
Modeling

Simulation

Implementation

Target Language Compiler
 For Use with Real-Time Workshop ®

™

Reference Guide
Version 4

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Target Language Compiler Reference Guide
 COPYRIGHT 1997 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1997 First printing for Target Language Compiler 1.0
September 2000 Updated for Version 4/Release 12 (online only)

i

Contents

1
Introducing the Target Language Compiler

Overview of the TLC Process . 1-3
Overview of the Code Generation Process 1-5

Capabilities . 1-7
Customizing Output . 1-7
Inlining S-Functions . 1-7

Code Generation Process . 1-9
How TLC Determines S-Function Inlining Status 1-9
A Look at Inlined and Noninlined S-Function Code 1-10
Process Specifics For The Real-Time Workshop Ada Coder . . 1-12

Advantages of Inlining S-Functions 1-14
Motivations . 1-14
Inlining Process . 1-15
Search Algorithm for Locating Target Files 1-16
Availability for Inlining and Noninlining 1-16

Target Language Compiler 4.0 New Features 1-17
Compatibility Issues . 1-18

Where to Go from Here . 1-21
Related Manuals . 1-21

2
Getting Started

Code Architecture . 2-2

Model.rtw and TLC Overview . 2-4
The TLC Process . 2-4

ii Contents

Inlining S-Function Concepts . 2-6
Noninlined S-Function . 2-6
Types of Inlining . 2-7
Fully Inlined S-Function Example . 2-8
Wrapper Inlined S-Function Example 2-10

3
Code Generation Architecture

Build Process . 3-2
A Basic Example . 3-2

Invoking TLC to Generate Code . 3-7

Code Generation Concepts . 3-8
Output Streams . 3-8
Variable Types . 3-9
Records . 3-9
Record Aliases . 3-11

TLC Files . 3-14
Introducing Target Files . 3-14
System Target Files . 3-16
Block Target Files . 3-17
Block Target File Mapping . 3-17
Target Files . 3-17

Writing Target Language Files: A Tutorial 3-23
Matrix Parameters in Real-Time Workshop 3-23

Configuring TLC . 3-26

iii

4
Contents of model.rtw

Overview of model.rtw File . 4-2
Using Scopes in the model.rtw File . 4-3

Using Library Functions to Access model.rtw Contents . . . 4-6
Caution Against Directly Accessing Record Fields 4-6
Exception to Using the Library Functions 4-7

5
Directives and Built-in Functions

Compiler Directives . 5-2
Syntax . 5-2
Comments . 5-15
Line Continuation . 5-16
Target Language Values . 5-17
Target Language Expressions . 5-19
Formatting . 5-25
Conditional Inclusion . 5-25
Multiple Inclusion . 5-27
Object-Oriented Facility for Generating Target Code 5-32
Output File Control . 5-34
Input File Control . 5-35
Asserts, Errors, Warnings, and Debug Messages 5-36
Built-In Functions and Values . 5-37
TLC Reserved Constants . 5-50
Identifier Definition . 5-51
Scoping . 5-55
Target Language Functions . 5-59

Command Line Arguments . 5-65
Filenames and Search Paths . 5-66

iv Contents

6
Debugging TLC

About the TLC Debugger . 6-2
Tips for Debugging TLC Code . 6-2

Using the TLC Debugger . 6-3
Tutorial . 6-3
TLC Debugger Commands . 6-6

Example TLC Debugging Session . 6-9

TLC Coverage . 6-11
Using the TLC Coverage Option . 6-11

TLC Profiler . 6-14
Using the Profiler . 6-14

7
Inlining S-Functions

Writing Block Target Files to Inline S-Functions 7-2
Fully Inlined S-Functions . 7-2
Function-Based or Wrappered Code Generation 7-2

Inlining C MEX S-Functions . 7-4
S-Function Parameters . 7-5
A Complete Example . 7-6

Inlining M-File S-Functions . 7-17

v

Inlining Fortran (FMEX) S-Functions 7-19

Inlining Ada-MEX S-Functions . 7-23

TLC Coding Conventions . 7-26

Block Target File Methods . 7-31
Block Target File Mapping . 7-31
Block Functions . 7-31

Loop Rolling . 7-41

Error Reporting . 7-43

8
TLC Tutorial

Syntax Highlighting with Emacs . 8-2

Basic Inlined S-Function Written in TLC 8-3
Basic Code Generation . 8-3
Creating an Inlined S-Function . 8-4

Introduction to TLC Token Expansion 8-6

Building a Model Using the TLC Debugger 8-8
Preparing the Example . 8-8
Performing the Tasks . 8-8

Explore Variable Names and Loop Rolling 8-10
Preparing the Example . 8-10
Performing the Tasks . 8-10

Code Coverage for Debugging TLC Files 8-13
Performing the Tasks . 8-13

Using a Wrapper S-Function Inlined with TLC 8-16

vi Contents

When to Consider? . 8-16
Exercise . 8-16
The TLC Wrapper . 8-17
Solution . 8-18

Inlined S-Function for Dual Port RAM 8-20
Exercise . 8-20
Further Hints . 8-22
Solution . 8-23

“Hello World” Example with model.rtw File 8-24
Exercise . 8-24

Generating Auxiliary Files for Batch FTP 8-25
Exercise . 8-25

Generating Code for Models with States 8-26
Derivatives Function . 8-29

Simulink External Mode and GRT . 8-35
Running External Mode in Simulink . 8-35
Advanced External Mode Exercise . 8-38

Loop Rolling Through a TLC File . 8-40
Arguments for %roll . 8-40
Input Signals, Output Signals, and Parameters 8-41

9
TLC Function Library Reference

Obsolete Functions . 9-3

Target Language Compiler Functions 9-5
Common Function Arguments . 9-5

vii

Input Signal Functions . 9-10

Output Signal Functions . 9-15

Parameter Functions . 9-18

Block State and Work Vector Functions 9-22

Block Path and Error Reporting Functions 9-25

Code Configuration Functions . 9-27

Sample Time Functions . 9-30

Other Useful Functions . 9-36

Advanced Functions . 9-39

A
model.rtw

model.rtw File Contents . A-2
Understanding the model.rtw File . A-2
General model.rtw Concepts . A-5

model.rtw Changes Between Real-Time Workshop
3.0 and 4.0 . A-6

model.rtw Differences . A-6

General Information and Solver Specification A-11

RTWGenSettings Record . A-13

Data Logging Information . A-14

Data Structure Sizes . A-16

viii Contents

Sample Time Information . A-18

Data Type Information . A-20

Block Type Counts . A-21

Model Hierarchy . A-22

External Inputs and Outputs . A-25

Data Store Information . A-27

Block I/O Information . A-28

Data Type Work (DWork) Information A-33

State Mapping Information . A-35

Block Record Defaults . A-36

Parameter Record Defaults . A-37

Data and Control Port Defaults . A-38

Model Parameters Record . A-40

System Record . A-43

Stateflow Record . A-56

Model Checksums . A-57

Block Specific Records . A-58

Linear Block Specific Records . A-77

ix

B
TLC Error Handling

Generating Errors from TLC-Files . B-2
Usage Errors . B-2
Fatal (Internal) TLC Coding Errors . B-2
Formatting Error Messages . B-3

TLC Error Messages . B-5

TLC Function Library Error Messages B-32

C
Using TLC with Emacs

The Emacs Editor . C-2
Getting Started . C-2
Creating a TAGS File . C-2

x Contents

1
Introducing the Target
Language Compiler

Overview of the TLC Process 1-3
Overview of the Code Generation Process 1-5

Capabilities . 1-7
Customizing Output 1-7
Inlining S-Functions 1-7

Code Generation Process 1-9
How TLC Determines S-Function Inlining Status 1-9
A Look at Inlined and Noninlined S-Function Code 1-10
Process Specifics For The Real-Time Workshop Ada Coder . . 1-12

Advantages of Inlining S-Functions 1-14
Motivations . 1-14
Inlining Process 1-15
Search Algorithm for Locating Target Files 1-16
Availability for Inlining and Noninlining 1-16

Target Language Compiler 4.0 New Features 1-17
Compatibility Issues 1-17

Where to Go from Here 1-21
Related Manuals 1-21

1 Introducing the Target Language Compiler

1-2

The Target Language Compiler™ tool is an integral part of the Real-Time
Workshop®. It enables you to customize the C or Ada code generated from any
Simulink® model and generate optimal, inlined code for your own Simulink
blocks. Through customization, you can produce platform-specific code, or you
can incorporate your own algorithmic changes for performance, code size, or
compatibility with existing methods that you prefer to maintain.

Note This book describes the Target Language Compiler, its files, and how to
use them together. This information is provided for those users who need to
customize target files in order to generate specialized output. Or, in some
cases, for users who want to inline S-functions to improve the performance
and readability of the generated code. The overall code generation process for
the Real-Time Workshop is discussed in detail in the Real-Time Workshop
User’s Guide in the “Code Generation and the Build Process” chapter.

This book refers to the Target Language Compiler either by its complete
name, Target Language Compiler, or TLC, or simply, Compiler.

1-3

Overview of the TLC Process
This top-level diagram shows how the target language compiler fits in with the
Real-Time Workshop Code generation process.

As an integral component of Real-Time Workshop, the Target Language
Compiler transforms an intermediate form of a Simulink block diagram, called
model.rtw, into C or Ada code. The model.rtw file contains a “compiled”

Run-time interface
support files

Simulink

Real-Time Workshop

Real-Time Workshop Build

model.rtw

Target
Language
Compiler

TLC program:

• System target file

• Block target files

• Inlined S-function target
files

• Target Language
Compiler function
library

model.c or

model.mdl

model.exe

Make model.mk

model.adb

1 Introducing the Target Language Compiler

1-4

representation of the model describing the execution semantics of the block
diagram in a very high level language. After reading the model.rtw file, the
Target Language Compiler generates its code based on target files, which
specify particular code for each block, and model-wide files, which specify the
overall code style. TLC works like a text processor, using the target files and
the model.rtw file to generate ANSI C or Ada code.

In order to create a target-specific application, Real-Time Workshop also
requires a template makefile that specifies the appropriate C compiler and
compiler options for the build process. The template makefile is transformed
into a makefile (model.mk) by performing token expansion specific to a given
model. A target-specific version of the generic rt_main file (or grt_main) must
also be modified to conform to the target’s specific requirements such as
interrupt service routines. A complete description of the template makefiles
and rt_main is included in the Real-Time Workshop User’s Guide.

For those familiar with HTML, Perl, and MATLAB®, you will find that the
Target Language Compiler borrows ideas from each of them. It has the
mark-up-like notion of HTML, and the power and flexibility of Perl and other
scripting languages. It has the data handling power of MATLAB. The Target
Language Compiler is designed for one purpose — to convert the model
description file, model.rtw, (or similar files) into target specific code or text.

The code generated by TLC is highly optimized and fully commented C code,
and can be generated from any Simulink model, including linear, nonlinear,
continuous, discrete, or hybrid. All Simulink blocks are automatically
converted to code, with the exception of MATLAB function blocks and
S-function blocks that invoke M-files. The Target Language Compiler uses
block target files to transform each block in the model.rtw file and a
model-wide target file for global customization of the code.

You can incorporate C MEX S-functions, along with the generated code, into
the program executable. You can also write a target file for your C MEX
S-function to inline the S-function, thus improving performance by eliminating
function calls to the S-function itself and the memory overhead associated with
the S-function’s simStruct. Inlining an S-function incorporates the S-function
block’s code into the generated code for the model. When no target file is
present for the S-function, its C code file is invoked via a function call. For more
information on inlining S-functions, see Chapter 7, “Inlining S-Functions.” You
can also write target files for M-files or Fortran S-functions.

1-5

Overview of the Code Generation Process
Figure 1-1 shows how the Target Language Compiler works with its target files
and Real-Time Workshop output to produce code. When generating code from
a Simulink model using Real-Time Workshop, the first step in the automated
process is to generate a model.rtw file. The model.rtw file includes all of the
model-specific information required for generating code from the Simulink
model. model.rtw is passed to the Target Language Compiler, which uses it in
combination with a set of included system target files and block target files to
generate the code.

Only the final executable file is written directly to the current directory.

Note In the case of the S-function target, a stub-included version of the final
model_sf.c file is written to the current directory for use when the S-function
is used in a model that is in turn used for code generation.

For all other files created during code generation, including the model.rtw file,
a build directory is used. This directory is created by Real-Time Workshop right
in the current directory and is named .model_target_rtw, where target is the
abbreviation for the target environment, e.g., grt is the abbreviation for the
generic real-time target.

Files placed in the build directory include:

• The body for the generated C source code (model.c)

• Header files (model.h and model_export.h)

• A model registration include file (model_reg.h) that registers the model’s
SimStruct, sets up allocated data, and initializes nonfinite parameters

• A parameter include file (model_prm.h) that has information about all the
parameters contained in the model

1 Introducing the Target Language Compiler

1-6

The process to create Ada source files is similar to that for creating C source
files.

Figure 1-1: The Target Language Compiler Process

Simulink Model (sample.mdl)

Real-Time Workshop

sample.rtw

Target Files

Target Language Compiler

*.tlc

(generated code files)
(generated code files)

(generated code files)

in build directory ./sample_xxx_rtw/

Capabilities

1-7

Capabilities
If you simply need to produce ANSI C or Ada code from a Simulink model, you
do not need to use the Target Language Compiler. If you need to customize the
output of Real-Time Workshop, the Target Language Compiler is the
mechanism that you would use. Use the Target Language Compiler if you need
to:

• Change the way code is generated for a particular Simulink block

• Inline S-functions in your model

• Modify the way code is generated in a global sense

• Perform a large scale customization of the generated code, for example, if you
need to output the code in a language other than C

Customizing Output
To produce customized output using the Target Language Compiler, you need
to understand the structure of the model.rtw file and how to modify target files
to produce the desired output. The “Directives and Built-In Functions” chapter
describes the target language directives and their associated constructs. You
will use the Target Language Compiler directives and constructs to modify
existing target files or create new ones, depending on your needs. The “Writing
Target Language Files: A Tutorial” section in the “Code Generation
Architecture” chapter explains the details of writing target files.

Inlining S-Functions
The Target Language Compiler provides a great deal of freedom for altering or
enhancing the generated code. One of the most important features of the
Target Language Compiler is that it lets you inline S-functions, since
S-functions let you enhance Simulink by adding your own algorithms, device
drivers, and so on to a Simulink model.

To create an S-function, you write C code following a well-defined API. When
generating code, a noninlined S-function is called using this same API. There
is a fair amount of overhead in having a common API in that a large data
structure called the SimStruct is maintained for each instance of an S-function
block in your model. In addition, there is extra overhead for calling the methods
(functions) within your S-function. You can eliminate this overhead by inlining
the S-function using TLC. This is done by creating a TLC file named

1 Introducing the Target Language Compiler

1-8

sfunction_name.tlc. Inlining an S-function improves the efficiency and
reduces memory usage of the generated code.

Technically, you can use the Target Language Compiler to convert the
model.rtw file into any form of output by replacing all of the TLC files. You can
also replace some or all of the shipping system-wide and built-in block TLC
files. This is supported but not recommended. If you choose to perform such
operations, you may need to update your TLC files with each release of the
Real-Time Workshop. The MathWorks continues to improve the code generator
by adding features and making it more efficient. With each release, The
MathWorks may alter the contents of the model.rtw file. We try to make it
backwards compatible, but cannot guarantee this. However, inlined TLC files
are generally backwards compatible, providing they use the documented Lib*
TLC functions.

Code Generation Process

1-9

Code Generation Process
Real-Time Workshop invokes TLC after a Simulink model is compiled into an
intermediate form that is suitable for generating code. In addition to TLC’s
library of functions, the two main classes of target files are:

• System target files

• Block target files

System target files are used to specify the overall structure of the generated
code. Block target files are used to implement the functionality of Simulink
blocks, including user-defined S-function blocks.

You can create block target files for C MEX, Ada MEX, Fortran, and M-file
S-functions to fully inline block functionality into the body of the generated
code. C MEX S-functions can be noninlined, wrapper-inlined, or fully inlined.
Ada and Fortran S-functions must be wrapper or fully inlined.

How TLC Determines S-Function Inlining Status
Whenever the Target Language Compiler encounters an entry for an
S-function block in the model.rtw file, it has to decide either to generate a call
to the S-function or inline it.

Ada, Fortran, and M-file S-functions must be inlined. This inlining can either
be in the form of a full block target file or a “one-liner” block target file that
references a “substitute” C MEX S-function source file.

A C MEX S-function will be selected for inlining by the Target Language
Compiler if there is an explicit mdlRTW() function in the S-function code or if
there is a target file for the current target language for the current block in the
TLC file search path. If a C MEX S-function has an explicit mdlRTW() function,
there must be a corresponding target file or an error condition will result.

The target file for an S-function must have the same root name as the
S-function and must have the extension .tlc. For example, the example C
MEX S-function source file sfun_bitop.c has its compiled form in toolbox/
simulink/blocks/sfun_bitop.dll (.mex* for UNIX) and its C target file is
located in toolbox/simulink/blocks/tlc_c/sfun_bitop.tlc. This example
S-function also has an Ada target file, which is located in toolbox/simulink/
blocks/tlc_ada/sfun_bitop.tlc, if you have the Real-Time Workshop Ada
Coder.

1 Introducing the Target Language Compiler

1-10

A Look at Inlined and Noninlined S-Function Code
This example focuses on the example S-function sfun_bitop.c in directory
matlabroot/simulink/src/. The model’s code generation options are set to
allow reuse of signal memory for signal lines that were not set as tunable
signals.

The code generated for the bitwise operator block reuses a temporary variable
that is set up for the output of the sum block to save memory. This results in
one very efficient line of code, as seen here.

/* Bitwise Logic Block: <Root>/Bitwise Logical Operator */
/* [input] OR 'F00F' */
rtb_temp2 |= 0xF00F;

There is no initialization or setup code required for this inlined block.

If this block were noninlined, the source code for the S-function itself with all
its various options would be added to the generated codebase, memory would
be allocated in the generated code for the block’s SimStruct data, and calls to
the S-function’s methods would be generated to initialize, run, and terminate

Code Generation Process

1-11

the S-function code. To execute the mdlOutputs function of the S-function, code
would be generated like this:

/* Level2 S-Function Block: <Root>/Bitwise Logical Operator (sfun_bitop) */
 {
 SimStruct *rts = ssGetSFunction(rtS, 0);
 sfcnOutputs(rts, tid);
 }

The entire mdlOutputs function is called and runs just as it does during
simulation. That’s not everything, though. There is also registration,
initialization, and termination code for the noninlined S-function. The
initialization and termination calls are similar to the fragment above. Then,
the registration code for an S-function with just one inport and one outport is
72 lines of C code generated as part of file model_reg.h.

/*Level2 S-Function Block: <Root>/Bitwise Logical Operator (sfun_bitop) */
 {
 extern void untitled_sf(SimStruct *rts);
 SimStruct *rts = ssGetSFunction(rtS, 0);

 /* timing info */
 static time_T sfcnPeriod[1];
 static time_T sfcnOffset[1];
 static int_T sfcnTsMap[1];

 {
 int_T i;

 for(i = 0; i < 1; i++) {
 sfcnPeriod[i] = sfcnOffset[i] = 0.0;
 }
 }
 ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
 ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
 ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);
 ssSetMdlInfoPtr(rts, ssGetMdlInfoPtr(rtS));

 /* inputs */
 {
 static struct _ssPortInputs inputPortInfo[1];

 _ssSetNumInputPorts(rts, 1);
 ssSetPortInfoForInputs(rts, &inputPortInfo[0]);

1 Introducing the Target Language Compiler

1-12

 /* port 0 */
 {

 static real_T const *sfcnUPtrs[1];
 sfcnUPtrs[0] = &rtU.In1;
 ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]);
 _ssSetInputPortNumDimensions(rts, 0, 1);
 ssSetInputPortWidth(rts, 0, 1);
 }
 }
.
.
.

This continues until all the S-function sizes and methods are declared,
allocated, and initialized. The amount of registration code generated is
essentially proportional to the number and size of the input ports and output
ports.

A noninlined S-function will typically have a significant impact on the size of
the generated code, whereas an inlined S-function can give handcoded size and
performance to the generated code.

Process Specifics For The Real-Time Workshop Ada
Coder
The code generated by the Ada Coder uses the same strategy and algorithms
as the equivalent C target file. Minor language-specific differences will exist,
such as when C code invokes a call to the C standard library memcpy() function
to copy an array of data, the generated Ada code will generate an assignment
loop.

When searching for inlined S-Function block target files, the Ada Coder
instructs the Target Language Compiler to look in tlc_ada/ directories instead
of tlc_c/ directories. Target files for Ada have the %implements ... "Ada"
directive in them instead of the %implements ... "C" directive.

The filenames generated by the Ada Coder follow the recommended extension
naming practice used by the GNU Ada Translator (GNAT) environment, which
are the familiar .adb (body), .ads (specification) file extensions.

The generated code is formatted for capitalization, comment style, and
indentation to conform to the conventions in the book Ada 95 Quality and Style:
Guidelines for Professional Programmers, part no. SPC-94093-CMC, version

Code Generation Process

1-13

01.00.10 from the Software Productivity Consortium, phone: +1 (703)
742-8877.

1 Introducing the Target Language Compiler

1-14

Advantages of Inlining S-Functions

Motivations
The goals of generated code usually include compactness and speed. On the
other hand, S-functions are runtime-loadable extension modules for adding
block-level functionality to Simulink. As such, the S-function interface is
optimized for flexibility in configuring and using blocks in a simulation
environment with capability to allow runtime changes to a block’s operation via
parameters. These changes typically take the form of algorithm selection and
numerical constants for the block algorithms.

While switching algorithms is a desirable feature in the design phase of a
system, when the time comes to generate code, this type of flexibility is often
dropped in favor of optimal calculation speed and code size. TLC was designed
to allow the generation of code that is compact and fast by selectively
generating only the code you need for one instance of a block’s parameter set.

When Inlining Is Not Appropriate
You may decide that inlining is not appropriate for certain C MEX S-functions.
This may be the case if an S-function has:

• Few or no numerical parameters

• One algorithm that is already fixed in capability (i.e., it has no optional
modes or alternate algorithms)

• Support for only one datatype

• A significant or large code size in the mdlOutputs() function

• Multiple instances of this block in your models

Whenever you encounter this situation, the effort of inlining the block may not
improve execution speed and could actually increase the size of the generated
code. The trade-off is in the size of the block’s body code generated for each
instance vs. the size of the child SimStruct created for each instance of a
noninlined S-function in the generated code.

Alternatively, you can use a hybrid inlining method known as a C MEX
wrappered S-function, where the block target file is used to simply generate a
call to a custom code function that the S-function itself also calls. This approach
may be the optimal solution for code generation in the case of a large piece of
existing code. An adaptation of this hybrid technique is used for calling the

Advantages of Inlining S-Functions

1-15

rt_*.c library functions located in directory rtw/c/libsrc/. See Chapter 7,
“Inlining S-Functions,” for the procedure and an example of a wrappered
S-function.

Inlining Process
The strategy for achieving compact, high performance code from Simulink
blocks in Real-Time Workshop centers on determining what part of a block’s
operations are active and necessary in the generated code and what parts can
be predetermined or left out.

In practice, this means the TLC code in the block target file will select an
algorithm that is a subset of the algorithms contained in the S-function itself
and then selectively hard-code numerical parameters that are not to be
changed at run time. This reduces code memory size and results in code that is
often much faster than its S-function counterpart when mode selection is a
significant part of S-function processing. Additionally, all function call
overhead is eliminated for inlined S-functions as the code is generated directly
in the body of the code unless there is an explicit call to a library function in the
generated code.

The algorithm selections and parameter set for each block is output in the
initial phase of the code generation process from the S-function’s registered
parameter set or the mdlRTW() function (if present), which results in entries in
the model’s .rtw file for that block at code generation time. A file written in the
target language for the block is then called to read the entries in the model.rtw
file and compute the generated code for this instance of the block. This TLC
code is contained in the block target file.

One special case for inlined S-functions is for the case of I/O blocks and drivers
such as A/D converters or communications ports. For simulation, the I/O driver
is typically coded in the S-function as a pure source, a pass-through, or a pure
sink. In the generated code however, an actual interface to the I/O device must
be made, typically through direct coding with the common _in(), _out()
functions, inlined assembly code, or a specific set of I/O library calls unique to
the device and target environment.

1 Introducing the Target Language Compiler

1-16

Search Algorithm for Locating Target Files
The Target Language Compiler has the following search path for block target
files:

1 The current directory

2 The directory where the S-function executable (MEX or .m) file is located

3 S-function directory’s subdirectory ./tlc_c (for C language targets)

4 S-function directory’s subdirectory ./tlc_ada (for Ada language targets)

The first target file encountered with the required name that implements the
proper language will be used in processing the S-function’s model.rtw file
entry.

Availability for Inlining and Noninlining
S-functions can be written in M, Fortran, Ada, and C. TLC inlining of
S-functions is available as indicated in this table.

Table 1-1: Inline TLC Support by S-Function Type

S-Function Type Noninlining Supported Inlining Supported

M-file No Yes

Fortran MEX No Yes

Ada No Yes

C Yes Yes

Target Language Compiler 4.0 New Features

1-17

Target Language Compiler 4.0 New Features
The following features have been added to the Target Language Compiler for
Version 4.0:

• Complete parsing of the TLC file just before execution. This aids
development because syntax errors are caught the first time the TLC file is
run instead of the first time the offending line is reached.

• TLC speed improvements across the board, particularly in block parameter
generation.

• Creation and use of a build directory in the current directory to prevent
generated code from clashing with other files generated for other targets,
and for keeping your model directories maintenance to a minimum.

• Entirely new TLC Profiler for finding performance problems in your TLC
code.

• New format and changes to the model.rtw file. See Appendix A, “model.rtw,”
for details. The size of the model.rtw file has been reduced.

• Aliases added for block parameters in the model.rtw file, see ParamName0 on
page A-53 of the “model.rtw” appendix.

• New flexible methods for text expansion from within strings.

• Column-major ordering of 2-dimensional signal and parameter data.

• New record data handling.

• New TLC language semantics.

• Additional built-in functions: FIELDNAMES, GENERATE_FORMATTED_VALUE,
GETFIELD, ISALIAS, ISEMPTY, ISEQUAL, ISFIELD, REMOVEFIELD, SETFIELD

• Support for 2-dimensional signals in inlined code.

• Additional built-in variables: INTMAX, INTMIN, TLC_TRUE, TLC_FALSE,
UINTMAX

• Functions can return records.

• Formalization of records and record aliases.

• Loop control variables are local to loop bodies.

• Improved EXISTS semantics (See “Built-In Functions and Values” on
page 5-37).

• Can expand records with %<>

1 Introducing the Target Language Compiler

1-18

• Short circuiting of conditionals (||, &&, ?:, %if-%elseif-%else-%endif)

• Relational operators can be used with non-finite values.

• Enhanced conversion rules for FEVAL. You can now pass records and structs
to FEVAL.

Compatibility Issues
In bringing Target Language files from Release 11 to Release 12, the following
changes may affect your TLC codebase:

• Nested evaluations are no longer supported. Expressions such as
%<LibBlockParameterValue(%<myVariable>,"", "", "")>

are no longer supported. You will have to convert these expressions into
equivalent nonnested expressions.

• Aliases are no longer automatically created for Parameter blocks while
reading in Real-Time Workshop files.

• You cannot change the contents of a “Default” record after it has been
created. In the previous TLC, you could change a “Default” record and see the
change in all the records that inherited from that default record.

• %codeblock and %endcodeblock constructs are no longer supported.

• %defines & macro constructs are no longer supported.

• Use of line continuation characters (... and \) are not allowed inside of
strings. Also, to place a double quote (") character inside a string, you must
use \". Previously, TLC allowed you to do """ to get a double quote in a
string.

• Semantics have been formalized to %include files in different contexts (e.g.,
from generated files inside of %with blocks, etc.) %include statements are
now treated as if the were read in from the global scope.

• The previous TLC had the ability to split function definitions (and other
directives) across include file boundaries (e.g., you could start a %function in
one file and %include a file that had the %endfunction). This no longer
works.

• Nested functions are no longer allowed. For example,
%function foo ()
%function bar ()

Target Language Compiler 4.0 New Features

1-19

%endfunction
%endfunction

• Recursive records are no longer allowed. For example,
Record1 {

Val 2
Ref Record2

}
Record2 {

Val 3
Ref Record1

}

• Record declaration syntax has changed. The following code code fragments
illustrate the differences between declaring a record recVar in previous
versions of TLC and the current release.

- Previous versions:
%assign recVarAlias = recVar { ...

field1 value1 ...
field2 value2 ...
…
fieldN valueN ...

}

- Current version:
%createrecord recVar { ...

field1 value1 ...
field2 value2 ...
…
fieldN valueN ...

}

See “Records” on page 3-9 for further information.

• Semantics of the EXISTS function have changed. In the previous release of
TLC, EXISTS(var) would check if the variable represented by the string
value in var existed. In the current release of TLC, EXISTS(var) checks to
see if var exists or not.

To emulate the behavior of EXISTS in the previous release, replace

1 Introducing the Target Language Compiler

1-20

EXISTS(var)

with

EXISTS(“%<var>”)

Where to Go from Here

1-21

Where to Go from Here
The remainder of this book contains both explanatory and reference material
for the Target Language Compiler:

• Chapter 2, “Getting Started,” describes the process that the Target
Language Compiler uses to generate code, and general inlining S-function
concepts.

• Chapter 3, “Code Generation Architecture,” describes the TLC files and the
build process. It also provides a tutorial on how to write target language files.

• Chapter 4, “Contents of model.rtw,” describes the model.rtw file.

• Chapter 5, “Directives and Built-in Functions,”contains the language syntax
for the Target Language Compiler.

• Chapter 6, “Debugging TLC,” explains how to use the TLC debugger.

• Chapter 7, “Inlining S-Functions,” describes how to use the Target Language
Compiler and how to inline S-functions.

• Chapter 8, “TLC Tutorial,” contains a selection of examples with step-by-step
instructions on how to use the TLC.

• Chapter 9, “TLC Function Library Reference,”contains abstracts for the TLC
functions.

• Appendix A, “model.rtw,” describes the complete contents of the model.rtw
file.

• Appendix B, “TLC Error Handling,” lists the error messages that the Target
Language Compiler can generate, as well as how to best use the errors.

• Appendix C, “Using TLC with Emacs,” is a reference for using Emacs to edit
TLC files.

Related Manuals
The items listed below are sections of other manuals that relate to the creation
of TLC files.

• The Real-Time Workshop User’s Guide describes the use and internal
architecture of the Real-Time Workshop. the “Code Generation and the Build
Process” chapter presents information on how TLC fits into the overall code
generation process.

1 Introducing the Target Language Compiler

1-22

• The Simulink manual Writing S-Functions presents detailed information on
all aspects of writing Fortran, M-file and C MEX S-functions. The most
pertinent chapter from the point of view of the Target Language Compiler is
the “Guidelines for Writing C MEX S-Functions” chapter, which details how
to write wrappered and fully inlined S-functions with a special emphasis on
the mdlRTW() function.

2

Getting Started

Code Architecture 2-2

Model.rtw and TLC Overview 2-4
The TLC Process 2-4

Inlining S-Function Concepts 2-6
Noninlined S-Function 2-6
Types of Inlining 2-7
Fully Inlined S-Function Example 2-8
Wrapper Inlined S-Function Example 2-10

2 Getting Started

2-2

Code Architecture
Before investigating the specific code generation pieces of the Target Language
Compiler, consider how TLC generates code for a simple model. From the
figure below, you see that blocks place code into Mdl routines. This shows
MdlOutputs.

Blocks have inputs, outputs, parameters, states, plus other general properties.
For example, block inputs and outputs are generally written to a block I/O
structure (rtB). Block inputs can also come from the external input structure
(rtU) or the state structure when connected to a state port of an integrator
(rtX), or ground (rtGround) if unconnected or grounded. Block outputs can also
go to the external output structure (rtY). The following picture shows the
general block data mappings.

void MdlOutputs(int_T tid)
{
 /* Sin Block: <Root>/Sine */
 rtB.Sine = rtP.Sine.Amplitude *
 sin(rtP.Sine.Frequency * ssGetT(rtS) + rtP.Sine.Phase);

 /* Gain Block: <Root>/Gain */
 rtB.Gain = rtB.Sine * rtP.Gain.Gain;

 /* Outport Block: <Root>/Out */
 rtY.Out = rtB.Gain;
}

1

OutSine

1

Gain

Block

Block I/O
Struct,
rtB

External
Outputs
Struct,
rtY

External
Inputs
Struct,
rtU

rtGround

States
Struct,
rtX

Work
Structs,
rtRWork,
rtIWork,
rtPWork,

Parameter
Struct,
rtP rtDWork,

...End

In
te

gr
at

io
nMdlDerivatives

MdlOutputs

MdlStart

Start Execution

MdlOutputs

MdlDerivatives

MdlTerminate

E
xe

cu
ti

on
L

oo
p

MdlUpdate

Code Architecture

2-3

This discussion should give you a general sense of what the “block” object looks
like. Now, you can look at the TLC-specific pieces of the code generation
process.

2 Getting Started

2-4

Model.rtw and TLC Overview

The TLC Process
To write TLC code for your S-function, you need to understand the TLC process
for code generation. As previously described, Simulink generates a model.rtw
file that contains a high level representation of the execution semantics of the
block diagram. The model.rtw file is an ASCII file that contains a data
structure in the form of a nested set of TLC records. The records are comprised
of name/value pairs. The TLC compiler reads the model.rtw file and converts
it into an internal representation.

Next, the TLC compiler runs (interprets) the TLC files, starting first with the
system target file, i.e., grt.tlc. This is the entry point to all the system TLC
files as well as the block files, i.e., other TLC files get included into or generated
from the one TLC file passed to TLC on its command line (grt.tlc). As the TLC
code in the system and block target files is run, it uses, appends to and modifies
the existing name/values and records initially loaded from the model.rtw file.

model.rtw Structure
The structure of the model.rtw file mirrors the block diagram’s structure:

• For each nonvirtual system in the model, there is a corresponding system
record in the model.rtw file.

• For each nonvirtual block within a nonvirtual system, there is a block record
in the model.rtw file in the corresponding system.

The basic structure of model.rtw is

CompiledModel {
System {
Block {
DataInputPort {

...
}
DataOutputPort{

...
}
ParamSettings {

...
}

Model.rtw and TLC Overview

2-5

Parameter {
...

}
}

}
}

Operating Sequence
For each occurrence of a given block in the model, a corresponding block record
exists in the model.rtw file. The system target file TLC code loops through all
block records and calls the functions in the corresponding block target file for
that block type. For inlined S-functions, it calls the inlining TLC file.

There is a method for getting block specific information (internal block
information as apposed to inputs/outputs/parameters/etc.) into the block record
in the model.rtw file for a block by using the mdlRTW function in the C-MEX
function of the block.

Among other things, the mdlRTW function allows you to write out parameter
settings (paramsettings), i.e., unique information pertaining to this block. For
parameter settings in the block TLC file, direct accesses to these fields are
made from the block TLC code and can be used to affect the generated code as
desired.

2 Getting Started

2-6

Inlining S-Function Concepts
To inline an S-function means to provide a TLC file for an S-function block that
will replace the C (or Fortran/M/Ada) code version of the block that was used
during simulation.

Noninlined S-Function
If an inlining TLC file is not provided, most Real-Time Workshop targets will
still support the block by recompiling the C-MEX S-function for the block. As
discussed earlier, there is overhead in memory usage and speed when using the
C coded S-function and only a limited subset of mx API calls are supported
within the Real-Time Workshop context. If you want the most efficient
generated code, you must inline S-functions by writing a TLC file for them.

When Simulink needs to execute one of the functions for an S-function block
during a simulation, it calls into the MEX-file for that function. When
Real-Time Workshop executes a noninlined S-function, it does so in a similar
manner as this diagram illustrates.

model.mdl

sfcn.c

my_alg.c

sfcn
u y

mdlOutputs()
{
*y = my_alg(u);
}

real_T my_alg(real_T u)
{
return(2.0*u);
}

s
f
c
n
.
d
l
l

Inlining S-Function Concepts

2-7

Types of Inlining
When inlining an S-function with a TLC file, it is helpful to define two
categories of inlining:

• Fully inlined S-functions

• Wrapper inlined S-functions

While both effectively inline the S-function and remove the overhead of a
noninlined S-function, the two approaches are different. The first example
below using timestwo.tlc is considered a fully inlined TLC file, where the full
implementation of the block is contained in the TLC file for the block.

The second example uses a wrapper TLC file. Instead of generating all the
algorithmic code in place, this example calls a C function that contains the body
of code. There are several potential benefits for using the wrapper TLC file:

• It provides a way of sharing the C code by both the C-MEX S-function and
the generated code. There is no need to write the code twice.

• The called C function is an optimized routine.

• Several of the blocks may exist in the model and it is more efficient in terms
of code size to have them call a function as apposed to each creating identical
algorithmic code.

• It provides a way to incorporate legacy C code seamlessly into Real-Time
Workshop’s generated code.

model.c

MdlOutputs()
{
rtB.y=sfcnOutputs(rtS,tid);
}

Call through a function
pointer to access
static mdlOutputs.

2 Getting Started

2-8

Fully Inlined S-Function Example
Inlining an S-function provides a mechanism to directly embed code for an
S-function block into the generated code for a model. Instead of calling into a
separate source file via function pointers and maintaining a separate data
structure (SimStruct) for it, the code appears “inlined” as the diagram below
shows.

The S-function timestwo.c provides a simple example of a fully inlined
S-function. This block multiplies its input by 2 and outputs it. The C-MEX
version of the block is in matlabroot/simulink/src/timestwo.c and the
inlining TLC file for the block is in matlabroot/toolbox/simulink/blocks/
tlc_c/timestwo.tlc.

model.c

MdlOutputs()
{
rtB.y=2.0*rtB.u;
}

TLC lets you customize
the generated code by
embedding my_alg.

sfcn.tlc

%function(block,system) Output
%<y>=2.0*%<u>;
%endfunction

Your TLC code specifies
the algorithm.

Inlining S-Function Concepts

2-9

timestwo.tlc
%implements "timestwo" "C"

%% Function: Outputs ==
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %%
 /* Multiply input by two */
 %assign rollVars = ["U", "Y"]
 %roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
 %<LibBlockOutputSignal(0, "", lcv, idx)> = \
 %<LibBlockInputSignal(0, "", lcv, idx)> * 2.0;
 %endroll
%endfunction

TLC Block Analysis
The %implements line is required by all TLC blocks file and is used by the
Target Language Compiler to verify correct block type and correct language
support by the block. The %function directive starts a function declaration and
shows the name of the function, Outputs, and the arguments passed to it,
block and system. These are the relevant records from the model.rtw file for
this instance of the block.

The last piece to the prototype is Output. This means that any line that is not
a TLC directive is output by the function to the current file that is selected in
TLC. So, any nondirective lines in the Outputs function become generated code
for the block.

The most complicated piece of this TLC block example is the %roll directive.
TLC uses this directive to provide for the automatic generation of for loops
depending on input/output widths and whether the inputs are contiguous in
memory. This example uses the typical form of accessing outputs and inputs
from within the body of the roll, using LibBlockOutputSignal and
LibBlockInputSignal to access the outputs and inputs and perform the
multiplication and assignment. Note that this TLC file supports any signal
width.

The only function needed to implement this block is Outputs. For more
complicated blocks, other functions will be declared as well. You can find
examples of more complicated inlining TLC files in matlabroot/toolbox/
simulink/blocks and matlabroot/toolbox/simulink/blocks/tlc_c, and by
looking at the code for builtin blocks in matlabroot/rtw/c/tlc.

2 Getting Started

2-10

timestwo Model
This simple model uses the timestwo S-function and shows the MdlOutputs
function from the generated model.c file, which contains the inlined S-function
code.

MdlOutputs Code
void MdlOutputs(int_T tid)
{
 /* S-Function Block: <Root>/S-Function */
 /* Multiply input by two */
 rtB.S_Function = (rtB.Constant_Value) * 2.0;

 /* Outport Block: <Root>/Out1 */
 rtY.Out1 = rtB.S_Function;
}

Wrapper Inlined S-Function Example
The following diagram illustrates inlining an S-function as a wrapper. The
algorithm is directly called from the generated model code, removing the
S-function overhead but maintaining the user function.

Inlining S-Function Concepts

2-11

This is the inlining TLC file for a wrapper version of the timestwo block.

%implements "timestwo" "C"

%% Function: BlockTypeSetup ==================================
%%
%function BlockTypeSetup(block, system) void
 %% Add function prototype to models header file
 %<LibCacheFunctionPrototype("extern void mytimestwo(real_T* in, real_T* out,...

int_T els);")>
 %% Add file that contains "myfile to list of files to be compiled
 %<LibAddToModelSources("myfile")>
%endfunction

model.c

MdlOutputs()
{
rtB.y=my_alg(rtB.u);
}

TLC lets you customize the
generated code to produce a
direct call to my_alg.

sfcn.tlc

%function(block,system) Output
%<y>=my_alg(%<u>);
%endfunction

Your TLC code specifies
how to directly call
my_alg.

2 Getting Started

2-12

%% Function: Outputs ==
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %assign outPtr = LibBlockOutputSignalAddr(0, "", "", 0)
 %assign inPtr = LibBlockInputSignalAddr(0, "", "",0)
 %assign numEls = LibBlockOutputSignalWidth(0)
 /* Multiply input by two */
 mytimestwo(%<inPtr>,%<outPtr>,%<numEls>);

%endfunction

Analysis
The function BlockTypeSetup is called once for each type of block in a model; it
doesn’t produce output directly like the Outputs function. Use BlockTypeSetup
to include a function prototype in the model.h file and to tell the build process
to compile an additional file, myfile.c.

Instead of performing the multiply directly, the Outputs function now calls the
function mytimestwo. So, all instances of this block in the model will call the
same function to perform the multiply. The resulting model function,
MdlOutputs, then becomes

void MdlOutputs(int_T tid)
{
 /* S-Function Block: <Root>/S-Function */
 /* Multiply input by two */
 mytimestwo(&rtB.Constant_Value,&rtB.S_Function,1);

 /* Outport Block: <Root>/Out1 */
 rtY.Out1 = rtB.S_Function;
}

Summary
This section has been a brief introduction to the model.rtw file and the
concepts of inlining an S-function using the Target Language Compiler.
Chapter 4, “Contents of model.rtw,” and Appendix A, “model.rtw,” contain
more details of the model.rtw file and its contents. Chapter 7, “Inlining
S-Functions,” and Chapter 8, “TLC Tutorial,” contain details on writing TLC
files, including a comprehensive tutorial.

3
Code Generation
Architecture

Build Process 3-2
A Basic Example 3-2

Invoking TLC to Generate Code 3-7

Code Generation Concepts 3-8
Output Streams 3-8
Variable Types 3-9
Records . 3-9
Record Aliases . 3-11

TLC Files . 3-13
Introducing Target Files 3-13
System Target Files 3-15
Block Target Files 3-16
Block Target File Mapping 3-16
Target Files . 3-16

Writing Target Language Files: A Tutorial 3-22
Matrix Parameters in Real-Time Workshop 3-22

Configuring TLC 3-25

3 Code Generation Architecture

3-2

Build Process
As part of the code generation process, Real-Time Workshop generates a
model.rtw file from the Simulink model. This file contains information about
the model that is then used to generate code. The code is generated through
calls to a utility called the Target Language Compiler. The Target Language
Compiler then converts these files into the desired language (e.g., C) and
enables the code generation.

This section presents an overview of the build process, focusing more on the
Target Language Compiler’s role in this process.

The Target Language Compiler is a separate binary program that is included
as a MEX-file. The Compiler compiles files written in the target language. The
target language is an interpreted language, and thus, the Compiler operates on
source files every time it executes. You can make changes to a target file and
watch the effects of your change the next time you build a model. You do not
need to recompile the Target Language Compiler binary or any other such
large binary to see the effects of your change.

Since the target language is an interpreted language, some statements may
never be compiled or executed (and hence not checked by the compiler for
correctness).

%if 1
Hello

%else
%<Invalid_function_call()>

%endif

In the above example, the Invalid_function_call statement will never be
executed. This example emphasizes that you should test all your the Target
Language Compiler code with test cases that exercise every line.

A Basic Example
This section presents a basic example of creating a target language file that
generates specific text from a Real-Time Workshop model. This example shows
the sequence of steps that you should follow in creating and using your own
target language files.

Build Process

3-3

Process
To begin, create the Simulink model shown below and save it as basic.mdl.

Figure 3-1: Simulink Model

Selecting Simulation Parameters from Simulink’s Simulation menu displays
the Simulation Parameters dialog box.

Figure 3-2: Simulation Parameters Dialog Box

Select Fixed Step Solver from the Simulation Parameters dialog box and
then move to the Real-Time Workshop tab. Then, click the Generate Code

3 Code Generation Architecture

3-4

only button. Next, move to the Category drop down list and select the TLC
Debugging option. The tab changes and you should check the Retain .rtw file
option. Next, click the Generate Code button.

The build process then generates the code into the basic_grt_rtw directory
and you can see the progress in the MATLAB window.

The output eventually says:

Successful completion of Real-Time Workshop build procedure for model: basic

Viewing basic.rtw.

Open the file ./basic_grt_rtw/basic.rtw in a text editor to see what it looks
like. The file should look similar to this

CompiledModel {
 Name "basic"
 ...
 <General model information such as>
 Solver FixedStepDiscrete
 ...
 BlockOutputs {
 -- Information blocks output signals: characteristics and connectivity
 BlockOutputDefaults {
 TestPoint no
 ...
 }
 ...
 BlockOutput {
 Identifier Constant
 SigIdx [0, 1]
 StorageClass DefinedInTLC
 SigSrc [0, 0, 0]
 }
 }
 ...
 System {
 <Subsystem description>
 Type root
 Name "<Root>"
 ...
 <Blocks in subsystem, listed by block execution order>
 Block {
 Type Constant
 Name "<Root>/Constant"
 ...
 Parameters [1, 1]
 Parameter {
 Name "Value"
 ...

Build Process

3-5

 }
 }
 ...
 }
 ...
}

Creating the Target File. Next, create a basic.tlc file to act as a target file for this
model. However, instead of generating code, simply print out some information
about the model using this file. The concept is the same as used in code
generation.

Create a file called basic.tlc in ./ (the directory containing basic.mdl). This
file should contain the following lines

%with CompiledModel

My model is called %<Name>.
It was generated on %<GeneratedOn>.

It has %<NumModelOutputs> output(s) and %<NumContStates> continuous states.

%endwith

For the build process, you need to include some further information in the TLC
file for the build process to successfully proceed. Instead, in this example, you
will generate the .rtw file directly and then run the Target Language Compiler
on this file to generate the desired output. To do this, enter at the MATLAB
prompt

rtwgen('basic', 'OutputDirectory', 'basic_grt_rtw')
tlc -r basic_grt_rtw/basic.rtw basic.tlc -v

The first line generates the .rtw file in the build directory 'basic_grt_rtw',
(this step is actually unnecessary since the file has already been generated in
the previous step; however, it will be useful if the model is changed and the
operation has to be repeated).

The second line runs the Target Language Compiler on the file basic.tlc. The
-r option tells the Target Language Compiler that it should use the file
basic.rtw as the .rtw file, and -v tells TLC to be verbose.

The output of this pair of commands is

My model is called basic.
It was generated on Tue May 09 11:41:40 2000.

3 Code Generation Architecture

3-6

It has 1 output(s) and 0 continuous states.

You may also try changing the model (such as using rand(2,2) as the value for
the constant block) and then repeating the process to see how the output of TLC
changes.

As you continue through this chapter, you will learn more about creating target
files.

Invoking TLC to Generate Code

3-7

Invoking TLC to Generate Code
Typically, rtwgen and TLC (as seen in the first section) are called directly from
the Real-Time Workshop build procedure since the structure and arguments
may change from release to release. However, while working with the TLC
code, it may be a good idea to call rtwgen and TLC directly from the MATLAB
prompt.

To generate the model.rtw file from the MATLAB prompt, it is typically
enough to say

rtwgen('model','OutputDirectory','<build_directory>')

However, you may want to add the output option to place the file in the build
directory. This generates the model.rtw file. However, you may specify other
options to rtwgen such as whether or not to have case sensitivity for identifiers.
For more details, type

help rtwgen

at the MATLAB prompt.

Once the .rtw file generates, to run the Target Language Compiler on this file,
type

tlc -r build_directory/model.rtw file.tlc

This generates output as directed by file.tlc. Options to TLC include:

• -Ipath, which specifies paths to look for files included by the %<include>
directive

• -rmodel.rtw

• -aident=expression, which assigns a value to the TLC identifier ident.
This is discussed in “Configuring TLC” on page 3-26.

For more details, type

help tlc

at the MATLAB prompt.

3 Code Generation Architecture

3-8

Code Generation Concepts
The Target Language Compiler uses a target language that is a general
programming language, and you can use it as such. It is important, however,
to remember that the Target Language Compiler was designed for one purpose:
to convert a model.rtw file to generated code. Thus, the target language
provides many features that are particularly useful for this task but does not
provide some of the features that other languages like C provide.

Before you start modifying or creating target files for use within the Real-Time
Workshop, you might find some of the following general programming
examples useful to familiarize yourself with the basic constructs used within
the Target Language Compiler.

Output Streams
The typical “Hello World” example is rather simple in the target language.
Type the following in a file named hello.tlc

%selectfile STDOUT
Hello, World

To run this Target Language Compiler program, type

tlc hello.tlc

at the MATLAB prompt.

This simple program demonstrates some important concepts underlying the
purpose (and hence the design) of the Target Language Compiler. Since the
primary purpose of the Target Language Compiler is to generate code, it is
output (or stream) oriented. It makes it easy to handle buffers of text and
output them easily. In the above program, the %selectfile directive tells the
Target Language Compiler to send any following text that it does not recognize
to the standard output device. All syntax that the Target Language Compiler
recognizes begins with the % character. Since Hello, World is not recognized,
it is sent directly to the output. You could just as easily change the output
destination to be a file.

Code Generation Concepts

3-9

%openfile foo = "foo.txt"
%openfile bar = "bar.txt"
%selectfile foo
This line is in foo.
%selectfile STDOUT
Line has been output to foo.
%selectfile bar
This line is in bar.
%selectfile NULL_FILE
This line will not show up anywhere.
%selectfile STDOUT
About to close bar.
%closefile bar
%closefile foo

Note that you can switch between buffers to display status messages. The
semantics of the three directives, %openfile, %selectfile, and %closefile
are given in the Compiler Directives table.

Variable Types
The absence of explicit type declarations for variables is another feature of the
Target Language Compiler. See Chapter 5, “Directives and Built-in
Functions,” for more information on the implicit data types of variables.

Records
One of the constructs most relevant to generating code from the model.rtw file
is a record. A record is very similar to a structure in C or a record in Pascal. The
syntax of a record declaration is

%createrecord recVar { ...
field1 value1 ...
field2 value2 ...
…
fieldN valueN ...

}

where recVar is the name of the variable that references this record while
recType is the record itself. fieldi is a string and valuei is the corresponding
Target Language Compiler value.

3 Code Generation Architecture

3-10

Records can have nested records, or subrecords, within them. The model.rtw
file is essentially one large record, named CompiledModel, containing several
subrecords. Thus, a simple program that loops through a model and outputs
the name of all blocks in the model would look like the following code.

%include "utillib.tlc"
%selectfile STDOUT
%with CompiledModel

%foreach sysIdx = NumNonvirtSubsystems + 1
%assign ss = System[sysIdx]
%with ss

%foreach blkIdx = NumBlocks
%assign block = Block[blkIdx]
%<LibGetFormattedBlockPath(block)>

%endforeach
%endwith

%endforeach
%endwith

Unlike MATLAB, the Target Language Compiler requires that you explicitly
load any function definitions not located in the same target file. In MATLAB,
the line A = myfunc(B) causes MATLAB to automatically search for and load
an M-file or MEX-file named myfunc. The Target Language Compiler, on the
other hand, requires that you specifically include the file that defines the
function. In this case, utillib.tlc contains the definition of
LibGetFormattedBlockPath.

Like Pascal, the Target Language Compiler provides a %with directive that
facilitates using records. See Chapter 5, “Directives and Built-in Functions,”
for a detailed description of the directive and its associated scoping rules.

Note Appendix A, “model.rtw,” describes in detail the structure of the
model.rtw file including all the field names and the interpretation of their
values.

A record read in from a file is not immutable. It is like any other record that
you might declare in a program. In fact, the global CompiledModel Real-Time
Workshop record is modified many times during code generation.
CompiledModel is the global record in the model.rtw file. It contains all the

Code Generation Concepts

3-11

variables necessary for code generation such as NumNonvirtSubsystems,
NumBlocks, etc. It is also appended during code generation with many new
variables, flags, and subrecords as needed.

Functions such as LibGetFormattedBlockPath are provided in the Target
Language Compiler libraries located in matlabroot/rtw/c/tlc/*.tlc. For a
complete list of available functions, refer to Chapter 9, “TLC Function Library
Reference.”

Assigning Values to Fields of Records
To assign a value to a field of a record you must use a qualified variable
expression.

A qualified variable expressions references a variable in one of the following
forms:

• An identifier

• A qualified variable followed by '.' followed by an identifier, such as
var[2].b

• A qualified variable followed by a bracketed expression such as
var[expr]

Record Aliases
In TLC it is possible to create what is called an alias to a record. Aliases are
similar to pointers to structures in C. You can create multiple aliases to a
single record. Modifications to the aliased record are visible to every place
which holds an alias.

The following code fragment illustrates the use of aliases.

%createrecord foo { field 1 }
%createrecord a { }
%createrecord b { }
%createrecord c { }

%addtorecord a foo foo
%addtorecord b foo foo
%addtorecord c foo { field 1 }

3 Code Generation Architecture

3-12

%% notice we are not changing field through a or b.
%assign foo.field = 2

ISALIAS(a.foo) = %<ISALIAS(a.foo)>
ISALIAS(b.foo) = %<ISALIAS(b.foo)>
ISALIAS(c.foo) = %<ISALIAS(c.foo)>

a.foo.field = 2, %<a.foo.field>
b.foo.field = 2, %<b.foo.field>
c.foo.field = 1, %<c.foo.field>
%% note that c.foo.field is unchanged

Code Generation Concepts

3-13

It is possible to create aliases to records which are not attached to any other
records, as in the following example.

%function func(value)
 %createrecord foo { field value }
 %createrecord a { foo foo }
ISALIAS(a.foo) = %<ISALIAS(a.foo)>
 %return a.foo
%endfunction

%assign x = func(2)
ISALIAS(x) = %<ISALIAS(x)>
x.field = %<x.field>

As long as there is some reference to a record through an alias, that record will
not be deleted. This allows records to be used as return values from functions.

3 Code Generation Architecture

3-14

TLC Files
The Target Language Compiler works with Simulink to generate code as
shown in the following figure.

Just as a C program is a collection of ASCII files connected with #include
statements and object files linked into one binary, a TLC program is also a
collection of ASCII files. Since the Target Language Compiler is an interpreted
language, however, there are no object files. The single target file that calls
(with the %include directive) all other target files needed for the program is
called the entry point.

Introducing Target Files
In the context of the Real-Time Workshop, there are two types of target files,
system target files and block target files:

• System target files

System target files determine the overall framework of code generation.
They determine when blocks get executed, how data gets logged, and so on.

Simulink
Custom S-Function

Block sfun.c

TLC.MEX
Inlined S-Function

sfun.tlc

Generated Code
model.c
model.ada

etc.

- System Target File

- Model-Wide TLC Files

- Block TLC Files

TLC “program” that
specifies how model.rtw
is converted to
generated code.

rtwgen
to create
model.rtw

TLC Files

3-15

• Block target files

Block target files determine how each individual block uses its input signals
and/or parameters to generate its output or to update its state.

You must write or modify a target file if you need to do one of the following:

• Customize the code generated for a block

The code generated for each block is defined by a block target file. Some of
the things defined in the block target file include what the block outputs at
each major time step and what information the block updates.

• Inline an S-function

Inlining an S-function means writing a target file that tells the Target
Language Compiler how to generate code for that S-function block. The
Target Language Compiler can automatically generate code for noninlined
C MEX S-functions. However, if you inline a C MEX S-function, the compiler
can generate more efficient code. Noninlined C MEX S-functions are
executed using the S-function Application Program Interface (API) and can
be inefficient.

It is possible to inline an M-file or Fortran S-function; the Target Language
Compiler can generate code for the S-function in both these cases.

• Customize the code generated for all models

You may want to instrument the generated code for profiling, or make other
changes to overall code generation for all models. To accomplish such
changes, you must modify some of the system target files.

• Implement support for a new language

The Target Language Compiler provides the basic framework to configure
the entire Real-Time Workshop for code generation in another language.

Refer to Chapter 5, “Directives and Built-in Functions,” for a description of the
Target Language and Chapter 8, “TLC Tutorial,” for a tutorial on using the
Target Language and a description of how to inline S-functions.

3 Code Generation Architecture

3-16

System Target Files
The entire code generation process starts with the single system target file that
you specify in the Real-Time Workshop page of the Simulation Parameters
dialog box. A close examination of a system target file reveals how code
generation occurs. This a listing of the non-comment lines in grt.tlc, the
target file to generate code for a generic real-time executable.

%selectfile NULL_FILE

%assign MatFileLogging = 1
%assign TargetType = "RT"
%assign Language = "C"

%include "codegenentry.tlc"

The three variables, MatFileLogging, TargetType, and Language, are global
TLC variables used by other functions. Code generation is then initiated with
the call to codegenentry.tlc, the main entry point for the Real-Time
Workshop.

If you want to make changes to modify overall code generation, you must
change the system target file. After the initial setup, instead of calling
codegenentry.tlc, you must call your own TLC files. The code below shows an
example system target file called mygrt.tlc.

%% Set up variables, etc.
…
%% Load my library functions
%% Note that mylib.tlc should %include funclib.tlc at the
%% beginning.
%include "mylib.tlc"

%% Load mygenmap, the block target file mapping.
%% mygenmap.tlc should %include genmap.tlc at the beginning.
%include "mygenmap.tlc"

%include "commonsetup.tlc"

%% Next, you can include any of the TLC files that you need for
%% preprocessing information about the model and to fill in
%% Real-Time Workshop hooks. The following is an example of

TLC Files

3-17

%% including a single TLC file which contains custom hooks.
%include "myhooks.tlc"

%% Finally, call the code generator.
%include "commonentry.tlc"

Generated code is placed in a model or subsystem function. The relevant
generated function names and their execution order is detailed in the
Real-Time Workshop User’s Guide. During code generation, functions from
each of the block target files are executed and the generated code is placed in
the appropriate model or subsystem functions.

Block Target Files
Each block has a target file that determines what code should be generated for
the block. The code can vary depending on the exact parameters of the block or
the types of connections to it (e.g., wide vs. scalar input).

Within each block target file, block functions specify the code to be output for
the block in the model’s or subsystem’s start function, output function, update
function, and so on.

Block Target File Mapping
The block target file mapping specifies which target file should be used to
generate code for which block type. This mapping resides in matlabroot/rtw/
c/tlc/genmap.tlc. All the TLC files listed are located in matlabroot/rtw/c/
tlc for C and matlabroot/rtw/ada/tlc for Ada.

The Target Language Compiler works with various sets of files to produce its
results. The complete set of these files is called a TLC program. This section
describes the TLC program files.

Target Files
Target files are the set of files that are interpreted by the Target Language
Compiler to transform the intermediate Real-Time Workshop code (model.rtw)
produced by Simulink into target-specific code.

Target files provide you with the flexibility to customize the code generated by
the Compiler to suit your specific needs. By modifying the target files included
with the Compiler, you can dictate what the compiler produces. For example,

3 Code Generation Architecture

3-18

if you use the available system target files, you produce generic C code from
your Simulink model. This executable C code is not platform specific.

All of the parameters used in the target files are read from the model.rtw file
and looked up using block scoping rules. You can define additional parameters
within the target files using the %assign statement. The block scoping rules
and the %assign statement are discussed in Directives and Built-In Functions.

Target files are written using target language directives. Chapter 5,
“Directives and Built-in Functions,” provides complete descriptions of the
target language directives.

Appendix A, “model.rtw,” contains a thorough description of the model.rtw file,
which is useful for creating and/or modifying target files.

Model-Wide Target Files and System Target Files
Model-wide target files are used on a model-wide basis and provide basic
information to the Target Language Compiler, which transforms the
model.rtw file into target-specific code.

The system target file is the entry point for the TLC program, which is
analogous to the main() routine of a C program. System target files oversee the
entire code generation process. For example, the system target file, grt.tlc,
sets up some variables for codegenentry.tlc, which is the entry point into the
Real-Time Workshop target files. For a complete list of available system target
files for the Real-Time Workshop, see the Real-Time Workshop User’s Guide.

TLC Files

3-19

There are four sets of model-wide target files, one for each of the basic code
formats that the Real-Time Workshop supports. These tables list the
model-wide target files associated with each of the basic code formats.

Table 3-1: Model-Wide Target Files for Static Real-Time, Malloc (dynamic)
Real-Time, Embedded-C and RTW S-Function Applications

Model-Wide
Target File

Code Format Purpose

ertautobuild.tlc Embedded-C Includes model_export.h in the
generated code

srtbody.tlc
mrtbody.tlc
ertbody.tlc
sfcnbody.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the source file, model.c,
which contains the procedures
that implement the model

srtexport.tlc
mrtexport.tlc
ertexport.tlc
sfcnbody.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the header file
model_export.h, which defines
access to external parameters
and signals (all formats)

srthdr.tlc
mrthdr.tlc
erthdr.tlc
sfcnhdr.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the header file model.h,
which defines the data
structures used by model.c. The
data structures defines include
BlockOutputs, Parameter,
External Inputs and Outputs,
and the various work structures.
The instances of these structures
are declared in model.c (all
formats).

srtlib.tlc
mrtlib.tlc
ertlib.tlc
sfclib.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Contains utility functions used
by the other model-wide target
files (all formats)

3 Code Generation Architecture

3-20

srtmap.tlc
mrtmap.tlc
ertmap.tlc
sfcnmap.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the header file
model.dt, which contains the
mapping information for
monitoring block outputs and
modifying block parameters

sfcnmid.tlc RTW S-function Creates model_sf_mid.c, which
contains data for an RTW
S-function

srtparam.tlc
mrtparam.tlc
ertparam.tlc
sfcnparam.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the source file
model.prm, which is included by
the model.c file to declare
instances of the various data
structures defined in model.h
(all formats)

srtreg.tlc
mrtreg.tlc
ertreg.tlc
sfcnreg.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the source file
model_reg.h that is included by
the model.c file to satisfy the
API (all formats)

sfcnsid.tlc RTW S-function Creates model_sf_sid.c, which
contains data for an RTW
S-function.

srtwide.tlc
mrtwide.tlc
ertwide.tlc
sfcnwide.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

The entry point for code format.
This file produces model.h,
model.c, model_reg.h,
model_prm.h, model_export.h,
and, optionally, model.dt.

Table 3-1: Model-Wide Target Files for Static Real-Time, Malloc (dynamic)
Real-Time, Embedded-C and RTW S-Function Applications (Continued)

Model-Wide
Target File

Code Format Purpose

TLC Files

3-21

Table 3-2: Model-Wide Target Files for Ada

Model-Wide Target File Purpose

adabody.tlc Generates the model.adb file, which
contains the package body for the model.

adalib.tlc Contains utility functions used by the other
model-wide target files

adaspec.tlc Generates the model.ads file, which
contains the package specification for the
model, and the package specifications
required for auto-building simulation and
real-time targets:

• register.ads

• register2.ads

• rt_engine-rto_data.ads

adatypes.tlc Generates the model_types.ads file, which
contains the data structures required by
the model. Note that all data declaration
instances are declared in the model.adb
file.

adawide.tlc The entry point for Ada code format. It
produces these files:

• model.ads

• model.adb

• model_types

• register.ads

• register2.ads

• rtengine-rto_data.ads

3 Code Generation Architecture

3-22

Block Target Files
Block target files are files that control a particular Simulink block. Typically,
there is a block target file for each Simulink basic building block. These files
control the generation of inline code for the particular block type. For example,
the target file, gain.tlc, generates corresponding code for the Gain block.

The file genmap.tlc (included by codegenentry.tlc) tells TLC which .tlc files
to include for particular blocks.

Note Functions declared inside a block file are local. Functions declared in
all other target files are global.

Writing Target Language Files: A Tutorial

3-23

Writing Target Language Files: A Tutorial

Matrix Parameters in Real-Time Workshop
MATLAB, Simulink, and Real-Time Workshop all use column-major ordering
for all array storage (1-D, 2-D, ...), so that the “next” element of an array in
memory is always accessed by incrementing the first index of the array. For
example, all of these element pairs are stored sequentially in memory: A(i)
and A(i+1), B(i,j) and B(i+1,j), C(i,j,k) and C(i+1,j,k).For more
information on the internal representation of MATLAB data, see “The
MATLAB Array” in External Interfaces/API.

Simulink and Real-Time Workshop differ from MATLAB’s internal data
storage format only in the storage of complex number arrays. In MATLAB, the
real and imaginary parts are stored in separate arrays, while in Simulink and
Real-Time Workshop they are stored in an “interleaved” format, where the
numbers in memory alternate real, imaginary, real, imaginary, and so forth.
This is convenient for allowing efficient implementations of small signals on
Simulink lines and for Mux blocks and other “virtual” signal manipulation
blocks (i.e., they don’t actively copy their inputs, merely the references to
them).

The compiled model file, model.rtw, represents matrices as strings in
MATLAB syntax, with no implied storage format. This is so you can copy the
string out of a .rtw file and paste it into a .m file and have it recognized by
MATLAB.

The Target Language Compiler declares all Simulink block matrix parameters
as scalar or 1-D array variables

real_T scalar;
real_T mat[nRows * nCols];

where real_T could actually be any of the data types supported by Simulink,
and will match the variable type given in a the .mdl file.

For example, the 3-by-3 matrix in the Look-Up Table (2-D) block

1 2 3
4 5 6
7 8 9

is stored in model.rtw as

3 Code Generation Architecture

3-24

Parameter {
Name "OutputValues"
Value Matrix(3,3)

[[1.0, 2.0, 3.0]; [4.0, 5.0, 6.0]; [7.0, 8.0, 9.0];]
String "t"
StringType "Variable"
ASTNode {
 IsNonTerminal 0
 Op SL_NOT_INLINED
 ModelParameterIdx 3
}

}

and results in this definition in model.h

typedef struct Parameters_tag {
 real_T s1_Look_Up_Table_2_D_Table[9];

/* Variable:s1_Look_Up_Table_2_D_Table
 * External Mode Tunable:yes
 * Referenced by block:
 * <S1>/Look-Up Table (2-D)
 */

 [... other parameter definitions ...]

} Parameters;

The model_prm.h file declares the actual storage for the matrix parameter and
you can see that the format is column-major. That is, read down the columns,
then across the rows.

1 2 3

4 5 6

7 8 9

Writing Target Language Files: A Tutorial

3-25

Parameters rtP = {
 /* 3 x 3 matrix s1_Look_Up_Table_2_D_Table */
 { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 },
 [... other parameter declarations ...]
};

The Target Language Compiler matrix parameter access routines,
LibBlockMatrixParameter and LibBlockMatrixParameterAddr, where:

LibBlockMatrixParameter(OutputValues, "", "", 0, "", "", 1) returns
for C

"rtP.s1_Look_Up_Table_2_D_Table[nRows]" (automatically optimized from
"[0+nRows*1]")

and

LibBlockMatrixParameterAddr(OutputValues, "", "", 0, "", "", 1)
returns for C

"&rtP.s1_Look_Up_Table_2_D_Table[nRows]" for both inlined and noninlined
block TLC code

Matrix parameters are like any other TLC parameters in that only those
parameters explicitly accessed by a TLC library function during code
generation are placed in the parameters structure. So, following the example,
s1_Look_Up_Table_2_D_Table is not declared unless it is explicitly accessed by
LibBlockParameter or LibBlockParameterAddr.

3 Code Generation Architecture

3-26

Configuring TLC
You can configure TLC from the RTW Options dialog box or from the TLC
command line, which is also accessible from the RTW Options dialog box. To
use the RTW Options dialog box, select Tools -> Real-Time Workshop ->
Options from the Simulink menu. Alternatively, you can select Simulation ->
Simulation Parameters and then select the Real-Time Workshop tab from
the resulting dialog box.

From the Category drop down list, select TLC Debugging. This provides
options for configuring the build process, including activating the TLC
debugger and an option to retain the RTW file. This is covered in more detail
in Chapter 6, “Debugging TLC.”

Another way of configuring the TLC code generation process is by using the -a
flag on the TLC command line. Using -amyVar=1 on the command line is
equivalent to saying

%assign myVar = 1

in your target file. You can repeat the -a parameter, and it can be specified in
the System Target File field in the Real-Time Workshop (Category: Target
Configuration) dialog box.

For an example of how this process works, consider the following TLC code
fragment

%if !EXISTS(myConfigVariable)
 %assign myConfigVariable = 0
%endif

%if (myConfigVariable == 1)

 code fragment 1

%else

 code fragment 2

%endif

Configuring TLC

3-27

If you specify -amyConfigVariable=1 in the command line, code fragment 1
is generated; otherwise code fragment 2 is generated. The if block starting
with

%if !EXISTS(myConfigVariable)

serves to set the default value of myConfigVariable to 0, so that TLC does not
error out if you forget to add -amyConfigVariable to the command line.

3 Code Generation Architecture

3-28

4
Contents of
model.rtw

Overview of model.rtw File 4-2
Using Scopes in the model.rtw File 4-3

Using Library Functions to Access model.rtw Contents 4-6
Caution Against Directly Accessing Record Fields 4-6
Exception to Using the Library Functions 4-7

4 Contents of model.rtw

4-2

Overview of model.rtw File
Real-Time Workshop generates a model.rtw file from your Simulink model.
The model.rtw file is a database whose contents provide a description of the
individual blocks within the Simulink model. By selecting Retain .rtw file
from the TLC debugging category on the Real-Time Workshop page of the
Simulation Parameters dialog box, you can build a model and view the
corresponding model.rtw file that was used.

model.rtw is an ASCII file of parameter-value pairs stored in a hierarchy of
records defined by your model. A parameter-value pair is specified as

ParameterName value

where ParameterName (also called an identifier) is the name of the TLC
identifier and value is a string, scalar, vector, or matrix. For example, in the
parameter-value pair

.

.
NumDataOutputPorts 1

.

.

NumDataOutputPorts is the identifier and 1 is its value.

A record is specified as

RecordName {
.
.

}

A record contains parameter-value pairs and/or subrecords. For example, this
record contains one parameter-value pair

DataStores {
 NumDataStores 0
}

Overview of model.rtw File

4-3

Using Scopes in the model.rtw File

Accessing Values
Each record creates a new scope. The model.rtw file uses curly braces { and }
to open and close records (or scopes). Using scopes, you can access any value
within the model.rtw file.

The scope in this example begins with CompiledModel. Use periods (.) to access
values within particular scopes. The format of model.rtw is

CompiledModel {
Name "modelname" — Example of a parameter-value

... pair (record field).

System { — There is one system for each

nonvirtual subsystem.

Block { — Block records for each

Type "S-Function" nonvirtual block in the system.

Name "<S3>/S-Function"
...
Parameter {
Name "P1"
Value Matrix(1,2) [[1, 2];]

}
...
Block {
}

}
...
System { — The last system is for the root of

} your model.

}

For example, to access Name within CompiledModel, you would use

CompiledModel.Name

Multiple records of the same name form a list where the index of the first
record starts at 0. To access the above S-function block record, you would use

CompiledModel.System[0].Block[0]

4 Contents of model.rtw

4-4

To access the name field of this block, you would use

CompiledModel.System[0].Block[0].Name

To simplify this process, you can use the %with directive, which changes the
current scope. For example,

%with CompiledModel.System[0].Block[0]
%assign blockName = Name
%endwith

blockName will have the value "<S3>/S-Function".

When inlining S-function blocks, your S-function block record is scoped as
though the above %with directive was done. In an inlined .tlc file, you should
access fields without a fully qualified path.

The following code shows a more detailed scoping example where the Block
record has several parameter-value pairs (Type, Name, Identifier, and so on),
and three subrecords, each called Parameter. Block is a subrecord of System,
which is a subrecord of CompiledModel.

For a full description of the model.rtw file, see Appendix A. Note that the
parameter names in this file changes from release to release.

Overview of model.rtw File

4-5

CompiledModel {
Name "simple"
.
.
.
.

System {
Type root
Name "<root>"
Identifier root
NumBlocks 3
Block {
Type Sin
Name "<Root>/Sine Wave"
.
.
.
.
.
Parameters [3, 3, 0]
Parameter {
Name "Amplitude"
.
.

}
Parameter {
Name "Frequency"
.
.

}
Parameter {
Name "Phase"
.
.

}
}

.

.
}

}

Scope 4

Scope 3

Scope 2

Scope 1

4 Contents of model.rtw

4-6

Using Library Functions to Access model.rtw Contents
There are several library functions that provide access to block inputs, outputs,
parameters, sample times, and other information. It is recommended that you
use these library functions to access many of the parameter/values pairs in the
block record as apposed to accessing the parameter/values directly from your
block TLC code.

See Chapter 9, “TLC Function Library Reference,” for a list of the commonly
used library functions.

The library functions simplify block TLC code and provide support for loop
rolling, data types, and complex data. The functions also provide a layer to
protect against changes that may occur to the contents of the model.rtw file.

Caution Against Directly Accessing Record Fields
When functions in the block target file are called, they are passed the block and
system records for this instance as arguments. The first argument, block, is in
scope, which means that variable names inside this instances Block record are
accessible by name. For example,

%assign fast = SFcnParamSetting.Fast

Block target files could generate code for a given block by directly using the
fields in the Block record for the block. This process is not recommended for two
reasons:

• The contents of the model.rtw file can change from release to release. This
can cause block TLC files that access the model.rtw file directly to no longer
work.

• TLC library functions are provided that substantially reduce the amount of
TLC code needed to implement a block while handling all the various
configurations (widths, data types, etc.) a block might have. These library
functions are provided by the system target files to provide access to inputs,
outputs, parameters, and so on. Using these functions in a block ensures it
is written to be flexible enough to generate code for any instance/
configuration of the block and across releases. An exception is when it is
necessary to access directly a field in the Block’s record. This is for
Parameter Settings, which is discussed below.

Using Library Functions to Access model.rtw Contents

4-7

Exception to Using the Library Functions
An exception to using these functions is when you access Parameter Settings
for a block. Parameter Settings can be written out using the mdlRTW function of
a C-MEX S-function. They can contain data in the form of strings, scalar
values, vectors, and matrices. They can be used to pass nonchanging values
and information that is then used to affect the generated code for a block or
directly as values in the resulting code of a block.

mdlRTW Function in C-MEX S-Function Code
static void mdlRTW(SimStruct *S)
{
 if (!ssWriteRTWParamSettings(S, 1, SSWRITE_VALUE_QSTR, "Operator", "AND")) {
 ssSetErrorStatus(S,"Error writing parameter data to .rtw file");
 return;
 }
}

Resulting Block Record in model.rtw File
Block {
 Type "S-Function"
 Name "<Root>/S-Function"

 ...

 SFcnParamSettings {
 Operator "AND"
 }
 }

TLC Code to Access the Parameter Settings
%function Outputs(block, system) Output
 %%
 %% Select Operator
 %switch(SFcnParamSettings.Operator)
 %case "AND"
 %assign LogicOp = "&"
 %break
 ...
 %endswitch
%endfunction

For more details on using Parameter Settings, see Chapter 7, “Inlining
S-Functions.”

4 Contents of model.rtw

4-8

5
Directives and Built-in
Functions

Compiler Directives 5-2
Syntax . 5-2
Comments . 5-15
Line Continuation 5-16
Target Language Values 5-17
Target Language Expressions 5-19
Formatting . 5-25
Conditional Inclusion 5-25
Multiple Inclusion 5-27
Object-Oriented Facility for Generating Target Code 5-32
Output File Control 5-34
Input File Control 5-35
Asserts, Errors, Warnings, and Debug Messages 5-36
Built-In Functions and Values 5-37
TLC Reserved Constants 5-50
Identifier Definition 5-51
Scoping . 5-55
Target Language Functions 5-59

Command Line Arguments 5-65
Filenames and Search Paths 5-66

5 Directives and Built-in Functions

5-2

Compiler Directives

Syntax
A target language file consists of a series of statements of the form

%keyword [argument1, argument2, …]

where keyword represents one of the Target Language Compiler’s directives,
and [argument1, argument2, …] represents expressions that define any
required parameters. For example,

%assign sysNumber = sysIdx + 1

uses the %assign directive to change the value of the sysNumber parameter.
A target language directive must be the first nonblank character on a line and
always begins with the % character. Beginning a line with %% lets you include a
comment on a line.

This table shows the complete set of Target Language Compiler directives. The
remainder of this chapter describes each directive in detail.

Directive Description

%% text Single line comment where text is the comment

/% text %/ Single (or multi-line) comment where text is the comment

%matlab Calls a MATLAB function that does not return a result. For example,
%matlab disp(2.718)

Compiler Directives

5-3

%<expr> Target language expressions which are evaluated. For example, if we
have a TLC variable that was created via: %assign varName = "foo",
then %<varName> would expand to foo. Expressions can also be function
calls as in %<FcnName(param1,param2)>. On directive lines, TLC
expressions do not need to be placed within the %<> syntax. Doing so
will cause a double evaluation. For example, %if %<x> == 3 is
processed by creating a hidden variable for the evaluated value of the
variable x. The %if statement then evaluates this hidden variable and
compares it against 3. The efficient way to do this operation is to do:
%if x == 3. In MATLAB notation, this would equate to doing
if eval('x') == 3 as opposed to if x = 3. The exception to this is
during a %assign for format control as in

%assign str = "value is: %<var>"

Note: Nested evaluation expressions (e.g., %<foo(%<expr>)>) are not
supported.

Note: There is no speed penalty for evals inside strings, such as

%assign x = "%<expr>"

Evals outside of strings, such as the following example, should be
avoided whenever possible.

%assign x = %<expr>

Directive Description

5 Directives and Built-in Functions

5-4

%if expr
%elseif expr
%else
%endif

Conditional inclusion, where the constant-expression expr must
evaluate to an integer. It is not necessary to expand variables or
expressions using the %<expr> notation. Expanding the expression may
be necessary when the expression needs to be re-evaluated. For
example, assume k represents the value of a the gain block parameter
which may be a number or a string variable. The following code will
check if k is the numeric value 0.0 by executing a TLC library function
to check for equality. Notice that the %<expr> syntax isn’t used since we
are operating on a directive line. Like other languages, expression
evaluation do short circuit.

%if ISEQUAL(k, 0.0)
<text and directives to be processed if, k is 0.0>

%endif

%switch expr
%case expr
%break
%default
%break

%endswitch

The switch directive is very similar to the C language switch
statement. The expression, expr, can be of any type that can be
compared for equality using the == operator. If the %break is not
included after a %case statement, then it will fall through to the next
statement.

%with
%endwith

model.rtw is organized as a hierarchy of records. The
%with recordName
%endwith

directives let you make a given record the current scope.

%setcommandswitch Changes the value of a command-line switch as in
%setcommandswitch "-v1"

%assert expr Tests a value of a Boolean expression. If the expression evaluates to
false TLC will issue an error message, a stack trace and exit, and
otherwise the execution will be continued as normal. To enable the
evaluation of asserts the command line option “-da” has to be added.

Directive Description

Compiler Directives

5-5

%error
%warning
%trace
%exit

Flow control directives:

%error tokens — The tokens are expanded and displayed.

%warning tokens — The tokens are expanded and displayed.

%trace tokens — The tokens are expanded and displayed only when
the “verbose output” command line option -v or -v1 is specified.

%exit tokens — The tokens are expanded, displayed, and TLC exits.

Note, when reporting errors, you should use

%exit Error Message

if the error is produced by an incorrect configuration that the user
needs to correct in the model. If you are adding assert code (i.e., code
that should never be reached), use

%setcommandswitch "-v1" %% force TLC stack trace
%exit Assert message

%assign Creates identifiers (variables). The general form is

%assign [::]variable = expression

The :: specifies that the variable being created is a global variable,
otherwise, it is a local variable in the current scope (i.e., a local variable
in the function).

If you need to format the variable, say, within a string based upon other
TLC variables, then you should perform a double evaluation as in

%assign nameInfo = "The name of this is %<Name>"

or alternately

%assign nameInfo = "The name of this is " + Name

To assign a value to a field of a record you must use a qualified variable
expression. See “Assigning Values to Fields of Records” on page 3-11.

Directive Description

5 Directives and Built-in Functions

5-6

%createrecord Creates records. This command accepts a list of one or more record
specifications (e.g., { foo 27 }). Each record specification contains a list
of zero or more name-value pairs (e.g, foo 27) that become the members
of the record being created, where the values it selves can be record
specifications.

%createrecord NEW_RECORD { foo 1 ; SUB_RECORD {foo 2} }
%assign x = NEW_RECORD.SUB_RECORD.foo

If more than one record specification appears, these additional record
specifications construct an array of records.

%createrecord RECORD_ARRAY { NEW_RECORD { foo 1 } } ...
{ NEW_RECORD { foo 2 } } ...
{ NEW_RECORD { foo 3 } }

%assign x = RECORD_ARRAY[1].NEW_RECORD.foo

If :: is the first token after he %createrecord token, the record is
created in the global scope.

%addtorecord Adds fields to an existing record. The new fields may be name-value
pairs or aliases to already existing records.

%addtorecord OLD_RECORD foo 1

If the new field being added is a record, then %addtorecord will make an
alias to that record instead of a deep copy. To make a deep copy, use
%copyrecord.

%createrecord NEW_RECORD { foo 1 }
%addtorecord OLD_RECORD NEW_RECORD_ALIAS NEW_RECORD

Directive Description

Compiler Directives

5-7

%mergerecord Adds (or merges) one or more records into another. The first record
will contain the results of the merge of the first record plus the contents
of all the other records specified by the command. The contents of the
second (and subsequent) records are deep copied into the first (i.e., they
are not references).

%mergerecord OLD_RECORD NEW_RECORD

If there are duplicate fields in the records being merged the original
record's fields will not be overwritten.

%copyrecord Makes a deep copy of an existing record. It creates a new record in a
similar fashion to %createrecord except the components of the record
are deep copied from the existing record. Aliases are replaced by copies.

%copyrecord NEW_RECORD OLD_RECORD

%realformat Specifies how to format real variables. To format in exponential
notation with 16 digits of precision, use

%realformat "EXPONENTIAL"

To format without loss of precision and minimal number of characters,
use

%realformat "CONCISE"

When inlining S-functions, the format is set to concise. You can switch
to exponential, but should switch it back to concise when done.

%language This must appear before the first GENERATE or GENERATE_TYPE function
call. This specifies the name of the language as a string, which is being
generated as in %language "C". Generally, this is added to your system
target file.

Directive Description

5 Directives and Built-in Functions

5-8

%implements Placed within the .tlc file for a specific record type, when mapped via
%generatefile. The syntax is: %implements "Type" "Language".
When inlining an S-function in C, this should be the first non-comment
line in the file as in

%implements "s_function_name" "C"

The next noncomment lines will be %function directives specifying the
functionality of the S-function.

See the %language and GENERATE function descriptions for further
information.

%generatefile Provides a mapping between a record Type and functions contained in a
file. Each record can have functions of the same name, but different
contents mapped to it (i.e., polymorphism). Generally, this is used to
map a Block record Type to the .tlc file that implements the
functionality of the block as in

%generatefile "Sin" "sin_wave.tlc"

%filescope Limits the scope of variables to the file in which they are defined. All
variables defined after the appearance of %filescope in a file have this
property, otherwise they default to global variables.

%filescope is useful in conserving memory. Variables whose scope is
limited by %filescope go out of scope when execution of the file
containing them completes. This frees memory allocated to such
variables. By contrast, global variables persist in memory throughout
execution of the program.

%include
%addincludepath

%include "file.tlc" — insert specified target file at the current
point. Use %addincludepath "directory" to add additional paths to be
searched. Be sure to escape backslashes in PC directory names as in
"C:\\mytlc". Note that %include directives behave as if they were in a
global context.

Directive Description

Compiler Directives

5-9

%roll
%endroll

Multiple inclusion plus intrinsic loop rolling based upon a specified
threshold. This directive can be used by most Simulink blocks which
have the concept of an overall block width that is usually the width of
the signal passing through the block. An example of the %roll directive
is for a gain operation, y=u*k

%function Outputs(block, system) Output
/* %<Type> Block: %<Name> */
%assign rollVars = ["U", "Y", "P"]
%roll sigIdx = RollRegions, lcv = RollThreshold, block,...

"Roller", rollVars
%assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
%assign k = LibBlockParameter(Gain, "", lcv, sigIdx)
%<y> = %<u> * %<k>;

%endroll
%endfunction

The %roll directive is similar to %foreach, except it iterates the
identifier (sigIdx in this example) over roll regions. Roll regions are
computed by looking at the input signals and generating regions where
the inputs are contiguous. For blocks, the variable RollRegions is
automatically computed and placed in the Block record. An example of
a roll regions vector is [0:19, 20:39], where we have two contiguous
ranges of signals passing through the block. The first is 0:19 and the
second is 20:39. Each roll region is either placed in a loop body (e.g.,
the C Language for statement), or inlined depending upon whether or
not the length of the region is less than the roll threshold.

Each time through the %roll loop, sigIdx is an integer for the start of
the current roll region or an offset relative to the overall block width
when the current roll region is less than the roll threshold. The TLC
global variable RollThreshold is the general model wide value used to
decide when to place a given roll region into a loop. When the decision
is made to place a given region into a loop, the loop control variable will
be a valid identifier (e.g., “i”), otherwise it will be "".

Directive Description

5 Directives and Built-in Functions

5-10

%roll
(continued)

The block parameter is the current block that is being rolled. The
"Roller" parameter specifies the name for an internal GENERATE_TYPE
calls made by %roll. The default %roll handler is "Roller", which is
responsible for setting up the default block loop rolling structures (e.g.,
a C for loop).

The rollVars (roll variables) are passed to "Roller" functions to
create the correct roll structures. The defined loop variables relative to
a block are

"U" All inputs to the block. It assumes you use
LibBlockInputSignal(portIdx, "", lcv, sigIdx) to
access each input, where portIdx starts at 0 for the first
input port.

"Ui" Similar to "U", except only for specific input, i.
"Y" All outputs of the block. It assumes you use

LibBlockOutputSignal(portIdx, "", lcv, sigIdx) to
access each output, where portIdx starts at 0 for the first
output port.

"Yi" Similar to "Y", except only for specific output, i.
"P" All parameters of the block. It assumes you use

LibBlockParameter(name, "", lcv, sigIdx) to access
them.

"<param>/name" Similar to "P", except specific for a specific name.
RWork All RWork vectors of the block. It assumes you use

LibBlockRWork(name, "", lcv, sigIdx) to access them.
"<RWork>/name" Similar to RWork, except for a specific name.
DWork All DWork vectors of the block. It assumes you use

LibBlockDWork(name, "", lcv, sigIdx) to access them.
"<DWork>/name" Similar to DWork, except for a specific name.
IWork All IWork vectors of the block. It assumes you use

LibBlockIWork(name, "", lcv, sigIdx) to access them.
"<IWork>/name" Similar to IWork, except for a specific name.
PWork All PWork vectors of the block. It assumes you use LibBlock-

PWork(name, "", lcv, sigIdx) to access them.
"<PWork>/name" Similar to PWork, except for a specific name.
"Mode" The mode vector. It assumes you use

LibBlockMode("",lcv,sigIdx) to access it.
"PZC" Previous zero crossing state. It assumes you use

LibPrevZCState("",lcv, sigIdx) to access it.

Directive Description

Compiler Directives

5-11

%roll
(continued)

To roll your own vector based upon the block’s roll regions, you need to
walk a pointer to your vector. Assuming your vector is pointed to by the
first PWork, called name,

datatype *buf = (datatype*)%<LibBlockPWork(name,"","",0)
%roll sigIdx = RollRegions, lcv = RollThreshold, block, ...

"Roller", rollVars
*buf++ = whatever;

%endroll

Note: in the above example, sigIdx and lcv are local to the body of the
loop.

Directive Description

5 Directives and Built-in Functions

5-12

%function
%return
%endfunction

A function that returns a value is defined as
%function name(optional-arguments)
%return value

%endfunction

A void function does not produce any output and is not required to
return a value. It is defined as
%function name(optional-arguments) void
%endfunction

A function that produces outputs to the current stream and is not
required to return a value is defined as
%function name(optional-arguments) Output
%endfunction

For block target files, you can add to your inlined .tlc file the following
functions that will get called by the model wide target files during code
generation

%function BlockInstanceSetup(block, system) void
Called for each instance of the block within the model.

%function BlockTypeSetup(block, system) void
Called once for each block type that exists in the model.

%function BlockInstanceData(block, system) Output
Called once during model initialization to place code in the
registration function (model_reg.h) to allocate persistent
data.

%function Enable(block, system) Output
Use this if the block is placed within an enabled subsystem
and has to take specific actions when the subsystem enables.
Place within a subsystem enable routine.

%function Disable(block, system) Output
Use this if the block is placed within a disabled subsystem
and has to take specific actions when the subsystem is
disabled. Place within a subsystem disable routine.

%function Start(block, system) Output
Include this function if your block has startup initialization
code that needs to be placed within MdlStart.

Directive Description

End

In
te

gr
at

io
nMdlDerivatives

MdlOutputs

MdlStart

Start Execution

MdlOutputs

MdlDerivatives

MdlTerminate

E
xe

cu
ti

on
L

oo
p

MdlUpdate

Compiler Directives

5-13

%function
%return
%endfunction
(continued)

%function InitializeConditions(block, system) Output
Use this function if your block has state that needs to be ini-
tialized at the start of execution and when an enabled sub-
system resets states. Place in MdlStart and/or subsystem
initialization routines.

%function Outputs(block, system) Output
The primary function of your block. Place in MdlOutputs.

%function Update(block, system) Output
Use this function if your block has actions to be performed
once per simulation loop, such as updating discrete states.
Place in MdlUpdate

%function Derivatives(block,system) Output
Used this function if your block has derivatives for
MdlDerivatives.

%function Terminate(block, system) Output
Use this function if your block has actions that need to be in
MdlTerminate.

%foreach
%endforeach

Multiple inclusion that iterates from 0 to the upperLimit-1 constant
integer expression. Each time through the loop, the loopIdentifier, (e.g.,
x) is assigned the current iteration value.

%foreach loopIdentifier = upperLimit
%break — use this to exit the loop
%continue — use this to skip the following code and

continue to the next iteration
%endforeach

Note: The upperLimit expression is cast to a TLC integer value. The
loopIdentifier is local to the loop body.

Directive Description

5 Directives and Built-in Functions

5-14

%for Multiple inclusion directive with syntax

%for ident1 = const-exp1, const-exp2, ident2 = const-exp3
%body
%break
%continue

%endbody
%endfor

The first portion of the %for directive is identical to the %foreach
statement. The %break and %continue directives act the same as they do
in the %foreach directive. const-exp2 is a Boolean expression that
indicates whether the loop should be rolled (see %roll above).

If const-exp2 evaluates to TRUE, ident2 is assigned the value of
const-exp3. Otherwise, ident2 is assigned an empty string.

Note: ident1 and ident2 above are local to the loop body.

Directive Description

Compiler Directives

5-15

Comments
You can place comments anywhere within a target file. To include comments,
use the /%...%/ or %% directives. For example,

/%
Abstract: Return the field with [width], if field is wide

%/

%openfile
%selectfile
%closefile

These are used to manage the files that are created. The syntax is

%openfile streamId="filename.ext" mode {open for writing}
%selectfile streamId {select an open file}
%closefile streamId {close an open file}

Note that the “filename.ext” is optional. If not specified, streamId and
filename will be the same and a variable (string buffer) is created
containing the output. The mode argument is optional. If specified, it
can be "a" for appending, "r" for reading, or "w" for writing.

Note that the special streamId NULL_FILE specifies that no output
occur. The special streamId STDOUT specifies output to the terminal.

To create a buffer of text, use:

%openfile buffer
text to be placed in the 'buffer' variable.
%closefile buffer

Now buffer contains the expanded text specified between the
%openfile and %closefile directives.

%generate %generate blk fn is equivalent to GENERATE(blk,fn).

%generate blk fn type is equivalent to GENERATE(blk,fn,type).

See “GENERATE and GENERATE_TYPE Functions” on page 5-33.

%undef %undef var removes the variable var from scope. If var is a field in a
record, %undef removes that field from the record. If var is a record
array, %undef removes the first element of the array.

Directive Description

5 Directives and Built-in Functions

5-16

or

%endfunction %% Outputs function

Use the /%...%/ construct to delimit comments within your code. Use the %%
construct for line-based comments; all characters from %% to the end of the line
become a comment.

Nondirective lines, that is, lines that do not have % as their first nonblank
character, are copied into the output buffer verbatim. For example,

/* Initialize sysNumber */
int sysNumber = 3;

copies both lines to the output buffer.

To include comments on lines that do not begin with the % character, you can
use the /%...%/ or %% comment directives. In these cases, the comments are not
copied to the output buffer.

Note If a nondirective line appears within a function, it is not copied to the
output buffer unless the function is an output function or you specifically
select an output file using the %selectfile directive. For more information
about functions, see “Target Language Functions” on page 5-59.

Line Continuation
You can use the C language \ character or the MATLAB sequence ... to
continue a line. If a directive is too long to fit conveniently on one line, this
allows you to split up the directive on to multiple lines. For example,

%roll sigIdx = RollRegions, lcv = RollThreshold, block,\
"Roller", rollVars

or

%roll sigIdx = RollRegions, lcv = RollThreshold, block,...
"Roller", rollVars

Compiler Directives

5-17

Note Use \ to suppress line feeds to the output and the ellipsis (...) to
indicate line continuation. Note that \ and the ellipsis (...) cannot be used
inside strings.

Target Language Values
This table shows the types of values you can use within the context of
expressions in your target language files. All expressions in the Target
Language Compiler must use these types.

Table 5-1: Target Language Values

Value Type
String

Example Description

"Boolean" 1==1 Result of a comparison or other Boolean operator.
The result will be TLC_TRUE or TLC_FALSE.

"Complex" 3.0+5.0i A 64-bit double-precision complex number (double
on the target machine)

"Complex32" 3.0F+5.0Fi A 32-bit single-precision complex number (float
on the target machine)

"File" %openfile x String buffer opened with %openfile

"File" %openfile x = "out.c" File opened with %openfile

"Function" %function foo… A user-defined function and TLC_FALSE otherwise

"Gaussian" 3+5i A 32-bit integer imaginary number (int on the
target machine)

"Identifier" abc Identifier values can only appear within the
model.rtw file and cannot appear in expressions
(within the context of an expression, identifiers
are interpreted as values). To compare against an
identifier value, use a string; the identifier will be
converted as appropriate to a string.

5 Directives and Built-in Functions

5-18

"Matrix" Matrix (3,2) [[1, 2]
[3 , 4] [5, 6]]

Matrices are simply lists of vectors. The individual
elements of the matrix do not need to be the same
type, and can be any type except vectors or
matrices. The Matrix (3,2) text in the example is
optional.

"Number" 15 An integer number (int on the target machine)

"Range" [1:5] A range of integers between 1 and 5, inclusive

"Real" 3.14159 A floating-point number (double on the target
machine), including exponential notation

"Real32" 3.14159F A 32-bit single-precision floating-point number
(float on the target machine)

"Scope" Block { … } A block record

"Special" FILE_EXISTS A special built-in function, such as FILE_EXISTS

"String" "Hello, World" ASCII character strings. In all contexts, two
strings in a row are concatenated to form the final
value, as in "Hello, " "World", which is
combined to form "Hello, World". These strings
include all of the ANSI C standard escape
sequences such as \n, \r, \t, etc. Use of line
continuation characters (i.e. \ and ...) inside of
strings is illegal.

"Subsystem" <sub1> A subsystem identifier. Within the context of an
expansion, be careful to escape the delimiters on a
subsystem identifier as in: %<x == <sub\>>.

"Unsigned" 15U A 32-bit unsigned integer (unsigned int on the
target machine)

Table 5-1: Target Language Values (Continued)

Value Type
String

Example Description

Compiler Directives

5-19

Target Language Expressions
In any place throughout a target file, you can include an expression of the form
%<expression>. The Target Language Compiler replaces %<expression> with
a calculated replacement value based upon the type of the variables within the
%<> operator. Integer constant expressions are folded and replaced with the
resultant value; string constants are concatenated (e.g., two strings in a row
"a" "b" are replaced with "ab").

%<expression> /* Evaluates the expression.
* Operators include most standard C
* operations on scalars. Array indexing
* is required for certain parameters that
* are block-scoped within the .rtw file.*/

Within the context of an expression, each identifier must evaluate to an
identifier or function argument currently in scope. You can use the %< >
directive on any line to perform textual substitution. To include the > character
within a replacement, you must escape it with a “\” character as in

%<x \> 1 ? "ABC" : "123">

Note It is not necessary to place expressions in the %< > format when they
appear on directive lines. Doing so causes a double evaluation.

The Target Language Expressions table lists the operators that are allowed in
expressions. In this table, expressions are listed in order from highest to lowest
precedence. The horizontal lines distinguish the order of operations.

"Unsigned
Gaussian"

3U+5Ui A 32-bit complex unsigned integer (unsigned int
on the target machine)

"Vector" [1, 2] or
Vector(2) [1, 2]

Vectors are lists of values. The individual elements
of a vector do not need to be the same type, and
may be any type except vectors or matrices.

Table 5-1: Target Language Values (Continued)

Value Type
String

Example Description

5 Directives and Built-in Functions

5-20

As in C expressions, conditional operators are short circuited. If the expression
includes a function call with effects, the effects are noticed as if the entire
expression was not fully evaluated. For example,

%if EXISTS(foo) && foo == 3

If the first term of the expression evaluates to a Boolean false (i.e., foo does not
exist), the second term (foo == 3) will not be evaluated.

In the following table, note that “numeric” is one of the following:

• Boolean
• Number
• Unsigned
• Real
• Real32
• Complex
• Complex32
• Gaussian
• UnsignedGaussian

Also, note that “integral” is one of the following:

• Number
• Unsigned
• Boolean

See “TLC Data Promotions” on page 5-24 for information on the promotions
that result when the Target Language Compiler operates on mixed types of
expressions.

Table 5-2: Target Language Expressions

Expression Definition

constant Any constant parameter value, including
vectors and matrices

variable-name Any valid in-scope variable name, including
the local function scope, if any, and the global
scope

Compiler Directives

5-21

::variable-name Used within a function to indicate that the
function scope is ignored when looking up the
variable. This accesses the global scope.

expr[expr] Index into an array parameter. Array indices
range from 0 to N-1. This syntax is used to
index into vectors, matrices, and repeated
scope variables.

expr([expr[,expr]…]) Function call or macro expansion. The
expression outside of the parentheses is the
function/macro name; the expressions inside
are the arguments to the function or macro.
Note: Since macros are text-based, they
cannot be used within the same expression as
other operators.

expr. expr The first expression must have a valid scope;
the second expression is a parameter name
within that scope.

(expr) Use () to override the precedence of
operations.

!expr Logical negation (always generates TLC_TRUE
or TLC_FALSE). The argument must be
numeric or Boolean.

-expr Unary minus negates the expression. The
argument must be numeric.

+expr No effect; the operand must be numeric.

~expr Bitwise negation of the operand. The
argument must be integral.

expr * expr Multiply the two expressions together; the
operands must be numeric.

Table 5-2: Target Language Expressions (Continued)

Expression Definition

5 Directives and Built-in Functions

5-22

expr / expr Divide the two expressions; the operands
must be numeric.

expr % expr Take the integer modulo of the expressions;
the operands must be integral.

expr + expr Works on numeric types, strings, vectors,
matrices, and records as follows:

Numeric Types - Add the two expressions
together; the operands must be numeric.

Strings - The strings are concatenated.

Vectors - If the first argument is a vector and
the second is a scalar, it appends the scalar to
the vector.

Matrices - If the first argument is a matrix
and the second is a vector of the same
column-width as the matrix, it appends the
vector as another row in the matrix.

Records - If the first argument is a record, it
adds the second argument as a parameter
identifier (with its current value).

Note, the addition operator is associative.

expr - expr Subtracts the two expressions; the operands
must be numeric.

expr << expr Left shifts the left operand by an amount
equal to the right operand; the arguments
must be integral.

expr >> expr Right shifts the left operand by an amount
equal to the right operand; the arguments
must be integral.

Table 5-2: Target Language Expressions (Continued)

Expression Definition

Compiler Directives

5-23

expr > expr Tests if the first expression is greater than
the second expression; the arguments must
be numeric.

expr < expr Tests if the first expression is less than the
second expression; the arguments must be
numeric.

expr >= expr Tests if the first expression is greater than or
equal to the second expression; the
arguments must be numeric.

expr <= expr Tests if the first expression is less than or
equal to the second expression; the
arguments must be numeric.

expr == expr Tests if the two expressions are equal.

expr != expr Tests if the two expression are not equal.

expr & expr Performs the bitwise AND of the two
arguments; the arguments must be integral.

expr ^ expr Performs the bitwise XOR of the two
arguments; the arguments must be integral.

expr | expr Performs the bitwise OR of the two
arguments; the arguments must be integral.

expr && expr Performs the logical AND of the two
arguments and returns TLC_TRUE or
TLC_FALSE. This can be used on either
numeric or Boolean arguments.

expr || expr Performs the logical OR of the two arguments
and returns TLC_TRUE or TLC_FALSE. This can
be used on either numeric or Boolean
arguments.

Table 5-2: Target Language Expressions (Continued)

Expression Definition

5 Directives and Built-in Functions

5-24

Note Relational operators (<, =<, >, >=, !=, ==) can be used with
non-finite values.

TLC Data Promotions
When the Target Language Compiler operates on mixed types of expressions,
it promotes the result to the common types indicated in the following table.

This table uses the following abbreviations:

The top row (in bold) and first column (in bold) show the types of expression
used in the operation. The intersection of the row and column shows the
resulting type of expression.

expr ? expr : expr Tests the first expression for TLC_TRUE. If
true, the first expression is returned;
otherwise the second expression is returned.

expr , expr Returns the value of the second expression.

B Boolean

N Number

U Unsigned

F Real32

D Real

G Gaussian

UG UnsignedGaussian

C32 Complex32

C Complex

Table 5-2: Target Language Expressions (Continued)

Expression Definition

Compiler Directives

5-25

For example, if the operation involves a Boolean expression (B) and an
unsigned expression (U), the result will be an unsigned expression (U).

Formatting
By default, the Target Language Compiler outputs all floating-point numbers
in exponential notation with 16 digits of precision. To override the default, use
the directive:

%realformat string

If string is "EXPONENTIAL", the standard exponential notation with 16 digits
of precision is used. If string is "CONCISE", the Compiler uses a set of internal
heuristics to output the values in a more readable form while maintaining
accuracy. The %realformat directive sets the default format for Real number
output to the selected style for the remainder of processing or until it
encounters another %realformat directive.

Conditional Inclusion
The conditional inclusion directives are

%if constant-expression

B N U F D G UG C32 C

B B N U F D G UG C32 C

N N N U F D G UG C32 C

U U U U F D UG UG C32 C

F F F F F D C32 C32 C32 C

D D D D D D C C C C

G G G UG C32 C G UG C32 C

UG UG UG UG C32 C UG UG C32 C

C32 C32 C32 C32 C32 C C32 C32 C32 C

C C C C C C C C C C

5 Directives and Built-in Functions

5-26

%else
%elseif constant-expression
%endif

and

%switch constant-expression
%case constant-expression
%break
%default
%endswitch

%if
The constant-expression must evaluate to an integral expression. It controls
the inclusion of all the following lines until it encounters a %else, %elseif, or
%endif directive. If the constant-expression evaluates to 0, the lines
following the directive are not included. If the constant-expression evaluates
to any other integral value, the lines following the %if directive are included
up until the %endif, %elseif, or %else directives.

When the Compiler encounters an %elseif directive, and no prior %if or
%elseif directive has evaluated to nonzero, the Compiler evaluates the
expression. If the value is 0, the lines following the %elseif directive are not
included. If the value is nonzero, the lines following the %elseif directive are
included up until the subsequent %else, %elseif, or %endif directive.

The %else directive begins the inclusion of source text if all of the previous
%elseif statements or the original %if statement evaluates to 0; otherwise, it
prevents the inclusion of subsequent lines up to and including the following
%endif.

The constant-expression can contain any expression specified in “Target
Language Expressions” on page 5-19.

%switch
The %switch statement evaluates the constant expression and compares it to
all expressions appearing on %case selectors. If a match is found, the body of
the %case is included; otherwise the %default is included.

%case ... %default bodies flow together, as in C, and %break must be used to
exit the switch statement. %break will exit the nearest enclosing %switch,
%foreach, or %for loop in which it appears. For example,

Compiler Directives

5-27

%switch(type)
%case x

/* Matches variable x. */
/* Note: Any valid TLC type is allowed. */

%case "Sin"
/* Matches Sin or falls through from case x. */
%break
/* Exits the switch. */

%case "gain"
/* Matches gain. */
%break

%default
/* Does not match x, "Sin," or "gain." */

%endswitch

In general, this is a more readable form for the %if/%elseif/%else
construction.

Multiple Inclusion

%foreach
The syntax of the %foreach multiple inclusion directive is

%foreach identifier = constant-expression
%break
%continue

%endforeach

The constant-expression must evaluate to an integral expression, which
then determines the number of times to execute the foreach loop. The
identifier increments from 0 to one less than the specified number. Within
the foreach loop, you can use x, where x is the identifier, to access the identifier
variable. %break and %continue are optional directives that you can include in
the %foreach directive:

• %break can be used to exit the nearest enclosing %for, %foreach, or %switch
statement.

• %continue can be used to begin the next iteration of a loop.

5 Directives and Built-in Functions

5-28

%for

Note The %for directive is functional, but it is not recommended. Rather, use
%roll, which provides the same capability in a more open way. The Real-Time
Workshop does not make use of the %for construct.

The syntax of the %for multiple inclusion directive is

%for ident1 = const-exp1, const-exp2, ident2 = const-exp3
%body
%break
%continue

%endbody
%endfor

The first portion of the %for directive is identical to the %foreach statement in
that it causes a loop to execute from 0 to N-1 times over the body of the loop. In
the normal case, it includes only the lines between %body and %endbody, and
the lines between the %for and %body, and ignores the lines between the
%endbody and %endfor.

The %break and %continue directives act the same as they do in the %foreach
directive.

const-exp2 is a Boolean expression that indicates whether the loop should be
rolled. If const-exp2 is true, ident2 receives the value of const-exp3;
otherwise it receives the null string. When the loop is rolled, all of the lines
between the %for and the %endfor are included in the output exactly one time.
ident2 specifies the identifier to be used for testing whether the loop was rolled
within the body. For example,

%for Index = <NumNonVirtualSubsystems>3, rollvar="i"

 {
 int i;

 for (i=0; i< %<NumNonVirtualSubsystems>; i++)
 {

%body
x[%<rollvar>] = system_name[%<rollvar>];

Compiler Directives

5-29

%endbody

 }
 }
%endfor

If the number of nonvirtual subsystems (NumNonVirtualSubsystems) is greater
than or equal to 3, the loop is rolled, causing all of the code within the loop to
be generated exactly once. In this case, Index = 0.

If the loop is not rolled, the text before and after the body of the loop is ignored
and the body is generated NumNonVirtualSubsystems times.

This mechanism gives each individual loop control over whether or not it
should be rolled.

%roll
The syntax of the %roll multiple inclusion directive is

%roll ident1 = roll-vector-exp, ident2 = threshold-exp, ...
block-exp [, type-string [,exp-list]]

%break
%continue

%endroll

This statement uses the roll-vector-exp to expand the body of the %roll
statement multiple times as in the %foreach statement. If a range is provided
in the roll-vector-exp and that range is larger than the threshold-exp
expression, the loop will roll. When a loop rolls, the body of the loop is expanded
once and the identifier (ident2) provided for the threshold expression is set to
the name of the loop control variable. If no range is larger than the specified
rolling threshold, this statement is identical in all respects to the %foreach
statement.

For example,

%roll Idx = [1 2 3:5, 6, 7:10], lcv = 10, ablock
%endroll

In this case, the body of the %roll statement expands 10 times as in the
%foreach statement since there are no regions greater than or equal to 10. Idx
counts from 1 to 10, and lcv is set to the null string, "".

5 Directives and Built-in Functions

5-30

When the Target Language Compiler determines that a given block will roll, it
performs a GENERATE_TYPE function call to output the various pieces of the loop
(other than the body). The default type used is Roller; you can override this
type with a string that you specify. Any extra arguments passed on the %roll
statement are provided as arguments to these special-purpose functions. The
called function is one of these four functions.

RollHeader(block, …). This function is called once on the first section of this roll
vector that will actually roll. It should return a string that is assigned to the
lcv within the body of the %roll statement.

LoopHeader(block, StartIdx, Niterations, Nrolled, …). This function is called once for
each section that will roll prior to the body of the %roll statement.

LoopTrailer(block, Startidx, Niterations, Nrolled, …). This function is called once for
each section that will roll after the body of the %roll statement.

RollTrailer(block, …). This function is called once at the end of the %roll
statement if any of the ranges caused loop rolling.

These functions should output any language-specific declarations, loop code,
and so on as required to generate correct code for the loop. An example of a
Roller.tlc file is

%implements Roller "C"
%function RollHeader(block) Output

{
int i;

%return ("i")
%endfunction

%function LoopHeader(block,StartIdx,Niterations,Nrolled) Output
 for (i = %<StartIdx>; i < %<Niterations+StartIdx>; i++)

{
%endfunction

%function LoopTrailer(block,StartIdx,Niterations,Nrolled) Output
}

%endfunction

%function RollTrailer(block) Output
}

Compiler Directives

5-31

%endfunction

Note The Target Language Compiler function library provided with
Real-Time Workshop has the capability to extract references to the Block I/O
and other Real-Time Workshop-specific vectors that vastly simplify the body
of the %roll statement. These functions include LibBlockInputSignal,
LibBlockOutputSignal, LibBlockParameter, LibBlockRWork, LibBlockIWork,
LibBlockPWork, and LibDeclareRollVars, LibBlockMatrixParameter,
LibBlockParameterAddr, LibBlockContinuousState, and
LibBlockDiscreteState function reference pages in Chapter 9, “TLC
Function Library Reference.” This library also includes a default
implementation of Roller.tlc an a “flat” roller.

Extending the former example to a loop that rolls

%language "C"
%assign ablock = BLOCK { Name "Hi" }
%roll Idx = [1:20, 21, 22, 23:25, 26:46], lcv = 10, ablock

Block[%< lcv == "" ? Idx : lcv>] *= 3.0;
%endroll

This Target Language Compiler code produces the output.

{
int i;
for (i = 1; i < 21; i++)
{
 Block[i] *= 3.0;
}
Block[21] *= 3.0;
Block[22] *= 3.0;
Block[23] *= 3.0;
Block[24] *= 3.0;
Block[25] *= 3.0;
for (i = 26; i < 47; i++)
{
 Block[i] *= 3.0;
}

}

5 Directives and Built-in Functions

5-32

Object-Oriented Facility for Generating Target Code
The Target Language Compiler provides a simple object-oriented facility. The
language directives are

%language string
%generatefile
%implements

This facility was designed specifically for customizing the code for Simulink
blocks, but can be used for other purposes as well.

%language
The %language directive specifies the target language being generated. It is
required as a consistency check to ensure that the correct implementation files
are found for the language being generated. The %language directive must
appear prior to the first GENERATE or GENERATE_TYPE built-in function call.
%language specifies the language as a string. For example,

%language "C"

All blocks in Simulink have a Type parameter. This parameter is a string that
specifies the type of the block, e.g., "Sin" or "Gain". The object-oriented facility
uses this type to search the path for a file that implements the correct block.
By default the name of the file is the Type of the block with .tlc appended, so
for example, if the Type is "Sin" the Compiler would search for "Sin.tlc"
along the path. You can override this default filename using the
%generatefile directive to specify the filename that you want to use to replace
the default filename. For example,

%generatefile "Sin" "sin_wave.tlc"

The files that implement the block-specific code must contain a %implements
directive indicating both the type and the language being implemented. The
Target Language Compiler will produce an error if the %implements directive
does not match as expected. For example,

%implements "Sin" ["Ada", "Pascal"]

causes an error if the initial language choice was C.

You can use a single file to implement more than one target language by
specifying the desired languages in a vector. For example,

Compiler Directives

5-33

%implements "Sin" ["C", "Ada"]

Finally, you can implement several types using the wildcard (*) for the type
field

%implements * ["C", "Ada"]

Note The use of the wildcard (*) is not recommended because it relaxes error
checking for the %implements directive.

GENERATE and GENERATE_TYPE Functions
The Target Language Compiler has two built-in functions that dispatch
object-oriented calls, GENERATE and GENERATE_TYPE. You can call any function
appearing in an implementation file (from outside the specified file) only by
using the GENERATE and GENERATE_TYPE special functions.

GENERATE. The GENERATE function takes two or more input arguments. The first
argument must be a valid scope and the second a string containing the name
of the function to call. The GENERATE function passes the first block argument
and any additional arguments specified to the function being called. The return
argument is the value (if any) returned from the function being called. Note
that the Compiler automatically “scopes” or adds the first argument to the list
of scopes searched as if it appears on a %with directive line. See %with in
“Scoping”. This scope is removed when the function returns.

GENERATE_TYPE. The GENERATE_TYPE function takes three or more input
arguments. It handles the first two arguments identically to the GENERATE
function call. The third argument is the type; the type specified in the Simulink
block is ignored. This facility is used to handle S-function code generation by
the Real-Time Workshop. That is, the block type is S-function, but the Target
Language Compiler generates it as the specific S-function specified by
GENERATE_TYPE. For example,

GENERATE_TYPE(block, "Output", "dp_read")

specifies that S-function block is of type dp_read.

The block argument and any additional arguments are passed to the function
being called. Similar to the GENERATE built-in function, the Compiler

5 Directives and Built-in Functions

5-34

automatically scopes the first argument before the GENERATE_TYPE function is
entered and then removes the scope on return.

Within the file containing %implements, function calls are looked up first
within the file and then in the global scope. This makes it possible to have
hidden helper functions used exclusively by the current object.

Note It is not an error for the GENERATE and GENERATE_TYPE directives to find
no matching functions. This is to prevent requiring empty specifications for all
aspects of block code generation. Use the GENERATE_FUNCTION_EXISTS or
GENERATE_TYPE_FUNCTION_EXISTS directives to determine if the specified
function actually exists.

Output File Control
The structure of the output file control construct is

%openfile string optional-equal-string optional-mode
%closefile id
%selectfile id

%openfile
The %openfile directive opens a file or buffer for writing; the required string
variable becomes a variable of type file. For example,

%openfile x /% Opens and selects x for writing. %/
%openfile out = "out.h" /% Opens "out.h" for writing. %/

%selectfile
The %selectfile directive selects the file specified by the variable as the
current output stream. All output goes to that file until another file is selected
using %selectfile. For example,

%selectfile x /% Select file x for output. %/

Compiler Directives

5-35

%closefile
The %closefile directive closes the specified file or buffer, and if this file is the
currently selected stream, %closefile invokes %selectfile to reselect the last
previously selected output stream.

There are two possible cases that %closefile must handle:

• If the stream is a file, the associated variable is removed as if by %undef.

• If the stream is a buffer, the associated variable receives all the text that has
been output to the stream. For example,

%assign x = "" /% Creates an empty string. %/
%openfile x
"hello, world"
%closefile x /% x = "hello, world\n"%/

If desired, you can append to an output file or string by using the optional
mode, a, as in

%openfile "foo.c", "a" %% Opens foo.c for appending.

Input File Control
The input file control directives are

%include string
%addincludepath string

%include
The %include directive searches the path for the target file specified by string
and includes the contents of the file inline at the point where the %include
statement appears.

%addincludepath
The %addincludepath directive adds an additional include path to be searched
when the Target Language Compiler references %include or block target files.
The syntax is

%addincludepath string

The string can be an absolute path or an explicit relative path. For example,
to specify an absolute path, use

5 Directives and Built-in Functions

5-36

%addincludepath "C:\\directory1\\directory2" (PC)
%addincludepath "/directory1/directory2" (UNIX)

To specify a relative path, the path must explicitly start with “.”. For example,

%addincludepath ".\directory2" (PC)
%addincludepath "./directory2" (UNIX)

When an explicit relative path is specified, the directory that is added to the
Target Language Compiler search path is created by concatenating the
location of the target file that contains the %addincludepath directive and the
explicit relative path.

The Target Language Compiler searches the directories in the following order
for target or include files:

1 The current directory

2 Any %addincludepath directives

3 Any include paths specified at the command line via -I

Typically, %addincludepath directives should be specified in your system
target file. Multiple %addincludepath directives will add multiple paths to the
Target Language Compiler search path.

Asserts, Errors, Warnings, and Debug Messages
The related assert, error, warning, and debug message directives are

%assert expression
%error tokens
%warning tokens
%trace tokens
%exit tokens

These directives produce error, warning, or trace messages whenever a target
file detects an error condition, or tracing is desired. All of the tokens following
the directive on a line become part of the generated error or warning message.

The Target Language Compiler places messages generated by %trace onto
stderr if and only if you specify the verbose mode switch (-v) to the Target

Compiler Directives

5-37

Language Compiler. See “Command Line Arguments” on page 5-65 for
additional information about switches.

The %assert directive will evaluate the expression (if you specify the switch
-da to the Target Language Compiler) and will produce a stack trace if the
expression evaluates to a boolean false.

The %exit directive reports an error and stops further compilation.

Built-In Functions and Values
Table 5-3, TLC Built-in Functions and Values, lists the built-in functions and
values that are added to the list of parameters that appear in the model.rtw
file. These Target Language Compiler functions and values are defined in

5 Directives and Built-in Functions

5-38

uppercase so that they are visually distinct from other parameters in the
model.rtw file, and by convention, from user-defined parameters.

Table 5-3: TLC Built-in Functions and Values

Built-In Function Name Expansion

CAST(expr, expr) The first expression must be a string
that corresponds to one of the type
names in the Target Language Values
table, and the second expression will
be cast to that type. A typical use
might be to cast a variable to a real
format as in:
CAST("Real", variable-name)

An example of this is in working with
parameter values for S-functions. To
use them within C code, you need to
typecast them to real so that a value
such as “1” will be formatted as “1.0”
(see also %realformat).

EXISTS(var) If the var identifier is not currently in
scope, the result is TLC_FALSE. If the
identifier is in scope, the result is
TLC_TRUE. var can be a single
identifier or an expression involving
the . and [] operators.

Note: prior to TLC release 4, the
semantics of EXISTS differed from the
above. See “Compatibility Issues” on
page 1-18.

Compiler Directives

5-39

FEVAL(matlab-command,
TLC-expressions)

Performs an evaluation in MATLAB.
For example
%assign result =
FEVAL("sin",3.14159)

The %matlab directive can be used to
call a MATLAB function that does not
return a result. For example,
%matlab disp(2.718)

Note: if the MATLAB function returns
more than one value, TLC only
receives the first value.

FILE_EXISTS(expr) expr must be a string. If a file by the
name expr does not exist on the path,
the result is TLC_FALSE. If a file by
that name exists on the path, the
result is TLC_TRUE.

FORMAT(realvalue, format) The first expression is a Real value to
format. The second expression is
either "EXPONENTIAL" or "CONCISE".
Outputs the Real value in the
designated format where EXPONENTIAL
uses exponential notation with 16
digits of precision, and CONCISE
outputs the number in a more
readable format while maintaining
numerical accuracy.

FIELDNAMES(record) Returns a array of strings containing
the record field names associated with
the record.

Table 5-3: TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

5 Directives and Built-in Functions

5-40

GETFIELD(record,
“fieldname”)

Returns the contents of the specified
field name, if the field name is
associated with the record.

GENERATE(record,
function-name, ...)

This is used to execute function calls
mapped to a specific record type (i.e.,
Block record functions). For example,
used this to execute the functions in
the .tlc files for built-in blocks. Note,
TLC automatically “scopes” or adds
the first argument to the list of scopes
searched as if it appears on a %with
directive line.

GENERATE_FILENAME(type) For the specified record type, does a
.tlc file exist? Use this to see if the
GENERATE_TYPE call will succeed.

GENERATE_FORMATTED_VALUE
(expr, string)

Returns a potentially multiline string
that can be used to declare the value(s)
of expr in the current target language
(C or Ada). The second argument is a
string that is used as the variable
name in a descriptive comment on the
first line of the return string. If the
second argument is the empty string,
"", then no descriptive comment is put
into the output string.

GENERATE_FUNCTION_EXISTS
(record, function-name)

Determines if a given block function
exists. The first expression is the same
as the first argument to GENERATE,
namely a block scoped variable
containing a Type. The second
expression is a string that should
match the function name.

Table 5-3: TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

Compiler Directives

5-41

GENERATE_TYPE
(record, function-name,
type, ...)

Similar to GENERATE, except type
overrides the Type field of the record.
Use this when executing functions
mapped to specific S-function blocks
records based upon the S-function
name (i.e., name becomes type).

GENERATE_TYPE_FUNCTION_EXIST
S

(record, function-name,
type)

Same as GENERATE_FUNCTION_EXISTS
except it overrides the Type built into
the record.

GET_COMMAND_SWITCH Returns the value of command-line
switches. Only the following switches
are supported: v, m, p, O, d, r, I,
a

IDNUM(expr) expr must be a string. The result is a
vector where the first element is a
leading string (if any) and the second
element is a number appearing at the
end of the input string. For example,

IDNUM("ABC123") yields ["ABC", 123]

IMAG(expr) Returns the imaginary part of a
complex number.

INT8MAX 127

INT8MIN -128

INT16MAX 32767

INT16MIN -32768

INT32MAX 2147483647

INT32MIN -2147483648

Table 5-3: TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

5 Directives and Built-in Functions

5-42

INTMIN Minimum integer value on target
machine

INTMAX Maximum integer value on target
machine

ISALIAS(record) Returns TLC_TRUE if the record is a
reference (symbolic link) to a different
record, and TLC_FALSE otherwise.

ISEQUAL(expr1, expr2) Returns TLC_TRUE if the first
expression has the same data type and
contains the same value than the
second expression, and TLC_FALSE
otherwise.

ISEMPTY(expr) Returns TLC_TRUE if the expression
contains (resolves to) an empty string,
vector, or record, and TLC_FALSE
otherwise.

ISFIELD(record, “fieldname”) Returns TLC_TRUE if the field name is
associated to the record, and
TLC_FALSE otherwise.

ISINF(expr) Returns TLC_TRUE if the value of the
expression is inf and TLC_FALSE
otherwise.

ISNAN(expr) Returns TLC_TRUE if the value of the
expression is NAN, and TLC_FALSE
otherwise.

ISFINITE(expr) Returns TLC_TRUE if the value of the
expression is not +/- inf or NAN, and
TLC_FALSE otherwise.

Table 5-3: TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

Compiler Directives

5-43

NULL_FILE A predefined file for no output that
you can use as an argument to
%selectfile to prevent output.

NUMTLCFILES The number of target files used thus
far in expansion.

OUTPUT_LINES Returns the number of lines that have
been written to the currently selected
file or buffer. Does not work for STDOUT
or NULL_FILE

REAL(expr) Returns the real part of a complex
number.

REMOVEFIELD(record,
“fieldname”)

Removes the specified field from the
contents of the record. Returns
TLC_TRUE if the field was removed;
otherwise returns TLC_FALSE.

ROLL_ITERATIONS() Returns the number of times the
current roll regions are looping or NULL
if not inside a %roll construct.

SETFIELD(record,
“fieldname”, value)

Sets the contents of the field name
associated to the record. Returns
TLC_TRUE if the field was added;
otherwise returns TLC_FALSE.

Table 5-3: TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

5 Directives and Built-in Functions

5-44

SIZE(expr[,expr]) Calculates the size of the first
expression and generates a
two-element, row vector. If the second
operand is specified, it is used as an
integral index into this row vector;
otherwise the entire row vector is
returned. SIZE(x) applied to any
scalar returns [1 1]. SIZE(x) applied
to any scope returns the number of
repeated entries of that scope type
(e.g., SIZE(Block) returns
[1,<number of blocks>].

STDOUT A predefined file for stdout output.
You can use this as an argument to
%selectfile to force output to stdout.

STRING(expr) Expands the expression into a string;
the characters \, \n, and " are escaped
by preceding them with \ (backslash).
All the ANSI escape sequences are
translated into string form.

STRINGOF(expr) Accepts a vector of ASCII values and
returns a string that is constructed by
treating each element as the ASCII
code for a single character. Used
primarily for S-function string
parameters in Real-Time Workshop.

Table 5-3: TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

Compiler Directives

5-45

SYSNAME(expr) Looks for specially formatted strings of
the form <x>/y and returns x and y as
a 2-element string vector. This is used
to resolve subsystem names in
Real-Time Workshop. For example,

%<sysname("<sub>/Gain")>

returns

["sub","Gain"]

In Block records, the Name of the block
is written similar to <sys/blockname>
where sys is S# or Root. You can
obtain the full path name by calling
LibGetBlockPath(block); this will
include newlines and other
troublesome characters that cause
display difficulties. To obtain a full
path name suitable for one line
comments but not identical to the
Simulink path name, use
LibGetFormattedBlockPath(block).

TLCFILES Returns a vector containing the names
of all the target files included thus far
in the expansion. See also
NUMTLCFILES.

TLC_FALSE Boolean constant which equals a
negative evaluated boolean
expression.

TLC_TRUE Boolean constant which equals a
positive evaluated boolean expression.

TLC_TIME The date and time of compilation.

Table 5-3: TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

5 Directives and Built-in Functions

5-46

FEVAL Function
The FEVAL built-in function calls MATLAB M-file functions and
MEX-functions. The structure is

%assign result = FEVAL(matlab-function-name, rhs1, rhs2, ...
rhs3, ...);

TLC_VERSION The version and date of the Target
Language Compiler.

TYPE(expr) Evaluates expr and determines the
result type. The result of this function
is a string that corresponds to the type
of the given expression. See value type
string in the Target Language Values
table for possible values.

UINT8MAX 255U

UINT16MAX 65535U

UINT32MAX 4294967295U

UINTMAX Maximum unsigned integer value on
target machine.

WHITE_SPACE(expr) Accepts a string and returns 1 if the
string contains only whitespace
characters (, \t, \n, \r); returns 0
otherwise.

WILL_ROLL(expr1, expr2) The first expression is a roll vector and
the second expression is a roll
threshold. This function returns true
if the vector contains a range that will
roll.

Table 5-3: TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

Compiler Directives

5-47

Note Only a single left-hand-side argument is allowed when calling
MATLAB.

This table shows the conversions that are made when calling MATLAB.

TLC Type MATLAB Type

"Boolean" Boolean (scalar or Matrix)

"Number" Double (scalar or Matrix)

"Real" Double (scalar or Matrix)

"Real32" Double (scalar or Matrix)

"Unsigned" Double (scalar or Matrix)

"String" String

"Vector" If the vector is homogeneous, it will convert to a
MATLAB vector of the appropriate value. If the
vector is heterogeneous, it converts to a MATLAB
cell array.

"Gaussian" Complex (scalar or Matrix)

"UnsignedGaussian" Complex (scalar or Matrix)

"Complex" Complex (scalar or Matrix)

"Complex32" Complex (scalar or Matrix)

"Identifier" String

"Subsystem" String

"Range" expanded vector of Doubles

"Idrange" expanded vector of Doubles

5 Directives and Built-in Functions

5-48

When values are returned from MATLAB, they are converted as shown in this
table. Note that conversion of matrices with more than 2 dimensions is not
supported,

"Matrix" If the matrix is homogeneous, it will convert to a
MATLAB matrix of the appropriate value. If the
matrix is heterogeneous, it converts to a MATLAB
cell array. (Cell arrays can be nested.)

"Scope" or "Record" Structure with elements

Scope or Record
alias

String containing fully qualified alias name

Scope or Record
array

Cell array of structures

Any other type Conversion not supported

TLC Type MATLAB Type

MATLAB Type TLC Type

String "String"

Vector of Strings Vector of Strings

Boolean (scalar or Matrix) "Boolean" (scalar or Matrix)

INT8,INT16,INT32
(scalar or Matrix)

"Number" (scalar or Matrix)

Complex INT8,INT16,INT32
(scalar or Matrix)

"Gaussian" (scalar or Matrix)

UINT8,UINT16,UINT32
(scalar or Matrix)

"Unsigned" (scalar or Matrix)

Complex UINT8,UINT16,UINT32
(scalar or Matrix)

"UnsignedGaussian"(scalar or Matrix)

Single precision "Real32" (scalar or Matrix)

Complex single precision "Complex32" (scalar or Matrix)

Compiler Directives

5-49

Other value types are not currently supported.

As an example, this statement uses the FEVAL built-in function to call MATLAB
to take the sine of the input argument.

%assign result = FEVAL("sin", 3.14159)

Variables (identifiers) can take on the following constant values. Note the
suffix on the value one.

Double precision "Real" (scalar or Matrix)

Complex double precision "Complex" (scalar or Matrix)

INT64,UINT64 "Double" (scalar or Matrix)

Sparse matrix Expanded out to matrix of Reals

Cell array of structures Record array

Cell array of non-structures Vector or matrix of types converted from the
types of the elements

Cell array of structures and
non-structures

Conversion not supported

Structure "Record"

Object Conversion not supported

MATLAB Type TLC Type

Constant Form TLC Type

1.0 "Real"

1.0[F/f] "Real32"

1 "Number"

1[U|u] "Unsigned"

1.0i "Complex"

5 Directives and Built-in Functions

5-50

Note The suffix controls the Target Language Compiler type obtained from
the constant.

This table shows Target Language Compiler constants and their equivalent
MATLAB values.

TLC Reserved Constants
For double precision values, the following are defined for infinite and
not-a-number IEEE values

rtInf, inf, rtMinusInf, -inf, rtNaN, nan

and their corresponding version when complex

rtInfi, infi, rtMinusInfi, -infi, rtNaNi

For integer values, the following are defined

1[Ui|ui] "UnsignedGaussian"

1i "Gaussian"

1.0[Fi|fi] "Complex32"

TLC Constant(s) Equivalent MATLAB Value

rtInf, Inf, inf +inf

rtMinusInf -inf

rtNan, NaN, nan nan

rtInfi, Infi, infi inf*i

rtMinusInfi -inf*i

rtNaNi, NaNi, nani nan*i

Constant Form TLC Type

Compiler Directives

5-51

INT8MIN, INT8MAX, INT16MIN, INT16MAX, INT32MIN, INT32MAX, UINT8MAX,
UINT16MAX, UINT32MAX, INTMAX,INTMIN,UINTMAX

Identifier Definition
To define or change identifiers (TLC variables), use the directive

%assign [::]expression = constant-expression

This directive introduces new identifiers (variables) or changes the values of
existing ones. The left-hand side can be a qualified reference to a variable using
the . and [] operators, or it can be a single element of a vector or matrix. In the
case of the matrix, only the single element is changed by the assignment.

The %assign directive inserts new identifiers into the local function scope (if
any), file function scope (if any), generate file scope (if any), or into the global
scope. Identifiers introduced into the function scope are not available within
functions being called, and are removed upon return from the function.
Identifiers inserted into the global scope are persistent. Existing identifiers can
be changed by completely respecifying them. The constant expressions can
include any legal identifiers from the .rtw files. You can use %undef to delete
identifiers in the same way that you use it to remove macros.

Within the scope of a function, variable assignments always create new local
variables unless you use the :: scope resolution operator. For example, given
a local variable foo and a global variable foo

%function …
…
%assign foo = 3
…
%endfunction

In this example, the assignment always creates a variable foo local to the
function that will disappear when the function exits. Note that foo is created
even if a global foo already exists.

In order to create or change values in the global scope, you must use the ::
operator to disambiguate, as in

%function …
%assign foo = 3
%assign ::foo = foo

5 Directives and Built-in Functions

5-52

…
%endfunction

The :: forces the compiler to assign to the global foo, or to change its existing
value to 3.

Note It is an error to change a value from the Real-Time Workshop file
without qualifying it with the scope. This example does not generate an error.

%assign CompiledModel.name = "newname" %% No error

This example generates an error.

%with CompiledModel
%assign name = "newname" %% Error

%endwith

Creating Records
Use the %createrecord directive to build new records in the current scope. For
example, if you want to create a new record called Rec that contains two items
(e.g., Name "Name" and Type "t"), use

%createrecord Rec { Name "Name"; Type "t" }

Adding Records
Use the %addtorecord directive to add new records to existing records. For
example, if you have a record called Rec1 that contains a record called Rec2,
and you want to add an additional Rec2 to it, use

%addtorecord Rec1 Rec2 { Name "Name1"; Type "t1" }

Compiler Directives

5-53

This figure shows the result of adding the record to the existing one.

Figure 5-1: Adding a New Record

If you want to access the new record, you can use

%assign myname = Rec1.Rec2[1].Name

In this same example, if you want to add two records to the existing record, use

%addtorecord Rec1 Rec2 { Name "Name1"; Type "t1" }
%addtorecord Rec1 Rec2 { Name "Name2"; Type "t2" }

Rec1 {
 Rec2 {

Name"Name0"
Type"t0"

 }
 Rec2 {

Name"Name1"
Type"t1"

 }
.
.

}

New Record

Existing Record

5 Directives and Built-in Functions

5-54

This produces

Figure 5-2: Adding Multiple Records

Adding Parameters to an Existing Record
You can use the %assign directive to add a new parameter to an existing
record. For example,

%addtorecord Block[Idx] N 500 /% Adds N with value 500 to Block %/
%assign myn = Block[Idx].N /% Gets the value 500 %/

Rec1 {
 Rec2 {

Name"Name0"
Type"t0"

 }
 Rec2 {

Name"Name1"
Type"t1"

 }
 Rec2 {

Name"Name2"
Type"t2"

 }
.
.

}

First New Record

Existing Record

Second New Record

Compiler Directives

5-55

adds a new parameter, N, at the end of an existing block with the name and
current value of an existing variable as shown in this figure. It returns the
block value.

Figure 5-3: Parameter Added to Existing Record

Scoping
The structure of the %with directive is

%with expression
%endwith

The %with directive adds a new scope to be searched onto the current list of
scopes. This directive makes it easier to refer to block-scoped variables.

For example, if you have the following Real-Time Workshop file

System {
Name"foo"

}

You can access the Name parameter without a %with statement, by using

%<System.Name>

or by using %with

%with System
%<Name>

%endwith

Block {
.
.
.
N 500

}
New Parameter

5 Directives and Built-in Functions

5-56

Variable Scoping
The Target Language Compiler uses dynamic scoping to resolve references to
variables. This section illustrates how the Target Language Compiler
determines the values of variables.

In the simplest case, to resolve a variable the Target Language Compiler
searches the top-level Real-Time Workshop pool followed by the global pool.
This illustration shows the search sequence that the Target Language
Compiler uses.

Figure 5-4: Search Sequence

You can modify the search list and search sequence by using the %with
directive.

Example
When you add the following construct

%with CompiledModel.System[sysidx]
...

%endwith

the System[sysidx] scope is added to the search list, and it is searched before
anything else.

Global Pool
%assign a = …
%assign b = …
…

Top-Level RTW Pool
CompiledModel {

…
}

2

1

Compiler Directives

5-57

Figure 5-5: Modifying the Search Sequence

Using this technique makes it simpler to access embedded definitions. For
example, to refer to the system name without using %with, you would have to
use

CompiledModel.System[sysidx].Name

Using the %with construct (as in the previous example), you can refer to the
system name simply by

Name

Global Pool
%assign a = …
%assign b = …
…

Top-Level RTW Pool
CompiledModel {

…
}

%with CompiledModel.
System[sysidx] 1

2

3

5 Directives and Built-in Functions

5-58

The rules within functions behave differently. A function has its own scope,
and that scope gets added to the previously described list as depicted in this
figure.

Figure 5-6: Scoping Rules Within Functions

For example, if you have the following code,

% with CompiledModel.System[sysidx]
.
.
.

%assign a=foo(x,y)
.
.
.
%endwith
.

Global Pool
%assign a = …
%assign b = …
…

Top-Level RTW Pool
CompiledModel {

…
}

%with CompiledModel.
 2

3

4

1

%function foo (x,y)

System[sysidx]

Compiler Directives

5-59

.

.
%function foo (a,b)
.
.
.

assign myvar=Name
.
.
.
%endfunction

and if Name is not defined in foo, the assignment will use the value of name from
the previous scope, CompiledModel.System[SysIdx].Name.

Target Language Functions
The target language function construct is

%function identifier (optional-arguments) [Output | void]
%return
%endfunction

Functions in the target language are recursive and have their own local
variable space. Target language functions do not produce any output, unless
they explicitly use the %openfile, %selectfile, and %closefile directives, or
are output functions.

A function optionally returns a value with the %return directive. The returned
value can be any of the types defined in the Target Language Values table.

In this example, a function, name, returns x, if x and y are equal, and returns
z, if x and y are not equal.

%function name(x,y,z) void

%if x == y
%return x

%else
%return z

%endif

%endfunction

5 Directives and Built-in Functions

5-60

Function calls can appear in any context where variables are allowed.

All %with statements that are in effect when a function is called are available
to the function. Calls to other functions do not include the local scope of the
function, but do include any %with statements appearing within the function.

Assignments to variables within a function always create new, local variables
and can not change the value of global variables unless you use the :: scope
resolution operator.

By default, a function returns a value and does not produce any output. You
can override this behavior by specifying the Output and void modifiers on the
function declaration line, as in

%function foo() Output
…
%endfunction

In this case, the function continues to produce output to the currently open file,
if any, and is not required to return a value. You can use the void modifier to
indicate that the function does not return a value, and should not produce any
output, as in

%function foo() void
…
%endfunction

Variable Scoping Within Functions
Within a function, the left-hand member of any %assign statement defaults to
create a new entry in the function’s block within the scope chain, and does not
affect any of the other entries. That is, it is local to the function. For example,

%function foo (x,y)
%assign local = 3
%endfunction

Compiler Directives

5-61

adds local = 3 to the foo() block in the scope list giving

Figure 5-7: Scoping Rules Within Functions Containing Local Variables

Global Pool
%assign a = …
%assign b = …
…

Top-Level RTW Pool
CompiledModel {
…
}

%with CompiledModel.
System[sysidx] 2

3

4

1

%function foo (x,y)
local = 3

5 Directives and Built-in Functions

5-62

You can override this default behavior by using %assign with the :: operator.
For example,

%assign ::global = 3

makes global a global variable and initializes it to 3.

When you introduce new scopes within a function using %with, these new
scopes are used during nested function calls, but the local scope for the function
is not searched. Also, if a %with is included within a function, its associated
scope is carried with any nested function call.

Compiler Directives

5-63

For example,

Figure 5-8: Scoping Rules When Using %with Within a Function

Global Pool
%assign a = …
%assign b = …

Top-Level RTW Pool
CompiledModel {
…
}

%with CompiledModel.
System[Sysidx]

6

%function foo (x,y)

%with Name[Nmidx]

%function bar ()

%assign a=<variableX>

5

4

3

2

1

5 Directives and Built-in Functions

5-64

%return
The %return statement closes all %with statements appearing within the
current function. In this example, the %with statement is automatically closed
when the %return statement is encountered, removing the scope from the list
of searched scopes.

%function foo(s)
 %with s
 %return(name)
 %endwith
%endfunction

The %return statement does not require a value. You can use %return to return
from a function with no return value.

Command Line Arguments

5-65

Command Line Arguments
To call the Target Language Compiler, use

tlc [switch1 expr1 switch2 expr2 …] filename.tlc

This table lists the switches you can use with the Target Language Compiler.
Order makes no difference. Note that if you specify a switch more than once,
the last one takes precedence.

Table 5-4: Target Language Compiler Switches

Switch Meaning

-r filename Reads a database file (such as a .rtw file). Repeat this
option multiple times to load multiple database files
into the Target Language Compiler. Omit this option
for target language programs that do not depend on the
database.

-v[number] Sets the internal verbose level to <number>. Omitting
this option sets the verbose level to 1.

-Ipath Adds the specified directory to the list of paths to be
searched for TLC files.

-Opath Specifies that all output produced should be placed in
the designated directory, including files opened with
%openfile and %closefile, and .log files created in
debug mode. To place files in the current directory, use
-O (use the capital letter O, not zero).

-m[number] Specifies the maximum number of errors to report is
<number>. If no -m argument appears on the command
line, it defaults to reporting the first five errors. If the
<number> argument is omitted on this option, 1 is
assumed.

-x0 Parse TLC file only (do not execute).

-lint Performs some simple checks for performance and
deprecated features.

5 Directives and Built-in Functions

5-66

As an example, the command line

tlc -r Demo.rtw -v grt.tlc

specifies that Demo.rtw should be read and used to process grt.tlc in verbose
mode.

Filenames and Search Paths
All target files have the .tlc extension. By default, block-level files have the
same name as the Type of the block in which they appear. You can override the
search path for target files with your own local versions. The Target Language
Compiler finds all target files along this path. If you specify additional search
paths with the -I switch of the tlc command or via the %addincludepath
directive, they will be searched after the current working directory, and in the
order in which you specify them.

-d[a|n|g|o] Specifies the level and type of debugging. By default,
debugging is off (-do). -d defaults to -dn, or normal
mode debugging, -dg is generate mode debugging and
-da switches on the assertion evaluation.

-a[ident]=expr Specifies an initial value, <expr>, for the identifier,
<ident>, for some parameters; equivalent to the
%assign command.

Table 5-4: Target Language Compiler Switches (Continued)

Switch Meaning

6

Debugging TLC

About the TLC Debugger 6-2
Tips for Debugging TLC Code 6-2

Using the TLC Debugger 6-3
Tutorial . 6-3
TLC Debugger Commands 6-6

Example TLC Debugging Session 6-9

TLC Coverage 6-11
Using the TLC Coverage Option 6-11

TLC Profiler . 6-14
Using the Profiler 6-14

6 Debugging TLC

6-2

About the TLC Debugger
The TLC debugger helps you identify programming errors in your TLC code.
Using the debugger, you can:

• View the TLC call stack.

• Execute TLC code line-by-line and analyze and/or change variables in a
specified block scope.

The TLC debugger has a command line interface and uses commands similar
to standard debugging tools such as dbx or gdb.

Tips for Debugging TLC Code
Here are a few tips that will help you to debug your TLC code:

1 To see the full TLC call stack, place the following statement in your TLC
code before the line that is pointed to by the error message. This will be
helpful in narrowing down your problem.

%setcommandswitch "-v1"

2 To trace the value of a variable in a function, place the following statement
in your TLC file.

%warning This is in my function %<variable>

3 Use the TLC coverage log files to ensure that most parts of your code have
been exercised.

Using the TLC Debugger

6-3

Using the TLC Debugger
This section provides a tutorial that illustrates the steps for invoking and using
the TLC debugger with Simulink and RTW generated code. The files and
models for this example are in

matlabroot/toolbox/rtw/rtwdemos/tlctutorial/tlcdebug/

This tutorial uses the simple_log model and the gain.tlc TLC file located in
this directory.

Note For TLC to use this local modified version of gain.tlc, which is not the
one used by the actual Real-Time Workshop code-generation process, you
must make sure the TLC file is in the same directory as the model.

For the purpose of this tutorial, the TLC file contains a bug, so this function
cannot be used in an actual scenario.

Tutorial

Generate the Results

1 Make sure that you are in the proper directory as given above. This tutorial
uses the simple_log model, which contains a Gain block. Note that the
gain.tlc used here will be the one in the current directory as the model.
This is the simple_log model.

6 Debugging TLC

6-4

2 Simulate the model. This model saves tout and yout to the workspace,
which you can view by selecting View -> Workspace from the MATLAB
desktop menu.

3 Build the model and run the executable. This creates the file
simple_log.mat. (For more information about the build process, see the
Real-Time Workshop User’s Guide.)

4 To compare the results from Simulink and Real-Time Workshop, load the
simple_log.mat file. The result from Simulink, yout, does not match the
Real-Time Workshop result, rt_yout, because the TLC code contains a bug.
You must debug the TLC code to identify the problem.

Invoke the Debugger

1 To debug the code, bring up the RTW options page by selecting Tools ->
Real-Time Workshop -> Options from the model’s menu. This brings up
the Real-Time Workshop page of the Simulation Parameters dialog box.

Using the TLC Debugger

6-5

2 Select TLC debugging from the Category pulldown. From this screen you
can select options that are specific to TLC debugging.

3 Select Retain .rtw file, otherwise it gets deleted after code generation. Also,
select Start TLC debugger when generating code to invoke the TLC
debugger when starting the code generation process. This is equivalent to
adding -dc to the System target file field in the Real-Time Workshop page
of the Simulation Parameters dialog box. The dialog box should look like
this.

4 Apply your changes and press Build to start code generation. This stops at
the first line of executed TLC code, breaks into the TLC command line
debugger, and displays the following prompt.

TLC_DEBUG>

You can now set breakpoints, explore the contents of RTW file, and explore
variables in your TLC file using print, which, or whos.

An alternate way to invoke the TLC debugger is from the MATLAB prompt.
(This assumes you retained the model.rtw file in the project directory.) Use the

6 Debugging TLC

6-6

following command and replace matlabroot with the full pathname to the
location where MATLAB is installed on your system.

tlc -dc -r ./simple_log_grt_rtw/simple_log.rtw 'matlabroot/rtw/c/
grt/grt.tlc' -O./simple_log_grt_rtw '-Imatlabroot/rtw/c/grt'
'-Imatlabroot/rtw/c/tlc'

TLC Debugger Commands
The TLC debugger supports the following commands. You can abbreviate any
TLC debugger command to its shortest unique form (use help command from
within the TLC debugger for more info).

Using the TLC Debugger

6-7

Table 6-1: TLC Debugger Commands

Command Description

assign variable=value Change a variable in the running
program.

break <"filename":line|error|warning|trace> Set a breakpoint.

clear breakpoint# Remove a breakpoint.

continue Continue from a breakpoint.

down [n] Move down the stack.

help [command] Obtain help for a command.

list start[,end] List lines from the file from start to end.

next Single step without going into functions.

print expression Print the value of a TLC expression. To
print a record, you must specify a fully
qualified “scope” such as
CompiledModel.System[0].Block[0].

quit Quit the TLC debugger.

status Display a list of active breakpoints.

step Step into.

stop <"filename":line|error|warning|trace> Set a breakpoint (same as break).

up [n] Move up the stack.

where Show the currently active execution
chains.

which name Looks up the name and displays what
scope it comes from.

whos [::|expression] Lists the variables in the given scope.

6 Debugging TLC

6-8

To view the complete list of TLC debugger commands, type help at the
TLC-DEBUG> prompt.

Usage Notes
When using break or stop, use:

• -1 to break on error

• -2 to break on warning

• -3 to break on trace

For example, if you need to break in gain.tlc on error, use

TLC_DEBUG> break "gain.tlc":-1

When using clear, get the status of breakpoints using status and clear
specific breakpoints. For example,

TLC-DEBUG> break "gain.tlc":46
TLC-DEBUG> break "gain.tlc":25
TLC-DEBUG> status
Breakpoints:
[0] break File: gain.tlc Line: 46
[1] break File: gain.tlc Line: 25
TLC-DEBUG> clear 1

In this example, clear 1 clears the second breakpoint.

Example TLC Debugging Session

6-9

Example TLC Debugging Session
When you press the Build button and invoke the TLC debugger, you see the
TLC-DEBUG> prompt. Note that this example will use the local version of
gain.tlc. The simple_log model is configured with the Inline parameters
option turned on.

1 Place a breakpoint in line 50 of gain.tlc and then continue. To do this, use

TLC-DEBUG> break "gain.tlc":50
TLC-DEBUG> cont

This continues the TLC code generation process and invokes the debugger
when it reaches the specified breakpoint.

2 When control is transferred back to the debugger, use where to show the
TLC stack.

TLC-DEBUG> where
==> [00] gain.tlc:Outputs(50)
 [01] /devel/R12/.snapshot/nightly.0/perfect/rtw/c/tlc/
commonbodlib.tlc:FcnGenerateConstantTID(407)

You can use whos to see the variables in the LOCAL scope and then probe
their values.

3 If you look at the gain.tlc file, you see the
FcnEliminateUnnecessaryParams function has to return the required
output code to be dumped in the Outputs function of the C file. You can also
look at this using print, and then you can step into the function. For
example,

TLC-DEBUG> print FcnEliminateUnnecessaryParams(y, u, k)
 /* y0[i1] = u0[i1] * (0.0); */
TLC-DEBUG> step
Stopped in file "gain.tlc" at line 23
00023: %if LibIsEqual(k, "(0.0)")

4 You probably cannot interpret too much from this, so continue to the next
iteration.

TLC-DEBUG> cont
TLC-DEBUG> print k

6 Debugging TLC

6-10

(1.0)
TLC-DEBUG> print FcnEliminateUnnecessaryParams(y, u, k)
rtb_temp2 = (1.0);

5 Step into the function FcnEliminateUnnecessaryParams and examine
outputs in the function.

TLC-DEBUG> step
Stopped in file "gain.tlc" at line 23
00023: %if LibIsEqual(k, "(0.0)")

6 You are now in the function scope. You do not want to step through the lines
in LibIsEqual, so use next to go to the next line.

TLC-DEBUG> next
Stopped in file "gain.tlc" at line 27
00027: %elseif LibIsEqual(k, "(1.0)")
TLC-DEBUG> print u
rtb_temp2
TLC-DEBUG> print k
(1.0)
TLC-DEBUG> print y
rtb_temp2

Looking at this output, you can see that the variable k, instead of the input
u, is assigned to the output y. This is done with the statement

%<y> = %<k>;

This assignment represents the “bug” in this example.

7 You can use up to go to the Outputs function and then down to return to the
function scope.

8 To fix the bug, you must change k to u. Try making the change and
rebuilding the model. Your results from the simulation and RTW build
should match.

This example covered several ways to use some of the debugger commands. You
should try using other commands with this example to familiarize yourself
with the various commands.

TLC Coverage

6-11

TLC Coverage
The example in the last section used the debugger to detect a problem in one
section of the TLC file. Since it is conceivable that a test model does not cover
all possible cases, there is a technique that traces the untested cases, the TLC
coverage option.

Using the TLC Coverage Option
The TLC coverage option provides an easier way to ascertain that the different
code parts (not paths) in your code are exercised. To initiate TLC coverage
generation, select Start TLC coverage when generating code from the TLC
debugging category of the Real-Time Workshop page in the Simulation
Parameters dialog box. You can also initiate TLC coverage from the command
line switch -dg in the System target file field, but this is not recommended.

When you initiate TLC coverage, the Target Language Compiler produces a
.log file for every target file (*.tlc) used. These .log files are placed in the
Real-Time Workshop created project directory for the model. The .log file
contains usage (count) information regarding how many times it encounters
each line during execution. Each line includes the number of times it is
encountered followed by a colon and followed by the code.

6 Debugging TLC

6-12

Example .log File
The .log file for gain.tlc is gain.log. It is shown here when used with the
simple_log test model in matlabroot/toolbox/rtw/rtwdemos/tlctutorial/
tlcdebug/. This file is located in work_directory/simple_log_grt_rtw/
gain.log.

1: %% $RCSfile: gain.tlc,v $
1: %% $Revision$
1: %% $Date: 2000/03/02 22:38:44 $
1: %%
1: %% Copyright 1994-2000 The MathWorks, Inc.
1: %%
1: %% Abstract: Gain block target file
1: %% NOTE: This is different from the file used by Real-Time Workshop to
1: %% implement the Simulink built-in Gain block, and is used here
1: %% only for illustrative purpose
1:
1: %implements Gain "C"
1:
1: %% Function:FcnEliminateUnnecessaryParams====================
1: %% Abstract:
1: %% Eliminate unnecessary multiplications for following gain cases when
1: %% in-lining parameters:
1: %% Zero: memset in registration routine zeroes output
1: %% Positive One: assign output equal to input
1: %% Negative One: assign output equal to unary minus of input
1: %%
1: %function FcnEliminateUnnecessaryParams(y,u,k) Output
2: %if LibIsEqual(k, "(0.0)")
1: %if ShowEliminatedStatements == 1
1: /* %<y> = %<u> * %<k>; */
1: %endif
2: %elseif LibIsEqual(k, "(1.0)")
1: %<y> = %<k>;
1: %elseif LibIsEqual(k, "(-1.0)")
0: %<y> = -%<k>;
0: %else
0: %<y> = %<u> * %<k>;
2: %endif
1: %endfunction
1:
1: %% Function: Outputs=== 1: %% Abstract:
1: %% Y = U * K
1: %%
1: %function Outputs(block,system) Output
2: /* %<Type> Block: %<Name> */
2: %warning LOCAL VERSION OF TLC FILE
2: %assign rollVars = ["U","Y", "P"]
2:
2: %roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
2: %assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)

TLC Coverage

6-13

2: %assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
2: %assign k = LibBlockParameter(Gain, "", lcv, sigIdx)
2: %if InlineParameters == 1
2: %<FcnEliminateUnnecessaryParams(y, u, k)>\
2: %else
0: %<y> = %<u> * %<k>;
2: %endif
2: %endroll
2:
1: %endfunction
1:
1: %% [EOF] gain.tlc

Analyzing the Results
This structure makes it easy to identify branches not taken and to develop new
tests that can exercise unused portions of the target files.

Looking at the gain.log file, you can see that the code has not been tested with
InlineParameters off and some cases with InlineParameters have not been
exercised. Using this log as a reference and creating models to exercise
unexecuted lines, you can make sure that your code is more robust.

6 Debugging TLC

6-14

TLC Profiler
This section discusses how to use the TLC profiler to analyze your TLC code to
improve code generation performance.

The TLC profiler collects timing statistics for TLC code. It collects execution
time for functions, scripts, macros, and built-in functions. These results become
the basis of HTML reports that are identical in format to MATLAB profiler
reports. By analyzing the report, you can identify bottlenecks in your code that
make code generation take longer.

Using the Profiler
To access the profiler, select Profile TLC from the TLC debugging category of
the Real-Time Workshop page in the Simulation Parameters dialog box.
Apply your changes and press the Build button.

At the end of the build process, the HTML summary and related files are placed
in the Real-Time Workshop project directory and the report will be opened in
your MATLAB selected Web browser.

TLC Profiler

6-15

Analyzing the Report
The created report is fairly self-explanatory. Some points to note are:

• Functions are sorted in descending order of their execution time.

• Self-time is the time spent in the function alone and does not include the time
spent in calling the function.

• Functions are hyperlinks that take you to the details related to that specific
function.

A situation where the profiler report may be helpful is when you have inlined
S-functions in your model. You can use the profiler to compare time spent in
specific user-written or Lib functions, and then modify your TLC code
accordingly.

This is a portion of the profiler report for the simple.log model in matlabroot/
toolbox/rtw/rtwdemos/tlctutorial/tlcdebug.

6 Debugging TLC

6-16

The report shows the time spent in the function
FcnEliminateUnnecessaryParams in gain.tlc and other functions, both
built-in and library, called during various stages of code generation.

Non-executable Directives
TLC considers the following directives to be non-executable lines. Therefore,
these directives are not counted in TLC Profiler reports.

• %filescope
• %else
• %endif

TLC Profiler

6-17

• %endforeach
• %endfor
• %endroll
• %endwith
• %body
• %endbody
• %endfunction
• %endswitch
• %default
• any type of comment (%% or /% stuff %/)

Improving Performance
Analyzing the profiler results also gives you an overview of which functions are
used more often or are more expensive. Then, you can either improve those
functions that were written by you, or try alternative methods to improve code
generation speed. Two points to consider are:

• Reduce usage of EXISTS. Performing an EXISTS on a field is more costly than
comparing the field to a value. When possible, create an inert default value
for a field. Then, instead of doing an EXISTS on the entity, compare it against
the default value.

• Reduce the use of one line functions when they are not really needed. One
line functions might be a bottleneck for code generation speed. When
readability is not greatly impacted, consider expanding out the function.

6 Debugging TLC

6-18

7

Inlining S-Functions

Writing Block Target Files to Inline S-Functions . . . 7-2
Fully Inlined S-Functions 7-2
Function-Based or Wrappered Code Generation 7-2

Inlining C MEX S-Functions 7-4
S-Function Parameters 7-5
A Complete Example 7-6

Inlining M-File S-Functions 7-17

Inlining Fortran (FMEX) S-Functions 7-19

Inlining Ada-MEX S-Functions 7-23

TLC Coding Conventions 7-26

Block Target File Methods 7-31
Block Target File Mapping 7-31
Block Functions 7-31

Loop Rolling . 7-41

Error Reporting 7-43

7 Inlining S-Functions

7-2

Writing Block Target Files to Inline S-Functions
With C MEX S-functions, all targets except ERT will support calling the
original C MEX code if the source code (.c file) is available when Real-Time
Workshop enters its build phase. For S-functions that are in Fortran, Ada, or
.m, you must inline them in order to have complete code generation for
Simulink models that contain them. So once you have determined that you will
inline an S-function, you have to decide to either make it fully inlined or
wrappered.

Fully Inlined S-Functions
The block target file for a fully inlined S-function is a self-contained definition
of how to inline the block’s functionality directly into the various portions of the
generated code — start code, output code, etc. This approach is most beneficial
when there are many modes and data types supported for algorithms that are
relatively small or when the code size is not significant.

Function-Based or Wrappered Code Generation
When the physical size of the code needed for a block becomes too large for
inlining, the block target file is written to gather inputs, outputs, and
parameters, and make a call to a function that you write to perform the block
functionality. This has an advantage in generated code size when the code in
the function is large or there are many instances of this block in a model. Of
course, the overhead of the function call must be considered when weighing the
option of fully inlining the block algorithm or generating function calls.

If a decision has been made to go with function-based code generation, there
are two more options to consider:

• Write all the function(s) once, put them in .c file(s) and have the TLC code’s
BlockTypeSetup method specify external references to your support
functions. Use LibAddToModelSources for names of the modules containing
the supporting functions. This approach is usually done with a one function
per file approach to get the smallest executable possible.

• Write a more sophisticated TLC file that in addition to the methods such as
Start and Outputs will also conditionally generate more functions in
separate code generation buffers to be written to a separate .c file that
contains customized versions of functions (data types, widths, algorithms,

Writing Block Target Files to Inline S-Functions

7-3

etc.), but only the functions needed by this model instead of all possible
functions.

Either approach will result in optimal code. The first option can result in
hundreds of files if your S-function supports many data types, signal widths
and algorithm choices. The second approach is more difficult to write, but
results in a more maintainable code generation library and the code can be
every bit as tight as the first approach.

7 Inlining S-Functions

7-4

Inlining C MEX S-Functions
When a Simulink model contains an S-function and a corresponding TLC block
target file exists for that S-function, Real-Time Workshop inlines the
S-function. Inlining an S-function can produce more efficient code by
eliminating the S-function Application Program Interface (API) layer from the
generated code.

For S-functions that can perform a variety of tasks, inlining them gives you the
opportunity to generate code only for the current mode of operation set for each
instance of the block. As an example of this, if an S-function accepts an
arbitrary signal width and loops through each element of the signal, you would
want to generate inlined code that has loops when the signal has two or more
elements, but generates a simple nonlooped calculation when the signal has
just one element.

Level 1 C MEX S-functions (written to an older form of the S-function API) that
are not inlined will cause the generated code to make calls to all of these seven
functions, even if the routine is empty for the particular S-function.

Level 2 C MEX S-functions (i.e., those written to the current S-function API)
that are not inlined make calls to the above functions with the following
exceptions:

Function Purpose

mdlInitializeSizes Initialize the sizes array.

mdlInitializeSampleTimes Initialize the sample times array.

mdlInitializeConditions Initialize the states.

mdlOutputs Compute the outputs.

mdlUpdate Update discrete states.

mdlDerivatives Compute the derivatives of continuous
states.

mdlTerminate Clean up when the simulation terminates.

Inlining C MEX S-Functions

7-5

• mdlInitializeConditions is only called if MDL_INITIALIZE_CONDITIONS is
declared with #define.

• mdlStart is called only if MDL_START is declared with #define.

• mdlUpdate is called only if MDL_UPDATE is declared with #define.

• mdlDerivatives is called only if MDL_DERIVATIVES is declared with #define.

By inlining an S-function, you can eliminate the calls to these possibly empty
functions in the simulation loop. This can greatly improve the efficiency of the
generated code. To inline an S-function called sfunc_name, you create a custom
S-function block target file called sfunc_name.tlc and place it in the same
directory as the S-function’s MEX-file. Then, at build time, the target file is
executed instead of setting up function calls into the S-function’s .c file. The
S-function target file “inlines” the S-function by directing the Target Language
Compiler to insert only the statements defined in the target file.

In general, inlining an S-function is especially useful when:

• The time required to execute the contents of the S-function is small in
comparison to the overhead required to call the S-function.

• Certain S-function routines are empty (e.g., mdlUpdate).

• The behavior of the S-function changes between simulation and code
generation. For example, device driver I/O S-functions may read from the
MATLAB workspace during simulation, but read from an actual hardware
address in the generated code.

S-Function Parameters
The parameters written to the model.rtw file are defined in the following table.
The mdlRTWmethod of level 2 C MEX S-functions is especially useful for adding
information to your S-function block records to enable more efficient or elegant
inlining. In the following table,

• Sizes is an extra parameter of length 2 that gives the number of rows and
number of columns in the parameter.

• Prms is a type of S-function parameter allowed.

7 Inlining S-Functions

7-6

A Complete Example
Suppose you have a simple S-function that mimics the Gain block with one
input, one output, and a scalar gain. That is, y = u * p. If the Simulink block’s
name is foo and the name of the Level 2 S-function is foogain, the C MEX
S-function must contain this code.

#define S_FUNCTION_NAME foogain
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"
#define GAIN mxGetPr(ssGetSFcnParam(S,0))[0]

static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 1)) return;
 ssSetInputPortWidth (S, 0, 1);
 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S, 1)) return;
 ssSetOutputPortWidth (S, 0, 1);

 ssSetNumSFcnParams(S, 1);
 ssSetNumSampleTimes(S, 0);
 ssSetNumIWork(S, 0);
 ssSetNumRWork(S, 0);
 ssSetNumPWork(S, 0);

S-Function No *.tlc Have *.tlc

Does not have
mdlRTW

Sizes => double, Prms => double
Error if non-C MEX S-function

Prms => double or
string (int16)

Has mdlRTW Error No sizes, Prms =>
any data type

Inlining C MEX S-Functions

7-7

}

static void
mdlOutputs(SimStruct *S, int_T tid)
{
 real_T *y = ssGetOutputPortRealSignal(S, 0);
 const InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S, 0);

 y[0] = (*u)[0] * GAIN;
}

static void
mdlInitializeSampleTimes(SimStruct *S){}

static void
mdlTerminate(SimStruct *S) {}

#define MDL_RTW /* Change to #undef to remove function */
#if defined(MDL_RTW)&&(defined(MATLAB_MEX_FILE)||defined(NRT))
static void
mdlRTW (SimStruct *S)
{
 if (!ssWriteRTWParameters(S, 1,SSWRITE_VALUE_VECT,"Gain","",
 mxGetPr(ssGetSFcnParam(S,0)),1))

{
 return;
 }
}
#endif

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "cg_sfun.h"
#endif

The following two sections show the difference in the code the Real-Time
Workshop generates for model.c containing noninlined and inlined versions of
S-function foogain. The model contained no other Simulink blocks.

7 Inlining S-Functions

7-8

For information about how to generate code with the Real-Time Workshop, see
the Real-Time Workshop User’s Guide.

Comparison of Noninlined and Inlined Versions of model.c
Without a TLC file to define the S-function specifics, the Real-Time Workshop
must call the MEX-file S-function through the S-function API. The code below
is the model.c file for the noninlined S-function (i.e., no corresponding TLC
file).

Noninlined S-Function.

/*
 * model.c
.
.
.
*/
real_T untitled_RGND = 0.0; /* real_T ground */
/* Start the model */
void MdlStart(void)
{
 /* (no start code required) */
}
/* Compute block outputs */
void MdlOutputs(int_T tid)
{
 /* Level2 S-Function Block: <Root>/S-Function (foogain) */
 {
 SimStruct *rts = ssGetSFunction(rtS, 0);
 sfcnOutputs(rts, tid);
 }
}
/* Perform model update */
void MdlUpdate(int_T tid)
{
 /* (no update code required) */
}
/* Terminate function */
void MdlTerminate(void)
{

Inlining C MEX S-Functions

7-9

 /* Level2 S-Function Block: <Root>/S-Function (foogain) */
 {
 SimStruct *rts = ssGetSFunction(rtS, 0);
 sfcnTerminate(rts);
 }
}
#include "model_reg.h"
/* [EOF] model.c */

Inlined S-Function.

This code is model.c with the foogain S-function fully inlined.

/*
 * model.c
.
.
.
*/
/* Start the model */
void MdlStart(void)
{
 /* (no start code required) */
}

/* Compute block outputs */
void MdlOutputs(int_T tid)

 /* S-Function block: <Root>/S-Function */
/* NOTE: There are no calls to the S-function API in the inlined

version of model.c. */
 rtB.S_Function = 0.0 * rtP.S_Function_Gain;
}

/* Perform model update */
void MdlUpdate(int_T tid)
{
 /* (no update code required) */
}

7 Inlining S-Functions

7-10

/* Terminate function */
void MdlTerminate(void)
{
 /* (no terminate code required) */
}

#include "model_reg.h"

/* [EOF] model.c */

By including this simple target file for this S-function block, the model.c code
is generated as

rtB.S_Function = 0.0 * rtP.S_Function_Gain;

Including a TLC file drastically decreased the code size and increased the
execution efficiency of the generated code. These notes highlight some
information about the TLC code and the generated output:

• The TLC directive %implements is required by all block target files, and must
be the first executable statement in the block target file. This directive
guarantees that the Target Language Compiler does not execute an
inappropriate target file for S-function foogain.

• The input to foo is rtGROUND (a Real-Time Workshop global equal to 0.0)
since foo is the only block in the model and its input is unconnected.

• Including a TLC file for foogain eliminated the need for an S-function
registration segment for foogain. This significantly reduces code size.

• The TLC code will inline the gain parameter when Real-Time Workshop is
configured to inline parameter values. For example, if the S-function
parameter is specified as 2.5 in the S-function dialog box, the TLC Outputs
function generates
rtB.foo = input * 2.5;

• Use the %generatefile directive if your operating system has a filename
size restriction and the name of the S-function is foosfunction (that exceeds
the limit). In this case, you would include the following statement in the
system target file (anywhere prior to a reference to this S-function’s block
target file).

Inlining C MEX S-Functions

7-11

%generatefile foosfunction "foosfunc.tlc"

This statement tells the Target Language Compiler to open foosfunc.tlc
instead of foosfunction.tlc.

7 Inlining S-Functions

7-12

Comparison of Noninlined and Inlined Versions of model_reg.h
Inlining a Level 2 S-function significantly reduces the size of the model_reg.h
code. Model registration functions are lengthy; much of the code has been
eliminated in this example. The code below highlights the difference between
the noninlined and inlined versions of model_reg.h; inlining eliminates all this
code.

/*
 * model_reg.h
 *
.
.
.
*/
/* Normal model initialization code independent of

S-functions */

 /* child S-Function registration */
 ssSetNumSFunctions(rtS, 1);

 /* register each child */
 {
 static SimStruct childSFunctions[1];
 static SimStruct *childSFunctionPtrs[1];

 (void)memset((char_T *)&childSFunctions[0], 0,
sizeof(childSFunctions));

 ssSetSFunctions(rtS, &childSFunctionPtrs[0]);
 {
 int_T i;

 for(i = 0; i < 1; i++) {
 ssSetSFunction(rtS, i, &childSFunctions[i]);
 }
 }

 /* Level2 S-Function Block: untitled/<Root>/S-Function
(foogain) */

 {

Inlining C MEX S-Functions

7-13

 extern void foogain(SimStruct *rts);
 SimStruct *rts = ssGetSFunction(rtS, 0);

 /* timing info */
 static time_T sfcnPeriod[1];
 static time_T sfcnOffset[1];
 static int_T sfcnTsMap[1];

 {
 int_T i;

 for(i = 0; i < 1; i++) {
 sfcnPeriod[i] = sfcnOffset[i] = 0.0;
 }
 }
 ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
 ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
 ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);
 ssSetMdlInfoPtr(rts, ssGetMdlInfoPtr(rtS));

 /* inputs */
 {
 static struct _ssPortInputs inputPortInfo[1];

 _ssSetNumInputPorts(rts, 1);
 ssSetPortInfoForInputs(rts, &inputPortInfo[0]);

 /* port 0 */
 {
 static real_T const *sfcnUPtrs[1];

 sfcnUPtrs[0] = &untitled_RGND;
 ssSetInputPortWidth(rts, 0, 1);
 ssSetInputPortSignalPtrs(rts, 0,

(InputPtrsType)&sfcnUPtrs[0]);
 }
 }

 /* outputs */
 {

7 Inlining S-Functions

7-14

 static struct _ssPortOutputs outputPortInfo[1];
 _ssSetNumOutputPorts(rts, 1);
 ssSetPortInfoForOutputs(rts, &outputPortInfo[0]);
 ssSetOutputPortWidth(rts, 0, 1);
 ssSetOutputPortSignal(rts, 0, &rtB.S_Function);
 }

 /* path info */
 ssSetModelName(rts, "S-Function");
 ssSetPath(rts, "untitled/S-Function");
 ssSetParentSS(rts, rtS);
 ssSetRootSS(rts, ssGetRootSS(rtS));
 ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

 /* parameters */
 {
 static mxArray const *sfcnParams[1];

 ssSetSFcnParamsCount(rts, 1);
 ssSetSFcnParamsPtr(rts, &sfcnParams[0]);

 ssSetSFcnParam(rts, 0, &rtP.S_Function_P1Size[0]);
 }

 /* registration */
 foogain(rts);

 sfcnInitializeSizes(rts);
 sfcnInitializeSampleTimes(rts);

 /* adjust sample time */
 ssSetSampleTime(rts, 0, 0.2);
 ssSetOffsetTime(rts, 0, 0.0);
 sfcnTsMap[0] = 0;

 /* Update the InputPortReusable and BufferDstPort flags for
each input port */

 ssSetInputPortReusable(rts, 0, 0);
 ssSetInputPortBufferDstPort(rts, 0, -1);

Inlining C MEX S-Functions

7-15

 /* Update the OutputPortReusable flag of each output port */
 }
 }

A TLC File to Inline S-Function foogain
To avoid unnecessary calls to the S-function and to generate the minimum code
required for the S-function, the following TLC file, foogain.tlc, is provided as
an example.

%implements "foogain" "C"

%function Outputs (block, system) Output
 /* %<Type> block: %<Name> */
 %%
 %assign y = LibBlockOutputSignal (0, "", "", 0)
 %assign u = LibBlockInputSignal (0, "", "", 0)
 %assign p = LibBlockParameter (Gain, "", "", 0)
 %<y> = %<u> * %<p>;

%endfunction

Managing Block Instance Data With an Eye Towards Code Generation
Instance data is extra data or working memory that is unique to each instance
of a block in a Simulink model. This does not include parameter or state data
(which is stored in the model parameter and state vectors, respectively), but
rather is used for purposes such as caching intermediate results or derived
representations of parameters and modes. One example of instance data is the
buffer used by a transport delay block.

Allocating and using memory on an instance by instance basis can be done
several ways in a Level 2 S-function: via ssSetUserData, work vectors (e.g.,
ssSetRWork, ssSetIWork), or data-typed work vectors known as DWorks. For the
smallest effort in writing both the S-function and block target file and for
automatic conformance to both static and malloc’ed instance data on targets
such as grt and grt_malloc, The MathWorks recommends using data-typed
work vectors when writing S-functions with instance data, accessed with the
ssSetDWork and ssGetDWork methods.

The advantages are two fold. In the first place, writing the S-function is more
straightforward in that memory allocations and frees are handled for you by

7 Inlining S-Functions

7-16

Simulink. Secondly, the DWork vectors are written to the model.rtw file for you
automatically, including the DWork name, data type, and size. This makes
writing the block target file a snap, since you have no TLC code to write for
allocating and freeing the DWork memory — Real-Time Workshop takes care of
this for you.

Additionally, if you want to bundle up groups of DWorks into structures for
passing to functions, you can populate the structure with pointers to DWork
arrays in both your S-function’s mdlStart function and the block target file’s
Startmethod, achieving consistency between the S-function and the generated
code’s handling of data.

Finally, using DWorks makes it straightforward to create a specific version of
code (data types, scalar vs. vectorized, etc.) for each block instance that
matches the implementation in the S-function, i.e., both implementations use
DWorks in the same way so that the inlined code can be used with the Simulink
Accelerator without any changes to the C MEX S-function or the block target
file.

Using Inlined Code With the Simulink Accelerator
By default, the Simulink Accelerator will call your C MEX S-function as part
of an accelerated model simulation. If you wish to instead have the accelerator
inline your S-function before running the accelerated model, tell the
accelerator to use your block target file to inline the S-function with the
SS_OPTION_USE_TLC_WITH_ACCELERATOR flag in the call to ssSetOptions() in
the mdlInitializeSizes function of that S-function.

Note that memory and work vector size and usage must be the same for the
TLC generated code and the C MEX S-function, or the Simulink Accelerator
will not be able to execute the inlined code properly. This is because the C MEX
S-function is called to initialize the block and its work vectors, calling the
mdlInitializeSizes, mdlInitializeConditions, mdlCheckParameters,
mdlProcessParameters, and mdlStart functions. In the case of constant signal
propagation, mdlOutputs is called from the C MEX S-function during the
initialization phase of model execution.

During the time-stepping phase of accelerated model execution, the code
generated by the Output and Update block TLC methods will execute, plus the
Derivatives and zero-crossing methods if they exist. The BlockInstanceData
and Start methods of the block target file are not used in generating code for
an accelerated model.

Inlining M-File S-Functions

7-17

Inlining M-File S-Functions
All of the functionality of M-file S-functions can be inlined in the generated
code. Writing a block target file for an M-file S-function is essentially identical
to the process for a C MEX S-function.

Note that while you can fully inline an M-file S-function to achieve top
performance - even with Simulink Accelerator - the MATLAB Math Library is
not included with Real-Time Workshop, so any high-level MATLAB commands
and functions you use in the M-file S-function must be written by hand in the
block target file.

A quick example will illustrate the equivalence of C MEX and M-file
S-functions for code generation. The M-file S-function timestwo.m is
equivalent to the C MEX S-function timestwo. In fact, the TLC file for the C
MEX S-function timestwo will work for the M-file S-function timestwo.m as
well! Since TLC only requires the ‘root’ name of the S-function and not its type,
it is independent of the type of S-function. In the case of timestwo, one line
determines what the TLC file will be used for

%implements "timestwo" "C"

To try this out for yourself, copy file timestwo.m from matlabroot/toolbox/
simulink/blocks/ to a temporary directory, then copy the file timestwo.tlc
from matlabroot/toolbox/simulink/blocks/tlc_c/ to the same temporary
directory. In MATLAB, cd to the temporary directory and make a Simulink
model with an S-function block that calls timestwo. Since the MATLAB search
path will find timestwo.m in the current directory before finding the C MEX
S-function timestwo in the matlabpath, Simulink will use the M-file S-function
for simulation. Verify which S-function will be used by typing the MATLAB
command

which timestwo

The answer you see will be the M-file S-function timestwo.m in the temporary
directory. Here is the sample model.

7 Inlining S-Functions

7-18

Upon generating code, you will find that the timestwo.tlc file was used to
inline the M-file S-function with code that looks like this (with an input signal
width of 5 in this example).

/* S-Function Block: <Root>/m-file S-Function */
 /* Multiply input by two */
 {
 int_T i1;
 const real_T *u0 = &rtB.Gain[0];
 real_T *y0 = &rtB.m_file_S_Function[0];

 for (i1=0; i1 < 5; i1++) {
 y0[i1] = u0[i1] * 2.0;
 }
 }

As expected, each of the inputs, u0[i1], is multiplied by 2.0 to form the output
value. The Outputs method in the block target file used to generate this code
was

%function Outputs(block, system) Output
/* %<Type> Block: %<Name> */
 %%
 /* Multiply input by two */
 %assign rollVars = ["U", "Y"]
 %roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
 %<LibBlockOutputSignal(0, "", lcv, idx)> = \
 %<LibBlockInputSignal(0, "", lcv, idx)> * 2.0;
 %endroll

%endfunction

Alter these temporary copies of the M-file S-function and the TLC file to see
how they interact — start out by just changing the comments in the TLC file
and see it show up in the generated code, then work up to algorithmic changes.

Inlining Fortran (FMEX) S-Functions

7-19

Inlining Fortran (FMEX) S-Functions
The capabilities of Fortran MEX S-functions can be fully inlined using a TLC
block target file. With a simple F MEX S-function version of the ubiquitous
“timestwo” function, this interface can be illustrated. Here is the sample
Fortran S-function code

C
C FTIMESTWO.FOR
C $Revision: 1.1$
C
C A sample FORTRAN representation of a
C timestwo S-function.
C Copyright 1990-2000 The MathWorks, Inc.
C
C===
C Function: SIZES
C
C Abstract:
C Set the size vector.
C
C SIZES returns a vector which determines model
C characteristics. This vector contains the
C sizes of the state vector and other
C parameters. More precisely,
C SIZE(1) number of continuous states
C SIZE(2) number of discrete states
C SIZE(3) number of outputs
C SIZE(4) number of inputs
C SIZE(5) number of discontinuous roots in
C the system
C SIZE(6) set to 1 if the system has direct
C feedthrough of its inputs,
C otherwise 0
C
C===
C
 SUBROUTINE SIZES(SIZE)
C .. Array arguments ..
 INTEGER*4 SIZE(*)

7 Inlining S-Functions

7-20

C .. Parameters ..
 INTEGER*4 NSIZES
 PARAMETER (NSIZES=6)

 SIZE(1) = 0
 SIZE(2) = 0
 SIZE(3) = 1
 SIZE(4) = 1
 SIZE(5) = 0
 SIZE(6) = 1

 RETURN
 END

C
C===
C
C Function: OUTPUT
C
C Abstract:
C Perform output calculations for continuous
C signals.
C
C===
C .. Parameters ..
 SUBROUTINE OUTPUT(T, X, U, Y)
 REAL*8 T
 REAL*8 X(*), U(*), Y(*)

 Y(1) = U(1) * 2.0

 RETURN
 END

C
C===
C
C Stubs for unused functions.
C
C===

Inlining Fortran (FMEX) S-Functions

7-21

 SUBROUTINE INITCOND(X0)
 REAL*8 X0(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE DERIVS(T, X, U, DX)
 REAL*8 T, X(*), U(*), DX(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE DSTATES(T, X, U, XNEW)
 REAL*8 T, X(*), U(*), XNEW(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE DOUTPUT(T, X, U, Y)
 REAL*8 T, X(*), U(*), Y(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE TSAMPL(T, X, U, TS, OFFSET)
 REAL*8 T,TS,OFFSET,X(*),U(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE SINGUL(T, X, U, SING)
 REAL*8 T, X(*), U(*), SING(*)
C --- Nothing to do.
 RETURN
 END

Copy the above code into file ftimestwo.for in a convenient working directory.

Putting this into an S-function block in a simple model will illustrate the
interface for inlining the S-function. Once your Fortran MEX environment is

7 Inlining S-Functions

7-22

set up, prepare the code for use by compiling the S-function in a working
directory along with the file simulink.for from matlabroot/simulink/src/.
This is done with the mex command at the MATLAB command prompt.

mex -fortran ftimestwo.for simulink.for

And now reference this block from a simple Simulink model set with a fixed
step solver and the grt target.

The TLC code needed to inline this block is a modified form of the now familiar
timestwo.tlc. In your working directory, create a file named ftimestwo.tlc
and put this code into it.

%implements "ftimestwo" "C"

%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %%
 /* Multiply input by two */
 %assign rollVars = ["U", "Y"]
 %roll idx = RollRegions, lcv = RollThreshold, block, ...
"Roller", rollVars
 %<LibBlockOutputSignal(0, "", lcv, idx)> = \
 %<LibBlockInputSignal(0, "", lcv, idx)> * 2.0;
 %endroll
%endfunction

Now you can generate code for the ftimestwo Fortran MEX S-function. The
resulting code fragment specific to ftimestwo is

/* S-Function Block: <Root>/F-MEX S-Function */
 /* Multiply input by two */
 rtB.F_MEX_S_Function = rtB.Gain * 2.0;

Inlining Ada-MEX S-Functions

7-23

Inlining Ada-MEX S-Functions
Like all the other S-functions, Ada MEX S-functions directly support inlining
in the generated code. As an example, copy the times_two Ada MEX S-function
source code from directory matlabroot/simulink/ada/examples/times_two/
to a temporary directory — make sure to get both the times_two.adb and
times_two.ads files. Once your Ada MEX environment is set up, compile
times_two from the MATLAB command line with

mex -ada times_two.adb

which makes a MEX file named ada_times_two.mexext. Use this MEX
S-function in a model the same way as other S-functions.

To inline this function in C code, copy the timestwo.tlc file from the previous
M-file S-function example into the temporary directory and name it
ada_times_two.tlc. In the editor, modify the %implements line to match the
name of the S-function, in this case it should read

%implements "ada_times_two" "C"

After ensuring your model is set to use a fixed-step solver, generate C code for
this model. The Ada Mex S-function code looks the same as it does for all the
other S-function implementations

/* S-Function Block: <Root>/Ada-MEX S-Function */
 /* Multiply input by two */
 {
 int_T i1;
 const real_T *u0 = &rtb_temp1[0];
 real_T *y0 = &rtb_temp1[0];

 for (i1=0; i1 < 5; i1++) {

7 Inlining S-Functions

7-24

 y0[i1] = u0[i1] * 2.0;
 }
 }

If, as is likely, you wish to generate inlined Ada code for your model and its Ada
MEX S-function using the Real-Time Workshop Ada Coder, you use a different
TLC file — one that generates Ada code. To get started with this, copy the
timestwo.tlc file from matlabroot/toolbox/simulink/blocks/tlc_ada/
into the temporary directory and name it ada_times_two.tlc. Once again, edit
the %implements line to read

%implements "ada_times_two" "Ada"

So the minimum necessary contents of the TLC file look like this.

%implements "ada_times_two" "Ada"

%function Outputs(block, system) Output
 -- %<Type> Block: %<Name>
 %%
 -- Multiply input by two
 %assign rollVars = ["U", "Y"]
 %roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
 %<LibBlockOutputSignal(0, "", lcv, idx)> := \
 %<LibBlockInputSignal(0, "", lcv, idx)> * 2.0;
 %endroll

%endfunction

Now select Ada Simulation Target for GNAT via the Tools -> Real-Time
Workshop -> Options... menu using the Select... button. This target uses the
rt_ada_sim.tlc system target file and does not support blocks with
continuous states, so it will be necessary to alter the sine wave source block to
have a discrete sample time (choose it to be the same as the value chosen for
the fixed-step solver’s time step, for instance).

Inlining Ada-MEX S-Functions

7-25

Generate code with the Build button. The model.ads file that is generated will
contain this inlined code for the ada_times_two S-function.

-- S-Function Block: <Root>/Ada-MEX S-Function
 -- Multiply input by two
 for I1 in 0 .. 4 loop
 RT_B_Temp1(I1) := RT_B_Temp1(I1) * 2.0;
 end loop;

Notice that the TLC code is relatively independent of the target language in use
(C or Ada) — for instance, the %roll construct will create the correct C or Ada
loop code based solely on whether the block target file implements “C” or “Ada”.
TLC constructs themselves are meant to be language-neutral; the only part
that is language-specific are the operators, comments, and function name
differences in the standard libraries.

7 Inlining S-Functions

7-26

TLC Coding Conventions
These guidelines help ensure that the programming style in each target file is
consistent, and hence, more easily modifiable.

Begin Identifiers with Uppercase Letters
All identifiers in the Real-Time Workshop file begin with an uppercase letter.
For example,

NumModelInputs 1
NumModelOutputs 2
NumNonVirtBlocksInModel 42
DirectFeedthrough yes
NumContStates 10

Block records that contain a Name identifier should start the name with an
uppercase letter since the Name identifier is often promoted into the parent
scope. For example, a block may contain

Block {
:
:

RWork [4, 0]
:

NumRWorkDefines 4
RWorkDefine {

Name "TimeStampA"
Width 1
StartIndex 0

}
}

Since the Name identifier within the RWorkDefine record is promoted to PrevT
in its parent scope, it must start with an uppercase letter. The promotion of the
Name identifier into the parent block scope is currently done for the Parameter,
RWorkDefine, IWorkDefine, and PWorkDefine block records.

The Target Language Compiler assignment directive (%assign) generates a
warning if you assign a value to an “unqualified” Real-Time Workshop
identifier. For example,

%assign TID = 1

TLC Coding Conventions

7-27

produces an error because TID identifier is not qualified by Block. However, a
“qualified” assignment does not generate a warning.

%assign Block.TID = 1

does not generate a warning because the Target Language Compiler assumes
the programmer is intentionally modifying an identifier since the assignment
contains a qualifier.

Begin Global Variable Assignments with Uppercase Letters
Global TLC variable assignments should start with uppercase letters. A global
variable is any variable declared in a system target file (grt.tlc, mdlwide.tlc,
mdlhdr.tlc, mdlbody.tlc, mdlreg.tlc, or mdlparam.tlc), or within a function
that uses the :: operator. In some sense, global assignments have the same
scope as Real-Time Workshop variables. An example of a global TLC variable
defined in mdlwide.tlc is

%assign InlineParameters = 1

An example of a global reference in a function is

%function foo() void
 %assign ::GlobalIdx = ::GlobalIdx + 1
%endfunction

Begin Local Variable Assignments with Lowercase Letters
Local TLC variable assignments should start with lowercase letters. A local
TLC variable is a variable assigned inside a function. For example,

%assign numBlockStates = ContStates[0]

Begin Functions Declared in block.tlc files with Fcn
When you declare a function inside a block.tlc file, it should start with Fcn.
For example,

%function FcnMyBlockFunc(...)

Note Functions declared inside a system file are global; functions declared
inside a block file are local.

7 Inlining S-Functions

7-28

Do Not Hard Code Variables Defined in commonsetup.tlc
Since the Real-Time Workshop tracks use of variables and generates code
based on usage, you should use access routines instead of directly using a
variable. For example, you should not use the following in your TLC file.

x = %<tInf>;

You should use

x = %<LibRealNonFinite(inf)>;

Similarly, instead of using %<tTID>, use %<LibTID()>. For a complete list of
functions, see Chapter 9, “TLC Function Library Reference.”

All Real-Time Workshop global variables start with rt and all Real-Time
Workshop global functions start with rt_.

Avoid naming global variables in your run-time interface modules that start
with rt or rt_ since they may conflict with Real-Time Workshop global
variables and functions. These TLC variables are declared in
commonsetup.tlc.

This convention creates consistent variables throughout the target files. For
example, the Gain block contains the following Outputs function.

%% Function: Outputs ==
%% Abstract:
%% Y = U * K
%%
%function Outputs(block, system) Output
/* %<Type> Block: %<Name> */
%assign rollVars = ["U", "Y", "P"]
%roll sigIdx = RollRegions, lcv = RollThreshold, block,...

"Roller", rollVars
%assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
%assign k = LibBlockParameter(Gain, "", lcv, sigIdx)
%<y> = %<u> * %<k>;
%endroll

%endfunction

Note c

Note a
Note e

Notes d, f

Note b

TLC Coding Conventions

7-29

Notes about this TLC code:

a The code section for each block begins with a comment specifying the
block type and name.

b Include a blank line immediately after the end of the function in order to
create consistent spacing between blocks in the output code.

c Try to stay within 80 columns per line for the function banner. You might
set up an 80 column comment line at the top of each function. As an
example, see constant.tlc.

d For consistency, use the variables sysIdx and blkIdx for system index
and block index, respectively.

e Use the variable rollVars when using the %roll construct.

f When naming loop control variables, use sigIdx and lcv when looping
over RollRegions and xidx and xlcv when looping over the states.

Example: Output function in gain.tlc

%roll sigIdx = RollRegions, lcv = RollThreshold, ...
block, "Roller", rollVars

Example: InitializeConditions function in linblock.tlc

%roll xidx = [0:nStates-1], xlcv = RollThreshold,...
block, "Roller", rollVars

Conditional Inclusion in Library Files
The Target Language Compiler function library files are conditionally included
via guard code so that they may be referenced via %include multiple times
without worrying if they have previously been included. It is recommended
that you follow this same practice for any TLC library files that you yourself
create.

The convention is to use a variable with the same name as the base filename,
uppercased and with underscores attached at both ends. So, a file named
customlib.tlc should have the variable _CUSTOMLIB_ guarding it.

As an example, the main Target Language Compiler function library,
funclib.tlc, contains this TLC code to prevent multiple inclusion.

%if EXISTS("_FUNCLIB_") == 0

7 Inlining S-Functions

7-30

%assign _FUNCLIB_ = 1
.
.
.

%endif %% _FUNCLIB_

Block Target File Methods

7-31

Block Target File Methods
Each block has a target file that determines what code should be generated for
the block. The code can vary depending on the exact parameters of the block or
the types of connections to it (e.g., wide vs. scalar input).

Within each block target file, block functions specify the code to be output for
the block in the model’s or subsystem’s start function, output function, update
function, and so on.

Block Target File Mapping
The block target file mapping specifies which target file should be used to
generate code for which block type. This mapping resides in matlabroot/rtw/
c/tlc/genmap.tlc. All the TLC files listed are located in matlabroot/rtw/c/
tlc for C and matlabroot/rtw/ada/tlc for Ada.

Block Functions
The functions declared inside each of the block target files are called by the
system target files. In these tables, block refers to a Simulink block name (e.g.,
gain for the Gain block) and system refers to the subsystem in which the block
resides. The first table lists the two functions that are used for preprocessing
and setup. Neither of these functions outputs any generated code.

The following functions all generate executable code that Real-Time Workshop
places appropriately.

BlockInstanceSetup(block, system)

BlockTypeSetup(block, system)

BlockInstanceData(block, system)

Enable(block, system)

Disable(block, system)

Start(block, system)

InitializeConditions(block, system)

7 Inlining S-Functions

7-32

In object-oriented programming terms, these functions are polymorphic in
nature since each block target file contains the same functions. The Target
Language Compiler dynamically determines at run-time which block function
to execute depending on the block’s type. That is, the system file only specifies
that the Outputs function, for example, is to be executed. The particular
Outputs function is determined by the Target Language Compiler depending
on the block’s type.

To write a block target file, use these polymorphic block functions combined
with the Target Language Compiler library functions. For a complete list of the
Target Language Compiler library functions, see the TLC Function Library
Reference.

BlockInstanceSetup(block, system)
The BlockInstanceSetup function executes for all the blocks that have this
function defined in their target files in a model. For example, if there are 10
From Workspace blocks in a model, then the BlockInstanceSetup function in
fromwks.tlc executes 10 times, once for each From Workspace block instance.
Use BlockInstanceSetup to generate code for each instance of a given block
type.

See the Reference chapter for available utility processing functions to call from
inside this block function. See matlabroot/rtw/c/tlclookup2d.tlc for an
example of the BlockInstanceSetup function.

Syntax. BlockInstanceSetup(block, system) void
block = Reference to a Simulink block
system = Reference to a nonvirtual Simulink subsystem

This example uses BlockInstanceSetup.

%function BlockInstanceSetup(block, system) void
%if (block.InMask == "yes")
 %assign blockName = LibParentMaskBlockName(block)

Outputs(block, system)

Update(block, system)

Derivatives(block, system)

Terminate(block, system)

Block Target File Methods

7-33

 %else
 %assign blockName = LibGetFormattedBlockPath(block)
 %endif
 %if (CodeFormat == “Embedded-C”) || (CodeFormat == "Ada")
 %if !(ParamSettings.ColZeroTechnique == "NormalInterp" && ...
 ParamSettings.RowZeroTechnique == "NormalInterp")
 %selectfile STDOUT

Note: Removing repeated zero values from the X and Y axes will
produce more efficient code for block: %<blockName>. To locate
this block, type

open_system('%<blockName>')

at the MATLAB command prompt.

 %selectfile NULL_FILE
 %endif
 %endif

%endfunction

BlockTypeSetup(block, system)
BlockTypeSetup executes once per block type before code generation begins.
That is, if there are 10 Lookup Table blocks in the model, the BlockTypeSetup
function in look_up.tlc is only called one time. Use this function to perform
general work for all blocks of a given type.

See “Chapter 9, “TLC Function Library Reference,”” for a list of relevant
functions to call from inside this block function. See look_up.tlc for an
example of the BlockTypeSetup function.

Syntax. BlockTypeSetup(block, system) void
block = Reference to a Simulink block
system = Reference to a nonvirtual Simulink subsystem

As an example, given the S-function foo requiring a #define and two function
declarations in the header file, you could define the following function.

%function BlockTypeSetup(block, system) void

7 Inlining S-Functions

7-34

%% Place a #define in the model's header file

%openfile buffer
#define A2D_CHANNEL 0

%closefile buffer

%<LibCacheDefine(buffer)>

%% Place function prototypes in the model's header file

%openfile buffer
void start_a2d(void);
void reset_a2d(void);

%closefile buffer

%<LibCacheFunctionPrototype(buffer)>

%endfunction

The remaining block functions execute once for each block in the model.

BlockInstanceData(block, system)
The BlockInstanceData function is used to allocate persistent data for a block.
The code generated from this function is placed in the registration function
(model_reg.h file) and is called once during model initialization. You should
always use this function to allocate data for the following reasons:

• You must never create global variables since they may result in name
clashes when you combine models.

• You can statically or dynamically allocate data using this function.

• The Real-Time Workshop declares all its memory in the registration
function.

The following example of code determines the method of persistent data
allocation based on the UsingMalloc flag.

%function BlockInstanceData(block, system) Output
%assign pwork = LibBlockPWork(SemID, "", "", 0)

 %if EXISTS("ssBlock")
 /* %<Type> Block: %<Name> */

Block Target File Methods

7-35

 %% Declare the semaphore depending on the Code Format.
 /* VxWorks binary semaphore for task: %<ssBlock.Name> */
 %if UsingMalloc == 1
 %<pwork> = malloc(sizeof(SEM_ID));
 rt_VALIDATE_MEMORY(%<tSimStruct>, %<pwork>);
 %else
 static SEM_ID %<taskSemaphoreName>;
 %<pwork> = (void *)&%<taskSemaphoreName>;
 %endif
 %endif
%endfunction

%function Terminate(block, system) Output
%if EXISTS("ssBlock")

 %if UsingMalloc == 1
%assign pwork = LibBlockPWork(SemID, ““, ““, 0)
rt_FREE(%<pwork>);

 %endif
 %endif
%endfunction

Note that the use of the macros rt_VALIDATE_MEMORY and rt_FREE allows this
code to work consistently and correctly with all code formats.

Enable(block, system)
Nonvirtual subsystem Enable functions are created whenever a Simulink
subsystem contains a block with an Enable function. Including the Enable
function in a block’s target file places the block’s specific enable code into this
subsystem Enable function. See sin_wave.tlc for an example of the Enable
function.

%% Function: Enable ==
%% Abstract:
%% Subsystem Enable code is only required for the discrete form
%% of the Sine Block. Setting the boolean to TRUE causes the
%% Output function to re-sync its last values of cos(wt) and
%% sin(wt).
%%
%function Enable(block, system) Output
 %if LibIsDiscrete(TID)

7 Inlining S-Functions

7-36

 /* %<Type> Block: %<Name> */
 %<LibBlockIWork(SystemEnable, ““, ““, 0)> = (int_T) TRUE;

 %endif
%endfunction

Disable(block, system)
Nonvirtual subsystem Disable functions are created whenever a Simulink
subsystem contains a block with a Disable function. Including the Disable
function in a block’s target file places the block’s specific disable code into this
subsystem Disable function. See outport.tlc in matlabroot/rtw/c/tlc for
an example of the Disable function.

Start(block, system)
Include a Start function to place code into the Start function. The code inside
the Start function executes once and only once. Typically, you include a Start
function to execute code once at the beginning of the simulation (e.g., initialize
values in the work vectors; see backlash.tlc) or code that does not need to be
re-executed when the subsystem in which it resides enables. See constant.tlc
for an example of the Start function.

%% Function: Start ==
%% Abstract:
%% Set the output to the constant parameter value if the block
%% output is visible in the model’s start function scope, i.e.,
%% it is in the global rtB structure.
%%
%function Start(block, system) Output
 %if LibBlockOutputSignalIsInBlockIO(0)
 /* %<Type> Block: %<Name> */
 %assign rollVars = [“Y”, “P”]
 %roll idx = RollRegions, lcv = RollThreshold, block, ...

“Roller”, rollVars
 %assign yr = LibBlockOutputSignal(0,””, lcv, ...

“%<tRealPart>%<idx>”)
 %assign pr = LibBlockParameter(Value, ““, lcv, ...

“%<tRealPart>%<idx>”)
 %<yr> = %<pr>;
 %if LibBlockOutputSignalIsComplex(0)

%assign yi = LibBlockOutputSignal(0, ““, lcv, ...

Block Target File Methods

7-37

“%<tImagPart>%<idx>”)
%assign pi = LibBlockParameter(Value, ““, lcv, ...
“%<tImagPart>%<idx>”)

%<yi> = %<pi>;
 %endif
 %endroll

 %endif
%endfunction %% Start

InitializeConditions(block, system)
TLC code that is generated from the block’s InitializeConditions function
ends up in one of two places. A nonvirtual subsystem contains an Initialize
function when it is configured to reset states on enable. In this case, the TLC
code generated by this block function is placed in the subsystem Initialize
function and the start function will call this subsystem Initialize function.
If, however, the Simulink block resides in the root system or in a nonvirtual
subsystem that does not require an Initialize function, the code generated
from this block function is placed directly (inlined) into the start function.

There is a subtle difference between the block functions Start and
InitializeConditions. Typically, you include a Start function to execute code
that does not need to re-execute when the subsystem in which it resides
enables. You include an InitializeConditions function to execute code that
must re-execute when the subsystem in which it resides enables. See
delay.tlc for an example of the InitializeConditions function. The
following code is an example from ratelim.tlc.

%% Function: InitializeConditions =============================
%%
%% Abstract:
%% Invalidate the stored output and input in rwork[1 ...
%% 2*blockWidth] by setting the time stamp (stored in
%% rwork[0]) to rtInf.
%%
%function InitializeConditions(block, system) Output
 /* %<Type> Block: %<Name> */
 %<LibBlockRWork(PrevT, ““, ““, 0)> = %<LibRealNonFinite(inf)>;

%endfunction %% InitializeConditions

7 Inlining S-Functions

7-38

Outputs(block, system)
A block should generally include an Outputs function. The TLC code generated
by a block’s Outputs function is placed in one of two places. The code is placed
directly in the model’s Outputs function if the block does not reside in a
nonvirtual subsystem and in a subsystem’s Outputs function if the block
resides in a nonvirtual subsystem. See absval.tlc for an example of the
Outputs function.

%% Function: Outputs ==
%% Abstract:
%% Y[i] = fabs(U[i]) if U[i] is real or
%% Y[i] = sqrt(U[i].re^2 + U[i].im^2) if U[i] is complex.
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %%
 %assign inputIsComplex = LibBlockInputSignalIsComplex(0)
 %assign RT_SQUARE = “RT_SQUARE”
 %%
 %assign rollVars = [“U”, “Y”]
 %if inputIsComplex
 %roll sigIdx = RollRegions, lcv = RollThreshold, ...

block, “Roller”, rollVars
 %%
 %assign ur = LibBlockInputSignal(0, ““, lcv, ...

“%<tRealPart>%<sigIdx>”)
 %assign ui = LibBlockInputSignal(0, ““, lcv, ...

“%<tImagPart>%<sigIdx>”)
 %%
 %assign y = LibBlockOutputSignal(0, ““, lcv, sigIdx)
 %<y> = sqrt(%<RT_SQUARE>(%<ur>) + %<RT_SQUARE>(%<ui>));
 %endroll
 %else
 %roll sigIdx = RollRegions, lcv = RollThreshold, ...

block, “Roller”, rollVars
 %assign u = LibBlockInputSignal (0, ““, lcv, sigIdx)
 %assign y = LibBlockOutputSignal(0, ““, lcv, sigIdx)
 %<y> = fabs(%<u>);
 %endroll
 %endif

Block Target File Methods

7-39

%endfunction

Note Zero-crossing reset code is placed in the Outputs function.

Update(block, system)
Include an Update function if the block has code that needs to be updated at
each major time step. Code generated from this function is either placed into
the model’s or the subsystem’s Update function, depending on whether or not
the block resides in a nonvirtual subsystem. See delay.tlc for an example of
the Update function.

%% Function: Update ==
%% Abstract:
%% X[i] = U[i]
%%
%function Update(block, system) Output
 /* %<Type> Block: %<Name> */
 %assign stateLoc = (DiscStates[0]) ? “Xd” : “DWork”
 %assign rollVars = [“U”, %<stateLoc>]
 %roll idx = RollRegions, lcv = RollThreshold, block, ...

“Roller”, rollVars
 %assign u = LibBlockInputSignal(0, ““, lcv, idx)
 %assign x = FcnGetState(““,lcv,idx, ““)
 %<x> = %<u>;
 %endroll

%endfunction %% Update

FcnGetState is a function defined locally in delay.tlc.

Derivatives(block, system)
Include a Derivatives function when generating code to compute the block’s
continuous states. Code generated from this function is either placed into the
model’s or the subsystem’s Derivatives function, depending on whether or not
the block resides in a nonvirtual subsystem. See integrat.tlc for an example
of the Derivatives function.

7 Inlining S-Functions

7-40

Terminate(block, system)
Include a Terminate function to place any code into MdlTerminate.
User-defined S-function target files can use this function to save data, free
memory, reset hardware on the target, and so on. See tofile.tlc for an
example of the Terminate function.

Loop Rolling

7-41

Loop Rolling
One of the optimization features of the Target Language Compiler is the
intrinsic support for loop rolling. Based on a specified threshold, code
generation for looping operations can be unrolled or left as a loop (rolled).

Coupled with loop rolling is the concept of noncontiguous signals. Consider the
following model.

The input to the timestwo S-function comes from two arrays located at two
different memory locations, one for the output of source1 and one for the
output of block source2. This is because of a Simulink optimization feature
that makes the mux block virtual, meaning that there is no code explicitly
generated for the mux and thus no processor cycles spent evaluating it (i.e., it
becomes a pure graphical convenience for the block diagram). So this is
represented in the model.rtw file in this case as

Block {
.
.
DataInputPort {
.
.

}
.
.

7 Inlining S-Functions

7-42

From this snippet out of the model.rtw file you can see that the block and input
port RollRegion entries are not just one number, but two groups of numbers.
This denotes two groupings in memory for the input signal. Looking at the
generated code, we see

/* S-Function Block: <Root>/C-MEX S-Function */
 /* Multiply input by two */
 {
 int_T i1;
 const real_T *u0 = &rtB.source1[0];
 real_T *y0 = &rtB.C_MEX_S_Function[0];

 for (i1=0; i1 < 20; i1++) {
 y0[i1] = u0[i1] * 2.0;
 }
 u0 = &rtB.source2[0];
 y0 = &rtB.C_MEX_S_Function[20];

 for (i1=0; i1 < 30; i1++) {
 y0[i1] = u0[i1] * 2.0;
 }
 }

Notice that two loops are generated and in between them the input signal is
redirected from the first base address, &rtB.source2[0], to the second base
address of the signals, &rtB.source2[0]. If you do not want to support this in
your S-function or your generated code, you can use

ssSetInputPortRequiredContiguous(S, 1);

in the mdlInitializeSizes function to cause Simulink to implicitly generate
code that performs a buffering operation. This option uses both extra memory
and CPU cycles at runtime, but may be worth it if your algorithm performance
increases enough to offset the overhead of the buffering.

This is accomplished by using the %roll directive. There is a tutorial on the
%roll directive in Chapter 8, “TLC Tutorial.” See also page 5-9 for the
reference entry for %roll and page 5-29 for a section describing the behavior
of %roll.

Error Reporting

7-43

Error Reporting
You may need to detect and report error conditions in your TLC code. Error
detection and reporting is needed most often in library functions. While rare,
it is also possible to encounter error conditions in block target file code. The
reason this is rare, but can occur if there is an unforeseen condition that the
S-function mdlCheckParameters function does not detect.

To report an error condition detected in you TLC code, use the
LibBlockReportError or LibBlockReportFatalError utility functions. Use of
these functions is fully documented in the Reference section. Here is an
example of using LibBlockReportError in the paramlib.tlc function
LibBlockParameter: to report the condition of an improper use of that function.

%if TYPE(param.Value) == "Matrix"
 %% exit if the parameter is a true matrix,
 %% i.e., has more than one row or columns.
 %if nRows > 1
 %assign errTxt = "Must access parameter %<param.Name> using "...
 "LibBlockMatrixParameter."
 %<LibBlockReportError([], errTxt)>
 %endif
 %endif

Browse through matlabroot/rtw/c/tlc for more examples of the use of
LibBlockReportError.

7 Inlining S-Functions

7-44

8

TLC Tutorial

Basic Inlined S-Function Written in TLC 8-3

Introduction to TLC Token Expansion 8-6

Building a Model Using the TLC Debugger 8-8

Explore Variable Names and Loop Rolling 8-10

Code Coverage for Debugging TLC Files 8-13

Using a Wrapper S-Function Inlined with TLC 8-15

Inlined S-Function for Dual Port RAM 8-19

“Hello World” Example with model.rtw File 8-23

Generating Auxiliary Files for Batch FTP 8-24

Generating Code for Models with States 8-25

Simulink External Mode and GRT 8-34

Loop Rolling Through a TLC File 8-39

8 TLC Tutorial

8-2

This chapter contains a number of TLC examples. All material needed for the
examples, including example models, S-functions, and TLC files is located in
matlabroot/toolbox/rtw/rtwdemos/tlctutorial. Each example is located in
a separate subdirectory. For the duration of this chapter, this directory is
referred to as tlctutorial. You may want to copy this directory to a local
working area.

This chapter is divided into two sections. The first section is written in a
procedural, step-by-step style. The second section is a series of exercises that
require you to perform a small amount of research that will result in you
becoming more familiar with using this reference guide.

Syntax Highlighting with Emacs
The MathWorks provides Target Language Compiler syntax highlighting for
use with Emacs. See Appendix C, “Using TLC with Emacs,” for details on
obtaining tlc-mode for Emacs.

For those who are new to Emacs, the following provides a quick reference:

 Ctrl-x Ctrl-f Open file into a buffer

 Ctrl-x b Switch to buffer

 Ctrl-x 2 Split window

 Ctrl-x 1 Expand to one window (i.e., delete other windows)

 Ctrl-x Ctrl-c Exit Emacs

 Ctrl-x Ctrl-s Save buffer

Standard arrow and delete keys work

Basic Inlined S-Function Written in TLC

8-3

Basic Inlined S-Function Written in TLC
Objective: To understand the differences between a noninlined S-function and
an inlined S-function. This will help you develop a better understanding of
when to use an inlined or noninlined S-function.

Example directory: tlctutorial/timestwo

Basic Code Generation

1 Copy the Simulink S-function tlctutorial/timestwo/timestwo.c into
your working directory.

2 Create the MEX-file.

mex timestwo.c

This is needed to avoid picking up the version shipped with Simulink.

3 Create the model sfun_x2 using the Simulink S-function called timestwo.
Your model should look like this.

4 Simulate the model using the fixed-step discrete solver with a step size of
0.01 and stop time of 10.0.

8 TLC Tutorial

8-4

Note that timestwo.c code is a level-2 S-function. Level-2 S-functions are
beyond the scope of this training session. See the Simulink book Writing
S-Functions for more information.

Using C coded S-functions with generated code tend to add unnecessary
overhead. For simple S-functions where speed is crucial — in cases such as
I/O device drivers — you can rewrite the S-function as an inlined S-function
by creating a file with the same S-function name with a .tlc extension
(filename.tlc).

5 To look at the generated code for the noninlined C coded S-function, select
Generate code only from the Real-Time Workshop page in the Simulation
Parameters dialog and click on the Generate code button to generate C code
for the model. Now view the MdlOutputs and MdlTerminate portions of the
generated C code, sfun_x2.c. Notice the overhead of calling the S-function.
This necessary code allows for a generic API for S-functions. The next step
is to inline your S-function by removing the SimStruct associated with your
S-function (memory savings) and the generic API (speed up).

Creating an Inlined S-Function
Now, create an inlined S-function to replace the timestwo.c code. Do this by
creating a TLC file named timestwo.tlc in your working directory. When the
Target Language Compiler detects a TLC file with the same name as the
S-function, it uses the TLC version instead of a function call to the external C
coded S-function. This process enables TLC to inline the code within the
generated C code:

1 Copy the file tlctutorial/timestwo/timestwo.tlc into your working
directory.

2 Select Inline parameters from the Advanced page before you build your
executable code. Confirm that your timestwo.tlc file works correctly by
generating C code, viewing the generated code, running the stand-alone
simulation with data logging, and plotting the resulting data.

3 Copy the model tlctutorial/timestwo/sfun_x2v.mdl into your working
directory. Try using the timestwo.tlc file with this model, which is
essentially just a vectored version of sfun_x2.mdl, and look at the generated
C code.

Basic Inlined S-Function Written in TLC

8-5

4 Close both models (sfun_x2 and sfun_x2v) before continuing with the
tutorial.

A key difference when using TLC to inline an S-function is that S-functions
often contain empty function calls. Once inlined, the model code only has
function calls for functions that actually do something. Empty function calls
can be eliminated. Function calls are expensive on DSPs, therefore,
eliminating unnecessary function calls can provide better performance,
especially when the S-function is used in multiple instances in the same model.

Keep in mind, TLC is not a substitute for writing C code S-functions. In order
to simulate within Simulink, it is still necessary to have a C code S-function
since Simulink does not make use of TLC files. TLC can inline an S-function to
make the S-function much more efficient in your RTW target code.

8 TLC Tutorial

8-6

Introduction to TLC Token Expansion
Objective: Achieve a basic understanding of TLC. You will make small textual
changes to the generated code to familiarize yourself with TLC token
expansion.

The previous example showed the generated code produced by the inlined
S-function timestwo.tlc. In this example, you will make minor modifications
to the timestwo.tlc file that will change the generated code:

1 Open model sfun_x2, which you worked with in the previous example.
Generate code using the existing timestwo.tlc and review the generated
code in the mdlOutput section of sfun_x2.c.

2 Open the timestwo.tlc file in the editor of your choice.

3 Add any series of C comments to the code in the Outputs function in
timestwo.tlc. When you are done editing, your changes should look
something like the following.

%function Outputs(block, system)
/* %<Type> Block: %<Name> */
/* C comment #1 */
%%
/* Multiply input by two */
%assign rollVars = ["U", "Y"]
/* C comment #2 */
%assign u = LibBlockInputSignal(0, "", lcv, idx)
%assign y = LibBlockOutputSignal(0, "",lcv,idx)
%<y> = %<u> * 2.0;
%endroll
/* C comment #3 */
%endfunction

4 Add a TLC comment (or comments) anywhere in the TLC file. TLC
comments are defined as text following %%. For example,

%% This is my TLC comment.

5 From the Real-Time Workshop page, select the Generate code only and
generate C code for sfun_x2. (Click the Generate code button or type ^B.)

Introduction to TLC Token Expansion

8-7

View the generated code in the sfun_x2.c file and look for the comment
lines.

This example should give you insight into how TLC inlining works. You may
want to change the algorithm from multiplication to division, or change the 2.0
multiplicand (two times) to some other multiple and regenerate code using the
new version of the .tlc file. Essentially, you can view TLC inlining as token
expansion of the .tlc file into the generated code.

8 TLC Tutorial

8-8

Building a Model Using the TLC Debugger
Objective: Introduce the TLC debugger. You will learn how to set breakpoints
and familiarize yourself with the various commands supported by the TLC
debugger.

Preparing the Example
You invoke the TLC debugger while building the model. Use the same model,
sfun_x2.mdl, for this example:

• Select output data logging in the model.

• Open the Real-Time Workshop dialog page.

• Change the pull-down menu labeled Category from Target configuration
to TLC debugging.

• Select the check boxes Retain .rtw file and Start TLC debugger when
generating code.

• Click the Build button.

The MATLAB command window shows the building process information and
stops at the grt.tlc file and displays the following tag in the command
window.

TLC-DEBUG>

Type help to see the list of TLC debugger commands.

Performing the Tasks

1 Set a breakpoint on line 19 of timestwo.tlc. Type help break to list the
various syntaxes for the break command. Use the first form of the break
command to set a breakpoint on line 19. Type

break "timestwo.tlc":19

Type continue to instruct the TLC debugger to continue to the next
breakpoint. The debugger should advance to line 19 in timestwo.tlc and
display the following status information in the MATLAB command window.

Stopped in file "timestwo.tlc" at line 19
00019: %<y> = %<u> * 2.0;

Building a Model Using the TLC Debugger

8-9

TLC-DEBUG>

2 Assign a constant value, e.g., 5.0, to the input signal %<u>.

TLC-DEBUG> assign u = 5.0

3 View various entities in the TLC scope. For example,

TLC-DEBUG> print y
TLC-DEBUG> print TYPE(y)
TLC-DEBUG> whos CompiledModel
TLC-DEBUG> print CompiledModel.CodeFormat

4 After familiarizing yourself with the viewing capabilities of TLC, type
continue to commence completing code generation.

TLC-DEBUG> continue

Code generation should begin and complete.

5 Compare the result with the previous one.

For more information about the TLC debugger, see Chapter 6, “Debugging
TLC.”

8 TLC Tutorial

8-10

Explore Variable Names and Loop Rolling
Objective: This example shows how you can influence the generated code from
the Simulink GUI.

Example directory: tlctutorial/mygain

Preparing the Example
• Start with the model tlctutorial/mygain/simple.mdl.

• Generate the code for model.

• Save simple as simple_mimo.mdl so that the generated code can be
compared easily for both models.

Performing the Tasks

1 Change the Sine Wave block to be a Constant block and add labels to the new
simple_mimo model as shown in this diagram.

2 Save your changes in simple_mimo.mdl.

3 This is a vectorized model. Generate C code for the model and view the
MdlOutputs() section, paying close attention to variables and for loops.
This section appears right below the statement

/*Gain Block: <Root>/Gain */

Notice that:

Explore Variable Names and Loop Rolling

8-11

- The code is rolled into a loop.

- Pointers *u0 and *y0 are used and initialized to arrays named with the
signal names.

4 Real-Time Workshop provides some ability for users to control
RollThreshold. You can manually alter the loop rolling threshold by setting
your own value for RollThreshold for the entire model. Do this for your
model by selecting General code generation options from the Category
pulldown on the Real-Time Workshop page.

Set Loop rolling threshold to 12.

This results in loop rolling only when the number of signals passing through
a block exceeds 12.

5 Generate code for your model (Generate code only) and view the output C
file. Note the significant difference in the model code compared to the system
that did not use such a high RollThreshold.

8 TLC Tutorial

8-12

6 Change the RollThreshold back to the value 10 in the General code
generation options dialog. Modify the simple_mimo model to have a
vectored gain as shown below.

7 Once again, generate code and note the difference between this code and the
code from the model that simply included a scalar gain of 1. In this case, the
10 gains are placed in a parameter array.

As you look at the TLC file, matlabroot/rtw/c/tlc/gain.tlc, notice three
“rollVars” for U, Y, and P. This tells TLC that inputs (U), parameters (P), and
outputs (Y) can all be rolled when the number of signals operated on by this
block exceeds the RollThreshold.

Loop rolling is an important but very advanced capability of Real-Time
Workshop and TLC. It takes a fair amount of time to fully understand loop
rolling before you can apply it. This brief introduction to loop rolling
demonstrates that it exists and provides some insight and illustration as to
how it works.

Code Coverage for Debugging TLC Files

8-13

Code Coverage for Debugging TLC Files
Objective: Learn about Real-Time Workshop’s capabilities for checking TLC
code coverage. This is useful as a debugging tool when writing TLC code. TLC
code coverage is easy to use and indicates whether you’ve exercised all possible
cases for generated code that your TLC file can produce.

Example directory: tlctutorial/codecover

Performing the Tasks

1 Open the model simple_log.

2 Select the TLC debugging from the Category pulldown on the Real-Time
Workshop page and check the Retain .rtw file and Start TLC coverage
when generating code check boxes. This tells Real-Time Workshop to
create log files for TLC code coverage. One log file is created for each TLC
file used in generating code for the model. This is the block diagram for the
simple_log model.

8 TLC Tutorial

8-14

3 Select Generate code only. Be sure Inline parameters is not selected on
the Advanced page. Generate code for the model.

Now, look in your build directory and observe the filenames with the .log
extension (i.e., type: dir *.log). These .log files correspond to the TLC files
with .tlc extensions that were used to generate C code for your model.

4 Open the log file gain.log. Observe the integers 0, 1, 2, …, n, which indicate
how many times the lines of TLC code were exercised. This tool is very useful
for debugging custom written TLC files. Aside from TLC files for individual
blocks such as gain.tlc, TLC relies on additional files such as
blocklib.tlc, genmap.tlc, mdlhdr.tlc, mdlbody.tlc, mdlparam.tlc,
mdlvars.tlc, etc.

5 Select the Inline parameters check box and generate code once again. View
gain.log and simple_log.c and pay attention to the model output code for
the three outports. Is it clear how the code has changed and why? The
generated code is optimized for speed, however, it is not suited for parameter
tuning.

6 You may also try playing with the various parameters, such as changing the
source block for subsystem 2 from a discrete to a continuous sine wave,

Code Coverage for Debugging TLC Files

8-15

changing Gain3rd from 0 to 1, and seeing how the .log file and the
generated C code change with and without inlined parameters.

8 TLC Tutorial

8-16

Using a Wrapper S-Function Inlined with TLC

When to Consider?
Assume that the file wrapfcn.c contains an existing function called wrapfcn.
In this case, you have the source code, however, making the correct changes for
compilation, you could also link against an existing library if the source code is
not available. For example, suppose you had an existing object file compiled for
a TI DSP, or, for some other processor where Simulink does not run. You could
write a dummy C S-function and use a TLC wrapper that would provide a call
to the external function, for which you do not have its source code. For instance,
this could be the case if you had a library for an FFT algorithm optimized for
your target processor. You would also make appropriate changes to a template
makefile, or, somehow provide a means of linking against the library. Now that
you understand why you might want to do this, let’s look at an example.

Objective: Learn about wrapper S-functions and how to create an inlined
wrapper S-function using TLC.

The purpose of a wrapper S-function is to enable a user to pull in an existing C
or Ada function without fully rewriting it in the context of a Simulink
S-function. Basically, you write a simplified S-function that merely calls the
existing, external function.

Caveat Using the object file without the source code only works at present
with the Microsoft Visual C/C++ Compiler (MSVC). In this case, the object file
must also have been created with the same compiler (i.e., MSVC).

The only requirement for the dummy C coded S-function is to make sure that
it uses the correct number of inputs and outputs. Other than that, the
S-function does not need to provide correct computations, unless we find it
necessary to use these computations to obtain correct simulation results in
Simulink – prior to generating real-time code.

Exercise
The “external function” is provided in the file wrapfcn.c. You are also provided
with a C code S-function called wrapsfcn.c. Now you must create a wrapper
TLC file that:

Using a Wrapper S-Function Inlined with TLC

8-17

• Provides a function prototype for the external function that returns a double,
and passes the input double u.

• Provides the appropriate function call to wrapfcn() in the outputs section of
the code.

The files for this exercise are in the tlctutorial/wrapper directory of the TLC
examples directory.

This is the block diagram for the wrapper S-function example.

You can run the C source code to view the correct results.

The TLC Wrapper
TLC is able to handle port inputs and outputs via the following functions.

%assign u = LibBlockInputSignal(0, "", "", 0)
%assign y = LibBlockOutputSignal(0, "", "", 0)

Copy the wrapsfcn_assign.tlc file to wrapsfcn.tlc and try to create the
inlined S-function wrapper.

Note that this also requires you to add the following options to the model’s
parameters.

set_param('wrapper/S-Function', 'SFunctionModules', 'wrapfcn');

Use the SFunctionModules parameter to inform the RTW build process that it
needs to compile and link with wrapfcn.c. See the Simulink book Writing
S-Functions for more information about S-function modules.

8 TLC Tutorial

8-18

Note You should not continue until you have made a reasonable attempt to
solve the problem.

Solution
%% File : wrapsfcn.tlc
%% Abstract:
%% Example tlc file for S-function wrapsfcn.c
%%

%implements "wrapsfcn" "C"

%% Function: BlockTypeSetup ===============================
%% Abstract:
%% Create function prototype in model.h as:
%% "extern double wrapfcn(double u);"
%%
%function BlockTypeSetup(block, system) void

Using a Wrapper S-Function Inlined with TLC

8-19

 %openfile buffer
 %% Assignment:provide one line of code as a function prototype
 %% For "wrapfcn" as described in the assignment.
 extern double wrapfcn(double u);

 %closefile buffer
 %<LibCacheFunctionPrototype(buffer)>
%endfunction %% BlockTypeSetup

%% Function: Outputs ======================================
%% Abstract:
%% Y = WRAPFCN(U)
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %assign u = LibBlockInputSignal(0, "", "", 0)
 %assign y = LibBlockOutputSignal(0, "", "", 0)
 %% PROVIDE THE CALLING STATEMENT FOR "wrapfcn"
 %<y> = wrapfcn(%<u>);

%endfunction %% Outputs

8 TLC Tutorial

8-20

Inlined S-Function for Dual Port RAM
Objective: Learn how you can use an inlined S-function to access hardware
with minimal overhead. Also learn how to include parameter values from a
Simulink block’s mask.

Real-Time Workshop includes runtime interface files for DOS and Tornado/
VME targets that are able to access I/O devices, provided you have the
additional hardware.

Note The generated code for this example is for illustrative purposes only
and the resulting executable file will not work (it will cause an exception
violation).

Exercise
The files for this exercise are in the tlctutorial/dualportram directory of the
TLC examples directory.

You are given the C code S-function dp_read.c. Write your own TLC file to
inline this S-function. The dp.mdlmodel file contains the dual port read model.
The mask for the dp_read S-function allows you to enter parameters for:

The S-function dp_read.c is written with error handling to ensure dialog box
entries are consistent with the types of data that are to be included in the
generated code. This error handling functionality is only needed in the
S-function, and is not needed in the generated code.

Parameter Description

offset Scalar offset value

gain Gain

varType Data type for the value read from dual port RAM

hwAddress Memory address that your (fictitious) custom hardware
needs to access

Inlined S-Function for Dual Port RAM

8-21

To simplify your assignment, the file dp_read_assign.tlc is included. You
must:

• Copy this file to dp_read.tlc.

• Insert your own TLC code.

• Test by selecting Generate code only.

• Use your editor to view the resulting model code once you have generated the
code.

This is the file you will need, dp_read_assign.tlc. Copy it to dp_read.tlc.

%% File : dp_read.tlc
%% Abstract:
%% Dual-Port Read block target file for S-function dp_read.
%%
%% Copyright (c) 1994-1999 by The MathWorks, Inc. All Rights Reserved.
%%

%implements "dp_read" "C"

%% Function: Outputs ==
%% Abstract:
%% Dual port read for the dp_read.mex S-function, (e.g. dp_read.dll).
%% Read the value from the specified address entered in the S-function
%% parameters and write to the output location:
%% Y = *dpAddress
%%
%% In the dp_read, the Parameters are defined to be:
%% offset,gain,variableType,hardwareAddress
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Identifier> */
 {
 %% ONLY MAKE CHANGES TO THE CODE BELOW HERE!
 %% #1 and #2
 %assign offset = CAST("Real",P1.Value[0])
 %assign gain = %% COMPLETE THIS LINE - Look at mask for the
 %% dp_read block and also look at the .rtw file after
 %% generating it by using >> rtwgen dp
 %%
 %% #3
 %assign varType = %% COMPLETE THIS LINE - using LibBlockParameterString
 %% see page 26 of TLC Quick Ref
 %% #4
 %assign hwAddress = %% COMPLETE THIS LINE - similar to varType, except P4

 %% #5

8 TLC Tutorial

8-22

 %assign y = %% COMPLETE THIS LINE - using LibBlockOutputSignal
 %% where portIdx=0, ucv="", lcv="", sigIdx=0
 %% However, this model uses the "y" variable for the simple
 %% case of only a scalar output. See the LibBlockOutputSignal function
 %% on page 20 of the Target Language Quick Reference.

 %% The generated code for this block should appear as follows:
 %%
 %% volatile float *dpAddress = (float *) 0x40;
 %% rtB.s1_dual_port_read = ((real_T) *dpAddress) * 1.0 + 0.0;

 volatile %<varType> *dpAddress = %% COMPLETE THIS LINE
 %<y> = %% COMPLETE THIS LINE

 }

%endfunction %% Outputs

Further Hints
• In the Outputs section, you will need five lines that start with %assign.

• The first two use CAST to ensure that parameter values entered in the mask
as 1 are cast to a real 1.0.

• The CAST function is not required for varType and hwAddress since varType
is a string while hwAddress is a hex value that is used with no change.

• For further insight, look at the rtw file called dp.rtw. (You can use rtwgen to
generate the rtw file for the model while you are iterating on your own TLC
file.

rtwgen dp

• For the third and fourth %assign’s for varType and hwAddress see page 8-21
for handling the string that must be read in from the .rtw file. Use a library
function. See Chapter 9, “TLC Function Library Reference.”

• Use a fifth line starting with %assign to setup the variable y as an output.

• The final two lines in the Outputs function produce the lines of code that
appear in the mdlOutput section of the generated code.

Note You should not continue until you have made a reasonable attempt to
solve the problem.

Inlined S-Function for Dual Port RAM

8-23

Solution
%% File : dp_read.tlc
%% Abstract:
%% Dual-Port Read block target file for S-function dp_read.
%%
%% Copyright (c) 1994-1999 by The MathWorks, Inc. All Rights Reserved.
%%

%implements "dp_read" "C"

%% Function: Outputs ==
%% Abstract:
%% Dual port read for the dp_read.mex S-function, (e.g. dp_read.dll).
%% Read the value from the specified address entered in the S-function
%% parameters and write to the output location:
%% Y = *dpAddress
%%
%% In the dp_read, the Parameters are defined to be:
%% offset,gain,variableType,hardwareAddress
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Identifier> */
 {
 %assign offset = CAST("Real",P1.Value[0])
 %assign gain = CAST("Real",P2.Value[0])
 %assign varType = LibBlockParameterString(P3)
 %assign hwAddress = LibBlockParameterString(P4)
 %assign y = LibBlockOutputSignal(0, "", "", 0)
 volatile %<varType> *dpAddress = (%<varType> *) %<hwAddress>;
 %<y> = ((real_T) *dpAddress) * %<gain> + %<offset>;

 }

%endfunction %% Outputs

8 TLC Tutorial

8-24

“Hello World” Example with model.rtw File
Objective: What programming class would be complete without “Hello world”?
In this exercise, you’ll learn how to make simple modifications to grt.tlc to
generate a separate output file containing your code for hello.c.

What benefit is there in this assignment? More advanced TLC programming
applications may rely on your ability to generate a file. This example prepares
you for virtually any auxiliary files.

Exercise

1 There is a special generic real time file called grt_assign.tlc in
matlabroot/toolbox/rtw/rtwdemos/tlctutorial/helloworld. Copy this
file to grt.tlc and create the necessary code to create hello.c. You can run
any model, for example, f14 or vdp from Simulink demo and, as long as you
use your special version of grt.tlc, you will generate the file hello.c.

2 Edit grt.tlc and make changes accordingly.

3 Before you try to build, select the Generate code only check box on the
Real-Time Workshop page, which allows you to generate the C code and the
makefile.

4 Now you can generate code and get the file hello.c.

Generating Auxiliary Files for Batch FTP

8-25

Generating Auxiliary Files for Batch FTP
Objective: One application that could use an auxiliary file is automating the
process of downloading source files (e.g., model.c, model.h, model.rtw,
model_prm.h, model_reg.h, model.mk) to an external target. Such cases arise
when the compiler resides on the machine. For example, LynxOS and QNX are
UNIX-based systems that allow you to run a compiler under the RTOS where
the real-time executable will run.

The files for this exercise are in the tlctutorial/addinfo directory of the TLC
examples directory.

Exercise

1 Copy the file grt.tlc (in matlabroot/rtw/c/grt/grt.tlc) to your current
working directory.

2 Add one line to include ftpdownload.tlc in grt.tlc.

3 Copy the ftp_assign.tlc file to ftpdownload.tlc into the same directory.

This exercise only requires you to add the ability for TLC to extract the model
name and place it in the file that is generated. The information required can be
found in the first few lines of the model.rtw file.

4 Modify the ftpdownload.tlc file so that it extracts the model name and
outputs the appropriate filenames to a file called download along with the
ftp commands.

5 Open a model (any of the .mdl files used thus far) and generate code for it
using the modified grt.tlc file that you have just created. Look at the file
download to see if everything has proceeded okay.

8 TLC Tutorial

8-26

Generating Code for Models with States
Objective: Look at Real-Time Workshop code generation for the models that
have states. This does not involve many new Real-Time Workshop concepts,
but it is instructive to see the changes in the generated C code as opposed to
the sfun_x2.mdl on page 8-3, for example.

This is not an assignment per se, but rather a demonstration of the process
involved, from designing a model to generating and using the code. This choice
of model involves some subtleties, which you will see in the discussion ahead:

1 Open the springsfun.mdl model located in the tlctutorial/states
subdirectory. This is the model of a linear system with transfer function

that represents a simple SISO system. The picture of the model is given
below.

2 Before executing the model, run the m-file initialize.m that is in the same
subdirectory. This generates initial parameters for the system. These
parameters are in the form of a random, stable, eighth order linear system.
Once this is done, the model is ready to execute.

TF s()
a0

Sn an 1– Sn 1– … a1S a0+ + ++
--=

Generating Code for Models with States

8-27

3 Examine the properties of the SiSoSF S-function block and the state space
block. Both of these blocks are intended to do exactly the same thing, so that
they can be checked against each other. The S-function, sisosf, is the state
space equivalent of above, in the controllable canonical form. Therefore,
the system is described by being the state in question

where u(t) is the control signal. The output y(t) is given by y(t) = a0x0.

This same information is incorporated in the state space block, via matrices
a, b, c, and d. The order of the states, however, may be different from that
given above, with the differences being those of nomenclature, and not of
fact.

4 The S-function is driven by the program sisosf.c, which is also found in
this directory. If the precompiled version of sisosf.c (sisosf.dll) is not in
your directory, you will need to compile it with the command

mex sisosf.c.

Also, study the sisosf.c program. This program was created by editing a
copy of the sfuntmpl.c program template, which is what you are advised to
do. Note the various macros (ssNumSetSFcnParams,
ssSetSFcnParamNotTunable, ssGetContStates, etc.) that are used to access
the SimStruct structure to get/set the various model parameters. These
macros are defined in simstruc.h and described in the Simulink book
Writing S-Functions. Some things to be noted are:

- The parameter vector that is passed to SiSoSF are the ai values, which
form the last line of the A matrix. The length of this vector determines the
number of states (MdlInitializeSizes).

- The initial conditions have been chosen as x0 = 1.0, xi = 0.0 if i0. This is an
arbitrary choice, and a real program (as opposed to an example) would

TF
x0

x·0 x1 x·1 x2= … x·,· 6 x7

x·7

=, ,

aixi u t()+

i 0=

7

�–

=

=

8 TLC Tutorial

8-28

have this as a parameter. However, this choice has been made to keep
things simple (MdlInitializeConditions, which is optional).

- The MdlDerivatives function is the heart of the program and should be
studied carefully. The xdot vector stores the derivatives, and xdot[7] (in
this case) and more generally xdot[NCStates-1] is calculated
incrementally. Additionally, the fact that x and xdot have disparate
indices in the line

xdot[i] = x[i+1];

should be noted, since this causes some complications in the TLC file.

5 The next step is to write a .tlc file to enable the inlining S-function. This
has already been done for you, and the file is called sisosf.tlc. A listing of
the file follows.

%% FileName: sisosf.tlc
%%
%% Purpose: To implement a SISO system in controllable canonical form.
%implements "sisosf" "C"

%% Function: Outputs ==
%%
%function Outputs(block,system) Output
 %assign y = LibBlockOutputSignal(0,"","",0)
 %assign x = LibContinuousState("","",0)
 %assign dc = LibBlockParameter(P1,"","",0)
 %% Dc gain is the negative of the first element of the

 %% The first state (zeroth derivative) is the output
 /* Block %<Name>: %<Type> Output */
 %<y> = -%<dc> * %<x>;
%endfunction %% Outputs

%% Function: Derivatives ==
%%
%function Derivatives(block,system) Output
 %assign ncStates = ContStates[0]
 %assign offset = ContStates[1]
 %assign input = LibBlockInputSignal(0,"","",0)
 /* Derivatives function starts here */
 {
 real_T *dx = ssGetdX(%<tSimStruct>);

 dx[%<ncStates - 1 + offset>] = %<input> + \
 %<LibBlockParameter(P1,"","",0)> * \
 %<LibContinuousState("","",0)>;
 %assign rollVars = ["Xc", "<param>/P1"]

Generating Code for Models with States

8-29

 %roll xIdx = [0:%<ncStates-2>],xlcv = RollThreshold, block, "Roller", rollVars
 %assign idx = (xlcv != "") ? "%<xIdx+offset> + %<xlcv>" : "%<xIdx+offset>"
 %assign lcv = (xlcv != "") ? "1 + %<xlcv>" : ""
 %assign x = LibContinuousState("",lcv,xIdx+1)
 %assign a = LibBlockParameter(P1,"",lcv,xIdx+1)
 /* Block %<Name>: %<Type> derivatives */
 dx[%<idx>] = %<x>;
 dx[%<ncStates - 1 + offset>] += %<a> * %<x>;
 %endroll
 }
%endfunction %% Derivatives

%% Function: InitializeConditions ===
%%
%function InitializeConditions(block,system) Output
 %assign ncStates = ContStates[0]

 %% Initialize State zero (position) to 1.0, rest are 0.0
 %assign x = LibContinuousState("","",0)
 /* %<Type>: %<Name> Position Initialization */
 %<x> = 1.0;

 %foreach sigIdx = ncStates - 1
 %assign x = LibContinuousState("","",sigIdx+1)
 /* %<Type>: %<Name> Other States Initialization */
 %<x> = 0.0;

 %endforeach
%endfunction %% InitializeConditions

%% [EOF] sisosf.tlc

Derivatives Function
The Outputs and InitializeConditions functions in this TLC file roughly
parallel the corresponding functions in the sisosf.c program and thus will not
be elaborated on. The heart of the program is again the Derivatives function,
where the derivatives of the states (assigned to the dx vector) will be computed.
Since the expression for the derivatives for all but the last state is similar, it is
put in a loop. However, the discrepancy in the indices of dx and x must be
treated with care.

The main section of the Derivatives function appears inside the
%roll…%endroll construct. The utility of this method as opposed to, say,
foreach, is that if there are only a few states (less than RollThreshold, which
is set to 5 by default), the expressions are explicitly written out, since using a
for loop would cause unnecessary overhead. However, when there are more
states (especially when there are very many), the code is put in a for loop. The

8 TLC Tutorial

8-30

%roll command is explained in the “Compiler Directives” section of this
document. However, this section points out some features as well.

The states run from 0 to (ncStates -1), and therefore, so do the derivatives.
However, when the dx vector is returned by the call to the ssGetdX macro, the
pointer for the entire set of derivatives is returned, not just the ones
corresponding to this block. In fact, this model has been designed so that the
derivatives from the dx block appear before those from the SiSoSF block in the
generated code. Therefore, dx corresponding to x0 is actually dx[8] in this
example. For this purpose, we use the statement

%assign offset = ContStates[1]

in the beginning of the function. Alternatively, dx could have been declared as

real_T *dx = ssGetdX(%<tSimStruct>) + offset;

and then the offset term could have been dropped, since dx[0] would
correspond to x0.

Next, since dx[ncStates - 1] needs special treatment, the looping is done over
the range [0 : ncStates - 2]. This appears in the %roll statement,
reproduced here for convenience

%roll xIdx = [0:%<ncStates-2>], xlcv = RollThreshold, block, "Roller", rollVars

Parameters
The parameters are as follows: xIdx plays a dual role. If the loop does roll, i.e.,
a for loop is generated, then xIdx is set to the first value of the RollRegion (in
this case 0). The for loop always starts from zero and goes up to one less than
the width of the RollRegion. The RollRegion, which usually (but not in this
case) is set to the eponymous identifier from the model.rtw file, contains the
vector(s) upon which the TLC compiler bases its decision whether or not to roll.

In this case, we have a customized vector, i.e., [0:%<ncStates-2>] as our
RollRegion, and the xlcv variable is set to the (string) value of the loop index.
The parameter rollVars specifies the variables over which the rolling takes
place. If rolling does occur, a vector that starts from the appropriate place in
(say) the state vector will be declared; similarly for the parameter vector. The
“appropriate place” will be given by the value of xIdx.

If the loop does not roll, xIdx goes from 0 to one less than the width of the
RollRegion, irrespective of the actual start and end points of the vector. In this
mode, the %roll command behaves identically to the %foreach command.

Generating Code for Models with States

8-31

However, the RollVars are appropriately offset so that the correct elements of
the state and parameter vectors (in this case) are used. This is given by the first
element of the RollRegion.

As an exercise, generate the code using the Build command in the Simulation
Parameters dialog box. Check that the Loop rolling threshold option is set to
5 (less than the width of the RollRegion) in the Options section of the dialog
box.

8 TLC Tutorial

8-32

Generating Code for Models with States

8-33

Study the following lines of code from the Derivatives function of the
sisosf.tlc file to see how they change. This gives important insights into the
functionality of %roll.

/* offset = %<offset> ncStates = %<ncStates> */
/* xIdx = %<xIdx> xlcv = %<xlcv> lcv = %<lcv>*/

Now, set the Loop rolling threshold to 10 so that the code does not roll. Study
the code again, and see how the various parameters have changed.

Additional Exercise

1 Copy gain.tlc from matlabroot/rtw/c/tlc to your working directory.

2 Change RollRegions in the lines below to arbitrary vectors, e.g.,
[0:10,11,12,13:19].

3 Now use the simple_mimo2.mdl model from an earlier assignment, only
changing the inputs to [1:20] (to match our RollRegion), and the gain to
[20:-1:1] to match the inputs.

4 Set the Loop rolling threshold to 12 (no roll), 8 (second region rolls, first
does not) and 5 (neither region rolls). The relevant section of gain.tlc is
given below.

5 Add comment lines as above to see what the values of sigIdx, lcv, etc.
become.

6 Change RollRegions below to [0:10,11,12,13:19]

%roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
%assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
 %assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
 %assign k = LibBlockParameter(Gain, "", lcv, sigIdx)

<snip>

←Insert comment lines here before %endroll
 %endroll

This is not, of course, a recommended practice for writing TLC files (i.e., hard
coding roll regions), but is merely an exercise to see how %roll works. You may
also try changing the RollRegion to [3:10,. . .] etc., and sigIdx to sigIdx-1
in the %assign u line.

8 TLC Tutorial

8-34

When you are done, do not forget to change the name of gain.tlc to
gain_old.tlc so that future code generation endeavors involving the Gain
block are not hampered.

Simulink External Mode and GRT

8-35

Simulink External Mode and GRT
Objective: Become familiar with GRT, Simulink External Mode, and data
logging. Before you begin, be sure to switch into an empty work directory.

Running External Mode in Simulink

1 Create the model simple.mdl consisting of

- sine wave source block (Sources)

- unity gain block (Linear)

- outport (Connections)

It should appear as the following.

2 Set the following dialog options (Tools -> Real-Time Workshop -> Options)

- Solver page
fixed-step, discrete, step-size = 0.01 seconds, Stop time = 1000.0

- Workspace I/O
save Time as tout, save Output as yout, limit to last 1,000 pts., decimation
= 1 (e.g., no decimation)

- Real-Time Workshop page

System target file: grt.tlc

Template makefile: grt_default_tmf (optionally: grt_watc.tmf, etc.)

Make command: make_rtw

Retain .rtw file

8 TLC Tutorial

8-36

- Save simple.mdl (File -> Save As)

Observe the dialog box entries in the following figure.

3 Open External Mode Control Panel from the Tools menu.

Simulink External Mode and GRT

8-37

4 Open the Target interface … dialog and specify the MEX-file for external
interface. For MEX-File arguments, the figure below options for the node
name, verbosity = 1, and a port address that is selected as 17725. Defaults
for MEX-file options would be your local host name and port 17725.
Therefore, in this particular example, they could have been omitted. For
targets where the target has a separate network ID, appropriate entries
would be required.

5 From the Real-Time Workshop page, go to the Options… dialog to select
External mode check box. Click Build to generate the code and create the
executable for non-real-time execution. Note that in order for this exercise
to work, you must run the model for enough time steps so that you have
enough time to change parameters before the model completes and ends.
This explains the high value of stop time (1000.0 seconds) chosen earlier.
You can also specify the running time when you execute the code.

6 Open a DOS prompt window (i.e., a virtual DOS machine) and run the
non-real-time executable. (Type simple at the DOS command prompt.)

There are some options available for you to choose the running type. (Type
simple -tf for details.)

- -tf 20 Sets final time to 20 seconds, inf runs forever.

- -port 300 Sets port to 300.

- -w Waits for start message from host.

7 While the stand-alone simulation is running, start Simulink external mode.

- Select External from the Simulation menu.

- Go to External Mode Control Panel and click Connect to start.

8 TLC Tutorial

8-38

- Immediately open the Gain block and change its value.

Once the execution is completed, it should create an output file, simple.mat.

8 To load the generated MAT-file into MATLAB and plot the results, use

load simple
whos
plot(rt_tout, rt_yout)

Advanced External Mode Exercise

Note This section is entirely optional.

Starting with the model simple, add a Constant block (value of constant set to
zero). Add a Stop Simulation block (Sinks) downstream from the Constant
block. Save this model as simple_s.mdl.

1 Set the Stop Time to 200,000. From the Code Generation Options dialog
box, select External mode and Verbose builds. Save the model as
simple_s.mdl. Generate and build the executable. Be sure to select limit
rows to last 1,000. (Workspace I/O page)

2 Before running the executable, look at the Simulation menu items that
specify external mode. You’ll need to observe the following sequence:

- Start the executable running, i.e., type simple_s in the DOS window.

- Select Simulink external mode by selecting Simulation -> External.

- Select Connect to target from the Simulation menu or from External
Mode Control Panel.

- Change the gain value from 1 to 5 in the Simulink block diagram.

- Change the constant block value (in the Simulink block diagram) from 0 to
1.

This starts the standalone simulation. Then, it starts Simulink’s external mode
and allows you to change model parameters in the generated code
automatically. Although it is not obvious on your computer, the underlying
mechanism allows parameter changes to generated code even if running on
target hardware. The only requirement in such an application is that your

Simulink External Mode and GRT

8-39

external hardware must provide TCP/IP support. For example, TCP/IP stack
or library that you can link against during the build process.

Observe messages in the DOS window regarding updating of parameters.

When you complete this example, go to the Simulink menu or External Mode
Control Panel and select Disconnect, and then select Normal to resume
normal simulation mode.

8 TLC Tutorial

8-40

Loop Rolling Through a TLC File
The following %roll code is taken from the Outputs function of timestwo.tlc.

%% Function: Outputs =======================================
%% Abstract:
%% Y = 2 * U
%%
%function Outputs(block, system) Output
 %assign fcnName = ParamSettings.FunctionName
 /* %<Type> Block: %<Name> (%<fcnName>) */
 %assign rollVars = ["U", "Y"]
 %roll sigIdx=RollRegions, lcv=RollThreshold, block, ...
 "Roller", rollVars

%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
 %assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)

 %<y> = 2.0 * %<u>;

 %endroll

%endfunction %% Outputs

Arguments for %roll
The lines between %roll and %endroll may be either repeated or rolled. The
key to understanding %roll is in the arguments. Look at the %roll line in
detail.

%roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

The first argument is sigIdx. TLC uses sigIdx to specify the appropriate index
into a vector that is used in the generated code. Suppose you have a scalar
signal, TLC looks at the .rtw file and determines that only a single line of code
is used and loop rolling is not needed. In this case, it will set sigIdx to 0 to be
used to access only the first element of a vector.

Look at the second argument of %roll, lcv, which is generally set in the %roll
line as lcv = RollThreshold. RollThreshold is a globally used threshold with
the default value of 5. Therefore, where more than five contiguous and rollable
variables exist, TLC will collapse the lines nested between %roll and %endroll
into a loop. If less than five contiguous rollable variables are found (for
example, you build a block diagram where your block has only 4 inputs), %roll
will not create a loop and instead will produce individual lines of code.

Loop Rolling Through a TLC File

8-41

The third argument should just be block. This tells TLC that it is operating on
block objects. Any TLC code for an S-function simply uses this argument as
shown.

The fourth argument of %roll is a string Roller. Use this as is.

The fifth argument is rollVars. rollVars tells TLC which types of items
should be rolled. Obvious choices include input signals, output signals, and
parameters. It is not necessary to use all of them. In a previous line, rollVars
is defined using %assign.

%assign rollVars = ["U", "Y", "P"]

This list tells TLC that it is rolling on input signals, output signals, and
parameters.

Input Signals, Output Signals, and Parameters
Look at the line that appear between %roll and %endroll.

%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)

The first argument, 0, corresponds to the input port index for a given block. The
first input port has index 0. The second input port has index 1, and so on.

The second argument is reserved for advanced use. For now, specify the second
argument as an empty string. In advanced applications, you could define your
own variable name to be used as an index with %roll. In such a case, TLC
declares this variable as an integer in an appropriate location in the generated
code.

The third argument to the function LibBlockInputSignal is lcv. As described
previously, lcv = RollThreshold was set in %roll to indicate that we will loop
if RollThreshold (default value of 5) is exceeded. For example, if there are 6
contiguous inputs into the block, they will be rolled.

The fourth argument, sigIdx, allows TLC to perform some magic. In the event
that the RollThreshold is not exceeded (for example, if the block is only
connected to a scalar input signal) TLC will not roll it into a loop. Instead, TLC
will insert an integer value on the appropriate variable and place the
corresponding line of code as “straight-line” code.

8 TLC Tutorial

8-42

If the RollThreshold is exceeded, (if there are 10 inputs to the block) TLC
collapses the lines of code into a for loop and uses an index variable to index
into lines within the for loop.

9
TLC Function Library
Reference

Obsolete Functions 9-3

Target Language Compiler Functions 9-5

Input Signal Functions 9-10

Output Signal Functions 9-15

Parameter Functions 9-18

Block State and Work Vector Functions 9-22

Block Path and Error Reporting Functions 9-25

Code Configuration Functions 9-27

Sample Time Functions 9-30

Other Useful Functions 9-36

Advanced Functions 9-39

9 TLC Function Library Reference

9-2

This chapter provides a set of Target Language Compiler functions that are
useful for inlining S-functions. The TLC files contain many other library
functions, but you should use only the functions that are documented in these
reference pages for development. Undocumented functions may change
significantly from release to release. A table of obsolete functions and their
replacements is shown in Obsolete Functions.

You can find examples using these functions in matlabroot/toolbox/
simulink/blocks/tlc_c and matlabroot/toolbox/simulink/blocks/
tlc_ada. The corresponding MEX S-function source code is located in
matlabroot/simulink/src. M-file S-function and the MEX-file executables
(e.g., sfunction.dll) for matlabroot/simulink/src are located in
matlabroot/toolbox/simulink/blocks.

Obsolete Functions

9-3

Obsolete Functions
The following table shows obsolete functions and the functions that have
replaced them.

Obsolete Function Equivalent Replacement Function

LibBlockOutportLocation LibBlockDstSignalLocation

LibCacheGlobalPrmData Use the block function
BlockInstanceData.

LibContinuousState LibBlockContinuousState

LibControlPortInputSignal LibBlockSrcSignalLocation

LibDataInputPortWidth LibBlockInputSignalWidth

LibDataOutputPortWidth LibBlockOutputSignalWidth

LibDefineIWork Specifying IWork names is now
supported via the mdlRTW function in
your C-MEX S-function.

LibDefinePWork Specifying PWork names is now
supported via the mdlRTW function in
your C-MEX S-function.

LibDefineRWork Specifying RWork names is now
supported via the mdlRTW function in
your C-MEX S-function.

LibDiscreteState LibBlockDiscreteState

LibExternalResetSignal LibBlockInputSignal

LibMapSignalSource FcnMapDataTypedSignalSource

LibMaxBlockIOWidth Function is not used in the Real-Time
Workshop.

LibMaxDataInputPortWidth Function is not used in the Real-Time
Workshop.

9 TLC Function Library Reference

9-4

LibMaxDataOutputPortWidth Function is not used in the Real-Time
Workshop.

LibPathName LibGetBlockPath,
LibGetFormattedBlockPath

LibPrevZCState LibBlockPrevZCState

LibRenameParameter Specifying parameter names is now
supported via the mdlRTW function in
your C-MEX S-function.

LinConvertZCDirection Function is not used in the Real-Time
Workshop.

Obsolete Function Equivalent Replacement Function

Target Language Compiler Functions

9-5

Target Language Compiler Functions
This section lists the Target Language Compiler functions grouped by
category, and provides a description of each function. To view the source code
for a function, click on its name.

Common Function Arguments
Several functions take similar or identical arguments. To simplify the
reference pages, some of these arguments are documented in detail here
instead of in the reference pages.

Argument Description

portIdx Refers to an input or output port index, starting at zero, for
example the first input port of an S-function is 0.

ucv User control variable. This is an advanced feature that
overrides the lcv and sigIdx parameters. When used within
an inlined S-function, it should generally be specified as "".

lcv Loop control variable. This is generally generated by the
%roll directive via the second %roll argument (e.g.,
lcv=RollThreshold) and should be passed directly to the
library function. It will contain either "", indicating that the
current pass through the %roll is being inlined, otherwise it
will be the name of a loop control variable such as "i"
indicating that the current pass through the %roll is being
placed in a loop. Outside of the %roll directive, this is usually
specified as "".

9 TLC Function Library Reference

9-6

sigIdx
or
idx

Signal index. Sometimes referred to as the signal element
index. When accessing specific elements of an input or output
signal directly, the call to the various library routines should
have ucv="", lcv="", and sigIdx equal to the desired integer
signal index starting at 0. Note, for complex signals, sigIdx
can be an overloaded integer index specifying both wether the
real or imaginary part is being accessed and which element.
When accessing these items inside of a %roll, the sigIdx
generated by the %roll directive should be used.

Most functions that accept a sigIdx argument, accept it in an
overloaded form where sigIdx can be:

• An integer, e.g. 3. If the referenced signal is complex, then
this refers to the identifier for the complex container. If the
referenced signal is not complex, then this refers to the
identifier.

• An id-num usually of the form (see “Overloading sigIdx” on
page 9-7):

a "%<tRealPart>%<idx>" (e.g., "re3"). The real part of the
signal element. Usually "%<tRealPart>%<sigIdx>"
when sigIdx is generated by the %roll directive.

b "%<tImagPart>%<idx>" (e.g., "im3"). The imaginary part
of the signal element or "" if the signal is not complex.
Usually "%<tImagPart>%<sigIdx>" when sigIdx is
generated by the %roll directive.

The idx name is used when referring to a state or work vector.

Functions that accept the three arguments ucv, lcv, sigIdx
(or idx) are called differently depending upon whether or not
they are used with in a %roll directive. If they are used
within a %roll directive, ucv is generally specified as "", lcv
and sigIdx are the same as those specified in the %roll
directive. If they are not used with in a %roll directive, ucv
and lcv are generally specified as "" and sigIdx specifies
which index to access.

Argument Description

Target Language Compiler Functions

9-7

Overloading sigIdx
The signal index (sigIdx some times written as idx) can be overloaded when
passed to most library functions. Suppose we interested in element 3 of a
signal, ucv="", lcv="". The following table shows:

• Values of sigIdx

• Whether the signal being referenced is complex

• What the function that uses sigIdx returns

• An example of a returned variable

• Data type of the returned variable

Note that “container” in the following table refers to the object that
encapsulates both the real and imaginary parts of the number, e.g., creal_T
defined in matlabroot/extern/include/tmwtypes.h.

paramIdx Parameter index. Sometimes referred to as the parameter
element index. The handling of this parameter is very similar
to sigIdx (i.e., it can be #, re#, or im#).

stateIdx State index. Sometimes referred to as the state vector element
index (it must evaluate to an integer where the first element
starts at 0).

Argument Description

sigIdx Complex Function Returns Example Data
Type

"re3" yes Real part of element 3 u0[2].re real_T

"im3" yes Imaginary part of element 3 u0[2].im real_T

"3" yes Complex container of element 3 u0[2] creal_T

3 yes Complex container of element 3 u0[2] creal_T

"re3" no Element 3 u0[2] real_T

"im3" no " " N/A N/A

9 TLC Function Library Reference

9-8

Now suppose:

1 We are interested in element 3 of a signal

2 (ucv = "i" AND lcv == "") OR (ucv = "" AND lcv = "i")

The following table shows values of idx, whether the signal is complex, and
what the function that uses idx returns.

Notes

• The vector index is only added for wide signals.

• If ucv is not an empty string (" "), then the ucv is used instead of sigIdx in
the above examples and both lcv and sigIdx are ignored.

"3" no Element 3 u0[2] real_T

3 no Element 3 u0[2] real_T

sigIdx Complex Function Returns Example Data
Type

sigIdx Complex Function Returns

"re3" yes Real part of element i

"im3" yes Imaginary part of element i

"3" yes Complex container of element i

3 yes Complex container of element i

"re3" no Element i

"im3" no " "

"3" no Element i

3 no Element i

Target Language Compiler Functions

9-9

• If ucv is empty but lcv is not empty, then this function returns
"&y%<portIdx>[%<lcv>]" and sigIdx is ignored.

• It is assumed here that the roller has appropriately declared and initialized
the variables accessed inside the roller. The variables accessed inside the
roller should be specified using "rollVars" as the argument to the %roll
directive.

9 TLC Function Library Reference

9-10

Input Signal Functions

LibBlockInputSignal(portIdx, ucv, lcv, sigIdx)
Based on the input port number (portIdx), the user control variable (ucv), the
loop control variable (lcv), the signal index (sigIdx), and where this input
signal is coming from, LibBlockInputSignal returns the appropriate reference
to a block input signal.

The returned string value is a valid rvalue (right value) for an expression. The
block input signal may be coming from another block, a state vector, an
external input, or it can be a literal constant (e.g, 5.0).

Note Never use this function to access the address of an input signal.

Since the returned value can be a literal constant, you should not use this
function to access the address of an input signal. To access the address of an
input signal, use LibBlockInputSignalAddr. Accessing the address of the
signal via LibBlockInputSignal may result in a reference to a literal constant
(e.g., 5.0).

For example, the following would not work.

%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
x = &%<u>;

If %<u> refers to a invariant signal with a value of 4.95, the statement (after
being processed by the pre-processor) would be generated as

x = &4.95;

or, if the input signal sources to ground, the statement could come out as

x = &0.0;

neither of these would compile.

Avoid any such situations by using LibBlockInputSignalAddr.

%assign uAddr = LibBlockInputSignalAddr(0, "", lcv, sigIdx)
x = %<uAddr>;

Input Signal Functions

9-11

Real-Time Workshop tracks signals and parameters accessed by their address
and declares them in addressable memory.

Input Arguments (ucv, lcv, and sigIdx) Handling
Consider:

The value returned depends on what the input signal is connected to in the
block diagram and how the function is being invoked (e.g., in a %roll or
directly). In the above example, case 1 occurs when an explicit call is made with
the ucv set to "i". Cases 2 and 3 receive the same arguments, lcv and sigIdx,
however they produce different return values. Case 2 occurs when
LibBlockInputSignal is called within a %roll directive and the current roll
region is being rolled. Case 3 occurs when LibBlockInputSignal is called
within a %roll directive and the current roll region is not being rolled.

When called within a %roll directive, this function looks at ucv, lcv, and
sigIdx, the current roll region, and the current roll threshold to determine the
return value. The variable ucv has highest precedence, lcv has the next
highest precedence, and sigIdx has the lowest precedence. That is, if ucv is
specified, it will be used (thus, when called in a %roll directive it is usually "").
If ucv is not specified and lcv and sigIdx are specified, the returned value
depends on whether or not the current roll region is being placed in a for loop
or being expanded. If the roll region is being placed in a loop, then lcv is used,
otherwise, sigIdx is used.

A direct call to this function (inside or outside of a %roll directive) will use
sigIdx when ucv and lcv are specified as "".

For an example of this function, see matlabroot/toolbox/simulink/blocks/
tlc_c/sfun_multiport.tlc.

Function (case 1, 2, 3) Example Return Value

LibBlockInputSignal(0, "i", "", sigIdx) rtB.blockname[i]

LibBlockInputSignal(0, "", lcv, sigIdx) u0[i1]

LibBlockInputSignal(0, "", lcv, sigIdx) rtB.blockname[0]

9 TLC Function Library Reference

9-12

Example 1
To assign the outputs of a block to be the square of the inputs, you could use

%assign rollVars = ["U", "Y"]
%roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
 %assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
 %assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
 %<y> = %<u> * %<u>;
%endroll

This would be appropriate for a block with a single input port and a single
output port.

Example 2
Suppose we have a block with multiple input ports where each port has width
greater than or equal to 1 and at least one port has width 1. Setting the output
signal to the sum of the squares of all the input signals gives

%assign y = LibBlockOutputSignal(0, "", "", 0)
y = 0;

%assign rollVars = ["U"]
%foreach port = block.NumDataInputPorts - 1
 %roll sigIdx=RollRegions, lcv = RollThreshold, block, "Roller", rollVars
 %assign u = LibBlockInputSignal(port, "", lcv, sigIdx)
 y += %<u> * %<u>;
 %endroll
%endforeach

Since the first parameter of LibBlockInputSignal is 0-indexed, you must
index the foreach loop to start from 0 and end at NumDataInputPorts-1.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalAddr(portIdx, ucv, lcv, sigIdx)
Returns the appropriate string that provides the memory address of the
specified block input port signal.

When you need an input signal address, you must use this function instead of
appending an “&” to the string returned by LibBlockInputSignal. For
example, LibBlockInputSignal can return a literal constant, such as 5 (i.e., an
invariant input signal). Real-Time Workshop tracks when
LibBlockInputSignalAddr is called on an invariant signal and declares the

Input Signal Functions

9-13

signal as “const” data (which is addressable), instead of being placed as a literal
constant in the generated code (which is not addressable).

Note, unlike LibBlockInputSignal() the last input argument, sigIdx, is not
overloaded. Hence, if the input signal is complex, the address of the complex
container is returned.

In Ada, this function returns the identifier and the caller must append the
'Address attribute.

Example
To get the address of a wide input signal and pass it to a user-function for
processing, you could use

%assign uAddr = LibBlockInputSignalAddr(0, "", "", 0)
%assign y = LibBlockOutputSignal(0, "", "", 0)
y = myfcn(%<uAddr>);

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalDataTypeId(portIdx)
Returns the numeric identifier (id) corresponding to the data type of the
specified block input port.

If the input port signal is complex, this function returns the data type of the
real part (or the imaginary part) of the signal.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalDataTypeName(portIdx, reim)
Returns the name of the data type (e.g., int_T, ... creal_T) corresponding to the
specified block input port.

Specify the reim argument as "" if you want the complete signal type name.
For example, if reim=="" and the first output port is real and complex, the data
type name placed in dtname will be creal_T.

%assign dtname = LibBlockInputSignalDataTypeName(0,"")

9 TLC Function Library Reference

9-14

Specify the reim argument as tRealPart if you want the raw element type
name. For example, if reim==tRealPart and the first output port is real and
complex, the data type name returned will be real_T.

%assign dtname = LibBlockInputSignalDataTypeName(0,tRealPart)

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalDimensions(portIdx)
Returns the dimensions vector of specified block input port, e.g., [2,3].

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalIsComplex(portIdx)
Returns 1 if the specified block input port is complex, 0 otherwise.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalIsFrameData(portIdx)
Returns 1 if the specified block input port is frame based, 0 otherwise.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalNumDimensions(portIdx)
Returns the number of dimensions of the specified block input port.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalWidth(portIdx)
Returns the width of the specified block input port index.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

Output Signal Functions

9-15

Output Signal Functions

LibBlockOutputSignal(portIdx, ucv, lcv, sigIdx)
Based on the output port number (portIdx), the user control variable (ucv), the
loop control variable (lcv), the signal index (sigIdx), and where the output
signal destination, LibBlockOutputSignal returns the appropriate reference
to a block output signal.

The returned value is a valid lvalue (left value) for an expression. The block
output destination can be a location in the block I/O vector (another block’s
input), the state vector, or an external output.

Note Never use this function to access the address of an output signal.

The Real-Time Workshop tracks when a variable (e.g., signals and parameters)
is accessed by its address. To access the address of an output signal, use
LibBlockOutputSignalAddr as in the following example.

%assign yAddr = LibBlockOutputSignalAddr(0, "", lcv, sigIdx)
x = %<yAddr>;

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalAddr(portIdx, ucv, lcv, sigIdx)
Returns the appropriate string that provides the memory address of the
specified block output port signal.

When an output signal address is needed, you must use this function instead
of taking the address that is returned by LibBlockOutputSignal. For example,
LibBlockOutputSignal can return a literal constant, such as 5 (i.e., an
invariant output signal). When LibBlockOutputSignalAddr is called on an
invariant signal, the signal is declared as a “const” instead of being placed as a
literal constant in the generated code.

Note, unlike LibBlockOutputSignal(), the last argument, sigIdx, is not
overloaded. Hence, if the output signal is complex, the address of the complex
container is returned.

9 TLC Function Library Reference

9-16

In Ada, this function returns the identifier and the caller must append the
'Address attribute.

Example
To get the address of a wide output signal and pass it to a user-function for
processing, you could use

%assign u = LibBlockOutputSignalAddr(0, "", "", 0)
%assign y = LibBlockOutputSignal(0, "", "", 0)
y = myfcn (%<u>);

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalDataTypeId(portIdx)
Returns the numeric ID corresponding to the data type of the specified block
output port.

If the output port signal is complex, this function returns the data type of the
real (or the imaginary) part of the signal.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalDataTypeName(portIdx, reim)
Returns the type name string (e.g., int_T, ... creal_T) of the data type
corresponding to the specified block output port.

Specify the reim argument as "" if you want the complete signal type name.
For example, if reim=="" and the first output port is real and complex, the data
type name placed in dtname will be creal_T.

%assign dtname = LibBlockOutputSignalDataTypeName(0x,"")

Specify the reim argument as tRealPart if you want the raw element type
name. For example, if reim==tRealPart and the first output port is real and
complex, the data type name returned will be real_T.

%assign dtname = LibBlockOutputSignalDataTypeName(0,tRealPart)

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

Output Signal Functions

9-17

LibBlockOutputSignalDimensions(portIdx)
Returns the dimensions of specified block output port.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalIsComplex(portIdx)
Returns 1 if the specified block output port is complex, 0 otherwise.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalIsFrameData(portIdx)
Returns 1 if the specified block output port is frame based, 0 otherwise.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalNumDimensions(portIdx)
Returns the number of dimensions of the specified block output port.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalWidth(portIdx)
Returns the width of specified block output port.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

9 TLC Function Library Reference

9-18

Parameter Functions

LibBlockMatrixParameter(param,rucv,rlcv,ridx,cucv,
clcv,cidx)
Returns the appropriate matrix parameter for a block given the row and
column user control variables (rucv, cucv), loop control variables (rlcv, clcv),
and indices (ridx, cidx). Generally, blocks should use LibBlockParameter. If
you have a matrix parameter, you should write it as a column major vector and
access it via LibBlockParameter.

Note Loop rolling is currently not supported, and will generate an error if
requested (i.e., if either rlcv or clcv is not equal to "").

The row and column index arguments are similar to the arguments for
LibBlockParameter. The column index (cidx) is overloaded to handle complex
numbers.

See function in matlabroot/rtw/c/tlc/paramlib.tlc or matlabroot/rtw/
ada/tlc/paramlib.tlc.

LibBlockMatrixParameterAddr(param,rucv,rlcv,ridx,
cucv,clcv,cidx)
Returns the address of a matrix parameter.

Note LibBlockMatrixParameterAddr returns the address of a matrix
parameter. Loop rolling is not supported (i.e., rlcv and clcv should both be
the empty string).

See function in matlabroot/rtw/c/tlc/paramlib.tlc or matlabroot/rtw/
ada/tlc/paramlib.tlc.

Parameter Functions

9-19

LibBlockParameter(param, ucv, lcv, sigIdx)
Based on the parameter reference (param), the user control variable (ucv), the
loop control variable (lcv), the signal index (sigIdx), and the state of
parameter inlining, this function returns the appropriate reference to a block
parameter.

The returned value is always a valid rvalue (right-hand side expression value).
For example,

To illustrate the basic workings of this function, assume a noncomplex vector
signal where Gain[0]=4.55.

LibBlockParameter(Gain, "", "i", 0)

Case Function Call May Produce

1 LibBlockParameter(Gain, "i", lcv, sigIdx) rtP.blockname[i]

2 LibBlockParameter(Gain, "i", lcv, sigIdx) rtP.blockname

3 LibBlockParameter(Gain, "", lcv, sigIdx) p_Gain[i]

4 LibBlockParameter(Gain, "", lcv, sigIdx) p_Gain

5 LibBlockParameter(Gain, "", lcv, sigIdx) 4.55

6 LibBlockParameter(Gain, "", lcv, sigIdx) rtP.blockname.re

7 LibBlockParameter(Gain, "", lcv, sigIdx) rtP.blockname.im

Case Rolling Inline
Parameter

Type Result Required In
Memory

1 0 1 scalar 4.55 no

2 1 1 scalar 4.55 no

3 0 1 vector 4.55 no

4 1 1 vector p_Gain[i] yes

9 TLC Function Library Reference

9-20

Note case 4. Even though inline parameter is true, the parameter must be
placed in memory (RAM) since it’s accessed inside a for-loop.

Note This function also supports expressions when used with inlined
parameters and parameter tuning.

For example, if the parameter field had the M expression '2*a', this function
will return the C expression '(2 * a)'. The list of functions supported by this
function is determined by the functions FcnConvertNodeToExpr and
FcnConvertIdToFcn. To enhance functionality, augment/update either of these
functions.

Note that certain types of expressions are not supported such as x * y where
both x and y are nonscalars.

See the Real-Time Workshop documentation about tunable parameters for
more details on the exact functions and syntax that is supported.

Warning
Do not use this function to access the address of a parameter, or you may end
up referencing a number (i.e., &4.55) when the parameter is inlined. You can
avoid this situation entirely by using LibBlockParameterAddr().

See function in matlabroot/rtw/c/tlc/paramlib.tlc or matlabroot/rtw/
ada/tlc/paramlib.tlc.

LibBlockParameterAddr(param, ucv, lcv, idx)
Returns the address of a block parameter.

5 0 0 scalar rtP.blk.Gain no

6 0 0 scalar rtP.blk.Gain no

7 0 0 vector rtP.blk.prm[0] no

8 0 0 vector p.Gain[i] yes

Case Rolling Inline
Parameter

Type Result Required In
Memory

Parameter Functions

9-21

Using LibBlockParameterAddr to access a parameter when the global
InlineParameters variable is equal to 1 will cause the variable to be declared
“const” in RAM instead of being inlined.

Also, trying to access the address of an expression when inline parameters is
on and the expression has multiple tunable/rolled variables in it, will result in
an error.

See function in matlabroot/rtw/c/tlc/paramlib.tlc or matlabroot/rtw/
ada/tlc/paramlib.tlc.

LibBlockParameterDataTypeId(param)
Returns the numeric ID corresponding to the data type of the specified block
parameter.

See function in matlabroot/rtw/c/tlc/paramlib.tlc or matlabroot/rtw/
ada/tlc/paramlib.tlc.

LibBlockParameterDataTypeName(param, reim)
Returns the name of the data type corresponding to the specified block
parameter.

See function in matlabroot/rtw/c/tlc/paramlib.tlc or matlabroot/rtw/
ada/tlc/paramlib.tlc.

LibBlockParameterIsComplex(param)
Returns 1 if the specified block parameter is complex, 0 otherwise.

See function in matlabroot/rtw/c/tlc/paramlib.tlc or matlabroot/rtw/
ada/tlc/paramlib.tlc.

LibBlockParameterSize(param)
Returns a vector of size 2 in the format [nRows, nCols] where nRows is the
number of rows and nCols is the number of columns.

See function in matlabroot/rtw/c/tlc/paramlib.tlc or matlabroot/rtw/
ada/tlc/paramlib.tlc.

9 TLC Function Library Reference

9-22

Block State and Work Vector Functions

LibBlockContinuousState(ucv, lcv, idx)
Returns a string corresponding to the specified block discrete state (CSTATE)
element.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockDWork(dwork, ucv, lcv, sigIdx)
Returns a string corresponding to the specified block DWORK element.

Note, the last input argument is overloaded to handle complex DWorks.

sigIdx = "re3" => returns the real part of element 3 if the dwork is complex,
otherwise returns element 3.

sigIdx = "im3" => returns the imaginary part of element 3 if the dwork is
complex, otherwise returns "".

sigIdx = "3" => returns the complex container of element 3, if the dwork
is complex, otherwise returns element 3.

If either ucv or lcv is specified (i.e., it is not equal to "") then the index part of
the last input argument (sigIdx) is ignored.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockDWorkAddr(dwork, ucv, lcv, idx)
Returns a string corresponding to the address of the specified block DWORK
element.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockDWorkDataTypeId(dwork)
Returns the data type ID of specified block DWORK.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

Block State and Work Vector Functions

9-23

LibBlockDWorkDataTypeName(dwork, reim)
Returns the data type name of specified block DWORK.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockDWorkIsComplex(dwork)
Returns 1 if the specified block DWORK is complex, returns 0 otherwise.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockDWorkName(dwork)
Returns the name of the specified block DWORK.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockDWorkUsedAsDiscreteState(dwork)
Returns 1 if the specifed block DWORK is used as a discrete state, returns 0
otherwise.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockDWorkWidth(dwork)
Returns the width of the specified block DWORK.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockDiscreteState(ucv, lcv, idx)
Returns a string corresponding to the specified block discrete state (DSTATE)
element.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

9 TLC Function Library Reference

9-24

LibBlockIWork(iwork, ucv, lcv, idx)
Returns a string corresponding to the specified block IWORK element.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockMode(ucv, lcv, idx)
Returns a string corresponding to the specified block MODE element.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockPWork(pwork, ucv, lcv, idx)
Returns a string corresponding to the specified block PWORK element.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

LibBlockRWork(rwork, ucv, lcv, idx)
Returns a string corresponding to the specified block RWORK element.

See function in matlabroot/rtw/c/tlc/blocklib.tlc or matlabroot/rtw/
ada/tlc/blocklib.tlc.

Block Path and Error Reporting Functions

9-25

Block Path and Error Reporting Functions

LibBlockReportError(block,errorstring)
This should be used when reporting errors for a block. This function is designed
to be used from block target files (e.g., the TLC file for an inlined S-function).

This function can be called with or without the block record scoped. To call this
function without a block record scoped, pass the block record. To call this
function when the block is scoped, pass block = []. Specifically

LibBlockReportError([],"error string") -- If block is scoped
LibBlockReportError(blockrecord,"error string")--If block record is

available

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibBlockReportFatalError(block,errorstring)
This should be used when reporting fatal (assert) errors for a block. Use this
function for defensive programming. Refer to Appendix B, “TLC Error
Handling.”

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibBlockReportWarning(block,warnstring)
This should be used when reporting warnings for a block. This function is
designed to be used from block target files (e.g., the TLC file for an inlined
S-function).

This function can be called with or without the block record scoped. To call this
function without a block record scoped, pass the block record. To call this
function when the block is scoped, pass block = [].

Specifically

LibBlockReportWarning([],"warn string") -- If block is scoped
LibBlockReportWarning(blockrecord,"warn string") -- If block record is

available

9 TLC Function Library Reference

9-26

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibGetBlockPath(block)
LibGetBlockPath returns the full block path name string for a block record
including carriage returns and other special characters that may be present in
the name. Currently, the only other special string sequences defined are '/*'
and '*/'.

The full block path name string is useful when accessing blocks from MATLAB.
For example, you can use the full block name with hilite_system() via FEVAL
to match the Simulink path name exactly.

Use LibGetFormattedBlockPath to get a block path suitable for placing in a
comment or error message.

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibGetFormattedBlockPath(block)
LibGetFormattedBlockPath returns the full path name string of a block
without any special characters. The string returned from this function is
suitable for placing the block name, in comments or generated code, on a single
line.

Currently, the special characters are carriage returns, '/*', and '*/'. A
carriage return is converted to a space, '/*' is converted to '/+', and '*/' is
converted to '+/'. Note that a '/' in the name is automatically converted to a
'//' to distinguish it from a path separator.

Use LibGetBlockPath to get the block path needed by MATLAB functions used
in reference blocks in your model.

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

Code Configuration Functions

9-27

Code Configuration Functions

LibAddToModelSources(newFile)
For blocks, this function is generally called from BlockTypeSetup. This
function adds a filename to the list of sources needed to build this model. This
function returns 1 if the filename passed in was a duplicate (i.e., it was already
in the sources list) and 0 if it was not a duplicate.

See function in matlabroot/rtw/c/tlc/commonhdrlib.tlc or matlabroot/
rtw/ada/tlc/commonhdrlib.tlc.

LibCacheDefine(buffer)
Each call to this function appends your buffer to the existing cache buffer. For
blocks, this function is generally called from BlockTypeSetup.

C
This function caches #define statements for inclusion in model.h.

LibCacheDefine should be called from inside BlockTypeSetup to cache a
#define statement. Each call to this function appends your buffer to the
existing cache buffer. The #define statements are placed inside model.h.

Example.

%openfile buffer
#define INTERP(x,x1,x2,y1,y2) (y1+((y2-y1)/(x2-x1))*(x-x1))
#define this that

%closefile buffer
%<LibCacheDefine(buffer)>

Ada
This function caches definitions for inclusion in model.adb The Ada utility
functions and procedures are placed in the generated model.adb package body
immediately preceding Mdl_Start.

See function in matlabroot/rtw/c/tlc/cachelib.tlc or matlabroot/rtw/
ada/tlc/cachelib.tlc.

9 TLC Function Library Reference

9-28

LibCacheExtern(buffer)
LibCacheExtern should be called from inside BlockTypeSetup to cache an
extern statement. Each call to this function appends your buffer to the existing
cache buffer. The extern statements are placed in model.h or model.ads.

C Example
%openfile buffer
extern real_T mydata;
%closefile buffer
%<LibCacheExtern(buffer)>

See function in matlabroot/rtw/c/tlc/cachelib.tlc or matlabroot/rtw/
ada/tlc/cachelib.tlc.

LibCacheFunctionPrototype(buffer)
LibCacheFunctionPrototype should be called from inside BlockTypeSetup to
cache a function prototype. Each call to this function appends your buffer to the
existing cache buffer. The prototypes are placed inside model.h.

Example
%openfile buffer
extern int_T fun1(real_T x);
extern real_T fun2(real_T y, int_T i);
%closefile buffer
%<LibCacheFunctionPrototype(buffer)>

See function in matlabroot/rtw/c/tlc/cachelib.tlc.

LibCacheIncludes(buffer)
LibCacheIncludes should be called from inside BlockTypeSetup to cache
#include statements. Each call to this function appends your buffer to the
existing cache buffer. The #include statements are placed inside model.h.

Example
%openfile buffer
#include "myfile.h"
%closefile buffer
%<LibCacheInclude(buffer)>

Code Configuration Functions

9-29

For Ada, the equivalent statements are placed in the Ada package
specification.

See function in matlabroot/rtw/c/tlc/cachelib.tlc or matlabroot/rtw/
ada/tlc/cachelib.tlc.

LibCacheTypedefs(buffer)
LibCacheTypedefs should be called from inside BlockTypeSetup to cache
typedef declarations. Each call to this function appends your buffer to the
existing cache buffer. The typedef statements are placed inside model.h or the
Ada package specification if the language is Ada.

Example
%openfile buffer
typedef foo bar;

%closefile buffer
%<LibCacheTypedefs(buffer)>

See function in matlabroot/rtw/c/tlc/cachelib.tlc or matlabroot/rtw/
ada/tlc/cachelib.tlc.

9 TLC Function Library Reference

9-30

Sample Time Functions

LibGetGlobalTIDFromLocalSFcnTID(sfcnTID)
Returns the model task identifier (sample time index) corresponding to the
specified local S-function task identifier or port sample time. This function
allows you to use one function to determine a global TID, independent of port-
or block-based sample times.

Calling this function with an integer argument is equivalent to the statement
SampleTimesToSet[sfcnTID][1]. SampleTimesToSet is a matrix that maps
local S-function TIDs to global TIDs.

The input argument to this function should be either

sfcnTID: integer (e.g., 2)

For block-based sample times (e.g., in S-function mdlInitializeSizes,
ssSetNumSampleTimes(S,N) with N > 1 was specified), sfcnTID is an integer
starting at 0 of the corresponding local S-function sample time.

or

sfcnTID: string of the form "InputPortIdxI", "OutputPortIdxI" where I
is a number ranging from 0 to the number of ports (e.g., "InputPortIdx0",
"OutputPortIdx7"). For port-based sample times (e.g., in S-function
mdlInitializeSizes,
ssSetNumSampleTimes(S,PORT_BASED_SAMPLE_TIMES) was specified),
sfcnTID is a string giving the input (or output) port index.

Examples

Multirate block.

%assign globalTID = LibGetGlobalTIDFromLocalSFcnTID(2)

or
%assign globalTID =
LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx4")

%assign period =
CompiledModel.SampleTime[globalTID].PeriodAndOffset[0]

Sample Time Functions

9-31

%assign offset =
CompiledModel.SampleTime[globalTID].PeriodAndOffset[1]

Inherited sample time block.

%switch (LibGetSFcnTIDType(0))
%case "discrete"
%case "continuous"
%assign globalTID = LibGetGlobalTIDFromLocalSFcnTID(2)
%assign period = ...
CompiledModel.SampleTime[globalTID].PeriodAndOffset[0]

%assign offset = ...
CompiledModel.SampleTime[globalTID].PeriodAndOffset[1]

%breaksw
%case "triggered"
%assign period = -1
%assign offset = -1
%breaksw

%case "constant"
%assign period = rtInf
%assign offset = 0
%breaksw

%default
%<LibBlockReportFatalError([],"Unknown tid type")>

%endswitch

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibGetNumSFcnSampleTimes(block)
Returns the number of S-function sample times for a block.

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

9 TLC Function Library Reference

9-32

LibGetSFcnTIDType(sfcnTID)
Returns the type of the specified S-function’s task identifier (sfcnTID).

"continuous" if the specified sfcnTID is continuous.

"discrete" if the specified sfcnTID is discrete.

"triggered" if the specified sfcnTID is triggered.

"constant" if the specified sfcnTID is constant.

The format of sfcnTID must be the same as for LibIsSFcnSampleHit.

Note This is useful primarily in the context of S-functions that specify an
inherited sample time.

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibGetTaskTimeFromTID(block)
Returns the string "ssGetT(S)" if the block is constant or the system is single
rate and "ssGetTaskTime(S, tid)" otherwise. In both cases, S is the name of
the SimStruct.

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibIsContinuous(TID)
Returns 1 if the specifed task identifier (TID) is continuous, 0 otherwise. Note,
TIDs equal to "triggered" or "constant" are not continuous.

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibIsDiscrete(TID)
Returns 1 if the specifed task identifier (TID) is discrete, 0 otherwise. Note, task
identifiers equal to "triggered" or "constant" are not discrete.

Sample Time Functions

9-33

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibIsSFcnSampleHit(sfcnTID)
Returns 1 if a sample hit occurs for the specified local S-function task identifier
(TID), 0 otherwise.

The input argument to this function should be either

sfcnTID: integer (e.g., 2)

For block-based sample times (e.g., in S-function mdlInitializeSizes,
ssSetNumSampleTimes(S,N) with N > 1 was specified), sfcnTID is an integer
starting at 0 of the corresponding local S-function sample time.

or

sfcnTID: "InputPortIdxI", "OutputPortIdxI" (e.g., "InputPortIdx0",
"OutputPortIdx7")

For port based sample times (e.g., in S-function mdlInitializeSizes,
ssSetNumSampleTimes(S,PORT_BASED_SAMPLE_TIMES) was specified),
sfcnTID is a string giving the input (or output) port index.

Examples

• Consider a multirate S-function block with 4 block sample times. The call
LibIsSFcnSampleHit(2) will return the code to check for a sample hit on the
3rd S-function block sample time.

• Consider a multirate S-function block with three input and eight output
sample times. The call LibIsSFcnSampleHit("InputPortIdx0") returns the
code to check for a sample hit on the first input port. The call
LibIsSFcnSampleHit("OutputPortIdx7") returns the code to check for a
sample hit on the eight output port.

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

9 TLC Function Library Reference

9-34

LibIsSFcnSingleRate(block)
LibIsSFcnSingleRate returns a boolean value (1 or 0) indicating whether the
S-function is single rate (one sample time) or multirate (multiple sample
times).

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibIsSFcnSpecialSampleHit(sfcnSTI, sfcnTID)
Returns the Simulink macro to promote a slow task (sfcnSTI) into a faster task
(sfcnTID).

This advanced function is specifically intended for use in rate transition blocks.
This function determines the global TID from the S-function TID and calls
LibIsSpecialSampleHit using the global TIDs for both the sample time index
(sti) and the task ID (tid).

The input arguments to this function are:

• For multirate S-function blocks:

sfcnSTI: local S-function sample time index (sti) of the slow task that is to
be promoted

sfcnTID: local S-function task ID (tid) of the fast task where the slow task
will be run.

• For single rate S-function blocks using SS_OPTION_RATE_TRANSITION,
sfcnSTI and sfcnTID are ignored and should be specified as "".

The format of sfcnSTI and sfcnTID must follow that of the argument to
LibIsSFcnSampleHit.

Examples

• A rate transition S-function (one sample time with
SS_OPTION_RATE_TRANSITION)
if (%<LibIsSFcnSpecialSampleHit("","")>) {

Sample Time Functions

9-35

• A multi-rate S-function with port-based sample times where the output rate
is slower than the input rate (e.g., a zero-order hold operation)

if (%<LibIsSFcnSpecialSampleHit("OutputPortIdx0","InputPortIdx0")>) {

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

9 TLC Function Library Reference

9-36

Other Useful Functions

LibCallFCSS(system, simObject, portEl, tidVal)
For use by inlined S-functions with function call outputs. Returns a string to
either call function-call subsystem with the appropriate number of arguments
or generates the subsystem’s code right there (inlined).

Note Used by inlined S-functions to make a function-call, LibCallFCSS
returns the call to the function-call subsystem with the appropriate number of
arguments or the inlined code. An S-function can execute a function-call
subsystem only via its first output port.

See the SFcnSystemOutputCall record in the model.rtw file.

The return string is determined by the current code format.

Example
%foreach fcnCallIdx = NumSFcnSysOutputCalls
%% call the downstream system
%with SFcnSystemOutputCall[fcnCallIdx]
%% skip unconnected function call outputs
%if LibIsEqual(BlockToCall, "unconnected")
%continue

%endif
%assign sysIdx = BlockToCall[0]
%assign blkIdx = BlockToCall[1]
%assign ssBlock = System[sysIdx].Block[blkIdx]
%assign sysToCall = System[ssBlock.ParamSettings.SystemIdx]
%<LibCallFCSS(sysToCall, tSimStruct, FcnPortElement, ...
ParamSettings.SampleTimesToSet[0][1])>\

%endwith
%endforeach

BlockToCall and FcnPortElement are elements of the SFcnSystemOutputCall
record. System is a record within the global CompiledModel record.

This example is from the file matlabroot/toolbox/simulink/blocks/tlc_c/
fcncallgen.tlc.

Other Useful Functions

9-37

See function in matlabroot/rtw/c/tlc/syslib.tlc or matlabroot/rtw/ada/
tlc/syslib.tlc.

LibGetDataTypeComplexNameFromId(id)
Returns the name of the complex data type corresponding to a data type ID. For
example, if id == tSS_DOUBLE then this function returns "creal_T".

See function in matlabroot/rtw/c/tlc/dtypelib.tlc or matlabroot/rtw/
ada/tlc/dtypelib.tlc.

LibGetDataTypeEnumFromId(id)
Returns the data type enum corresponding to a data type ID. For example id ==
tSS_DOUBLE => enum = "SS_DOUBLE". If id does not correspond to a built-in
data type, this function returns "".

See function in matlabroot/rtw/c/tlc/dtypelib.tlc or matlabroot/rtw/
ada/tlc/dtypelib.tlc.

LibGetDataTypeNameFromId(id)
Returns the data type name corresponding to a data type ID.

See function in matlabroot/rtw/c/tlc/dtypelib.tlc or matlabroot/rtw/
ada/tlc/dtypelib.tlc.

LibGetT()
Returns a string to access the absolute time. You should only use this function
to access time.

Calling this function causes the global flag CompiledModel.NeedAbsoluteTime
to be set to 1. If this flag isn’t set and you manually accessed time, the
generated code will not compile.

This function is the TLC version of the SimStruct macro, ssGetT.

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibIsComplex(arg)
Returns 1 if the argument passed in is complex, 0 otherwise.

9 TLC Function Library Reference

9-38

See function in matlabroot/rtw/c/tlc/utillib.tlc or matlabroot/rtw/ada/
tlc/utillib.tlc.

LibIsFirstInitCond(s)
LibIsFirstInitCond returns generated code intended for placement in the
initialization function. This code determines, during run-time, whether the
initialization function is being called for the first time.

This function also sets a flag that tells the Real-Time Workshop if it needs to
declare and maintain the first-initialize-condition flag.

This function is the TLC version of the SimStruct macro, ssIsFirstInitCond.

See function in matlabroot/rtw/c/tlc/syslib.tlc or matlabroot/rtw/ada/
tlc/syslib.tlc.

LibMaxIntValue(dtype)
For a built-in integer data type, this function returns the formatted maximum
value of that data type.

See function in matlabroot/rtw/c/tlc/dtypelib.tlc or matlabroot/rtw/
ada/tlc/dtypelib.tlc.

LibMinIntValue(dtype)
For a built-in integer data type, this function returns the formatted minimum
value of that data type.

See function in matlabroot/rtw/c/tlc/dtypelib.tlc or matlabroot/rtw/
ada/tlc/dtypelib.tlc.

Advanced Functions

9-39

Advanced Functions

LibBlockInputSignalBufferDstPort(portIdx)
Returns the output port corresponding to input port (portIdx) that share the
same memory, otherwise (-1) is returned. You will need to use this function
when you specify ssSetInputPortOverWritable(S,portIdx,TRUE) in your
S-function.

If an input port and some output port of a block are:

• Not test points, and

• The input port is overwritable,

then the output port might reuse the same buffer as the input port. In this case,
LibBlockInputSignalBufferDstPort returns the index of the output port that
reuses the specified input port’s buffer. If none of the block’s output ports reuse
the specified input port buffer, then this function returns -1.

This function is the TLC implementation of the Simulink macro
ssGetInputPortBufferDstPort.

Example
Assume you have a block that has two input ports, both of which receive a
complex number in 2-wide vectors. The block outputs the product of the two
complex numbers.

%assign u1r = LibBlockInputSignal (0, "", "", 0)
%assign u1i = LibBlockInputSignal (0, "", "", 1)
%assign u2r = LibBlockInputSignal (1, "", "", 0)
%assign u2i = LibBlockInputSignal (1, "", "", 1)
%assign yr = LibBlockOutputSignal (0, "", "", 0)
%assign yi = LibBlockOutputSignal (0, "", "", 1)

%if (LibBlockInputSignalBufferDstPort(0) != -1)
%% The first input is going to get overwritten by yr so
%% we need to save the real part in a temporary variable.
{
real_T tmpRe = %<u1r>;

%assign u1r = "tmpRe";
%endif

9 TLC Function Library Reference

9-40

%<yr> = %<u1r> * %<u2r> - %<u1i> * %<u2i>;
%<yi> = %<u1r> * %<u2i> + %<u1i> * %<u2r>;

%if (LibBlockInputSignalBufferDstPort(0) != -1)
}

%endif

Note that this example could have equivalently used
(LibBlockInputSignalBufferDstPort(0) == 0) as the boolean condition for
the %if statements since there is only one output port.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalStorageClass(portIdx, idx)
Returns the storage class of the specified block input port signal. The storage
class can be "Auto", "ExportedSignal", "ImportedExtern", or
"ImportedExternPointer".

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockInputSignalStorageTypeQualifier(portIdx,
idx)
Returns the storage type qualifier of the specified block input port signal. The
type qualifier can be anything entered by the user such as "const". The default
type qualifier is "Auto", which means do the default action.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalIsGlobal(portIdx)
Returns 1 if the specified block output port signal is declared in the global
scope, otherwise returns 0.

If this function returns 1, then the variable holding this signal is accessible
from any where in generated code. For example, this function returns 1 for
signals that are test points, external or invariant.

Advanced Functions

9-41

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalIsInBlockIO(portIdx)
Returns 1 if the specified block output port exists in the global Block I/O data
structure. You may need to use this if you specify
ssSetOutputPortReusable(S,portIdx,TRUE) in your S-function.

See matlabroot/toolbox/simulink/blocks/tlc_c/sfun_multiport.tlc.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalIsValidLValue(portIdx)
Returns 1 if the specified block output port signal can be used as a valid left
hand side argument (lvalue) in an assignment expression, otherwise returns
0. For example, this function returns 1 if the block output port signal is in read/
write memory.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalStorageClass(portIdx)
Returns the storage class of the block’s specified output signal. The storage
class can be "Auto", "ExportedSignal", "ImportedExtern", or
"ImportedExternPointer".

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockOutputSignalStorageTypeQualifier(portIdx)
Returns the storage type qualifier of the block’s specified output signal. The
type qualifier can be anything entered by the user such as "const". The default
type qualifier is "Auto", which means do the default action.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

9 TLC Function Library Reference

9-42

LibBlockSrcSignalBlock(portIdx, idx)
Returns a reference to the block that is source of the specified block input port
element. The return argument is one of the following.

Example
If you want to find the block that drives the second input on the first port of the
current block, then, assign the input signal of this source block to the variable
y. The following code fragment does exactly this.

%assign srcBlock = LibBlockSrcSignalBlock(0, 1)
%% Make sure that the source is a block
%if TYPE(srcBlock) == "Vector"
%assign sys = srcBlock[0]
%assign blk = srcBlock[1]
%assign block = CompiledModel.System[sys].Block[blk]
%with block
%assign u = LibBlockInputSignal(0, "", "", 0)
y = %<u>;

%endwith
%endif

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockSrcSignalIsDiscrete(portIdx, idx)
Returns 1 if the source signal corresponding to the specified block input port
element is discrete, otherwise returns 0.

[systemIdx, blockIdx] If unique block output or block state.

"ExternalInput" If external input (root inport).

"Ground" If unconnected or connected to ground.

"FcnCall" If function-call output.

0 If not unique (i.e., sources to a Merge block or is a
reused signal due to block I/O optimization).

Advanced Functions

9-43

Note that this function also returns 0 if the driving block cannot be uniquely
determined if it is a merged or reused signal (i.e., the source is a Merge block
or the signal has been reused due to optimization).

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockSrcSignalIsGlobalAndModifiable(portIdx,
idx)
This function returns 1 if the source signal corresponding to the specified block
input port element satisfies the following three conditions:

• It is readable everywhere in the generated code.

• It can be referenced by its address.

• Its value can change (i.e., it is not declared as a “const”).

Otherwise, this function returns 0.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

LibBlockSrcSignalIsInvariant(portIdx, idx)
Returns 1 if the source signal corresponding to the specified block input port
element is invariant (i.e., the signal does not change).

For example, a source block with a constant TID (or equivalently, an infinite
sample time) would output an invariant signal.

See function in matlabroot/rtw/c/tlc/blkiolib.tlc or matlabroot/rtw/
ada/tlc/blkiolib.tlc.

9 TLC Function Library Reference

9-44

A

model.rtw

model.rtw File Contents A-2

model.rtw Changes Between
Real-Time Workshop 3.0 and 4.0 A-6

General Information and Solver Specification A-11

RTWGenSettings Record A-13

Data Logging Information A-14

Data Structure Sizes A-16

Sample Time Information A-18

Data Type Information A-20

Block Type Counts A-21

Model Hierarchy A-22

External Inputs and Outputs A-25

Data Store Information A-27

Block I/O Information A-28

Data Type Work (DWork) Information A-33

State Mapping Information A-35

Block Record Defaults A-36

Parameter Record Defaults A-37

Data and Control Port Defaults A-38

Model Parameters Record A-40

System Record A-43

Stateflow Record A-56

Model Checksums A-57

Block Specific Records A-58

Linear Block Specific Records A-77

A model.rtw

A-2

model.rtw File Contents
This appendix describes the contents of the model.rtw file, which is created
from your block diagram during the Real-Time Workshop build procedure, and
processed by the Target Language Compiler. The contents of the model.rtw file
is a compiled version of your block diagram. The model.rtw file contains all the
information necessary to define behavioral properties of the model for the
purpose of generating code. Most graphical model information is excluded from
the model.rtw file.

This appendix is provided so that you can modify the existing code generation
or even create a new code generator to suit your needs. The general format of
the model.rtw file is

CompiledModel {
<TLC variables and records describing the compiled model>

}

Understanding the model.rtw File
You need to understand the basic format of the model.rtw file if you are writing
a TLC file for an S-function (i.e., inlining the S-function). You do not, however,
need to know all the details about the model.rtw file. For the purpose of
inlining an S-function, you only need to understand the concepts of the
model.rtw file and how to access the information using the Target Language
Compiler.

Items such as signal connectivity and obtaining input and output connections
for your S-function are contained within the model.rtw file using mapping
tables. Processing this information directly in the Target Language Compiler
is difficult and will not remain compatible between releases of our tools. To
simplify writing TLC files for S-functions and provide compatibility between,
many library functions (which start with the prefix Lib) are provided. For
example to access your inputs to your S-function, you should use
LibBlockInputSignal.

When the Target Language Compiler calls the various functions that exist in
your TLC file, the Block record for your S-function will be scoped. In this case,
you have access to the Parameters and ParamSettings records shown in the
Block Type: S-Function section.

model.rtw File Contents

A-3

If your S-function has an mdlRTW method, then you can control several fields
within the Block record. For example, you can use the function
ssWriteRTWParamSettings to have rtwgen create a SFcnParameterSettings
record containing the “nontunable” (see ssSetSFcnParamTunable in the
Simulink book Writing S-Functions) parameter values in the Block record for
your S-function. There are several other functions available to mdlRTW for
adding information to the model.rtw file. See matlabroot/simulink/src/
sfuntmpl.doc for more information.

In addition, there are many Target Language Compiler library functions
available to help you inline S-functions. See Chapter 9, “TLC Function Library
Reference,” for a complete list of Target Language Compiler library functions.

Note The contents of the model.rtw file may change from release to release.
The MathWorks will make every effort to keep the model.rtw file compatible
with previous releases. We cannot, however, guarantee that the file will be
compatible between major enhancement releases. We will always try to
maintain compatibility for the MathWorks-provided Target Language
Compiler library functions (Lib*). We will document any improvements/
changes to the library functions.

How TLC Operates on a Record File
To understand the format of the model.rtw file, you need to understand how
the Target Language Compiler operates on a record (database) file, e.g.,
model.rtw. The model.rtw contains parameter value pairs, records, lists,
default records, and parameter records.

An example of a parameter value pair (or field) is

SigLabel "velocity"

which specifies that the field (or variable) SigLabel contains the value
"velocity". You can place this field in a record named Signal with

Signal {
SigLabel "velocity"

}

A model.rtw

A-4

Accessing Record Fields. To access fields within a record, use the dot operator. For
example, Signal.SignalLabel accesses the signal label field of the Signal
record.

Changing Scope. You can change the local scope to any record in the Target
Language Compiler using the with directive. This allows for both relative and
absolute scoping. The Target Language Compiler first checks for the item being
accessed in the local scope; if the item is not there, it then searches the global
name pool (global scope).

Creating a List. The Target Language Compiler creates a list by contacting
several records. For example,

NumSignals 2
Signal {
SigLabel "velocity"

}
Signal {
SigLabel "position"

}

This code creates a parameter called NumSignals that specifies the length of
the list. This is useful when using the foreach directive. To access the second
signal, use Signal[1]. Note, the first index in a Target Language Compiler list
is 0.

You can create a default record by appending the word Defaults to the record
name. For example,

SignalDefaults {
ComplexSignal no

}
Signal {
SigLabel "velocity"

}

An access to the field Signal.ComplexSignal returns no. The Target Language
Compiler first checks the Signal record for the field (parameter)
ComplexSignal. Since it does not exist in this example, the Target Language
Compiler searches for the field SignalDefaults.ComplexSignal, which has
the value no. (If SignalDefaults.ComplexSignal did not exist, it would
generate an error.)

model.rtw File Contents

A-5

A parameter record is a record named Parameter that contains, at a minimum,
the fields Name and Value. The Target Language Compiler automatically
promotes the parameter up one level and creates a new field containing Name
and Value.

For example,

Block {
Parameter {
Name Velocity
Value 10.0

}
}

You can access the Velocity parameter using Block.Velocity. The value
returned is 10.0.

General model.rtw Concepts
The layout of the model.rtw file is based around the structure of Simulink
models. Conceptually, the model consists of systems and blocks — blocks read
their input, manage their states, and write their output. This figure outlines
the basic object-oriented view of a block. At the model level, there are
well-defined working areas such as the block I/O (rtB) vector.

Block

Block I/O
Struct,
rtB

External
Outputs
Struct,
rtY

External
Inputs
Struct,
rtU

rtGround

States
Struct,
rtX

Work
Structs,
rtRWork,
rtIWork,
rtPWork,

Parameter
Struct,
rtP rtDWork,

...

A model.rtw

A-6

model.rtw Changes Between Real-Time Workshop 3.0 and
4.0

Several changes have been made to the model.rtw file. These changes:

• Provide more functionality

• Reduce generated code size

• Increase generated code efficiency

• Faster code generation

model.rtw Differences
• The StatesMap was updated to reduce the size of the model.rtw file, making

code generation faster. The StatesMap now contains rows for states that go
to a port (direct port connections). For example, SignalSrc X4 means the
fifth row in the StatesMap only, not the fifth index.4. Note, the StatesMap
now only contains the a mapping for the double, non-complex continuous and
discrete states.

• S-function changes:

- Added UsingUPtrs ParamSetting for Level 2 C-MEX S-functions. This is
needed to support the ssSetInputPortRequiredContiguous flag for
non-inlined Level 2 C-MEX S-functions.

- If the number of input ports for a Level 1 S-function is zero, then the
ParamSetting.Contiguous field now writes out as "" instead of "yes".

• Removed Slopes parameter from 1D Look-Up table. Slopes for the 1D
look-up are computed at runtime.

• Removed DiscStatesDataTypeIdx and DiscStatesComplexSignal. These
are now handled by the data type work vector fields.

• Added support for frames. A frame signal is a multi-element signal
consisting of multiple samples for a given time point. Frame signals are
typically used in signal processing algorithms. Specifically:

- A FrameData field was added to each block input port record.

- A DataOutputPortFrameData field was added to the block record. This was
not added to block output port record because this record is specific to a
buffer and not to a block. In the case of frame data, the same buffer could
have different frame interpretations based on the block they feed into.

model.rtw Changes Between Real-Time Workshop 3.0 and 4.0

A-7

• Added to the BlockOutputDefaults record:
NumReusedBlockOutputs 0
NumMergedBlockOutputs 0

• Combined discrete states with the data type work vector handling. Updated
DataLoggingOpts to reflect discrete states are now a part of DWork.
Specifically:

- Removed
CompiledModel.NumDiscStates
CompiledModel.Modes
CompiledModel.NumRWork
CompiledModel.NumIWork
CompiledModel.NumPWork
CompiledModel.NumDWork
CompiledModel.NumDWorkRecords

- Renamed the DWork record as follows.
 old new

 DWorkRecords { DWorks {
 DWorkRecordDefaults { DWorkDefaults {
 DataTypeIdx Data TypeIdx
 ComplexSignal ComplexSignal
 UsedAsDState UsedAs
 } }
 NumDWorkRecords NumDWorks
 DWorkRecord { DWork {
 BlockIdentifier Identifier
 Name
 Width Width
 DaTaTypeIdx DataTypeIdx
 ComplexSignal ComplexSignal
 UsedAsDState UsedAs
 DWorkSrc SigSrc
 } }
 : :
 : :
 } }

A model.rtw

A-8

- Changed the following fields from the block record.
used to be changed to

 Block.DiscStates [width, vectIdx] [width, dWorkIdx]
 Block.RWork [width, vectIdx] [width, dWorkIdx]
 Block.IWork [width, vectIdx] [width, dWorkIdx]
 Block.PWork [width, vectIdx] [width, dWorkIdx]
 Block.ModeVector [width, vectIdx] [width, dWorkIdx]

where vectIdx was the vector index into the corresponding vector, while
recIdx is now the index of the corresponding DWork in the model-wide
DWorks record.

- Changed "Block.DWork[xx].RecordIdx" to
"Block.Dwork[xx].RecordIndex".

• To support the addition of run-time parameters, the block Parameter records
are now the last items in the Block records (i.e., parameter settings and so
on come before block Parameter records and the parameter count vector.)

• To support parameter pooling, moved the writing of the ModelParameters
record above the System records. Several new fields were added to the
ModelParameters record.

• Added support for block parameter aliases. For example, lock records now
look like
 NumParameters 2
 Parameter {
 }
 Parameter {
 }
 P1Name Parameter[0]
 P2Name Parameter[1]

• Added support for block parameter value aliases when there is a one-to-one
mapping with the model parameters record. Parameter records now have
Parameter {

Value CompiledModel.ModelParameters.Parameter[#].Value
}

when a mapping can be located between the values in Parameter records
and the ModelParameters record. This was done to speed up code

model.rtw Changes Between Real-Time Workshop 3.0 and 4.0

A-9

generation and reduce the size of the model.rtw file when we can locate a
mapping between the values in Parameter records and the
ModelParameters record.

• Added support for matrix signals. All parameters are assumed to be in
column-major ordering and several blocks were updated to reflect this.

Matrix support involved adding a Dimensions field to many records.
Specifically, we now:

- Write actual block and model parameter dimensions, i.e., updated the
Parameter records in the Block and ModelParameters Parameter records.

- Write matrix dimensions for data store memory blocks, i.e., updated the
DataStores record.

- Write block output port dimensions only if the output signal is a matrix,
i.e., updated RootSignals or Subsystem record.

- Write external input dimensions for matrix signals, i.e., updated
ExternalInputs record.

- Write external output dimensions for matrix signals, i.e., updated
ExternalOutputs record.

- Write block output dimensions for matrix signals, i.e., updated
BlockOutput record.

- Write data input port dimensions for matrix signals, i.e., updated
DataInputPorts record.

- Write data output port dimensions for matrix signal, i.e., updated
DataOutputPort record.

Matrix support also required eliminating the notion of number of data
logging rows. This required the renaming of the following blocks.

- Scope:

Renamed "MaxRows" to "MaxDataPoints"

Renamed "LimitMaxRows" to "LimitDataPoints"

Renamed "Matrix" option in SaveFormat parameter to "Array" format

- ToWorkspace:

Renamed "Buffer" to "MaxDataPoints"

Renamed "Matrix" option in SaveFormat parameter to "Array" format

A model.rtw

A-10

- FromWorkspace:

Renamed "Matrix" option in Data format parameter to "Array" format

• Added DataOutputPort records to the Block records.

• Added ObjectProperities for signals specified in the Unified Data
Repository to the BlockOutputs record.

• Many of the block records changed to support matrices.

• Some blocks records were updated to add data type support to them.

General Information and Solver Specification

A-11

General Information and Solver Specification
When generated, each model.rtw contains some general information including
the model name, the date when the model.rtw file was generated, the version
number of the Real-Time Workshop that generated the model.rtw file, and so
on. In addition, the Target Language Compiler takes information specific to the
solver and solver parameters from the Simulink Parameters dialog box and
places it into the model.rtw file.

The following describes the first part of the model.rtw file - general
information (e.g., model name) and the solver specification.

Table A-1: Model.rtw General Information and Solver Specification

Variable/Record Name Description
Name Name of the Simulink model from which this model.rtw file was

generated.
Version Version of the model.rtw file.
GeneratedOn Date and time when the model.rtw file was generated.
Solver Name of solver as entered in the Simulink Parameters dialog

box.
SolverType FixedStep or VariableStep.
StartTime Simulation start time as entered in the Simulink Parameters

dialog box.
StopTime Simulation stop time.
FixedStepOpts { Only written if SolverType is FixedStep.
SolverMode Either SingleTasking or MultiTasking.
FixedStep Fundamental step size (in seconds) to be used.
TID01EQ Either 0 or 1 indicating if the first two sample times are equal (1

if they are equal). This occurs where there is a continuous sample
time and one or more discrete sample times and the fixed-step
size is equal to the fastest discrete sample time.

}

VariableStepOpts { Only written if SolverType is VariableStep. These variable step
options are used by the Simulink Accelerator and S-function
targets.

RelTol Relative tolerance.
AbsTol Absolute tolerance.

A model.rtw

A-12

Refine Refine factor.
MaxStep Maximum step size.
InitialStep Initial step size.
MaxOrder Maximum order for ode15s.

}

Table A-1: Model.rtw General Information and Solver Specification (Continued)

Variable/Record Name Description

RTWGenSettings Record

A-13

RTWGenSettings Record
The RTWGenSettings record contains name/value pairs that are assigned via
the system target file (e.g., grt.tlc). During an RTW build, the M-code in the
system target file

rtwgensettings.fieldname1 = 'value1';
...
rtwgensettings.fieldnameN = 'valueN';

is executed and the RTWGenSettings that are created are set on the model using
set_param(model,'RTWGenSettings',rtwgensettings) by make_rtw. Note
that the rtwgensettings field name values must be strings. Simulink can then
use the RTWGenSettings to affect the compiled characteristics of the model and
thus the contents of the model.rtw. The model.rtw will also contain the
RTWGenSettings so that rest of the build process including TLC code can have
access to them. Additional RTWGenSettings can be added and although
Simulink will not use them, they will be written to the model.rtw file and can
be used as desired by TLC code.

Table A-2: Model.rtw RTWGenSettings Record

Variable/Record Name Description
RTWGenSettings {

BuildDirSuffix The string to append to the model name to create the build
directory name.

UsingMalloc Set to “yes” if the generated code will be using dynamic memory
allocation.

IsRSim Set to “yes” if this build is for the RSIM target.
IsRTWSfcn Set to “yes” if this build is for the RTW S-function target.
... Any additional string fields.

}

A model.rtw

A-14

Data Logging Information
The Workspace I/O page of the Simulation Parameters dialog box gives you
the option of selecting whether to log data after executing model code
generated from Real-Time Workshop. If you choose to log data, you must select
one or more check boxes for Time, States, Output, or Final state. You can use
the default variable names shown in the dialog box or replace these with your
own name selections.

To conserve memory and/or file space when data logging, you can limit data
collection to the final N-points of your simulation. Select the Limit rows to last
check box and use the default value 1000. Using the default setting saves the
selected workspace variables to a buffer of length 1000. If desired, you can
provide another value for the total number of points per variable to store. You
can also select to store the variables in one of three formats:

• Structure with time

• Structure

• Matrix

All data logging information corresponding to the Workspace I/O page is
placed within the CompiledModel.DataLoggingOpts record. This record may
change with future enhancements to the Workspace I/O page. It is intended to
be used in conjunction with the MathWorks-provided MAT-file logging utility
file, matlabroot/rtw/c/src/rtwlog.c.

This table lists and describes the data logging information for model.rtw.

Table A-3: Model.rtw Data Logging Information

Variable/Record Name Description
DataLoggingOpts { Data logging record describing the settings of Simulink

simulation (Parameters, workspace, I/O settings).
SaveFormat "Matrix", "Structure", or "StructureWithTime".
MaxRows Maximum number of rows or 0 for no limit.
Decimation Data logging interval.
TimeSaveName Name of time variable or "" if not being logged.
StateSaveName Name of state variable or "" if not being logged.

Data Logging Information

A-15

OutputSaveName Name of output variable or "" if not being logged.
NumOutputSaveNames Number of names in the OutputSaveName list.
FinalStateName Name of final state variable or "" if not being logged.
StateSigSrc Only written if SaveFormat is not Matrix and either the states or

the final states are being logged. This is an N-by-3 matrix with
rows:

[sysIdx, blkIdx, blkStateIdx]

giving the location of the signal to be logged as a state. sysIdx
and blkIdx give the source (i.e., a Block record), which specifies
the states that are logged. The blkStateIdx is used to identify
which part of the block the state is coming from.

The blkStateIdx will be:
• -2 if the logged signal is the continuous state vector

• -1 if the logged signal is the discrete state vector

• >= 0 implies the logged signal is the blkStateIdxD Work (data
type work vector) of blkIdx block in sysIdx system

Note that sysIdx and blkIdx are valid even if blkStateIdx < 0,
and N is the number of signals being logged as states.

}

Table A-3: Model.rtw Data Logging Information (Continued)

Variable/Record Name Description

A model.rtw

A-16

Data Structure Sizes
The model.rtw file contains several fields that summarize the size of data
structures required by a particular model. This information varies from model
to model, depending on how many integrators are used, how many inputs and
outputs, and whether states are continuous time or discrete time. In the case
where continuous states exist within a model, you must use a solver, for
example, ode5.

The model.rtw file provides additional information about the total number of
work vector elements used for a particular model including RWork, IWork,
PWork, and DWork (real, integer, pointer, and data type work vectors). The
DWork vector field is a new addition that provides information for data type
work vectors (to support types other than real_T). The model.rtw file also
provides fields that contain summary information for all block signals, block
parameters, and number of algebraic loops found throughout the model.

This table describes the data structure written to model.rtw.

Table A-4: Model.rtw Model Data Structure Sizes

Variable/Record Name Description
NumModelInputs Sum of all root-level import block widths. This is the length of the

external input vector, U.
NumModelOutputs Sum of all root-level outport block widths. This is the length of

the external output vector, Y.
NumNonVirtBlocksInModel Total number of nonvirtual blocks in the model.
DirectFeedthrough Does model require its inputs in the MdlOutput function (yes/no)?
NumContStates Total number of continuous states in the model. Continuous

states appear in your model when you use continuous components
(i.e., an Integrator block) that have state(s) that must be
integrated by a solver such as ode45.

NumModes Length of the model mode vector (modeVect). The mode vector is
used by blocks that need to keep track of how they are operating.
For example, the discrete integrator configured with a reset port
uses the mode vector to determine how to operate when an
external reset occurs.

ZCFindingDisabled Is zero-crossing event location (finding) disabled (yes/no)?
This is always yes for fixed-step solvers.

Data Structure Sizes

A-17

NumNonsampledZCs Length of the model nonsampled zero-crossing vectors. There are
two vectors of this length: the zero-crossing signals
(nonsampledZCs), and the zero-crossing directions
(nonsampledZCdirs). Nonsampled zero-crossings are derived from
continuous signals that have a discontinuity in their first
derivative. Nonsampled zero-crossings only exist for variable step
solvers. The Abs block is an example of a block that has an
intrinsic, nonsampled zero-crossing to detect when its input
crosses zero.

NumZCEvents Length of the model zero-crossing event vector (zcEvents).
NumDWork Total number of data type work vector elements. This is the sum

of the widths of all data type work vectors in the model.
NumDataStoreElements Total number of data store elements. This is the sum of the

widths of all data store memory blocks in your model.
NumBlockSignals Sum of the widths of all output ports of all nonvirtual blocks in

the model. This is the length of the block I/O vector, blockIO.
NumBlockParams Number of modifiable parameter elements (params). For example,

the Gain block parameter contains modifiable parameter
elements.

NumAlgebraicLoops Number of algebraic loops in the model.

Table A-4: Model.rtw Model Data Structure Sizes (Continued)

Variable/Record Name Description

A model.rtw

A-18

Sample Time Information
The sample time information written to model.rtw file describes the rates at
which the model executes. The FundamentalStepSize corresponds to the base
rate for the fastest task in a model.

The InvariantConstants field is set as a result of the Inline parameters
check box in the Real-Time Workshop page of the Simulation Parameters
dialog box. This allows you to globally select whether or not parameter inlining
is to be used in generated code. An inlined parameter results in a parameter
value being hard-coded in the generated code. Consequently, this value cannot
be altered by any parameter tuning method. You can override invariant
constants on one or more selected signals by selecting Tunable parameters
and specifying the variable name.

The SampleTime list contains all periodic rates found within your model. This
list excludes constant and triggered sample times.

Table A-5: Model.rtw Sample Times

Variable/Record Name Description
AllSampleTimesInherited yes if all blocks in the model have inherited sample times, no

otherwise.
InvariantConstants yes if invariant constants (i.e., Inline parameters check box) is

on, no if invariant constants is off.
FundamentalStepSize Fundamental step size or 0.0 if one cannot be determined. Fixed

step solvers will always have a nonzero step size. Variable step
solvers may have a fundamental step size of 0.0 if one can not be
computed from the sample times in the model.

SingleRate yes if the model is single rate, no otherwise. A model is
considered single-rate if either:

• The number of system sample times is one or triggered or
constant.

• The number of system sample times is two, the tids are 0 and 1,
TID01EQ is true, and the system has no continuous states.

Sample Time Information

A-19

NumSampleTimes Number of sample times in the model followed by SampleTime
info records, giving the TID (task ID), an index into the sample
time table, and the period and offset for the sample time.

SampleTime { One record for each sample time.
TID Task ID for this sample time.
PeriodAndOffset Period and offset for this sample time.

}

Table A-5: Model.rtw Sample Times (Continued)

Variable/Record Name Description

A model.rtw

A-20

Data Type Information
The DataTypes record provides a complete list of all possible data types that
Simulink supports and the current mapping between the data types and a data
type index. We strongly advise against adding to this list since future versions
of Real-Time Workshop will extend this list and can result in new mappings of
data types.

All data typing information is written in the following list of records within the
DataTypes record. Individual records often specify an index into this table.

Table A-6: Model.rtw Data Types

Variable/Record Name Description
DataTypes { Data types defining all built-in (double, single, int8, uint8,

int16, uint16, int32, uint32, bool, fcncall) and any blockset
specific data types found within your model.

NumDataTypes Integer, total number DataType records that follow. This includes
one record for each built-in data type plus specific records for
blocksets.

NumSLBuiltInDataTypes Integer, number of Simulink built-in data types (less than or
equal to NumDataTypes).

StrictBooleanCheckEnabled Integer (0/1) Flag that indicating whether model had boolean
data types enabled or not.

DataType { One record for each data type in use.
SLName ASCII data type name. Note, this SLName is not to be confused

with the unmodified Simulink name parameters used elsewhere.
Id Actual data type identifer which is used in Simulink. This is an

integer that corresponds to the data type name.
}

}

Block Type Counts

A-21

Block Type Counts
The model.rtw contains block type counts that describe what blocks are in your
model. This information is model dependent; it provides a summary of how
many different types of blocks are used within a particular model as well as a
list of records that summarize how many blocks of each block type are found
within the particular model. Similarly, the total number of unique S-function
names found within a model are reported as well as the count of occurrences
for each S-function name. Information describing what types of blocks are used
and how many of them there are is provided in the BlockTypeCount records.

This table lists all the available block type counts.

Table A-7: Model.rtw Block Type Counts

Variable/Record Name Description

NumBlockTypeCounts Number of different types of blocks in your model. A block type
correlates to the MATLAB command

get_param('block','BlockType').

BlockTypeCount { One record for each block type count.

Type Type of the block (e.g., Gain).

Count Total number of the given type.

}

NumSFunctionNameCounts Number of different S-functions used in your model. There will be
one S-function for each MEX or M-function name specified in the
S-function dialog. This will be less than or equal to the number of
S-Function blocks in your model.

SFunctionNameCount { One record for each S-function used in your model.

Name S-function name.

Count Total number of S-Function blocks using this S-function name.

A model.rtw

A-22

Model Hierarchy
The root is the top level of the block diagram. The RootSignals record contains
information about the makeup of signals within the root level. This includes
indices to subsystems that are visible at the root level as well as the number of
input and output signals that appear at the root level. The Subsystem records
contain information about the number of virtual and nonvirtual subsystems
contained in the model and identifiers for these.

Each subsystem in the model includes a system identifier, a name, and a set of
indices to any additional child subsystems. Counts are also provided for the
number of outputs for each subsystem and number, signal information, and
total number of nonvirtual blocks within each subsystem.

The RootSignals and Subsystem records enable you to reconstruct the
graphical model hierarchy. This is useful for third party monitoring and
parameter tuning tools.

Table A-8: Model.rtw Model Hierarchy (Blocks, Signals, and Subsystems)

Variable/Record Name Description
RootSignals { Signal and block information in the root window.
ChildSubsystemIndices Vector of integers specifying the subsystems that are directly

contained within the root system. The indices index into the
CompiledModel.Subsystem record list.

NumSignals Number of block output signals (including virtual) blocks.
Signal { One record for each block output signal (i.e., length of this list is

NumSignals).
Block [sysIdx, blockIdx] or block name string if a virtual block.
SigLabel Signal label if present.
OutputPort [outputPortIndex, outputPortWidth].
Dimensions Vector of the form [nRows, nCols] for the signal. Only written if

number of dimensions is greater than 1.
DataTypeIdx Index into the CompiledModel.DataTypes.DataType record list.

Only written for nonvirtual blocks and if data type index is not 0
(the default data type of 0 corresponds to real_T).

ComplexSignal yes/no: is the signal complex? Only written for nonvirtual blocks
and if signal is complex.

Model Hierarchy

A-23

SignalSrc Vector of length outputPortWith giving the location of the signal
source.

}

NumBlocks Number of nonvirtual blocks in the root window of your model.
BlockSysIdx System index for blocks in this subsystem.
BlockMap Vector of length NumBlocks giving the blockIdx for each

nonvirtual block in the root system.
}

NumVirtualSubsystems Total number of virtual (non-empty) subsystems in the model.
NumNonvirtalSubsystems Total number of nonvirtual subsystems in the model.
Subsystem { One record for each subsystem.
SysId System identifier. Each subsystem in the model is given a unique

identifier of the form S# (e.g., S3).
Name Block name preceded with a <root> or <S#> token. The ID/Name

values define an associative pair giving a complete mapping to
the blocks full path name (e.g., <s2/gain1>).

SLName Unmodified Simulink name. This is only written if it is not equal
to Name. This will occur when generating code using the rtwgen
StringMapings argument. For the Real-Time Workshop C
targets, any block name that contains a new-line, '/*', or '*/'
will have these characters remapped. For example, suppose the
Simulink block name is

my block name
/* comment */

The model.rtw file will contain
Name "<Root>/my block name //+ comment +//"
SLName "<Root>/my block name\n//* comment *//"

Virtual yes/no: Whether or not the subsystem is virtual.
ChildSubsystemIndices Vector of integers specifying the subsystems that are directly

contained within this subsystem. The indices index into the
CompiledModel.Subsystem record list.

NumSignals Number of block output signals (including virtual) blocks.
Signal { One record for each block output signal (i.e., length of this list is

NumSignals).
Block [sysIdx, blockIdx] or block name string if a virtual block.

Table A-8: Model.rtw Model Hierarchy (Blocks, Signals, and Subsystems) (Continued)

A model.rtw

A-24

OutportName This field is written only if the signal is emanating from a
subsystem. It is the Outport block name corresponding to the
output signal of a subsystem block.

SigLabel Signal label if present.
OutputPort [outputPortIndex, outputPortWidth].
Dimensions Vector of the form [nRows, nCols] for the signal. Only written if

number of dimensions is greater than 1.
DataTypeIdx Index into the CompiledModel.DataTypes.DataType record list.

Only written for nonvirtual blocks and if data type index is not 0
(i.e., real_T).

ComplexSignal yes: Only written for nonvirtual blocks and if signal is complex.
SignalSrc Vector of length outputPortWith giving the location of the signal

source.
}

NumBlocks Number of nonvirtual blocks in the subsystem.
BlockSysIdx System index for blocks in this subsystem.
BlockMap Vector of length NumBlocks giving the blockIdx for each

nonvirtual block in the subsystem.
}

Table A-8: Model.rtw Model Hierarchy (Blocks, Signals, and Subsystems) (Continued)

External Inputs and Outputs

A-25

External Inputs and Outputs
The model.rtw file contains all information describing the external inputs
(which correspond to root-level inport blocks) and external outputs (which
correspond to root-level outport blocks). In control theory, the external inputs
vector is conventionally referred to as U and the external output vector is
referred to as Y. The generated code uses rtU and rtY.

Table A-9: Model.rtw External Inputs and Outputs

Variable/Record Name Description
ExternalInputDefaults {

DataTypeIdx 0: The default signal data type is real_T.

ComplexSignal no: The default signal is not complex.

DirectFeedThrough yes: The default assumes the root inport requires its input.

StorageClass Auto: The default value specifies that the Real-Time Workshop
decides how external signals are declared.

StorageTypeQualifier "": The default type qualifier is empty.

}

NumExternalInputs Integer number of records that follow, one per root-level inport
block

ExternalInput { One record for each external input signal (i.e., root inport).

Identifer Unique name across all external inputs.

TID Integer task id (sample time index) giving the SampleTime record
for this inport block.

SigIdx [externalInputVectorIndex, signalWidth].

Dimensions Vector of the form [nRows, nCols] for the signal. Only written if
number of dimensions is greater than 1.

DataTypeIdx Integer index of DataType record corresponding to this block.
Only written if index is not 0.

A model.rtw

A-26

ComplexSignal yes: Only written if this inport signal is complex.

SigLabel Signal label entered by user.

DirectFeedThrough Only written if this inport doesn’t require its signal when
MdlOutputs is called.

StorageClass Only written if not Auto. This setting determines how this signal
is declared.

StorageTypeQualifier Only written if not empty.

}

}

ExternalInputsMap Matrix of dimension (NumModelInputs,2), which gives a
mapping from external input vector index (Ui) into the
ExternalInputs structure: [externalInputsIndex,
signalOffset]. Only written if NumModelInputs > 0.

ExternalOutputs { External outputs (root outports) from the block diagram.
NumExternalOutputs Number of ExternalOutput records that follow. This is equal to

the number of root level outports.
ExternalOutput { One record per root-level outport block.

Block [sysIdx, blockIdx] of the outport block.
SigIdx [externalOutputVectorIndex, signalWidth].
Dimensions Vector of the form [nRows, nCols] for the signal. Only written if

number of dimensions is greater than 1.
SigLabel Label on the input port signal, if any.

}

}

Table A-9: Model.rtw External Inputs and Outputs (Continued)

Data Store Information

A-27

Data Store Information
The model.rtw records containing data store information include defaults for
the data types and an indication whether or not the data is complex. The
primary purpose of the DataStore record is to set up memory for implementing
the data store. Each instance of a Data Store Read block that uses the same
data store variable name is allowed to read the memory location(s) while Data
Store Write blocks are allowed to write to the designated memory location(s).
Data Store Read and Data Store Write blocks are placed under the block
instance section of the model.rtw file.

Table A-10: Model.rtw Data Store Information

Variable/Record Name Description
DataStoreDefaults { Defaults for the data store records.
DataTypeIdx 0: Default is real_T.
ComplexSignal no: Default is not complex.

}

DataStores { Record giving the data stores found in the block diagram.
NumDataStores Number of data stores in the block diagram.
DataStore { One record for each data store.
Name Name of block declaring the data store.
SLName Unmodified Simulink name. This is only written if it is not equal

to Name.
MemoryName Name of the data store memory region.
Identifier Unique identifier across all data stores.
Index [dataStoreIndex, dataStoreWidth].
Dimensions Vector of the form [nRows, nCols] for the signal. Only written if

number of dimensions is greater than 1.
InitValue Initial value for the data store.

}

}

A model.rtw

A-28

Block I/O Information
The block I/O vector (also referred to as the rtB vector) is described in the
following BlockOutputs record. Each nonvirtual block output defines an entry
in this conceptual vector. This record differs from the
CompiledModel.RootSignals and CompiledModel.Subsystem records that
describe the signal information for virtual and nonvirtual blocks. These two
records also include model hierarchy information while the BlockOutputs
record does not.

The BlockOutputs record provides a listing of all blocks that write to the block
output vector. Several optimizations that affect block outputs are provided
through Simulink dialog boxes. The Advanced page of the Simulation
Parameters dialog box page provides the Signal Storage Reuse optimization.
When you enable this option, rtwgen will attempt to reuse signal storage,
mapping multiple BlockOutput records together. If you disable this option,
rtwgen will create a unique record for all block signals. When this options is
enabled, you can selectively add the output from a particular block by
specifying the block output as a test point.

To specify a block output as a test point, select a line and then select Edit ->
Signal Properties -> check box SimulinkGlobal (Test Point). Once you have
tagged a signal as a test point, the Target Language Compiler always writes to
the block I/O vector. If a signal is not visible in the block outputs vector, it will
allow reuse of its memory location by several blocks. This can substantially
reduce memory requirements.

Table A-11: Model.rtw Block I/O Information

Variable/Record Name Description
BlockOutputs { List of block output signals in the block diagram.

BlockOutputDefaults {

TestPoint no: The default is that this signal has not been marked as a signal
of interest in your model (see signal properties dialog).

StorageClass Auto: The default value specifies that Real-Time Workshop
decides where to declare this signal.

StorageTypeQualifier "": The default type qualifier is empty.

Block I/O Information

A-29

IdentiferScope "top-level": The default is to declare the block output signal in
the global block I/O vector.

Invariant no: The default is that this signal has a non-constant sample
time and change during execution.

InitialValue []: The default initial value is empty for non-invariant signals.

DataTypeIdx 0: The default data type is real_T.

ComplexSignal no: The default is a non-complex real valued signal.

SigSrc []: The default source is nonexistent for case of multiple sources
that is created via reused signals.

SigLabel "": No signal label on the line.

SigConnected all: All destination elements of the signal are connected to other
nonvirtual blocks or root outports.

}

ReusedBlockOutputDefaults {

SigLabel "": No signal label on the line.

SigConnected all: All destination elements of signal are connected to other
nonvirtual blocks or root outports.

}

MergedBlockOutputDefaults {

SigLabel "": No signal label on the line.

SigConnected all: All destination elements of signal are connected to other
nonvirtual blocks or root outports.

}

NumBlockOutputs Number of data output port signals.

BlockOutput { One record for each data output signal.

Table A-11: Model.rtw Block I/O Information (Continued)

A model.rtw

A-30

Identifier Unique variable name across all block outputs.

SigIdx [blockIOVectorIndex, signalWidth].

TestPoint yes. Only written when this signal has been marked as a test
point in the block diagram. Test point block outputs are always in
the global scope ("top-level").

StorageClass Only written if either "ExportedGlobal", "ImportedExtern" or
"ImportedExternPointer". This setting determines how this
signal is declared.

StorageTypeQualifier Only written if non-empty (e.g., "const" or something similar).

IdentifierScope "fcn-level": Only written when the output signal is local to a
function. The default (above) is "top-level".

Invariant yes: Only written when this block output cannot change during
execution. For example, the output of a Width block and the
output of a Constant block is invariant if InlineParameters=1.

InitialValue Non-empty vector that is only written when Invariant is yes and
the data type of the block output signal is a built-in data type.

DataTypeIdx Only written when data is non-real_T (i.e., non-zero). This is the
index in to the data type table that identifies this signals data
type.

ComplexSignal yes: Only written if this signal is complex.

SigSrc [systemIndex, blockIndex, outputPortIndex].

SigLabel Signal label entered by user. Only written if non-empty ("").

SigConnected Only written if one or more elements are not connected to
destination non-virtual or root outport blocks. In this case it will
be none if no elements are connected or a vector of length
signalWidth where each element is either a 1 or 0 indicating
whether or not the corresponding output signal is connected.

NumMergedBlockOutputs Number of MergedBlockOutput records. These occur when Merge
blocks exist in your model. The number of these records will equal
the number of merge block outputs in your model.

Table A-11: Model.rtw Block I/O Information (Continued)

Block I/O Information

A-31

MergedBlockOutput { Only written if the BlockOutput record corresponds to a Merge
block. In this case, the number of MergedBlockOutput records is
equal to the number of input ports on the Merge block.

Identifer Unique variable name across all block outputs.

SigSrc [systemIndex, blockIndex, outputPortIndex].

SigLabel Signal label entered by user. Only written if nonempty ("").

}

NumReusedBlockOutputs Number of ReusedBlockOutput records.

ReusedBlockOutput { Only written when this BlockOutput record is being reused by
multiple blocks. There is one record for each block output port
that is reused by this BlockOutput record.

Identifer Unique variable name across all block outputs.

SigSrc [systemIndex, blockIndex, outputPortIndex].

SigLabel Signal label entered by user. Only written if non-empty ("").

MergedBlockOutput { Only written if this ReusedBlockOutput record corresponds to a
Merge block. In this case, the number of MergedBlockOutput
records is equal to the number of input ports on the Merge block.
See above for contents of the MergedBlockOutput records.

}

}
ObjectProperties { Only written if a Unified Data Repository object is attached to the

output signal and the output signal is not being reused.

Table A-11: Model.rtw Block I/O Information (Continued)

A model.rtw

A-32

... Fields in the object properties record depend upon the contents of
the object.

}

}

}

BlockOutputsMap Matrix of dimension (NumBlockSignals,2), which gives a
mapping from a block I/O vector index (Bi) into the BlockOutputs
structure: [blockOutputsIndex, signalOffset]. Only written if
NumBlockSignals > 0.

Table A-11: Model.rtw Block I/O Information (Continued)

Data Type Work (DWork) Information

A-33

Data Type Work (DWork) Information
Certain blocks require persistence to store values between consecutive time
intervals. When these blocks require the data to be stored in a data type other
than real_T (the default data type), then instead of using an RWork element, a
DWork element is used. DWork contains block identifier, name, width, datatype
index, and a flag that tells whether it is used to retain data typed state
information. Blocks that use data types but do not require persistence (e.g.,
Gain blocks) do not require DWork entries.

Note, all RWork, IWork, PWork, Mode, DiscState code elements are captured in
the DWork records. Think of the real (RWork), integer (IWork), and pointer
(PWork), etc. as well-defined data type (DWork) vectors.

Table A-12: Model.rtw Data Type (DWork) Information

Variable/Record Name Description
DWorkRecords { List of all data type work vectors in the model. There is one

DWorkRecord record for each data type work vector in the model.
The source of a data type work vector is a block. A block can have
zero or more data type work vectors.

DWorkRecordDefaults { Default values for the following DWorkRecord records.

DataTypeIdx 0: Default vector of a DWorkRecord record is a real_T vector.

ComplexSignal no: Default vector of a DWorkRecord record is a non-complex
vector.

UsedAsDState no: Default vector of a DWorkRecord record is not logged as a state
(i.e., doesn't go in to the model.mat file).

}

NumDWorks Number of data type work vectors in the model. Each block can
register 0 or more data type work vectors. This include discrete
states, RWork, IWork, PWork and Mode. Each record contains a
vector as well as information describing the vector. For example,
the model may contain two data type work records where one
record contains a vector of length 3 and the other contains a
vector of length 9 where each vector is of a different data type. In
this case, NumDWorks is 2.

A model.rtw

A-34

DWork { One DWork record for each data type work vector.

Identifier Identifier provides a unique variable name across all data type
work vectors.

Width Length of the data type work vector.

DataTypeIdx Index into the CompiledModel.DataTypes.DataType record list
(i.e., the data type table used to identify the data type for this
DWork). Only written if data type is a non-real_T (i.e., not a 0).

ComplexSignal yes: Only written if this data type work vector is complex.

UsedAs Only written if not default ("DWORK"), it can be either "MODE" or
"RWORK" or "IWORK" or "PWORK" or "DSTATE".

SigSrc [systemIdx, blockIdex, dworkIdx].

}

}

Table A-12: Model.rtw Data Type (DWork) Information (Continued)

Variable/Record Name Description

State Mapping Information

A-35

State Mapping Information
All continuous and discrete states contained within your model are
conceptually grouped into a single vector, referred to as X (and rtX in the
generated code). Blocks can directly connect to the state vector by using state
ports. The StatesMap provides a mapping for these types of connections. The
format of the StatesMap may change in a future release.

Table A-13: Model.rtw State Mapping Information

Variable/Record Name Description
StatesMap Matrix of dimension (N,3), where N = total number of state ports

in your model. Block signal sources that come from a state vector
(e.g., SignalSrc X4) use the StatesMap to locate their source
block. For example, “SignalSrc X4” means the fifth row of the
StatesMap, not the fifth index into the conceptual model state
vector.

A model.rtw

A-36

Block Record Defaults
When a block record does not contain an entry for a particular field located in
the BlockDefaults record, then the BlockDefaults entry is used for the
undeclared field.

Table A-14: Model.rtw Block Defaults

Variable/Record Name Description
BlockDefaults { Record for default values of block variables that aren’t explicitly

written in the block records. The block records only contain
nondefault values for the following variables.

InMask no

AlgebraicLoopId 0

PortBasedSampleTimes no

ContStates [0,0]

ModeVector [0,-1]

RWork [0,-1]

IWork [0,-1]

PWork [0,-1]

DiscStates [0,-1]

NumDWork 0

NonsampledZCs [0,0]

ZCEvents [0,0]

RollRegions []

NumDataInputPorts 0

NumControlInputPorts 0

NumDataOutputPorts 0

Parameters [0,0]

}

Parameter Record Defaults

A-37

Parameter Record Defaults
The ParameterDefaults record contains default entries for parameters. These
records are used throughout the model when no field is explicitly provided for
a model parameter. For example, the default DataTypeIdx is 0, which
corresponds to real_T. The default entry for ComplexSignals is no. Other
entries such as the Tunable field is controlled by the Inline parameters check
box. If for a given block instance, a Parameter record does not contain a specific
entry for these fields, then the value from the ParameterDefaults is applied.

Table A-15: Model.rtw Parameter Defaults

Variable/Record Name Description
ParameterDefaults { Record for default values of block variables that aren’t explicitly

written in the block parameter records. The block parameter
records only contain nondefault values for the following variables.

DataTypeIdx 0 (this corresponds to real_T)
ComplexSignal no

Tunable off: If inline parameters check box is off, otherwise on if inline
parameters check box is on.

StorageClass Auto

}

A model.rtw

A-38

Data and Control Port Defaults
In the event that DataInputPort, ControlInputPort, or DataOutputPort
values are not provided in a block data record, then the default values are used
as provided by these records. This includes information for data type index,
complex signals, direct feed through, and a value for buffer destination ports
(e.g., indicator for buffer reuse).

Table A-16: Model.rtw Data and Control Input Port Defaults

Variable/Record Name Description
DataInputPortDefaults { Record for default values of block variables that aren’t

explicitly written in the block data input port records. The
block data input port records only contain nondefault values for
the following variables.

DataTypeIdx 0

ComplexSignal no

FrameData no

HaveGround no

SrcHasImportedExternPointer no

DirectFeedThrough yes. Only written if the rtwgen option WriteBlockConnections
has been specified as on.

BufferDstPort -1: Default is no output ports are reusing the corresponding
input port buffer.

}

ControlInputPortDefaults { Record for default values of block variables that aren’t
explicitly written in the block control (enable/trigger) input port
records. The block control input port records only contain
nondefault values for the following variables.

DataTypeIdx 0

ComplexSignal no

Data and Control Port Defaults

A-39

DirectFeedThrough yes. Only written if the rtwgen option
WriteBlockConnections has been specified as on.

FrameData no

HaveGround no

SrcHasImportedExternPointer no

BufferDstPort -1: Default is no output ports are reusing the corresponding
input port buffer.

}
DataOutputPortDefaults { Record for default values of block variables that aren’t

explicitly written in the block data output port records. The
block data output port records only contain nondefault values
for the following variables.

FrameData no
Offset -1
Width -1
Dimensions [-1, -1]

}

Table A-16: Model.rtw Data and Control Input Port Defaults (Continued)

Variable/Record Name Description

A model.rtw

A-40

Model Parameters Record
The model parameters record provides a complete description of the block
parameters found within the model. The
CompiledModel.System[i].Block[i].Parameter[i].ASTNode index into the
CompiledModel.ModelParameters.Parameter[i] record.

Table A-17: Model.rtw Model Parameters Record

Variable/Record Name Description
ModelParameters {

NumParameters Total number of unique parameter values (sum of next 5 fields).

NumInrtP Number of parameter values in "rtP" parameter vector (realized
as a struct). These are visible to external mode and possibly
shared by multiple blocks.

NumInlinedUnlessRolled Number of inlined parameter values. These are inlined, unless
the roll threshold causes them to be placed in global memory.
These parameters are not shared by multiple blocks.

NumExportedGlobal Number of exported global parameters values. May be shared by
multiple blocks.

NumImportedExtern Number of imported parameter values. May be shared by
multiple blocks.

NumImportedExternPointer Number of parameter values that are accessed via imported
extern pointers. May be shared by multiple blocks.

ParameterDefaults { Default values for the following Parameter records.

DataTypeIdx 0: Default is real_T data type.

ComplexSignal no: Default is non-complex

Tunable no: Default value is not tunable.

StorageClass Auto: Default value is Auto (Real-Time Workshop declares the
memory).

TypeQualifier "": Default is no type qualifier.

Model Parameters Record

A-41

IsSfcnSizePrm 0: Default is not an S-function sizes parameter (only used by
non-inlined S-functions)

}

Parameter {

Identifier Identifier used in the generated code.

Tunable If inlined parameters check box is off, then all parameter values
are tunable (they will reside in the rtP vector). If inlined is on,
then tunable means that this parameter has been selectively non-
inlined. It will be placed in memory according to the Storage
class. Note that the default value is 'no' (in which case this field is
not written).

RequiredInP Parameter required in rtP vector, 1 for the Accelerator, Rapid
Simulation Target, External Mode; 0 otherwise.

StorageClass Specifies where to declare/place this parameter value in memory
(Auto, ExportedGlobal, ImportedExtern,
ImportedExternPointer). Default value is Auto in which case
this field is not written to the model.rtw file.

TypeQualifier String used as a type qualifier for the declaration of the
parameter (e.g., "static").

Value Evaluated value of this parameter.

Dimensions Actual dimensions of this parameter value. Note, it is possible for
blocks to have matrix values written as a column-major vector.
This field contains the dimensions of the data prior to the
flattening of the vector to column-major.

DatatTypeIdx Data type index into the data type table
(CompiledModel.DataTypes.DataType).

Table A-17: Model.rtw Model Parameters Record (Continued)

Variable/Record Name Description

A model.rtw

A-42

ComplexSignal yes or no, is this a complex signal?

IsSfcnSizePrm 1 if this is an S-function sizes parameter, 0 otherwise.

ReferencedBy An N-by-3 matrix. Each row specifies a system, block, parameter
index triplet that identifies a usage of this parameter value. If
N>1, then this parameter value is shared by multiple blocks.

}

}

Table A-17: Model.rtw Model Parameters Record (Continued)

Variable/Record Name Description

System Record

A-43

System Record
The System record describes how to execute the blocks within your model. In
general, a model can consist of multiple systems. There is one system for the
root and one for each nonvirtual (conditionally executed) subsystem. All virtual
(nonconditional) subsystems are flattened and placed within the current
system. Each descendent system of the root system is written out using Pascal
ordering (deepest first) to avoid forward references. Within each system is a
sorted list of blocks.

Table A-18: Model.rtw System Record

Variable/Record Name Description
System { One for each system in the model. This is equal to

NumNonvirtSubsystems plus 1 for the root system.
Type root, atomic, enable, trigger, enable_with_trigger, or

function-call.
Name Name of system.

SLName Unmodified Simulink name. This is only written if it is not equal
to Name.

NoCode If yes, generate no code. This system runs on the host only
(during simulations or during external mode).

Identifier Unique identifier across all blocks.

SystemIdx System index assigned to this system. Each system is assigned a
unique non-negative integer by rtwgen.

SubsystemBlockIdx [systemIndex, blockIndex]. Not present if Type is root. Vector
of two elements. First element is the index of the parent system of
this system. The second element is the index of this system in the
block list of its parent.

NumChildrenSystems Number of systems that this system parents.

Children Subsystem indices of the children. Note that the Children field is
only written out if NumChildrenSystems is greater than 0.

ForceNonInline Only relevant if you have a function-call subsystem. Otherwise it
will always be off. Field is only written out for non-root systems.

NumZCEvents Number of zero-crossing events for all blocks in this system.

A model.rtw

A-44

InlineSubsystem Flag indicating whether subsystem should be inlined or not;
Overridden by ForceNonInline flag for function-call subsystems if
InlineSubsystem is on and ForceNonInline is on. Only written for
non-root systems.

UseSystemNameForRTWFileNa
me

Flag indicating whether the system name should be used for the
code generation file name also. Only written for non-root systems.

SystemFileName File name that code should be generated in to. Simulink
determines the appropriate filename based on
UseSystemNameForRTWFileName etc. so that TLC can directly use
this file name. Only written for non-root systems.

LibraryName Name of library that this system originated from if this block is a
library link. This field is written out ONLY if the system is a
library link or a descendent of it. Only written for non-root
systems.

StartFcn Name of start functions for nonvirtual subsystem.

InitializeFcn Name of initialize function for enable systems that are configured
to reset states.

OutputFcn Name of output function for nonvirtual subsystem

UpdateFcn Name of update function for nonvirtual subsystem.

DerivativeFcn Name of derivative function for systems that have continuous
states.

EnableFcn Name of disable function for enable or enable_with_trigger
systems.

DisableFcn Name of disable function for enable or enable_with_trigger
systems.

ZeroCrossingFcn Name of nonsampled zero-crossing function for enable systems
using variable step solver.

OutputUpdateFcn Name of output/update function for trigger or
enable_with_trigger systems.

NumBlocks Number of nonvirtual blocks in the system.

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

System Record

A-45

BlocksIdx 0: Location of the first nonvirtual block in the following Block
record list.

NumVirtualOutportBlocks For the root system, the number of virtual outport blocks is 0
(since all root outport blocks are nonvirtual). For a system
corresponding to a conditionally executed subsystem, this is equal
to the number of outport blocks in the subsystem. For each of
these virtual outport blocks, there is a corresponding Block
record which appears after all the nonvirtual Block records.

VirtualOutportBlockIdx Starting index in the following Block record list of the virtual
outport blocks.

NumTotalBlocks Number of blocks in the system (sum of NumBlocks and
NumVirtualOutportBlocks).

Block { One for each nonvirtual block in the system. The virtual outport
block records are described below.

Type Block type, e.g., Gain.

InMask Yes if this block lives within a mask.

MaskType Only written out if block is masked. If this property is yes, this
block is either masked or resides in a masked subsystem. The
default for MaskType is no meaning the block does not have a
mask or resides in a masked subsystem.

Tag This is the text that can be attached to a block via the command:
set_param('block','Tag','text')

This parameter is written if the text is non-empty.
RTWdata { The RTWdata general record is only written if the RTWdata

property of a block is non-empty. The RTWdata is created using
the command:
set_param('block','RTWData',val)

where val is a MATLAB struct of string. For example,
val.field1 = 'field1 value'
val.field2 = 'field2 value'

field1 "field1 value"

feild2 "field2 value"

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

A model.rtw

A-46

}

Name Block name preceded with a <root> or <S#> token.

SLName Unmodified Simulink name. This is only written if it is not equal
to Name.

Identifier Unique identifer across all blocks in the model.

PortBasedSampleTimes yes. Only written if block specified port based sample times.

InputPortTIDs Only written if port sample time information is available.

OutputPortTIDs Only written if port sample time information is available.

TID Task ID, which can be one of:

• Integer >= 0, giving the index into the sample time table.

• Vector of two or more elements indicating that this block has
multiple sample times.

• constant indicating that the block is constant and doesn’t have
a task ID.

• triggered indicating that the block is triggered and doesn’t
have a task ID.

• Subsystem indicating that this block is a conditionally executed
subsystem and the TID transitions are to be handled by the
corresponding system.

SubsystemTID Only written if TID equals Subsystem. This is the actual value of
the subsystem TID (i.e., integer, vector, constant, or
triggered).

FundamentalTID Only written for multirate or hybrid enabled subsystems. This
gives the sample time as the greatest common divisor of all
sample times in the system.

SampleTimeIdx Actual sample time of block. Only written for zero order hold and
unit delay blocks.

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

System Record

A-47

AlgebraicLoopId This ID identifies what algebraic loop this block is in. If this field
is not present, the ID is 0 and the block is not part of an algebraic
loop.

ContStates Specified as [N,I] where N is number of continuous states and I
is the index into the state vector, X. Not present if N==0.

ModeVector Specified as [N,I] where N is the number of model vector
elements and I is the index into the data type work vector record
list. Not present if N==0.

RWork Specified as [N,I] where N is the number of real-work vector
elements and I is the index into the data type work vector record
list. Not present if N==0.

IWork Specified as [N,I] where N is the number of integer-work vector
elements and I is the index into the data type work vector record
list. Not present if N==0.

PWork Specified as [N,I] where N is the number of pointer-work vector
elements and I is the index into the data type work vector record
list. Not present if N==0.

DiscStates Specified as [N,I] where N is the number of discrete state vector
elements and I is the index into the data type work vector record
list. Not present if N==0.

NumDWork Number of DWork records block has declared. There is one DWork
record for each data type work vector of the block.

DWork { One record for each data type work vector.

Name Name of the data type work vector.

RecordIdx Index of this record in the model wide
CompiledModel.DWorkRecords.DWorkRecord list.

}

NonsampledZCs Specified as [N,I], where N is the number of nonsampled
zero-crossings and I is the index into the nonsampledZCs and
nonsampledZCdirs vectors.

NonsampledZC { One record for each nonsampled zero-crossing.

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

A model.rtw

A-48

Index Index of the block’s zero-crossing.

Direction Direction of zero-crossing: Falling, Any, Rising.

}

ZCEvents Specified as [N,I], where N is the number of zero-crossing events
and I is the index into the zcEvents vector.

ZCEvent { One record for each zero-crossing event.

Type Type of zero-crossing: DiscontinuityAtZC, ContinuityAtZC,
TriggeredDisconAtZC.

Direction Direction of zero-crossing: Falling, Any, Rising.

}

RollRegions RollRegions is the contiguous regions defined by the inputs and
block width. Block width is the overall width of a block after
scalar expansion. RollRegions is provided for use by the %roll
construct.

NumDataInputPorts Number of data input ports. Only written if nonzero.

DataInputPort { One record for each data input port.

Width Length of the signal entering this input port.

Dimensions Vector of the form [nRows, nCols] for the signal. Only written if
number of dimensions is greater than 1.

DataTypeIdx Index into the CompiledModel.DataTypes.DataType record list
giving the data type of this port. Only written if not 0 (see
CompiledModel.DataInputPortDefaults.DataTypeIdx).

ComplexSignal Is this port complex? Only written if yes. The default from
CompiledModel.DataInputPortDefaults.ComplexSignal is no.

FrameData yes/no: Is this port frame-based?

HaveGround yes/no: Is this port connected to ground?

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

System Record

A-49

SignalSrc A vector of length Width where each element specifies the source
signal. This is an index into the block I/O vector (Bi), an index
into the state vector (Xi), an index into the external input vector
(Ui), unconnected ground (G0), or FcnCall indicating the source is
a function-call.

RollRegions A vector (e.g., [1:5, 6:10, 11]) giving the contiguous regions for this
data input port over which for loops can be used. This is always
written for S-Function blocks, otherwise it is written only if it is
different from the block RollRegions.

DirectFeedThrough Does this input port have direct feedthrough? Only written if
WriteBlockConnections is on and the value this port does not
have direct feedthrough, in which case no is written.

BufferDstPort Only written if this input port is used by an output port of this
block. The default is
CompiledModel.DataInputPortDefaults.BufferDstPort which
is -1.

}

NumControlInputPorts Number of control (e.g., trigger or enable) input ports. Only
written if nonzero.

ControlInputPort { One record for control input port.

Type Type of control port: enable, trigger, or function-call.

Width Width (i.e. vector length) of the signal entering this input port.

Dimensions Vector of the form [nRows, nCols] for the signal. Only written if
number of dimensions is greater than 1.

DataTypeIdx Index into the CompiledModel.DataTypes.DataType record list
giving the data type of this port. Only written if not 0 (see
CompiledModel.ControlInputPortDefaults.DataTypeIdx).

ComplexSignal Is this port complex? Only written if yes. The default from
CompiledModel.ControlInputPortDefaults.ComplexSignal is
no.

HaveGround yes/no: Is this port connected to ground?

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

A model.rtw

A-50

SignalSrc A vector of length Width where each element specifies the source
signal. This is an index into the block I/O vector (Bi), an index
into the state vector (Xi), an index into the external input vector
(Ui), or unconnected ground (G0).

SignalSrcTID Vector of length Width giving the TID as an integer index,
trigger, or constant identifier for each signal entering this
control port. This is the rate at which the signal is entering this
port. If the subsystem block has a triggered sample time, then the
signal source must be triggered.

NumUniqueTIDs Only written for enabled systems. Number of unique TIDs on the
enable port, needed since there is only a mode element for each
unique TID.

SrcTID For each unique TID, a record which contains the tid and the roll
regions on the enable port for that tid.

RollRegions A vector (e.g., [1:5, 6:10, 11]) giving the contiguous regions for this
data input port over which for loops can be used. This is always
written for S-Function blocks, otherwise it is written only if it is
different from the block RollRegions.

DirectFeedThrough Does this input port have direct feedthrough? Only written if
WriteBlockConnections is on and the value this port does not
have direct feedthrough, in which case no is written.

BufferDstPort Only written if this input port is used by an output port of this
block.The default is
CompiledModel.ControlInputPortDefaults.BufferDstPort
which is -1.

}

NumDataOutputPorts Number of output ports. Only written if nonzero.

DataOutputPort { One record for each output port.

Index Index in the BlockOutputs map.

Dimensions Vector of the form [nRows, nCols] for the signal. Only written if
number of dimensions is greater than 1.

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

System Record

A-51

FrameData yes, no, or mixed: Is this port frame-based?

Offset The offset of this port in its BlockOutputs which can be non-zero
due to the merge block.

Width The width of this port which can be different than width of its
BlockOutputs due to the merge block.

}

Connections { Only written if this is an S-Function block, or the
WriteBlockConnections rtwgen option was specified as on.

InputPortContiguous Vector of length NumDataInputPorts containing yes, no, or
grounded.

DirectSrcConn Vector of length NumDataInputPorts containing yes or no as to
whether or not the input port is directly connected to a nonvirtual
source block.

DirectDstConn Vector of length NumDataOutputPorts containing yes or no as to
whether or not the output port is directly connected to a signal
nonvirtual destination block.

DataOutputPort { One record for each data output port.

NumConnPoints Number of destination connection points. A destination
connection point is defined to be a one-to-one connection with
elements from the output (src) port to the destination block and
port.

ConnPoint {

SrcSignal Vector of length two giving the range of signal elements for the
connection:
[startIdx, length]

Where startIdx is the starting index of the connection in the
output port and length is the number of elements in the
connection.

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

A model.rtw

A-52

DstBlockAndPortEl Vector of length four giving the destination connection:
[sysIdx, blkIdx, inputPortIdx, inputPortEl]

sysIdx is the index of the system record. blkIdx is the index with
in system record of the destination block. inputPortIdx is the
index of the destination input port. inputPortEl is the starting
offset within the port of the connection.

}

}

}

ParamSettings { Optional record specific to block.

blockSpecificName Block specific settings.

}

<S-function fields> Optional fields (parameters and/or records) that are written to
the model.rtw file by the your specific S-function mdlRTW method.

Parameters Specified as [N,M] where N is the number of Parameter records
that follow, M is the number of modifiable parameter elements.
Not present if N==0.

Parameter { One record for each parameter.

Name Name of the parameter as defined by the block.

Dimensions Vector of the form [nRows, nCols] for the signal. Only written if
number of dimensions is greater than 1.

DataTypeIdx Data type index of the parameter into the
CompiledModel.DataTypes.DataType records. Only written if not
0 (i.e., not real_T).

ComplexSignal Is this parameter complex? Only written if yes.

String String entered in the Simulink block dialog box.

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

System Record

A-53

StringType One of:

• "Computed" indicating the parameter is computed from values
entered in the Simulink dialog box.

• "Variable" indicating the parameter is derived from a single
MATLAB variable.

• "Expression" indicating the parameter is a MATLAB
expression.

ASTNode { Contains the direct mapping of this parameter to the model
parameters record list. Essentially, this is the ‘value’ of the
parameter.

Op • Op = SL_CALCULATED => AstNode contains
ModelParametersIdx, an index into the ModelParameters table
for evaluated (calculated) parameter expressions,

• Op = SL_NOT_INLINED => AstNode contains
ModelParametersIdx, an index into the ModelParameters table
for evaluated (calculated) parameter expressions,

• Op = SL_INLINED => AstNode contains ModelParametersIdx, an
index into the ModelParameters table for evaluated (calculated)
parameter expressions,

• Op = M_ID (a terminal node), the AST record contains
ModelParameterIdx.

• Op = M_NUMBER (a terminal node), the AST record contains the
numerical value (Value field).

• Op = Simulink name of operator token (many). In this case, the
ASTNode contains the fields NumChildren and the records for the
children.

fields depend on Op

}

}

ParamName0 Parameter[0] - An alias to the first parameter.

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

A model.rtw

A-54

...

ParamNameN-1 Parameter[N-1] - An alias to the last parameter.

}

Block { One block record (after the nonvritual block records) for each
virtual outport block in the system.

Type Outport

Name Block name preceded with a <root> or <S#> token.

SLName Unmodified Simulink name. This is only written if it is not equal
to Name.

Identifier Unique identifer across all blocks.

RollRegions A vector (e.g., [1:5, 6:10, 11]) giving the contiguous regions over
which for loops can be used.

NumDataInputPorts 1

DataInputPort { See nonvirtual block DataInputPort record.

}

}

EmptySubsysInfo {

NumRTWdatas Number of empty subsystem blocks that have
set_param(block, 'RTWdata', val)

specified, where val is a struct of strings.

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

System Record

A-55

RTWdata { The RTWdata general record is only written if the RTWdata
property of a block is non-empty. The RTWdata is created using
the command:

set_param('block','RTWData',val)

where val is a MATLAB struct of string. For example,

val.field1 = 'field1 value'
val.field2 = 'field2 value'

field1 "field1 value"

field2 "field2 value"

}

}

Table A-18: Model.rtw System Record (Continued)

Variable/Record Name Description

A model.rtw

A-56

Stateflow Record
Stateflow library charts contained within your model can be multiinstanced,
meaning that more than one instance of the same library chart appears in your
model. The Stateflow record contains one Chart record for each unique library
chart. Each Chart record contains the block references to the chart.This record
is used by the Real-Time Workshop/Stateflow code generator tools to generate
code that is reusable among all instances of a library chart. Note that when
generating code that will use dynamic memory allocation (e.g., grt_malloc), all
Stateflow charts are treated as multiinstanced to allow reuse of the chart code.

Table A-19: Model.rtw Stateflow Record

Variable/Record Name Description
SFLibraryNames { Only written if Stateflow charts exist in the model.
NumUniqueCharts Number of Chart records.

Chart { Record for a Stateflow library chart.

Name Name of the Stateflow library chart.

ReferencedBy An N-by-2 matrix. Each row specifies a system and block pair
that identifies a instance of the library chart.

}

}

Model Checksums

A-57

Model Checksums
Checksums are created that are unique for each model.

Table A-20: Model.rtw Checksums

Variable/Record Name Description
BlockParamChecksum This is a hash-based checksum for the block parameter values

and identifier names.
ModelChecksum This is a hash-based checksum for the model structure.

A model.rtw

A-58

Block Specific Records
Each block may have parameters. All parameters are written out to the
model.rtw file in Parameter records that are contained with the Block records.
There is one Parameter record for each block parameter (i.e.,
Block.Parameter[i]). A parameter in this context only refers to parameters
that external mode can tune. Therefore, there may not be a one-to-one mapping
between parameters in the model.rtw file and the parameter dialog for the
block.

Each Simulink built-in block has an associated block record that covers all
possible configurations of that block. The following table provides a complete
listing of built-in blocks and their associated records. The blocks are listed in
alphabetical order. The Target Language Compiler also has an associated TLC
file for each block that specifies how code is generated for that block.

This table describes the block specific records written for the Simulink blocks
(excluding common fields described above).

Table A-21: Model.rtw Block Specific Records

Block Type Properties
AbsoluteValue No block specific records
Actuator No block specific records.
Backlash • BacklashWidth parameter giving the ‘backlash’ region for the block.

• 1 RWorkDefine record, containing PrevY if fixed-step solver.

• 2 RWorkDefine records, containing PrevYA and PrevYB used for
‘banking’ the output to prevent model execution inconsistencies.

BusSelector No block specific records.
Clock No block specific records.
CombinatorialLogic TruthTable parameter defining what the output should be,

y = f(TruthTable,u).
ComplexToMagnitudeAngle Output ParamSetting. Output is "Magnitude", "Angle", or

"MagnitudeAndAngle" indicating what the output port(s) are
producing.

ComplexToRealImag Output ParamSetting. Output is one of "Real", "Imag", or
"RealAndImag" indicating what the output port(s) are producing.

Constant Value parameter indicating what the output port should produce.
DataStoreMemory Virtual - Not written to the model.rtw file.

Block Specific Records

A-59

DataStoreRead DataStore parameter - Region index into data stores list to get data
store name, etc.

DataStoreWrite DataStore parameter - Region index into data stores list to get data
store name, etc.

DataTypeConversion No block specific records.
DeadZone • LowerValue parameter - the lower value of the deadzone.

• UpperValue parameter - the upper value of the deadzone.

• InputContiguous ParamSetting (yes or no).

• SaturateOnOverflow ParamSetting (NotNeed, Needed,
NeededBugOff, or NeededForDiagnostics).

Demux Virtual - Not written to the model.rtw file.
Derivative The Derivative block computes its derivative by using the

approximation:
(input-prevInput)/deltaT

Two banks of history are needed to keep track of the previous input
because the input history is updated prior to integrating states. To
guarantee correctness when the output of the Derivative block is
integrated directly or indirectly, two banks of the previous inputs are
needed. This history is saved in the real-work vector (RWork). The
real-work vectors are:

• TimeStampA RWork - time values for ‘bank A’

• LastUAtTimeA RWork - last input value for ‘bank A’

• ’TimeStampB RWork - time values for ‘bank B’

• LastUAtTimeB RWork - last input value for ‘bank B’
DigitalClock No block specific records.
DiscreteFilter See Model.rtw Linear Block Specific Records.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-60

DiscreteIntegrator • Zero, one or two RWork vectors depending on the InegratorMethod.
These will be SystemEnable or IcNeedsLoading or both.

• IntegratorMethod ParamSetting - ForwardEuler, BackwardEuler,
or Trapezoidal.

• ExternalReset ParamSetting - none, rising, falling, either,
level.

• InitialConditionSource ParamSetting - internal or external.

• LimitOutput ParamSetting - on or off.

• ShowSaturationPort ParamSetting - on or off.

• ShowStatePort ParamSetting - on or off.

• ExternalX0 ParamSetting - only written when initial condition (IC)
source is external.This is the initial value of the signal entering the
IC port.

• InitialCondition parameter.

• UpperSaturationLimit parameter.

• LowerSaturationLimit parameter.
DiscretePulseGenerator • PhseDelay ParamSetting, giving the numerical phase delay.

• One IWork for ClockTicksCounter, used to manage the pulse.

• Amplitude parameter, a numerical vector giving the pulse
amplitude.

• Period parameter, a numerical vector giving the pulse period.

• PulseWidth parameter, a numerical vector giving the pulse width.
DiscreteStateSpace See Model.rtw Linear Block Specific Records.
DiscreteTransferFcn See Model.rtw Linear Block Specific Records.
DiscreteZeroPole See Model.rtw Linear Block Specific Records.
Display No block specific records.
ElementaryMath Operator ParamSetting - One of sin, cos, tan, asin, acos, atan,

atan2, sinh, cosh, tanh, exp, log, log10, floor, ceil, sqrt,
reciprocal, pow, or hypot.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Block Specific Records

A-61

EnablePort Only written if nonvirtual. When nonvirtual, we write the following:

• ControlPortNumber ParamSetting - The control input port number
for this block. The corresponding subsystem block control input port
index is the block port number minus one.

• SubsystemIdx ParamSetting - This is the location
[systemIdx,blockIdx] of the nonvirtual subsystem which contains
this nonvirtual Enable block.

From Virtual. Not written to model.rtw file.
FromFile • FileName ParamSetting - Name of MAT-file to read data from

• NumPoints ParamSetting - Number of points of data to read

• TUData ParamSetting - Time and data points. Not present if using
the Rapid Simulation Target.

• Width ParamSetting - Number of columns in TUData structure.

• One PWork vector, PrevTimePtr used for managing the block output.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-62

FromWorkspace • VariableName ParamSetting - Name of variable in “Data” field in
block parameter dialog box.

• DataFormat ParamSetting - "Matrix" or "Structure".

• Interpolate ParamSetting - Interpolate flag is on/off (see entry for
From Workspace block in the Using Simulink manual).

• OutputAfterFinalValue ParamSetting - How to generate output
after final data value (see entry for From Workspace block in the
Using Simulink manual).

• NumPoints ParamSetting - Number of data points (rows) over
which to read values from as time moves forward and write to the
output port.

The following two items (Time and Data) are written as Parameters if
we are generating code for the Rapid Simulation Target, otherwise
they are written as ParamSettings.

• Time - The time tracking vector. May or may not be present. If data
format is Matrix, then this field is always present. If data format is
Struct then this field is present only if the time field exists.

• Data - The data to put on the output port.

• One IWork vector for the PrevIndex used in computing the output.

• Three PWork vectors, TimePtr, DataPtr, RSimInfoPtr used in
computing the output.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Block Specific Records

A-63

Fcn • Expr ParamSetting - Text string containing the expression the user
entered.

• ASTNode record, containing the parsed abstract syntax tree for the
expression. The general form of the ASTNode is:
ASTNode {

Op Operator (e.g. “+”)
LHS { Left-hand side argument for Op
...

}
RHS { Right-hand side argument for Op
...

}
}

Gain • SaturateOnOverflow ParamSetting - Only written for element
gain operations. (NotNeed, Needed, NeededBugOff, or
NeededForDiagnostics).

• OperandComplexity ParamSetting - Only written for non-element
gain operations. This is one of RR,RC,CR,CC where R=Real and
C=Complex, depending on how the block is configured.

• Dimensions ParamSetting - Only written for non-element gain
operations. This is a vector containing the dimensions for the gain
operation.

• Complexities ParamSetting - Only written for non-element gain
operations. An integer array [outputPortComplexity, <input and
gain complexity pair>].

Goto Virtual. Not written to model.rtw file.
GotoTagVisibility Virtual. Not written to model.rtw file.
Ground Virtual. Not written to model.rtw file.
HiddenBuffer There are no block specific records. This block is automatically

inserted into your model by the simulation engine to make the
generate code more efficient by providing contiguous signals to blocks
that require contiguous inputs (for example, the matrix multiply
algorithm is more efficient if the inputs are contiguous).

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-64

HitCross • InputContiguous ParamSetting - yes, no is the input contiguous?

• HitCrossingOffset Parameter - The hit crossing offset used in
computing the output.

InitialCondition Value parameter - This is the initial condition to output the first time
the block executes. It is a parameter (as opposed to a ParamSetting)
to enable loop rolling.

Inport Virtual. Not written to model.rtw file.
Integrator • ExternalReset ParamSetting - one of none, rising, falling,

either, level.

• InitialConditionSource ParamSetting - internal or external.

• LimitOutput ParamSetting - on or off.

• ShowSaturationPort ParamSetting - on or off.

• ShowStatePort ParamSetting - on or off.

• ExternalX0 ParamSetting - only present for external initial
conditions.

• InputContiguous ParamSetting - is the first input port contiguous
(yes or no)?

• ResetInputContiguous ParamSetting - Only present if the reset
port is present.

• InitialCondition parameter.

• UpperSaturationLimit parameter.

• LowerSaturationLimit parameter.
Logic Operator ParamSetting - one of AND, OR, NAND, NOR, XOR, or NOT.
Lookup • ZeroTechnique ParamSetting - The type of lookup being

performed. This doesn’t change during model execution. The
possibilities are: NormalInterp, AverageValue, or Middle_Value.

• InputValues parameter - The input values, x, corresponding to the
function y = f(x).

• OutputValues parameter - The output values, y, of the function
y = f(x).

• OutputAtZero parameter - the output when the input is zero.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Block Specific Records

A-65

Lookup2D • ColZeroTechnique ParamSetting - NormalInterp, AverageValue,
or MiddleValue.

• ColZeroIndex ParamSetting - Primary index when column data is
zero.

• ColZeroIndex ParamSetting - - NormalInterp, AverageValue, or
MiddleValue.

• RowIndex parameter - The row input values, x, to the function z =
f(x,y).

• ColumnIndex parameter - The column input values, y, to the
function z = f(x,y).

• OutputValues parameter - The table output values, z, for the
function z = f(x,y).

MagnitudeAngleToComplex • Input ParamSetting - one of "Magnitude", "Angle", or
"MagnitudeAndAngle"

• ConstantPart parameter - Only written when there is one input
port.

Math Operator ParamSetting - exp, log, 10^u, log10, square, sqrt, pow,
reciprocal, hypot, rem, or mod.

MATLABFcn There is no support for the MATLAB Fcn block in the Real-Time
Workshop.

Memory • One DWork vector, PreviousInput, used to produce the output.

• X0 parameter - the initial condition.
Merge InitialOutput parameter, giving the initial output for the merged

signal.
MinMax Function ParamSetting - min or max.
MultiPortSwitch No block specific records.
Mux Virtual. Not written to model.rtw file.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-66

Outport The block record for this block depends on the type of outport:

• Root outports:

- PortNumber ParamSetting - Port number as entered in the dialog
box.

- OutputLocation ParamSetting - Specified as Yi if root-level
outport; otherwise specified as Bi.

- OutputWhenDisabled ParamSetting - Only written when in an
enabled subsystem and will be held or reset.

• Outport in a nonvirtual subsystem:

- InputContiguous ParamSetting - yes or no.

- OutputWhenDisabled ParamSetting - held or reset.

- SpecifyIC ParamSetting - yes or no was the IC specified?

- InitialOutput parameter - Only written for virtual outport
blocks in a nonvirtual subsystem.

Probe • ProbeWidth ParamSetting - on or off.

• ProbeSampleTime ParamSetting - on or off.

• ProbeComplexSignal ParamSetting - on or off.

• ProbeSignalDimensions ParamSetting - on or off.
Product (element-wise
multiply with one input
port)

• If block is configured for element-wise multiply, the block record
contains:

- One optional IWork vector to suppress warnings.

- Multiplication ParamSetting - “Element-wise(.*)”

- Inputs ParamSetting - string vector of the form:
["*", "*", "/"]

- SaturateOnOverflow ParamSetting (NotNeed, Needed,
NeededBugOff, or NeededForDiagnostics).

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Block Specific Records

A-67

Product (matrix multiply
with one input port)

If block is configured for matrix multiply with one input port, the
block record contains:

• Multiplication ParamSetting - “Matrix(*)”

• Inputs ParamSetting - string vector of the form:
["*", "*", "/"]

• OneInputMultipley ParamSetting - yes.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-68

Product (matrix multiply
with more than one input
port).

If block is configured for matrix multiply, with one input port, the
block record contains:

• Multiplication ParamSetting - “Matrix(*)”

• Inputs ParamSetting - string vector of the form:
["*", "*", "/"]

• OneInputMultipley ParamSetting - no.

• OperandComplexity ParamSetting - RR, RC, CR, or CC where:
RR : in1 (real) in2 (real)
RC : in1 (real) in2 (complex)
CR : in1 (complex) in2 (real)
CC : in1 (complex) in2 (complex)

• Dimensions ParamSetting - [numSteps x 3] matrix. Each row of
the matrix contains 3 elements. If for a specific step, e.g., i-th,
operand1 is a [m x n] matrix, and operand2 is a [n x k] matrix, the
i-th row contains [m n k].

• Operands ParamSetting - [numSteps x 3] matrix. Each row
contains the {result, operand1, operand2}. Where:
zero - block output
greater than zero - data input port number (unity-index based)
less than zero - dwork buffer number (negative unity-index based).

• Complexities ParamSetting - [numSteps x 3] matrix. Each row
contains the {result, operand1, operand2}. Where:
zero - real
one - complex

• Operators ParamSetting - LU, Pivot, X dwork indices.

• DivisionBuffers ParamSetting - LU, Pivot, X dwork indices.
Quantizer QuantizationInterval parameter - numerical vector giving the

quantization interval points.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Block Specific Records

A-69

RandomNumber • One IWork vector RandSeed.

• One RWork vector NextOutput.

• Mean parameter - the mean of the random number generator.

• StandardDeviation parameter - the standard deviation of the
random number generator.

RateLimiter • If a variable step solver is being used, then this block has two RWork
vectors, PrevYA and PrevYB (two banks to maintain consistent
simulation results).

• If a fixed-step solver is being used, then this block has two RWork
vectors, PrevT and PrevY (used to keep track last time and output).

• RisingSlewLimit parameter.

• FallingSlewLimit parameter.
RealImagToComplex • Input ParamSetting - Real, Imag, or RealAndImag.

• ConstantPart parameter.
Reference Will never appear in model.rtw.
RelationalOperator • Operator ParamSetting - One of ==, ~=, <, <=, >=, >.

• InputContiguous ParamSetting - yes or no.
Relay • InputContiguous ParamSetting - yes or no.

• OnSwitchValue parameter.

• OffSwitchValue parameter.

• OnOutputValue parameter.

• OffOutputValue parameter.
ResetIntegrator InitialCondition parameter.

Rounding Operator ParamSetting - floor, ceil, round, or fix
Saturate • InputContiguous ParamSetting - yes or no.

• UpperLimit parameter.

• LowerLimit parameter.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-70

Scope • One PWork for LoggedData.

• SaveToWorkspace ParamSetting - yes or no.

• SaveName ParamSetting - name of variable to log.

• MaxRows ParamSetting - maximum number of data points to log.

• Decimation ParamSetting - integer giving when to log data 1 for
every time step, 2 for every other time step, and so on.

• DataFormat ParamSetting - StructureWithTime, Structure, or
Matrix.

• AxesTitles ParamSetting - record giving the axis title strings.

• AxesLabels ParamSetting - record giving the axis label strings.

• PlotStyles ParamSetting - what we are plotting.
Selector Virtual. Not written to model.rtw file.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Block Specific Records

A-71

S-Function The S-function has the following parameter settings:

• FunctionName - Name of S-function.

• SFunctionLevel - Level of the S-function 1 or 2.

• FunctionType - Type of S-function: "M-File", "C-MEX", or
"FORTRAN-MEX".

• Inlined - yes, no, or skip. Skip is for case of non-C-MEX S-function
sink.

• DirectFeedthrough - For level 1 S-functions, this will be written as
yes or no. For level 2 S-functions, this will be a vector of yes or no
for each input port.

• UsingUPtrs - If this is a Level 1 C MEX S-function and if it is using
ssGetUPtrs (instead of ssGetU), then this ParamSetting will be
"yes". If this a Level 2 S-function, then this field will be a vector of
yes/no, each element corresponding to each input port. An element
value of "yes" implies that the S-function has set the
RequiredContiguous attribute for the corresponding input port to
true. The Level 2 S-function will be using ssGetInputPortSignal
(instead of ssGetInputPortSignalPtrs).

• InputContiguous - For level 1 S-functions, this will be yes or no. For
level 2 S-functions, this is a vector of yes or no for each input port.

• SampleTimesToSet - Mx2 matrix of sample time indices indicating
any sample times specified by the S-function in
mdlInitializeSizes and mdlInitializeSampleTimes that get
updated. The first column is the S-function sample time index, and
the 2nd column is the corresponding SampleTime record of the model
giving the PeriodAndOffset. For example, an inherited sample
time will be assigned the appropriate sample time such as that of
the driving block. In this case, the SampleTimesToSet will be [0,
<i>] where <i> is the specific SampleTime record for the model.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-72

S-Function (continued) • DynamicallySizedVectors - Vector containing any of:
"U", "U0", "U1", ..., "Un",
"Y", "Y0", "Y1", ..., "Yn",
"Xc", "Xd", "RWork", "IWork", "PWork", "D0",, "Dn".

For example ["U0", "U1", "Y0"].
For a level 1 S-function only U or Y will be used whereas for a level
2 S-function, U0, U1, ..., Un, Y0, Y1, ..., Yn will be used. This includes
dynamically typed vectors, i.e., data type and complex signals. For
example, if U0 is in this list either width, data type, or complex
signal of U0 is dynamically sized (or typed).
SFcnmdlRoutines - Vector containing any of:
["mdlInitializeSizes",
"mdlInitializeSampleTimes",
"mdlInitializeConditions",
"mdlStart",
"mdlOutputs",
"mdlUpdate",
"mdlDerivatives",
"mdlTerminate"
"mdlRTW"]

Indicating which routines need to be executed. Only written for
level 2 S-functions.

• RTWGenerated - yes or no, is this generated by the Real-Time
Workshop?

The next section contains information about function-call connections:

NumSFcnSysOutputCalls - Number of calls to subsystems of type
"function-call".

SFcnSystemOutputCall { One record for each call
OutputElement Index of the output element that is

doing the function call.
FcnPortElement Index of the subsystem function

port element that is being called.
BlockToCall [systemIndex, blockIndex] or

unconnected
}

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Block Specific Records

A-73

S-function (continued) If the S-function has a mdlRTW method, then additional items can be
added. See matlabroot/simulink/src/sfuntmpl.doc.

If the S-function is not inlined, i.e., sfunctionname.tlc does not
exist) then

For each S-function parameter entered in the dialog box, there is a
P#Size and P# parameter giving the size and value of the
parameter, where # is the index starting at 1 of the parameter in the
dialog box.

If the S-function is inlined, i.e., sfunctionname.tlc does exist,

No sizes parameter. Parameter names are derived from the
run-time parameter names.

SignalGenerator • WaveForm ParamSetting - sine, square, or sawtooth.

• TwoPi - 6.283185307179586.

• Amplitude parameter.

• Frequency parameter.
Signum No block specific records.
Sin This block has two very distinct forms. If the block is discrete, we use

trigonometric identities to remove time from the output function,
otherwise we simply compute the output as a function of time.

• If the block is discrete,

- We have two RWork vectors, LastSin, LastCos and one IWork,
SystemEnable.

- We have the following parameters: Amplitude, Frequency, SinH,
CosH, SinPhi, CosPhi.

• otherwise:

- We have the following parameters: Amplitude, Frequency.
Step • Time parameter.

• Before parameter.

• After parameter.
StateSpace See Model.rtw Linear Block Specific Records.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-74

Sum • Inputs ParamSetting - A vector of the form ["+", "+", "-"]
corresponding to the configuration of the block.

• SaturateOnOverflow ParamSetting (NotNeed, Needed,
NeededBugOff, or NeededForDiagnostics).

SubSystem • SystemIdx ParamSetting - Index of this system in the model.rtw
file.

• StatesWhenEnabling ParamSetting - held or reset. Only written
if enable port is present.

• TriggerBlock ParamSetting - Block index of TriggerPort block in
system or NotPresent.

• TriggerScope ParamSetting - Only written if we have a trigger
port. It can be one of: NoScope, ScopeOnce, ScopeIndividually.

• EnableScope ParamSetting - Only written if we have an enable
port. It can be one of: NoScope, ScopeOnce, ScopeIndividually.

• SystemContStates ParamSetting - Specified as [N,I] where N is
the number of continuous states and I is the index into the state
vector, X.

• UseSystemNameForRTWFileName ParamSetting - on or off.
• SystemFileName ParamSetting.
• NumNonsampledZCs ParamSetting.
• StartNonsampledZCs ParamSetting.
• SkipIntgOnTrigEvent ParamSetting.
• SingleRate ParamSetting.
• MinorStepGuard ParamSetting.

Switch • ControlInputContiguous ParamSetting - yes or no.
• Threshold parameter.

ToFile • One IWork vector, Decimation.

• Two PWork vectors, FilePtr, and LogFilePtr.
• Filename ParamSetting.
• MatrixName ParamSetting.
• Decimation ParamSetting.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Block Specific Records

A-75

ToWorkspace • One PWork vector, LoggedData.

• VariableName ParamSetting - Name of variable used to save data.

• Buffer ParamSetting- Maximum number of rows to save or 0 for no
limit.

• Decimation ParamSetting - Data logging interval

• InputContiguous - yes or no.
• SaveFormat ParamSetting.
• Label ParamSetting.

Terminator Virtual. Not written to model.rtw file.
TransferFcn See Model.rtw Linear Block Specific Records.
TransportDelay • InitialInput ParamSetting.

• BufferSize ParamSetting.
• DiscreteInput ParamSetting.
• One IWork vector, BufferIndices.

• One PWork vector, TUbuffer.

• DelayTime parameter.
TriggerPort • TriggerType ParamSetting - Only written if the number of output

ports is one.

• ControlPortNumber ParamSetting - The control input port number
for this block. The corresponding subsystem block control input port
index is PortNumber-1.

• SubsystemIdx ParamSetting - This is the location [systemIdx,
blockIdx] of the non-virtual subsystem which contains this
non-virtual Trigger block.

Trigonometry • Operator ParamSetting - sin, cos, tan, asin, acos, atan, atan2,
sinh, cosh, or tanh.

UniformRandomNumber • One IWork vector, RandSeed.

• One RWork vector, NextOutput.

• Seed ParamSetting.

• Minimum parameter.

• MaxMinusMin parameter.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

A model.rtw

A-76

UnitDelay • One DWork vector, PreviousInput, used to produce the output.

• X0 parameter - the initial condition.
VariableTransportDelay • InitialInput ParamSetting.

• BufferSize ParamSetting.
• DiscreteInput ParamSetting.
• One IWork vector, BufferIndices.

• One PWork vector, TUbuffer.

• DelayTime parameter.
Width No block specific records.
ZeroPole See Model.rtw Linear Block Specific Records.
ZeroOrderHold No block specific records.

Table A-21: Model.rtw Block Specific Records (Continued)

Block Type Properties

Linear Block Specific Records

A-77

Linear Block Specific Records
This table describes the block specific records written for the Simulink linear
blocks. These fields are common to all the discrete and continuous state space,
transfer function, and discrete filter blocks previously discussed.

Table A-22: Model.rtw Linear Block Specific Records

Parameter { Vector of nonzero terms of the A matrix if realization is sparse,
otherwise it is the first row of the A matrix.

Name "Amatrix"

Value Vector that could be of zero length.
String ""

StringType "Computed"

}

Parameter { Vector of nonzero terms of the B matrix.
Name "Bmatrix"

Value Vector that could be of zero length.
String ""

StringType "Computed"

}

Parameter { Vector of nonzero terms of the C matrix if realization is sparse,
else it is the full C 2-D matrix.

Name "Cmatrix"

Value Vector that could be of zero length.
String ""

StringType "Computed"

}

Parameter { Vector of nonzero terms of the D matrix.
Name "Dmatrix"

Value Vector that could be of zero length.
String ""
StringType "Computed"

}

Parameter { Initial condition vector or [].
Name "X0"

A model.rtw

A-78

Value Vector that could be of zero length.
String ""
StringType "Computed"

}

ParamSettings {

NumNonZeroAInRow Vector of the number of nonzero elements in each row of the A
matrix.

ColIdxOfNonZeroA Column index of the nonzero elements in the A matrix.
NumNonZeroBInRow Vector of the number of nonzero elements in each row of the B

matrix.
ColIdxOfNonZeroB Column index of the nonzero elements in the B matrix.
NumNonZeroCInRow Vector of the number of nonzero elements in each row of the C

matrix.
ColIdxOfNonZeroC Column index of the nonzero elements in the C matrix.
NumNonZeroDInRow Vector of the number of nonzero elements in each row of the D

matrix.
ColIdxOfNonZeroD Column index of the nonzero elements in the D matrix.

}

Table A-22: Model.rtw Linear Block Specific Records (Continued)

B

TLC Error Handling

Generating Errors from TLC-Files B-2
Usage Errors . B-2
Fatal (Internal) TLC Coding Errors B-2
Formatting Error Messages B-3

TLC Error Messages B-5

TLC Function Library Error Messages B-32

B TLC Error Handling

B-2

Generating Errors from TLC-Files
To generate errors from TLC files, use the %exit directive. The two types of
errors are:

Usage Errors
Usage errors are errors that can happen by incorrect models or other attributes
defined on a model. For example, suppose you have an S-Function block and an
inline TLC file for a specific D/A device. If a model can contain only one copy of
this S-function, then an error needs to be generated for a model that contains
two copies of this S-Function block.

Using Library Functions
To generate usage errors related to a specific block, use the library function

LibBlockReportError(block,"error string")

The block argument is the block record if it isn’t scoped. If the block is
currently scoped, then you can specify block as [].

To generate general usage errors that are not related to a specific block, use

LibReportError("error string")

These library functions prepend the string Real-Time Workshop Error to the
message you provide when reporting the error.

For an example usage of these functions, refer to gensfun.tlc for block errors
and commonsetup.tlc for common errors. There are other files that use these
functions in the directory matlabroot/rtw/c/tlc.

Fatal (Internal) TLC Coding Errors
Suppose you have an S-function that has a local function that can accept only
numerical numbers. You may want to add an assert requiring that the inputs
be only numerical numbers. These asserts indicate fatal coding errors in that
the user has no way of building a model or specifying attributes that can cause
the error to occur.

Usage errors These can be caused by incorrect models.

Internal coding errors These cannot be caused by incorrect models.

Generating Errors from TLC-Files

B-3

Using Library Functions
The two available library functions are

LibBlockReportFatalError(block,"fatal coding error message")

where block is the offending block record (or [] if the block is already scoped),
and

LibReportFatalError("fatal coding error message")

for error messages that are not block specific. For example, to add assert code
you could use

%if TYPE(argument) != "Number"
%<LibBlockReportFatalError(block,"unexpected argument type")

%endif

These library functions prepend the string Real-Time Workshop Fatal to the
message you provide and display the call stack when reporting the error.

For an example usage of these functions, refer to gensfun.tlc for block error
and commonsetup.tlc for common errors. There are other files that use these
functions in the directory matlabroot/rtw/c/tlc.

Using %exit
You can call %exit to generate fatal error messages, however, it is suggested
that you use one of the previously discussed library functions. If you do use
%exit, take care when generating an error string containing new lines
(carriage returns); see Formatting Error Messages.

When generating fatal error messages directly with %exit, it is good practice
to give a stack trace with the error message. This lets you see the call chain of
functions that caused the error. To generate a stack trace, generate the
message using the format

%setcommandswitch "-v1"
%exit RTW Fatal: error string

Formatting Error Messages
You should be careful when formatting error message strings. For example,
suppose you create a local variable (called message) that contains text that has
new lines.

B TLC Error Handling

B-4

%openfile message
My message text
with new lines (carriage returns)
%closefile message

If you then want to create another variable and prefix this message with the
text “RTW Error:”, you need to use

%openfile errorMessage
RTW Error: %<message>
%closefile errorMessage

or

%assign errorMessage = "RTW Error:"+ message

The statement

%assign errorMessage = "RTW Error: %<message>"

will cause a syntax error during TLC execution and your message will not be
displayed. This should be avoided. Use the function LibBlockRepportError to
help prevent this type of runtime syntax error. The syntax error occurs because
TLC evaluates the message which causes new lines to appear in the
assignment statement that appear as unterminated text strings (i.e., the
trailing quote is missing).

After formatting your error message, use LibBlockReportError, a similar
function, or %exit to report your error when it occurs.

Testing Error Messages
It is strongly suggested that you test your error messages before releasing your
new TLC code. To test your error messages, copy the relevant code into a
test.tlc file and run

tlc test.tlc

at the MATLAB prompt.

TLC Error Messages

B-5

TLC Error Messages
This section lists and describes error messages generated by the Target
Language Compiler (tlc.mex). Use this reference to:

• Confirm that an error has been reported.

• Determine possible causes for an error.

• Determine possible ways to correct an error.

%closefile or %selectfile or %flushfile argument must be a valid open file
When using %closefile or %selectfile or %flushfile, the argument must be
a valid file variable opened with %openfile.

%define no longer supported, use %function instead
Macros are no longer supported. You must rewrite all macros as functions or
inline them in your code.

%error directive: text
Code containing the %error directive generates this message. It normally
indicates some condition that the code was unable to handle and displays the
text following the %error directive.

%exit directive: text
Code containing the %exit directive causes this message. It typically indicates
some condition that the code was unable to handle and displays the text
following the %exit directive. Note that this directive causes the Target
Language Compiler to terminate regardless of the -mnumber command line
option.

%filescope has already been used in this file.
The user attempted to use the %filescope directive more than once in a file.

%trace directive: text
The %trace directive produces this error message and displays the text
following the %trace directive. Trace directives are only reported when the -v
option (verbose mode) appears on the command line. Note that %trace

B TLC Error Handling

B-6

directives are not considered errors and do not cause the Target Language
Compiler to stop processing.

%warning directive: %s
The %warning directive produces this error message and displays the text
following the %warning directive. Note that %warning directives are not
considered errors and do not cause the Target Language Compiler to stop
processing.

A %implements directive must appear within a block template file and
must match the %language and type specified
A block template file was found, but it did not contain a %implements directive.
A %implements directive is required to ensure that the correct language and
type are implemented by this block template file. See “Object-Oriented Facility
for Generating Target Code” on page 5-32 for more information.

A %switch statement can only have one %default
The user has written a %switch statement with multiple %default cases, as in
the following example.

%switch expr
 %case 1
 code...
 %break
 %default

more code...
 %break
 %default %% error
 even more code...
 %break
%endswitch

A language choice must be made using the %language directive prior to
using GENERATE or GENERATE_TYPE
To use the GENERATE or GENERATE_TYPE built-in functions, the Target Language
Compiler requires that you first specify the language being generated. It does
this to ensure that the block-level target file implements the same language
and type as specified in the %language directive.

TLC Error Messages

B-7

A non-homogenous vector was passed to GENERATE_FORMATTED_VALUE
The builtin GENERATE_FORMATTED_VALUE can only process vectors which have
homogenous elements (that is, vectors in which all the elements have the same
type).

Ambiguous reference to identifier — must use array index to refer to one
of multiple scopes
When using a repeated scope identifier from a database file, you must specify
an index in order to disambiguate the reference. For example,

Database file:
block
{

Name "Abc2"
Parameter {

Name "foo"
Value 2

}
}
block
{

Name "Abc3"
Parameter {

Name "foo"
Value 3

}
}

TLC file:
%assign y = block

In this example, the reference to block is ambiguous because multiple repeated
scopes named “block” appear in the database file. Use an index to disambiguate
it, as in

%assign y = block[0]

An %if statement can only have one %else
The user has written an %if statement with multiple %else blocks, as in the
following example.

B TLC Error Handling

B-8

%if expr
 code...
%else
 more code...
%else %% error
 even mode code...
%endif

Argument to identifier must be a string
The following built-in functions expect a string and report this error if the
argument passed is not a string.

Arguments to directive must be records
Arguments to %mergerecord and %copyrecord must be records. Also, the first
argument to the following builtins must be records:

• ISALIAS
• REMOVEFIELD
• FIELDNAMES
• ISFIELD

• GETFIELD

• SETFIELD.

Arguments to TLC from the MATLAB command line must be strings
An attempt was made to invoke the Target Language Compiler from MATLAB
and some of the arguments that were passed were not strings.

CAST GENERATE_FILENAME

EXISTS GENERATE_FUNCTION_EXISTS

FEVAL GENERATE_TYPE

FILE_EXISTS GET_COMMAND _SWITCH

FORMAT IDNUM

GENERATE SYSNAME

TLC Error Messages

B-9

Assertion failed
An expression in an %assert statement evaluated to false.

Assignment to scope identifier is only allowed when using the + operator
to add members
Scope assignment must be scope = scope + variable.

Attempt to define a function identifier on top of an existing variable or
function
A function cannot be defined twice. Make sure that you don’t have the same
function defined in separate TLC files.

Attempt to divide by zero
The Target Language Compiler does not allow division by zero.

Bad cast - unable to cast this expression to "type"
The Target Language Compiler does not know how to cast this expression from
its current type to the specified type. For example, the Target Language
Compiler is not able to cast a string to a number as in

%assign x = "1234"
%assign y = CAST("Number", x);

Bad directory (dirname) in -O: filename
The -O option was not a valid directory.

builtin was expecting epxression of type type, got one of type type
A builtin was passed an expression of incorrect type.

Cannot %undef any builtin functions or variables
User is not allowed to %undef any TLC builtins or variables, for example

%undef FORMAT %% error

Cannot convert string your_string to a number
Cannot convert the string to a number.

B TLC Error Handling

B-10

Changing value of identifier from the RTW file
You have overwritten the value that appeared in the RTW file.

Error opening "filename"
The Target Language Compiler could not open the file specified on the
command line.

Error writing to file "error"
There was an error while writing to the current output stream. "error" will
contain the system specific error message.

Errors occurred — aborting
This error message is always the last error to be reported. It occurs when:

• The number of error messages exceeds the error message threshold
(5 by default), or

• Processing completes and errors have occurred.

Expansion directives %<> cannot be nested
It is illegal to nest expansion directives. e.g.

%<foo(%<expr>)>

Instead, do the following:

%assign tmp = %<expr>
%<foo(tmp)>

Expansion directives %<> cannot span multiple lines; use \ at end of line
An expansion directive cannot span multiple lines. To work around this
restriction, use the \ line continuation character. For example,

%<CompiledModel.System[Sysidx].Block[BlkIdx].Name +
"Hello">

is illegal, whereas

%<CompiledModel.System[Sysidx].Block[BlkIdx].Name + \
"Hello">

is correct.

TLC Error Messages

B-11

Extra arguments to the function-name built-in function were ignored
(Warning)
The following built-in functions report this warning when too many arguments
are passed to them.

File name too long (directory = 'dirname', name = 'filename')
The specified filename was too long. The default limits are 256 characters for
filename and 1024 characters for pathname, but the limits may be larger
depending on the platform.

format is not a legal format value
The specified format was not legal for the %realformat directive. Valid format
strings are "EXPONENTIAL" and "CONCISE".

Function argument mismatch; function function_name expects number
arguments
When calling a function, too many or too few arguments were passed to it.

CAST NUMTLCFILES

EXISTS OUTPUT_LINES

FILE_EXISTS SIZE

FORMAT STRING

GENERATE_FILENAME STRINGOF

GENERATE_FUNCTION_EXISTS SYSNAME

IDNUM TLCFILES

ISFINITE TYPE

ISINF WHITE_SPACE

ISNAN WILL_ROLL

B TLC Error Handling

B-12

Function reached the end and did not return a value
Functions that are not declared as void or Output must return a value. If a
return value is not desired, declare the function as void, otherwise ensure that
it always returns a value.

Function values are not allowed
Attempt to use a TLC function as a variable.

Identifier identifier multiply defined. Second and succeeding definitions
ignored.
The user is attempting to add the same field to a record more than once, as in
the following code.

%createrecord err { foo 1; rec { val 2 } }
%addtorecord err foo 2 %% error

Identifier identifier used on a %foreach statement was already in scope
(Warning)
The argument to a %foreach statement cannot be defined prior to entering the
%foreach.

Illegal use of eval (i.e. %<...>)
It is illegal to use evals in .rtw files. There are also some places where evals
are not allowed in directives, for example

%function %<foo>(a, b, c) void %% error
%endfunction

Indices may not be negative
An index used in a [] expression must be a nonnegative integer.

Indices must be constant integral numbers
An index used in a [] expression must be an integral number.

Invalid handle
An invalid handle was passed to the Target Language Compiler Server Mode.

TLC Error Messages

B-13

Invalid identifier range, the leading strings string1 and string2 must
match
When using a range of signals, for example, u1:u10, the identifier in the first
argument did not match the identifier in the second.

Invalid identifier range, the lower bound (%d) must be less than the upper
bound (%d)
When using a range of signals, for example, u1:u10, the lower bound was
higher than the upper bound.

Invalid type for unary op.
Unary operators - and + require numeric types. Unary operator ~ requires an
integral type. Unary operator ! requires a Boolean type.

Invalid type for unary operator
This error occurs for the following operators under the given conditions.

Invalid type type
An invalid type was passed to a builtin function.

It is illegal to return a function from a function
A function value cannot be returned from a function call.

Operator Reason for Error

! Operand to the logical not operator (!) must be a Number,
Real, or Boolean.

- Operand to the unary negation operator (-) must be a
Number or Real.

+ Operand to the unary plus operator (+) must be a Number
or Real.

~ Operand to the bitwise negation operator (~) must be a
Number.

B TLC Error Handling

B-14

License checkout failed. In order to generate Ada, you must purchase a
license. Please contact your MathWorks sales representative.
This error occurs when you do not have a valid license available for generating
Ada code.

Named value identifier already exists within this scope-identifier; use
%assign to change the value
You cannot use the block addition operator + to add a value that is already a
member of the indicated block. Use %assign to change the value of an existing
value. This example produces this error:

%assign x = BLK { a 1; b 2 }
%assign a = 3
%assign x = x + a

Use this instead:

%assign x.a = 3

No %case statement(s) seen yet, statement ignored.
Statements that appear inside a %switch statement, but precede any %case
statements, are ignored, as in the following code.

%switch expr
%assign x = 2 %% this statement will be ignored
 %case 1
 code
 %break
%endswitch

Only double and character arrays can be converted from MATLAB to TLC.
This can occur if the MATLAB function does not return a value (see
%matlab).
Only double and character arrays can be converted from MATLAB to the
Target Language Compiler. This error can occur if the MATLAB function does
not return a value (see %matlab). For example,

%assign a = FEVAL(“int8“,3)
%matlab disp(a)

TLC Error Messages

B-15

Only one output is allowed from the TLC
An attempt was made to receive multiple outputs from the MATLAB version of
the Target Language Compiler.

Only strings of length 1 can be assigned using the [] notation
The right-hand side of a string assignment using the [] operator must be a
string of length 1. You can only replace a single character using this notation.

Only strings or cells of strings may be used as the argument to Query and
ExecString
A cell containing nonstring data was passed as the third argument to Query or
ExecString in Server Mode.

Only vectors of the same length as the existing vector value can be
assigned using the [] notation
When using the [] notation to replace a row of a matrix, the row must be a
vector of the same length as the existing rows.

Output file identifier opened with %openfile was not closed
Output files opened with %openfile must be closed with %closefile.
identifier is the name of the variable specified in the %openfile directive.

Note This might also occur if there is a syntax error in your code section
between an openfile and closefile, or if you try to assign the output of a
function of type void or Output to a variable.

Ranges, identifier ranges, and repeat values cannot be repeated
You cannot repeat a range, idrange, or repeat value. This prevents things like
[1@2@3].

String cannot modify the setting for the command line switch '-switch'
%setcommandswitch does not recognize the specified switch, or cannot modify
it (e.g., -r cannot be modified).

B TLC Error Handling

B-16

'String' is not a recognized user defined property of this handle
The query performed on a TLC server mode handle is looking for an undefined
property.

Syntax error
The indicated line contains a syntax error, See Chapter 5, “Directives and
Built-in Functions,” for information on the syntax.

Syntax error detected in EXISTS function called with "string"
The EXISTS function parses and evaluates the string passed to it. The function
reports this error when it is unable to parse the input string successfully. To
better diagnose the error, you can try to define the symbol and then type the
identical expression inside an expansion directive. For example,

%if EXISTS("x[100].y")
%% If this fails, try
%<x[100].y>
%% In order to receive a better diagnosis of the problem.

The %break directive can only appear within a %foreach, %for, %roll, or
%switch statement
The %break directive can only be used in a %foreach, %for, %roll, or %switch
statement.

The %case and %default directives can only be used within the %switch
statement
A %case or %default directive can only appear within a %switch statement.

The %continue directive can only appear within a %foreach, %for, or %roll
statement
The %continue directive can only be used in a %foreach, %for, or %roll
statement.

The %foreach statement expects a constant numeric argument
The argument of a %foreach must be a numeric type. For example,

%foreach Index = [1 2 3 4]
…

TLC Error Messages

B-17

%endforeach

%foreach cannot accept a vector as input.

The %if statement expects a constant numeric argument
The argument of a %if must be a numeric type. For example,

%if [1 2 3]
…
%endif

%if cannot accept a vector as input.

The %implements directive expects a string or string vector as the list of
languages
You can use the %implements directive to specify a string for the language
being implemented, or to indicate that it implements multiple languages by
using a vector of strings. You cannot specify any other argument type to the
%implements directive.

The %implements directive specifies type as the type where type was
expected
The type specified in the %implements directive must exactly match the type
specified in the block or on the GENERATE_TYPE directive. If you want to specify
that the block accept multiple input types, use the %implements * directive, as
in

%implements * "C" %% I accept any type and generate C code

The %implements language does not match the language currently being
generated (language)
The language or languages specified in the %implements directive must exactly
match the %language directive.

The %return statement can only appear within the body of a function
A %return statement can only be in the body of a function.

B TLC Error Handling

B-18

The == and != operators can only be used to compare values of the same
type
The == and != operator arguments must be the same type. You can use the
CAST() built-in function to change them into the same type.

The argument for %openfile must be a valid string
When opening an output file, the name of the file must be a valid string.

The argument for %with must be a valid scope
The argument to %with must be a valid scope identifier. For example,

%assign x = 1
%with x
…
%endwith

In this code, the %with statement argument is a number and produces this
error message.

The argument for an [] operation must be a repeated scope symbol, a
vector, or a matrix
When using the [] operator to index, the expression on the left of the brackets
must be a vector, matrix, string, numeric constant, or a repeated scope
identifier. When using array indexing on a scalar, the constant is automatically
scalar expanded and the value of the scalar is returned. For example,

%openfile x
%assign y = x[0]

This example would cause this error because x is a file and is not valid for
indexing.

The argument to %addincludepath must be a valid string
The argument to %addincludepath must be a string.

The argument to %include must be a valid string
The argument to the input file control directive must be a valid string with the
filename given in double quotes.

TLC Error Messages

B-19

The begin directive must be in the same file as the corresponding end
directive.
These Target Language Compiler begin directives must appear in the same file
as their corresponding end directives: %function, %switch, %foreach, %roll,
and %for. Place the construct entirely within one Target Language Compiler
source file.

The begin directive on this line has no matching end directive
For block-scoped directives, this error is produced if there is no matching end
directive. This error can occur for the following block-scoped Target Language
Compiler directives.

The error is reported on the line that opens the scope and has no matching end
scope.

Begin
Directive

End
Directive

Description

%if %endif Conditional inclusion

%for %endfor Looping

%foreach %endforeach Looping

%roll %endroll Loop Rolling

%with %endwith Scoping directive

%switch %endswitch Switch directive

%function %endfunction Function declaration directive

{ } Record creation

B TLC Error Handling

B-20

Note Nested scopes must be closed before their parent scopes. Failure to
include an end for a nested scope often causes this error, as in

%if Block.Name == "Sin 3"
%foreach idx = Block.Width

%endif %% Error reported here that the %foreach was not terminated

The construct %matlab function_name(...) construct is illegal in standalone
tlc
You cannot call MATLAB from stand-alone TLC.

The FEVAL() function can accept only 2-dimensional arrays from MATLAB,
not number dimensions
Return values from MATLAB can have at most two dimensions.

The FEVAL() function can accept vectors of numbers or strings only when
calling MATLAB
Vectors passed to MATLAB can be numbers or strings. See “FEVAL Function”
on page 5-46.

The FEVAL() function requires the name of a function to call
FEVAL requires a function to call. This error only appears inside MATLAB.

The final argument to %roll must be a valid block scope
When using %roll, the final argument (prior to extra user-specified
arguments) must be a valid block scope. See %roll for a complete description
of this command.

The first argument of a ? : operator must be a Boolean expression
The ? : operator must have a Boolean expression as its first operand.

TLC Error Messages

B-21

The first argument to GENERATE or GENERATE_TYPE must be a valid scope
When calling GENERATE or GENERATE_TYPE, the first argument must be a valid
scope. See the GENERATE and GENERATE_TYPE functions for more information
and examples.

The function name requires at least number arguments
User is passing too few arguments to a function, as in the following code.

%function foo(a, b, c)
 %return a + b + c
%endfunction

%<foo(1, 2)> %% error

The GENERATE function requires at least 2 arguments
When calling the GENERATE built-in function, the first two arguments must be
the block and the name of the function to call.

The GENERATE_TYPE function requires at least 3 arguments
When calling the GENERATE_TYPE built-in function, the first three arguments
must be the block, the name of the function to call, and the type.

The ISINF(), ISNAN(), ISFINITE(), REAL() and IMAG() functions expect a real
valued argument
These functions expect a Real value as the input argument.

The language being implemented cannot be changed within a block
template file
You cannot change the language using the %language directive within a block
template file.

The language being implemented has changed from old-language to
new-language (Warning)
The language being implemented should not be changed in midstream because
GENERATE function calls that appear prior to the %language directive may cause
generate functions to load for the prior language. Only one language directive
should appear in a given file.

B TLC Error Handling

B-22

The left-hand side of a . operator must be a valid scope identifier
When using the . operator, the left-hand side of the . operator must be a valid
in-scope identifier. For example,

%assign x = 1
%assign y = x.y

In this code, the reference to x.y produces this error message because x is not
defined as a scope.

The left-hand side of an assignment must be a simple expression
comprised of ., [], and identifiers
Illegal left-hand side of assignment.

The number of columns specified (specified-columns) did not match the
actual number of columns in all of the rows (actual-columns)
When specifying a Target Language Compiler matrix, the number of columns
specified did not match the actual number of columns in the matrix. For
example,

%assign mat = Matrix(2,1) [[1,2];[2,3]]

In this case, the number of columns in the declaration of the matrix (1) did not
match the number of columns seen in the matrix (2). Either change the number
of columns in the matrix, or change the matrix declaration.

The number of rows specified (specified-rows) did not match the actual
number of rows seen in the matrix (actual-rows)
When specifying a Target Language Compiler matrix, the number of rows
specified did not match the actual number of rows in the matrix. For example,

%assign mat = Matrix(1,2) [[1,2];[2,3]]

In this case, the number of rows in the declaration of the matrix (1) did not
match the number of rows seen in the matrix (2). Either change the number of
rows in the matrix or change the matrix declaration.

The operator_name operator only works on Boolean arguments
The && and || operators work on Boolean values only.

TLC Error Messages

B-23

The operator_name operator only works on integral arguments
The &, ^, |, <<, >> and % operators only work on numbers.

The operator_name operator only works on numeric arguments
The arguments to the following operators both must be either Number or Real:
<, <=, >, >=, -, *, /. This can also happen when using + as an unary operator. In
addition, the FORMAT built-in function expects either a Number or Real
argument.

The return value from the RollHeader function must be a string
When using %roll, the RollHeader() function specified in Roller.tlc must
return a string value. See %roll for a complete discussion of the %roll
construct.

The roll argument to %roll must be a nonempty vector of numbers or
ranges
When using %roll, the roll vector cannot be empty and must contain numbers
or ranges of numbers. See %roll for a complete discussion of the %roll
construct.

The second value in a Range must be greater than the first value
When using a range, for example, 1:10, the lower bound was higher than the
upper bound.

The specified index (index) was out of the range
0 to number-of-elements – 1
This error occurs when indexing into any nonscalar beyond the end of the
variable. For example,

%assign x = [1 2 3]
%assign y = x[3]

This example would cause this error. Remember, in the Target Language
Compiler, array indices start at 0 and go to the number of elements minus 1.

B TLC Error Handling

B-24

The STRINGOF built-in function expects a vector of numbers as its
argument
The STRINGOF function expects a vector of numbers. The function treats each
number as the ASCII value of a valid character.

The SYSNAME built-in function expects an input string of the form
<xxx>/yyy
The SYSNAME function takes a single string of the form <xxx>/yyy as it appears
in the .rtw file and returns a vector of two strings xxx and yyy. If the input
argument does not match this format, it returns this error.

The threshold on a %roll statement must be a single number
When using %roll, the roll threshold specified must be a single number. See
%roll for a complete discussion of the %roll construct.

The use of feature is being deprecated and will not be supported in future
versions of TLC. See the TLC manual for alternatives.
The %define and %generate directives are not recommended, as they are being
replaced.

The WILL_ROLL built in function expects a range vector and an integer
threshold
The WILL_ROLL function expects two arguments: a range vector and a
threshold.

There are no more free contexts. Use TLC('close', HANDLE) to free up a
context
The global context table has filled up while using the TLC server mode.

There was no type associated with the given block for GENERATE
The scope specified to GENERATE must include a Type parameter that indicates
which template file should be used to generate code for the specified scope. For
example,

%assign scope = block { Name "foo" }
%<GENERATE(scope, "Output")>

TLC Error Messages

B-25

This example produces the error message because the scope does not include
the parameter Type. See the GENERATE and GENERATE_TYPE functions for more
information and examples on using the GENERATE built-in function.

This assignment would overwrite an identifier-value pair from the RTW
file.To avoid this error either qualify the left-hand side, or choose another
identifier.
The user is trying to modify a field of a record in a %with block without
qualifying the left-hand side, as in this example.

 %createrecord foo { field 1 }
 %with foo
 %assign field = 2 %% error
 %endwith

The correct method is:

%createrecord foo { field 1 }
 %with foo
 %assign foo.field = 2
 %endwith

TLC has leaked number symbols. You may have created a cyclic record.
If this not the case then please report this leak to The MathWorks.
There has been a memory leak while running TLC. The most common cause of
this is having cyclic records.

Unable to find identifier within the scope-identifier scope
The given identifier was not found in the scope specified. For example,

%assign scope = ascope { x 5 }
%assign y = scope.y

In this code, the reference to scope.y produces this error message.

Unable to open %include file filename
The file included in a %include directive was not found on the path. Either
locate the file and use the -I command line option to specify the correct
directory, or move the file to a location on the current path.

B TLC Error Handling

B-26

Unable to open block template file filename from GENERATE or
GENERATE_TYPE
When using GENERATE, the given filename was not found on the Target
Language Compiler path. You can:

• Add the file into a directory on the path.

• Use the %generatefile directive to specify an alternative filename for this
block type that is on the path.

• Add the directory in which this file appears to the command line options
using the -I switch.

Unable to open output file filename
Unable to open the specified output file; either an invalid filename was
specified or the file was read only.

Undefined identifier identifier_name
The identifier specified in this expression was undefined.

Unknown type "type" in CAST expression
When calling the CAST built-in function, the type must be one of the valid
Target Language Compiler types found in the Target Language Values table.

Unrecognized command line switch passed to string: switch
When querying the current state of a switch, the switch specified was not
recognized.

Unrecognized directive "directive-name" seen
An illegal % directive was encountered. The valid directives are shown below.

%addincludepath %filescope

%addtorecord %for

%assert %foreach

%assign %function

%break %generate

TLC Error Messages

B-27

Unrecognized type "output-type" for function
The function type modifier was not Output or void. For functions that do not
produce output, the default without a type modifier indicates that the function
should produce no output.

Unterminated multi-line comment.
A multi-line (i.e. /% %/) comment has no terminator, as in the following code.

/% my comment

%case %generatefile

%closefile %if

%continue %implements

%copyrecord %include

%createrecord %language

%default %matlab

%define %mergerecord

%else %openfile

%elseif %realformat

%endbody %return

%endfor %roll

%endforeach %selectfile

%endfunction %setcommandswitch

%endif %switch

%endroll %trace

%endswitch %undef

%endwith %warning

%error %with

%exit

B TLC Error Handling

B-28

%assign x = 2
%assign y = x * 7

Unterminated string
A string must be closed prior to the end of an expansion directive or the end of
a line.

TLC Error Messages

B-29

Usage: tlc [options] file

Message Description

-r <name> Specify the Real-Time Workshop file to read.

-v[<number>] Specify the verbose level to be <number> (1
by default).

-I<path> Specify a path to local include files. The TLC
will search this path in the order specified.

-m[<number>|a] Specify the maximum number of errors (a is
all). Default is 5.

-O<path> Specify the path used to create output files.
By default all TLC output will be created in
this directory.

-d[a|c|n|o] Invoke the TLC's debug mode.

-da will make TLC execute any %assert
directives.

-dc will invoke TLC's command line
debugger.

-dn will cause TLC to produce log files
indicating which lines were and were not hit
during compilation.

-do will disable TLC's debugging behavior.

-a<ident>=<expression> Assign a variable to a specified value. Use
this option to specify parameters that can be
used to change the behavior of your TLC
program. This option is used by RTW to set
options like inlining of parameters, file size
limits, etc.

B TLC Error Handling

B-30

A command line problem has occurred. The error message contains a list of all
of the available options.

Use of feature incurs a performance hit, please see TLC manual for
possible workarounds.
The %undef and expansion (i.e. %<expr>) features may cause performance hits.

Value of specified_type type cannot be compared
The specified type (i.e., scope) cannot be compared.

Values of specified_type type cannot be expanded
The specified type cannot be used on an expansion directive. Files and scopes
cannot be expanded. This can also happen when expanding a function without
any arguments. If you use

%<Function>

call it with the appropriate arguments.

Values of type Special, Macro Expansion, Function, File, Full Identifier,
and Index cannot be converted to MATLAB variables
The specified type cannot be converted to MATLAB variables.

When appending to a buffer stream, the variable must be a string
You can specify the append option for a buffer stream only if the variable
currently exists as a string. Do not use the append option if the variable does
not exist or is not a string. This example produces this error.

-p<number> Print a '.' indicating progress for every
<number> of TLC primitive operations
executed.

-lint Perform some simple performance checks
and collect some runtime statistics.

-x0 Parse a TLC file, but not execute it.

Message Description

TLC Error Messages

B-31

%assign x = 1
%openfile x , "a"
%closefile x

B TLC Error Handling

B-32

TLC Function Library Error Messages
There are many error messages generated by the TLC function library that are
not documented. These messages are sufficiently self-documenting so that they
do not need additional explanation. However, if you come across an error
message that you feel needs more description, contact our technical support
staff and we will update it in a future release (and give more explanation).

C

Using TLC with Emacs

The Emacs Editor C-2
Getting Started C-2
Creating a TAGS File C-2

C Using TLC with Emacs

C-2

The Emacs Editor
If you’re editing TLC files, we recommend trying to use Emacs. You can get a
copy of Emacs from http://www.gnu.org.

The MathWorks has created a tlc-mode for Emacs that gives automatic
indenting and color-coded syntax highlighting of TLC files. You can obtain
tlc-mode (and matlab-mode) from our Web site.

ftp://ftp.mathworks.com/pub/contrib/emacs_add_ons

See the readme.txt file for instructions on how to configure tlc-mode.

TLC code is much more readable using the color-coded syntax feature in
Emacs.

Getting Started
To get started using Emacs:

Ctrl stands for control key. For example, to load a file into Emacs, hold down
the control key and type x, followed by f with the control key still pressed, then
release the control key and type the name of a file followed by return. A tutorial
is available from the Emacs Help menu.

Creating a TAGS File
If you are familiar with Emacs TAGS, you can create a TAGS file for TLC files
by invoking

etags --regex='/[\t]*\%function[\t]+.+/' --language=none *.tlc

in the directory where your .tlc files are located. The etags command is
located the emacs_root/bin directory.

Ctrl-x Ctrl-f file.tlc <return> Loads a file into an Emacs buffer for
editing.

Ctrl-x Ctrl-s Saves the file in the current buffer.

Ctrl-x Ctrl-c Exits Emacs.

I-1

Index

Symbols
! 5-21
- 5-21
– 5-22
!= 5-23
% 5-2, 5-19, 5-22
& 5-23
&& 5-23
() 5-21
* 5-21
+ 5-21, 5-22
, 5-24
. 5-21
... 5-16
.c file 1-5
.h file 1-5
.log 6-11
.rtw file 1-5
.rtw file structure 4-2
/ 5-22
:: 5-21, 5-52
< 5-23
<< 5-22
<= 5-23
== 5-23
> 5-23
>= 5-23
>> 5-22
? : 5-24
\ 5-16
^ 5-23
_prm.h file 1-5
_reg.h file 1-5
| 5-23
|| 5-23
~ 5-21

A
%addincludepath 5-35
array index 5-21
%assert 5-36
assert

adding B-2
%assign 5-51, 7-26

defining parameters 3-18

B
block

customizing Simulink 5-32
block function 7-31

InitializeConditions 7-37
Start 7-37

block target file 1-4, 3-15, 3-17, 3-22, 7-31
function in 7-27
mapping 3-17
writing 7-32

BlockInstanceSetup 7-32
block-scoped variable 5-55
BlockTypeSetup 7-33
%body 5-28
Boolean 5-17
%break 5-27, 5-28
%continue 5-27
buffer

close 5-35
writing 5-34

built-in functions 5-37
CAST 5-38
EXISTS 5-38
FEVAL 5-39
FIELDNAMES 5-39
FILE_EXISTS 5-39

Index

I-2

FORMAT 5-39
GENERATE 5-40
GENERATE_FILENAME 5-40
GENERATE_FORMATTED_VALUE 5-40
GENERATE_FUNCTION_EXISTS 5-40
GENERATE_TYPE 5-41
GENERATE_TYPE_FUNCTION_EXISTS 5-41
GET_COMMAND_SWITCH 5-41
GETFIELD 5-40
IDNUM 5-41
IMAG 5-41
INT16MAX 5-41
INT16MIN 5-41
INT32MAX 5-41
INT32MIN 5-41
INT8MAX 5-41
INT8MIN 5-41
ISALIAS 5-42
ISEMPTY 5-42
ISEQUAL 5-42
ISFIELD 5-42
ISFINITE 5-42
ISINF 5-42
ISNAN 5-42
NULL_FILE 5-43
NUMTLCFILES 5-43
OUTPUT_LINES 5-43
REAL 5-43
REMOVEFIELD 5-43
ROLL_ITERATIONS 5-43
SETFIELD 5-43
SIZE 5-44
STDOUT 5-44
STRING 5-44
STRINGOF 5-44
SYSNAME 5-45
TLC_FALSE 5-45

TLC_TIME 5-45
TLC_TRUE 5-45
TLC_VERSION 5-46
TLCFILES 5-45
TYPE 5-46
UINT16MAX 5-46
UINT32MAX 5-46
UINT8MAX 5-46
WHITE_SPACE 5-46
WILL_ROLL 5-46

C
C MEX S-function 1-4
%case 5-27
CAST 5-38
%closefile 5-34
code

intermediate 3-17
code coverage 6-11
code generation 1-9
coding conventions 7-26
comment

target language 5-15
CompiledModel 4-3
Compiler

Target Language (TLC) 1-2
Complex 5-17
Complex32 5-17
conditional

inclusion 5-25
operator 5-20

constant
integer 5-19
string 5-19

continuation
line 5-16

Index

I-3

%continue 5-28
customizing

code generation 3-17
Simulink block 5-32

D
debug

message 5-36
debugger 6-2, 6-6

example session 6-9
using 6-3

debugger commands
viewing 6-8

debugging tips 6-2
%default 5-27
Derivatives 7-39
directive 3-18, 5-2

object-oriented 5-32
splitting 5-16

directives
%% 5-2
%<expr> 5-3
%addincludepath 5-8
%addtorecord 5-6
%assert 5-4
%assign 5-5
%break 5-4
%case 5-4
%closefile 5-15
%copyrecord 5-7
%createrecord 5-6
%default 5-4
%else 5-4
%elseif 5-4
%endforeach 5-13
%endfunction 5-12

%endif 5-4
%endroll 5-9
%endswitch 5-4
%endwith 5-4
%error 5-5
%exit 5-5
%filescope 5-8
%for 5-14
%foreach 5-13
%function 5-12
%generatefile 5-8
%if 5-4
%implements 5-8
%include 5-8
%language 5-7
%matlab 5-2
%mergerecord 5-7
%openfile 5-15
%realformat 5-7
%return 5-12
%roll 5-9
%selectfile 5-15
%setcommandswitch 5-4
%switch 5-4
%trace 5-5
%warning 5-5
%with 5-4
/% text %/ 5-2

Disable 7-36
dynamic scoping 5-56

E
%else 5-26
%elseif 5-26
Enable 7-35
%endbody 5-28

Index

I-4

%endfor 5-28
%endforeach 5-27
%endfunction 5-59
%endif 5-26
%endswitch 5-27
%endwith 5-55
%error 5-36
error

formatting messages B-3
internal B-2
usage B-2

error message 5-36
Target Language Compiler B-5

EXISTS 5-38
%exit 5-36
expressions 5-19

operators in 5-19
precedence 5-19

F
FEVAL 5-39
FIELDNAMES 5-39
File 5-17
file

.c 1-5

.h 1-5

.rtw 1-5
_prm.h 1-5
_reg.h 1-5
appending 5-35
block target 1-4, 3-17, 3-22
close 5-35
inline 5-35
model description. See model.rtw
model-wide target 3-18
system target 3-16

target 1-4, 3-17
target language 3-17
used to customize code 3-17
writing 5-34

FILE_EXISTS 5-39
%for 5-28
%foreach 5-27
FORMAT 5-39
formatting 5-25
frame signal A-6
Function 5-17
%function 5-59
function

C MEX S-function 1-4
call 5-21
GENERATE 5-33
GENERATE_TYPE 5-33
library 7-29
output 5-60
target language 5-59
Target Language Compiler 5-37–5-46

functions
obsolete 9-3

G
Gaussian 5-17
Gaussian, Unsigned 5-19
GENERATE 5-33, 5-40
GENERATE_FILENAME 5-40
GENERATE_FORMATTED_VALUE 5-40
GENERATE_FUNCTION_EXISTS 5-40
GENERATE_TYPE 5-33, 5-41
GENERATE_TYPE_FUNCTION_EXISTS 5-41
%generatefile 5-32
GET_COMMAND_SWITCH 5-41
GETFIELD 5-40

Index

I-5

I
identifier 7-26

changing 5-51
defining 5-51

IDNUM 5-41
%if %endif 5-26
IMAG 5-41
%implements 5-32
%include 5-35
inclusion

conditional 5-25
multiple 5-27

index 5-21
Initialize 7-37
InitializeConditions 7-37
inlining S-function 7-4

advantages 1-14
input file control 5-35
INT16MAX 5-41
INT16MIN 5-41
INT32MAX 5-41
INT32MIN 5-41
INT8MAX 5-41
INT8MIN 5-41
integer constant 5-19
intermediate code 3-17
ISALIAS 5-42
ISEMPTY 5-42
ISEQUAL 5-42
ISFIELD 5-42
ISFINITE 5-42
ISINF 5-42
ISNAN 5-42

L
%language 5-32

lcv, definition 9-5
library functions

LibAddToModelSources 9-27
LibBlockContinuousState 9-22
LibBlockDiscreteState 9-23
LibBlockDWork 9-22
LibBlockDWorkAddr 9-22
LibBlockDWorkDataTypeId 9-22
LibBlockDWorkDataTypeName 9-23
LibBlockDWorkIsComplex 9-23
LibBlockDWorkName 9-23
LibBlockDWorkUsedAsDiscreteState 9-23
LibBlockDWorkWidth 9-23
LibBlockInputSignal 9-10
LibBlockInputSignalAddr 9-12
LibBlockInputSignalBufferDstPort 9-39
LibBlockInputSignalDataTypeId 9-13
LibBlockInputSignalDataTypeName 9-13
LibBlockInputSignalDimensions 9-14
LibBlockInputSignalIsComplex 9-14
LibBlockInputSignalIsFrameData 9-14
LibBlockInputSignalNumDimensions 9-14
LibBlockInputSignalStorageClass 9-40
LibBlockInputSignalStorageTypeQualifier

9-40
LibBlockInputSignalWidth 9-14
LibBlockIWork 9-24
LibBlockMatrixParameter 9-18
LibBlockMatrixParameterAddr 9-18
LibBlockMode 9-24
LibBlockOutputSignal 9-15
LibBlockOutputSignalAddr 9-15
LibBlockOutputSignalDataTypeId 9-16
LibBlockOutputSignalDataTypeName 9-16
LibBlockOutputSignalDimensions 9-17
LibBlockOutputSignalIsComplex 9-17
LibBlockOutputSignalIsFrameData 9-17

Index

I-6

LibBlockOutputSignalIsGlobal 9-40
LibBlockOutputSignalIsInBlockIO 9-41
LibBlockOutputSignalIsValidLValue 9-41
LibBlockOutputSignalNumDimensions 9-17
LibBlockOutputSignalStorageClass 9-41
LibBlockOutputSignalStorageTypeQualifie

r 9-41
LibBlockOutputSignalWidth 9-17
LibBlockParameter 9-19
LibBlockParameterAddr 9-20
LibBlockParameterDataTypeId 9-21
LibBlockParameterDataTypeName 9-21
LibBlockParameterIsComplex 9-21
LibBlockParameterSize 9-21
LibBlockPWork 9-24
LibBlockReportError 9-25
LibBlockReportFatalError 9-25
LibBlockReportWarning 9-25
LibBlockRWork 9-24
LibBlockSrcSignalBlock 9-42
LibBlockSrcSignalIsDiscrete 9-42
LibBlockSrcSignalIsGlobalAndModifiable

9-43
LibBlockSrcSignalIsInvariant 9-43
LibCacheDefine 9-27
LibCacheExtern 9-28
LibCacheFunctionPrototype 9-28
LibCacheIncludes 9-28
LibCacheTypedefs 9-29
LibCallFCSS 9-36
LibGetBlockPath 9-26
LibGetDataTypeComplexNameFromId 9-37
LibGetDataTypeEnumFromId 9-37
LibGetDataTypeNameFromId 9-37
LibGetFormattedBlockPath 9-26
LibGetGlobalTIDFromLocalSFcnTID 9-30
LibGetNumSFcnSampleTimes 9-31

LibGetSFcnTIDType 9-32
LibGetT 9-37
LibGetTaskTimeFromTID 9-32
LibIsComplex 9-37
LibIsContinuous 9-32
LibIsDiscrete 9-32
LibIsFirstInitCond 9-38
LibIsSFcnSampleHit 9-33
LibIsSFcnSingleRate 9-34
LibIsSFcnSpecialSampleHit 9-34
LibMaxIntValue 9-38
LibMinIntValue 9-38

M
macro

expansion 5-21
makefile

template 1-4
Matrix 5-18
mdlDerivatives (S-function) 7-4
mdlInitializeConditions 7-4
mdlInitializeSampleTimes 7-4
mdlInitializeSizes 7-4
mdlOutputs (S-function) 7-4
MdlStart

InitializeConditions 7-37
MdlTerminate

Terminate 7-40
mdlTerminate (S-function) 7-4
mdlUpdate (S-function) 7-4
model description file. See model.rtw
model.rtw

changes A-6
model.rtw file 1-3, 5-37

parameter-value pair 4-2
record 4-2

Index

I-7

scope 4-3
structure 4-2

model-wide target file 3-18
modifier

Output 5-60
void 5-60

multiple inclusion 5-27

N
negation operator 5-21
nested function

scope within 5-62
NULL_FILE 5-43
Number 5-18
NUMTLCFILES 5-43

O
object-oriented directive 5-32
obsolete functions 9-3
%openfile 5-34
operations

precedence 5-21
operator 5-19

:: 7-27
conditional 5-20
negation 5-21

output file control 5-34
Output modifier 5-60
OUTPUT_LINES 5-43
Outputs 7-38

P
parameter

defining 3-18

value pair 4-2
paramIdx 9-7
path

specifying absolute 5-35
specifying relative 5-36

portIdx, definition 9-5
precedence

expressions 5-19
operations 5-21

profiler 6-14
using 6-14

program 3-17

R
Range 5-18
REAL 5-43
Real 5-18
Real32 5-18
%realformat 5-25
Real-Time Workshop 1-2
record 3-9, 4-2
REMOVEFIELD 5-43
resolving variables 5-56
%return 5-59, 5-64
%roll 5-29
ROLL_ITERATIONS 5-43
rt 7-28
rt_ 7-28
RTW

identifier 7-26

S
Scope 5-18
scope 5-55

accessing values in 4-3

Index

I-8

closing 5-64
dynamic 5-56
function 5-21
model.rtw file 4-3
within function 5-60

search path 5-66
adding to 5-35
overriding 5-66
sequence 5-36
specifying absolute 5-35
specifying relative 5-36

%selectfile 5-34
SETFIELD 5-43
S-function

adavantage of inlining 1-14
C MEX 1-4
inlining 7-4
user-defined 7-40

S-function record A-71
sigIdx 9-6
Simulink

and Real-Time Workshop 1-2
generating code 1-5

SIZE 5-44
Special 5-18
Start 7-36
stateIdx 9-7
STDOUT 5-44
STRING 5-44
String 5-18
string constant 5-19
STRINGOF 5-44
substitution

textual 5-19
Subsystem 5-18
%switch 5-26
syntax 5-2

SYS_NAME 5-45
system target file 3-16

T
target file 1-4, 3-14, 3-17

and customizing code 3-17
block 3-17, 3-22, 7-31
model-wide 3-18
naming 5-66
system 3-16

target language 3-8
comment 5-15
directive 3-18, 5-2
expression 5-19–5-24
file 5-2
formatting 5-25
function 5-59
line continuation 5-16
program 3-17
syntax 5-2
value 5-17–5-19

Target Language Compiler
command line arguments 5-65
directives 5-2–5-15
error messages B-5
function library 7-29
introducing 1-2
switches 5-65
uses of 1-7
variables 7-28

template makefile 1-4
Terminate 7-40
textual substitution 5-19
TLC code

debugging tips 6-2
TLC coverage option 6-11

Index

I-9

TLC debugger 6-2
TLC debugger commands 6-6
TLC profiler 6-14
TLC program 3-17
TLC_FALSE 5-45
TLC_TIME 5-45
TLC_TRUE 5-45
TLC_VERSION 5-46
TLCFILES 5-45
%trace 5-36
tracing 5-36
TYPE 5-46

U
ucv, definition 9-5
UINT16MAX 5-46
UINT32MAX 5-46
UINT8MAX 5-46
Unsigned 5-18
Unsigned Gaussian 5-19
Update 7-39

V
values 5-17
variables

block-scoped 5-55
global 7-27
local 7-27

Vector 5-19
void modifier 5-60

W
%warning 5-36
warning message 5-36

WHITE_SPACE 5-46
WILL_ROLL 5-46
%with 5-55

Z
zero-crossing

reset code 7-39

	Introducing the Target Language Compiler
	Overview of the TLC Process
	Overview of the Code Generation Process
	Capabilities
	Customizing Output
	Inlining S-Functions

	Code Generation Process
	How TLC Determines S-Function Inlining Status
	A Look at Inlined and Noninlined S-Function Code
	Process Specifics For The Real-Time Workshop Ada Coder

	Advantages of Inlining S-Functions
	Motivations
	Inlining Process
	Search Algorithm for Locating Target Files
	Availability for Inlining and Noninlining

	Target Language Compiler 4.0 New Features
	Compatibility Issues

	Where to Go from Here
	Related Manuals

	Getting Started
	Code Architecture
	Model.rtw and TLC Overview
	The TLC Process

	Inlining S-Function Concepts
	Noninlined S-Function
	Types of Inlining
	Fully Inlined S-Function Example
	Wrapper Inlined S-Function Example

	Code Generation Architecture
	Build Process
	A Basic Example

	Invoking TLC to Generate Code
	Code Generation Concepts
	Output Streams
	Variable Types
	Records
	Record Aliases

	TLC Files
	Introducing Target Files
	System Target Files
	Block Target Files
	Block Target File Mapping
	Target Files

	Writing Target Language Files: A Tutorial
	Matrix Parameters in Real-Time Workshop

	Configuring TLC

	Contents of model.rtw
	Overview of model.rtw File
	Using Scopes in the model.rtw File

	Using Library Functions to Access model.rtw Contents
	Caution Against Directly Accessing Record Fields
	Exception to Using the Library Functions

	Directives and Built-in Functions
	Compiler Directives
	Syntax
	Comments
	Line Continuation
	Target Language Values
	Target Language Expressions
	Formatting
	Conditional Inclusion
	Multiple Inclusion
	Object-Oriented Facility for Generating Target Code
	Output File Control
	Input File Control
	Asserts, Errors, Warnings, and Debug Messages
	Built-In Functions and Values
	TLC Reserved Constants
	Identifier Definition
	Scoping
	Target Language Functions

	Command Line Arguments
	Filenames and Search Paths

	Debugging TLC
	About the TLC Debugger
	Tips for Debugging TLC Code

	Using the TLC Debugger
	Tutorial
	TLC Debugger Commands

	Example TLC Debugging Session
	TLC Coverage
	Using the TLC Coverage Option

	TLC Profiler
	Using the Profiler

	Inlining S-Functions
	Writing Block Target Files to Inline S-Functions
	Fully Inlined S-Functions
	Function-Based or Wrappered Code Generation

	Inlining C MEX S-Functions
	S-Function Parameters
	A Complete Example

	Inlining M-File S-Functions
	Inlining Fortran (FMEX) S-Functions
	Inlining Ada-MEX S-Functions
	TLC Coding Conventions
	Block Target File Methods
	Block Target File Mapping
	Block Functions

	Loop Rolling
	Error Reporting

	TLC Tutorial
	Syntax Highlighting with Emacs
	Basic Inlined S-Function Written in TLC
	Basic Code Generation
	Creating an Inlined S-Function

	Introduction to TLC Token Expansion
	Building a Model Using the TLC Debugger
	Preparing the Example
	Performing the Tasks

	Explore Variable Names and Loop Rolling
	Preparing the Example
	Performing the Tasks

	Code Coverage for Debugging TLC Files
	Performing the Tasks

	Using a Wrapper S-Function Inlined with TLC
	When to Consider?
	Exercise
	The TLC Wrapper
	Solution

	Inlined S-Function for Dual Port RAM
	Exercise
	Further Hints
	Solution

	“Hello World” Example with model.rtw File
	Exercise

	Generating Auxiliary Files for Batch FTP
	Exercise

	Generating Code for Models with States
	Derivatives Function

	Simulink External Mode and GRT
	Running External Mode in Simulink
	Advanced External Mode Exercise

	Loop Rolling Through a TLC File
	Arguments for %roll
	Input Signals, Output Signals, and Parameters

	TLC Function Library Reference
	Obsolete Functions
	Target Language Compiler Functions
	Common Function Arguments

	Input Signal Functions
	LibBlockInputSignal(portIdx, ucv, lcv, sigIdx)
	LibBlockInputSignalAddr(portIdx, ucv, lcv, sigIdx)
	LibBlockInputSignalDataTypeId(portIdx)
	LibBlockInputSignalDataTypeName(portIdx, reim)
	LibBlockInputSignalDimensions(portIdx)
	LibBlockInputSignalIsComplex(portIdx)
	LibBlockInputSignalIsFrameData(portIdx)
	LibBlockInputSignalNumDimensions(portIdx)
	LibBlockInputSignalWidth(portIdx)

	Output Signal Functions
	LibBlockOutputSignal(portIdx, ucv, lcv, sigIdx)
	LibBlockOutputSignalAddr(portIdx, ucv, lcv, sigIdx)
	LibBlockOutputSignalDataTypeId(portIdx)
	LibBlockOutputSignalDataTypeName(portIdx, reim)
	LibBlockOutputSignalDimensions(portIdx)
	LibBlockOutputSignalIsComplex(portIdx)
	LibBlockOutputSignalIsFrameData(portIdx)
	LibBlockOutputSignalNumDimensions(portIdx)
	LibBlockOutputSignalWidth(portIdx)

	Parameter Functions
	LibBlockMatrixParameter(param,rucv,rlcv,ridx,cucv, clcv,cidx)
	LibBlockMatrixParameterAddr(param,rucv,rlcv,ridx, cucv,clcv,cidx)
	LibBlockParameter(param, ucv, lcv, sigIdx)
	LibBlockParameterAddr(param, ucv, lcv, idx)
	LibBlockParameterDataTypeId(param)
	LibBlockParameterDataTypeName(param, reim)
	LibBlockParameterIsComplex(param)
	LibBlockParameterSize(param)

	Block State and Work Vector Functions
	LibBlockContinuousState(ucv, lcv, idx)
	LibBlockDWork(dwork, ucv, lcv, sigIdx)
	LibBlockDWorkAddr(dwork, ucv, lcv, idx)
	LibBlockDWorkDataTypeId(dwork)
	LibBlockDWorkDataTypeName(dwork, reim)
	LibBlockDWorkIsComplex(dwork)
	LibBlockDWorkName(dwork)
	LibBlockDWorkUsedAsDiscreteState(dwork)
	LibBlockDWorkWidth(dwork)
	LibBlockDiscreteState(ucv, lcv, idx)
	LibBlockIWork(iwork, ucv, lcv, idx)
	LibBlockMode(ucv, lcv, idx)
	LibBlockPWork(pwork, ucv, lcv, idx)
	LibBlockRWork(rwork, ucv, lcv, idx)

	Block Path and Error Reporting Functions
	LibBlockReportError(block,errorstring)
	LibBlockReportFatalError(block,errorstring)
	LibBlockReportWarning(block,warnstring)
	LibGetBlockPath(block)
	LibGetFormattedBlockPath(block)

	Code Configuration Functions
	LibAddToModelSources(newFile)
	LibCacheDefine(buffer)
	LibCacheExtern(buffer)
	LibCacheFunctionPrototype(buffer)
	LibCacheIncludes(buffer)
	LibCacheTypedefs(buffer)

	Sample Time Functions
	LibGetGlobalTIDFromLocalSFcnTID(sfcnTID)
	LibGetNumSFcnSampleTimes(block)
	LibGetSFcnTIDType(sfcnTID)
	LibGetTaskTimeFromTID(block)
	LibIsContinuous(TID)
	LibIsDiscrete(TID)
	LibIsSFcnSampleHit(sfcnTID)
	LibIsSFcnSingleRate(block)
	LibIsSFcnSpecialSampleHit(sfcnSTI, sfcnTID)

	Other Useful Functions
	LibCallFCSS(system, simObject, portEl, tidVal)
	LibGetDataTypeComplexNameFromId(id)
	LibGetDataTypeEnumFromId(id)
	LibGetDataTypeNameFromId(id)
	LibGetT()
	LibIsComplex(arg)
	LibIsFirstInitCond(s)
	LibMaxIntValue(dtype)
	LibMinIntValue(dtype)

	Advanced Functions
	LibBlockInputSignalBufferDstPort(portIdx)
	LibBlockInputSignalStorageClass(portIdx, idx)
	LibBlockInputSignalStorageTypeQualifier(portIdx, idx)
	LibBlockOutputSignalIsGlobal(portIdx)
	LibBlockOutputSignalIsInBlockIO(portIdx)
	LibBlockOutputSignalIsValidLValue(portIdx)
	LibBlockOutputSignalStorageClass(portIdx)
	LibBlockOutputSignalStorageTypeQualifier(portIdx)
	LibBlockSrcSignalBlock(portIdx, idx)
	LibBlockSrcSignalIsDiscrete(portIdx, idx)
	LibBlockSrcSignalIsGlobalAndModifiable(portIdx, idx)
	LibBlockSrcSignalIsInvariant(portIdx, idx)

	model.rtw
	model.rtw File Contents
	Understanding the model.rtw File
	General model.rtw Concepts

	model.rtw Changes Between Real-Time Workshop 3.0 and 4.0
	model.rtw Differences

	General Information and Solver Specification
	RTWGenSettings Record
	Data Logging Information
	Data Structure Sizes
	Sample Time Information
	Data Type Information
	Block Type Counts
	Model Hierarchy
	External Inputs and Outputs
	Data Store Information
	Block I/O Information
	Data Type Work (DWork) Information
	State Mapping Information
	Block Record Defaults
	Parameter Record Defaults
	Data and Control Port Defaults
	Model Parameters Record
	System Record
	Stateflow Record
	Model Checksums
	Block Specific Records
	Linear Block Specific Records

	TLC Error Handling
	Generating Errors from TLC-Files
	Usage Errors
	Fatal (Internal) TLC Coding Errors
	Formatting Error Messages

	TLC Error Messages
	TLC Function Library Error Messages

	Using TLC with Emacs
	The Emacs Editor
	Getting Started
	Creating a TAGS File

	Index

