
	Where to Place Your Files
	Creating the Startup Function
	Creating the Path Definition Function
	PC Startup Considerations
	Default Executable
	Users Who Have MATLAB Installed on the System
	Handling Multiple Application Instances and Multiple Versions of MATLAB

	Compiling the Application
	Testing While Emulating the Runtime Server
	Moving P-Files to Final Locations
	Emulating the Runtime Server Using ActiveX Automation (PC)
	Emulating the Runtime Server Using Engine API Commands

	Testing with the Runtime Server Variant

	ActiveX Automation Example
	Installing the Example Files
	Visual Basic Files
	MATLAB Application Files
	MATLAB Startup Functions

	Adapting the Design for Runtime Execution
	The Front-End GUI
	General Declarations Section
	Form Load Procedure: Form_Load
	Button Draw Procedure: btn_Draw_Click
	Button Erase Procedure: btn_Erase_Click
	Button Quit Procedure: btn_Quit_Click
	Menu Quit Procedure: menu_Quit_Click
	Form Terminate Procedure: Form_Terminate

	Creating the Top-Level M-File
	Initialization Function: myapp_init
	Draw Function: myapp_draw
	Erase Function: myapp_erase

	Organizing Files and Managing Startup Tasks
	The Startup Function
	Creating the Path Definition Function

	Compiling the Application
	Testing with the Runtime Server Variant

	Engine API Example
	Preparing the Example Files
	C File
	MATLAB Startup Functions
	MATLAB Application Files

	Adapting the Design for Runtime Execution
	Overview of Adaptations

	Organizing Files and Managing Startup Tasks
	The Startup Function
	Creating the Path Definition Function

	Compiling the Application
	Testing with the Runtime Server Variant

	Summary List: MATLAB Runtime Engine Application

	Shipping a MATLAB Runtime Application
	Shipping a MATLAB Runtime Application
	Splash Screen
	Creating the Splash Screen

	Organizing Files for Shipping
	Automatically Packaging Files for Shipping
	Packaging Utility on PC
	Packaging Utility on UNIX

	Manually Packaging Files for Shipping (PC)
	Additional Files for Applications Using Java

	Installing and Running the Application
	Automatically Built Installer on PC
	Sample Installer on UNIX
	Manually Building an Installer on PC
	Associating Files with the MATLAB Runtime Server on PC
	Registering MATLAB as an Automation Server on PC

	Final Testing

	Reference
	Functions by Category
	Alphabetical List of Functions
	buildp
	cleanp
	depdir
	depfun
	dirlist
	inmem
	isruntime
	pcode
	pcodeall
	runtime

	Index

