
Modeling

Simulation

Implementation

User’s Guide
Version 1

For Use with Simulink®

Motorola DSP
Developer’s Kit

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Motorola DSP Developer’s Kit User’s Guide
 COPYRIGHT 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

MOTOROLA, DigitalDNA, and Suite56 are trademarks of Motorola, Inc.

Printing History:
March 2000 New for Version 1.0, Release 11.1 (Online only)
November 2000 Revised for Version 1.1, Release 12 (Online only)

i

Contents

Preface

Related Products and Documentation . x
Requirements . x
Associated Products . xi
Additional Reading . xii

Using This Guide . xiii
Expected Background . xiii
Organization of the Document . xiii
Typographical Conventions . xiv

1
Introduction to the Motorola DSP Developer’s Kit

Introduction . 1-2

The Motorola DSP Developer’s Kit . 1-3

Getting Started . 1-4
How to Get Help Online . 1-4
Demos . 1-5

Building Motorola DSP MEX-Files . 1-6
Automated Build Process . 1-6
Custom Build Process . 1-8

Using Motorola DSP MEX-Files . 1-9
The MATLAB MOT563_MAX Example . 1-9
The Simulink MOT563_SMAX Example 1-10

ii Contents

2
Creating Motorola DSP MEX-Files

Overview of DSP MEX-File Development 2-2
Creation Steps . 2-2
What the DSP Developer’s Kit Provides 2-2
What You Provide . 2-3

MATLAB MEX-Files . 2-5
Required Definitions . 2-5
Declaring Input and Output Objects . 2-6
Instantiating Input and Output Objects 2-7
Instantiating the Motorola DSP Simulator 2-9
Running the Simulation . 2-11
Importing Data to DSP Simulator . 2-11
Exporting Data to MATLAB . 2-12
Terminating and Allocated Memory Cleanup 2-13

Simulink S-Function MEX-Files . 2-15
Required Definitions . 2-15
Input Objects . 2-16
Output Objects . 2-17
S-Function Blocks . 2-19
Instantiating the Simulink DSP Simulator 2-20
Running Your Simulation . 2-20
Importing Data to DSP Simulator . 2-20
Exporting Data to Simulink . 2-20
Terminating and Allocating Memory Cleanup 2-20

Tutorial of Advanced Features . 2-21
Building and Running MOT563_MEAN 2-21
Building and Running MOT563_SMEAN 2-22
callMatlab . 2-22
Data Snapshots . 2-23

iii

3
Motorola DSP MEX-File Programming Reference

Public Methods . 3-2

Macros . 3-7

Alphabetical List of Assembly Files . 3-9
abs-r.asm . 3-11
abs-c.asm . 3-12
angle-c.asm . 3-14
conv-r.asm . 3-17
conv-c.asm . 3-19
decimate-fir-r.asm . 3-21
decimate-fir-c.asm . 3-24
decimate-iir-r.asm . 3-27
decimate-iir-c.asm . 3-30
diff-r.asm . 3-34
diff-c.asm . 3-36
fft-r.asm . 3-38
fft-c.asm . 3-40
filter-r.asm . 3-43
filter-c.asm . 3-45
ifft-r.asm . 3-48
ifft-c.asm . 3-50
interp-r.asm . 3-53
interp-c.asm . 3-56
log-r.asm . 3-59
log-c.asm . 3-62
log10-r.asm . 3-64
log10-c.asm . 3-68
max-1r.asm . 3-70
max-1c.asm . 3-72
max-2r.asm . 3-74
max-2c.asm . 3-76
mean-r.asm . 3-77
mean-c.asm . 3-79
min-1r.asm . 3-81
min-1c.asm . 3-83
min-2r.asm . 3-85

iv Contents

min-2c.asm . 3-87
round-r.asm . 3-88
round-c.asm . 3-89
sort-r1.asm . 3-91
sort-r2.asm . 3-93
sort-c.asm . 3-94
sqrt-sr.asm . 3-96
sqrt-pr.asm . 3-98
sqrt-c.asm . 3-99
sum-r.asm . 3-102
sum-c.asm . 3-104
xcorr-r.asm . 3-106
xcorr-c.asm . 3-109

4
Motorola Toolbox Function Reference

Using This Reference Chapter . 4-2

Motorola 56300 Family ToolBox Functions 4-3
Table of Functions . 4-3
mot563_abs . 4-5
mot563_angle . 4-6
mot563_conv . 4-7
mot563_decimate . 4-8
mot563_diff . 4-10
mot563_dspround . 4-11
mot563_fft . 4-12
mot563_filter . 4-13
mot563_ifft . 4-15
mot563_interp . 4-16
mot563_length . 4-18
mot563_log . 4-19
mot563_log10 . 4-20
mot563_max . 4-21
mot563_mean . 4-22
mot563_min . 4-23

v

mot563_round . 4-24
mot563_sort . 4-25
mot563_sqrt . 4-27
mot563_sum . 4-28
mot563_xcorr . 4-29

Motorola 56600 Family ToolBox Functions 4-31
Table of Functions . 4-31
mot566_abs . 4-33
mot566_angle . 4-34
mot566_conv . 4-35
mot566_decimate . 4-36
mot566_diff . 4-38
mot566_dspround . 4-39
mot566_fft . 4-40
mot566_filter . 4-41
mot566_ifft . 4-43
mot566_interp . 4-44
mot566_length . 4-46
mot566_log . 4-47
mot566_log10 . 4-48
mot566_max . 4-49
mot566_mean . 4-50
mot566_min . 4-51
mot566_round . 4-52
mot566_sort . 4-53
mot566_sqrt . 4-55
mot566_sum . 4-56
mot566_xcorr . 4-57

5
Motorola Blockset Block Reference

Using This Reference Chapter . 5-2

Motorola 56300 Family Blockset . 5-3
Motorola 56300 DDK Blocks Listed by Category 5-3

vi Contents

MOTPurpose . 5-5
MOTDSP563 Angle . 5-7
MOTDSP563 Convolution . 5-8
MOTDSP563 Difference . 5-11
MOTDSP563 Direct-Form II Transpose Filter 5-13
MOTDSP563 Rounding . 5-17
MOTDSP563 FFT . 5-18
MOTDSP563 FIR Decimation . 5-20
MOTDSP563 FIR Interpolation . 5-28
MOTDSP563 IFFT . 5-36
MOTDSP563 Length . 5-38
MOTDSP563 Log . 5-39
MOTDSP563 Log10 . 5-40
MOTDSP563 Matrix Mean . 5-41
MOTDSP563 Matrix Sum . 5-43
MOTDSP563 Maximum . 5-45
MOTDSP563 Minimum . 5-48
MOTDSP563 Rounding . 5-51
MOTDSP563 Sort . 5-52
MOTDSP563 Sqrt . 5-54
MOTDSP563 Correlation . 5-55

Motorola 56600 Family Blockset . 5-57
Motorola 56600 DDK Blocks Listed by Category 5-57
MOTDSP566 Abs . 5-59
MOTDSP566 Angle . 5-61
MOTDSP566 Convolution . 5-63
MOTDSP566 Difference . 5-66
MOTDSP566 Direct-Form II Transpose Filter 5-68
MOTDSP566 Rounding . 5-72
MOTDSP566 FFT . 5-73
MOTDSP566 FIR Decimation . 5-75
MOTDSP566 FIR Interpolation . 5-83
MOTDSP566 IFFT . 5-91
MOTDSP566 Length . 5-93
MOTDSP566 Log . 5-94
MOTDSP566 Log10 . 5-95
MOTDSP566 Matrix Mean . 5-96
MOTDSP566 Matrix Sum . 5-98
MOTDSP566 Maximum . 5-100

vii

MOTDSP566 Minimum . 5-103
MOTDSP566 Rounding . 5-106
MOTDSP566 Sort . 5-107
MOTDSP566 Sqrt . 5-109
MOTDSP566 Correlation . 5-110

A
Directory Organization

Directory Organization . A-2

viii Contents

Preface

Related Products and Documentation x
Requirements . x
Associated Products xi
Additional Reading xii

Using This Guide xiii
Expected Background xiii
Organization of the Document xiii
Typographical Conventions xiv

 Preface

x

Related Products and Documentation

Requirements
The Motorola DSP Developer’s Kit is a multiplatform product, running on
Microsoft Windows 95, Windows 98, Windows NT, and UNIX systems.

The Motorola DSP Developer’s Kit requires:

• MATLAB® 6.0 (Release 12)

• Simulink® 4.0 (Release 12)

In addition, modified versions of the following Motorola Suite56 DSP
Simulators are provided:

• Motorola Suite56 DSP56300 Simulator 6.2.10

• Motorola Suite56 DSP56600 Simulator 6.2.9

To build the pre-existing functions available in the Motorola DSP Developer’s
Kit Toolboxes and Blocksets you need the following compilers:

Windows.

• Microsoft Visual C/C++ 6.0

UNIX.

• Sun’s native CC 5.0

Note Other compilers may be used, however, they are not presently
supported by the automated build process supplied. Using unsupported
compilers requires that you customize the supplied build process, see “Custom
Build Process” on page 1-8. However, there is no guarantee that the functions
will integrate with the Motorola Suite56 DSP simulators.

Related Products and Documentation

xi

Associated Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Motorola DSP Developer’s Kit. They
are listed in the table below.

For more information about any of these products, see either:

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The products listed below complement the functionality of the Motorola
DSP Developer’s Kit.

Product Description

DSP Blockset Simulink block libraries for the design, simula-
tion, and prototyping of digital signal pro-
cessing systems

Signal Processing
Toolbox

Tool for algorithm development, signal and
linear system analysis, and time-series data
modeling

 Preface

xii

Additional Reading
This guide does not attempt to repeat general information about Motorola DSP
devices or software tools, nor the MATLAB and Simulink environments.

This guide should be read with reference to the following:

• Motorola DSP Simulator Reference Manual

• Motorola DSP Assembler Reference Manual

• MATLAB Application Program Interface Guide

• Using Simulink

• The MATLAB documentation

• Writing S-Functions

The MATLAB Application Program Interface Reference is also available online
from the MATLAB Help Desk (enter helpdesk at the MATLAB prompt).

Also, Motorola DSP device and tools information can be found at:

http://www.motorola-dsp.com

Using This Guide

xiii

Using This Guide

Expected Background
You are expected to be familiar with MATLAB and Simulink to use the basic
features of the toolboxes and blocksets supplied with the Motorola DSP
Developer’s Kit. To take advantage of the advanced features of the Motorola
DSP Developer’s Kit as a powerful development tool, some knowledge of DSP
devices and assembly and/or C coding is essential.

Organization of the Document
Use this guide in conjunction with the templates and software to learn about
the features of the Motorola DSP Developer’s Kit.

Chapter 1, “Introduction to the Motorola DSP Developer’s Kit”, provides a brief
introduction to the Motorola DSP Developer’s Kit describing the key features.
It also describes the build process in detail, and shows you how to get started
with the Motorola DSP Developer’s Kit using a basic example.

Chapter 2, “Creating Motorola DSP MEX-Files”, describes in detail how to
write your own MATLAB MEX-file or Simulink S-function based on the
templates provided. It also provides a step-by-step tutorial of advanced
features, which shows you how to run MEX-files in INTERACTIVE mode in
order to launch the Suite56 Simulators’ graphical user interface (GUI).

Chapter 3, “Motorola DSP MEX-File Programming Reference”, is a quick
reference of available programming functions to assist you in writing your
Motorola DSP Developer’s Kit MEX-files or Simulink S-functions.

Chapter 4, “Motorola Toolbox Function Reference”, contains information about
all of the toolbox functions provided by the Motorola DSP Developer’s Kit. This
information allows you to incorporate these functions into one of your own
existing system designs or to use them effectively, as supplied, to create new
systems based on Motorola DSP devices.

Chapter 5, “Motorola Blockset Block Reference”, describes the Motorola DSP
Developer’s Kit Blockset blocks. It also details the dialog box parameter options
for each block.

The Appendix lists the directory structure and the files shipped with the
Motorola DSP Developer’s Kit.

 Preface

xiv

Typographical Conventions
This manual uses some or all of these conventions.

To Indicate... This Guide Uses... Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names/syntax Monospace font The cos function finds the
cosine of each array element.

Syntax line example is

MLGetVar ML_var_name

Keys Boldface with an initial
capital letter

Press the Return key.

Mathematical
expressions

Italics for variables

Standard text font for
functions, operators, and
constants

This vector represents the
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with

A =

5

Menu names, menu items, and
controls

Boldface with an initial
capital letter

Choose the File menu.

New terms Italics An array is an ordered
collection of information.

String variables (from a finite
list)

Monospace italics sysc = d2c(sysd, 'method')

1
Introduction to the Motorola
DSP Developer’s Kit

Introduction . 1-2

The Motorola DSP Developer’s Kit 1-3

Getting Started 1-4
How to Get Help Online 1-4
Demos . 1-5

Building Motorola DSP MEX-Files 1-6
Automated Build Process 1-6
Custom Build Process 1-8

Using Motorola DSP MEX-Files 1-9
The MATLAB MOT563_MAX Example 1-9
The Simulink MOT563_SMAX Example 1-10

1 Introduction to the Motorola DSP Developer’s Kit

1-2

Introduction
The Motorola DSP Developer’s Kit enables you to develop application software
for Motorola DSPs in the MathWorks MATLAB and Simulink environments. It
provides an object-oriented interface to program MEX-files or S-functions that
call the appropriate Motorola Suite56 DSP Simulator.

With the Motorola DSP Developer’s Kit, you can develop implementation
solutions based on the Motorola Suite56 DSP families. To achieve this, the tool
allows you to implement algorithms in Motorola DSP assembly language or C
code and run the generated object code directly within MATLAB or Simulink
on the chosen Motorola Suite56 DSP simulator.

The Motorola DSP Developer’s Kit also provides toolboxes (MATLAB MEX
-files) and blocksets (Simulink blocks based on S-functions) of commonly used
DSP functions. Substituting existing MATLAB functions with the equivalent
Motorola DSP functions at a behavioral level, you can evaluate the Motorola
Suite56 family of DSPs.

In some situations, you use the toolbox and blockset functions of the Motorola
DSP Developer’s Kit unmodified as supplied. These provide you with a set of
basic functions for performing standard DSP operations. You can verify your
system design by substituting specific Motorola DSP blocks or functions in
place of the current MATLAB versions.

However, in the majority of cases, you design your own functions by modifying
those supplied, or simply creating your own, based on the templates provided.
This tailors your functions to the specific requirements of your application and
allows efficient development of DSP algorithms running seamlessly on
Motorola DSP simulators.

The Motorola DSP Developer’s Kit

1-3

The Motorola DSP Developer’s Kit
The Motorola DSP Developer’s Kit is a powerful software development tool that
features:

• Toolboxes and blocksets of example signal processing functions equivalent to
existing MATLAB and Simulink functions

• Data import/export between the integrated Motorola Suite56 DSP simulator
and MATLAB/Simulink environments

• Access to all features of the Motorola Suite56 DSP (DSP56300 and
DSP56600) simulators

• A NON_INTERACTIVE operating mode that runs the integrated Motorola
Suite56 DSP simulator with no visible user interface

• An INTERACTIVE operating mode that launches the GUI version of the
Motorola Suite56 DSP simulator and allows assembly and C code debugging
via direct access to DSP memory and registers

• Templates and build scripts to modify or create your own Motorola DSP
MEX-files.

1 Introduction to the Motorola DSP Developer’s Kit

1-4

Getting Started

How to Get Help Online
There are a number of ways to get help on the Motorola DSP Developer’s Kit
from the available help directory.

• Simulink Block Help: Press the Help button in any block diagram
parameter box to view the online reference documentation for that block.

• Simulink Library Browser: Right-click on a block name to access the help
for that block.

• Help Desk: Select Help from the MATLAB Help menu, or type helpdesk or
doc at the command line to access the Help Desk facility.

• Release Information: Type whatsnew motdsp or info motdsp at the
MATLAB command line to view information about known software and
documentation issues related to the version of the Motorola DSP Developer’s
Kit that you are using.

Note All data must be of normalized double-precision floating-point type
(i.e., the data must lie between -1.0 and 1.0) before passing it to the DSP
simulator via the input arguments of a MEX-file. Conversion to and from
fixed-point is performed for you, to allow the Motorola simulator to
manipulate your data. Be aware that this conversion may effect the accuracy
of your output.

Getting Started

1-5

Demos
The Motorola DSP Developer’s Kit Demos can be accessed by typing

demos

at the MATLAB command line.

The demo models and slideshows demonstrate some of the Motorola DSP
Developer’s Kit simple statistical and signal processing functions. For each
Motorola DDK Blockset demo, select Start from the Simulation menu to run
the simulation. For each Motorola DDK Toolbox slideshow demo, click the
Start button to start the slideshow. Ensure that all related MEX-files and
S-functions are built before attempting to run any of the demos.

1 Introduction to the Motorola DSP Developer’s Kit

1-6

Building Motorola DSP MEX-Files
This section provides detailed instructions for building Motorola DSP
MEX-files. The two approaches available are:

1 Automated Build

A MATLAB M-script or pre-built options files are provided, which help you
automatically build your MEX-files.

2 Custom Build

This approach gives more control over the build process to developers more
knowledgeable about their compiler and system configuration. You must
create your own project workspace via an Integrated Development
Environment (IDE) or use your own makefiles.

For background information on building MEX-files, read “Getting Started”
(Chapter 2) and “System Setup” (Chapter 8) of the MATLAB Application
Program Interface Guide.

Automated Build Process

Configuring the MEX Build Setup (Windows Only)
This configuration needs to be performed for each C++ compiler you want to
use on the Windows platform. Once completed, you are ready to build DSP
MEX-files using the MATLAB mex build script.

Before you create a MEX-file, configure the default options file, mexopts.bat,
for your compiler. This is done by entering

mex -setup

at the MATLAB prompt.

This mexopts.bat file needs further changes to build Motorola DSP MEX-files.
These changes are made by running the motdsp_build_mexopts.m script,
which generates new options files that provide the capability to build the DSP
MEX-file correctly for a particular Motorola Suite56 DSP family. To run this
script, type

motdsp_build_mexopts

Building Motorola DSP MEX-Files

1-7

at the MATLAB prompt.

The script creates two options files in <matlab>/toolbox/motdsp/motdspmex:
one OptionsFile for the 56300 DSP family and the other for the 56600 DSP
family. The OptionsFiles contain compiler directives and a list of arguments
(e.g., include directories) used by your compiler to build the DSP MEX-files.
The OptionsFile is passed to the mex command with the -f mex option.

Building the MEX-File
In the same directory as the OptionsFile, enter

mex -v -f <OptionsFile> <MEX-file>

at the MATLAB prompt, where <MEX-file> is the full or relative pathname of
the MEX-file source you want to compile, and <OptionsFile> is replaced by the
DSP family-specific file name. An example, while in the <matlab>/toolbox/
motdsp/motdspmex directory, using relative pathnames might be

mex -v -f ./motdsp_mexopts3xx.sh
../motdsp/56300/mot563_mean.cpp

Note The full (or relative) pathnames are required as arguments to the mex
command if any of the files do not exist in the current working directory, even
if the MATLAB path is set correctly. On UNIX platforms, the full or relative
path to the options file must always be specified, even if the options file is in
the current directory. This latter case is shown in the preceding example.

Windows. Successful compilation results in the creation of a dynamically linked
library (DLL) with the same name as the compiled MEX-file, but with a .dll
extension. The created DLL resides in the current working directory unless you
specify otherwise with the -outdir switch to the mex command. Type help mex
at the MATLAB prompt for more information.

The error message

LINK fatal error: cannot open file <DLL>

is seen if you try to rebuild a MEX-file that has recently been run. By default,
the DLL is still loaded into memory and must be explicitly released with the
clear command by typing

1 Introduction to the Motorola DSP Developer’s Kit

1-8

clear mot563_mean

at the MATLAB prompt.

UNIX. Successful compilation results in the creation of a MEX shared library
with the same name as the compiled MEX-file, but with a .mexsol extension
for Solaris.

Custom Build Process
Differences between some compilers with respect to creating MEX-files are
highlighted in Chapter 8, “System Setup”, of the MATLAB Application
Program Interface Guide.

To successfully build a DSP MEX-file, make certain that:

• <matlab>/toolbox/motdsp/motdspmex/include/headers/56k is added to
the compilation include path

• The DSP563XX flag (or equivalent for another DSP family) is specified at the
compile line

• Other compiler-specific flags are set correctly, for example, -Gx allows C++
style exceptions when set for the Microsoft Visual C++ compiler

Windows.

<matlab>/bin/win32/libsimcore300.lib (or equivalent for another DSP
family) is linked with your MEX-file.

UNIX.

<matlab>/bin/sol2/libsimcore300.so for Solaris (or equivalent for another
DSP family) is linked with your MEX-file.

Using Motorola DSP MEX-Files

1-9

Using Motorola DSP MEX-Files

The MATLAB MOT563_MAX Example
The MOT563_MAX function and the MOT563_SMAX S-function block provided in the
Motorola DSP56300 Toolbox and Blockset are used as simple examples to
illustrate some basic NON_INTERACTIVE mode features. These basic
features include:

• Building and running a function

• Supplying optional arguments via the command line or as a parameter.

This tutorial assumes you have configured your environment as per “Building
Motorola DSP MEX-Files” on page 1-6.

Building the MATLAB Function
To use the MATLAB MOT563_MAX function binary in the NON_INTERACTIVE
mode, compile the source code file

<matlab>/toolbox/motdsp/motdsp/56300/mot563_max.cpp.

To do so, enter at the MATLAB command line

cd <matlab>/toolbox/motdsp/motdspmex

You can now compile the MATLAB MEX-file by typing the following command

mex -v -f ./motdsp_mexopts3xx.sh
../motdsp/56300/mot563_max.cpp

This creates a mot563_max library binary in the current directory.

Running the MATLAB MEX-File
To run the MATLAB MEX-file with a simple example input variable, enter

x = rand(10,1)
y = mot563_max(x)

at the MATLAB command line. This returns the contents of the output
variable, y, as determined by the default DSP processor of the DSP56300
family, to the MATLAB workspace.

1 Introduction to the Motorola DSP Developer’s Kit

1-10

Optional Command Line Arguments

Note The default DSP processor for the 56300 DSP family is the 56301.
Similarly, for the 56600 DSP family, the default processor is the 56602.

To change the DSP processor type within a selected DSP family, you must
provide a string as an ‘optional’ input argument at the MATLAB command
line. For example,

y = mot563_max(x,'56307')

If the chosen DSP device does not exist an error message such as

Unable to create DSP device. DevNo:0 DevPart: DSP56399
21

Error in ==> <matlab>/toolbox/motdsp/motdsp/mot563_max.dll

appears.

Similarly, to select a simulator command file, you must provide a string as an
‘optional’ input argument at the MATLAB command line. For example, type

y = mot563_max(x,'my_commands.cmd')

where my_commands.cmd is a valid simulator command file in the current
directory or on the MATLAB path. For more information on command files, see
“What You Provide” on page 2-3.

The Simulink MOT563_SMAX Example

Building the Simulink S-Function
To use the Simulink MOT563_MAX function binary in the NON_INTERACTIVE
mode, compile the source code file

<matlab>/toolbox/motdsp/motdspmex/56300/mot563_smax.cpp.

To do so, enter at the MATLAB command line

cd <matlab>/toolbox/motdsp/motdspmex

Using Motorola DSP MEX-Files

1-11

You can now compile the Simulink MEX-file by typing the following command

mex -v -f ./motdsp_mexopts3xx.sh ./56300/mot563_smax.cpp

This creates a mot563_smax library binary in the current directory.

Running the Simulink S-Function
A Simulink library is provided containing the Motorola DSP Developer’s Kit
Blocksets with links to the supplied motxxx_sxxxx.cpp S-functions. To run the
MOTDSP563 max block, which is based on the mot563_smax.cpp S-function,
you need to create a simple Simulink model. For more detailed information, see
“Building a Simple Model” in Using Simulink.

To start Simulink, click the Simulink icon in the MATLAB toolbar, or type

simulink

at the MATLAB command line.

On Windows platforms, right-click the Motorola DSP Blockset listing in the
Simulink Library Browser to open the Motorola DSP Developer’s Kit Blockset.
Then double-click the MOTDSP 56300 Blockset icon to open the DSP56300
Blockset.

On UNIX platforms, the Simulink library window opens immediately when
you launch Simulink. Double-click on the Blocksets & Toolboxes icon in the
Simulink window. The blockset and toolbox libraries appear. Now, double-click
on the Motorola DSP Blockset icon to open the Motorola DSP Developer’s Kit
Blockset, and then double-click on the MOTDSP 56300 Blockset icon to open
the DSP56300 Blockset.

Alternatively, to open the Motorola DSP Developer’s Kit Blockset directly, type

motdsplib

at the MATLAB command line.

To create a new model, select New -> Model from the Simulink File menu.
Then simply drag the MOTDSP563 max block from the MOTDSP 56300
Blockset library into the new model window to begin building the system. Use
blocks from the Sources and from the Sinks libraries or expanded browser lists
to complete your simple model.

1 Introduction to the Motorola DSP Developer’s Kit

1-12

Setting Block Parameters
Double-click on the MOTDSP563 max block. A window appears that lets you
set the block’s parameters. For this simple example, use the default settings
and select Value from the Mode pop-up menu. This is the simplest operating
mode of the MOTDSP563 max block, and returns the maximum value of the
input only.

Close the window by clicking the OK button or by pressing Enter on the
keyboard.

Select Start from the Simulation menu to start the simulation.

2
Creating Motorola DSP
MEX-Files

Overview of DSP MEX-File Development 2-2
Creation Steps . 2-2
What the DSP Developer’s Kit Provides 2-2
What You Provide 2-3

MATLAB MEX-Files 2-5
Required Definitions 2-5
Declaring Input and Output Objects 2-6
Instantiating Input and Output Objects 2-7
Instantiating the Motorola DSP Simulator 2-9
Running the Simulation 2-11
Importing Data to DSP Simulator 2-11
Exporting Data to MATLAB 2-12
Terminating and Allocated Memory Cleanup 2-13

Simulink S-Function MEX-Files 2-15
Required Definitions 2-15
Input Objects . 2-16
Output Objects 2-17
S-Function Blocks 2-19
Instantiating the Simulink DSP Simulator 2-20
Running Your Simulation 2-20
Importing Data to DSP Simulator 2-20
Exporting Data to Simulink 2-20
Terminating and Allocating Memory Cleanup 2-20

Tutorial of Advanced Features 2-21
Building and Running MOT563_MEAN 2-21
Building and Running MOT563_SMEAN 2-22
callMatlab . 2-22
Data Snapshots 2-23

2 Creating Motorola DSP MEX-Files

2-2

Overview of DSP MEX-File Development

Creation Steps
The steps for creating MEX-files for MATLAB and Simulink are the same:

• Create objects for all possible inputs and outputs to your function

• Instantiate an object representing the DSP simulator by using the macro
INSTANCE_SIMS(...) or the C++ style sim = new MOTDSP_...(...)

• Import input data from the MATLAB/Simulink environment and write to
DSP registers and/or memory within the simulator

• Run the DSP simulator by using the macro SIM_RUN or sim->Run()

• Write DSP data from the simulation to the function outputs and export to the
MATLAB/Simulink environment

• Terminate the DSP simulator by using the macro SIM_TERMINATE or
sim->Terminate()

The majority of the code added to the supplied templates (see MEX-File
Template Source) to perform these functions is identical. There are differences
between the two simulation environments which are covered in the rest of this
chapter.

Note All data must be of normalized double-precision floating-point type
(i.e., the data must lie between -1.0 and 1.0) before passing it to the DSP
simulator via the input arguments of a MEX-file. Conversion to and from
fixed-point is performed for you, to allow the Motorola simulator to
manipulate your data. Be aware that this conversion may effect the accuracy
of your output.

What the DSP Developer’s Kit Provides

Suite56 DSP Simulator Libraries
These provide the simulator functionality and are linked into the MEX-file you
create.

Overview of DSP MEX-File Development

2-3

MEX-File Template Source
Separate C++ source templates are provided to create MATLAB MEX-files and
Simulink S-functions. The files are:

• <matlab>/toolbox/motdsp/motdspmex/templates/motdsp_template.cpp
(MATLAB)

• <matlab>/toolbox/motdsp/motdspmex/templates/motdsp_stemplate.cpp
(Simulink)

The templates are actually working examples of DSP MEX functions based on
the standard MATLAB MAX function.

Note The current templates use macros defined in <matlab>/toolbox/
motdsp/motdspmex/include/headers/56k/motdsp_api.h in place of the C++
style function calls. For a list of these macros, see “Macros” on page 3-7.

Access Routines
A set of C++ methods and macros, built on top of the standard MATLAB API,
is used to control and exchange data with the DSP Simulator from the
MEX-file.

What You Provide

DSP56K Assembly or C-code
An associated assembly or C-code binary file you create is loaded into the
simulator when the MEX-file is executed. It is possible to select from more than
one binary at run-time, based on, for example, function input data types.

The restrictions on the DSP assembly are:

• The assembly binary (object file) must exist on the MATLAB path

• The assembly code must contain BEGIN and END labels

• All other labels in the assembly code must be 7 characters or less in length

The simulator starts execution of DSP instructions at BEGIN and terminates
when it reaches the END address.

2 Creating Motorola DSP MEX-Files

2-4

The name of any global variable in a C-code source file is translated to a
symbol/label. This allows the MEX file to run object code independently,
whether compiled from an assembly or a C-language source file.

For example,

 int IN;

may be equivalent to the assembly code

 org x:$0
 IN

MEX-File
Use the supplied template as the basis for writing your own MEX-files. Simply
add details about your particular function, as explained in the remainder of
this chapter.

Use all of the standard features provided by the MATLAB API for C MEX-files,
including calling any mx and mex routines where appropriate.

Locations in the supplied template files that must be modified for individual
functions lie between

* *********** START USER CODE SECTION ***********
and

* *********** END USER CODE SECTION ***********

comment blocks. Code outside these blocks should remain unchanged.

Simulator Command File
You can optionally provide a DSP Simulator command file to control the
execution of the simulator itself, just as you would if running the simulator
outside the MATLAB environment. Ensure that each simulator command line
is followed by a carriage return.

If a command file contains any load and device commands, these take
precedence over the assembly or C binary and device type supplied within the
MEX-file when the simulator object is created (see “Instantiating the Simulink
DSP Simulator” on page 2-20).

MATLAB MEX-Files

2-5

MATLAB MEX-Files
Before continuing, we recommend you read at least the “Creating C Language
MEX Files” section under “External Interfaces” in the MATLAB online Help.

Required Definitions
Define the following macros in your MEX-file:

• MEX_FUNC_NAME

The name should match the name of the MEX-file source (including case
sensitivity), omitting the .cpp extension. The functions supplied in the
Motorola DSP Toolbox (<matlab>/toolbox/motdsp/motdsp/56300 and
<matlab>/toolbox/motdsp/56600) are all prefixed with mot563_ or mot566_.

• MAX_INPUT_ARGS
• MIN_INPUT_ARGS
• MAX_OUTPUT_ARGS
• MIN_OUTPUT_ARGS

The four MAX*/MIN* macros are used to validate the call of the function
from the MATLAB environment. The two optional DSP device type and
simulator command file arguments must be included in the value of
MAX_INPUT_ARGS.

An example using all of the macros mentioned might be

// Name of DSP MEX function
#define MEX_FUNC_NAME "mot563_max"

/* Specify the expected number of function call arguments.
Maximum number of possible input args includes fixed and
optional args.
Note: There are always 2 optional input arguments by default:

1. Loading a particular dsp type (in the 56300/600 family)
from the Matlab command line.

2. Running command files ('xxx.cmd') from the Matlab
command line. */

2 Creating Motorola DSP MEX-Files

2-6

/* Maximum number of input args suggests there are 2 possible
fixed input arguments */
#define MAX_INPUT_ARGS 4
/* Minimum number of input args, i.e. the minimum number of

fixed input arguments. */
#define MIN_INPUT_ARGS 1
/* Maximum number of output args, including fixed and optional */
#define MAX_OUTPUT_ARGS 2
/* Minimum number of output args, i.e. the number of

fixed arguments only - generally always 1.*/
#define MIN_OUTPUT_ARGS 1

All other macros defined in the templates are implementation examples only
and are not required to be present.

Declaring Input and Output Objects

Note You must enclose code that generates exceptions within a try block.
Each try block is followed by one or more catch blocks, which specify the type
of exception that can be caught and handled. This is the standard C++
exception handling mechanism.

Pointers to MOTDSP_Input or MOTDSP_Output objects are created outside the try
block of the MEX-file for all possible input and output arguments.

For example,

MOTDSP_Input* a = PTR_NIL;
MOTDSP_Input* b = PTR_NIL;
MOTDSP_Output* y = PTR_NIL;
MOTDSP_Output* index = PTR_NIL;

Validation. Outside the try block, the MOTDSP_Config class parses the argument
list and provides methods to gain access to the actual arguments. Use the
supplied MOTDSP_CONFIG macro. This generates the following variables for use
throughout the MEX-file.

char* MOTDSP_cmdfile = config.GetCommandFile();
char* MOTDSP_partname = config.GetProcessorType();
int MOTDSP_data_inputs = config.GetFixedInputs();

MATLAB MEX-Files

2-7

int MOTDSP_dsptype = config.GetDspFamilyType();

Inside the try block, the MOTDSP_FuncVar class validates the function
arguments. Use the supplied MOTDSP_FUNCVAR(nrhs,nlhs) macro.

Instantiating Input and Output Objects

Mapping Arguments to Objects.

To instantiate input and output objects you should use the macros defined as
CREATE_INPUT_ARG and CREATE_OUTPUT_ARG in the <matlab>/toolbox/
motdsp/motdspmex/include/headers/56k/motdsp_api.h file. Also,
CREATE_NORM_INPUT_ARG is available if you are sure that the input will always
be normalized. See Chapter 3, “Motorola DSP MEX-File Programming
Reference.”

For example,

CREATE_INPUT_ARG(a, 0);
CREATE_INPUT_ARG(b, 1);
num_data_inputs = config.GetFixedInputs();

if (num_data_inputs == 2) // i.e., two Matlab inputs
{

/ REAL conditions...
if ((a->GetType() == REAL_DOUBLE) &&

(b->GetType() == REAL_DOUBLE))
{

CREATE_OUTPUT_ARG(y, 0, REAL_DOUBLE);
}

}

Once the mapping of arguments to objects is complete, all access to the
MEX-file arguments is through these newly created objects (i.e., the input
objects a and b, and output object y in this example).

Mapping String Arguments.

For advanced MEX-files, use the CREATE_OPT_INPUT_ARG macro to create input
objects from optional string input variables. For example, a filter function may
require string inputs as optional arguments to indicate a high-pass or low-pass
filter type. Implement this functionality by using code similar to

MOTDSP_Input* c = PTR_NIL;

2 Creating Motorola DSP MEX-Files

2-8

...
try {

// Validation Code goes here - see template
...
char *opts[] = {'high', 'low'};
int num_opts = sizeof(opts)/sizeof(opts[0]);
// Instantiate the optional string arguments
CREATE_OPT_INPUT_ARG(c,2,opts,num_opts);
// The 2 indicates that the optional string input
// is mapped from position 2 -- i.e. it is the third argument
// expected on the command line.
...
// To use the optional string inputs.
// They are treated as fixed inputs...
if (config.GetFixedInputs()==3) {

// This suggest there are three input arguments -- NOT
// including the possible OPTIONAL arguments; DSP type
// or command file
// strings that may be included on the command line.
if (*(c->GetData()) == 0) {
 // This suggests an input of 'high'
 // Some useful code goes here ...
}
if (*(c->GetData()) == 1) {
 // This suggests an input of 'low'
 // Some more useful code goes here ...
}
else {
 // Error in string input arg
 // Throw an exception here ...
 sprintf(err_msg, "Invalid string input argument\n");
 THROW_MEX_ERROR(err_msg);
}

}
}

MATLAB MEX-Files

2-9

Instantiating the Motorola DSP Simulator
A simulator library and executable exist for each supported Motorola DSP
family.

Note The MATLAB and Simulink MEX files supplied with the Motorola DSP
Developer’s Kit use a set of macros to implement the C++ style interface with
the underlying Motorola DSP simulator. You are advised to use the macros
provided (particularly if you intend to use INTERACTIVE mode).
Alternatively, if you are familiar with C++, follow the C++ style instructions,
also detailed in this chapter, on interfacing to the DSP simulator (i.e. the
sim-> object references).

The simulator is run in the background by instantiating a MOTDSP_IssCustom
class object or run interactively with the full simulator graphical user interface
(GUI) by using the MOTDSP_IssStandAlone class. First, you must use the
CREATE_SIMS macro outside of the try block to create the required simulator
class. To switch between the two modes rebuild your MEX-file by using
compiler directives. For example, the templates and supplied functions use
STANDALONE.

Note When running the simulator in INTERACTIVE mode, it is necessary to
either run the loaded simulation or step through the code in order to obtain a
non-zero output for that time step. Failure to perform this step will result in a
discontinuity spike in the output data.

The constructors for each class are identical and take four string arguments:

• The name of the MEX function (not required when using the INSTANCE_SIMS
macro)

The MEX_FUNC_NAME or S_MEX_FUNC_NAME user-defined macros would
normally be used here, since they must be defined in the MEX-file.

• The name of the assembly or C-code binary, for example, "max-1r.cld"

This argument can simply be a string literal, but the MEX-file template
examples provided also show the use of macros to help readability.

2 Creating Motorola DSP MEX-Files

2-10

• The DSP device type, for example, "56309"

This argument represents a particular Motorola DSP device. If not specified
(via an empty string, ""), the simulator defaults to the DSP56301 device or
the DSP56602 device depending on the DSP family chosen.

• A simulator command file, for example, "mot_mult.cmd"

The name of the command file must be in lowercase and have a .cmd
extension. If not specified for the MOTDSP_IssCustom object, the commands
break #1 END
go #1

are inserted automatically by the Motorola DSP Developer’s Kit and
executed during simulation startup.

For example, use the INSTANCE_SIMS macro

INSTANCE_SIMS(// name of assembly (or C) object file
"function.cld",
// DSP part name (eg, "56309")
"56309",
// simulator startup file (not compulsory)
"my_setup.cmd");

or the C++ style instantiation

sim = new MOTDSP_IssCustom(/* MEX function name (the only
additional parameter) */

"MEX_FUNC_NAME",
"function.cld",
"56309",
"my_setup.cmd");

When the simulator is instantiated, it loads the assembly or C-code binary and
reads its symbol information.

MATLAB MEX-Files

2-11

Running the Simulation
Within the unchanged template sections, the Run() method of the simulator
classes is called to start execution of the assembly or C-code application
program. The macro alternative is SIM_RUN, which also contains the Simulator
command 'change fast_mode 2' for improved simulation speed. Another
alternative is to use SIM_RUN_CYCLE_ACC to run the simulator with cycle
accuracy. This is important for detailed information about the performance of
the code on the simulator, however simulation speed is likely to increase.

Importing Data to DSP Simulator
Pass data into and out of the DSP simulator using appropriate methods of the
simulator classes or the alternative macros provided.

Writing to DSP Registers
Available macros:

WRITE_REG(const char *regname, double regval)
WRITE_REG(const char *regname, ulong regval)

Alternative C++ calls:

WriteToDspReg(const char *regname, double regval)
WriteToDspReg(const char *regname, ulong regval)

If the argument is of type unsigned long, data is written as an integer. If the
argument is of type double, data is written using fractional representation. An
error will be asserted if the register name is not valid.

The behavior of the system is undefined if a fractional value is stored in a
register intended to hold only integer values, for example, the Program
Counter (PC).

// write an integer value into the Program Counter
WRITE_REG("PC", (ulong)200);
// store the value in Register R1 as a fraction
WRITE_REG("R1", 0.125);

Writing to DSP Memory
Available macros:

2 Creating Motorola DSP MEX-Files

2-12

WRITE_MEM_SYM(const char *label, double*/ulong* data, int
blocksize)
WRITE_MEM_MAP(const char *regname, double*/ulong* data, int
blocksize)

Alternative C++ calls:

WriteToDspMem(const char *label, double *mydata, int size)
WriteToDspMem(const char *label, ulong *mydata, int size)
WriteToDspMem(enum mem_map, ulong addr, double *mydata, int size)
WriteToDspMem(enum mem_map, ulong addr, ulong *mydata, int size)

The memory address for a write is specified using a symbolic label from the
associated assembly or C-code file or by specifying the memory map (X-,Y- or
P-memory) and address offset. The latter is used when the write memory
locations vary with the size of the MEX-file’s input arguments (i.e.,
dynamically allocated in the DSP memory).

Data is written to the DSP memory in either an integer or fractional format,
depending on the type of the array passed to the method.

// Write input arg 'a' to address 'IN1'
WRITE_MEM_SYM("IN1", a->GetData(), a->GetSize());
// Write input arg 'a' to P Memory
WRITE_MEM_MAP(P_MEM, 0xF000, a->GetData(), a->GetSize());

Exporting Data to MATLAB

Reading from DSP Registers
Available macro:

READ_REG(const char *regname, enum datatype)

Alternative C++ call:

ReadFromDspReg(const char *regname, enum datatype)

The valid data types M_INTTYPE and M_FRACTYPE, which are defined in
motdsp_api.h, are specified so that the value returned from the register is
interpreted correctly.

int* addr = READ_REG("PC", M_INTTYPE);

MATLAB MEX-Files

2-13

double* fracval = READ_REG("R1", M_FRACTYPE);

Reading from DSP Memory
Available macros:

READ_MEM_SYM(const char *label, int size, enum datatype)
READ_MEM_MAP(enum mem_map, ulong addr, int size, enum datatype)
READ_MEM_MAP_INT(enum mem_map, ulong addr, int size)
READ_MEM_MAP_FRAC(enum mem_map, ulong addr, int size)

Alternative C++ calls:

double *ReadFromDspMem(const char *label, int size, enum datatype
)
double *ReadFromDspMem(enum mem_map, ulong addr,

int size, enum datatype)

These methods read a contiguous block of memory from the DSP. The start
location is specified using a symbolic label from the associated assembly or
C-code or by specifying the memory map and address offset. The correct data
type is also indicated so that the values can be interpreted correctly, either by
calling the correct macro (READ_MEM_MAP_INT or READ_MEM_MAP_FRAC) or by
specifying the correct enumerated datatype (M_INTTYPE or M_FRACTYPE).

Terminating and Allocated Memory Cleanup
Within the unchanged template sections, the Terminate() method of the
simulator classes is called to end the simulation. The macro alternative is
SIM_TERMINATE.

Use the MEM_DELETE() macro as appropriate to free memory allocated during
execution of the MEX-file. Similarly, use the DELETE_SIMS macro to free the
simulator class object.

You should use these macros both at the very end of the try block and in all of
the exception handling catch blocks of your functions.

For example,

...
// Finally - Terminate the simulator and clean up.
SIM_TERMINATE;

2 Creating Motorola DSP MEX-Files

2-14

 DELETE_SIMS;
 MEM_DELETE(a);
 MEM_DELETE(b);

} // End try block

// Start catch block
catch(MOTDSP_Exception &exc)
{

DELETE_SIMS;
MEM_DELETE(a);
MEM_DELETE(b);

} /* End catch block */

Simulink S-Function MEX-Files

2-15

Simulink S-Function MEX-Files
Before continuing, we recommend you read “Getting Started” (Chapter 1),
“Creating a Model” (Chapter 3) and the “Writing S-Functions as C MEX-Files”
section of “S-Functions” (Chapter 8), in Using Simulink. For more detailed
information, refer to Writing S-Functions.

Note The supplied Simulink files use macros defined in <matlab>/toolbox/
motdsp/motdspmex/include/headers/56k/motdsp_api.h in place of the C++
style function calls. The purpose of these macros is to use the correct
simulator object for each iteration (sample) of the simulation when in
INTERACTIVE mode. If a sample hit occurs, as specified from the dialog box
parameter, the simulator object will launch the simulator GUI. At other times,
it will run in NON_INTERACTIVE mode. For a list of these macros see
“Macros” on page 3-7.

Required Definitions
Define only the following macros in your MEX-file:

• S_MEX_FUNC_NAME
• S_FUNCTION_NAME

For the Simulink environment, these names must exactly match the name of
the MEX-file source (including case sensitivity), omitting the .cpp extension.
The functions supplied in the Motorola DSP Blockset (<matlab>/toolbox/
motdsp/motdspmex/56300 and <matlab>/toolbox/motdsp/motdspmex/
56600) are all prefixed with mot563_ or mot566_. Also, the S_MEX_FUNC_NAME
macro is always defined as a string.

• S_FUNCTION_LEVEL

These macros are required for any MEX S-function. The S_FUNCTION_LEVEL
macro is always defined to equal 2.

For example,

//fn name as a string.
#define S_MEX_FUNC_NAME "motdsp_stemplate"
//fn name for compile purposes.
#define S_FUNCTION_NAME motdsp_stemplate

2 Creating Motorola DSP MEX-Files

2-16

#define S_FUNCTION_LEVEL 2

The MAX*/MIN* macros described for MATLAB MEX-files are specifically not
required for Simulink S-functions.

Also, the template provides an example of optional dialog box parameter
checking within the mdlCheckParameters function.

/* Get the first dialog box parameter and
check to see if it is a string.*/

if (!mxIsChar(ssGetSFcnParam(S,0)))
{
ssSetErrorStatus(S,"1st parameter to S-function must be a "

"string which represents the filename "
"of the command file.");

return;
}

Input Objects
Pointers to MOTDSP_Input objects only are declared outside the try block of the
mdlOutputs function.

For example,

MOTDSP_Input* a = PTR_NIL;
MOTDSP_Input* b = PTR_NIL;

Before creating MOTDSP_Input objects declare InputPtrsType pointers to all
possible input ports using the specific Simulink 'ss' macros.

For example, for input Port 1 use

InputPtrsType uPtrs1 = ssGetInputPortSignalPtrs(S,0);

and, for input Port 2

InputPtrsType uPtrs2 = ssGetInputPortSignalPtrs(S,1);

Note Reference the ith element of the input port signal array with, for
example, *uPtrs1[i].

Simulink S-Function MEX-Files

2-17

Also, you must declare a pointer to an mxArray for each possible input port.

mxArray *array_ptr1;
mxArray *array_ptr2;

Then use the support functions MOTDSP_CreateComplexMatrix or
MOTDSP_CreateRealMatrix to create a valid matrix after checking its type:

//Determine whether the port is complex.
const boolean_T c0 =

(boolean_T)(ssGetInputPortComplexSignal(S,0) == COMPLEX_YES);
//Then create the correct matrix:
if (!c0) {

/* If the matrix is Real...
Use the MOTDSP_ function to create
the appropriate matrix..*/

MOTDSP_CreateRealMatrix(&array_ptr1,
(double *)*uPtrs1,
width);

}

Remember to clear the memory created for each mxArray by calling the
mxDestroyArray function.

Finally, create a pointer to right hand side (prhs) MEX equivalent variable
before mapping the input ports to variables. For example,

const mxArray *prhs [] = {array_ptr1, array_ptr2};
CREATE_INPUT_ARG(a,0);
CREATE_INPUT_ARG(b,1);

Information about the variables is accessed by the supplied methods as
described previously in “MATLAB MEX-Files” on page 2-5.

Output Objects
MOTDSP_Output objects are not used in S-functions. Instead, you create pointers
to the output ports using specific Simulink macros.

// Create real versions of output port pointers
// to output port 1
// Real and Complex ...

 creal_T *y1 = (creal_T *)ssGetOutputPortSignal(S,0);

2 Creating Motorola DSP MEX-Files

2-18

// Real only ...
 real_T *yr = ssGetOutputPortRealSignal(S,0);

You then “fill” these output signals with data returned from execution of the
assembly or C program object file.

For a real array

for (int k = 0; k < ssGetInputPortWidth(S,0); k++)
{

yr[k] = READ_MEM_SYM("OUT",a->GetSize(),M_FRACTYPE)[k];
}

For real and imaginary parts of a single value complex output

//real part
y1[0].re = READ_REG("X1", M_FRACTYPE);
//imaginary part
y1[0].im = READ_REG("Y1", M_FRACTYPE);

For real and imaginary parts of a complex array output

for (int k = 0; k < ssGetInputPortWidth(S,0); k++)
{

y1[k].re = READ_MEM_MAP_FRAC(X_MEM, StartAddress1,
a->GetSizeReal())[k];

y1[k].im = READ_MEM_MAP_FRAC(Y_MEM, StartAddress1,
a->GetSizeImag())[k];

}

See “Importing Data to DSP Simulator” on page 2-11 for more information on
how to access the data returned from the simulator.

Validation: Inside the try block, a MOTDSP_FuncVar object is instantiated with
the number of input ports and output ports as arguments. Use the supplied
MOTDSP_FUNCVAR(NUM_INPORTS,NUM_OUTPORTS) macro. This class is used to
validate access to input/output and create default or initial conditions.

Compared with MATLAB MEX-files, no MOTDSP_Config class is required for
S-functions, since an argument list is not parsed. Instead, arguments are
obtained from a parameter dialog box.

Simulink S-Function MEX-Files

2-19

S-Function Blocks
Perform these three steps to link your S-function MEX-file to a Simulink block:

1 Choose the S-Function User Definable block from the Simulink Library
Browser.

2 Double-click on the S-Function block to open the dialog box.

- Enter the function name, for example motdsp_stemplate.

- Enter the names of the parameters to pass into the block. For example,
cmdFile, objfile, dsptype, NumInputs, NumOutputs, timestep

The parameter names that you specify here are the variable names that are
mapped to the dialog box prompts in the next step. These parameters are
treated by Simulink as MATLAB mxArrays.

An example of accessing these parameters from your S-function MEX-file is
provided in the template.

// Command File
#define CMD_FILE ssGetSFcnParam(S,0)
// Object File - not required in this file.
#define OBJ_FILE ssGetSFcnParam(S,1)
// DSP Type
#define DSP_TYPE ssGetSFcnParam(S,2)

The above three string parameters (most likely to be used in the Motorola
S-function MEX-files) can be accessed by using the following support
functions.

int dsptype = MOTDSP_GetSFcnDspFamilyType(DSP_TYPE);
char * cmdfile = MOTDSP_GetSFcnCmdFile(CMD_FILE);
char * partname = MOTDSP_GetSFcnDSPName(DSP_TYPE);

Alternatively, the integer parameters may be accessed by using mx
functions.

// Number of input ports parameter specified
#define NUM_INPORTS (int)mxGetPr(ssGetSFcnParam(S,3))[0]
// Number of output ports parameter specified
#define NUM_OUTPORTS (int)mxGetPr(ssGetSFcnParam(S,4))[0]
/* Cause a 'Sample Hit' to occur at this time during the

2 Creating Motorola DSP MEX-Files

2-20

simulation - to be used as shown in the template.*/
#define DEBUG_AT_TIME_STEP (int)mxGetPr(ssGetSFcnParam(S,5))[0]

3 Select Edit->Mask S-Function. This will open the Mask Editor. Masking
your S-Function block is a useful way to provide dynamic parameters to your
S-function MEX-file code via dialog box prompts. For more detailed
information read Chapter 6, “Using Masks to Customize Blocks”, of Using
Simulink.

Instantiating the Simulink DSP Simulator
See “Instantiating the Motorola DSP Simulator” on page 2-9 for more
information on how to instantiate the DSP simulator.

Running Your Simulation
See “Running the Simulation” on page 2-11 for more information on how to
start execution of the simulator program.

Importing Data to DSP Simulator
See “Importing Data to DSP Simulator” on page 2-11 for more information on
writing data to the DSP simulator.

Exporting Data to Simulink
See “Exporting Data to MATLAB” on page 2-12 for more information on how to
read data out of the DSP simulator.

Terminating and Allocating Memory Cleanup
See “Terminating and Allocated Memory Cleanup” on page 2-13 for more
information on how to end the simulation and how to free memory allocated
during the execution of the MEX-file.

Tutorial of Advanced Features

2-21

Tutorial of Advanced Features
The MOT563_MEAN and MOT563_SMEAN functions in the Motorola DSP
Developer’s Kit Toolbox / Blockset respectively are used as examples to
illustrate certain features of the Motorola DSP Developer’s Kit in
INTERACTIVE mode. This tutorial assumes you have configured your
environment as per “Building Motorola DSP MEX-Files” on page 1-6.

Building and Running MOT563_MEAN
To use the MOT563_MEAN function binary in the INTERACTIVE mode with the
GUI of the Suite56 DSP Simulator, recompile with the STANDALONE flag. To do
so, enter at the MATLAB command prompt:

Recompile the MEX-function.

mex -v -DSTANDALONE -f motdsp_mexopts3xx.sh
../motdsp/56300/mot563_mean.cpp

This creates mot563_mean library binary in the current directory. To run the
MEX-file with a simple input variable example, enter

x = rand(10,1)
y = mot563_mean(x)

at the MATLAB command prompt. The GUI splashscreen of the Suite56 DSP
Simulator appears. At the same time, the existing MATLAB command window
freezes and a new, temporary MATLAB workspace or engine session output
window appears. Use this second MATLAB workspace and the Suite56 DSP
Simulator to analyze DSP data.

The MEX-file execution is paused, ready to start execution of the loaded DSP
assembly or C program. From this point, enter any valid Suite56 DSP
Simulator command at the Simulator command line. For example, to simply
run the loaded assembly or C-code, enter

go

or use the GUI buttons in the toolbar. For more information on using the
Suite56 DSP simulator, read the Motorola DSP Simulator Reference Manual.
Exiting the Simulator destroys the temporary MATLAB workspace or engine
session and returns you to the main MATLAB workspace.

2 Creating Motorola DSP MEX-Files

2-22

Building and Running MOT563_SMEAN
Use of the MOT563_SMEAN function binary in the INTERACTIVE mode with the
GUI of the Suite56 DSP Simulator is essentially the same as for the
MOT563_MEAN function as described in “Building and Running
MOT563_MEAN” on page 2-21. Only the running of the S-Function MEX-file
is performed differently to running the MATLAB MOT563_MEAN function.

Create a new Simulink model, incorporating the MOT563_SMEAN block. Edit the
block’s “Simulation Time to enter Interactive Mode” parameter to 5 and run the
simulator. For more information on creating and running a new model, see
“The Simulink MOT563_SMAX Example” on page 1-10

callMatlab
MATLAB engine library routines are incorporated into the supplied Suite56
DSP GUI Simulator to enable MATLAB functions and commands to be called
from the simulator command window.

The syntax for the two ways of calling callMatlab is:

• callMatlab put <mem_space>:<start_address>:<end_address>

When “put” is present, the DSP memory contents as specified by the last
argument are copied into a variable in the current MATLAB engine session.
The variable name is constructed from the colon-separated elements of the
last argument.

• callMatlab matlab_command

When called this way, the matlab_command expression is passed to the
MATLAB engine and evaluated there, as if entered at the MATLAB prompt.
The onus is on you to ensure that a valid MATLAB command is entered.

For example, issue the following two callMatlab commands in the GUI
simulator command window.

callMatlab put x:0:10
callMatlab plot(memx_0_10)

There is now a variable named memx_0_10 in the workspace of the MATLAB
engine session created by the MEX function. The variable contains the DSP X
memory block of 11 bytes from $0000 through to $000a inclusive.

A plot of the DSP memory block also appears after executing the MATLAB
plot command above.

Tutorial of Advanced Features

2-23

Note The callMatlab simulator command on UNIX is the only interface
with the MATLAB engine session that runs in the background. A standard
terminal appears that displays the redirected output of any MATLAB
commands issued via the callMatlab simulator command. For example, you
may need to use callMatlab whos to see a list of variables available in the
MATLAB engine session workspace.

Data Snapshots
Snapshots provide access to DSP memory and/or DSP register data from within
the MATLAB engine session. This allows debugging of the algorithm within
the MEX function when running in the INTERACTIVE mode. Access means
you are able to monitor and process a copy of any DSP memory data and DSP
registers in the simulator without altering the contents.

Two types of snapshots are available: Instant and Continuous snapshots.

Instant Snapshot
The instant snapshot represents the data at the current point of simulator
execution, i.e., at the time the snapshot command is issued. You must issue the
instant snapshot command from the GUI simulator command window. Some
examples include

snapshot reg r4
snapshot mem x:$0:$10

After the execution of these commands, observe the workspace of the MATLAB
engine session that was created by the MEX function. There should be two
structure variables, one is the snapshot of the DSP register R4, and the other
is the snapshot of the DSP X memory block from $0000 to $0010. For accessing
structure variables, refer to the “Programming with MATLAB” section in the
MATLAB documentation. Each structure contains attribute information and
the actual value as seen by the simulator.

Continuous Snapshot
Data from a continuous snapshot is updated after each DSP instruction is
executed by the simulator. You must declare continuous snapshots in the
MEX-file at compile time. The following source lines added to the MEX-file

2 Creating Motorola DSP MEX-Files

2-24

<matlab>toolbox/motdsp/motdsp/56300/mot563_mean.cpp set up continuous
snapshots.

#ifdef STANDALONE
// Continuously monitor register 'X1'.
ADD_SNAPSHOT_REG("Snapshot_X1", "X1");
// Continuously monitor DSP X memory block at location $0000
ADD_SNAPSHOT_MEM("Snapshot_MEM_X", memory_map_x,

 0x00, (ulong)CUR_DIM_SIZE);
#endif

or using C++

#ifdef STANDALONE
// Continuously monitor register 'X1'.
sim->AddSnapShot("Snapshot_X1", "X1");
// Continuously monitor DSP X memory block at location $0000
sim->AddSnapShot("Snapshot_MEM_X", memory_map_x,

 0x00, (ulong)CUR_DIM_SIZE);
#endif

Continuous snapshots for the DSP register X1, and DSP X memory block from
address $0 to address CUR_DIM_SIZE (see the MEX-file for the definition of this
block size macro) are created when you run MOT563_MEAN. Step through the
DSP assembly or C-code and observe the contents of the snapshot variables
updating in the MATLAB engine session.

System Analysis Return Data (SARD)
This feature returns information about the execution of the DSP assembly
program within the simulator to the MATLAB environment. Both the
INTERACTIVE and NON_INTERACTIVE modes support this feature. The
data contains:

• The number of DSP instructions executed by the program

• The number of DSP clock cycles taken to execute the program

• The size of the program (P) memory space used by the program

• The size of the X memory space for the program

Tutorial of Advanced Features

2-25

• The size of the Y memory space for the program

(These P, X, and Y memory size values show only static information available
at assembly time.)

• The contents of the Status Register when the DSP program exits

The creation and return of SARD data is optional. To enable this feature, set a
MATLAB variable named <FUNCTION_NAME>_SARDflag. When you run the
corresponding MEX function, a MATLAB struct array with the name
<FUNCTION_NAME>_SARD appears in the workspace. Be aware that the variable
<FUNCTION_NAME> is case-sensitive.

The following example shows the use of SARD with the MOT563_MAX function.

» x = rand(10,1)
» mot563_max_SARDflag = 1
» mot563_max(x)
ans =

0.9318

» whos
 Name Size Bytes Class

mot563_max_SARD 1x1 792 struct array
mot563_max_SARDflag 1x1 8 double array

ans 1x1 8 double array
x 10x1 80 double array

Grand total is 13 elements using 888 bytes

» mot563_max_SARD

mot563_max_SARD =
 Instruction Count: 31

 ClockCycle Count: 49
 Program Size: 14
 XMem Size: 0
 YMem Size: 0
 Status Register: C00390

The SARD is updated each time a function of the same name executes.

2 Creating Motorola DSP MEX-Files

2-26

3
Motorola DSP MEX-File
Programming Reference

3 Motorola DSP MEX-File Programming Reference

3-2

Public Methods
This is a list of publicly available C++ method prototypes that you may include
in your DSP MEX-files.

class MOTDSP_Exception.
MOTDSP_Exception(const char* error_message,

 const int error_number = EEX_UNKNOWN);

class MOTDSP_FuncVar.
MOTDSP_FuncVar(int nrhs, int nlhs);
int GetSize(void);
int GetSizeReal(void);
int GetSizeImag(void);
int GetNumRows(void);
int GetNumCols(void);
enum mat_type GetType(void);
bool IsComplex(void);
bool Isnormalized(double value);
void SetSize(int rows, int columns);

class MOTDSP_Input : public MOTDSP_FuncVar.
MOTDSP_Input(int arg_index, const mxArray* arg_pointer[],

enum inp_type);
MOTDSP_Input(int arg_index, const mxArray* arg_pointer[],

const char* arg_options[], int num_arg_options,
enum inp_type);

int GetIndex(void);
double* GetData(void);
double* GetDataReal(void);
double* GetDataImag(void);
double* GetDataComplex(void);
double* GetData(int row, int col);
double* GetDataReal(int row, int col);
double* GetDataImag(int row, int col);

Public Methods

3-3

class MOTDSP_Output: public MOTDSP_FuncVar.
MOTDSP_Output(int arg_index,

mxArray* arg_pointer[],
enum mat_type m_type);

void SetSize(mxArray* arg_pointer[],
int rows,
int cols);

int GetIndex(void);
void PutData(double *data);
void PutDataReal(double *data);
void PutDataImag(double *data);
void PutDataComplex(double *data);
void PutData(double value);
void PutDataReal(double value);
void PutDataImag(double value);
void PutDataComplex(double value);

class MOTDSP_Simulator.
char* GetMexFuncName(void);
char* GetObjectFileName(void);
char* GetDeviceType(void);
char* GetCommandFile(void);
int GetDeviceNumber(void);

class MOTDSP_IssCustom : public MOTDSP_Simulator .
MOTDSP_IssCustom(const char* MEX_function_name,

const char* object_code_file,
const char* processor_type,
const char* sim_command_file);

ulong ConvertDoubleToFixed(double dval);
double ConvertFixedToDouble(ulong fixval);
bool DoCommand(const char* command);
ulong GetSymbolAddress(const char *symbol_name);
enum memory_map GetSymbolMemMap(const char *symbol_name);
double* ReadFromDspMem(const char* symbol_name,

int block_size,
enum sim_radix_type radix_type);

3 Motorola DSP MEX-File Programming Reference

3-4

double* ReadFromDspMem(enum memory_map map,
ulong mem_address,
int block_size,
enum sim_radix_type radix_type);

ulong* ReadFromDspMemInt(enum memory_map map,
ulong mem_address,
int block_size);

double* ReadFromDspMemFrac(enum memory_map map,
ulong mem_address,

int block_size);
double* ReadFromDspReg(const char* reg_name,

enum sim_radix_type radix_type);
void Run(void);
void Terminate(void);
void WriteToDspMem(const char* symbol_name,

double* data,
int block_size);

void WriteToDspMem(enum memory_map map,
ulong mem_address,
double* data,
int block_size);

void WriteToDspMem(const char* symbol_name,
ulong* data,
int block_size);

void WriteToDspMem(enum memory_map map,
ulong mem_address,
ulong* data,
int block_size);

void WriteToDspReg(const char* reg_name, ulong value);
void WriteToDspReg(const char* reg_name, double value);
void WriteToDspReg(const char* reg_name, ulong* value);
void WriteToDspReg(const char* reg_name, double* value);

Public Methods

3-5

class MOTDSP_IssStandAlone : public MOTDSP_Simulator.
MOTDSP_IssStandAlone(const char* MEX_function_name,

const char* object_code_file,
const char* processor_type,
const char* sim_command_file);

void AddSnapShot(const char* var_name, char* reg_name);
void AddSnapShot(const char* var_name,

enum memory_map map,
ulong address,
int block_size);

ulong GetSymbolAddress(const char *symbol_name);
enum memory_map GetSymbolMemMap(const char *symbol_name);
double* ReadFromDspMem(const char* symbol_name,

int block_size,
enum sim_radix_type radix_type);

double* ReadFromDspMem(enum memory_map map,
ulong mem_address,
int block_size,
enum sim_radix_type radix_type);

ulong* ReadFromDspMemInt(enum memory_map map,
ulong mem_address,
int block_size);

double* ReadFromDspMemFrac(enum memory_map map,
ulong mem_address,
int block_size);

double* ReadFromDspReg(const char* reg_name,
enum sim_radix_type radix_type);

void Run(void);
void Terminate(void);
void WriteToDspMem(const char* symbol_name,

double* data,
int block_size);

void WriteToDspMem(enum memory_map map,
ulong mem_address,
double* data,
int block_size);

void WriteToDspMem(const char* symbol_name,
ulong* data,
int block_size);

3 Motorola DSP MEX-File Programming Reference

3-6

void WriteToDspMem(enum memory_map map,
ulong mem_address,
ulong* data,
int block_size);

void WriteToDspReg(const char* reg_name, ulong value);
void WriteToDspReg(const char* reg_name, double value);
void WriteToDspReg(const char* reg_name, ulong* value);
void WriteToDspReg(const char* reg_name, double* value);

class MOTDSP_Config.

MOTDSP_Config(int argc_input,
int argc_output,
const mxArray* prhs[]);

char* GetCommandFile(void);
char* GetProcessorType(void);
int GetDspFamilyType(void);
int GetFixedInputs(void);

Macros

3-7

Macros
This is a list of available macros used in DSP MEX-file development. The
macros supersede the C++ methods also listed in this chapter.

DSP Memory Space Definitions
#define P_MEM memory_map_p
#define X_MEM memory_map_x
#define Y_MEM memory_map_y

General Creation/Deletion Macros
#define CREATE_SIMS
#define CREATE_INPUT_ARG(identifier, arg_pos)
#define CREATE_NORM_INPUT_ARG(identifier, arg_pos)
(or, for known string input types)
#define CREATE_OPT_INPUT_ARG(identifier, arg_pos,

options, num_options)
#define CREATE_OUTPUT_ARG(identifier, arg_pos, group_type)
#define DELETE_SIMS
#define MEM_DELETE(identifier)

General DSP I/O Macros
#define WRITE_MEM_SYM(SYMBOL, DATA, BLK_SIZE)
#define WRITE_MEM_MAP(MEM_SPACE, START_ADDRESS, DATA, BLK_SIZE)
#define WRITE_REG(REG_NAME, VALUE)

#define READ_REG(REG_NAME, RADIX_TYPE)
#define READ_WIDEREG(REG_NAME, RADIX_TYPE)
#define READ_MEM_SYM(SYMBOL, BLK_SIZE, RADIX_TYPE)
#define READ_MEM_MAP(MEM_SPACE, START_ADDRESS,

BLK_SIZE, RADIX_TYPE)
#define READ_MEM_MAP_INT(MEM_SPACE, START_ADDRESS, BLK_SIZE)
#define READ_MEM_MAP_FRAC(MEM_SPACE, START_ADDRESS, BLK_SIZE)

3 Motorola DSP MEX-File Programming Reference

3-8

Miscellaneous Macros
#define CHECK_DSP_PARAM(DSPTYPE) - S-functions only.
#define MOTDSP_CONFIG - MEX-files only.
#define MOTDSP_FUNCVAR(NUMBER_INPUTS, NUMBER_OUTPUTS)
#define INSTANCE_SIMS(OBJCODE_FILE, DSP_PART, MACRO_FILE)
#define SIM_DO_CMD(COMMAND)
#define SIM_RUN
#define SIM_RUN_CYCLE_ACC
#define ADD_SNAPSHOT_REG(VAR_NAME, REG_NAME)
#define ADD_SNAPSHOT_MEM(VAR_NAME, MEM_SPACE, START_ADDRESS,

BLK_SIZE)
#define SIM_CONV_FIXED_TO_DOUBLE(VALUE)
#define SIM_CONV_DOUBLE_TO_FIXED(VALUE)
#define THROW_MEX_ERROR(ERROR_MSG_STRING)
#define EEX_ABORT(MOTDSP_EXCEPTION_OBJECT)
#define SIM_TERMINATE

Miscellaneous Definitions
#define TRUE 1
#define FALSE 0

#define FAILURE 1
#define SUCCESS 0

#define PTR_NIL 0

Alphabetical List of Assembly Files

3-9

Alphabetical List of Assembly Files
The following reference pages describe the supplied assembly files that contain
the functional algorithms for both the toolbox and the blockset. These reference
pages are listed alphabetically, except that the assembly file for the real case
always appears before the one for the complex case. For example, abs-r.asm
appears before abs-c.asm.

Note Under the “MATLAB Usage” heading on each reference page, the ###
characters represent either the 563 or the 566 processor family.

3 Motorola DSP MEX-File Programming Reference

3-10

abs-r.asm

3-11

3abs-r.asmMATLAB Usage Y = mot###_abs(X)

Description This function returns the absolute value of the input real vector X

Input/Output Input: Real vector X (elements of X are real data)

Output: Real vector Y

Algorithm for (i=0; i<size(X); i++)
{ Y[i] = abs(X[i]); }

Note abs is an assembly instruction of the DSP56K instruction set

Memory&
Register

Memory allocation and register usage:

• Start address of real vector X is defined in symbol IN

• Size of vector X is stored in register R7

• Start address of vector Y is defined in symbol OUT

Status Register The assembly function abs-r.asm does not set any status registers/bits during
the function execution.

Data Size Limit The length of vector X is limited by the size of available continuous data
memory.

Data Range
Limit

The input vector X range is [–1.0, +1.0].

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

In the case of DSP563 and DSP566, there are 4 cycles for each element of input
data.

abs-c.asm

3-12

3abs-c.asmMATLAB Usage Y = mot###_abs(X)

Description This function returns the magnitude of the input complex vector/sqrt(2). The
input vector X is a complex vector

Input/Output Input: Complex vector X (includes real part Xr, and imaginary part Xi)

Output: Real vector Y

Algorithm for (i=0; i <size(X); i++)
{
Intervalue = Xr[i] * Xr[i];
Intervalue += Xi[i] * Xi[i];
y[i] = sqrt-sr(Intervalue >> 1);
}

Note If absolute values are desired, the scaling up factor is sqrt(2). For a
description of function sqrt-sr, refer to sqrt-sr.asm on page 3-96.

Memory &
Register

Memory allocation and register usage:

• Start address of the real part of vector X is defined in label IN_REAL

• Start address of the imaginary part of vector X is defined in label IN_IMAG

• Size of vector X is stored in register R7

• Start address of output vector Y is defined in label OUT

Status Register The assembly function abs-c.asm does not explicitly set any status register
bits during the function execution.

Data Size Limit The length of vector X is limited by the size of available continuous data
memory.

Data Range
Limit

The input vector X range is [–1.0, +1.0].

abs-c.asm

3-13

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

In the case of DSP563, there are 222 cycles for each element of input data.

In the case of DSP566, there are 150 cycles for each element of input data.

angle-c.asm

3-14

3angle-c.asmMATLAB Usage Y = mot###_angle(X)

Description This function returns the inverse tangent (arctangent) of the input complex
vector X

Input/Output Input: Complex vector X (includes the real part Xr and the imaginary part Xi)

Output: Vector Y

Algorithm Use the CORDIC algorithm. For each input vector, x represents the real part,
and y represents the imaginary part of the input vector.

int z = 0, X, Y, Z =0, i;
if (x == (unsigned frac)0)

return (frac)0;
X = x = x>>2 ;
Y = y = y>>2 ;

 /* Circular Function */
for (i = 0; i <= fracbits; ++i)
{

x = X >> i;
y = Y >> i;
z = atan[i];
if (Y <= 0)
{

X -= y;
Y += x;
Z -= z;

}
else
{

X += y;
Y -= x;
Z += z;

}
}
Z = Z << 2;
return Z;

angle-c.asm

3-15

Memory &
Register

Memory allocation:

• Label IN stores the start address of input vector X

• Label INREAL stores the start address of real data of input vector

• Label INIMAG stores the start address of complex data of input vector

• Label OUTREAL stores the start address of output vector

• Variable X, Y is saved starting from label XYZ

X0 as x

X1 as y

Y1 as z

B as Z

Register usage:

• Register R6 stores the number of items of the input array

• Register R2 stores the fraction bits +1

In the case of DSP563, R2 stores 22

In the case of DSP566, R2 stores 14

• Register R3 stores the value of the atan table

• Registers R0 and R5 store the label IN(OUT)

• Register R7 stores the start address of label XYZ

• Register R1 stores the loop counter

• Register Y0 is mainly used as shift number register (i.e., variable 'i' in the
algorithm description)

Status Register The assembly function angle-c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X is limited by the size of available continuous data
memory.

Data Range
Limit

The input vector X range is [–1.0, +1.0].

angle-c.asm

3-16

Precision In the case of DSP563, precision is 17 bits.

In the case of DSP566, precision is 10 bits.

Performance
Limit

In the case of DSP563:

• When the input vector is a real vector, there are 25 cycles for each element
of input data.

• When the input vector is a complex vector, there are 628 cycles for each
element of input data.

In the case of DSP566:

• When the input vector is a real vector, there are 25 cycles for each element
of input data.

• When the input vector is a complex vector, there are 609 cycles for each
element of input data.

conv-r.asm

3-17

3conv-r.asmMATLAB Usage C = mot###_conv(A,B)

Description This function convolves vectors A and B, where both A and B are real vectors

Input/Output Input: Real vector A, and real vector B

Output: Real vector C

Algorithm LengthC = LengthB + LengthA – 1

for (i = 1; i <= LengthC; i ++) {
if (i <= LengthA) {

for (j = 1; j <= i; j ++) {
C[i] += A[j] * B[i – j + 1]; }}

else {
for (j = i – LengthA; j <= LengthA - 1; j ++) {

C[i] += A[j + 1] * B[i – j];
}}}

Memory &
Register

Memory allocation:

In X memory:

• X:(#INA) stores the start address of vector A

• X:(#INA+LENGTH(A)) stores the start address of vector C

In Y memory:

• Y:(#INB) stores the start address of vector B

Register usage:

• R2 stores the length of vector A

• R7 stores the length of vector C

• R0 stores the index of vector A

• R4 and R5 store the index of vector B

• R3 stores the index of vector C

• R1, R2, and R6 are used as loop control

• R2-1 -> M5, assume M{0,1,2,3,4,6,7} = $ffffff

conv-r.asm

3-18

Status Register The assembly function conv-r.asm does not set any status registers/bits during
the function execution

Data Size Limit The maximum length of vector A and B can’t be larger than 1/3 of the
continuous available data memory size.

Data Range
Limit

The input data vector range is [–1.0, +1.0].

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 2 ∆inputvectorlength× 2= =

∆∆cycle 2 ∆inputvectorlength× 2= =

conv-c.asm

3-19

3conv-c.asmMATLAB Usage C = mot###_conv(A,B)

Description This function convolves vectors A and B, where both A and B are complex
vectors

Input/Output Input: Complex vector A (Ar is the real part, and Ai is the imaginary part), and
complex vector B (Br is the real part, and Bi is the imaginary part)

Output: Complex vector C (Cr is the real part, and Ci is the imaginary part)

Algorithm LengthC = LengthB + LengthA – 1
for (i = 1; i <= LengthC; i ++) {
if (i <= LengthA) {

for (j = 1; j <= i; j ++) {
Cr[i] += Ar[j] * Br[i – j + 1] – Ai[j] * Bi[i – j + 1];
Ci[i] += Ai[j] * Br[i – j + 1] + Ar[j] * Bi[i – j + 1];

}
}
else {

for (j = i – LengthA; j <= LengthA - 1; j ++) {
Cr[i] += Ar[j + 1] * Br[i – j] – Ai[j + 1] * Bi[i – j];
Ci[i] += Ai[j + 1] * Br[i – j] + Ar[j + 1] * Bi[i – j];

}
}
}

Memory &
Register

Memory allocation:

In X memory:

• X:(INA) stores the start address of the real part of vector A

• X:(INA + LENGTH(A)) stores the start address of the imaginary part of
vector A

• X:(INA + LENGTH(A)*2) stores the start address of the real part of vector C

In Y memory:

• Y:(INB) stores the start address of the real part of vector B

• Y:(INB + LENGTH(B)) stores the start address of the imaginary part of
vector B

conv-c.asm

3-20

• Y:INB + LENGTH(B)*2 stores the start address of the imaginary part of
vector C

Register usage:

• R0 is used for the index of the real part of vector A

• R0+N0 is used for the index of the imaginary part of vector A

• R4 and R5 are used for the index of the real part of vector B

• R4 +N4 are used for the index of the imaginary part of vector B

• R3 is used for the index of the real part of vector C

• R7 is used for the index of the imaginary part of vector C

• R1, R2, and R6 are used as loop control

• R2-1 -> M5, assume M{0,1,2,3,4,6,7} = $ffffff

Status Register The assembly function conv-c.asm does not set any status registers/bits during
function execution.

Data Size Limit The maximum length of vector A and B can’t be larger than 1/4 of the
continuous available data memory size.

Data Range
Limit

The input data vector range is [–1.0, +1.0].

Precision In the case of DSP563, precision is the full 23 bits.

In the case of DSP566, precision is the full 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 24 ∆inputvectorlength× 24= =

∆∆cycle 24 ∆inputvectorlength× 24= =

decimate-fir-r.asm

3-21

3decimate-fir-r.asmMATLAB Usage Y = mot###_decimate(X, r, nfilt, 'fir')

Description This function decimate resamples data at a lower rate after lowpass FIR
filtering. Input vector X is a real vector

Input/Output Input Parameters: Real vector X, int r, int nfilt

Output Parameters: Real vector Y

Algorithm The MEX function decimate_fir.m calculates vector b, vector list, int nout,
and int nbeg. The CMEX function loads these parameters into dsp memory for
asm function use.

nd = length(idata);
m = size(idata,1);
nout = ceil(nd/r);
b = fir1(nfilt,1/r);
gd = grpdelay(b,1,8);
list = round(gd(1)+1.25):r:nd;
lod = length(list);
nlen = nout-lod;
nbeg = r-(nd-list(length(list)));

Assembly function decimate-fir-r.asm then follows these steps to
calculate decimated vector Y:
nfilt = nfilt+1
itemp = 2*idata(1)-idata((nfilt+1):-1:2)

[odata,zf] = filter(b,1,idata,zi)
odata = odata(list)

Memory &
Register

Memory allocation:

• Input vector X is located in X memory

• Input r is loaded in register N3

• Input nfilt is loaded in register N5

• Output vector Y is located in Y memory

decimate-fir-r.asm

3-22

In X memory:

• X:(#INA) stores the vector idata

• X:(#INA+(length of idata)) stores the vector b

• X:(#INA+(length of idata)+(length of b)) stores the vector zi/zf

• X:(#INA+(length of idata)+(length of b)+(length of zi)) stores nout

• X:(#INA+(length of idata)+(length of b)+(length of zi)+1) stores the length of
list

• X:(#INA+(length of idata)+(length of b)+(length of zi)+2) stores the vector
list

In Y memory:

• Y:(#INB) stores the vector odata

• Y:(#INB+(length of idata)) stores the vector itemp

The length of itemp is 2*(nfilt+1)

Input data length:

Length of idata is n

Length of odata is n -> n/r

Length of tb is nfilt+1

Length of zi,zf is nfilt+1

Length of list is = n/r

Length of itemp is 2*(nfilt+1)

Register usage:

• N2 stores the length of idata (n)

• N3 stores r

• N5 stores nfilt

• R2 stores the length of vector b (nfilt+1)

Status Register No status registers or bits are set explicitly during function execution.

Data Size Limit Input vector X length must longer than r*(nfilt+1). The length of vector X
can’t be larger than the continuous available data memory size.

decimate-fir-r.asm

3-23

Data Range
Limit

The value range of input vector X is [–1.0, +1.0].

Precision In the case of DSP563, precision is 21 bits.

In the case of DSP566, precision is 12 bits.

decimate-fir-c.asm

3-24

3decimate-fir-c.asmMATLAB Usage Y = mot###_decimate(X, r, nfilt, 'fir')

Description Function decimate resamples data at a lower rate after lowpass FIR filtering.
Input vector X is a complex vector

Input/Output Input Parameters: complex Vector X, int r, int nfilt

Output Parameters: complex Vector Y

Algorithm The MEX function decimate_fir.m calculates vector b, vector list, int nout,
and int nbeg,. The CMEX function loads these parameters into dsp memory
for asm function use.

nd = length(idata);
m = size(idata,1);
nout = ceil(nd/r);

b = fir1(nfilt,1/r);
gd = grpdelay(b,1,8);
list = round(gd(1)+1.25):r:nd;
lod = length(list);
nlen = nout-lod;
nbeg = r-(nd-list(length(list)));

Assembly function decimate-fir-c.asm, and then follow these steps
to calculate decimated vector Y:
nfilt = nfilt+1
itemp = 2*idata(1)-idata((nfilt+1):-1:2)

[odata,zf] = filter(b,1,idata,zi)
odata = odata(list)

Memory &
Register

Memory allocation:

• Input vector X is located in X memory

• Input r is loaded in register N3

• Input nfilt is loaded in register N5

• Output vector Y is located in Y memory

decimate-fir-c.asm

3-25

In X memory:

• X:(#INA) stores the vector idata

(In the idata area, the first half stores the real part, the second half stores
the imaginary part)

• X:(#INA+(length of idata)) stores vector b

(In the b area, the first half stores the real part, and the second half stores
the imaginary part)

• X:(#INA+(length of idata)+(length of b)) stores the vector zi/zf

(In the zi/zf area, the first half stores the real part, and the second half
stores the imaginary part)

• X:(#INA+(length of idata)+(length of b)+(length of zi)) stores nout

• X:(#INA+(length of idata)+(length of b)+(length of zi)+1) stores the length
of list

• X:(#INA+(length of idata)+(length of b)+(length of zi)+2) stores the vector
list

• X:(#INA-1) stores the length of idata

• X:(#INA-2) stores r

• X:(#INA-3) stores nfilt

• X:(#INA-4) stores the length of vector b, nfilt+1

• X:(#INA-5) stores the length of decimated output vector, nout

• X:(#INA-6) stores the length of list, lod

• X:(#INA-7) stores nbeg

• X:(#INA-8) stores nlen = nout-lod

In Y memory:

• Y:(#INB) stores the vector odata

(In the odata area, the first half stores the real part, and the second half
stores the imaginary part)

• Y:(#INB+2*(length of odata)) stores the vector itemp

length of itemp is 2*2*(nfilt+1)

decimate-fir-c.asm

3-26

Input data length:

Length of idata is 2*

Length of odata is 2*

Length of b is nfilt+1

Length of zi, zf is nfilt+1

Length of list is lod

Length of itemp is 2*2*(nfilt+1)

Register usage:

• N2 stores the length of idata (n)

• N3 stores r

• N5 stores nfilt

• R2 stores the length of vector b (nfilt+1)

Status Register No status registers or bits are set explicitly during the function execution.

Data Size Limit The input vector X length must longer than r*(nfilt+1). The length of vector
X can’t be larger than the continuous available data memory size.

Data Range
Limit

The input vector X range is [–1.0, +1.0].

Precision In the case of DSP563, precision is 21 bits.

In the case of DSP566, precision is 12 bits.

decimate-iir-r.asm

3-27

3decimate-iir-r.asmMATLAB Usage Y = mot###_decimate(X, r, nfilt)

Description Function decimate resamples data at a lower rate after lowpass IIR filtering.
Input vector X is a real vector

Input/Output Input parameters: Real vector X, int r, int nfilt

Output parameters: Real vector Y

Algorithm The MEX function decimate_iir.m calculates vector b, vector a, vector zi, int
nout, and int nbeg. The CMEX function loads these parameters into dsp
memory for asm function use.

nd = length(idata);
m = size(idata,1);
nout = ceil(nd/r);
rip = 0.05;
[b,a] = cheby1(nfilt, rip, 0.8/r);
while (abs(filtmag_db(b, a, 0.8/r)+rip)>1e-6)

nfilt = nfilt - 1;
if nfilt == 0

break
end
[b,a] = cheby1(nfilt, rip, 0.8/r);

end

if nfilt == 0
error('Bad Chebyshev design, likely R is too big; try mult.

decimation (R=R1*R2).')
end

len = m;
b = b(:).';
a = a(:).';
nb = length(b);
na = length(a);
n_filt = max(nb,na);
nfact = 3*(n_filt-1); % length of edge transient

if nb < n_filt, b(n_filt)=0; end % zero-pad if necessary
if na < n_filt, a(n_filt)=0; end

decimate-iir-r.asm

3-28

rows = [1:n_filt-1 2:n_filt-1 1:n_filt-2];
cols = [ones(1,n_filt-1) 2:n_filt-1 2:n_filt-1];
data = [1+a(2) a(3:n_filt) ones(1,n_filt-2) -ones(1,n_filt-2)];

sp = sparse(rows,cols,data);
zi = sp \ (b(2:n_filt).' - a(2:n_filt).'*b(1));

nbeg = r-(r*nout-nd);

Assembly function decimate-iir-r.asm then follow these steps to
calculate decimated vector Y:

y=[2*x(1)-x((nfact+1):-1:2);x;2*x(len)-x((len-1):-1:len-nfact)]
y = filter(b,a,y,[zi*y(1)])
y = y(length(y):-1:1)
y = filter(b,a,y,[zi*y(1)])
y = y(length(y):-1:1)
y([1:nfact len+nfact+(1:nfact)]) = []
nbeg = r - (r*nout - nd)
odata = odata(nbeg:r:nd)

Memory &
Register

Memory allocation:

• Input vector X is located in X memory

• Input r is loaded in register N3

• Input nfilt is loaded in register N5

• Output vector Y is located in Y memory

In X memory:

• X:(#INA) stores vector a

• X:(#INA+(length of a)) stores vector b

• X;(#INA+(length of a)+(length of b)) stores vector zi/zf

• X:(#INA+(length of a)+(length of b)+(length of zi)) stores vector idata

• X:(#INA+(length of idata)+(length of b)+(length of zi)+1) stores the length of
list

• X:(#INA+(length of idata)+(length of b)+(length of zi)+2) stores the vector
list

• X;(#INA-1) stores nbeg

decimate-iir-r.asm

3-29

In Y memory:

• Y:(#INB) stores vector odata (C)

• Y:(#INB+(length of idata)+2*nfactvector) stores odata (D)

Input data length:

Length of idata is n

Length of odata (C,D) is +2*nfact

Length of tb is nfilt+1

Length of zi, zf is nfilt+1

Register usage:

• N2 stores the length of idata (n)

• N3 stores r

• N5 stores nfilt

• R2 stores the length of vector b (nfilt+1)

Status Register The assembly function decimate-iir-r.asm does not set explicitly any status
registers/bits during the function execution.

Data Size Limit The input vector X length must longer than r*(nfilt+1). The length of vector
X can’t be larger than the continuous available data memory size.

Data Range
Limit

The value range of the input vector X is [–1.0, +1.0].

Precision In the case of DSP563, precision is 21 bits.

In the case of DSP566, precision is 12 bits.

decimate-iir-c.asm

3-30

3decimate-iir-c.asmMATLAB Usage Y = mot###_decimate(X, r, nfilt)

Description Function decimate resamples data at a lower rate after lowpass IIR filtering.
Input vector X is a complex vector

Input/Output Input parameters: Complex vector X, int r, int nfilt

Output parameters: Complex vector Y

Algorithm The MEX function decimate_iir.m calculates vector b, vector a, vector zi, int
nout, and int nbeg. The CMEX function loads these parameters into dsp
memory for asm function use.

nd = length(idata);
m = size(idata,1);
nout = ceil(nd/r);

rip = 0.05;
[b,a] = cheby1(nfilt, rip, 0.8/r);
while (abs(filtmag_db(b, a, 0.8/r)+rip)>1e-6)

nfilt = nfilt - 1;
if nfilt == 0

break
 end

[b,a] = cheby1(nfilt, rip, 0.8/r);
end

if nfilt == 0
error('Bad Chebyshev design, likely R is too big; try

mult. decimation (R=R1*R2).')
end

len = m;
b = b(:).';
a = a(:).';
nb = length(b);
na = length(a);
n_filt = max(nb,na);
nfact = 3*(n_filt-1); % length of edge transient

if nb < n_filt, b(n_filt)=0; end % zero-pad if necessary

decimate-iir-c.asm

3-31

if na < n_filt, a(n_filt)=0; end

rows = [1:n_filt-1 2:n_filt-1 1:n_filt-2];
cols = [ones(1,n_filt-1) 2:n_filt-1 2:n_filt-1];
data = [1+a(2) a(3:n_filt) ones(1,n_filt-2) -ones(1,n_filt-2)];

sp = sparse(rows,cols,data);
zi = sp \ (b(2:n_filt).' - a(2:n_filt).'*b(1));

nbeg = r-(r*nout-nd);

Assembly function decimate-iir-r.asm, and then follow these steps
to calculate decimated vector Y:

y=[2*x(1)-x((nfact+1):-1:2);x;2*x(len)-x((len-1):-1:len-nfact)]
y = filter(b,a,y,[zi*y(1)])
y = y(length(y):-1:1)
y = filter(b,a,y,[zi*y(1)])
y = y(length(y):-1:1)
y([1:nfact len+nfact+(1:nfact)]) = []
nbeg = r - (r*nout - nd)
odata = odata(nbeg:r:nd)

Memory &
Register

Memory allocation:

• Input vector X is located in X memory

• Input r is loaded in register N3

• Input nfilt is loaded in register N5

• Output vector Y is located in Y memory

In X memory:

• X:(#INA) stores vector a

(In the a area, the first half stores the real part, and the second half stores
the imaginary part)

• X:(#INA+2*(length of a)) stores vector b

(In the b area, the first half stores the real part, and the second half stores
the imaginary part)

decimate-iir-c.asm

3-32

• X:(#INA+2*(length of a)+2*(length of b)) stores vector zi/zf

(In the zi/zf area, the first half stores the real part, and the second half
stores the imaginary part)

• X:(#INA+2*(length of a)+2*(length of b)+2*(length of zi)) stores vector idata

• X:(#INA-1) stores the length of vector idata

• X:(#INA-2) stores r

• X:(#INA-3) stores nfilt

• X:(#INA-4) stores the length of vectors a, b, zi, zf

• X:(#INA-5) stores nfact

• X:(#INA-6) stores the length of itemp, n+2*nfact

• X:(#INA-7) stores nout

• X:(#INA-8) stores nbeg

In Y memory:

• Y:(#INB) stores vector odata (C)

• Y:(#INB+2*((length of idata)+2*nfact)) stores vector odata (D)

Input data length:

Length of idata is n

Length of odata (C,D) = (the length of idata)+2*nfact

Length of tb is nfilt+1

Length of zi, zf is nfilt+1

Register usage:

• N2 stores the length of idata (n)

• N3 stores r

• N5 stores nfilt

• R2 stores the length of vector b (nfilt+1)

Status Register The assembly function decimate-iir-c.asm does not explicitly set any status
registers/bits during the function execution.

decimate-iir-c.asm

3-33

Data Size Limit Input vector X length must be longer than r*(nfilt+1). The length of vector
X can’t be larger than the continuous available data memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 21 bits.

In the case of DSP566, precision is 12 bits.

diff-r.asm

3-34

3diff-r.asmMATLAB Usage B = mot###_diff(A,N)

Description This function performs an N-th order difference between the elements of real
vector A.

INput/Output Input: Real vector A, int N (N-th order)

Output: Real vector B

Algorithm for (i = 1; i <= N; i ++) {
for (j = 1; j <= LengthA - 1; j ++) {

A[j] = A[j + 1] – A[j];
}
-- LengthA;

}
B = A;

Memory &
Register

Memory allocation and register usage:

• R2 stores the length of A

• R3 stores the input N

• R4 stores the start address of vector A

• R0 stores the index of vector A

• R1 stores the index of vector B

• R2 and R3 are used as loop control

Assume M{0...7} = $ffff

Status Register The assembly function diff-r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector A can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 23 bits.

diff-r.asm

3-35

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 6 ∆inputvectorlength× 6= =

∆∆cycle 6 ∆inputvectorlength× 6= =

diff-c.asm

3-36

3diff-c.asmMATLAB Usage B = mot###_diff(A,N)

Description This function performs an N-th order difference between the elements of
complex vector A.

Input/Output Input: Complex vector A, int N (N-th order)

Output: Complex vector B

Algorithm for (i = 1; i <= N; i ++) {
for (j = 1; j <= LengthA - 1; j ++) {

Ar[j] = Ar[j + 1] – Ar[j];
Ai[j] = Ai[j + 1] – Ai[j];

}
-- LengthA;

}
Br = Ar;
Bi = Ai;

Memory &
Register

Memory allocation:

• X memory: label IN1_RL points to the start address of the real part of vector
A

• Y memory: label IN1_RL points to the start address of the imaginary part of
vector A

Register usage:

• R4 stores the start address of vector A

• R0 stores the index of the real part of vector A

• R6 stores the index of the imaginary part of vector A

• R1 stores the index of the real part of vector B

• R5 stores the index of the imaginary part of vector B

• R2 and R3 are used as loop control

Assume M{0...7} = $ffff

Status Register The assembly function diff-c.asm does not set explicitly any status registers/
bits during the function execution.

diff-c.asm

3-37

Data Size Limit The length of vector A can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector A must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 6 ∆inputvectorlength× 6= =

∆∆cycle 6 ∆inputvectorlength× 6= =

fft-r.asm

3-38

3fft-r.asmMATLAB Usage Y = mot###_fft(X)

Description This function returns the discrete Fourier transform (DFT) of the input for real
vector X

Input/Output Input: Vector Xe (even index input data, located in X memory), and vector Xo
(odd index input data, located in Y memory)

Output: Complex Vector Y (includes real output data of vector Yr, and
imaginary data output of vector Yi)

Algorithm First, use algorithm in FFT-C.ASM to calculate length/2 complex data FFT.

Then use split algorithm to calculate final result.

No scaling is required for the input data. The output data should be scaled up
by 2^(r2+1).

For example, to get true FFT values, after the FFT is done and r2=7, every
output item has to be shifted left 8 bits.

Note The variable “size” used in the code below is the half size of the input
for real vector X.

The split algorithm is described below:

for (k =0; k < size/2 –1; k++)
{

H1r = (Xr[k] + Xr[size-k]) / 2;
H1i = (Xi[k] – Xi[size-k]) / 2;
H2r = (Xi[k] + Xi[size-k]) / 2;
H2i = (Xr[size-k] – Xr[k]) / 2;
Yr[k] = H1r + (C2r[k]*H2r – C2i[k]*H2i);
Yr[size-k] = H1r – (C2r[k]*H2r – C2r[k]*H2i);
Yi[k] = H1i + (C2i[k]*H2r- C2r[k]*H2i);
Yi[size-k] = -(H1i) + (C2i[k]*H2r – C2r[k]*H2i);

}

fft-r.asm

3-39

Memory &
Register

Memory allocation:

• In X memory: label IN_REAL stores the location of the input data (real part)

• In Y memory: label IN_IMAG stores the location of the input data (imaginary
part)

Note The above two symbols are also used as output symbols

• p:$F000 = half the length of the input real vector

• p:$F001 = address offset of coefficient lookup table C1 (used by Fft-c)

• p:$F002 = address offset of coefficient lookup table C2 (used by split)

• p:$F003 = address offset of output vector

Register usage:

• R7 is used for passnum

• R2 is used for scaling exponent

Status Register The assembly function fft-r.asm does not set any status registers/bits during
the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

fft-c.asm

3-40

3fft-c.asmMATLAB Usage Y = mot###_fft X)

Description This function performs the discrete Fourier transform (DFT) of input complex
vector X

Input/Output Input: Complex vector X (includes the real input data of vector Xr, and the
imaginary data input of vector Xi)

Output: Complex vector Y (includes the real output data of vector Yr, and the
imaginary output data of vector Yi)

Algorithm The algorithm is radix-2 DIT FFT.

Passnum = (int) (Log2(size) + 0.5); //calculated by mex function
GroupPerPass= 1;
ButterflyPerGroup = size / 2;
Set coefficient table addressing mode as bit-reversed;
Clear scaling bit;
Set scaling down mode;
Scalexp = 1; //scaling exponent
for(i = 0; i < Passnum; i++)
{

pA = 0; /*address pointer of the first input of butterfly */
pB = pA + ButterflyPerGroup;/*address pointer of the second

input of butterfly */
pC = 0; /*address pointer of coefficient lookup table C */
for (j = 0; j < GroupPerPass; j++)
{

for (k = 0; k < ButterflyPerGroup; k++)
{

Xr[pA] = Xr[pA] + Xr[pB]*Cr[pC] + Xi[pB]*Ci[pC];
Xi[pA] = Xi[pA] + Xi[pB]*Cr[pC] – Xr[pB]*Ci[pC];
Xr[pB] = 2*Xr[pA] – Xr[pA];
Xi[pB] = 2*Xi[pA] – Xi[pA];
pA ++;
pB ++;

}
Clr scaling down mode;
if has overflow

fft-c.asm

3-41

{
Set scaling down mode;
Clr scaling bit;
Scalexp++;
}
pA += ButterflyPerGroup;
pB += ButterflyPerGroup;
pC += size / 4; /* bit-reverse */
}
ButterflyPerGroup >>= 1;
GroupPerPass<<= 1;

}
Clear scaling bit;
Set no scaling mode;
Convert bit reverse order to normal order in-place;

Note Actual output data should be scaled up by 2^(Scalexp-1). This will be
done by the MEX function.

Memory &
Register

Memory allocation:

• X memory: IN_REAL stores the start address of the real part of the input
data

• Y memory: IN_IMAG stores the start address of the imaginary part of the
input data

Note The above two symbols are also used as output symbol

Register usage:

• R3 stores the length of the input vector

• R7 stores the passnum

• R2 stores the scaling exponent

fft-c.asm

3-42

Status Register The assembly function fft-c.asm does not explicitly set any status registers/
bits during the function execution

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

filter-r.asm

3-43

3filter-r.asmMATLAB Usage [D,ZF] = mot###_filter(B, A, C, ZI)

Description This function filters the data in Real vector C with the filter described by real
vectors A and B to create the filtered data D, using Zi as initial conditions

Input/Output Input: real vector C, real vector A and B

Output: real vector D, real vector Zf

Algorithm // Zi should be increased by adding one zero value to it.
// The length of Zi will be equal to Max(LengthA, LengthB)
// LengthD = LengthC

for (j = 1; j <= LenghtD; j++) {
if (Abs (A[1]) != 1) {

D[j] = B[1]*C[j]/A[1] + Zi[1];
for (i = 1; i <= (LengthZi – 1); i ++) {

Zi[i] = B[i+1]*C[j]/A[1] + Zi[i+1] – A[i+1]*D[j]/
A[1];

}
}

else {
D[j] = B[1]*C[j] + Zi[1];
for (i = 1; i <= (LengthZi – 1); i ++) {

Zi[i] = B[i+1]*C[j] + Zi[i+1] – A[i+1]*D[j];
}

}
}

Memory &
Register

Memory allocation:

In X memory:

• X:(#INA) stores the start address of vector A

• X:(#INA + LENGTH(A)) stores the start address of vector B

• X:(#INA + LENGTH(A) + LENGTH(B)) stores the start address of vector ZI

In Y memory:

• Y:(#INB) stores the start addresses of vector C and vector D

filter-r.asm

3-44

Register usage:

• R2 stores the length of vector MAX(A,B), ZI

• R6 stores the length of vector C

• R3 stores the start address of Zi

• R0 stores the index of vector A

• R0+N0 store the index of vector B

• R4 store the index of vectors C and D

• R1 stores the index of vector Zi

• R6 and R7 are used as loop control

• R5 is unused

Assumes M{0...7} = $ffffff

Status Register The assembly function filter-r.asm does not set explicitly any status
registers/bits during the function execution.

Data Size Limit The length of vector C can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vectors must be between –1.0 and +1.0.

Precision In the case of DSP563, the precision is 21 bits.

In the case of DSP566, the precision is 12 bits

Performance
Limit

DSP563:

DSP566:

∆cycle 12 ∆zi× 12= =

∆cycle 12 ∆zi× 12= =

filter-c.asm

3-45

3filter-c.asmMATLAB Usage [Dr, Di, Zfr, Zfi] = mot###_filter(Br, Bi, Ar, Ai, Cr, Ci, Zir, Zii)

Description This function filters the data in vector C with the filter described by vectors A
and B to create the filtered data D, using Zi as initial conditions

Input/Output Input: Complex vector A, vector B, vector C, and vector Zi

Output: Complex vector D, and vector Zf

Algorithm // Zi should be increased by adding one zero value to it.
// The length of Zi will be equal to Max(LengthA, LengthB)

LengthD = LengthC
for (j = 1; j <= LenghtD; j++) {
if (Abs (A[1]) != 1) {
D[j] = (A[1]*B[1]*C[j] – A[1]*BI[1]*CI[j] + AI[1]*B[1]*CI[j]
 + AI[1]*BI[1]*C[j]) / (A[1]*A[1] + AI[1]*AI[1]) + Zi[1];

DI[j] = (A[1]*B[1]*CI[j] + A[1]*BI[1]*C[j] + AI[1]*BI[1]*CI[j]
– AI[1]*B[1]*C[j]) / (A[1]*A[1] + AI[1]*AI[1]) + ZiI[1];
for (i = 1; i <= (LengthZi – 1); i ++) {
Zi[i] = (A[1]*B[i+1]*C[j] – A[1]*BI[i+1]*CI[j] +
AI[1]*B[i+1]*CI[j] + AI[1]*BI[i+1]*C[j]
- A[1]*A[i+1]*D[j] + A[1]*AI[i+1]*DI[j]
- AI[1]*A[i+1]*DI[j] - AI[1]*AI[i+1]*D[j]) /
(A[1]*A[1] + AI[1]*AI[1]) + Zi[i+1];
ZiI[i] = (A[1]*B[i+1]*CI[j] + A[1]*BI[i+1]*C[j] +
AI[1]*BI[i+1]*CI[j] - AI[1]*B[i+1]*C[j]
- A[1]*A[i+1]*DI[j] - A[1]*AI[i+1]*D[j]
- AI[1]*AI[i+1]*DI[j] + AI[1]*A[i+1]*D[j]) /
(A[1]*A[1] + AI[1]*AI[1]) + ZiI[i+1];
}
}
else {

D[j] = B[1]*C[j] – BI[1]*CI[j] + Zi[1];
DI[j] = BI[1]*C[j] + B[1]*CI[j] + ZiI[1];
for (i = 1; i <= (LengthZi – 1); i ++) {

Zi[i] = B[i+1]*C[j] – BI[i+1]*CI[j] + Zi[i+1]
– A[i+1]*D[j] + AI[i+1]*DI[j];

ZiI[i] = BI[i+1]*C[j] + B[i+1]*CI[j] + ZiI[i+1]
– AI[i+1]*D[j] - A[i+1]*DI[j];

filter-c.asm

3-46

}

}

}

Memory &
Register

Memory allocation:

In X memory:

• X:(#INA) stores the start address of data of vector A

• X:(#INA+LENGTH(A)*2) stores the start address of vector B

• X:(#INA+LENGTH(A)*2 + LENGTH(B)*2) stores the start address of vector
ZI

In Y memory:

• Y:(#INB) stores the start address of the vector C data

• Y:(#INB+LENGTH(C)*2) stores the start address of the vector D data

Register usage:

• R2 stores the length of vector MAX(A,B),ZI

• R6 stores the length of vector C

• N7 stores the start address of A

• N2 stores the start address of B

• N6 stores the start address of Zi

• R0 stores the index of A

• R1 stores the index of B

• R3 stores the index of Zi

• R4 stores the index of C

• R5 stories the index of D

• R2 -> N0, N1, N3

• R6 -> N4, N5

• R6 and R7 are used as loop control

Assumes M{0...7} = $ffffff

filter-c.asm

3-47

Status Register The assembly function filter-c.asm does not set explicitly any status
registers/bits during the function execution.

Data Size Limit The length of vector C can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vectors must be between –1.0 and +1.0.

Precision In the case of DSP563, the precision is 21 bits.

In the case of DSP566, the precision is 12 bits

Performance
Limit

DSP563:

DSP566:

∆cycle 27 ∆zi× 27= =

∆cycle 27 ∆zi× 27= =

ifft-r.asm

3-48

3ifft-r.asmMATLAB Usage Y = mot###_ifft(X)

Description This function returns the discrete Fourier transform (DFT) of the input for real
vector X

Input/Output Input: Vector Xe (even index input data, located in X memory), and vector Xo
(odd index input data, located in Y memory)

Output: Vector Yr (real data of output), and vector Yi (imaginary data of
output)

Algorithm First, use the algorithm in FFT-C.ASM to calculate the length/2 complex data
FFT.

Then, use the split algorithm to calculate the final results.

No scaling is required for the input data; the output data should be scaled up
by 2^(r2+1).

For example, after the FFT is done and r2=7, to get true FFT values, every
output item has to be shifted left 8 bits.

The scaling algorithm is described below:

Note The variable “size” used below is half the size of the input of the real
vector X

for (k =0; k < size/2 –1; k++)
{

H1r = (Xr[k] + Xr[size-k]) / 2;
H1i = (Xi[k] – Xi[size-k]) / 2;
H2r = (Xi[k] + Xi[size-k]) / 2;
H2i = (Xr[size-k] – Xr[k]) / 2;
Yr[k] = H1r + (C2r[k]*H2r – C2i[k]*H2i);
Yr[size-k] = H1r – (C2r[k]*H2r – C2r[k]*H2i);
Yi[k] = H1i + (C2i[k]*H2r- C2r[k]*H2i);
Yi[size-k] = -(H1i) + (C2i[k]*H2r – C2r[k]*H2i);

}

ifft-r.asm

3-49

Memory &
Register

Memory allocations:

• X memory: IN_REAL stores the location of the real part of the input data

• Y memory: IN_IMAG stores the location of the imaginary part of the input

The above two symbols are also used as output symbols.

p:$F000 = half the length of the input real vector

p:$F001 = the address offset of the coefficient lookup table, C1 (used by Fft-c)

p:$F002 = the address offset of the coefficient lookup table, C2 (used by split)

p:$F003 = the address offset of the output vector

Register usage:

• R7 is used for passnum

• R2 is used for the scaling exponent

Status Register The assembly function ifft-r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

ifft-c.asm

3-50

3ifft-c.asmMATLAB Usage Y = mot###_ifft(X)

Description This function returns the discrete Fourier transform (DFT) of the input for
complex vector X

Input/Output Input: Complex vector X, including vector Xr (real input) and vector Xi
(imaginary input)

Output: Complex vector Yr (real output), and vector Yi (imaginary output)

Algorithm Note The algorithm is radix-2 DIT FFT.

Passnum = (int) (Log2(size) + 0.5);//calculated by mex function
GroupPerPass= 1;
ButterflyPerGroup = size / 2;
Set coefficient table addressing mode as bit-reversed;
Clear scaling bit;
Set scaling down mode;
Scalexp = 1;//scaling exponent
for(i = 0; i < Passnum; i++)
{

pA = 0;/*address pointer of the first input of butterfly */
pB = pA + ButterflyPerGroup;/*address pointer of the second

input of butterfly */
pC = 0;/*address pointer of coefficient lookup table C */
for (j = 0; j < GroupPerPass; j++)
{

for (k = 0; k < ButterflyPerGroup; k++)
{

Xr[pA] = Xr[pA] + Xr[pB]*Cr[pC] + Xi[pB]*Ci[pC];
Xi[pA] = Xi[pA] + Xi[pB]*Cr[pC] – Xr[pB]*Ci[pC];
Xr[pB] = 2*Xr[pA] – Xr[pA];
Xi[pB] = 2*Xi[pA] – Xi[pA];
pA ++;
pB ++;

}
Clr scaling down mode;
if has overflow

ifft-c.asm

3-51

{
Set scaling down mode;
Clr scaling bit;
Scalexp++;

}
pA += ButterflyPerGroup;
pB += ButterflyPerGroup;
pC += size / 4;/* bit-reverse */

}
ButterflyPerGroup >>= 1;
GroupPerPass<<= 1;

}
Clear scaling bit;

Set no scaling mode;
Convert bit reverse order to normal order in-place;

Note The actual output data should be scaled up by 2^(Scalexp-1). This will
be done by the MEX function.

Memory &
Register

Memory allocation:

• X memory: IN_REAL stores the start address of the real part of the input
data

• Y memory: IN_IMAG stores the start address of the imaginary part of the
input data

Above two symbols are also used as output symbols

Register usage:

• R3 stores the address of the input vector

• R7 is used for passnum

• R2 is used for the scaling exponent

 Status Register The assembly function ifft-c.asm does not explicitly set any status registers/
bits during the function execution.

ifft-c.asm

3-52

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

interp-r.asm

3-53

3interp-r.asmMATLAB Usage Y = mot###_interp(IDATA, R, LEN, B)

Description This function resamples data at a higher rate using lowpass interpolation. The
input data is real.

Y = INTERP (IDATA, R, LEN, B) resamples the sequence in vector IDATA at
R times the original sample rate. The resulting resampled vector Y is R times
longer, LENGTH(Y) = R*LENGTH(IDATA). A symmetric filter, B, allows the
original data to pass through unchanged and interpolates between so that the
mean square error between them and their ideal values is minimized. B is the
interpolation filter.

Input/Output Input: Real vector IDATA, int R, int LEN, and real vector B

Output: Real vector Y

Algorithm int I;
for (I = 0; I < lengthIDATA*R; I ++)
{

Y[I] = 1;
}
for (I = 0; I < lengthIDATA ; I = I ++)
{

Y[I*R] = IDATA[I];
}
for(I = 0; I < 2*LEN*R; I ++)
{

OD[I] = 0;
}

for (I = 0; I < 2 * LEN; I++)
{

OD[I*R] = 2*IDATA[LEN-1] –IDATA[2*LEN – I];
}
/* Call filter */
[OD, ZI] = filter(B, LEN, OD);
[Y, ZF] = filter(B, LEN, Y, ZI];
for(I = 0, I < (lengthIDATA –LEN) * R; I++)
{

Y[I] = Y[LEN*R+I];

interp-r.asm

3-54

}

for(I = 0; I < 2*LEN*R; I ++)
{

OD[I] = 0;
}

for (I = 0; I < 2*LEN; I++)
{

OD[I*R] = 2*IDATA[lengthIDATA] – IDATA[lengthIDATA –1 –I];
}
OD = filter (B, LEN, OD, ZF);
for(I=0;I < LEN*R; I++)
{

Y[lengthIDATA*R – LEN*R + I] = OD[I];
}

Memory &
Register

Memory allocation

In X memory:

• X:(#INA) stores the start address of vector idata

• X:(INA+n) stores the start address of vector tb

In Y memory:

• X:(#INB) stores the start address of vector odata

• X:(INB+n*r) stores the start address of vector od

Register usage:

• N2 stores the location of n

• N3 stores the location of r

• N5 stores the location of l

• R2 stores the length of vector tb (2*r*l+1)

• N7 stores the location of n*r

• N0, N1, N4, and N6 are used for offset addressing

interp-r.asm

3-55

Status Register The assembly function interp-r.asm does not set explicitly any status
registers/bits.

Data Size Limit The length of vector IDATA can’t be larger than the continuous available data
memory size.

Data Range
Limit

The input data vector range is from –1.0 to +1.0, inclusive.

Precision In the case of DSP563, precision is 21 bits.

In the case of DSP566, precision is 12 bits.

interp-c.asm

3-56

3interp-c.asmMATLAB Usage Y = mot###_interp(IDATA, R, LEN, B)

Description This function resamples data at a higher rate using lowpass interpolation. The
input data is complex data.

Y = INTERP (IDATA, R, LEN, B) resamples the sequence in vector IDATA at
R times the original sample rate. The resulting resampled vector Y is R times
longer, LENGTH(Y) = R*LENGTH(IDATA). A symmetric filter, B, allows the
original data to pass through unchanged and interpolates between so that the
mean square error between them and their ideal values is minimized.

Input/Output Input: Complex vector IDATA, int R, int LEN, and vector B

Output: Complex vector Y

Algorithm int I;
for (I = 0; I < lengthIDATA*R; I ++)
{

Y_REAL [I] = 1;
Y_IMAGE [I] = 1;

}
for (I = 0; I < lengthIDATA ; I = I ++)
{

Y_REAL[I*R] = IDATA_REAL[I];
Y_IMAGE[I*R] = IDATA_IMAGE[I];

}
for(I = 0; I < 2*LEN*R; I ++)
{

OD_REAL[I] = 0;
OD_IMAGE[I] = 0;

}

for (I = 0; I < 2 * LEN; I++)
{

OD_REAL[I*R] = 2*IDATA_REAL [LEN-1] –IDATA_REAL [2*LEN – I];
OD_IMAGE[I*R] = 2*IDATA_IMAGE [LEN-1] –IDATA_IMAGE [2*LEN –

I];
}
/* Call filter */

interp-c.asm

3-57

[OD, ZI] = filter(B, LEN, OD);
[Y, ZF] = filter(B, LEN, Y, ZI];
for(I = 0, I < (lengthIDATA –LEN) * R; I++)
{

Y_REAL[I] = Y_REAL[LEN*R+I];
Y_IMAGE[I] = Y_IMAGE[LEN*R+I];
}
for(I = 0; I < 2*LEN*R; I ++)
{

OD_REAL[I] = 0;
OD_IMAGE[I] = 0;

}

for (I = 0; I < 2*LEN; I++)
{
OD_REAL[I*R] = 2*IDATA_REAL[lengthIDATA] – IDATA_REAL[lengthIDATA
–1 –I];
OD_IMAGE[I*R] = 2*IDATA_IMAGE[lengthIDATA] –
IDATA_IMAGE[lengthIDATA –1 –I];
}
OD = filter (B, LEN, OD, ZF);
for(I=0;I < LEN*R; I++)
{

Y_REAL[lengthIDATA*R – LEN*R + I] = OD_REAL[I];
Y_IMAGE[lengthIDATA*R – LEN*R + I] = OD_IMAGE[I];

}

Memory &
Register

Memory allocation:

X memory:

• #INA stores the start address of vector idata

• #INA+2*n stores the start address of vector tb

Y memory:

• #INB stores the start address of vector odata

• #INB+2*n*r stores the start address of vector od

interp-c.asm

3-58

Register usage:

• N2 stores the location of n

• N3 stores the location of r

• N5 stores the location of l

• R2 stores the length of vector tb (2*r*l+1)

• N7 stores the location of n*r

• N0, N1, N4, and N6 are used for offset addressing

Status Register The assembly function interp-c.asm does not set explicitly any status
registers/bits during the function execution.

Data Size Limit The length of vector IDATA can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vectors must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 21 bits.

In the case of DSP566, precision is 12 bits.

log-r.asm

3-59

3log-r.asmMATLAB Usage Y = mot###_log(X)

Description This function returns the natural logarithm elements of input vector X. The
input vector X is a real vector

Input/Output Input: Real vector X

Output: Real vector Y

Algorithm Input:

Z in a1 (a2 = 0, a0 = 0)

Note The input should be a positive fraction.

Output:

log(Z) in a1

(a2 is sign extended and a0=don't care).
log(Z) = log2(Z)*log(2)
log2(Z)= pi3*(Z**3) +pi2*(Z**2) + pi1*Z + pi0

i = 1, 2, 3.

The range of the input number is divided into three different
subranges and corresponding pij's (i=1,2,3; j=0,1,2,3) are used for
each range.
Range 1:
1 > Z > 0.8

p13 = 0.6651550174712363
p12 = -2.691225081621167
p11 = 4.830861130814611
p10 = -2.8047790282999791

Range 2:
0.8 >= Z > 0.64

p23 = 1.299130893496323
p22 = -4.205039190029353
p21 = 6.038576413515295

log-r.asm

3-60

p20 = -3.126707123185897

Range 3:
0.64 >= Z >= 0.5

p33 = 2.62317472043452
p32 = -6.720343733123614
p31 = 7.635399480799159
p30 = -3.465490657054861

In the following pseudocode cij = pij/8 (i=1,2,3)
(j=0,1,2,3)
log2nrm(Z) = [log2(ZS)/8 + (-S)/8]/2

Find S such that ZS = (2**S)*Z lies in the range [0.5,1]
Find the range of ZS.
If 1 > ZS > 0.8
Range 1:

Find Term1_1 = c13* ZS + c12
Find Term1_2 = Term1_1*ZS + c11
Find log2(ZS)/8 = Term1_2 * ZS + c10

If 0.8 >= ZS > 0.64
Range 2:

Find Term2_1 = c23 * ZS + c22
Find Term2_2 = Term2_1 * ZS +c21
Find log2(ZS)/8 = Term2_3 * ZS + c20

If 0.64 >= ZS >= 0.5
Range 3:

Find Term3_1 = c33 * ZS + c32
Find Term3_2 = Term3_1 * ZS +c31
Find log2(ZS)/8 = Term3_2 * ZS + c30

log-r.asm

3-61

Memory &
Register

Memory allocation

X memory:

• #IN1 & #OUT1 stores the location of vector A

Y memory:

• $0 stores the coefficient of the polynomial

Register usage:

• R6 stores the length of vector A

• R3 is used for the shift bit:

6 for dsp56300

5 for dsp56600

• R0 stores the index of vector A

• R1 stores the index of the coefficient

• R6 is used as loop control

• R2 stores the address for the vector tmp

• R3 is used for the input shift bit

• R4, R5, and R7 are unused

Assumes M{0...7} = $ffff

Status Register The assembly function log-r.asm does not set explicitly any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 16 bits.

In the case of DSP566, precision is 12 bits.

log-c.asm

3-62

3log-c.asmMATLAB Usage Y = mot###_log(X)

Description This function returns the natural logarithm elements of complex input vector
X.

Input/Output Input: Complex vector X

Output: Complex vector Y

Algorithm log(a+bi) = log(sqrt(a^2 + b^2))+angle(a,b)*i

If an absolute result is needed, the real data of the result should be scaled up
by 32 and imaginary data of the result should be scaled up by 4. Please refer to
the algorithms used in log-r.asm on page 3-59 and angle-c.asm on page 3-14.

Memory &
Register

Memory allocation:

In X memory:

• XYZ is used as a temporary variable area
+0--X +1--Y +2--log(sqrt(Xr[i]*Xr[i]+Xi[i]*Xi[i])/32(or 16)

ATANTAB stores the atan table

Y memory:

• $10 is used for the coefficient of polynomial

• X:IN_REAL stores the start address of the real input data of vector A

• Y:IN_IMAG stores the start address of the imaginary input data of vector A

• X:IN_REAL stores the start address of the real output data of vector A

• Y:IN_IMAG stores the start address of the imaginary output data of vector A

Register usage:

• R0 points to the input vector area

• R1 is used for the index of coefficient

• R2 is used for loopnum

In the case of dsp56300, loopnum = 22

In the case of dsp56600, loopnum = 14

log-c.asm

3-63

• R3 points to the start address of table ATANTAB

• R4 is used for temporary storage

• N4 is used for shift bits

6 for dsp56300

5 for dsp56600

• R5 points to the output vector area

• R6 stores the length of the input vector

• R7 points to the temporary variable area XYZ

Assumes M{0...7} = $ffff

Status Register The assembly function log-c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 16 bits.

In the case of DSP566, precision is 12 bits.

log10-r.asm

3-64

3log10-r.asmMATLAB Usage Y = mot###_log10(X)

Description This function computes the base 10 logarithm of real vector X

Input/Output Input: Real vector X

Output: Real vector Y

Algorithm Input:

Z in a1(a2 = 0, a0 = 0)

Note The input should be a positive fraction.

Output:

log10(Z) in a1

(a2 is sign extended and a0=don't care)

log10(Z) = log2(Z)*log10(2)
log2(Z) = pi3*(Z**3) +pi2*(Z**2) + pi1*Z + pi0
i = 1, 2, 3.

The range of the input number is divided into three different
subranges and corresponding pij's (i=1,2,3; j=0,1,2,3) are used
for each range.

Range 1:
1 > Z > 0.8

p13 = 0.6651550174712363
p12 = -2.691225081621167
p11 = 4.830861130814611
p10 = -2.8047790282999791

Range 2:
0.8 >= Z > 0.64

log10-r.asm

3-65

p23 = 1.299130893496323
p22 = -4.205039190029353
p21 = 6.038576413515295
p20 = -3.126707123185897

Range 3:
0.64 >= Z >= 0.5

p33 = 2.62317472043452
p32 = -6.720343733123614
p31 = 7.635399480799159
p30 = -3.465490657054861

In the following pseudocode cij = pij/8 (i=1,2,3)
 (j=0,1,2,3)
log2nrm(Z) = [log2(ZS)/8 + (-S)/8]/2

Find S such that ZS = (2**S)*Zlies inthe range [0.5,1)
Find the range of ZS.

If 1 > ZS > 0.8

Range1:

Find Term1_1 = c13* ZS + c12
Find Term1_2 = Term1_1*ZS + c11
Find log2(ZS)/8 = Term1_2 * ZS + c10

If 0.8 >= ZS > 0.64

Range2:

Find Term2_1 = c23 * ZS + c22
Find Term2_2 = Term2_1 * ZS +c21
Find log2(ZS)/8 = Term2_3 * ZS + c20

If 0.64 >= ZS >= 0.5

Range 3:

log10-r.asm

3-66

Find Term3_1 = c33 * ZS + c32
Find Term3_2 = Term3_1 * ZS + c31
Find log2(ZS)/8 = Term3_2 * ZS + c30

Memory &
Register

Memory allocation:

X memory:

• #IN1 & #OUT1 are used for vector A

Y memory:

• $0 is used for the coefficient of polynomial

Register usage:

• R6 stores the length of vector A

• R3 is used for the shift bit

6 for dsp56300

5 for dsp56600

• R0 stores the index of vector A

• R1 stores the index of coefficient

• R6 is used as loop control

• R2 stores the address for the tmp vector

• R3 is used for the input shift bit

• R4, R5, and R7 are unused

Assumes M{0...7} = $ffff

Status Register The assembly function log10-r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

log10-r.asm

3-67

Precision In the case of DSP563, precision is 16 bits.

In the case of DSP566, precision is 12 bits.

log10-c.asm

3-68

3log10-c.asmMATLAB Usage Y = mot###_log10(X)

Description This function returns the base 10 logarithm of complex input vector X.

Input/Output Input: Complex vector X

Output: Complex vector Y

Algorithm log10(a+bi) = log10(sqrt(a^2 + b^2))+angle(a,b)*log10(e)*i

If an absolute result is needed, the real data of the result should be scaled up
by 32 and imaginary data of the result should be scaled up by 4. Please refer to
the algorithms used in log10-r.asm on page 3-64 and angle-c.asm on page
3-14.

Memory &
Register

Memory allocation:

In X memory:

• XYZ is used as a temporary variable area
+0--X +1--Y +2--log(sqrt(Xr[i]*Xr[i]+Xi[i]*Xi[i])/32(or 16)

ATANTAB stores the atan table

Y memory:

• $10 is used for the coefficient of polynomial

• X:IN_REAL stores the start address of the real data input of vector A

• Y:IN_IMAG stores the start address of the imaginary data input of vector A

• X:IN_REAL stores the real data output for vector A

• Y:IN_IMAG stores the imaginary data output for vector A

Register usage:

• R0 points to the input vector area

• R1 is used for the index of coefficient

• R2 is used as loopnum

In the case of dsp56300, loopnum is 22

In the case of dsp56600, loopnum is 14

log10-c.asm

3-69

• R3 points to the start address of table ATANTAB

• R4 is used for temporary storage

• N4 is used for shift bits

6 for dsp56300

5 for dsp56600

• R5 points to the output vector area

• R6 stores the length of the input vector

• R7points to the temporary variable area XYZ

Assumes M{0...7} = $ffff

Status Register The assembly function log10-c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 16 bits.

In the case of DSP566, precision is 12 bits.

max-1r.asm

3-70

3max-1r.asmMATLAB Usage [y, index] = mot###_max(X)

Description This function returns the largest element of real input vector X and its index

Input/Output Input: Real vector X

Output: Real value Y (largest element of X), index

Algorithm #define IN0
MaxValue = X[0];
Index = 0;
for(i=1; i<size; i++)
{
if(X[i] > MaxValue)
{

MaxValue = X[i];
index = i;

}
}

Memory &
Register

Memory allocation:

X memory: label IN points to the location of the real data input of vector X.

Register usage:

• Register A stores Max-1r Result y

• R1 stores the index of the largest element of X

• R4 stores the number of items in the array

Status Register The assembly function max-1r-r.asm does not explicitly set any status
registers/bits.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 23 bits.

max-1r.asm

3-71

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 2 ∆inputvectorlength× 2= =

∆∆cycle 2 ∆inputvectorlength× 2= =

max-1c.asm

3-72

3max-1c.asmMATLAB Usage [yr, yi, index] = mot###_max(X)

Description This function returns the largest element of input complex vector X and its
index

Input/Output Input: Complex vector X (includes real part Xr and imaginary part Xi)

Output: Complex vector Y (includes real data of the largest element Yr, and the
imaginary data of the largest element Yi), and index

Algorithm #define IN 0
MaxValue = Xr[0]* Xr[0] + Xi[0]* Xi[0];
Yr = Xr[0];
Yi = Xi[0];
Index = 0;
for(i=1; i<size; i++)
{

Intervalue = Xr[i]* Xr[i] + Xi[i]* Xi[i];
if(Intervalue > MaxValue)
{

MaxValue = Intervalue;
Yr = Xr[i];
Yi = Xi[i];
index = i;

}
}

Memory &
Register

Memory allocations:

X memory:

• Label IN_REAL stores the start address of the real data

Y memory:

• Label IN_IMAG stores the start address of the imaginary data

• Label IN stores the address offset of the input of the complex vector X

Register usage:

• X1stores the address of the real data of the result

max-1c.asm

3-73

• Y1 stores the address of the image data of the result

• R1 stores the address of the index of the result

• R7is used for the number of items in the array

Status Register The assembly function max-1c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

max-2r.asm

3-74

3max-2r.asmMATLAB Usage X = mot###_max(X, Y)

Description This function returns a vector the same size as input vectors X and Y with the
largest elements taken from vector X or Y,

Input/Output Input: Vector X (real data), vector Y (real data)

Output: Vector X (largest element taken from X or Y)

Algorithm #define IN1 x:$0
#define IN2 y:$0
#define OUT x:$0

MaxValue = X[0];
for(i=1; i<size; i++)
{

if(X[i] < Y[i])
{

X[i] = Y[i];
}

}

Memory &
Register

X memory IN1 start address of location of input real vector X

Y memory IN2 start address of location of input real vector Y

X memory OUT start address of location of output real vector

Register R7 store number of items in the input array

Status Register The assembly function max-2r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of input vectors can’t be larger than the continuous available data
memory size.

Data Range
Limit

Input data vector range [–1.0, +1.0]

max-2r.asm

3-75

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 4 ∆inputvectorlength× 4= =

∆∆cycle 4 ∆inputvectorlength× 4= =

max-2c.asm

3-76

3max-2c.asmMATLAB Usage [X] = mot###_max(X, Y)

Description This function returns the largest elements taken from complex vector X or Y

Input/Output Input: Complex Vector X (include real part Xr and imaginary part Xi), Complex
Vector Y (include real part Yr and imaginary part Yi)

Output: Complex Vector X (include real part Xr and imaginary Xi)

Algorithm for(i=0; i<size; i++)
{

xValue = Xr[i]* Xr[i] + Xi[i]* Xi[i];
yValue = Yr[i]* Yr[i] + Yi[i]* Yi[i];
if(xValue < yValue)

X[i] = Y[i];
}

Memory &
Register

Start address of Vector X is in P:$F000

Start address of Vector Y is in P:$F001

Start address of result Vector is also in P:$F000

Register R7 stores the number of items in the array

Status Register The assembly function max-2c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of input vectors can’t be larger than the continuous available data
memory size.

Data Range
Limit

Input data vector X range [–1.0, +1.0]

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

mean-r.asm

3-77

3mean-r.asmMATLAB Usage y = mot###_mean(X)

Description This function returns the mean value of the elements in real vector X

Input/Output Input: Real vector X

Output: Y (the mean value of the elements in real vector X)

Algorithm y = 0;
for(i=0; i<size; i++)
{

y += X[i];
}
y = div (y, size);
* The algorithm of div is :
fractional div (fractional y, int size)
{

Bit1 = count leading bits of variable size;
Bit1 += fractionlenght ;

Normalize (size);
Bit2 = count leading bits of variable y;
Normalize (y);
y = y>>1;
Bit2 ++;
Bit1 -= Bit2;
fractional-div(y, size);//this is a standard algorithm
y >>= Bit1;
return y; }

Memory &
Register

Input / Output:

X memory IN start address of location of input real vector X.

Register X0 store number of items in the array

Register R7 store bits/word, used by division (24 for 56300,16 for 56600)

Register A1 store Result

mean-r.asm

3-78

Status Register The assembly function mean-r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

Input data vector X range [–1.0, +1.0]

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 1 ∆inputvectorlength× 1= =

∆∆cycle 1 ∆inputvectorlength× 1= =

mean-c.asm

3-79

3mean-c.asmMATLAB Usage [y] = mot###_mean(X)

Description This function returns the mean value of the elements in complex input vector X

Input/Output Input: Complex vector X, which includes vector Xr (real part of input X) and
vector Xi (imaginary part of input X)

Output: scalar y, which includes yr (the mean value of the real elements in X),
yi (the mean value of the imaginary elements in X)

Algorithm yr = yi = 0;
for(i=0; i<size; i++)
{

yr += Xr[i];
yi += Xi[i];

}
yr = div (yr, size);
yi = div (yi, size);

Memory &
Register

IN start address of location of input complex vector X.

X memory IN_REAL start address of real data of X

Y memory IN_IMAG start address of imaginary data of X

Register X0 store number of items in the array

Register X1 store Result of mean value(real)

Register Y1 store Result of mean value(imaginary)

Register R7 store bits/word, used by division (24 for 56300,16 for 56600)

Status Register The assembly function mean-r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

mean-c.asm

3-80

Data Range
Limit

Input data vector X range [–1.0, +1.0]

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 2 ∆inputvectorlength× 2= =

∆∆cycle 2 ∆inputvectorlength× 2= =

min-1r.asm

3-81

3min-1r.asmMATLAB Usage [y, index] = mot###_min(X)

Description This function returns the smallest element of input real vector X and its index

Input/Output Input: Real vector X

Output: Real value Y (smallest element of X), index

Algorithm #define IN0
MinValue = X[0];
Index = 0;
for(i=1; i<size; i++)
{

if(X[i] < MinValue)
{

MinValue = X[i];
index = i;

}
}

Memory &
Register

Label IN present location of input real vector X.

Register A store Min-1r Result y

R1 = Index of largest element of X

R4 = Number of items in the array

Status Register The assembly function max-1r-r.asm does not explicitly set any status
registers/bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

Input data vector X range [–1.0, +1.0]

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

min-1r.asm

3-82

Performance
Limit

DSP563:

DSP566:

∆∆cycle 2 ∆inputvectorlength× 2= =

∆∆cycle 2 ∆inputvectorlength× 2= =

min-1c.asm

3-83

3min-1c.asmMATLAB Usage [y, index] = mot###_min(X)

Description This function returns the smallest element of complex input vector X and its
index

Input/Output Input: Complex vector X, include real part Xr and imaginary part Xi

Output: scalar y, include yr (real data of the smallest element of X), yi
(imaginary data of the smallest element of X), index

Algorithm #define IN0
MinValue = Xr[0]* Xr[0] + Xi[0]* Xi[0];
yr = Xr[0];
yi = Xi[0];
Index = 0;
for(i=1; i<size; i++)
{

Intervalue = Xr[i]* Xr[i] + Xi[i]* Xi[i];
if(Intervalue < MinValue)

{
MinValue = Intervalue;
yr = Xr[i];
yi = Xi[i];
index = i;
}
}

Memory &
Register

X memory IN_REAL = start address of real data

Y memory IN_IMAG = start address of imaginary data

IN = address offset of input complex vector X

Register X1 = real data of the result

Y1 = image data of the result

R1 = index of the result

R7 = number of items in the array

min-1c.asm

3-84

Status Register The assembly function min-1c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

Input data vector X range [–1.0, +1.0]

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

min-2r.asm

3-85

3min-2r.asmMATLAB Usage X = mot###_min(X, Y)

Description This function returns a vector the same size as input vectors X and Y with the
smallest elements taken from vector X or Y,

Input/Output Input: Vector X (real data), Vector Y (real data)

Output: Vector X (smallest element taken from X or Y)

Algorithm #define IN1 x:$0
#define IN2 y:$0
#define OUT x:$0

MinValue = X[0];
for(i=1; i<size; i++)
{
if(X[i] > Y[i])
{

X[i] = Y[i];
}
}

Memory &
Register

X memory IN1 start address of location of input real vector X

Y memory IN2 start address of location of input real vector Y

X memory OUT start address of location of output real vector

Register R7 stores the number of items in the input array

Status Register The assembly function min-2r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The total size of all vectors can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vectors must be between –1.0 and +1.0.

min-2r.asm

3-86

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 5 ∆inputvectorlength× 5= =

∆∆cycle 5 ∆inputvectorlength× 5= =

min-2c.asm

3-87

3min-2c.asmMATLAB Usage [X] = mot###_min(X, Y)

Description This function returns the smallest elements taken from complex vector X or Y

Input/Output Input: Complex Vector X (include real part Xr and imaginary part Xi), Complex
Vector Y (include real part Yr and imaginary part Yi)

Output: Complex Vector X (include real part Xr and imaginary part Xi)

Algorithm for(i=0; i<size; i++)
{

xValue = Xr[i]* Xr[i] + Xi[i]* Xi[i];
yValue = Yr[i]* Yr[i] + Yi[i]* Yi[i];
if(xValue > yValue)

X[i] = Y[i];
}

Memory &
Register

Start address of Vector X is in P:$F000

Start address of Vector Y is in P:$F001

Start address of result Vector is also in P:$F000

Register R7 store Number of items in the array

Status Register The assembly function min-2c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The total size of all vectors can’t be larger than the continuous available data
memory size.

Data Range
Limit

Input data vector range [–1.0, +1.0]

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

round-r.asm

3-88

3round-r.asmMATLAB Usage X = mot###_dspround(X)

Description This function rounds the elements of input real vector X to the nearest integer

Input/Output Input: Vector X (real data)

Output: Vector X

Algorithm for(i=0; i<size; i++)
{

if (X[i] <= -0.5)
X[i] = -1;

else if(X[i] >= 0.5)
X[i] = 1;

else
X[i] = 0;

}

Memory &
Register

X memory IN = start address of input data

X memory OUT = start address of result

Register R7 store length of input real vector X

Status Register The assembly function round-r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

round-c.asm

3-89

3round-c.asmMATLAB Usage [X] = mot###_dspround(X)

Description This function rounds the elements of complex input vector X to the nearest
integer

Input/Output Input: Complex vector X (includes the real part Xr, and the imaginary part Xi)

Output: Xr, Xi

Algorithm for(i=0; i<size; i++)
{

if (Xr[i] <= -0.5)
Xr[i] = -1;

else if(Xr[i] >= 0.5)
Xr[i] = 1;

else
Xr[i] = 0;

if (Xi[i] <= -0.5)
Xi[i] = -1;

else if(Xi[i] >= 0.5)
Xi[i] = 1;

else
Xi[i] = 0;

}

Memory &
Register:

Memory allocations:

X memory:

• Label IN_REAL stores the start address of the real input data

• Label OT_REAL stores the start address of the real result

Y memory

• Label IN_IMAG stores the start address of the imaginary input data

• Label OT_IMAG stores the start address of the imaginary result

Register usage:

• R7 stores the length of the input of the complex vector X

round-c.asm

3-90

Status Register The assembly function round-c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

sort-r1.asm

3-91

3sort-r1.asmMATLAB Usage Y = mot###_sort(X)

Description This function sorts real elements of input real vector X

Input/Output Input: Real vector X

Output: Real vector Y

Algorithm The heap sort algorithm will be used.

#define IN X:$0
#define OUT X:$0
heapsort(Length)
{

for(i = Length/2; i>=1; --i)
sift (i, Length);/* set up initial heap */

for(k = Length; k >= 2; k--)
{

Intervalue = r[1];
r[1] = r[k];
r[k] = Intervalue;
sift(1, k-1);

}
}

sift (from, Length)
{

Intervalue = r[from];
k = from;
j = 2 * from;
while (j <= Length)
{
if ((j< Length) && (r[j] < r[j+1]))

j++;
if(Intervalue < r[j])
{

r[k] = r[j];
k = j;
j *= 2;

}

sort-r1.asm

3-92

else
j = Length + 1;/* return */

r[k] = Intervalue;
}

Memory &
Register

Memory allocation:

X memory:

• Label IN stores the address of the real input of vector X

• Label OUT stores the address of the real output of vector Y

Register usage:

• R7stores the number of items in the array

Status Register The assembly function sort-1r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

sort-r2.asm

3-93

3sort-r2.asmMATLAB Usage [Y, I] = mot###_sort(X)

Description This function sorts real elements of input real vector X

Input/Output Input: Vector X

Output: Result vector Y, and index vector I

Algorithm #define IN X:$0
#define OUT X:$0
#define INDEX Y:$0

The algorithm is the same as sort-r1, the only difference between these two
functions is that sort-r2 has one more output-index vector I.

Memory &
Register

Memory allocation:

X memory:

• Label IN stores the address of the real input of vector X

• Label OUT stores the address of the real output of vector Y

(Same as Label IN)

• Label INDEX stores the address of the index vector

Register usage:

• R7 store number of items in the array

Status Register The assembly function sort-2r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

sort-c.asm

3-94

3sort-c.asmMATLAB Usage [Y, I] = mot###_sort(X)

Description This function sorts the complex input vector X

Input/Output Input: Complex vector X (includes the real part Xr, and the imaginary part Xi)

Output: Complex vector Y, and vector I (index)

Algorithm #define IN $0
#define IN_REAL x:$0
#define IN_IMAG y:$0

Algorithm for(i = 0; i< size; i++)
{

R[i] = (Xr[i]* Xr[i] + Xi[i]* Xi[i])>>1;
}

Sort vector R using heap sort algorithm, and then adjust vector X according to
the index of vector R.

Generate vector R (and its index vector starting from 1), and then put the
results in the address:

#IN+SIZE (X and Y memory, respectively)

Sort vector R and adjust its index vector accordingly.

Adjust the complex data according to the index.

Please refer to sort-r1.asm on page 3-91 for the heap sort algorithm.

Intermediate vector:

Vector R: R[i] = (Xr[i]*Xr[i] + Xi[i]*Xi[i])>>1

Start address of Vector R, and Vector I (index) will be calculated by the
assembly code.

Vector I is located in Y memory.

Memory &
Register

Memory allocation:

• X memory: Label IN stores the address of the real input of vector X

sort-c.asm

3-95

• X memory label IN_REAL & Y memory IN_IMAG are used by the MEX
function

• P:$F000 stores the start address of vector R

• P:$F001 stores the start address of vector I

Register usage:

• R7 stores the address of the number of items in the array

Status Register The assembly function sort-c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

Input data vector X range [–1.0, +1.0]

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

sqrt-sr.asm

3-96

3sqrt-sr.asmMATLAB Usage y = mot###_sqrt(x)

Description This function calculates the square root of single input positive real data

Input/Output Input: x

Output: y

Algorithm Full 23(15) bit precision square root routine using a successive

approximation technique.

y = 0;
guess = factor = 0.5;
for(i = 0; i < loopnum; i++)
{
 flag = x - guess*guess;

if(flag >= 0) y = guess;
factor /= 2;
guess = y + factor;

}

Memory &
Register

Register b = output root

a = temporary storage

x0 = guess

x1 = bit being tested

y0 = input number

r6 = loop number(23 for 56300, 15 for 56600)

Status Register The assembly function sqrt-sr.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The input is a single value.

Data Range
Limit

The value of input X must be between –1.0 and +1.0.

sqrt-sr.asm

3-97

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

sqrt-pr.asm

3-98

3sqrt-pr.asmMATLAB Usage Y = mot###_sqrt(X)

Description This function returns square root of the elements of input vector X

Input/Output Input: Vector X (elements of vector X are positive)

Output: Vector Y

Algorithm Full 23(15) bit precision square root routine using a successive approximation
technique.

for (i=0; i<size; i++)
{
Y[i] = Sqrt_sr (X[i]);
}

Memory &
Register

Register usage:

• b is used for the output root

• a is used for temporary storage

• x0 is used for guess

• x1 is used for the bit being tested

• y0 is used for the input number

• r6 is used as the loop number (23 for 56300, 15 for 56600)

Status Register The assembly function sqrt-pr.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

sqrt-c.asm

3-99

3sqrt-c.asmMATLAB Usage [Y] = mot###_sqrt(X)

Description This function returns the square root of the complex input vector

Input/Output Input: Vector X (includes the real part Xr, and the imaginary part Xi)

Output: Vector Y (includes the real part Yr, and the imaginary part Yi)

Algorithm sqrt(a+bi) = [sqrt(sqrt(a^2+b^2))]*[cos(angle(a+bi)/
2)+i*sin(angle(a+bi)/2)]

To implement it in fix point dsp, we change this to

sqrt(a+bi) = sqrt(sqrt((a^2+b^2)/2))]*[cos(angle(a+bi)/
2)+i*sin(angle(a+bi)/2)] * [power(2,.25)]

For the ANGLE-C.ASM algorithm, please refer to angle-c.asm on page 3-14.
The following describes how to calculate SIN and COS

Use the CORDIC algorithm

for (i=0; i < fracbits; i++)
{

atan_tab[i] = atan(pow(2,double(-i)))/4;
}

K = 0.30362641811371;
X = x = K;
Y = y = 0;
Z = z = angle;

Z = z = x>>2 ;

/* Circular Function */
for (i = 0; i < fracbits; ++i)
{

x = X >> i;
y = Y >> i;
z = atan[i];

if (Z >= 0)
{

X -= y;

sqrt-c.asm

3-100

Y += x;
Z -= z;

}
else
{

X += y;
Y -= x;
Z += z;

}
}
X = X << 1; //cos(angle)
Y = Y << 1; //sin(angle)

return X and Y;

Memory &
Register

Memory allocation:

X memory:

• Label IN stores the start address of the input of vector X

• Label IN_REAL stores the start address of the real data of the input vector

• Label IN_IMAG stores the start address of the complex (imaginary) data of
the input vector

• Label OUTREAL stores the start address of the real data of the output vector

Y memory:

• Label OUTIMAG stores the start address of the imaginary data of the output
vector

• Label XYZ stores the start address of variables X,Y, i

Register usage:

• X0 is x, as defined in CORDIC algorithm above

• X1 is y, as defined in CORDIC algorithm above

• Y1 is z, as defined in CORDIC algorithm above

• B is Z, as defined in CORDIC algorithm above

• R6 stores the address of the number of items in the input array

sqrt-c.asm

3-101

• R3 stores the address of the atan table,

• R0 and R5 are used for IN(OUT)

• R7is used for the start address of label XYZ

• R2 is used for number of fraction bits+1 (56300--22, 56600--14)

• R1 is used as the current loop number

• Y0 is mainly used as the shift number register (i.e., 'i' - see CORDIC
algorithm above)

• N7 = 1. Use N7 rather than '1' to make a parallel move possible

Status Register The assembly function sqrt-c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 14 bits.

In the case of DSP566, precision is 15 bits.

sum-r.asm

3-102

3sum-r.asmMATLAB Usage y = mot###_sum(X)

Description This function returns the sum of the element of real input vector X

Input/Output Input: Vector X (real data)

Output: y (the sum of the element of X)

Algorithm y = 0;
for(i=0; i<size; i++)
{

y += X[i];
}

Memory &
Register

Memory allocation:

• X memory: IN stores the address of the input of real vector X.

Register usage:

• Register A is used for the result

• Register R7 is used for the number of items in the array

Status Register The assembly function sum-r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

sum-r.asm

3-103

Performance
Limit

DSP563:

DSP566:

∆∆cycle 1 ∆inputvectorlength× 1= =

∆∆cycle 1 ∆inputvectorlength× 1= =

sum-c.asm

3-104

3sum-c.asmMATLAB Usage [y] = mot###_sum(X)

Description This function returns the sum of the complex input elements of X

Input/Output Input: Complex vector X (includes the real part Xr, and the imaginary part Xi)

Output: scalar y (includes the sum of the real data of the element yr, and the
sum of the imaginary data of the element yi)

Algorithm yr = yi = 0;
for(i=0; i<size; i++)
{

yr += Xr[i];
yi += Xi[i];

}

Memory &
Resister

Memory allocation:

• X memory label IN stores the start address of the input of real vector X.

• X memory label IN_REAL stores the start address of the real data of the
input vector

• Y memory label IN_IMAG stores the start address of the complex
(imaginary) data of the input vector

Register usage:

• Register A is used for the result of the real part

• Register B is used for the result of the imaginary part

• R7 is used for the number of items in the array

Status Register The assembly function sum-c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The length of vector X can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vector X must be between –1.0 and +1.0.

sum-c.asm

3-105

Precision In the case of DSP563, precision is 23 bits.

In the case of DSP566, precision is 15 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 2 ∆inputvectorlength× 2= =

∆∆cycle 2 ∆inputvectorlength× 2= =

xcorr-r.asm

3-106

3xcorr-r.asmMATLAB Usage C=mot###_xcorr(A,B, MAXLAG, 'flag')

Description This function returns the length 2*M-1 cross-correlation sequence in a column
vector where A and B are length N real vectors

Input/Output Input: Vector A, vector B, int MAXLAG, and int 'flag'

Output: Vector C

Algorithm N = LengthA;
//The following are algorithm of xcorr

for (i = Max(1, (N – MAXLAG)); i <= N – 1; i ++) {
for (j = 0; j < = i - 1; j ++) {

C[i] += B[j+1] * A[j + N – i + 1];
}
if (flag == “biased”) C[i] /= N;
else if (flag == “unbiased”) C[i] /= i ;

}
for (i = N; i <= Min((2 * N – 1), (N + MAXLAG)); i ++) {

for (j = 0; j <= 2 * N – i – 1; j ++) {
C[i] += A[j+1] * B[j + i – N + 1];

}
if (flag == “biased”) C[i] /= N;
else if (flag == “unbiased”) C[i] /= (2 * N – i);

}
if (flag == “coeff”) {

for (i = Max(1, (N – MAXLAG)); i <= Min((2 * N – 1), (N +
MAXLAG)); i ++) {

C[i] / = C[N];
}

}

// Format vector C
if (MAXLAG >= N) {

LengthC = 2 * MAXLAG + 1;
df = MAXLAG – N + 1;
for (i = LengthC; i >= 1 ; i --) {

if (i > df && i <= LengthC – df) {
C[i] = C[i - df];

}

xcorr-r.asm

3-107

else {
 C[i] = 0;

}
}

}
else {

C = C(N – MAXLAG : LengthC);
}

Memory &
Register

Memory allocation:

In X memory:

• Label X:INA is used for input data of vector A

• Label X:INA+ LENGTH(A) is used for output data of vector C

In Y memory:

• Label Y:INB is used for the input data of vector B

Register usage:

• R2 stores the address of the length of vector A

• R3 = MAXLAG

• R7 = 'flag'

• R7= 0 -- 'none'

• R7 = 1 -- 'biased'

• R7 = 4 -- 'coeff'

• N7 = 24 for dsp56300, or 16 for dsp56600

• R1 stores the address of the index of vector C

• R0 stores the address of the index of vector A

• R4 stores the address of the index of vector B

• N7 is used for temporary storage of R7

• R7 is used for temporary storage of the address of vector A or B

• R5 and R6 are used as loop control

Assumes M{0...7} = $ffffff

xcorr-r.asm

3-108

Status Register The assembly function xcorr-r.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The total size of all vectors can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vectors must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 18 bits.

In the case of DSP566, precision is 10 bits.

Perfumes Limit DSP563:

DSP566:

∆∆cycle 2 ∆inputvectorlength× 2= =

∆∆cycle 2 ∆inputvectorlength× 2= =

xcorr-c.asm

3-109

3xcorr-c.asmMATLAB Usage [C]=mot###_xcorr(A, B, MAXLAG, 'flag')

Description This function returns the length 2*M-1 cross-correlation sequence in a column
vector where A and B are length N vectors.

Input/Output Input: Vector A (includes the real part Ar, and the imaginary part Ai), vector
B (includes the real part Br, and the imaginary part Bi), int MAXLAG, and
int 'flag'

Output: Vector C (includes the real part Cr, and the imaginary part Ci)

Algorithm N = LengthA;
for (i = Max(1, (N – MAXLAG)); i <= N – 1; i ++) {

for (j = 0; j < = i - 1; j ++) {
C[i]+= B[j+1] * A[j+ N – i + 1]+ BI[j+1] * AI[j+ N – i +1];
CI[i]+= BI[j+1] * A[j+ N –i +1]-B[j+1] * AI[j + N –i +1];
}
CI[i] = -CI[i];// complex conjugate
if (flag == “biased”) C[i] /= N;
else if (flag == “unbiased”) C[i] /= i ;

}
for (i = N; i <= Min((2 * N – 1), (N + MAXLAG)); i ++) {

for (j = 0; j <= 2 * N – i – 1; j ++) {
C[i] += A[j+1] * B[j+i– N+1]+ AI[j+1]* BI[j+i–N+1];
CI[i]+= AI[j+1] * B[j+i– N+1]-A[j+1] * BI[j+i–N+1];

}
if (flag == “biased”) C[i] /= N;
else if (flag == “unbiased”) C[i] /= (2 * N – i);

}
if (flag == “coeff”) {

for(i=Max(1,(N–MAXLAG));i<= Min((2*N–1),(N+MAXLAG));i++){
C[i]=C[i]*C[N]+CI[i]*CI[N])/C[N]*C[N]+CI[N]*CI[N];

C[i] = (CI[i]*C[N] – C[i]*CI[N]) / (C[N]* C[N] + CI[N] *CI[N];
}

}

// Format vector C
if (MAXLAG >= N) {

LengthC = 2 * MAXLAG + 1;
df = MAXLAG – N + 1;

xcorr-c.asm

3-110

for (i = LengthC; i >= 1 ; i --) {
if (i > df && i <= LengthC – df) {

C[i] = C[i - df];
CI[i] = CI[i - df];

}
else {

C[i] = 0;
CI[i] = 0;

}
}

}
else {

C = C(N – MAXLAG : LengthC);
CI = CI(N – MAXLAG : LengthC);
}

Memory &
Register

Memory allocation:

• X memory label X:INA stores the address of the input data of vector A

• Y memory label Y:INB stores the address of the input data of vector B

• X memory label X:INA+ 2*LENGTH(A) stores the output data of vector C

Register usage

• R2 stores the address of the length of vector A

• R3 = MAXLAG

• R7 = 'flag'

• R7 = 0 -- 'none'

• R7 = 1 -- 'biased'

• R7 = 2 -- 'unbiased'

• R7 = 4 -- 'coeff'

• N7 = 24 for dsp56300 or 16 for dsp56600

• R1 stores the address of the index of vector C

• R0 stores the address of the index of vector A

• R4 stores the address of the index of vector B

xcorr-c.asm

3-111

• R7 stores the temporary address of vector A or B

• R5 and R6 are used as loop control

Assumes M{0...7} = $ffffff

Status Register The assembly function xcorr-c.asm does not explicitly set any status registers/
bits during the function execution.

Data Size Limit The total size of all vectors can’t be larger than the continuous available data
memory size.

Data Range
Limit

The value of input vectors must be between –1.0 and +1.0.

Precision In the case of DSP563, precision is 18 bits.

In the case of DSP566, precision is 10 bits.

Performance
Limit

DSP563:

DSP566:

∆∆cycle 16 ∆inputvectorlength× 16= =

∆∆cycle 16 ∆inputvectorlength× 16= =

xcorr-c.asm

3-112

4
Motorola Toolbox
Function Reference

4 Motorola Toolbox Function Reference

4-2

Using This Reference Chapter
This chapter contains information on all Motorola DSP Developer’s Kit Toolbox
functions. You should turn to this chapter when you need to find information
on a particular function.

The function reference entries appear in alphabetical order and each contains

the following information:

• The function name, at the top of the page.

• The purpose of the function.

• A description of the function’s use.

• The characteristic of the function which demo a example on how to use it.

• The arguments which indicates the tunable parameters.

• A See Also list of related blocks and functions.

Note These reference pages are also accessible online via the help command
in the MATLAB workspace.

Multiple assembly functions exist for each provided Toolbox function to
perform the necessary DSP algorithms. You can view the assembly source code
in the <matlab>/toolbox/motdspasm/src directory.

Each toolbox function has an equivalent Simulink block accessible via the
Simulink library interface (see “Motorola Blockset Block Reference” on
page 5-1). The Simulink blocks use the same assembly source code to
implement the functional algorithm.

Motorola 56300 Family ToolBox Functions

4-3

Motorola 56300 Family ToolBox Functions
The function library within Motorola 56300 DSP Developer’s Kit ToolBox
contains all 21 Motorola 56300 DSP functions which vary from elementary
math computations (mot563_abs, mot563_log), to frequency domain transforms
(mot563_fft). Filtering design functions (mot563_filter, mot563_interp) are also
supplied.

Table of Functions

Motorola 56300 DDK Toolbox

mot563_abs mot563_angle

mot563_conv mot563_decimate

mot563_diff mot563_dspround

mot563_fft mot563_filter

mot563_ifft mot563_interp

mot563_length mot563_log

mot563_log10 mot563_max

mot563_mean mot563_min

mot563_round mot563_sort

mot563_sqrt mot563_sum

mot563_xcorr

4 Motorola Toolbox Function Reference

4-4

mot563_abs

4-5

4mot563_absPurpose Output the absolute value of the input.

MATLAB
Syntax

Y=mot563_abs(X)

Description The mot563_abs function computes the absolute value of the input. When X is
complex, mot563_abs(X) is the complex modulus (magnitude) of the elements
of X.

Characteristics In the workspace, if the input is:

X=[0.9501+0.2311j 0.6068- 0.4860j]

Y=mot563_abs(X,'56301')
the answer returned by the function is:

Y=[0.9778 0.7774]

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Output vector in range [0, 1.414].

See Also mot563_log mot563_log10 mot563_sqrt

mot563_angle

4-6

4mot563_anglePurpose Compute the phase angle of a real- or complex-valued signal.

MATLAB
Syntax

Y=mot563_angle(x)

Description mot563_angle returns the phase angles, in radians, of every elements within a
matrix. Input elements can be complex.

Characteristics In the workspace, if the input is:

x=[-0.6813 - 0.6822i 0.5028 - 0.1509i 0.3046 - 0.8600i;
-0.3795 + 0.3028i 0.7095 - 0.6979i 0.1897 + 0.8537i;
0.8318 - 0.5417i -0.4289 - 0.3784i 0.1934 - 0.5936i]

mot563_angle(x,'56301')
then the returned value is:

ans=-2.3555 -0.2916 -1.2304
2.4681 -0.7772 1.3521
-0.5772 -2.4187 -1.2558

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Phase angle in radians, ranges from to .

See Also mot563_log mot563_log10 mot563_sqrt

π– π

mot563_conv

4-7

4mot563_convPurpose Compute the convolution of two vectors.

MATLAB
Syntax

Y=mot563_conv(A,B)

Description mot563_conv(A,B) convolves vectors A and B.The length of the resulting vector
is the length of A + the length of B -1. If A and B are vectors of polynomial
coefficients, convolving them is equivalent to multiplying the two polynomials.

Characteristics In the workspace, if the input is:

A=[0.0695 + 0.0957i 0.0621 + 0.0523i 0.0795 + 0.0880i]
B=[0.0173 - 0.0252i 0.0980 - 0.0876i 0.0271 - 0.0737i]
mot563_conv(a,b,'56301')

then the returned value is:

ans=0.0036 - 0.0001i 0.0176 + 0.0026i 0.0232 -
0.0033i 0.0210 - 0.0015i 0.0086 - 0.0035i

Arguments A,B
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y

Resulting vector with length of length(A)+length(B)-1

Algorithm For a length-M input vector u (indexed from 1 to M) and a length-N input vector
v (indexed from 1 to N), the convolution output is a vector of length M+N-1 with
elements

where * denotes conjugation, and u and v are zero when indexed outside of
their valid ranges.

When both inputs are real, the output is real as well. When one or both inputs
are complex, the output is complex.

See Also mot563_xcorr

y n() u k()v∗ n k– 1+()

k 1=

max M N,()

�= 1 n M N 1–+≤ ≤

mot563_decimate

4-8

4mot563_decimatePurpose Filter and down sample an input signal.

MATLAB
Syntax

Y = mot563_decimate(X,R,N)
Y = mot563_decimate(X,R,'FIR')
Y = mot563_decimate(X,R,N,'FIR')

Description The mot563_decimate function resamples the input X at an integer rate R
times slower than the input sample rate, where R is defined as Decimation
factor parameter. This process consists of two steps:

• The function filters the input data with an FIR filter.

• The function downstages the filtered data to a lower rate.

The mot563_decimate function implements the FIR filtering and
downsampling steps together using a polyphase filter structure, which is more
efficient than straightforward filter-then-decimate algorithms. The output of
the decimator is the first filter phase.

mot563_decimate filters the data with an eighth order Chebyshev type I
lowpass filter with cutoff frequency, 8*(Fs/2)/R, before resampling.

mot563_decimate(X,R,N) uses an Nth order Chebyshev filter.

mot563_decimate(X,R,'FIR') uses the 30 point FIR filter generated by

FIR1(30,1/R) to filter the data.

mot563_decimate(X,R,N,'FIR') uses the N-point FIR filter.

NOTE: For large R, the Chebyshev filter design might be incorrect due to
numeric precision limitations. In this case mot563_decimate will use a lower
filter order. For better anti-aliasing performance, try breaking R up into its
factors and calling mot563_decimate several times.

Characteristics In the workspace, if the input is:

X=[0.0682 0.0302 0.0541 0.0150 0.0697 0.0378 0.0860
0.0853 0.0593 0.0496 0.0899 0.0821 0.0644 0.0818
0.0660 0.0342 0.0289 0.0341 0.0534 0.0727]

R=3
N=8
mot563_decimate(X,R,N,’fir’)

mot563_decimate

4-9

then the returned value is:

ans=0.0682 0.0406 0.0705 0.0674 0.0756 0.0441 0.0541

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit). Length
of X should keep larger than two times of N+1.

R

Decimation factor (integer) by which to decrease the sample rate of the input
sequence.

N
Chebyshev filter order.

FIR
Option for “fir” or “iir” type.

Y
Resulting vector after FIR filtered and decimated.

See Also mot563_interp

mot563_diff

4-10

4mot563_diffPurpose Difference and approximate derivative.

MATLAB
Syntax

Y=mot563_diff(X,N)

Y=mot563_diff(X,N,DIM)

Description For a vector X, mot563_diff(X), is [X(2)-X(1) X(3)-X(2)... X(n)-X(n-1)].

For a matrix X, mot563_diff(X), is the matrix of column differences,

[X(2:n,:) - X(1:n-1,:)].

mot563_diff(X,N) is the N-th order difference along the first non-singleton
dimension (denote it by DIM). If N >= size(X,DIM), mot563_diff takes
successive differences along the next non-singleton dimension.

mot563_diff(X,N,DIM) is the Nth difference function along dimension DIM. If
N >= size(X,DIM), DIFF returns an empty array.

Characteristics If X = [0.3 0.7 0.5

0 0.9 0.2]

then mot563_diff(X,1,1) is [-0.3 0.2 -0.3],

mot563_diff(X,1,2) is [0.4 -0.2

0.9 -0.7],

mot563_diff(X,2,2) is the 2nd order difference along the dimension 2, and
mot563_diff(X,3,2) is the empty matrix.

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Resulting derivatives.

See Also mot563_conv mot563_xcorr

mot563_dspround

4-11

4mot563_dsproundPurpose Perform convergent rounding.

MATLAB
Syntax

Y=mot563_dspround10(X)

Description mot563_dspround(X) rounds the elements of X to the nearest integers using
"convergent rounding" algorithm

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

mot563_dspround(X)
the returned value is:

ans= 0.4807 0.8319 - 0.2921i
0 + 0.6717i 0.5273 + 0.7144i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Result after dsprounding.

See Also mot563_round

mot563_fft

4-12

4mot563_fftPurpose Compute the FFT of the input.

MATLAB
Syntax

Y=mot563_fft(X)

Y=mot563_fft(X,N)

Y=mot563_fft(X,N,DIM)

Description mot563_fft(X) is the discrete Fourier transform (DFT) of vector X. If the length
of X is not a power of two, it will be padded with zeros to make the length a
power of two.

For matrices, the FFT operation is applied to each column.

mot563_fft(X,N) is the N-point FFT.

mot563_fft(X,N,DIM) applies the FFT operation across the dimension DIM.

Characteristics In the workspace, if the input is:

 X = [-0.0023 - 0.0101i -0.0446 - 0.0229i -0.0634 - 0.0223i
 -0.0701 - 0.0234i -0.1196 - 0.0103i -0.0244 - 0.0014i]

then execute the function:

 mot563_fft(X,2,2)
 ans=-0.0469 - 0.0330i 0.0423 + 0.0128i

-0.1897 - 0.0337i 0.0495 - 0.0131i

 Argument X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

N
Number of transform point.

DIM
Dimension of a matrix.

See Also mot563_ifft

mot563_filter

4-13

4mot563_filterPurpose Apply one-dimensional digital filter to an input signal.

MATLAB
Syntax

Y = mot563_filter(B,A,X)
[Y,Zf] = mot563_filter(B,A,X,Zi)
[Y,Zf] = mot563_filter(B,A,X,Zi,DIM)

Description mot563_filter(B,A,X) Filters the data in vector X with the filter described by
vectors A and B to create the filtered data Y. The Filter is a "Direct Form II
Transposed" implementation of the standard difference equation:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

If a(1) is not equal to 1, mot563_filter normalizes the Filter coefficients by
a(1).

When X is a matrix, mot563_filter operates on the columns of X.

[Y,Zf] = mot563_filter(B,A,X,Zi) gives access to initial and final
conditions, Zi and Zf, of the delays. Zi is a vector of length = MAX (LENGTH(A),
LENGTH(B))-1.

mot563_filter(B,A,X,[],DIM) or mot563_filter(B,A,X,Zi,DIM) operates
along the dimension DIM.

Characteristics In the workspace, if the input is:

X=[0.6822 0.3028 0.5417 0.1509 0.6979 0.3784 0.8600]
A=[1 0.2500 0.1538 -0.2206 -0.0780 -0.0949 -0.1901
0.0743];
B=[1 0.2187 0.0031 -0.0705 -0.2378 -0.2488]
mot563_filter(B,A,X)

the returned value is:

ans=0.6822 0.2814 0.4348 0.2207 0.5423 0.2647
0.8196

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

B,A

mot563_filter

4-14

Vectors which consist of coefficients of Direct II filter respectively.

Zi
Vector representing initial condition, with a length of mot563_max
(LENGTH(A),LENGTH(B))-1.

Zf
Vector representing final condition, similar to Zi.

DIM
Matrix dimension number.

See Also mot563_sort

mot563_ifft

4-15

4mot563_ifftPurpose Compute the IFFT of the input.

MATLAB
Syntax

Y=mot563_ifft(X)

Y=mot563_ifft(X,N)

Y=mot563_ifft(X,N,DIM)

Description mot563_ifft(X) is the inverse discrete Fourier transform of X.

mot563_ifft(X,N) is the N-point inverse transform.

mot563_ifft(X,N,DIM) is the inverse discrete Fourier transform of X across
the dimension DIM.

Characteristics In the workspace, if the input is:

 X = [-0.0023 - 0.0101i -0.0446 - 0.0229i -0.0634 - 0.0223i
-0.0701 - 0.0234i -0.1196 - 0.0103i -0.0244 - 0.0014i]

then execute the function:

 mot563_ifft(X,2,2)
 ans=-0.0234 - 0.0165i 0.0211 + 0.0064i

-0.0948 - 0.0168i 0.0248 - 0.0066i

 Argument X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

N
Scalar defining the number of inverse transform point.

DIM
Scalar defining the dimension when the inverse transform is performed across
a matrix.

See Also mot563_fft

mot563_interp

4-16

4mot563_interpPurpose Upsample and filter an input signal.

MATLAB
Syntax

Y = mot563_interp(X,R,N)
Y = mot563_interp(X,R,L,ALPHA)
[Y,B] = mot563_interp(X,R,L,ALPHA)

Description mot563_interp(X,R) resamples the sequence in vector X at R times the original
sample rate. The resulting resampled vector X is R times longer,
mot563_length(Y) = R*mot563_length(X).

A symmetric filter, B, allows the original data to pass through unchanged and
interpolates between so that the mean square error between them and their
ideal values is minimized.

mot563_interp(X,R,L,ALPHA) allows specification of arguments L and ALPHA
which otherwise default to 0.4 and 0.5 respectively. 2*L is the number of
original sample values used to perform the interpolation. Ideally L should be
less than or equal to 10. The length of B is 2*L*R+1. The signal is assumed to
be band limited with cutoff frequency 0 < ALPHA<= 1.0.

[Y,B] = mot563_interp(X,R,L,ALPHA) returns the coefficients of the
interpolation filter B.

Characteristics In the workspace, if the input is:

X=[0.5641 0.4093 0.7053 0.6748 0.7565 0.4412
0.5435]
Alpha=0.34
R=2
L=3
[Y,B]=mot563_interp(X,R,L,Alpha)

the returned value is:

Y=[0.5641 0.4514 0.4093 0.5476 0.7053 0.7076 0.6748
0.7392 0.7565 0.5978 0.4412 0.4552 0.5435 0.5966

B= -0.0000
 0.0162

0
-0.1095
 0.0000
 0.5934

mot563_interp

4-17

 1.0000
 0.5934
 0.0000
-0.1095

0
 0.0162
-0.0000

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit). Length
of X should remain larger than two times L+1

R

Interpolation factor (integer) by which to increase the sample rate of the input
sequence.

ALPHA
Cutoff frequency, normalized in [0,1].

L
Half the number of elements involved in interpolating.

Y
Interpolation result.

B
Coefficients of the interpolation filter.

See Also mot563_decimate

mot563_length

4-18

4mot563_lengthPurpose Return the number of elements in a vector.

MATLAB
Syntax

Y=mot563_length(X)

Description mot563_length(X) returns the length of vector X. It is equivalent to
MAX(SIZE(X)) for non-empty arrays and 0 for empty ones.

Characteristics In the workspace, if the input is:

X=[0.3 0.7 0.5]
the returned value is:

motdsp_length(X)
ans=3

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Length of a vector or the number of column arrays for matrix input.

See Also mot563_conv mot563_xcorr

mot563_log

4-19

4mot563_logPurpose Perform a natural logarithm.

MATLAB
Syntax

Y=mot563_log(X)

Description mot563_log(X) returns the natural logarithm value of vector or matrix X.
Complex results are produced if X is either negative or complex.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

the returned value is:

mot563_log(X)
ans=-0.7325 -0.1259 - 0.3377i

 -0.3979 + 1.5708i -0.1189 + 0.9350i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Natural logarithm of input.

See Also mot563_log10 mot563_sqrt

mot563_log10

4-20

4mot563_log10Purpose Perform a common (Base 10) logarithm.

MATLAB
Syntax

Y=mot563_log10(X)

Description mot563_log10(X) returns the common logarithm value of vector or matrix X.
Complex results are produced if X is either negative or complex.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

the returned value is:

mot563_log10(X)
ans= -0.3181 -0.0547 - 0.1467i

-0.1728 + 0.6822i -0.0516 + 0.4060i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Common (base 10) logarithm of input.

See Also mot563_log mot563_sqrt

mot563_max

4-21

4mot563_maxPurpose Find the maximum value and index of one or two input vector(s).

MATLAB
Syntax

N=mot563_max(X,Y)

N=mot563_max(X,DIM)

[N,I]=mot563_max(X,DIM)

Description For vectors, mot563_max(X) is the largest element in X. For matrices,
mot563_max(X) is a row vector containing the maximum element from each
column.

[N,I] = mot563_max(X) returns the indices of the maximum values in vector I.

If the values along the first non-singleton dimension contain more than one
maximal element, the index of the first one is returned.

mot563_max(X,Y) returns an array the same size as X and Y with the largest
elements taken from X or Y. Either one can be a scalar.

[N,I] = mot563_max(X,DIM) operates along the dimension DIM. When
complex, the magnitude mot563_max(mot563_abs(X)) is used.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.0319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

Y=[-.1245 + 0.2242i 0.2623 - 0.7241i
0.7800 + 0.1121i -0.2324]

the returned value is:

N= mot563_max(X,Y)
N= 0.4807 0.2623 - 0.7241i

0.7800 + 0.1121i 0.5273 + 0.7144i

Arguments X,Y
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

N
Vector or matrix with the same size as input, which consists of maximum value
in every position.

See Also mot563_min

mot563_mean

4-22

4mot563_meanPurpose Determine the mean value of the elements of a matrix along rows or columns.

MATLAB
Syntax

Y=mot563_mean(X)

Y=mot563_mean(X,DIM)

Description For vectors, mot563_mean(X) is the mean of the elements of X. For matrices,
mot563_mean(X) is a row vector with the mean over each column.

mot563_mean(X,DIM) means along the dimension DIM.

Characteristics In the workspace, if

 X = [0 0.1 0.2
0.3 0.4 0.1]

then

 mot563_mean(X,1) = [0.1500 0.2500 0.1500]
 mot563_mean(X,2) = [0.1000

0.2667]

Argument X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
The mean result of input.

See Also mot563_sum

mot563_min

4-23

4mot563_minPurpose Find the minimum value and index of one or two input vector(s).

MATLAB
Syntax

N=mot563_min(X,Y)

N=mot563_min(X,DIM)

[N,I]=mot563_min(X,DIM)

Description For vectors, mot563_min(X) is the smallest element in X. For matrices,
mot563_min(X) is a row vector containing the minimum element from each
column.

[N,I] = mot563_min(X) returns the indices of the minimum values in vector I.

If the values along the first non-singleton dimension contain more than one
minimal element, the index of the first one is returned.

mot563_min(X,Y) returns an array the same size as X and Y with the smallest
elements taken from X or Y. Either one can be a scalar.

[N,I] = mot563_min(X,DIM) operates along the dimension DIM. When
complex, the magnitude mot563_min(mot563_abs(X)) is used.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.0319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

Y=[-.1245 + 0.2242i 0.2623 - 0.7241i
0.7800 + 0.1121i -0.2324]

then the returned value is:

N= mot563_min(X,Y)
N=-0.1245 + 0.2242i 0.0319 - 0.2921i

0 + 0.6717i -0.2324

Arguments X,Y
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

N
Vector or matrix with the same size as input, which consists of minimum value
in every position.

See Also mot563_max

mot563_round

4-24

4mot563_roundPurpose Perform common mathematical rounding.

MATLAB
Syntax

Y=mot563_round10(X)

Description mot563_round(X) rounds the elements of X to the nearest integers.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

then the returned value is:

mot563_round(X)
ans= 0 1.0000

0 + 1.0000i 1.0000 + 1.0000i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Result after rounding.

See Also mot563_dspround

mot563_sort

4-25

4mot563_sortPurpose Sort the elements in a vector by value.

MATLAB
Syntax

Y=mot563_sort(X)

Y=mot563_sort(X,DIM)
[Y,I]=mot563_sort(X)

Description mot563_sort sorts in ascending order.

For vectors, mot563_sort(X) sorts the elements of X in ascending order.

For matrices, mot563_sort(X) sorts each column of X in ascending order.

mot563_sort(X,DIM) sorts along the dimension DIM.

[Y,I]=mot563_sort(X) also returns an index matrix I. If X is a vector, then Y
= X(I). If X is an m-by-n matrix, then

for j = 1:n, Y(:,j) = X(I(:,j),j); end

When X is complex, the elements are sorted by mot563_abs(X).

Characteristics In the workspace, if the input is:

x=[0.3 0.7 0.5
0 0.4 0.2]

then the returned value is:

motdsp_sort(X,1)
ans=[0 0.4 0.2

0.3 0.5 0.7]
motdsp_sort(X,2)
ans=[0.3 0.5 0.7

0 0.2 0.4];

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

I

Matrix index.

Y
Result vector or matrix sorted in ascending order.

mot563_sort

4-26

See Also mot563_max mot563_mean mot563_min

mot563_sqrt

4-27

4mot563_sqrtPurpose Perform a square root.

MATLAB
Syntax

Y=mot563_sqrt(X)

Description mot563_sqrt(X) is the square root of the elements of X. Complex results are
produced if X is either positive or complex.

Characteristics In the workspace, if the input is:

X=[0.2311 0.6068- 0.4860i

-0.4512 -.2324+0.7534i]
Y=mot563_sqrt(X)

the answer returned by the function is:

Y= 0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Square root result of input.

See Also mot563_log mot563_log10 mot563_abs

mot563_sum

4-28

4mot563_sumPurpose Sum the elements of a matrix along rows or columns.

MATLAB
Syntax

Y=mot563_sum(X)

Y=mot563_sum(X,DIM)

Description For vectors, mot563_sum(X) is the sum of the elements of X. For matrices,
mot563_sum(X) is a row vector with the sum over each column.

mot563_sum(X,DIM) sums along the dimension DIM.

Characteristics In the workspace, if

 X = [0 0.1 0.2
0.3 0.4 0.1]

then

 mot563_sum(X,1) = [0.3 0.5 0.3]
 mot563_sum(X,2) = [0.3
 0.8]

Argument X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
The sum result of input.

See Also mot563_diff

mot563_xcorr

4-29

4mot563_xcorrPurpose Compute the correlation of two vectors.

MATLAB
Syntax

Y=mot563_xcorr(A,B,MAXLAG,’flag’)

Y=mot563_xcorr(A,MAXLAG,’flag’)

Description mot563_xcorr Cross-correlation function estimates C=mot563_xcorr (A,B),
where A,B are length M vectors (M>1), returns the length 2*M-1 cross-correlation
sequence C. If A,B are vectors of different length, the shortest one is
zero-padded. C will be a row vector if A is a row vector, and a column vector if A
is a column vector.

mot563_xcorr(A) , where A is a vector, is the auto-correlation sequence. The
zeroth lag of the output correlation is in the middle of the sequence, at element
M.

mot563_xcorr(A,B,MAXLAG) computes the cross-correlation over the range of
lags: -MAXLAG to MAXLAG, i.e., 2*MAXLAG+1 lags. mot563_xcorr(A,MAXLAG)

computes the auto-correlation over the range of lags. If missing, the default is
MAXLAG = M-1.

[C,LAGS] = mot563_xcorr returns a vector of lag indices (LAGS).

mot563_xcorr(A,'flag'), mot563_xcorr(A,B,'flag') or

mot563_xcorr(A,B,MAXLAG,'flag') normalizes the correlation according to
'flag':

• biased - scales the raw cross-correlation by 1/M.

• unbiased - scales the raw correlation by 1/(M-motdsp_abs(lags))

• coeff - normalizes the sequence so that the auto-correlations at zero lag are
identically 1.0.

• none - no scaling (this is the default).

Characteristics In the workspace, if the input is:

A=[0.0695 + 0.0957i 0.0621 + 0.0523i 0.0795 + 0.0880i]
B=[0.0173 - 0.0252i 0.0980 - 0.0876i 0.0271 - 0.0737i]
MAXLAG=5
flag=’coeff’
mot563_xcorr(A,B,MAXLAG,flag,'56301')

the returned value is:

mot563_xcorr

4-30

ans= 0 0 0 -0.0290 - 0.1213i -0.0056 - 0.6214i
-0.1389 - 0.7645i -0.1288 - 0.7385i -0.1779 - 0.2655i

0 0 0

Arguments A,B
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

MAXLAG
Scalar to define the maximum range of lags. If missing, the default value is M-1.

flag
A character which determine the correlation type. See “Description” part.

Y

Resulting vector.

See Also mot563_conv

Motorola 56600 Family ToolBox Functions

-31

Motorola 56600 Family ToolBox Functions
The function library within Motorola 56600 DSP Developer’s Kit ToolBox
contains all 21 Motorola 56600 DSP functions which vary from elementary
math computations (mot566_abs, mot566_log), to frequency domain transforms
(mot566_fft). Filtering design functions (mot566_filter, mot566_interp) are also
supplied.

Table of Functions

Motorola 56600 DDK Toolbox

mot566_abs mot566_angle

mot566_conv mot566_decimate

mot566_diff mot566_dspround

mot566_fft mot566_filter

mot566_ifft mot566_interp

mot566_length mot566_log

mot566_log10 mot566_max

mot566_mean mot566_min

mot566_round mot566_sort

mot566_sqrt mot566_sum

mot566_xcorr

-32

mot566_abs

4-33

4mot566_absPurpose Output the absolute value of the input.

MATLAB
Syntax

Y=mot566_abs(X)

Description The mot566_abs function computes the absolute value of the input. When X is
complex, mot566_abs(X) is the complex modulus (magnitude) of the elements
of X.

Characteristics In the workspace, if the input is:

X=[0.9501+0.2311j 0.6068- 0.4860j]

Y=mot566_abs(X,'56601')
the answer returned by the function is:

Y=[0.9778 0.7774]

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Output vector in range [0, 1.414].

See Also mot566_log mot566_log10 mot566_sqrt

mot566_angle

4-34

4mot566_anglePurpose Compute the phase angle of a real- or complex-valued signal.

MATLAB
Syntax

Y=mot566_angle(x)

Description mot566_angle returns the phase angles, in radians, of every elements within a
matrix. Input elements can be complex.

Characteristics In the workspace, if the input is:

x=[-0.6813 - 0.6822i 0.5028 - 0.1509i 0.3046 - 0.8600i;
-0.3795 + 0.3028i 0.7095 - 0.6979i 0.1897 + 0.8537i;
0.8318 - 0.5417i -0.4289 - 0.3784i 0.1934 - 0.5936i]

mot566_angle(x,'56601')
then the returned value is:

ans=-2.3555 -0.2916 -1.2304
2.4681 -0.7772 1.3521
-0.5772 -2.4187 -1.2558

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Phase angle in radians, ranges from to .

See Also mot566_log mot566_log10 mot566_sqrt

π– π

mot566_conv

4-35

4mot566_convPurpose Compute the convolution of two vectors.

MATLAB
Syntax

Y=mot566_conv(A,B)

Description mot566_conv(A,B) convolves vectors A and B.The length of the resulting vector
is the length of A + the length of B -1. If A and B are vectors of polynomial
coefficients, convolving them is equivalent to multiplying the two polynomials.

Characteristics In the workspace, if the input is:

A=[0.0695 + 0.0957i 0.0621 + 0.0523i 0.0795 + 0.0880i]
B=[0.0173 - 0.0252i 0.0980 - 0.0876i 0.0271 - 0.0737i]
mot566_conv(a,b,'56601')

then the returned value is:

ans=0.0036 - 0.0001i 0.0176 + 0.0026i 0.0232 -
0.0033i 0.0210 - 0.0015i 0.0086 - 0.0035i

Arguments A,B
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y

Resulting vector with length of length(A)+length(B)-1

Algorithm For a length-M input vector u (indexed from 1 to M) and a length-N input vector
v (indexed from 1 to N), the convolution output is a vector of length M+N-1 with
elements

where * denotes conjugation, and u and v are zero when indexed outside of
their valid ranges.

When both inputs are real, the output is real as well. When one or both inputs
are complex, the output is complex.

See Also mot566_xcorr

y n() u k()v∗ n k– 1+()

k 1=

max M N,()

�= 1 n M N 1–+≤ ≤

mot566_decimate

4-36

4mot566_decimatePurpose Filter and down sample an input signal.

MATLAB
Syntax

Y = mot566_decimate(X,R,N)
Y = mot566_decimate(X,R,'FIR')
Y = mot566_decimate(X,R,N,'FIR')

Description The mot566_decimate function resamples the input X at an integer rate R
times slower than the input sample rate, where R is defined as Decimation
factor parameter. This process consists of two steps:

• The function filters the input data with an FIR filter.

• The function downstages the filtered data to a lower rate.

The mot566_decimate function implements the FIR filtering and
downsampling steps together using a polyphase filter structure, which is more
efficient than straightforward filter-then-decimate algorithms. The output of
the decimator is the first filter phase.

mot566_decimate filters the data with an eighth order Chebyshev type I
lowpass filter with cutoff frequency, 8*(Fs/2)/R, before resampling.

mot566_decimate(X,R,N) uses an Nth order Chebyshev filter.

mot566_decimate(X,R,'FIR') uses the 30 point FIR filter generated by

FIR1(30,1/R) to filter the data.

mot566_decimate(X,R,N,'FIR') uses the N-point FIR filter.

NOTE: For large R, the Chebyshev filter design might be incorrect due to
numeric precision limitations. In this case mot566_decimate will use a lower
filter order. For better anti-aliasing performance, try breaking R up into its
factors and calling mot566_decimate several times.

Characteristics In the workspace, if the input is:

X=[0.0682 0.0302 0.0541 0.0150 0.0697 0.0378 0.0860
0.0853 0.0593 0.0496 0.0899 0.0821 0.0644 0.0818
0.0660 0.0342 0.0289 0.0341 0.0534 0.0727]

R=3
N=8
mot566_decimate(X,R,N,’fir’)

mot566_decimate

4-37

then the returned value is:

ans=0.0682 0.0406 0.0705 0.0674 0.0756 0.0441 0.0541

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit). Length
of X should keep larger than two times of N+1.

R

Decimation factor (integer) by which to decrease the sample rate of the input
sequence.

N
Chebyshev filter order.

FIR
Option for “fir” or “iir” type.

Y
Resulting vector after FIR filtered and decimated.

See Also mot566_interp

mot566_diff

4-38

4mot566_diffPurpose Difference and approximate derivative.

MATLAB
Syntax

Y=mot566_diff(X,N)

Y=mot566_diff(X,N,DIM)

Description For a vector X, mot566_diff(X), is [X(2)-X(1) X(3)-X(2)... X(n)-X(n-1)].

For a matrix X, mot566_diff(X), is the matrix of column differences,

[X(2:n,:) - X(1:n-1,:)].

mot566_diff(X,N) is the N-th order difference along the first non-singleton
dimension (denote it by DIM). If N >= size(X,DIM), mot566_diff takes
successive differences along the next non-singleton dimension.

mot566_diff(X,N,DIM) is the Nth difference function along dimension DIM. If
N >= size(X,DIM), DIFF returns an empty array.

Characteristics If X = [0.3 0.7 0.5

0 0.9 0.2]

then mot566_diff(X,1,1) is [-0.3 0.2 -0.3],

mot566_diff(X,1,2) is [0.4 -0.2

0.9 -0.7],

mot566_diff(X,2,2) is the 2nd order difference along the dimension 2, and
mot566_diff(X,3,2) is the empty matrix.

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Resulting derivatives.

See Also mot566_conv mot566_xcorr

mot566_dspround

4-39

4mot566_dsproundPurpose Perform convergent rounding.

MATLAB
Syntax

Y=mot566_dspround10(X)

Description mot566_dspround(X) rounds the elements of X to the nearest integers using
"convergent rounding" algorithm

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

mot566_dspround(X)
the returned value is:

ans= 0.4807 0.8319 - 0.2921i
0 + 0.6717i 0.5273 + 0.7144i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Result after dsprounding.

See Also mot566_round

mot566_fft

4-40

4mot566_fftPurpose Compute the FFT of the input.

MATLAB
Syntax

Y=mot566_fft(X)

Y=mot566_fft(X,N)

Y=mot566_fft(X,N,DIM)

Description mot566_fft(X) is the discrete Fourier transform (DFT) of vector X. If the length
of X is not a power of two, it will be padded with zeros to make the length a
power of two.

For matrices, the FFT operation is applied to each column.

mot566_fft(X,N) is the N-point FFT.

mot566_fft(X,N,DIM) applies the FFT operation across the dimension DIM.

Characteristics In the workspace, if the input is:

 X = [-0.0023 - 0.0101i -0.0446 - 0.0229i -0.0634 - 0.0223i
 -0.0701 - 0.0234i -0.1196 - 0.0103i -0.0244 - 0.0014i]

then execute the function:

 mot566_fft(X,2,2)
 ans=-0.0469 - 0.0330i 0.0423 + 0.0128i

-0.1897 - 0.0337i 0.0495 - 0.0131i

 Argument X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

N
Number of transform point.

DIM
Dimension of a matrix.

See Also mot566_ifft

mot566_filter

4-41

4mot566_filterPurpose Apply one-dimensional digital filter to an input signal.

MATLAB
Syntax

Y = mot566_filter(B,A,X)
[Y,Zf] = mot566_filter(B,A,X,Zi)
[Y,Zf] = mot566_filter(B,A,X,Zi,DIM)

Description mot566_filter(B,A,X) Filters the data in vector X with the filter described by
vectors A and B to create the filtered data Y. The Filter is a "Direct Form II
Transposed" implementation of the standard difference equation:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

If a(1) is not equal to 1, mot566_filter normalizes the Filter coefficients by
a(1).

When X is a matrix, mot566_filter operates on the columns of X.

[Y,Zf] = mot566_filter(B,A,X,Zi) gives access to initial and final
conditions, Zi and Zf, of the delays. Zi is a vector of length = MAX (LENGTH(A),
LENGTH(B))-1.

mot566_filter(B,A,X,[],DIM) or mot566_filter(B,A,X,Zi,DIM) operates
along the dimension DIM.

Characteristics In the workspace, if the input is:

X=[0.6822 0.3028 0.5417 0.1509 0.6979 0.3784 0.8600]
A=[1 0.2500 0.1538 -0.2206 -0.0780 -0.0949 -0.1901
0.0743];
B=[1 0.2187 0.0031 -0.0705 -0.2378 -0.2488]
mot566_filter(B,A,X)

the returned value is:

ans=0.6822 0.2814 0.4348 0.2207 0.5423 0.2647
0.8196

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

B,A

mot566_filter

4-42

Vectors which consist of coefficients of Direct II filter respectively.

Zi
Vector representing initial condition, with a length of mot566_max
(LENGTH(A),LENGTH(B))-1.

Zf
Vector representing final condition, similar to Zi.

DIM
Matrix dimension number.

See Also mot566_sort

mot566_ifft

4-43

4mot566_ifftPurpose Compute the IFFT of the input.

MATLAB
Syntax

Y=mot566_ifft(X)

Y=mot566_ifft(X,N)

Y=mot566_ifft(X,N,DIM)

Description mot566_ifft(X) is the inverse discrete Fourier transform of X.

mot566_ifft(X,N) is the N-point inverse transform.

mot566_ifft(X,N,DIM) is the inverse discrete Fourier transform of X across
the dimension DIM.

Characteristics In the workspace, if the input is:

 X = [-0.0023 - 0.0101i -0.0446 - 0.0229i -0.0634 - 0.0223i
-0.0701 - 0.0234i -0.1196 - 0.0103i -0.0244 - 0.0014i]

then execute the function:

 mot566_ifft(X,2,2)
 ans=-0.0234 - 0.0165i 0.0211 + 0.0064i

-0.0948 - 0.0168i 0.0248 - 0.0066i

 Argument X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

N
Scalar defining the number of inverse transform point.

DIM
Scalar defining the dimension when the inverse transform is performed across
a matrix.

See Also mot566_fft

mot566_interp

4-44

4mot566_interpPurpose Upsample and filter an input signal.

MATLAB
Syntax

Y = mot566_interp(X,R,N)
Y = mot566_interp(X,R,L,ALPHA)
[Y,B] = mot566_interp(X,R,L,ALPHA)

Description mot566_interp(X,R) resamples the sequence in vector X at R times the original
sample rate. The resulting resampled vector X is R times longer,
mot566_length(Y) = R*mot566_length(X).

A symmetric filter, B, allows the original data to pass through unchanged and
interpolates between so that the mean square error between them and their
ideal values is minimized.

mot566_interp(X,R,L,ALPHA) allows specification of arguments L and ALPHA
which otherwise default to 0.4 and 0.5 respectively. 2*L is the number of
original sample values used to perform the interpolation. Ideally L should be
less than or equal to 10. The length of B is 2*L*R+1. The signal is assumed to
be band limited with cutoff frequency 0 < ALPHA<= 1.0.

[Y,B] = mot566_interp(X,R,L,ALPHA) returns the coefficients of the
interpolation filter B.

Characteristics In the workspace, if the input is:

X=[0.5641 0.4093 0.7053 0.6748 0.7565 0.4412
0.5435]
Alpha=0.34
R=2
L=3
[Y,B]=mot566_interp(X,R,L,Alpha)

the returned value is:

Y=[0.5641 0.4514 0.4093 0.5476 0.7053 0.7076 0.6748
0.7392 0.7565 0.5978 0.4412 0.4552 0.5435 0.5966

B= -0.0000
 0.0162

0
-0.1095
 0.0000
 0.5934

mot566_interp

4-45

 1.0000
 0.5934
 0.0000
-0.1095

0
 0.0162
-0.0000

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit). Length
of X should remain larger than two times L+1

R

Interpolation factor (integer) by which to increase the sample rate of the input
sequence.

ALPHA
Cutoff frequency, normalized in [0,1].

L
Half the number of elements involved in interpolating.

Y
Interpolation result.

B
Coefficients of the interpolation filter.

See Also mot566_decimate

mot566_length

4-46

4mot566_lengthPurpose Return the number of elements in a vector.

MATLAB
Syntax

Y=mot566_length(X)

Description mot566_length(X) returns the length of vector X. It is equivalent to
MAX(SIZE(X)) for non-empty arrays and 0 for empty ones.

Characteristics In the workspace, if the input is:

X=[0.3 0.7 0.5]
the returned value is:

motdsp_length(X)
ans=3

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Length of a vector or the number of column arrays for matrix input.

See Also mot566_conv mot566_xcorr

mot566_log

4-47

4mot566_logPurpose Perform a natural logarithm.

MATLAB
Syntax

Y=mot566_log(X)

Description mot566_log(X) returns the natural logarithm value of vector or matrix X.
Complex results are produced if X is either negative or complex.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

the returned value is:

mot566_log(X)
ans=-0.7325 -0.1259 - 0.3377i

 -0.3979 + 1.5708i -0.1189 + 0.9350i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Natural logarithm of input.

See Also mot566_log10 mot566_sqrt

mot566_log10

4-48

4mot566_log10Purpose Perform a common (Base 10) logarithm.

MATLAB
Syntax

Y=mot566_log10(X)

Description mot566_log10(X) returns the common logarithm value of vector or matrix X.
Complex results are produced if X is either negative or complex.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

the returned value is:

mot566_log10(X)
ans= -0.3181 -0.0547 - 0.1467i

-0.1728 + 0.6822i -0.0516 + 0.4060i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Common (base 10) logarithm of input.

See Also mot566_log mot566_sqrt

mot566_max

4-49

4mot566_maxPurpose Find the maximum value and index of one or two input vector(s).

MATLAB
Syntax

N=mot566_max(X,Y)

N=mot566_max(X,DIM)

[N,I]=mot566_max(X,DIM)

Description For vectors, mot566_max(X) is the largest element in X. For matrices,
mot566_max(X) is a row vector containing the maximum element from each
column.

[N,I] = mot566_max(X) returns the indices of the maximum values in vector I.

If the values along the first non-singleton dimension contain more than one
maximal element, the index of the first one is returned.

mot566_max(X,Y) returns an array the same size as X and Y with the largest
elements taken from X or Y. Either one can be a scalar.

[N,I] = mot566_max(X,DIM) operates along the dimension DIM. When
complex, the magnitude mot566_max(mot566_abs(X)) is used.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.0319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

Y=[-.1245 + 0.2242i 0.2623 - 0.7241i
0.7800 + 0.1121i -0.2324]

the returned value is:

N= mot566_max(X,Y)
N= 0.4807 0.2623 - 0.7241i

0.7800 + 0.1121i 0.5273 + 0.7144i

Arguments X,Y
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

N
Vector or matrix with the same size as input, which consists of maximum value
in every position.

See Also mot566_min

mot566_mean

4-50

4mot566_meanPurpose Determine the mean value of the elements of a matrix along rows or columns.

MATLAB
Syntax

Y=mot566_mean(X)

Y=mot566_mean(X,DIM)

Description For vectors, mot566_mean(X) is the mean of the elements of X. For matrices,
mot566_mean(X) is a row vector with the mean over each column.

mot566_mean(X,DIM) means along the dimension DIM.

Characteristics In the workspace, if

 X = [0 0.1 0.2
0.3 0.4 0.1]

then

 mot566_mean(X,1) = [0.1500 0.2500 0.1500]
 mot566_mean(X,2) = [0.1000

0.2667]

Argument X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
The mean result of input.

See Also mot566_sum

mot566_min

4-51

4mot566_minPurpose Find the minimum value and index of one or two input vector(s).

MATLAB
Syntax

N=mot566_min(X,Y)

N=mot566_min(X,DIM)

[N,I]=mot566_min(X,DIM)

Description For vectors, mot566_min(X) is the smallest element in X. For matrices,
mot566_min(X) is a row vector containing the minimum element from each
column.

[N,I] = mot566_min(X) returns the indices of the minimum values in vector I.

If the values along the first non-singleton dimension contain more than one
minimal element, the index of the first one is returned.

mot566_min(X,Y) returns an array the same size as X and Y with the smallest
elements taken from X or Y. Either one can be a scalar.

[N,I] = mot566_min(X,DIM) operates along the dimension DIM. When
complex, the magnitude mot566_min(mot566_abs(X)) is used.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.0319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

Y=[-.1245 + 0.2242i 0.2623 - 0.7241i
0.7800 + 0.1121i -0.2324]

then the returned value is:

N= mot566_min(X,Y)
N=-0.1245 + 0.2242i 0.0319 - 0.2921i

0 + 0.6717i -0.2324

Arguments X,Y
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

N
Vector or matrix with the same size as input, which consists of minimum value
in every position.

See Also mot566_max

mot566_round

4-52

4mot566_roundPurpose Perform common mathematical rounding.

MATLAB
Syntax

Y=mot566_round10(X)

Description mot566_round(X) rounds the elements of X to the nearest integers.

Characteristics In the workspace, if the input is:

X=[0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i]

then the returned value is:

mot566_round(X)
ans= 0 1.0000

0 + 1.0000i 1.0000 + 1.0000i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Result after rounding.

See Also mot566_dspround

mot566_sort

4-53

4mot566_sortPurpose Sort the elements in a vector by value.

MATLAB
Syntax

Y=mot566_sort(X)

Y=mot566_sort(X,DIM)
[Y,I]=mot566_sort(X)

Description mot566_sort sorts in ascending order.

For vectors, mot566_sort(X) sorts the elements of X in ascending order.

For matrices, mot566_sort(X) sorts each column of X in ascending order.

mot566_sort(X,DIM) sorts along the dimension DIM.

[Y,I]=mot566_sort(X) also returns an index matrix I. If X is a vector, then Y
= X(I). If X is an m-by-n matrix, then

for j = 1:n, Y(:,j) = X(I(:,j),j); end

When X is complex, the elements are sorted by mot566_abs(X).

Characteristics In the workspace, if the input is:

x=[0.3 0.7 0.5
0 0.4 0.2]

then the returned value is:

motdsp_sort(X,1)
ans=[0 0.4 0.2

0.3 0.5 0.7]
motdsp_sort(X,2)
ans=[0.3 0.5 0.7

0 0.2 0.4];

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

I

Matrix index.

Y
Result vector or matrix sorted in ascending order.

mot566_sort

4-54

See Also mot566_max mot566_mean mot566_min

mot566_sqrt

4-55

4mot566_sqrtPurpose Perform a square root.

MATLAB
Syntax

Y=mot566_sqrt(X)

Description mot566_sqrt(X) is the square root of the elements of X. Complex results are
produced if X is either positive or complex.

Characteristics In the workspace, if the input is:

X=[0.2311 0.6068- 0.4860i

-0.4512 -.2324+0.7534i]
Y=mot566_sqrt(X)

the answer returned by the function is:

Y= 0.4807 + 0.0000i 0.8319 - 0.2921i
0.0000 + 0.6717i 0.5273 + 0.7144i

Arguments X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
Square root result of input.

See Also mot566_log mot566_log10 mot566_abs

mot566_sum

4-56

4mot566_sumPurpose Sum the elements of a matrix along rows or columns.

MATLAB
Syntax

Y=mot566_sum(X)

Y=mot566_sum(X,DIM)

Description For vectors, mot566_sum(X) is the sum of the elements of X. For matrices,
mot566_sum(X) is a row vector with the sum over each column.

mot566_sum(X,DIM) sums along the dimension DIM.

Characteristics In the workspace, if

 X = [0 0.1 0.2
0.3 0.4 0.1]

then

 mot566_sum(X,1) = [0.3 0.5 0.3]
 mot566_sum(X,2) = [0.3
 0.8]

Argument X
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

Y
The sum result of input.

See Also mot566_diff

mot566_xcorr

4-57

4mot566_xcorrPurpose Compute the correlation of two vectors.

MATLAB
Syntax

Y=mot566_xcorr(A,B,MAXLAG,’flag’)

Y=mot566_xcorr(A,MAXLAG,’flag’)

Description mot566_xcorr Cross-correlation function estimates C=mot566_xcorr (A,B),
where A,B are length M vectors (M>1), returns the length 2*M-1 cross-correlation
sequence C. If A,B are vectors of different length, the shortest one is
zero-padded. C will be a row vector if A is a row vector, and a column vector if A
is a column vector.

mot566_xcorr(A) , where A is a vector, is the auto-correlation sequence. The
zeroth lag of the output correlation is in the middle of the sequence, at element
M.

mot566_xcorr(A,B,MAXLAG) computes the cross-correlation over the range of
lags: -MAXLAG to MAXLAG, i.e., 2*MAXLAG+1 lags. mot566_xcorr(A,MAXLAG)

computes the auto-correlation over the range of lags. If missing, the default is
MAXLAG = M-1.

[C,LAGS] = mot566_xcorr returns a vector of lag indices (LAGS).

mot566_xcorr(A,'flag'), mot566_xcorr(A,B,'flag') or

mot566_xcorr(A,B,MAXLAG,'flag') normalizes the correlation according to
'flag':

• biased - scales the raw cross-correlation by 1/M.

• unbiased - scales the raw correlation by 1/(M-motdsp_abs(lags))

• coeff - normalizes the sequence so that the auto-correlations at zero lag are
identically 1.0.

• none - no scaling (this is the default).

Characteristics In the workspace, if the input is:

A=[0.0695 + 0.0957i 0.0621 + 0.0523i 0.0795 + 0.0880i]
B=[0.0173 - 0.0252i 0.0980 - 0.0876i 0.0271 - 0.0737i]
MAXLAG=5
flag=’coeff’
mot566_xcorr(A,B,MAXLAG,flag,'56601')

the returned value is:

mot566_xcorr

4-58

ans= 0 0 0 -0.0290 - 0.1213i -0.0056 - 0.6214i
-0.1389 - 0.7645i -0.1288 - 0.7385i -0.1779 - 0.2655i

0 0 0

Arguments A,B
Vector (or matrix) with elements normalized in the range [-1,1] (for complex
elements, both real and imaginary parts should comply with this limit).

MAXLAG
Scalar to define the maximum range of lags. If missing, the default value is M-1.

flag
A character which determine the correlation type. See “Description” part.

Y

Resulting vector.

See Also mot566_conv

5
Motorola Blockset
Block Reference

5 Motorola Blockset Block Reference

5-2

Using This Reference Chapter
This chapter contains information on every block implemented in the Motorola
DSP Developer’s Kit Blocksets. You should turn to this chapter when you need
to find information on a particular block. Each Simulink blockset function has
an equivalent MEX-file toolbox function accessible via the MATLAB command
line (see “Motorola Toolbox Function Reference” on page 4-1).

The block reference entries appear in alphabetical order and each contains the

following information:

• The block name, at the top of the page.

• The purpose of the block.

• The library or libraries where the block can be found.

• A description of the block’s use.

• The block’s parameters and dialog box.

• A See Also list of related blocks and functions.

Note These reference pages are also available online via the Help button in
each block’s dialog box. For more information on how to access the online help
pages see “How to Get Help Online” on page 1-4.

The sections in this reference are:

• “Motorola 56300 Family Blockset” on page 5-3

• “Motorola 56600 Family Blockset” on page -57

Motorola 56300 Family Blockset

5-3

Motorola 56300 Family Blockset
The block library within the Motorola 56300 DSP Developer’s Kit Blockset
contains 21 Motorola 56300 DSP blocks which vary from elementary math
computations (MOTDSP563 Abs, MOTDSP563 Log), to frequency domain
transforms (MOTDSP563 FFT). Filtering design blocks are also supplied.

Motorola 56300 DDK Blocks Listed by Category

Motorola 56300 DDK Blockset

MOTDSP563 Abs MOTDSP563 Angle

MOTDSP563 Convolution MOTDSP563 FIR Decimation

MOTDSP563 Difference MOTDSP563 DSP Rounding

MOTDSP563 FFT MOTDSP563 Direct-Form II Transpose
Filter

MOTDSP563 IFFT MOTDSP563 FIR Interpolation

MOTDSP563 Length MOTDSP563 Log

MOTDSP563 Log10 MOTDSP563 Maximum

MOTDSP563 Matrix Mean MOTDSP563 Minimum

MOTDSP563 Rounding MOTDSP563 Sort

MOTDSP563 Sqrt MOTDSP563 Matrix Sum

MOTDSP563 Correlation

5 Motorola Blockset Block Reference

5-4

MOTPurpose

5-5

5MOTPurposePurpose Output the absolute value of the input.

Library Motdsp563lib.

Description The MOTDSP563 Abs block generates as output the absolute value of the
input.

Data Type Support
The MOTDSP563 Absblock accepts a real- or complex-valued input of type double
and generates a real output of type double.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

MOTPurpose

5-6

See Also MOTDSP563 Log, MOTDSP563 Log10, MOTDSP563 Sqrt

MOTDSP563 Angle

5-7

5MOTDSP563 AnglePurpose Compute the phase angle of a real- or complex-valued signal.

Library Motdsp563lib.

Description The MOTDSP563 Angle block accepts a real- or complex-valued signal of type
double. It outputs the phase angle of the input signal. The outputs are real
values of type double. The input may be a vector of complex signals, in which
case the output signals are also vectors. The angle output similarly contains
the angles of the input elements.

Data Type Support
See the description above.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Log MOTDSP563 Log10 MOTDSP563 Sqrt

MOTDSP563 Convolution

5-8

5MOTDSP563 ConvolutionPurpose Compute the convolution of two vectors.

Library Motdsp563lib.

Description The MOTDSP563 Convolution block convolves corresponding columns
(channels)

of Mu-by-N input matrix u and Mv-by-N input matrix v.

Frame-Based Inputs
Matrix inputs must be frame-based. The output, y, is a frame-based

(Mu+Mv-1)-by-N matrix.

where * denotes the complex conjugate. Inputs u and v are zero when indexed
outside of their valid ranges. When both inputs are real, the output is real;
when one or both inputs are complex, the output is complex.

When one input is a column vector (single channel) and the other is a matrix
(multiple channels), the single-channel input is independently convolved with
each channel of the multichannel input. For example, if u is a Mu-by-1 column
vector and v is an Mv-by-N matrix, the output is an (Mu+Mv-1)-by-N matrix
whose column has elements.

Sample-Based Inputs
If u and v are sample-based vectors with lengths Mu and Mv, the convolution
block performs the vector convolution.

MOTDSP563 Convolution

5-9

The dimensions of the sample-based output vector are determined by the
dimensions of the input vectors:

When both inputs are row vectors, or when one input is a row vector and the
other is a 1-D vector, the output is a 1-by-(Mu+Mv-1) row vector.

When both inputs are column vectors, or when one input is a column vector
and the other is a 1-D vector, the output is a (Mu+Mv-1)-by-1 column vector.

When both inputs are 1-D vectors, the output is a 1-D vector of length
Mu+Mv-1.

The Convolution block does not accept sample-based full-dimension matrix
inputs, or mixed sample-based row vector and column vector inputs.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)

MOTDSP563 Convolution

5-10

Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Correlation

MOTDSP563 Difference

5-11

5MOTDSP563 DifferencePurpose Compute the element-to-element difference along a vector.

Library Motdsp563lib.

Description The MOTDSP563 Difference block computes the difference between successive
vector elements. That is, for an input vector u of length N,

y = [u(2)-u(1) u(3)-u(2) ... u(N)-u(N-1)]
or

y = mot563_diff(u) % equivalent MATLAB code
The output is a vector of length N-1. A matrix input, u, is treated as a vector,
u(:).

Columnwise Differencing
When Columns is selected from the Difference along parameter, the block
computes differences between adjacent column elements.

For sample-based inputs, the output is a sample-based (M-1)-by-N matrix
whose column has elements:

For convenience, length-M 1-D vector inputs are treated as M-by-1 column
vectors for columnwise differencing, and the output is 1-D.

The first row of the first output contains zeros, and the first row of each
subsequent output contains the difference between the first row of the current
input (time t) and the last row of the previous input (time t-Tf).

Rowwise Differencing

MOTDSP563 Difference

5-12

When Rows is selected from the Difference along parameter, the block
computes differences between adjacent row elements. The output is an
M-by-(N-1) matrix.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Convolution, MOTDSP563 Correlation

MOTDSP563 Direct-Form II Transpose Filter

5-13

5MOTDSP563 Direct-Form II Transpose FilterPurpose Apply an IIR filter to the input.

Library Motdsp563lib.

Description The MOTDSP563 Direct-Form II Transpose Filter block applies a transposed
direct-form II IIR filter to the input.

This is a canonical form that has the minimum number of delay elements. The
filter order is max(m, n)-1.

The filter is specified in the parameter dialog box by its transfer function,

where the Numerator parameter specifies the vector of numerator
coefficients,

[b(1) b(2) ... b(m)]
and the Denominator parameter specifies the vector of denominator
coefficients,

[a(1) a(2) ... a(n)]
Note that the filter coefficients are normalized by a1.

Initial Conditions
In its default form, the filter initializes the internal filter states to zero, which
is equivalent to assuming past inputs and outputs are zero. The block also
accepts optional nonzero initial conditions for the filter delays. Note that the
number of filter states (delay elements) per input channel is

max(m,n)-1.

MOTDSP563 Direct-Form II Transpose Filter

5-14

The Initial conditions parameter may take one of four forms:

• Empty matrix

The empty matrix, [], causes a zero (0) initial condition to be applied to all
delay elements in each filter channel.

• Scalar

The scalar value is copied to all delay elements in each filter channel. Note
that a value of zero is equivalent to setting the Initial conditions
parameter to the empty matrix.

• Vector

The vector has a length equal to the number of delay elements in each filter
channel, max(m,n)-1, and specifies a unique initial condition for each delay
element in the filter channel. This vector of initial conditions is applied to
each filter channel.

• Matrix

The matrix specifies a unique initial condition for each delay element, and
can specify different initial conditions for each filter channel. The matrix
must have the same number of rows as the number of delay elements in the
filter, max(m,n)-1, and must have one column per filter channel.

The Frame-based inputs parameter allows you to choose between
sample-based and frame-based operation.

Sample-Based Operation
When the check box is not selected (default), the block assumes that the input
is a 1-by-N sample vector or M-by-N sample matrix. Each of the N vector
elements (or M*N matrix elements) is treated as an independent channel, and
the block filters each channel over time.

Frame-Based Operation
When the Frame-based inputs check box is selected, the block assumes that the
input is an M-by-N frame matrix. Each of the N frames in the matrix contains
M sequential time samples from an independent signal. The illustration below
shows a 6-by-4 matrix input:

MOTDSP563 Direct-Form II Transpose Filter

5-15

.

The Number of channels parameter specifies the number of independent
channels (columns), N, in the matrix, and the block filters each channel
independently over time. Frame-based operation provides substantial
increases in throughput rates, at the expense of greater model latency.

Parameters
and Dialog Box

MOTDSP563 Direct-Form II Transpose Filter

5-16

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Numerator
The filter numerator.

Denominator
The filter denominator.

Initial conditions
The filter's initial conditions, a scalar, vector, or matrix.

Frame-based inputs
Selects frame-based operation.

Number of channels
For frame-based operation, the number of columns (channels) in the input
matrix.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Sort

MOTDSP563 Rounding

5-17

5MOTDSP563 RoundingPurpose Perform convergent rounding.

Library Motdsp563lib.

Description The MOTDSP563 DSP Rounding Function block performs convergent
rounding function.

The block accepts and outputs real- or complex-valued signals of type double.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 DSP Rounding MOTDSP563 Length MOTDSP563 Abs

MOTDSP563 FFT

5-18

5MOTDSP563 FFTPurpose Compute the FFT of the input.

Library Motdsp563lib.

Description The MOTDSP563 FFT block computes the fast Fourier transform (FFT) of each
input channel independently at each sample time. The block assumes that the
input is an M-by-N frame matrix. Each of the N frames in the matrix contains
M sequential time samples from an independent signal.

The illustration below shows a 6-by-4 matrix input:

The Number of channels parameter specifies the number of independent
channels (columns), N, in the matrix. The output is complex and has the same
dimension and sample rate as the input (i.e., the FFT is computed at M
frequency points for each channel).

The FFT operation for a single-channel input (Number of channels = 1) is
shown below.

MOTDSP563 FFT

5-19

The input frame size, M, must be a power of two. To work with other frame
sizes, use the Zero Pad block to pad or truncate the input frame to a
power-of-two length.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Number of channels
The number of columns (frames) in the input matrix.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 IFFT

MOTDSP563 FIR Decimation

5-20

5MOTDSP563 FIR DecimationPurpose Filter and downsample an input signal.

Library Motdsp563lib.

Description The MOTDSP563 FIR Decimation block resamples the input at an integer rate
K times slower than the input sample rate, where K is specified by the
Decimation factor parameter. This process consists of two steps:

• The block filters the input data with an FIR filter.

• The block downsamples the filtered data to a lower rate.

The MOTDSP FIR Decimation block implements the FIR filtering and
downsampling steps together using a polyphase filter structure, which is more
efficient than straightforward filter-then-decimate algorithms. The output of
the decimator is the first filter phase.

In practice, the filter specified by the FIR filter coefficients vector should be
a lowpass FIR with normalized cutoff frequency no greater than 1/K. The
coefficients in the vector are ordered in descending powers of z.

The length-m coefficient vector, [b(1) b(2)... b(m)], can be generated by one of
the filter design functions in the Signal Processing Toolbox. The filter should
be lowpass with normalized cutoff frequency no greater than 1/K. All filter
states are internally initialized to zero.

 Frame-based inputs
The parameter allows you to choose between sample-based and frame-based
operation.

Sample-Based Operation
When the check box is not selected (default), the block assumes that the input
is a 1-by-N sample vector or M-by-N sample matrix. Each of the N vector
elements (or M*N matrix elements) is treated as an independent channel, and
the block decimates each channel over time.

MOTDSP563 FIR Decimation

5-21

Frame-Based Operation
When the Frame-based inputs check box is selected, the block assumes that
the input is an M-by-N frame matrix. Each of the N frames in the matrix
contains M sequential time samples from an independent signal. The
illustration below shows a 6-by-4 matrix input:

The Number of channels parameter specifies the number of independent
channels (columns), N, in the matrix, and the block decimates each channel
independently over time. Frame-based operation provides substantial
increases in throughput rates, at the expense of greater model latency.

In frame-based operation, the Framing parameter determines how the block
adjusts the rate at the output. There are two available options:

• Maintain input frame rate

The block generates the output at the slower (decimated) rate by using a
proportionally smaller frame size than the input. For decimation by a
factor of K, the output frame size is K times smaller than the input frame
size, but the input and output frame rates are equal. The input frame size
must be a multiple of the decimation factor.

The example below shows a single-channel input of frame size 64 being
decimated by a factor of 4 to a frame size of 16. The block's input and output
frame rates are identical.

MOTDSP563 FIR Decimation

5-22

• Maintain input frame size

The block generates the output at the slower (decimated) rate by using a
proportionally longer frame period at the output port than at the input
port. For decimation by a factor of K, the output frame period is K times
longer than the input frame period, but the input and output frame sizes
are equal.

The example below shows a single-channel input (frame size = 64) with a
sample period of 1 second being decimated by a factor of 3 to a sample
period of 3 seconds. The input and output frame sizes are identical

Latency
Zero Latency. The FIR Decimation block has zero tasking latency for all
single-rate operations. The block is single-rate for the particular combinations
of sampling mode and parameter settings shown in the table.

MOTDSP563 FIR Decimation

5-23

Note that in sample-based mode, single-rate operation occurs only in the trivial
case of factor-of-1 decimation.

The block also has zero latency for sample-based multirate operations in
Simulink's single-tasking mode. Zero tasking latency means that the block
propagates the first filtered input sample (received at t=0) as the first output
sample, followed by filtered input samples K+1, 2K+1, and so on.

Nonzero Latency.

The FIR Decimation block is multirate for all settings other than those in the
above table. The amount of latency for multirate operation depends on
Simulink's tasking mode and the block's sampling mode, as shown in the table
below.

In cases of one-sample latency, a zero initial condition appears as the first
output sample in each channel. The first filtered input sample appears as the
second output sample, followed by filtered input samples K+1, 2K+1, and so on.

In cases of one-frame latency, the first Mi output rows contain zeros, where Mi
is the input frame size. The first filtered input sample (first filtered row of the
input matrix) appears in the output as sample Mi+1, followed by filtered input
samples K+1, 2K+1, and so on. See the example below for an illustration of this
case.

Sampling Mode Parameter Settings

Sample-based Decimation factor parameter, K, is 1.

Frame-based Decimation factor parameter, K, is 1, or Framing
parameter is Maintain input frame rate.

Multirate... Sample-Based Latency Frame-Based Latency

Single-tasking None One frame (Mi samples)

Multitasking One sample One frame (Mi samples)

MOTDSP563 FIR Decimation

5-24

Example Construct the frame-based model shown below.

Adjust the block parameters as follows.

• Configure the Signal From Workspace block to generate a two-channel
signal with frame size of 4 and sample period of 0.25. This represents an
output frame period of 1 (0.25*4). The first channel should contain the
positive ramp signal 1, 2,..., 100, and the second channel should contain the
negative ramp signal -1, -2,..., -100.
Signal = [(1:100)' (-1:-1:-100)']/100
Sample time = 0.25
Samples per frame = 4

• Configure the FIR Decimation block to decimate the two-channel input by
decreasing the output frame rate by a factor of 2 relative to the input frame
rate. Use a third-order filter with normalized cutoff frequency, fn0, of 0.25.
(Note that fn0 satisfies fn0 1/K)
FIR filter coefficients = fir1(3,0.25)
Downsample factor = 2
Frame-based inputs
Number of channels = 2
Framing = Maintain input frame size

• Configure the Signal To Workspace block for the two-channel input.
Frame-based inputs
Number of channels = 2

• Configure the Probe blocks by deselecting the Probe width and Probe
complex signal check boxes (if desired).

MOTDSP563 FIR Decimation

5-25

This model is multirate because there are at least two distinct sample rates, as
shown by the two Probe blocks. To run this model in Simulink's multitasking
mode, select Fixed-step and discrete from the Type controls in the Solver
panel of the Simulation Parameters dialog box, and select MultiTasking
from the Mode parameter. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each
channel are shown below.

yout =
0 0
0 0
0 0
0 0

0.00038576126099 -0.00038576126099
0.01500010490417 -0.01500010490417
0.03499984741211 -0.03499984741211
0.05500006675720 -0.05500006675720
0.07500004768372 -0.07500004768372
0.09500002861023 -0.09500002861023
0.11500000953674 -0.11500000953674

Since we ran this frame-based multirate model in multitasking mode, the first
four (Mi) output rows are zero. The first filtered input matrix row appears in
the output as sample 5 (i.e., sample Mi+1).

The filter coefficient vector generated by fir1(3,0.25) is

[0.0386 0.4614 0.4614 0.0386]

or, equivalently,

• H z() B z() 0.0386 0.04614z 1– 0.04614z 2– 0.0386z 3–
+ + += =

MOTDSP563 FIR Decimation

5-26

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Specify the DSP processor to be used.

FIR filter coefficients
The FIR filter coefficients, in descending powers of z.

Decimation factor
The integer factor, K, by which to decrease the sample rate of the input
sequence.

Frame-based inputs
Selects frame-based operation.

Number of channels

MOTDSP563 FIR Decimation

5-27

For frame-based operation, the number of columns (channels) in the input
matrix, N.

Framing
For frame-based operation, the method by which to implement the
decimation; reduce the output frame rate, or reduce the output frame size.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 FIR Interpolation

MOTDSP563 FIR Interpolation

5-28

5MOTDSP563 FIR InterpolationPurpose Upsample and filter an input signal.

Library Motdsp563lib.

Description The MOTDSP563 FIR Interpolation block resamples the input at an integer
rate L times faster than the input sample rate, where L is specified by the
Interpolation factor parameter. This process consists of two steps:

• The block upsamples the input to a higher rate by inserting L-1 zeros
between samples.

• The block filters the upsampled data with an FIR filter.

The MOTDSP563 FIR Interpolation block implements the upsampling and
FIR filtering steps together using a polyphase filter structure, which is more
efficient than straightforward upsample-then-filter algorithms.

The MOTDSP563 FIR filter coefficients parameter specifies the number of
numerator coefficients of the FIR filter transfer function H(z).

The coefficient vector, [b(1) b(2)... b(m)], can be generated by one of the filter
design functions in the Signal Processing Toolbox, and should have a length
greater than the interpolation factor (m>L). The filter should be lowpass with
normalized cutoff frequency no greater than 1/L. All filter states are internally
initialized to zero.

The Frame-based inputs parameter allows you to choose between
sample-based and frame-based operation.

Sample-Based Operation
When the check box is not selected (default), the block assumes that the input
is a 1-by-N sample vector or M-by-N sample matrix. Each of the N vector
elements (or M*N matrix elements) is treated as an independent channel, and
the block interpolates each channel over time.

MOTDSP563 FIR Interpolation

5-29

Frame-Based Operation
When the Frame-based inputs check box is selected, the block assumes that
the input is an M-by-N frame matrix. Each of the N frames in the matrix
contains M sequential time samples from an independent signal. The
illustration below shows a 6-by-4 matrix input:

The Number of channels parameter specifies the number of independent
channels (columns, N) in the matrix, and the block interpolates each channel
independently over time. Frame-based operation provides substantial
increases in throughput rates, at the expense of greater model latency.

In frame-based operation, the Framing parameter determines how the block
adjusts the rate at the output. There are two available options:

• Maintain input frame rate

The block generates the output at the faster (interpolated) rate by using a
proportionally larger frame size than the input. For interpolation by a
factor of L, the output frame size is L times larger than the input frame
size, but the input and output frame rates are equal.

The example below shows a single-channel input of frame size 16 being
upsampled by a factor of 4 to a frame size of 64. The block's input and
output frame rates are identical.

MOTDSP563 FIR Interpolation

5-30

• Maintain input frame size

The block generates the output at the faster (interpolated) rate by using a
proportionally shorter frame period at the output port than at the input
port. For interpolation by a factor of L, the output frame period is L times
shorter than the input frame period, but the input and output frame sizes
are equal.

The example below shows a single-channel input (frame size = 64) with a
frame period of 1 second being upsampled by a factor of 4 to a frame period
of 0.25 seconds. The input and output frame sizes are identical.

MOTDSP563 FIR Interpolation

5-31

Latency
Zero Latency. The FIR Interpolation block has zero tasking latency for all
single-rate operations. The block is single-rate for the particular combinations
of sampling mode and parameter settings shown in the table below.

Note that in sample-based mode, single-rate operation occurs only in the trivial
case of factor-of-1 interpolation.

The block also has zero latency for sample-based multirate operations in
Simulink's single-tasking mode. Zero tasking latency means that the block
propagates the first filtered input (received at t=0) as the first input sample,
followed by L-1 interpolated values, the second filtered input sample, and so
on.

Nonzero Latency.

The FIR Interpolation block is multirate for all settings other than those in the
above table. The amount of latency for multirate operation depends on
Simulink's tasking mode and the block's sampling mode, as shown in the table
below.

In cases of one-sample latency, a zero initial condition appears as the first
output sample in each channel, followed immediately by the first filtered input
sample, L-1 interpolated values, and so on.

Sampling Mode Parameter Settings

Sample-based Interpolation factor parameter, K, is 1.

Frame-based Interpolation factor parameter, K, is 1, or Framing
parameter is Maintain input frame rate.

Multirate... Sample-Based Latency Frame-Based Latency

Single-tasking None One frame (Mi samples)

Multitasking One sample One frame (Mi samples)

MOTDSP563 FIR Interpolation

5-32

In cases of one-frame latency, the first Mi output rows contain zeros, where Mi
is the input frame size. The first filtered input sample (first filtered row of the
input matrix) appears in the output as sample Mi+1, followed by L-1
interpolated values, the second filtered input sample, and so on. See the
example below for an illustration of this case.

Example Construct the frame-based model shown below.

Adjust the block parameters as follows.

• Configure the Signal From Workspace block to generate a two-channel
signal with frame size of 4 and sample period of 0.25. This represents an
output frame period of 1 (0.25*4). The first channel should contain the
positive ramp signal 1, 2,..., 100, and the second channel should contain the
negative ramp signal -1, -2,..., -100.
Signal = [(1:100)' (-1:-1:-100)']/100
Sample time = 0.25
Samples per frame = 4

• Configure the FIR Decimation block to decimate the two-channel input by
decreasing the output frame rate by a factor of 2 relative to the input frame
rate. Use a third-order filter with normalized cutoff frequency, fn0, of 0.25.
(Note that fn0 satisfies fn0 1/K)
FIR filter coefficients = fir1(3,0.25)
Downsample factor = 2
Frame-based inputs
Number of channels = 2

MOTDSP563 FIR Interpolation

5-33

Framing = Maintain input frame size

• Configure the Signal To Workspace block for the two-channel input.
Frame-based inputs
Number of channels = 2

• Configure the Probe blocks by deselecting the Probe width and Probe
complex signal check boxes (if desired).

This model is multirate because there are at least two distinct sample rates, as
shown by the two Probe blocks. To run this model in Simulink's multitasking
mode, select Fixed-step and discrete from the Type controls in the Solver
panel of the Simulation Parameters dialog box, and select MultiTasking
from the Mode parameter. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each
channel are shown below.

yout =
 0 0
 0 0
 0 0
 0 0
 0.00038576126099 -0.00038576126099
 0.00461423397064 -0.00461423397064
 0.00538575649261 -0.00538575649261
 0.00961422920227 -0.00961422920227
 0.01038587093353 -0.01038587093353

Since we ran this frame-based multirate model in multitasking mode, the first
four (Mi) output rows are zero. The first filtered input matrix row appears in
the output as sample 5 (i.e., sample Mi+1). Every second row is an interpolated
value.

The filter coefficient vector generated by fir1(3,0.25) is

[0.0386 0.4614 0.4614 0.0386]

or, equivalently.

• H z() B z() 0.0386 0.04614z 1– 0.04614z 2– 0.0386z 3–
+ + += =

MOTDSP563 FIR Interpolation

5-34

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Specify the DSP processor to be used.

FIR filter coefficients
The FIR filter coefficients, in descending powers of z.

Interpolation factor
The integer factor, L, by which to increase the sample rate of the input
sequence.

Frame-based inputs
Selects frame-based operation.

Number of channels

MOTDSP563 FIR Interpolation

5-35

For frame-based operation, the number of columns (channels) in the input
matrix, N.

Framing
For frame-based operation, the method by which to implement the
interpolation: increase the output frame rate, or increase the output frame
size.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 FIR Decimation

MOTDSP563 IFFT

5-36

5MOTDSP563 IFFTPurpose Compute the IFFT of the input.

Library Motdsp563lib.

Description The MOTDSP563 IFFT block computes the inverse fast Fourier transform
(IFFT) of each real or complex input channel independently at each sample
time. The block assumes that the input is an M-by-N frame matrix. Each of the
N frames in the matrix contains M sequential time samples from an
independent signal.

For both sample-based and frame-based inputs, the block assumes that each
input column is a frame containing M consecutive frequency-samples from an
independent channel. The input must be complex, and the frame size, M, must
be a power-of-two.

If the input is frame-based, the output is frame-based; otherwise, the output is
sample-based. In either case, the output port rate is the same as the input port
rate. For convenience, length-M 1-D vector inputs and sample-based length-M
row vector inputs are processed as single channels (i.e., as M-by-1 column
vectors), and the output has the same dimension as the input.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

MOTDSP563 IFFT

5-37

DSP Processor Type
Select the DSP Processor to be used.

Number of channels
The number of channels (columns) in the input.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 FFT

MOTDSP563 Length

5-38

5MOTDSP563 LengthPurpose Get number of elements in a vector.

Library Motdsp563lib.

Description The MOTDSP563 Length block returns elements in a vector or the number of
row in a matrix.

For length-M 1-D vector inputs or a sample-based length-M row vector inputs,
the output is the number of element M; For the M-by-N full matrix inputs, the
output is the row number M.

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

see also MOTDSP563 Convolution MOTDSP563 Correlation

MOTDSP563 Log

5-39

5MOTDSP563 LogPurpose Perform a natural logarithm.

Library Motdsp563lib.

Description Perform a natural logarithm

Data Type Support
The MOTDSP563 Log block accepts complex or real-valued signals or signal
vectors of type double. The output signal type depends on input signal type.

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Log10 MOTDSP563 Sqrt

MOTDSP563 Log10

5-40

5MOTDSP563 Log10Purpose Perform a common (Base 10) logarithm.

Library Motdsp563lib.

Description Perform a common (Base 10) logarithm.

The MOTDSP563 Log10 block accepts complex or real-valued vectors of type
double.The output signal type depends on input signal type.

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Log MOTDSP563 Sqrt

MOTDSP563 Matrix Mean

5-41

5MOTDSP563 Matrix MeanPurpose Mean the elements of a matrix along rows or columns.

Library Motdsp563lib.

Description The MOTDSP563 Matrix Mean block means the elements of an M-by-N input
matrix u along either the rows or columns.

When the Mean along parameter is set to Rows, the block means across the
elements of each row and outputs the resulting M-by-1 vector.

This is equivalent to

y = mot563_mean(u,2) % equivalent MATLAB code
When the Mean along parameter is set to Columns, the block means down
the elements of each column and outputs the resulting 1-by-N vector. This is
equivalent to

y = mot563_mean(u) %equivalent MATLAB code

Parameters
and Dialog Box

MOTDSP563 Matrix Mean

5-42

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Number of input ports
Number of input ports.

Number of columns in input
The number of columns in the input matrix.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Matrix Sum

MOTDSP563 Matrix Sum

5-43

5MOTDSP563 Matrix SumPurpose Sum the elements of a matrix along rows or columns.

Library Motdsp563lib.

Description The MOTDSP563 Matrix Sum block sums the elements of an M-by-N input
matrix u along either the rows or columns.

When the Sum along parameter is set to Rows, the block sums across the
elements of each row and outputs the resulting M-by-1 matrix. A length-N 1-D
vector input is treated as a 1-by-N matrix..

This is equivalent to

y = mot563_sum(u,2) % equivalent MATLAB code

When the Sum along parameter is set to Columns, the block sums down the
elements of each column and outputs the resulting 1-by-N matrix. A length-M
1-D vector input is treated as a M-by-1 matrix..

This is equivalent to

y = mot563_sum(u) % equivalent MATLAB code
If the input is sample-based, the output is sample-based; if the input is frame-
based, the output is frame-based.

MOTDSP563 Matrix Sum

5-44

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Matrix Mean

MOTDSP563 Maximum

5-45

5MOTDSP563 MaximumPurpose Find the maximum value of one or two input vector(s).

Library Motdsp563lib.

Description The MOTDSP563 Maximum block identifies the value and position of the
largest element in the input.

If the block has two input vectors, the block performs an element-by-element
comparison of the input vectors. Each element of the block output vector is the
result of the comparison of the elements of the input vectors.

If the block has only one input vector, the Mode parameter specifies the block's
mode of operation and can be set to Value, Index, or Value and Index. These
settings are described below.

Value

When Mode is set to Value, the block computes the maximum value in each
column of the M-by-N input matrix u independently at each sample time.

[y,i] = mot563_max(u(:)) % equivalent MATLAB code

The block output, y, is the maximum value of the input vector.

For convenience, length-M 1-D vector inputs and sample-based length-M row
vector inputs are both treated as M-by-1 column vectors. The output at each
sample time, val, is a sample-based 1-by-N vector containing the maximum
value of each column in u.

For complex inputs the block uses the magnitude of the input, abs(u(:)), to
identify the maximum. The output is the corresponding complex value from the
input. as shown below.

MOTDSP563 Maximum

5-46

Index

When Mode is set to Index, the block performs the computation shown above,
and outputs the index, i, corresponding to the position of the maximum value
in the input vector. The index is an integer in the range [1 length(u(:))].

If there are duplicates of the maximum value in the input, the index
corresponds to the first occurrence. For example, if the vector input is [.3.2 .1
.2.3], the index of the maximum value is 1, not 5.

Value and Index

When Mode is set to Value and Index, the block outputs both the value, y,
and the index, i.

In all three of the above modes, a matrix input, u, is treated as a vector, u(:)

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type

MOTDSP563 Maximum

5-47

Select the DSP Processor to be used.

Number of input ports
Number of input ports.

Mode
The block's mode of operation: Output the maximum value of each input,
the index of the maximum value, both the value and the index.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Minimum

MOTDSP563 Minimum

5-48

5MOTDSP563 MinimumPurpose Find the minimum value of one or two input vectors.

Library Motdsp563lib.

Description The MOTDSP563 Minimum block identifies the value and position of the
smallest element in the input.

If the block has two input vectors, the block performs an element-by-element
comparison of the input vectors. Each element of the block output vector is the
result of the comparison of the elements of the input vectors.

If the block has only one input vector, the Mode parameter specifies the block's
mode of operation and can be set to Value, Index, or Value and Index. These
settings are described below.

Value Mode

When Mode is set to Value, the block computes the minimum value of the
M-by-N input matrix u independently at each sample time.

[y,i] = mot563_MIN(u(:)) % equivalent MATLAB code
The block output, y, is the minimum value of the input vector.

For convenience, length-M 1-D vector inputs and sample-based length-M row
vector inputs are both treated as M-by-1 column vectors.

For complex inputs the block uses the magnitude of the input, abs(u(:)), to
identify the minimum. The output is the corresponding complex value from the
input. as shown below..

Index Mode

When Mode is set to Index, the block performs the computation shown above,
and outputs the index, i, corresponding to the position of the minimum value
in the input vector. The index is an integer in the range [1 length(u(:))].

MOTDSP563 Minimum

5-49

If there are duplicates of the minimum value in the input, the index
corresponds to the first occurrence.

For example, if the vector input is [.1.2.3.2.1], the index of the minimum value
is 1, not 5.

Value and Index Mode

When Mode is set to Value and Index, the block outputs both the vector of
minima, val, and the vector of indices, idx.

In all three of the above modes, a matrix input, u, is treated as a vector, u(:).

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Number of input ports
Number of input ports.

MOTDSP563 Minimum

5-50

Mode
The block's mode of operation: Output the maximum value of each input,
the index of the maximum value, both the value and the index.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Maximum

MOTDSP563 Rounding

5-51

5MOTDSP563 RoundingPurpose Perform common mathematical rounding.

Library Motdsp563lib.

Description The MOTDSP563 Rounding Function block performs common mathematical
rounding function.

The block accepts and output real- or complex-valued signals of type double.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 DSP Rounding MOTDSP563 Length MOTDSP563 Abs

MOTDSP563 Sort

5-52

5MOTDSP563 SortPurpose Sort the elements in a vector by value.

Library Motdsp563lib.

Description The MOTDSP563 Sort block sorts the elements in a real or complex input
vector by value using a Quick sort algorithm. The output vector, y, contains the
input values arranged in order of ascending.

[y,i] = sort(u(:)) % equivalent MATLAB code (ascending)
The Mode parameter specifies the block's output, and can be set to Value,
Index, or Value and Index:

Value Mode
When Mode is set to Value, the block sorts the elements in each column of the
M-by-N input matrix u in order of ascending, as specified by the Sort order
parameter.

For convenience, length-M 1-D vector inputs and sample-based length-M row
vector inputs are both treated as M-by-1 column vectors.

The output at each sample time is a sample-based M-by-N matrix containing
the sorted columns of u. Complex inputs are sorted by magnitude.

Index Mode
When Mode is set to Index, the block sorts the elements in each column of the
M-by-N input matrix u. and outputs the sample-based M-by-N index matrix.

As in Value mode, length-M 1-D vector inputs and sample-based length-M row
vector inputs are both treated as M-by-1 column vectors.

Value and Index Mode
When Mode is set to Value and Index, the block outputs both the sorted matrix,
and the index matrix. Note that a matrix input is sorted as a single vector, u(:),
rather than column by column.

MOTDSP563 Sort

5-53

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Mode
The block's mode of operation: Output the sorted vector, the index vector,
or both.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Convolution MOTDSO563 Correlation

MOTDSP563 Sqrt

5-54

5MOTDSP563 SqrtPurpose Perform a Square Root.

Library Motdsp563lib.

Description Perform a Square Root.

The MOTDSP563 sqrt block accepts complex or real-valued signals or signal
vectors of type double.The output signal type depends on input signal.

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Abs MOTDSO563 Log MOTDSO563 Log10

MOTDSP563 Correlation

5-55

5MOTDSP563 CorrelationPurpose Compute the correlation of two vectors.

Library Motdsp563lib.

Description When both inputs are real, the output is real as well. When one or both inputs
are complex, the output is complex.

Frame-Based Inputs
Matrix inputs must be frame-based. The output, y, is a frame-based
(Mu+Mv-1)-by-N matrix whose column has elements:

where * denotes the complex conjugate. Inputs u and v are zero when indexed
outside of their valid ranges. When both inputs are real, the output is real;
when one or both inputs are complex, the output is complex.

When one input is a column vector (single channel) and the other is a matrix
(multiple channels), the single-channel input is independently cross-correlated
with each channel of the multichannel input. For example, if u is a Mu-by-1
column vector and v is an Mv-by-N matrix, the output is an (Mu+Mv-1)-by-N
matrix whose column has elements:

Sample-Based Inputs
If u and v are sample-based vectors with lengths Mu and Mv, the Correlation
block performs the vector cross-correlation.

The dimensions of the sample-based output vector are determined by the
dimensions of the input vectors:

MOTDSP563 Correlation

5-56

The Correlation block does not accept sample-based row vector inputs, or
mixed sample-based row vector and column vector inputs.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP563xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP563 Convolution

Motorola 56600 Family Blockset

-57

Motorola 56600 Family Blockset
The block library within the Motorola 56600 DSP Developer’s Kit Blockset
contains all 21 Motorola 56600 DSP blocks which vary from elementary math
computation (MOTDSP566 Abs, MOTDSP566 Log), to frequency domain
transform(MOTDSP566 FFT), even Filtering design is involved.

Motorola 56600 DDK Blocks Listed by Category

Motorola 56600 DDK Blockset

MOTDSP566 Abs MOTDSP566 Angle

MOTDSP566 Convolution MOTDSP566 FIR Decimation

MOTDSP566 Difference MOTDSP566 DSP Rounding

MOTDSP566 FFT MOTDSP566 Direct-Form II
Transpose Filter

MOTDSP566 IFFT MOTDSP566 FIR Interpolation

MOTDSP566 Length MOTDSP566 Log

MOTDSP566 Log10 MOTDSP566 Maximum

MOTDSP566 Matrix Mean MOTDSP566 Minimum

MOTDSP566 Rounding MOTDSP566 Sort

MOTDSP566 Sqrt MOTDSP566 Matrix Sum

MOTDSP566 Correlation

-58

MOTDSP566 Abs

5-59

5MOTDSP566 AbsPurpose Output the absolute value of the input.

Library Motdsp566lib.

Description The MOTDSP566 Abs block generates as output the absolute value of the
input.

Data Type Support
The MOTDSP566 Absblock accepts a real- or complex-valued input of type double
and generates a real output of type double.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

MOTDSP566 Abs

5-60

See Also MOTDSP566 Log MOTDSP566 Log10 MOTDSP566 Sqrt

MOTDSP566 Angle

5-61

5MOTDSP566 AnglePurpose Compute the phase angle of a real- or complex-valued signal.

Library Motdsp566lib.

Description The MOTDSP566 Angle block accepts a real- or complex-valued signal of type
double. It outputs the phase angle of the input signal. The outputs are real
values of type double. The input may be a vector of complex signals, in which
case the output signals are also vectors. The angle output similarly contains
the angles of the input elements.

Data Type Support
See the description above.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

MOTDSP566 Angle

5-62

See Also MOTDSP566 Log MOTDSP566 Log10 MOTDSP566 Sqrt

MOTDSP566 Convolution

5-63

5MOTDSP566 ConvolutionPurpose Compute the convolution of two vectors.

Library Motdsp566lib.

Description The MOTDSP566 Convolution block convolves corresponding columns
(channels)

of Mu-by-N input matrix u and Mv-by-N input matrix v.

Frame-Based Inputs
Matrix inputs must be frame-based. The output, y, is a frame-based

(Mu+Mv-1)-by-N matrix.

where * denotes the complex conjugate. Inputs u and v are zero when indexed
outside of their valid ranges. When both inputs are real, the output is real;
when one or both inputs are complex, the output is complex.

When one input is a column vector (single channel) and the other is a matrix
(multiple channels), the single-channel input is independently convolved with
each channel of the multichannel input. For example, if u is a Mu-by-1 column
vector and v is an Mv-by-N matrix, the output is an (Mu+Mv-1)-by-N matrix
whose column has elements.

Sample-Based Inputs
If u and v are sample-based vectors with lengths Mu and Mv, the convolution
block performs the vector convolution.

MOTDSP566 Convolution

5-64

The dimensions of the sample-based output vector are determined by the
dimensions of the input vectors:

When both inputs are row vectors, or when one input is a row vector and the
other is a 1-D vector, the output is a 1-by-(Mu+Mv-1) row vector.

When both inputs are column vectors, or when one input is a column vector
and the other is a 1-D vector, the output is a (Mu+Mv-1)-by-1 column vector.

When both inputs are 1-D vectors, the output is a 1-D vector of length
Mu+Mv-1.

The Convolution block does not accept sample-based full-dimension matrix
inputs, or mixed sample-based row vector and column vector inputs.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

MOTDSP566 Convolution

5-65

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Correlation

MOTDSP566 Difference

5-66

5MOTDSP566 DifferencePurpose Compute the element-to-element difference along a vector.

Library Motdsp566lib.

Description The MOTDSP566 Difference block computes the difference between successive
vector elements. That is, for an input vector u of length N,

y = [u(2)-u(1) u(3)-u(2) ... u(N)-u(N-1)]
or

y = mot566_diff(u) % equivalent MATLAB code
The output is a vector of length N-1. A matrix input, u, is treated as a vector,
u(:).

Columnwise Differencing
When Columns is selected from the Difference along parameter, the block
computes differences between adjacent column elements.

For sample-based inputs, the output is a sample-based (M-1)-by-N matrix
whose column has elements:

For convenience, length-M 1-D vector inputs are treated as M-by-1 column
vectors for columnwise differencing, and the output is 1-D.

The first row of the first output contains zeros, and the first row of each
subsequent output contains the difference between the first row of the current
input (time t) and the last row of the previous input (time t-Tf).

Rowwise Differencing

MOTDSP566 Difference

5-67

When Rows is selected from the Difference along parameter, the block
computes differences between adjacent row elements. The output is an
M-by-(N-1) matrix.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Convolution MOTDSP566 Correlation

MOTDSP566 Direct-Form II Transpose Filter

5-68

5MOTDSP566 Direct-Form II Transpose FilterPurpose Apply an IIR filter to the input.

Library Motdsp566lib.

Description The MOTDSP566 Direct-Form II Transpose Filter block applies a transposed
direct-form II IIR filter to the input.

This is a canonical form that has the minimum number of delay elements. The
filter order is max(m, n)-1.

The filter is specified in the parameter dialog box by its transfer function,

where the Numerator parameter specifies the vector of numerator
coefficients,

[b(1) b(2) ... b(m)]
and the Denominator parameter specifies the vector of denominator
coefficients,

[a(1) a(2) ... a(n)]
Note that the filter coefficients are normalized by a1.

Initial Conditions
In its default form, the filter initializes the internal filter states to zero, which
is equivalent to assuming past inputs and outputs are zero. The block also
accepts optional nonzero initial conditions for the filter delays. Note that the
number of filter states (delay elements) per input channel is

max(m,n)-1.

MOTDSP566 Direct-Form II Transpose Filter

5-69

The Initial conditions parameter may take one of four forms:

• Empty matrix

The empty matrix, [], causes a zero (0) initial condition to be applied to all
delay elements in each filter channel.

• Scalar

The scalar value is copied to all delay elements in each filter channel. Note
that a value of zero is equivalent to setting the Initial conditions
parameter to the empty matrix.

• Vector

The vector has a length equal to the number of delay elements in each filter
channel, max(m,n)-1, and specifies a unique initial condition for each delay
element in the filter channel. This vector of initial conditions is applied to
each filter channel.

• Matrix

The matrix specifies a unique initial condition for each delay element, and
can specify different initial conditions for each filter channel. The matrix
must have the same number of rows as the number of delay elements in the
filter, max(m,n)-1, and must have one column per filter channel.

The Frame-based inputs parameter allows you to choose between
sample-based and frame-based operation.

Sample-Based Operation
When the check box is not selected (default), the block assumes that the input
is a 1-by-N sample vector or M-by-N sample matrix. Each of the N vector
elements (or M*N matrix elements) is treated as an independent channel, and
the block filters each channel over time.

Frame-Based Operation
When the Frame-based inputs check box is selected, the block assumes that the
input is an M-by-N frame matrix. Each of the N frames in the matrix contains
M sequential time samples from an independent signal. The illustration below
shows a 6-by-4 matrix input:

MOTDSP566 Direct-Form II Transpose Filter

5-70

.

The Number of channels parameter specifies the number of independent
channels (columns), N, in the matrix, and the block filters each channel
independently over time. Frame-based operation provides substantial
increases in throughput rates, at the expense of greater model latency.

Parameters
and Dialog Box

MOTDSP566 Direct-Form II Transpose Filter

5-71

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Numerator
The filter numerator.

Denominator
The filter denominator.

Initial conditions
The filter's initial conditions, a scalar, vector, or matrix.

Frame-based inputs
Selects frame-based operation.

Number of channels
For frame-based operation, the number of columns (channels) in the input
matrix.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Sort

MOTDSP566 Rounding

5-72

5MOTDSP566 RoundingPurpose Perform convergent rounding.

Library Motdsp566lib.

Description The MOTDSP566 DSP Rounding Function block performs convergent
rounding function.

The block accepts and outputs real- or complex-valued signals of type double.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 DSP Rounding MOTDSP566 Length MOTDSP566 Abs

MOTDSP566 FFT

5-73

5MOTDSP566 FFTPurpose Compute the FFT of the input.

Library Motdsp566lib.

Description The MOTDSP566 FFT block computes the fast Fourier transform (FFT) of each
input channel independently at each sample time. The block assumes that the
input is an M-by-N frame matrix. Each of the N frames in the matrix contains
M sequential time samples from an independent signal.

The illustration below shows a 6-by-4 matrix input:

The Number of channels parameter specifies the number of independent
channels (columns), N, in the matrix. The output is complex and has the same
dimension and sample rate as the input (i.e., the FFT is computed at M
frequency points for each channel).

The FFT operation for a single-channel input (Number of channels = 1) is
shown below.

MOTDSP566 FFT

5-74

The input frame size, M, must be a power of two. To work with other frame
sizes, use the Zero Pad block to pad or truncate the input frame to a
power-of-two length.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Number of channels
The number of columns (frames) in the input matrix.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 IFFT

MOTDSP566 FIR Decimation

5-75

5MOTDSP566 FIR DecimationPurpose Filter and downsample an input signal.

Library Motdsp566lib.

Description The MOTDSP566 FIR Decimation block resamples the input at an integer rate
K times slower than the input sample rate, where K is specified by the
Decimation factor parameter. This process consists of two steps:

• The block filters the input data with an FIR filter.

• The block downsamples the filtered data to a lower rate.

The MOTDSP566 FIR Decimation block implements the FIR filtering and
downsampling steps together using a polyphase filter structure, which is more
efficient than straightforward filter-then-decimate algorithms. The output of
the decimator is the first filter phase.

In practice, the filter specified by the FIR filter coefficients vector should be
a lowpass FIR with normalized cutoff frequency no greater than 1/K. The
coefficients in the vector are ordered in descending powers of z.

The length-m coefficient vector, [b(1) b(2)... b(m)], can be generated by one of
the filter design functions in the Signal Processing Toolbox. The filter should
be lowpass with normalized cutoff frequency no greater than 1/K. All filter
states are internally initialized to zero.

 Frame-based inputs
The parameter allows you to choose between sample-based and frame-based
operation.

Sample-Based Operation
When the check box is not selected (default), the block assumes that the input
is a 1-by-N sample vector or M-by-N sample matrix. Each of the N vector
elements (or M*N matrix elements) is treated as an independent channel, and
the block decimates each channel over time.

MOTDSP566 FIR Decimation

5-76

Frame-Based Operation
When the Frame-based inputs check box is selected, the block assumes that
the input is an M-by-N frame matrix. Each of the N frames in the matrix
contains M sequential time samples from an independent signal. The
illustration below shows a 6-by-4 matrix input:

The Number of channels parameter specifies the number of independent
channels (columns), N, in the matrix, and the block decimates each channel
independently over time. Frame-based operation provides substantial
increases in throughput rates, at the expense of greater model latency.

In frame-based operation, the Framing parameter determines how the block
adjusts the rate at the output. There are two available options:

• Maintain input frame rate

The block generates the output at the slower (decimated) rate by using a
proportionally smaller frame size than the input. For decimation by a
factor of K, the output frame size is K times smaller than the input frame
size, but the input and output frame rates are equal. The input frame size
must be a multiple of the decimation factor.

The example below shows a single-channel input of frame size 64 being
decimated by a factor of 4 to a frame size of 16. The block's input and output
frame rates are identical.

MOTDSP566 FIR Decimation

5-77

• Maintain input frame size

The block generates the output at the slower (decimated) rate by using a
proportionally longer frame period at the output port than at the input
port. For decimation by a factor of K, the output frame period is K times
longer than the input frame period, but the input and output frame sizes
are equal.

The example below shows a single-channel input (frame size = 64) with a
sample period of 1 second being decimated by a factor of 3 to a sample
period of 3 seconds. The input and output frame sizes are identical

Latency
Zero Latency. The FIR Decimation block has zero tasking latency for all
single-rate operations. The block is single-rate for the particular combinations
of sampling mode and parameter settings shown in the table.

MOTDSP566 FIR Decimation

5-78

Note that in sample-based mode, single-rate operation occurs only in the trivial
case of factor-of-1 decimation.

The block also has zero latency for sample-based multirate operations in
Simulink's single-tasking mode. Zero tasking latency means that the block
propagates the first filtered input sample (received at t=0) as the first output
sample, followed by filtered input samples K+1, 2K+1, and so on.

Nonzero Latency.

The FIR Decimation block is multirate for all settings other than those in the
above table. The amount of latency for multirate operation depends on
Simulink's tasking mode and the block's sampling mode, as shown in the table
below.

In cases of one-sample latency, a zero initial condition appears as the first
output sample in each channel. The first filtered input sample appears as the
second output sample, followed by filtered input samples K+1, 2K+1, and so on.

In cases of one-frame latency, the first Mi output rows contain zeros, where Mi
is the input frame size. The first filtered input sample (first filtered row of the
input matrix) appears in the output as sample Mi+1, followed by filtered input
samples K+1, 2K+1, and so on. See the example below for an illustration of this
case.

Sampling Mode Parameter Settings

Sample-based Decimation factor parameter, K, is 1.

Frame-based Decimation factor parameter, K, is 1, or Framing
parameter is Maintain input frame rate.

Multirate... Sample-Based Latency Frame-Based Latency

Single-tasking None One frame (Mi samples)

Multitasking One sample One frame (Mi samples)

MOTDSP566 FIR Decimation

5-79

Example Construct the frame-based model shown below.

Adjust the block parameters as follows.

• Configure the Signal From Workspace block to generate a two-channel
signal with frame size of 4 and sample period of 0.25. This represents an
output frame period of 1 (0.25*4). The first channel should contain the
positive ramp signal 1, 2,..., 100, and the second channel should contain the
negative ramp signal -1, -2,..., -100.
Signal = [(1:100)' (-1:-1:-100)']/100
Sample time = 0.25
Samples per frame = 4

• Configure the FIR Decimation block to decimate the two-channel input by
decreasing the output frame rate by a factor of 2 relative to the input frame
rate. Use a third-order filter with normalized cutoff frequency, fn0, of 0.25.
(Note that fn0 satisfies fn0 1/K)
FIR filter coefficients = fir1(3,0.25)
Downsample factor = 2
Frame-based inputs
Number of channels = 2
Framing = Maintain input frame size

• Configure the Signal To Workspace block for the two-channel input.
Frame-based inputs
Number of channels = 2

• Configure the Probe blocks by deselecting the Probe width and Probe
complex signal check boxes (if desired).

MOTDSP566 FIR Decimation

5-80

This model is multirate because there are at least two distinct sample rates, as
shown by the two Probe blocks. To run this model in Simulink's multitasking
mode, select Fixed-step and discrete from the Type controls in the Solver
panel of the Simulation Parameters dialog box, and select MultiTasking
from the Mode parameter. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each
channel are shown below.

yout =
 0 0
 0 0
 0 0
 0 0
 0.00038576126099 -0.00038576126099
 0.01500010490417 -0.01500010490417
 0.03499984741211 -0.03499984741211
 0.05500006675720 -0.05500006675720
 0.07500004768372 -0.07500004768372
 0.09500002861023 -0.09500002861023
 0.11500000953674 -0.11500000953674

Since we ran this frame-based multirate model in multitasking mode, the first
four (Mi) output rows are zero. The first filtered input matrix row appears in
the output as sample 5 (i.e., sample Mi+1).

The filter coefficient vector generated by fir1(3,0.25) is

[0.0386 0.4614 0.4614 0.0386]

or, equivalently,

• H z() B z() 0.0386 0.04614z 1– 0.04614z 2– 0.0386z 3–
+ + += =

MOTDSP566 FIR Decimation

5-81

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Specify the DSP processor to be used.

FIR filter coefficients
The FIR filter coefficients, in descending powers of z.

Decimation factor
The integer factor, K, by which to decrease the sample rate of the input
sequence.

Frame-based inputs
Selects frame-based operation.

Number of channels

MOTDSP566 FIR Decimation

5-82

For frame-based operation, the number of columns (channels) in the input
matrix, N.

Framing
For frame-based operation, the method by which to implement the
decimation; reduce the output frame rate, or reduce the output frame size.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 FIR Interpolation

MOTDSP566 FIR Interpolation

5-83

5MOTDSP566 FIR InterpolationPurpose Upsample and filter an input signal.

Library Motdsp566lib.

Description The MOTDSP566 FIR Interpolation block resamples the input at an integer
rate L times faster than the input sample rate, where L is specified by the
Interpolation factor parameter. This process consists of two steps:

• The block upsamples the input to a higher rate by inserting L-1 zeros
between samples.

• The block filters the upsampled data with an FIR filter.

The MOTDSP566 FIR Interpolation block implements the upsampling and
FIR filtering steps together using a polyphase filter structure, which is more
efficient than straightforward upsample-then-filter algorithms.

The MOTDSP566 FIR filter coefficients parameter specifies the number
numerator coefficients of the FIR filter transfer function H(z).

The coefficient vector, [b(1) b(2)... b(m)], can be generated by one of the filter
design functions in the Signal Processing Toolbox, and should have a length
greater than the interpolation factor (m>L). The filter should be lowpass with
normalized cutoff frequency no greater than 1/L. All filter states are internally
initialized to zero.

The Frame-based inputs parameter allows you to choose between
sample-based and frame-based operation.

Sample-Based Operation
When the check box is not selected (default), the block assumes that the input
is a 1-by-N sample vector or M-by-N sample matrix. Each of the N vector
elements (or M*N matrix elements) is treated as an independent channel, and
the block interpolates each channel over time.

MOTDSP566 FIR Interpolation

5-84

Frame-Based Operation
When the Frame-based inputs check box is selected, the block assumes that
the input is an M-by-N frame matrix. Each of the N frames in the matrix
contains M sequential time samples from an independent signal. The
illustration below shows a 6-by-4 matrix input:

The Number of channels parameter specifies the number of independent
channels (columns, N) in the matrix, and the block interpolates each channel
independently over time. Frame-based operation provides substantial
increases in throughput rates, at the expense of greater model latency.

In frame-based operation, the Framing parameter determines how the block
adjusts the rate at the output. There are two available options:

• Maintain input frame rate

The block generates the output at the faster (interpolated) rate by using a
proportionally larger frame size than the input. For interpolation by a
factor of L, the output frame size is L times larger than the input frame
size, but the input and output frame rates are equal.

The example below shows a single-channel input of frame size 16 being
upsampled by a factor of 4 to a frame size of 64. The block's input and
output frame rates are identical.

MOTDSP566 FIR Interpolation

5-85

• Maintain input frame size

The block generates the output at the faster (interpolated) rate by using a
proportionally shorter frame period at the output port than at the input
port. For interpolation by a factor of L, the output frame period is L times
shorter than the input frame period, but the input and output frame sizes
are equal.

The example below shows a single-channel input (frame size = 64) with a
frame period of 1 second being upsampled by a factor of 4 to a frame period
of 0.25 seconds. The input and output frame sizes are identical.

MOTDSP566 FIR Interpolation

5-86

Latency
Zero Latency. The FIR Interpolation block has zero tasking latency for all
single-rate operations. The block is single-rate for the particular combinations
of sampling mode and parameter settings shown in the table below.

Note that in sample-based mode, single-rate operation occurs only in the trivial
case of factor-of-1 interpolation.

The block also has zero latency for sample-based multirate operations in
Simulink's single-tasking mode. Zero tasking latency means that the block
propagates the first filtered input (received at t=0) as the first input sample,
followed by L-1 interpolated values, the second filtered input sample, and so
on.

Nonzero Latency.

The FIR Interpolation block is multirate for all settings other than those in the
above table. The amount of latency for multirate operation depends on
Simulink's tasking mode and the block's sampling mode, as shown in the table
below.

In cases of one-sample latency, a zero initial condition appears as the first
output sample in each channel, followed immediately by the first filtered input
sample, L-1 interpolated values, and so on.

Sampling Mode Parameter Settings

Sample-based Interpolation factor parameter, K, is 1.

Frame-based Interpolation factor parameter, K, is 1, or Framing
parameter is Maintain input frame rate.

Multirate... Sample-Based Latency Frame-Based Latency

Single-tasking None One frame (Mi samples)

Multitasking One sample One frame (Mi samples)

MOTDSP566 FIR Interpolation

5-87

In cases of one-frame latency, the first Mi output rows contain zeros, where Mi
is the input frame size. The first filtered input sample (first filtered row of the
input matrix) appears in the output as sample Mi+1, followed by L-1
interpolated values, the second filtered input sample, and so on. See the
example below for an illustration of this case.

Example Construct the frame-based model shown below.

Adjust the block parameters as follows.

• Configure the Signal From Workspace block to generate a two-channel
signal with frame size of 4 and sample period of 0.25. This represents an
output frame period of 1 (0.25*4). The first channel should contain the
positive ramp signal 1, 2,..., 100, and the second channel should contain the
negative ramp signal -1, -2,..., -100.
Signal = [(1:100)' (-1:-1:-100)']/100
Sample time = 0.25
Samples per frame = 4

• Configure the FIR Decimation block to decimate the two-channel input by
decreasing the output frame rate by a factor of 2 relative to the input frame
rate. Use a third-order filter with normalized cutoff frequency, fn0, of 0.25.
(Note that fn0 satisfies fn0 1/K)
FIR filter coefficients = fir1(3,0.25)
Downsample factor = 2
Frame-based inputs
Number of channels = 2

MOTDSP566 FIR Interpolation

5-88

Framing = Maintain input frame size

• Configure the Signal To Workspace block for the two-channel input.
Frame-based inputs
Number of channels = 2

• Configure the Probe blocks by deselecting the Probe width and Probe
complex signal check boxes (if desired).

This model is multirate because there are at least two distinct sample rates, as
shown by the two Probe blocks. To run this model in Simulink's multitasking
mode, select Fixed-step and discrete from the Type controls in the Solver
panel of the Simulation Parameters dialog box, and select MultiTasking
from the Mode parameter. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each
channel are shown below.

yout =
 0 0
 0 0
 0 0
 0 0
 0.00038576126099 -0.00038576126099
 0.00461423397064 -0.00461423397064
 0.00538575649261 -0.00538575649261
 0.00961422920227 -0.00961422920227
 0.01038587093353 -0.01038587093353

Since we ran this frame-based multirate model in multitasking mode, the first
four (Mi) output rows are zero. The first filtered input matrix row appears in
the output as sample 5 (i.e., sample Mi+1). Every second row is an interpolated
value.

The filter coefficient vector generated by fir1(3,0.25) is

[0.0386 0.4614 0.4614 0.0386]

or, equivalently.

• H z() B z() 0.0386 0.04614z 1– 0.04614z 2– 0.0386z 3–
+ + += =

MOTDSP566 FIR Interpolation

5-89

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx.

DSP Processor Type
Specify the DSP processor to be used.

FIR filter coefficients
The FIR filter coefficients, in descending powers of z.

Interpolation factor
The integer factor, L, by which to increase the sample rate of the input
sequence.

Frame-based inputs
Selects frame-based operation.

Number of channels

MOTDSP566 FIR Interpolation

5-90

For frame-based operation, the number of columns (channels) in the input
matrix, N.

Framing
For frame-based operation, the method by which to implement the
interpolation: increase the output frame rate, or increase the output frame
size.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 FIR Decimation

MOTDSP566 IFFT

5-91

5MOTDSP566 IFFTPurpose Compute the IFFT of the input.

Library Motdsp566lib.

Description The MOTDSP566 IFFT block computes the inverse fast Fourier transform
(IFFT) of each real or complex input channel independently at each sample
time. The block assumes that the input is an M-by-N frame matrix. Each of the
N frames in the matrix contains M sequential time samples from an
independent signal.

For both sample-based and frame-based inputs, the block assumes that each
input column is a frame containing M consecutive frequency-samples from an
independent channel. The input must be complex, and the frame size, M, must
be a power-of-two.

If the input is frame-based, the output is frame-based; otherwise, the output is
sample-based. In either case, the output port rate is the same as the input port
rate. For convenience, length-M 1-D vector inputs and sample-based length-M
row vector inputs are processed as single channels (i.e., as M-by-1 column
vectors), and the output has the same dimension as the input.

Parameters
and Dialog Box

MOTDSP566 IFFT

5-92

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Number of channels
The number of channels (columns) in the input.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 FFT

MOTDSP566 Length

5-93

5MOTDSP566 LengthPurpose Get number of elements in a vector.

Library Motdsp566lib.

Description The MOTDSP566 Length block returns elements in a vector or the number of
row in a matrix.

For length-M 1-D vector inputs or a sample-based length-M row vector inputs,
the output is the number of element M; For the M-by-N full matrix inputs, the
output is the row number M.

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

see also MOTDSP566 Convolution MOTDSP566 Correlation

MOTDSP566 Log

5-94

5MOTDSP566 LogPurpose Perform a natural logarithm.

Library Motdsp566lib.

Description Perform a natural logarithm

Data Type Support
The MOTDSP566 Log block accepts complex or real-valued signals or signal
vectors of type double. The output signal type depends on input signal type.

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Log10 MOTDSP566 Sqrt

MOTDSP566 Log10

5-95

5MOTDSP566 Log10Purpose Perform a common (Base 10) logarithm.

Library Motdsp566lib.

Description Perform a common (Base 10) logarithm.

The MOTDSP566 Log10 block accepts complex or real-valued vectors of type
double.The output signal type depends on input signal type.

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Log MOTDSP566 Sqrt

MOTDSP566 Matrix Mean

5-96

5MOTDSP566 Matrix MeanPurpose Mean the elements of a matrix along rows or columns.

Library Motdsp566lib.

Description The MOTDSP566 Matrix Mean block means the elements of an M-by-N input
matrix u along either the rows or columns.

When the Mean along parameter is set to Rows, the block means across the
elements of each row and outputs the resulting M-by-1 vector.

This is equivalent to

y = mot566_mean(u,2) % equivalent MATLAB code
When the Mean along parameter is set to Columns, the block means down
the elements of each column and outputs the resulting 1-by-N vector. This is
equivalent to

y = mot566_mean(u) %equivalent MATLAB code

Parameters
and Dialog Box

MOTDSP566 Matrix Mean

5-97

Command File
Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Number of input ports
Number of input ports.

Number of columns in input
The number of columns in the input matrix.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Matrix Sum

MOTDSP566 Matrix Sum

5-98

5MOTDSP566 Matrix SumPurpose Sum the elements of a matrix along rows or columns.

Library Motdsp566lib.

Description The MOTDSP566 Matrix Sum block sums the elements of an M-by-N input
matrix u along either the rows or columns.

When the Sum along parameter is set to Rows, the block sums across the
elements of each row and outputs the resulting M-by-1 matrix. A length-N 1-D
vector input is treated as a 1-by-N matrix..

This is equivalent to

y = mot566_sum(u,2) % equivalent MATLAB code

When the Sum along parameter is set to Columns, the block sums down the
elements of each column and outputs the resulting 1-by-N matrix. A length-M
1-D vector input is treated as a M-by-1 matrix..

This is equivalent to

y = mot566_sum(u) % equivalent MATLAB code
If the input is sample-based, the output is sample-based; if the input is frame-
based, the output is frame-based.

MOTDSP566 Matrix Sum

5-99

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Matrix Mean

MOTDSP566 Maximum

5-100

5MOTDSP566 MaximumPurpose Find the maximum value of one or two input vector(s).

Library Motdsp566lib.

Description The MOTDSP566 Maximum block identifies the value and position of the
largest element in the input.

If the block has two input vectors, the block performs an element-by-element
comparison of the input vectors. Each element of the block output vector is the
result of the comparison of the elements of the input vectors.

If the block has only one input vector, the Mode parameter specifies the block's
mode of operation and can be set to Value, Index, or Value and Index. These
settings are described below.

Value

When Mode is set to Value, the block computes the maximum value in each
column of the M-by-N input matrix u independently at each sample time.

[y,i] = mot566_max(u(:)) % equivalent MATLAB code

The block output, y, is the maximum value of the input vector.

For convenience, length-M 1-D vector inputs and sample-based length-M row
vector inputs are both treated as M-by-1 column vectors. The output at each
sample time, val, is a sample-based 1-by-N length vector containing the
maximum value of each column in u.

For complex inputs the block uses the magnitude of the input, abs(u(:)), to
identify the maximum. The output is the corresponding complex value from the
input. as shown below.

MOTDSP566 Maximum

5-101

Index

When Mode is set to Index, the block performs the computation shown above,
and outputs the index, i, corresponding to the position of the maximum value
in the input vector. The index is an integer in the range [1 length(u(:))].

If there are duplicates of the maximum value in the input, the index
corresponds to the first occurrence. For example, if the vector input is [.3.2 .1
.2.3], the index of the maximum value is 1, not 5.

Value and Index

When Mode is set to Value and Index, the block outputs both the value, y,
and the index, i.

In all three of the above modes, a matrix input, u, is treated as a vector, u(:)

Parameters
and Dialog Box

Command File

MOTDSP566 Maximum

5-102

Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Number of input ports
Number of input ports.

Mode
The block's mode of operation: Output the maximum value of each input,
the index of the maximum value, both the value and the index.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Minimum

MOTDSP566 Minimum

5-103

5MOTDSP566 MinimumPurpose Find the minimum value of one or two input vectors.

Library Motdsp566lib.

Description The MOTDSP566 Minimum block identifies the value and position of the
smallest element in the input.

If the block has two input vectors, the block performs an element-by-element
comparison of the input vectors. Each element of the block output vector is the
result of the comparison of the elements of the input vectors.

If the block has only one input vector, the Mode parameter specifies the block's
mode of operation and can be set to Value, Index, or Value and Index. These
settings are described below.

Value Mode

When Mode is set to Value, the block computes the minimum value of the
M-by-N input matrix u independently at each sample time.

[y,i] = mot566_MIN(u(:)) % equivalent MATLAB code
The block output, y, is the minimum value of the input vector.

For convenience, length-M 1-D vector inputs and sample-based length-M row
vector inputs are both treated as M-by-1 column vectors.

For complex inputs the block uses the magnitude of the input, abs(u(:)), to
identify the minimum. The output is the corresponding complex value from the
input. as shown below..

Index Mode

When Mode is set to Index, the block performs the computation shown above,
and outputs the index, i, corresponding to the position of the minimum value
in the input vector. The index is an integer in the range [1 length(u(:))].

MOTDSP566 Minimum

5-104

If there are duplicates of the minimum value in the input, the index
corresponds to the first occurrence.

For example, if the vector input is [.1.2.3.2.1], the index of the minimum value
is 1, not 5.

Value and Index Mode

When Mode is set to Value and Index, the block outputs both the vector of
minima, val, and the vector of indices, idx.

In all three of the above modes, a matrix input, u, is treated as a vector, u(:).

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

MOTDSP566 Minimum

5-105

Number of input ports
Number of input ports.

Mode
The block's mode of operation: Output the maximum value of each input,
the index of the maximum value, both the value and the index.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Maximum

MOTDSP566 Rounding

5-106

5MOTDSP566 RoundingPurpose Perform common mathematical rounding.

Library Motdsp566lib.

Description The MOTDSP566 Rounding Function block performs common mathematical
rounding function.

The block accepts and output real- or complex-valued signals of type double.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 DSP Rounding MOTDSP566 Length MOTDSP566 Abs

MOTDSP566 Sort

5-107

5MOTDSP566 SortPurpose Sort the elements in a vector by value.

Library Motdsp566lib.

Description The MOTDSP566 Sort block sorts the elements in a real or complex input
vector by value using a Quick sort algorithm. The output vector, y, contains the
input values arranged in order of ascending.

[y,i] = sort(u(:)) % equivalent MATLAB code (ascending)
The Mode parameter specifies the block's output, and can be set to Value,
Index, or Value and Index:

Value Mode
When Mode is set to Value, the block sorts the elements in each column of the
M-by-N input matrix u in order of ascending, as specified by the Sort order
parameter.

For convenience, length-M 1-D vector inputs and sample-based length-M row
vector inputs are both treated as M-by-1 column vectors.

The output at each sample time is a sample-based M-by-N matrix containing
the sorted columns of u. Complex inputs are sorted by magnitude.

Index Mode
When Mode is set to Index, the block sorts the elements in each column of the
M-by-N input matrix u. and outputs the sample-based M-by-N index matrix.

As in Value mode, length-M 1-D vector inputs and sample-based length-M row
vector inputs are both treated as M-by-1 column vectors.

Value and Index Mode
When Mode is set to Value and Index, the block outputs both the sorted matrix,
and the index matrix. Note that a matrix input is sorted as a single vector, u(:),
rather than column by column.

MOTDSP566 Sort

5-108

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Mode
The block's mode of operation: Output the sorted vector, the index vector,
or both.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Convolution MOTDSO566 Correlation

MOTDSP566 Sqrt

5-109

5MOTDSP566 SqrtPurpose Perform a Square Root.

Library Motdsp566lib.

Description Perform a Square Root.

The MOTDSP566 sqrt block accepts complex or real-valued signals or signal
vectors of type double.The output signal type depends on input signal.

Parameters
and Dialog Box

Command File
Command File used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs):
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Abs MOTDSO566 Log MOTDSO566 Log10

MOTDSP566 Correlation

5-110

5MOTDSP566 CorrelationPurpose Compute the correlation of two vectors.

Library Motdsp566lib.

Description When both inputs are real, the output is real as well. When one or both inputs
are complex, the output is complex.

Frame-Based Inputs
Matrix inputs must be frame-based. The output, y, is a frame-based
(Mu+Mv-1)-by-N matrix whose column has elements:

where * denotes the complex conjugate. Inputs u and v are zero when indexed
outside of their valid ranges. When both inputs are real, the output is real;
when one or both inputs are complex, the output is complex.

When one input is a column vector (single channel) and the other is a matrix
(multiple channels), the single-channel input is independently cross-correlated
with each channel of the multichannel input. For example, if u is a Mu-by-1
column vector and v is an Mv-by-N matrix, the output is an (Mu+Mv-1)-by-N
matrix whose column has elements:

Sample-Based Inputs
If u and v are sample-based vectors with lengths Mu and Mv, the Correlation
block performs the vector cross-correlation.

MOTDSP566 Correlation

5-111

The dimensions of the sample-based output vector are determined by the
dimensions of the input vectors:

The Correlation block does not accept sample-based row vector inputs, or
mixed sample-based row vector and column vector inputs.

Parameters
and Dialog Box

Command File
Command file used by Motorola DSP566xx simulator core.

DSP Processor Type
Select the DSP Processor to be used.

Simulation Time to enter Interactive Mode (secs)
Simulation time to step into the assembly code by launching the assembly
language debugger. This parameter must be a scalar greater than or equal
to zero. This parameter will be ignored if not using Interactive Mode.

See Also MOTDSP566 Convolution

MOTDSP566 Correlation

5-112

A

Directory Organization

A Directory Organization

A-2

Directory Organization
This is a description of the directory organization for the Motorola DSP
Developer’s Kit on Windows and UNIX, where <matlab> symbolizes the
top-level directory in which MATLAB is installed on your system.

• <matlab>/toolbox/motdsp/motdspasm

- <matlab>/toolbox/motdsp/motdspasm/src/563_600

Motorola DSP 56300 and 56600 family assembly source for
toolbox and blockset functions.

- <matlab>/toolbox/motdsp/motdspasm/bin

Assembly binaries for all DSP families.
• <matlab>/toolbox/motdsp/motdspblks

Motorola DSP Blockset libraries.
• <matlab>/toolbox/motdsp/motdspdemos

Motorola DSP Blockset demonstrations.

- <matlab>/toolbox/motdsp/motdspdemos/toolbox

Motorola DSP Toolbox demonstrations.
• <matlab>/toolbox/motdsp/motdspmasks

Masks for the Motorola DSP Blocksets.
• <matlab>/toolbox/motdsp/motdsp

Motorola DSP Toolbox help and binaries.

- <matlab>/toolbox/motdsp/motdsp/56300

- <matlab>/toolbox/motdsp/motdsp/56600

Motorola DSP Toolbox MEX source files for each DSP family.
• <matlab>/toolbox/motdsp/motdspmex

Motorola DSP Blockset S-function binaries.
Build scripts, Options files and Suite56 simulator binaries.
- <matlab>/toolbox/motdsp/motdspmex/56300
- <matlab>/toolbox/motdsp/motdspmex/56600

Motorola DSP Blockset S-function source files for each DSP family.
- <matlab>/toolbox/motdsp/motdspmex/include/headers/56k

Required header source files to build Motorola DSP MEX-files.

Directory Organization

A-3

- <matlab>/toolbox/motdsp/motdspmex/include/lib

Suite56 simulator export libraries.

- <matlab>/toolbox/motdsp/motdspmex/templates
MATLAB MEX and Simulink S-MEX templates.

A Directory Organization

A-4

I-1

Index

A
abs-c assembly function 3-12
abs-r assembly function 3-11
angle-c assembly function 3-14
arguments

optional 1-10
assembly files

labels in 2-3
See also labels
restrictions on 2-3

B
blocks

linking your S-function MEX-files to 2-19
online help for 1-4
using masks to customize 2-20

build process
automated 1-6
building your MEX-file 1-7
configuring mexopts.bat 1-6
custom 1-6, 1-8

C
callMatlab simulator command 2-22
catch blocks

using 2-6
command files

providing 2-4
selecting 1-10

continuous snapshots
See snapshots

conv-c assembly function 3-19
conventions in our documentation (table) xiv
conv-r assembly function 3-17
CREATE_INPUT_ARG macro 2-7

CREATE_OPT_INPUT_ARG macro 2-7
CREATE_OUTPUT_ARG macro 2-7

D
data

exporting 2-11, 2-20
importing 2-11, 2-20

data types
M_FRACTYPE 2-12
M_INTTYPE 2-12

decimate-fir-c assembly function 3-24
decimate-fir-r assembly function 3-21
decimate-iir-c assembly function 3-30
decimate-iir-r assembly function 3-27
demos

running 1-12
diff-c assembly function 3-36
diff-r assembly function 3-34
DLL 1-7
DSP type

See processor type
DSP563XX 1-8
DSP566XX 1-8

E
example

checking dialog box parameters 2-16
generating SARD 2-25
MOTDSP_MAX as an 1-9, 1-10
MOTDSP_MEAN as an advanced 2-21, 2-22

exceptions
handling 2-6

Index

I-2

F
fft-c assembly function 3-40
fft-r assembly function 3-38
filter-c assembly function 3-45
filter-r assembly function 3-43
flags

compiler-specific 1-8
DSP563XX 1-8
DSP566XX 1-8
SARD 2-25
STANDALONE 2-9, 2-21

functions
support

MOTDSP_CreateComplexMatrix 2-17
MOTDSP_CreateRealMatrix 2-17

H
help

getting online 1-4
Help Desk,acessing the 1-4
release information 1-4

I
ifft-c assembly function 3-50
ifft-r assembly function 3-48
include path 1-8
instant snapshots

See snapshots
interp-c assembly function 3-56
interp-r assembly function 3-53

L
labels

BEGIN 2-3

END 2-3
limitied length of 2-3

library
dynamically linked 1-7
libsimcore300 1-8
shared 1-8, 1-9, 1-11

Library Browser
accessing the MOTDSP Blockset from 1-11
help in 1-4

log10-c assembly function 3-68
log10-r assembly function 3-64
log-c assembly function 3-62
log-r assembly function 3-59

M
macros

CREATE_INPUT_ARG 2-7
CREATE_OPT_INPUT_ARG 2-7
CREATE_OUTPUT_ARG 2-7
MAX_INPUT_ARGS 2-5
MAX_OUTPUT_ARGS 2-5
MEM_DELETE 2-13
MEX_FUNC_NAME 2-5
MIN_INPUT_ARGS 2-5
MIN_OUTPUT_ARGS 2-5
S_FUNCTION_LEVEL 2-15
S_FUNCTION_NAME 2-15
S_MEX_FUNC_NAME 2-15
Simulink ’ss’ 2-16

MAX_INPUT_ARGS macro 2-5
MAX_OUTPUT_ARGS macro 2-5
max-1c assembly function 3-72
max-1r assembly function 3-70
max-2c assembly function 3-76
max-2r assembly function 3-74
mean-c assembly function 3-79

Index

I-3

mean-r assembly function 3-77
MEM_DELETE macro 2-13
memory

clearing allocated 2-13, 2-20
reading from DSP 2-13
writing to DSP 2-11
X-,Y-or P- 2-12

MEX_FUNC_NAME macro 2-5
MEX-files

development of 2-2
extensions of

Solaris 1-8
Windows 1-7

macros for building 2-3
required macro definitions within 2-5
template 2-3

MIN_INPUT_ARGS macro 2-5
MIN_OUTPUT_ARGS macro 2-5
min-1c assembly function 3-83
min-1r assembly function 3-81
min-2c assembly function 3-87
min-2r assembly function 3-85
mode

features of INTERACTIVE 2-21
features of NON_INTERACTIVE 1-9
INTERACTIVE 1-3
NON_INTERACTIVE 1-3

model
creating a new 1-11

motdsp_build_mexopts script 1-6
motdsplib 1-11
Motorola Suite56 DSP 1-2

O
object-oriented 1-2
objects

input
declaring 2-6
instantiating 2-7
S-function 2-16

mapping MATLAB arguments to 2-7
mapping MATLAB string arguments to 2-7
output

declaring (MEX-files only) 2-6
instantiating (MEX-files only) 2-7
S-function 2-17

simulator
instantiating 2-9, 2-20
running 2-11, 2-20
terminating 2-11, 2-20

operating mode
See also mode
INTERACTIVE 1-3
NON_INTERACTIVE 1-3

optional arguments
command files as 1-10
DSP processor types as 1-10

P
parameters

accessing block 1-12
pathnames

full 1-7
relative 1-7

paths
include 1-8

processor type
changing 1-10
default DSP 1-9

Index

I-4

R
registers

reading from DSP 2-12
writing to DSP 2-11

round-c assembly function 3-89
round-r assembly function 3-88

S
S_FUNCTION_LEVEL macro 2-15
S_FUNCTION_NAME macro 2-15
S_MEX_FUNC_NAME macro 2-15
SARD 2-24
S-functions

creating Simulink blocks from 2-19
masking 2-20
required macro definitions within 2-15

simulator
See objects, simulator

snapshot simulator command 2-23
snapshots

continuous 2-23
instant 2-23

sort-c assembly function 3-94
sort-r1 assembly function 3-91
sort-r2 assembly function 3-93
sqrt-c assembly function 3-99
sqrt-pr assembly function 3-98
sqrt-sr assembly function 3-96
Suite56 1-2
sum-c assembly function 3-104
sum-r assembly function 3-102
System Analysis Return Data

See SARD

T
templates

modifying 2-4
source for 2-3

try blocks
using 2-6

X
xcorr-c assembly function 3-109
xcorr-r assembly function 3-106

	Preface
	Related Products and Documentation
	Requirements
	Associated Products
	Additional Reading

	Using This Guide
	Expected Background
	Organization of the Document
	Typographical Conventions

	Introduction to the Motorola DSP Developer’s Kit
	Introduction
	The Motorola DSP Developer’s Kit
	Getting Started
	How to Get Help Online
	Demos

	Building Motorola DSP MEX-Files
	Automated Build Process
	Custom Build Process

	Using Motorola DSP MEX-Files
	The MATLAB MOT563_MAX Example
	The Simulink MOT563_SMAX Example

	Creating Motorola DSP MEX-Files
	Overview of DSP MEX-File Development
	Creation Steps
	What the DSP Developer’s Kit Provides
	What You Provide

	MATLAB MEX-Files
	Required Definitions
	Declaring Input and Output Objects
	Instantiating Input and Output Objects
	Instantiating the Motorola DSP Simulator
	Running the Simulation
	Importing Data to DSP Simulator
	Exporting Data to MATLAB
	Terminating and Allocated Memory Cleanup

	Simulink S-Function MEX-Files
	Required Definitions
	Input Objects
	Output Objects
	S-Function Blocks
	Instantiating the Simulink DSP Simulator
	Running Your Simulation
	Importing Data to DSP Simulator
	Exporting Data to Simulink
	Terminating and Allocating Memory Cleanup

	Tutorial of Advanced Features
	Building and Running MOT563_MEAN
	Building and Running MOT563_SMEAN
	callMatlab
	Data Snapshots

	Motorola DSP MEX-File Programming Reference
	Public Methods
	Macros
	Alphabetical List of Assembly Files
	abs-r.asm
	abs-c.asm
	angle-c.asm
	conv-r.asm
	conv-c.asm
	decimate-fir-r.asm
	decimate-fir-c.asm
	decimate-iir-r.asm
	decimate-iir-c.asm
	diff-r.asm
	diff-c.asm
	fft-r.asm
	fft-c.asm
	filter-r.asm
	filter-c.asm
	ifft-r.asm
	ifft-c.asm
	interp-r.asm
	interp-c.asm
	log-r.asm
	log-c.asm
	log10-r.asm
	log10-c.asm
	max-1r.asm
	max-1c.asm
	max-2r.asm
	max-2c.asm
	mean-r.asm
	mean-c.asm
	min-1r.asm
	min-1c.asm
	min-2r.asm
	min-2c.asm
	round-r.asm
	round-c.asm
	sort-r1.asm
	sort-r2.asm
	sort-c.asm
	sqrt-sr.asm
	sqrt-pr.asm
	sqrt-c.asm
	sum-r.asm
	sum-c.asm
	xcorr-r.asm
	xcorr-c.asm

	Motorola Toolbox Function Reference
	Using This Reference Chapter
	Motorola 56300 Family ToolBox Functions
	Table of Functions
	mot563_abs
	mot563_angle
	mot563_conv
	mot563_decimate
	mot563_diff
	mot563_dspround
	mot563_fft
	mot563_filter
	mot563_ifft
	mot563_interp
	mot563_length
	mot563_log
	mot563_log10
	mot563_max
	mot563_mean
	mot563_min
	mot563_round
	mot563_sort
	mot563_sqrt
	mot563_sum
	mot563_xcorr

	Motorola 56600 Family ToolBox Functions
	Table of Functions
	mot566_abs
	mot566_angle
	mot566_conv
	mot566_decimate
	mot566_diff
	mot566_dspround
	mot566_fft
	mot566_filter
	mot566_ifft
	mot566_interp
	mot566_length
	mot566_log
	mot566_log10
	mot566_max
	mot566_mean
	mot566_min
	mot566_round
	mot566_sort
	mot566_sqrt
	mot566_sum
	mot566_xcorr

	Motorola Blockset Block Reference
	Using This Reference Chapter
	Motorola 56300 Family Blockset
	Motorola 56300 DDK Blocks Listed by Category
	MOTPurpose
	MOTDSP563 Angle
	MOTDSP563 Convolution
	MOTDSP563 Difference
	MOTDSP563 Direct-Form II Transpose Filter
	MOTDSP563 Rounding
	MOTDSP563 FFT
	MOTDSP563 FIR Decimation
	MOTDSP563 FIR Interpolation
	MOTDSP563 IFFT
	MOTDSP563 Length
	MOTDSP563 Log
	MOTDSP563 Log10
	MOTDSP563 Matrix Mean
	MOTDSP563 Matrix Sum
	MOTDSP563 Maximum
	MOTDSP563 Minimum
	MOTDSP563 Rounding
	MOTDSP563 Sort
	MOTDSP563 Sqrt
	MOTDSP563 Correlation

	Motorola 56600 Family Blockset
	Motorola 56600 DDK Blocks Listed by Category
	MOTDSP566 Abs
	MOTDSP566 Angle
	MOTDSP566 Convolution
	MOTDSP566 Difference
	MOTDSP566 Direct-Form II Transpose Filter
	MOTDSP566 Rounding
	MOTDSP566 FFT
	MOTDSP566 FIR Decimation
	MOTDSP566 FIR Interpolation
	MOTDSP566 IFFT
	MOTDSP566 Length
	MOTDSP566 Log
	MOTDSP566 Log10
	MOTDSP566 Matrix Mean
	MOTDSP566 Matrix Sum
	MOTDSP566 Maximum
	MOTDSP566 Minimum
	MOTDSP566 Rounding
	MOTDSP566 Sort
	MOTDSP566 Sqrt
	MOTDSP566 Correlation

	Directory Organization
	Directory Organization

	Index

