GARCH Toolbox

For Use with MATLAB®

Computation

Visualization

Programming Programming

User's Guide

Version 1

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail

3 Apple Hill Drive Natick, MA 01760-2098

hr http://www.mathworks.com Web

ftp. mathworks. com

Anonymous FTP server

comp. soft-sys. matlab Newsgroup

support@mathworks.com Technical support

suggest@mathworks.com Product enhancement suggestions

bugs@mathworks.com Bug reports

doc@mathworks.com

Documentation error reports

subscribe@mathworks.com

Subscribing user registration

servi ce@mathworks. com

Order status, license renewals, passcodes
info@mathworks. com

Sales, pricing, and general information

GARCH Toolbox User's Guide

© COPYRIGHT 1999 - 2000 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 1999 First printingNew for Version 1.0, Release 11

November 2000 Reissued for Release 12 (Online only)

Contents

Preface

What Is the GARCH Toolbox?	
Related Products	v
Prerequisites	
Compatibility	
Using This Guide	
Organization of the Document	
Expected Background	
Technical Conventions	
Typographical Conventions	,
	Tutori
	Tutori
GARCH Overview	
GARCH Overview	
GARCH Overview	· · · · · · · · · · · · · · · · · · ·
GARCH Overview	
GARCH Overview	
GARCH Overview Introducing GARCH Using GARCH to Model Financial Time Series GARCH Toolbox Overview Models for the Conditional Mean and Variance	
GARCH Overview Introducing GARCH Using GARCH to Model Financial Time Series GARCH Toolbox Overview Models for the Conditional Mean and Variance Conventions and Clarifications	
GARCH Overview Introducing GARCH Using GARCH to Model Financial Time Series GARCH Toolbox Overview Models for the Conditional Mean and Variance Conventions and Clarifications The Default Model	
GARCH Overview Introducing GARCH Using GARCH to Model Financial Time Series GARCH Toolbox Overview Models for the Conditional Mean and Variance Conventions and Clarifications The Default Model Analysis and Estimation Example Using the	

Post-Estimation Analysis 1-	-27
The GARCH Specification Structure 1-	-32
Purpose of the Specification Structure 1-	
Contents of the Specification Structure 1-	
Valid Model Specifications	
Accessing Specification Structures 1-	
Using the Specification Structure for Estimation,	
Simulation, and Forecasting	.39
Simulation 1-	-41
Simulating Sample Paths 1-	-41
Transients in the Simulation Process 1-	
A General Simulation Example	·50
Forecasting	-54
Computing a Forecast 1-	
Computing Root Mean Square Errors (RMSE) 1-	
Asymptotic Behavior for Long-Range Forecast Horizons 1-	-61
Conditional Mean Models with Regression Components . 1-	-62
Incorporating a Regression Model in an Estimation 1-	-62
Simulation and Inference Using a Regression Component 1-	-68
Forecasting Using a Regression Component 1-	-68
Regression in a Monte Carlo Framework 1-	·71
Model Selection and Analysis 1-	·73
Likelihood Ratio Tests	
Akaike and Bayesian Information Criteria 1-	
Equality Constraints and Parameter Significance 1-	
Equality Constraints and Initial Parameter Estimates 1-	-83
Recommendations and Suggestions 1-	
Simplicity/Parsimony	
Convergence Issues 1-	
Initial Parameter Estimates 1-	
Boundary Constraints and Statistical Inferences 1-	
Data Size and Quality 1-	.97

Function Reference

4	
-	1
	ı
4	•

Functions by Category		. 2-3
aicbic		. 2-5
archtest		. 2-7
autocorr		2-10
crosscorr		2-14
garchar		2-18
garchcount		
garchdisp		
garchfit		
garchget		
garchinfer		
garchllfn		
garchma		
garchplot		
garchpred		
garchset		
garchsim		
lagmatrix		
8		
lbqtest		
lratiotest		
parcorr		
price2ret		
ret2price	. 	2-70

Glossary

 $A \lceil$

Bibliography

B

Preface

What Is the GARCH Toolbox	?				•		•	•	viii
Related Products									. ix
Prerequisites									
Compatibility									
Using This Guide									. xi
Expected Background									
Organization of the Document									
Technical Conventions									xiii
Typographical Conventions									xiv

The "Preface" includes:

- What Is the GARCH Toolbox?
- Related Products
- Using This Guide
- Technical Conventions
- Typographical Conventions

What Is the GARCH Toolbox?

MATLAB and the GARCH Toolbox provide an integrated computing environment for modeling the volatility of univariate economic time series. The GARCH Toolbox uses a general ARMAX/GARCH composite model to perform simulation, forecasting, and parameter estimation of univariate time series in the presence of conditional heteroskedasticity. Supporting functions perform tasks such as pre- and post-estimation diagnostic testing, hypothesis testing of residuals, model order selection, and time series transformations. Graphics capabilities let you plot correlation functions and visually compare matched innovations, volatility, and return series.

More specifically, you can:

- Perform Monte Carlo simulation of univariate returns, innovations, and conditional volatilities
- Specify conditional mean models of general ARMAX form and conditional models of general GARCH form for univariate asset returns
- Estimate parameters of general ARMAX/GARCH composite models via the maximum likelihood method
- Generate minimum mean square error forecasts of the conditional mean and conditional variance of univariate return series
- Perform pre- and post-estimation diagnostic and hypothesis testing, such as Engle's ARCH test, Ljung-Box Q-statistic test, likelihood ratio tests, and AIC/BIC model order selection
- Perform graphical correlation analysis, including auto-correlation, cross-correlation, and partial auto-correlation
- Convert price/return series to return/price series, and transform finite-order ARMA models to infinite-order AR and MA models

Related Products

The MathWorks provides several products that are related to the kinds of tasks you can perform with the GARCH Toolbox.

For more information about any of these products, see either:

- The online documentation for that product if it is installed or if you are reading the documentation from the CD
- The MathWorks Web site, at http://www.mathworks.com; see the "products" section

Note The toolboxes listed below all include functions that extend MATLAB's capabilities. The blocksets all include blocks that extend Simulink's capabilities.

Product	Description
Database Toolbox	Tool for connecting to, and interacting with, most ODBC/JDBC databases from within MATLAB
Datafeed Toolbox	MATLAB functions for integrating the numerical, computational, and graphical capabilities of MATLAB with financial data providers
Excel Link	Tool that integrates MATLAB capabilities with Microsoft Excel for Windows
Financial Time Series Toolbox	Tool for analyzing time series data in the financial markets
Financial Toolbox	MATLAB functions for quantitative financial modeling and analytic prototyping
MATLAB Compiler	Compiler for automatically converting MATLAB M-files to C and C++ code

Product	Description
MATLAB C/C++ Math Library	Library for automatically converting MATLAB applications that contain math and graphics to C and C++ code for stand-alone applications
MATLAB Report Generator	Tool for documenting information in MATLAB in multiple output formats
MATLAB Runtime Server	MATLAB environment in which you can take an existing MATLAB application and turn it into a stand-alone product that is easy and cost-effective to package and distribute. Users access only the features that you provide via your application's graphical user interface (GUI) - they do not have access to your code or the MATLAB command line.
MATLAB Web Server	Tool for the development and distribution of Web-based MATLAB applications
Optimization Toolbox	Tool for general and large-scale optimization of nonlinear problems, as well as for linear programming, quadratic programming, nonlinear least squares, and solving nonlinear equations
Statistics Toolbox	Tool for analyzing historical data, modeling systems, developing statistical algorithms, and learning and teaching statistics

Prerequisites

The GARCH Toolbox requires the Statistics and Optimization Toolboxes. However, you need not read those manuals before reading this one.

Compatibility

The GARCH Toolbox is compatible with MATLAB R11 (Version 5.3) and later.

Using This Guide

Organization of the Document

"Tutorial" provides a brief overview of GARCH, then demonstrates the use of the GARCH Toolbox by estimating GARCH model parameters, and performing pre- and post-estimation analysis. Chapter 1 continues with discussions of simulation, forecasting, and regression, as well as model selection and analysis.

"Function Reference" describes the individual functions that comprise the GARCH Toolbox. The description of each function includes a synopsis of the function syntax, as well as a complete explanation of its arguments and operation. It may also include examples and references to additional reading material.

"Glossary" defines terms associated with modeling the volatility of economic time series.

"Bibliography" lists published materials that support concepts implemented in the GARCH Toolbox.

Expected Background

This guide is a practical introduction to the GARCH Toolbox. In general, it assumes you are familiar with the basic concepts of General Autoregressive Conditional Heteroskedasticity (GARCH) modeling.

In designing the GARCH Toolbox and this manual, we assume your title is similar to one of these:

- Analyst, quantitative analyst
- Risk manager
- Portfolio manager
- Fund manager, asset manager
- Economist
- · Financial engineer
- Trader
- · Student, professor, or other academic

We also assume your background, education, training, and responsibilities match some aspects of this profile:

- · Finance, economics, perhaps accounting
- Engineering, mathematics, physics, other quantitative sciences
- Bachelor's degree minimum; MS or MBA likely; Ph.D. perhaps; CFA
- · Comfortable with probability, statistics, and algebra
- May understand linear or matrix algebra, calculus, and differential equations
- Previously doing traditional programming (C, Fortran, etc.)
- May be responsible for instruments or analyses involving large sums of money
- · Perhaps new to MATLAB

Technical Conventions

The *GARCH Toolbox User's Guide* uses the following definitions and descriptions:

- The *size* of an array describes the dimensions of the array. If a matrix has m rows and n columns, its size is m-by-n. If two arrays are the same size, their dimensions are the same.
- The *length* of a vector indicates only the number of elements in the vector. It does not indicate the size of the vector. If the length of a vector is n, it could be a 1-by-n (row) vector or an n-by-1 (column) vector. Two vectors of length n, one a row vector and the other a column vector, do not have the same size.
- The rows of a time series matrix correspond to a time index and the columns correspond to sample paths, independent realizations, or individual time series. In any given column, the first row contains the oldest observation and the last row contains the most recent observation.
- Time series vectors and matrices are time-tagged series of asset returns. If you have a price series, the GARCH Toolbox lets you convert it to a return series using either continuous compounding or periodic compounding.
- Continuous compounding is the default compounding method of the GARCH Toolbox. The results of some GARCH Toolbox functions are approximate for periodic compounding, but exact for continuous compounding. Using continuous compounding when moving between prices and returns, ensures exact results regardless of the function.
- The GARCH Toolbox assumes that return series are stationary processes.
 The price-to-return transformation generally guarantees a stable data set for GARCH modeling.
- The term *conditional* implies explicit dependence on a past sequence of observations. The term *unconditional* is more concerned with long-term behavior of a time series and assumes no explicit knowledge of the past.

See the Glossary for general term definitions.

Typographical Conventions

This manual uses some or all of these conventions.

Item	Convention to Use	Example
Example code	Monospace font	To assign the value 5 to A, enter A = 5
Function names/syntax	Monospace font	The cos function finds the cosine of each array element. Syntax line example is MLGetVar ML_var_name
Keys	Boldface with an initial capital letter	Press the Return key.
Literal strings (in syntax descriptions in reference chapters)	Monospace bold for literals	<pre>f = freqspace(n, 'whole')</pre>
Mathematical expressions	Italics for variables Standard text font for functions, operators, and constants	This vector represents the polynomial $p = x^2 + 2x + 3$
MATLAB output	Monospace font	MATLAB responds with A = 5
Menu names, menu items, and controls	Boldface with an initial capital letter	Choose the File menu.
New terms	Italics	An <i>array</i> is an ordered collection of information.
String variables (from a finite list)	Monospace italics	<pre>sysc = d2c(sysd, 'method')</pre>

Tutorial

GARCH Overview								. 1-	2
GARCH Toolbox Overview								. 1-1	0
A I I TO A A TO I . TI.	•	41.							
Analysis and Estimation Example Us									_
Default Model		•	•	•	•	٠	•	. 1-1	6
The GARCH Specification Structure								. 1-3	2
The different specification structure	• •	•	•	•	•	•	•	. 1 0	~
Simulation								. 1-4	1
Forecasting		•	•	•	•	•	•	. 1-5	4
Conditional Mean Models with Regre	essio	n	Co	m	po	ne	en	ts 1-6	2
Model Selection and Analysis		•	•		•	•		. 1-7	3
D 14 10 4								1.0	_
Recommendations and Suggestions		_	_	_				1-8	

GARCH Overview

This section:

- · Introduces GARCH
- Introduces the characteristics of GARCH models that are commonly associated with financial time series

Introducing GARCH

GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity. Loosely speaking, you can think of heteroskedasticity as time-varying variance (i.e., volatility). Conditional implies a dependence on the observations of the immediate past, and autoregressive describes a feedback mechanism that incorporates past observations into the present. GARCH then is a mechanism that includes past variances in the explanation of future variances. More specifically, GARCH is a time series modeling technique that uses past variances and past variance forecasts to forecast future variances.

In this manual, whenever a time series is said to have GARCH effects, the series is heteroskedastic, i.e., its variances vary with time. If its variances remain constant with time, the series is homoskedastic.

Why Use GARCH?

GARCH modeling builds on advances in the understanding and modeling of volatility in the last decade. It takes into account excess kurtosis (i.e. fat tail behavior) and volatility clustering, two important characteristics of financial time series. It provides accurate forecasts of variances and covariances of asset returns through its ability to model time-varying conditional variances. As a consequence, you can apply GARCH models to such diverse fields as risk management, portfolio management and asset allocation, option pricing, foreign exchange, and the term structure of interest rates.

You can find highly significant GARCH effects in equity markets, not only for individual stocks, but for stock portfolios and indices, and equity futures markets as well [5]. These effects are important in such areas as value-at-risk (VaR) and other risk management applications that concern the efficient allocation of capital. You can use GARCH models to examine the relationship between long- and short-term interest rates. As the uncertainty for rates over various horizons changes through time, you can also apply GARCH models in

the analysis of time-varying risk premiums [5]. Foreign exchange markets, which couple highly persistent periods of volatility and tranquility with significant fat tail behavior [5], are particularly well suited for GARCH modeling.

Note Bollerslev [4] developed GARCH as a generalization of Engle's [8] original ARCH volatility modeling technique. Bollerslev designed GARCH to offer a more parsimonious model (i.e., using fewer parameters) that lessens the computational burden.

GARCH Limitations

Although GARCH models are useful across a wide range of applications, they do have limitations:

- GARCH models are only part of a solution. Although GARCH models are usually applied to return series, financial decisions are rarely based solely on expected returns and volatilities.
- GARCH models are parametric specifications that operate best under relatively stable market conditions [9]. Although GARCH is explicitly designed to model time-varying conditional variances, GARCH models often fail to capture highly irregular phenomena, including wild market fluctuations (e.g., crashes and subsequent rebounds), and other highly unanticipated events that can lead to significant structural change.
- GARCH models often fail to fully capture the fat tails observed in asset return series. Heteroskedasticity explains some of the fat tail behavior, but typically not all of it. Fat tail distributions, such as student-t, have been applied in GARCH modeling, but often the choice of distribution is a matter of trial and error.

Using GARCH to Model Financial Time Series

GARCH models account for certain characteristics that are commonly associated with financial time series:

- · Fat tails
- · Volatility clustering

Probability distributions for asset returns often exhibit fatter tails than the standard normal, or Gaussian, distribution. The fat tail phenomenon is known as excess kurtosis. Time series that exhibit a fat tail distribution are often referred to as leptokurtic. The blue (or dashed) line in Figure 1-1, A Plot Showing Excess Kurtosis illustrates excess kurtosis. The red (or solid) line illustrates a Gaussian distribution.

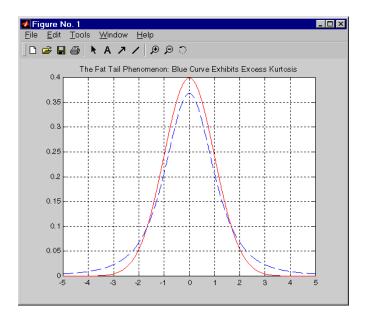


Figure 1-1: A Plot Showing Excess Kurtosis

In addition, financial time series usually exhibit a characteristic known as volatility clustering, in which large changes tend to follow large changes, and small changes tend to follow small changes (see Figure 1-2, A Plot Showing Volatility Clustering). In either case, the changes from one period to the next are typically of unpredictable sign. Volatility clustering, or persistence, suggests a time series model in which successive disturbances, although uncorrelated, are nonetheless serially dependent.

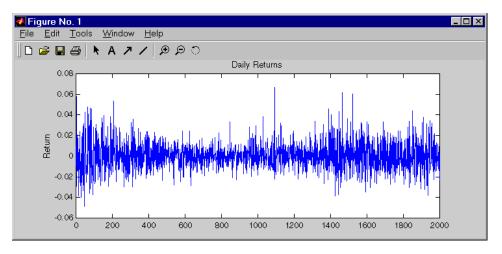


Figure 1-2: A Plot Showing Volatility Clustering

Volatility clustering (a type of heteroskedasticity) accounts for some but not all of the fat tail effect (or excess kurtosis) typically observed in financial data. A part of the fat tail effect can also result from the presence of non-Gaussian asset return distributions that just happen to have fat tails.

This section also discusses:

- Correlation in Financial Time Series
- · Conditional Variances
- · Serial Dependence in Innovations
- · Homoskedasticity of the Unconditional Variance

Correlation in Financial Time Series

If you treat a financial time series as a sequence of random observations, this random sequence, or stochastic process, may exhibit some degree of correlation from one observation to the next. You can use this correlation structure to predict future values of the process based on the past history of observations. Exploiting the correlation structure, if any, allows you to decompose the time series into a deterministic component (i.e., the forecast), and a random component (i.e., the error, or uncertainty, associated with the forecast).

Eq. (1-1) uses these components to represent a univariate model of an observed time series y_t

$$y_t = f(t-1, X) + \varepsilon_t \tag{1-1}$$

In this equation:

- f(t-1, X) represents the deterministic component of the current return as a function of any information known at time t-1, including past innovations $\{\varepsilon_{t-1}, \varepsilon_{t-2}, ...\}$, past observations $\{y_{t-1}, y_{t-2}, ...\}$, and any other relevant explanatory time series data, X.
- ε_t is the random component. It represents the innovation in the mean of y_t . Note that you can also interpret the random disturbance, or shock, ε_t as the single-period-ahead forecast error.

Conditional Variances

The key insight of GARCH lies in the distinction between conditional and unconditional variances of the innovations process $\{\epsilon_i\}$. The term *conditional* implies explicit dependence on a past sequence of observations. The term *unconditional* is more concerned with long-term behavior of a time series and assumes no explicit knowledge of the past.

GARCH models characterize the conditional distribution of ε_t by imposing serial dependence on the conditional variance of the innovations. Specifically, the variance model imposed by GARCH, conditional on the past, is given by

$$Var_{t-1}(y_t) = E_{t-1}(\varepsilon_t^2) = \sigma_t^2$$
 (1-2)

where

$$\sigma_t^2 = \kappa + \sum_{i=1}^{P} G_i \sigma_{t-i}^2 + \sum_{j=1}^{Q} A_j \varepsilon_{t-j}^2$$
(1-3)

Given the form of Eq. (1-2) and Eq. (1-3), you can see that σ_t^2 is the forecast of the next period's variance, given the past sequence of variance forecasts, σ_{t-i}^2 , and past realizations of the variance itself, ε_{t-j}^2 .

When P = 0, the GARCH(0,Q) model of Eq. (1-3) becomes Eq. (1-4), the original ARCH(Q) model introduced by Engle [8].

$$\sigma_t^2 = \kappa + \sum_{j=1}^{Q} A_j \varepsilon_{t-j}^2$$
 (1-4)

Eq. (1-3) and Eq. (1-4) are referred to as GARCH(P,Q) and ARCH(Q) variance models, respectively. Note that when P = Q = 0, the variance process is simply white noise with variance κ .

Parsimonious Parameterization. In practice, you often need a large lag Q for ARCH modeling, and this requires that you estimate a large number of parameters. To reduce the computational burden, Bollerslev [4] extended Engle's ARCH model by including past conditional variances. This results in a more parsimonious representation of the conditional variance process.

Volatility Clustering. Eq. (1-3) and Eq. (1-4) mimic the volatility clustering phenomenon. Large disturbances, positive or negative, become part of the information set used to construct the variance forecast of the next period's disturbance. In this manner, large shocks of either sign are allowed to persist, and can influence the volatility forecasts for several periods. The lag lengths P and Q, as well the magnitudes of the coefficients G_i and A_j , determine the degree of persistence. Note that the basic GARCH(P,Q) model of Eq. (1-3) is a symmetric variance process, in that the sign of the disturbance is ignored.

Serial Dependence in Innovations

A common assumption when modeling financial time series is that the forecast errors (i.e., the innovations) are zero-mean random disturbances uncorrelated from one period to the next.

$$E\{\varepsilon_t \varepsilon_T\} = 0 \qquad t \neq T$$
$$= \sigma_t^2 \qquad t = T$$

As mentioned above, although successive innovations are uncorrelated, they are not independent. In fact, an explicit generating mechanism for a GARCH(P,Q) innovations process, $\{\mathcal{E}_{i}\}$, is

$$\varepsilon_t = \sigma_t z_t \tag{1-5}$$

where σ_t is the conditional standard deviation given by the square root of Eq. (1-3), and z_t is a standardized, independent, identically distributed (i.i.d.)

random draw from some specified probability distribution. The GARCH literature uses several distributions to model GARCH processes, but the vast majority of research assumes the standard normal (i.e., Gaussian) density such that $\varepsilon_t \sim N(0, \sigma_t^2)$. Reflecting this, Eq. (1-5) illustrates that a GARCH innovations process $\{\varepsilon_t\}$ simply rescales an i.i.d process $\{z_t\}$ such that the conditional standard deviation incorporates the serial dependence of Eq. (1-3). Equivalently, Eq. (1-5) also states that a standardized GARCH disturbance, ε_t/σ_t is itself an i.i.d. random variable z_t .

Notice that GARCH models are consistent with various forms of efficient market theory, which state that asset returns observed in the past cannot improve the forecasts of asset returns in the future. Since GARCH innovations $\{\epsilon_{ij}\}$ are serially uncorrelated, GARCH modeling does not violate efficient market theory.

Homoskedasticity of the Unconditional Variance

The GARCH Toolbox imposes the following parameter constraints on the conditional variance parameters.

$$\sum_{i=1}^{P} G_i + \sum_{j=1}^{Q} A_j < 1$$

$$\kappa > 0$$

$$G_j \ge 0 \qquad i = 1, 2, ..., P$$

$$A_j \ge 0 \qquad j = 1, 2, ..., \zeta$$
(1-6)

The first constraint, a stationarity constraint, is necessary and sufficient for the existence of a finite, time-independent variance of the innovations process $\{\varepsilon_t\}$. The remaining constraints are sufficient to ensure that the conditional variance $\{\sigma_t^2\}$ is strictly positive.

When the conditional variance parameters satisfy the inequalities in Eq. (1-6), the unconditional variance (i.e., time-independent, or long-run variance expectation) of the innovations process $\{\mathcal{E}_{t}\}$ is

$$\sigma^{2} = E(\varepsilon_{t}^{2}) = \frac{\kappa}{1 - \sum_{i=1}^{P} G_{i}^{-} \sum_{j=1}^{Q} A_{j}}$$
(1-7)

Although Eq. (1-3) shows that the conditional variance of ε_t changes with time, Eq. (1-7) shows that the unconditional variance is constant (i.e., homoskedastic).

GARCH Toolbox Overview

This section discusses:

- Models for the Conditional Mean and Variance
 Allowable models for describing conditional mean and variance to the GRACH Toolbox
- Conventions and Clarifications
 MATLAB constructs and financial concepts as they are used in this manual
- The Default Model
 The default model that is used as the basis of discussion in this manual

Models for the Conditional Mean and Variance

The GARCH Toolbox allows a flexible model description of the conditional mean, using a general ARMAX form. ARMAX models encompass autoregressive (AR), moving average (MA), and regression (X) models, in any combination. Specifically, the toolbox allows a general ARMAX(R,M,Nx) form for the conditional mean

$$v_{t} = C + \sum_{i=1}^{R} AR_{i}y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{M} MA_{j}\varepsilon_{t-j} + \sum_{k=1}^{Nx} \beta_{k}X(t, k)$$
 (1-8)

where X is an explanatory regression matrix in which each column is a time series and X(t,k) denotes the tth row and kth column.

The GARCH Toolbox models the conditional variance as a standard GARCH process with Gaussian innovations. It allows a general GARCH(P,Q) form with Gaussian innovations for the conditional variance

$$\sigma_t^2 = \kappa + \sum_{i=1}^P G_i \sigma_{t-i}^2 + \sum_{j=1}^Q A_j \varepsilon_{t-j}^2$$
(1-9)

Note This GARCH model is based on Bollerslev's original paper [4], and also includes Engle's original ARCH model [8] as a special case.

Conventions and Clarifications

Rows, Columns, Length, and Size

MATLAB operates as a large-scale, array-based processor, which makes it ideally suited for time series modeling and analysis. This manual imparts specific meanings to the words *length* and *size* in discussing arrays.

Matrices. A matrix is an m-by-n array in which m is the number of rows and n is the number of columns. By convention, the rows (i.e., the m-dimension) of a time series matrix correspond to a time index. In any given column, the first row contains the oldest observation and the last row contains the most recent observation. Columns (i.e., the n-dimension) correspond to sample paths, independent realizations, or individual time series.

Let A be a 100-by-5 time series matrix generated to support a Monte Carlo simulation experiment. In this case, A has 100 observations for each of five independent sample paths (or equivalently, five realizations of some underlying univariate random process in which each column is a realization of an individual time series). In this case, the *size* of A is 100-by-5. If some other matrix, B, is the same size as A, then B is also a 100-by-5 matrix.

Since the current release of the GARCH Toolbox addresses univariate models only, matrices usually represent multiple realizations of a univariate time series (as opposed to a single realization of a multivariate time series). Whenever a GARCH Toolbox function detects the presence of an input matrix of size m-by-n, it assumes that m is the number of time-tagged observations and n is the number of realizations.

Vectors. The *length* of a time series vector represents only the number of observations the vector contains. It does not indicate whether the vector is a row or column vector, i.e. it does not indicate the vector's size. For example, a time series vector of length 10 can be a row vector (i.e., a 1-by-10 matrix) or a column vector (i.e., a 10-by-1 matrix).

When a function detects a time series vector, row or column, it assumes that the vector represents a single realization of a univariate time series, and the length of the vector is the number of observations.

Note Although most functions can process either row or column vectors, you can avoid confusing input/output arguments if you format single realizations of a univariate time series as column vectors. Using column vectors also makes it easier for you to display data in the MATLAB command window.

Precision

The GARCH Toolbox performs all its calculations in double precision. Select **File > Preferences... > General > Numeric Format** to set the numeric format for your displays. The default is **Short**.

Prices, Returns, and Compounding

The GARCH Toolbox assumes that time series vectors and matrices are time-tagged series of observations. If you have a price series, the toolbox lets you convert it to a return series using either continuous compounding or periodic compounding in accord with Eq. (1-10) and Eq. (1-11).

If you denote successive price observations made at time t and t+1 as P_t and P_{t+1} , respectively, continuous compounding transforms a price series $\{P_t\}$ into a return series $\{y_t\}$ as

$$y_t = \log \frac{P_{t+1}}{P_t} = \log P_{t+1} - \log P_t$$
 (1-10)

Periodic compounding defines the transformation as

$$y_t = \frac{P_{t+1} - P_t}{P_t} = \frac{P_{t+1}}{P_t} - 1 \tag{1-11}$$

Continuous compounding is the default compounding method of the GARCH Toolbox, and is the preferred method for most of continuous-time finance. Since GARCH modeling is typically based on relatively high frequency data (i.e., daily or weekly observations), the difference between the two methods is usually small. However, there are some toolbox functions whose results are

approximations for periodic compounding, but exact for continuous compounding. If you adopt the continuous compounding default convention when moving between prices and returns, all toolbox functions produce exact results.

Stationary and Nonstationary Time Series

Figure 1-3, Typical Equity Price Series illustrates a typical equity price series. Notice that there appears to be no long-run average level about which the series evolves. This is evidence of a nonstationary time series.

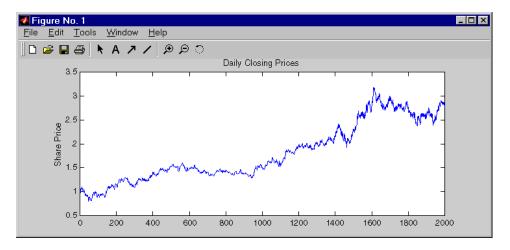


Figure 1-3: Typical Equity Price Series

Figure 1-4, Continuously Compounded Returns Associated with the Price Series, however, illustrates the continuously compounded returns associated with the same price series. In contrast, the returns appear to be quite stable over time, and the transformation from prices to returns has produced a stationary time series.

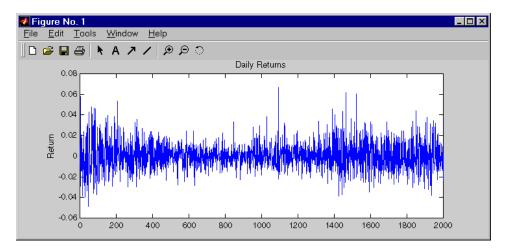


Figure 1-4: Continuously Compounded Returns Associated with the Price Series

The GARCH Toolbox assumes that return series are stationary processes. This may seem limiting, but the price-to-return transformation is common and generally guarantees a stable data set for GARCH modeling.

The Default Model

The GARCH Toolbox default model is the simple (yet common) conditional mean model with GARCH(1,1) Gaussian innovations, based on Eq. (1-8) and Eq. (1-9).

$$y_t = C + \varepsilon_t \tag{1-12}$$

$$\sigma_t^2 = \kappa + G_1 \sigma_{t-1}^2 + A_1 \varepsilon_{t-1}^2$$
 (1-13)

In the conditional mean model, Eq. (1-12), the returns, y_b consist of a simple constant, plus an uncorrelated, white noise disturbance, ε_b . This model is often sufficient to describe the conditional mean in a financial return series. Most financial return series do not require the comprehensiveness that an ARMAX model provides.

In the conditional variance model, Eq. (1-13), the variance forecast, σ_t^2 , consists of a constant plus a weighted average of last period's forecast, σ_{t-1}^2 ,

and last period's squared disturbance, ε_{t-1}^2 . Although financial return series, as defined in Eq. (1-10) and Eq. (1-11), typically exhibit little correlation, the squared returns often indicate significant correlation and persistence. This implies correlation in the variance process, and is an indication that the data is a candidate for GARCH modeling.

Although simplistic, the default model shown in Eq. (1-12) and Eq. (1-13) has several benefits:

- It represents a parsimonious model that requires you to estimate only four parameters (C, κ , G_I , and A_I). According to Box and Jenkins [7], the fewer parameters to estimate, the less that can go wrong. Elaborate models often fail to offer real benefits when forecasting (see Hamilton [10], page 109).
- The simple GARCH(1,1) model captures most of the variability in most return series. Small lags for *P* and *Q* are common in empirical applications. Typically, GARCH(1,1), GARCH(2,1), or GARCH(1,2) models are adequate for modeling volatilities even over long sample periods (see Bollerslev, Chou, and Kroner [5], pages 10 and 22).

Analysis and Estimation Example Using the Default Model

The example in this section uses the GARCH Toolbox default model to examine the equity series of a hypothetical company, the XYZ Corporation. It uses the default model to estimate the parameters needed to model the series. Specifically, the example:

- 1 Performs a pre-estimation analysis to determine if the data is heteroskedastic and can be modeled using GARCH
- 2 Estimates the parameters for the default model
- 3 Performs a post-estimation analysis to confirm that the default model explains the heteroskedasticity present in the data

Note Due to platform differences, the estimation results you obtain when you recreate the examples in this chapter may differ from those shown in the text. These differences will propagate through any subsequent examples that use the estimation results as input, and may cause the numerical output of some examples to differ markedly from the text. These differences, however, do not affect the outcome of the examples.

Pre-Estimation Analysis

The pre-estimation analysis:

- 1 Loads the raw data: daily closing prices
- **2** Converts the prices to a return series
- 3 Checks for correlation
- **4** Quantifies the correlation

Load the Raw Data: Daily Closing Prices

Start by loading the MATLAB binary file xyz. mat, and examining its contents using the whos command.

```
load xyz
whos
Name Size Bytes Class
prices 2001x1 16008 double array
```

Grand total is 2001 elements using 16008 bytes

The whos command lists all the variables in the current workspace, together with information about their size, bytes, and class.

The data you loaded from xyz. mat consists of a single column vector, prices, of length 2001. This vector contains the daily closing prices of the XYZ Corporation. Use the MATLAB plot function to examine the data (see plot in the online MATLAB Function Reference).

```
plot([0:2000], prices)
ylabel('Share Price')
title('Daily Closing Prices')
```

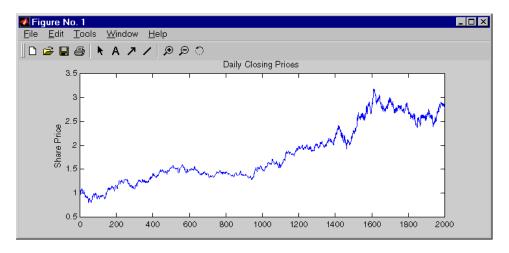


Figure 1-5: Daily Closing Prices of the XYZ Corporation

The plot shown in Figure 1-5, Daily Closing Prices of the XYZ Corporation is the same as the one shown in Figure 1-3, Typical Equity Price Series.

Convert the Prices to a Return Series

Because GARCH modeling assumes a return series, you need to convert the prices to returns. Use the utility function price2ret, and then examine the result.

```
xyz = price2ret(prices);
whos
Name Size Bytes Class

prices 2001x1 16008 double array
xyz 2000x1 16000 double array
```

Grand total is 4001 elements using 32008 bytes

The workspace information shows both the 2001-point price series and the 2000-point return series derived from it.

Now, use the MATLAB pl ot function to see the return series.

```
plot(xyz)
ylabel('Return')
title('Daily Returns')
```

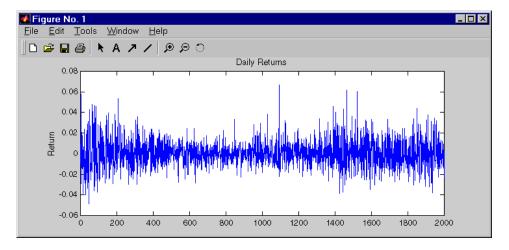


Figure 1-6: Raw Return Series Based on Daily Closing Prices

The results, shown in Figure 1-6, Raw Return Series Based on Daily Closing Prices, are the same as those shown in Figure 1-4, Continuously Compounded Returns Associated with the Price Series. Notice the presence of volatility clustering in the raw return series.

Check for Correlation

In the Return Series. You can check qualitatively for correlation in the raw return series by calling the functions autocorr and parcorr to examine the sample autocorrelation function (ACF) and partial-autocorrelation (PACF) function, respectively.

autocorr(xyz)

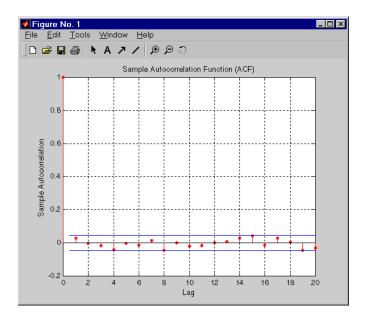


Figure 1-7: ACF with Bounds for the Raw Return Series

The autocorr function computes and displays the sample ACF of the returns, along with the upper and lower standard deviation confidence bounds, based on the assumption that all autocorrelations are zero beyond lag zero.

parcorr(xyz)

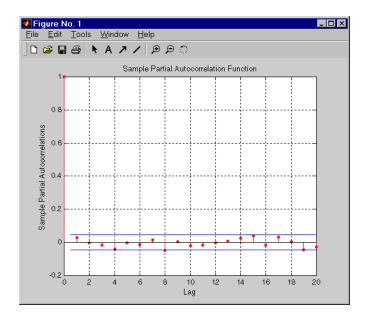


Figure 1-8: PACF with Bounds for the Raw Return Series

Similarly, the parcorr function displays the sample PACF with upper and lower confidence bounds.

Since the individual ACF values can have large variances and can also be autocorrelated, you should view the sample ACF and PACF with care (see Box, Jenkins, Reinsel [7], pages 34 and 186). However, as preliminary identification tools, the ACF and PACF provide some indication of the broad correlation characteristics of the returns. From Figure 1-7, ACF with Bounds for the Raw Return Series and Figure 1-8, PACF with Bounds for the Raw Return Series, there is no real indication that you need to use any correlation structure in the conditional mean. Also, notice the similarity between the graphs.

In the Squared Returns. Although the ACF of the observed returns exhibits little correlation, the ACF of the squared returns may still indicate significant correlation and persistence in the second-order moments. Check this by plotting the ACF of the squared returns.

autocorr(xyz. ^2)

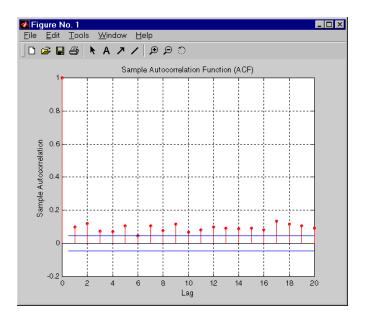


Figure 1-9: ACF of the Squared Returns

Figure 1-9, ACF of the Squared Returns shows that, although the returns themselves are largely uncorrelated, the variance process exhibits some correlation. This is consistent with the earlier discussion in the section, "The Default Model" on page 1-14. Note that the ACF shown in Figure 1-9, ACF of the Squared Returns appears to die out slowly, indicating the possibility of a variance process close to being nonstationary.

Note The syntax in the preceding command, an operator preceded by the dot operator (.), indicates that the operation is performed on an element-by-element basis. In the preceding command, xyz. ^2 indicates that each element of the vector xyz is squared.

Quantify the Correlation

You can quantify the preceding qualitative checks for correlation using formal hypothesis tests, such as the Ljung-Box-Pierce Q-test and Engle's ARCH test.

The function l bqt est implements the Ljung-Box-Pierce Q-test for a departure from randomness based on the ACF of the data. The Q-test is most often used as a post-estimation lack-of-fit test applied to the fitted innovations (i.e., residuals). In this case, however, you can also use it as part of the pre-fit analysis because the default model assumes that returns are just a simple constant plus a pure innovations process. Under the null hypothesis of no serial correlation, the Q-test statistic is asymptotically Chi-Square distributed (see Box, Jenkins, Reinsel [7], page 314).

The function archtest implements Engle's test for the presence of ARCH effects. Under the null hypothesis that a time series is a random sequence of Gaussian disturbances (i.e., no ARCH effects exist), this test statistic is also asymptotically Chi-Square distributed (see Engle [8], pages 999-1000).

Both functions return identical outputs. The first output, H, is a Boolean decision flag. H=0 implies that no significant correlation exists (i.e., do not reject the null hypothesis). H=1 means that significant correlation exists (i.e., reject the null hypothesis). The remaining outputs are the P-value (pValue), the test statistic (Stat), and the critical value of the Chi-Square distribution (Critical Value).

Ljung-Box-Pierce Q-Test. Using l bqtest, you can verify, at least approximately, that no significant correlation is present in the raw returns when tested for up to 10, 15, and 20 lags of the ACF at the 0.05 level of significance.

However, there is significant serial correlation in the squared returns when you test them with the same inputs.

```
[H, pValue, Stat, Critical Value] = lbqtest((xyz-mean(xyz)).^2, [10 15 20]', 0.05);
[ H
   pVal ue
            Stat
                  Critical Value
ans =
                      177. 5937
                                   18.3070
    1.0000
                    0
    1.0000
                      263. 9325
                                  24.9958
    1.0000
                      385, 6907
                                  31.4104
```

Engle's ARCH Test. You can also perform Engle's ARCH test using the function archtest. This test also shows significant evidence in support of GARCH effects (i.e heteroskedasticity).

Each of these examples extracts the sample mean from the actual returns. This is consistent with the definition of the conditional mean equation of the default model, in which the innovations process is $\varepsilon_t = y_t - C$, and C is the mean of y_t

Parameter Estimation

The parameter estimation:

- **1** Estimates the model parameters
- 2 Examines the estimated GARCH model

Estimate the Model Parameters

The presence of heteroskedasticity, shown in the previous analysis, indicates that GARCH modeling is appropriate. Use the estimation function garchfit to estimate the model parameters. Assume the default GARCH model described in the section "The Default Model" on page 1-14. This only requires that you specify the return series of interest as an argument to the function garchfit.

Note Because the default value of the Di spl ay parameter in the specification structure is **on**, garchfit prints diagnostic, optimization, and summary information to the MATLAB command window in the example below. (See fmi ncon in the Optimization Toolbox for information about the optimization information.)

Number of variables: 4

Functions

Objective: garchl l fn

Gradi ent: finite-differencing

finite-differencing (or Quasi-Newton) Hessi an:

Nonlinear constraints: garchnl c

Gradient of nonlinear constraints: finite-differencing

Constraints

Number of nonlinear inequality constraints: 0 Number of nonlinear equality constraints:

Number of linear inequality constraints: 1 Number of linear equality constraints: 0 Number of lower bound constraints: 4 Number of upper bound constraints: 0

Algorithm selected medium-scale

End diagnostic information

			max		Di recti onal	
Iter	F- count	f(x)	constrain	t Step-size	deri vati ve	e Procedure
1	5	- 5921. 94	- 1. 684e- 005	1	-7.92e+004	
2	34	- 5921. 94	- 1. 684e- 005	1. 19e-007	- 553	
3	43	- 5924. 42	- 1. 474e- 005	0. 125	- 31. 2	
4	49	- 5936. 16	- 6. 996e- 021	1	- 288	
5	57	- 5960. 62	0	0. 25	- 649	
6	68	- 5961. 45	- 4. 723e- 006	0. 0313	- 17. 3	
7	75	- 5963. 18	-2. 361e-006	0. 5	- 28. 6	
8	81	- 5968. 24	0	1	- 55	
9	90	- 5970. 54	- 6. 016e- 007	0. 125	- 196	
10	103	- 5970. 84	- 1. 244e- 006	0. 00781	- 16. 1	
11	110	- 5972. 77	- 9. 096e- 007	0. 5	- 34. 4	
12	126	- 5972. 77	- 9. 354e- 007	0. 000977	- 24. 5	
13	134	- 5973. 29	- 1. 05e- 006	0. 25	- 4. 97	
14	141	- 5973. 95	- 6. 234e- 007	0. 5	- 1. 99	
15	147	- 5974. 21	- 1. 002e- 006	1	- 0. 641	
16	153	- 5974. 57	- 9. 028e- 007	1	- 0. 0803	
17	159	- 5974. 59	- 8. 054e- 007	1	- 0. 0293	
18	165	- 5974. 6	- 8. 305e- 007	1	- 0. 0039	
19	172	- 5974. 6	- 8. 355e- 007	0. 5	- 0. 000964	
20	192	- 5974. 6	- 8. 355e-007	-6. 1e-005	- 0. 000646	
21	212	- 5974. 6	- 8. 355e- 007	-6. 1e-005	- 0. 000996	Hessian modified twice

22 219 -5974.6 -8.361e-007 0.5 -0.000184 23 239 -5974.6 -8.361e-007 -6.1e-005 -0.00441 Hessian modified twice

 ${\tt Optimization\ terminated\ successfully:}$

Search direction less than 2*options. TolX and

maximum constraint violation is less than options. Tol Con

No Active Constraints

Examine the Estimated GARCH Model

Now that the estimation is complete, you can display the parameter estimates and their standard errors using the function garchdi sp,

garchdisp(coeff, errors)

Number of Parameters Estimated: 4

		Standard	T
Parameter	Val ue	Error	Statistic
C	0.00049183	0.00025585	1. 9223
K	8. 2736e-007	2. 7446e-007	3. 0145
GARCH(1)	0. 96283	0. 0051557	186. 7500
ARCH(1)	0. 03178	0. 004416	7. 1965

If you substitute these estimates in the definition of the default model, Eq. (1-12) and Eq. (1-13), the estimation process implies that the constant conditional mean/GARCH(1,1) conditional variance model that best fits the observed data is

$$y_t = 0.00049183 + \varepsilon_t$$

$$\sigma_{t}^{2} \, = \, 8.2736 \mathrm{e}{-007} + 0.96283 \sigma_{t-1}^{2} + 0.03178 \epsilon_{t-1}^{2}$$

where $G_I = GARCH(1) = 0.96283$ and $A_I = ARCH(1) = 0.03178$. In addition, C = C = 0.00049183 and K = K = 8.2736e-007.

Figure 1-10, GARCH(1,1) Log-Likelihood Contours for the XYZ Corporation shows the log-likelihood contours of the default GARCH(1,1) model fit to the returns of the XYZ Corporation. The contour data is generated by the GARCH Toolbox demonstration function garch11gri d. This function evaluates the log-likelihood function on a grid in the $G_{I^*}A_I$ plane, holding the parameters C and K fixed at their maximum likelihood estimates of 0. 00049183 and 8. 2736e-007, respectively.

The contours confirm the printed garchfit results above. The maximum log-likelihood value, LLF = 5974. 6, occurs at the coordinates G_1 = GARCH(1) = 0.96283 and A_1 = ARCH(1) = 0.03178.

The figure also reveals a highly negative correlation between the estimates of the G_1 and A_1 parameters of the GARCH(1,1) model. This implies that a small change in the estimate of the G_1 parameter is nearly compensated for by a corresponding change of opposite sign in the A_1 parameter.

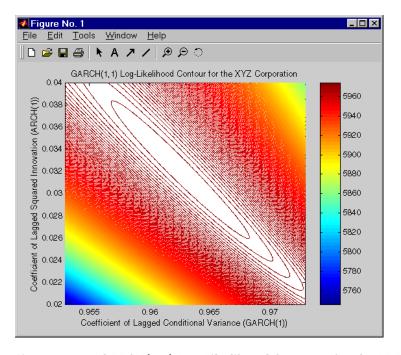


Figure 1-10: GARCH(1,1) Log-Likelihood Contours for the XYZ Corporation

Note If you view this manual on the Web, the color-coded bar at the right of the figure indicates the height of the log-likelihood surface above the GARCH(1,1) plane.

Post-Estimation Analysis

The post_estimation analysis:

- 1 Compares the residuals, conditional standard deviations, and returns
- 2 Plots and compares correlation of the standardized innovations
- 3 Quantifies and compares correlation of the standardized innovations

Compare the Residuals, Conditional Standard Deviations, and Returns In addition to the parameter estimates and standard errors, garchfit also returns the optimized log-likelihood function value (LLF), the residuals (innovations), and conditional standard deviations (sigma). Use the function garchpl ot to inspect the relationship between the innovations (i.e., residuals) derived from the fitted model, the corresponding conditional standard deviations, and the observed returns. garchpl ot displays the tiered plot shown in Figure 1-11, Comparison of Innovations, Conditional Standard Deviations and Observed Returns.

garchplot(innovations, sigma, xyz)

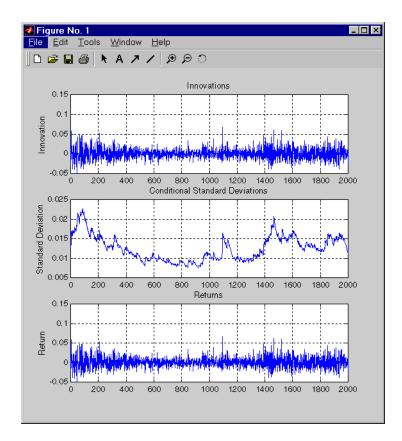


Figure 1-11: Comparison of Innovations, Conditional Standard Deviations and Observed Returns

Notice in Figure 1-11, Comparison of Innovations, Conditional Standard Deviations and Observed Returns that both the innovations (top plot) and the returns (bottom plot) exhibit volatility clustering. Also, notice that the sum, $G_1 + A_1 = 0.96283 + 0.03178$, is 0.99461, which is close to the integrated, nonstationary boundary given by Eq. (1-6).

Plot and Compare Correlation of the Standardized Innovations

Although the fitted innovations exhibit volatility clustering (Figure 1-11, Comparison of Innovations, Conditional Standard Deviations and Observed Returns), if you plot of the standardized innovations (the innovations divided

by their conditional standard deviation), they appear generally stable with little clustering.

```
plot(innovations./sigma)
ylabel('Innovation')
title('Standardized Innovations')
```

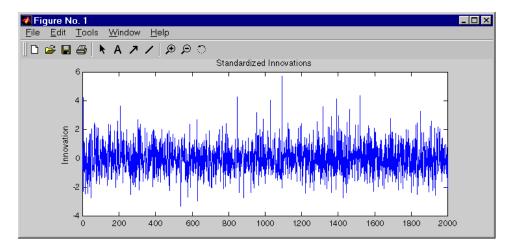


Figure 1-12: Standardized Innovations

If you plot the ACF of the squared standardized innovations (Figure 1-13, ACF of the Squared Standardized Innovations), they also show no correlation.

```
autocorr((innovations./sigma).^2)
```

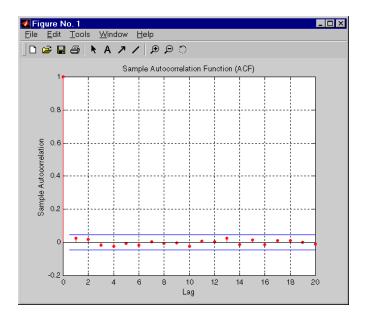


Figure 1-13: ACF of the Squared Standardized Innovations

Now compare the ACF of the squared standardized innovations (Figure 1-13, ACF of the Squared Standardized Innovations) to the ACF of the squared returns prior to fitting the default model (Figure 1-9, ACF of the Squared Returns). The comparison shows that the default model explains sufficiently the heteroskedasticity in the raw returns.

Quantify and Compare Correlation of the Standardized Innovations

Compare the results below of the Q-test and the ARCH test with the results of these same tests in the pre-estimation analysis. In the pre-estimation analysis, both the Q-test and the ARCH test indicate a rejection (H = 1 with pVal ue = 0) of their respective null hypotheses, showing significant evidence in support of GARCH effects. In the post-estimate analysis, using standardized innovations based on the estimated model, these same tests indicate acceptance (H = 0 with highly significant pVal ues) of their respective null hypotheses and confirm the explanatory power of the default model.

```
[H, pValue, Stat, Critical Value] = lbqtest((innovations./sigma).^2, [10 15 20]', 0.05);
[H pValue Stat Critical Value]
ans =
         0
              0.8632
                         5.3966
                                   18.3070
                         7. 7677
         0
              0.9328
                                   24.9958
         0
              0.9819
                         9.0843
                                  31.4104
[H, pValue, Stat, Critical Value] = archtest(innovations./sigma, [10\ 15\ 20]', 0.\ 05);
[H pValue Stat Critical Value]
ans =
         0
              0.8883
                         5.0428
                                   18.3070
         0
              0.8765
                         9.0200
                                  24.9958
         0
              0.9521
                        10.7657
                                  31.4104
```

The GARCH Specification Structure

This section discusses:

- Purpose of the Specification Structure
- · Contents of the Specification Structure
- · Valid Model Specifications
- Accessing Specification Structures
- Using the Specification Structure for Estimation, Simulation, and Forecasting

Purpose of the Specification Structure

Situations may arise in which you need more direct control of the analysis than is provided by the default model,

$$y_t = C + \varepsilon_t$$

$$\sigma_t^2 = \kappa + G_1 \sigma_{t-1}^2 + A_1 \varepsilon_{t-1}^2$$

(See "Analysis and Estimation Example Using the Default Model" on page 1-16.) For example, you may want to estimate the parameters of more elaborate conditional mean or variance models, perform Monte Carlo simulation, perform what-if analyses, or forecast time series.

The GARCH Toolbox maintains the parameters that define a model in a GARCH specification structure. In the default model example, garchfit creates the specification structure, coeff, and stores the model orders and estimated parameters of the default model in it. For more complex models, however, such as those required for the tasks listed above, you must specify the necessary parameters and store them in a specification structure.

The specification structure, coeff (from the default model example) represents the following default model estimated by garchfit.

$$y_t = 0.00049183 + \varepsilon_t$$

$$\sigma_t^2 = 8.2736e-007 + 0.96283\sigma_{t-1}^2 + 0.03178\varepsilon_{t-1}^2$$

"Contents of the Specification Structure" on page 1-33 shows the specification structure for the default model.

Contents of the Specification Structure

This example shows the contents of the specification structure. It is the specification structure, <code>coeff</code>, for the default model. The term to the left of the colon (:) is the parameter name.

```
coeff
coeff =
         Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
                R: 0
                M: 0
                P: 1
                Q: 1
    Distribution: 'Gaussian'
                C: 4. 9183e-004
               AR: []
               MA: []
         Regress: []
                K: 8. 2736e-007
            GARCH: 0.9628
             ARCH: 0.0318
             Fi xC: []
            Fi xAR: []
           Fi xMA: []
      FixRegress: []
             Fi xK: []
        Fi xGARCH: []
         Fi xARCH: []
    Optimization: [1x1 struct]
```

The specification structure parameters of interest in this discussion are Comment, R, M, P, Q, C, AR, MA, Regress, K, GARCH, and ARCH. (See the garchset reference page for a complete description of the GARCH specification structure parameters.) This section discusses:

- The Comment Field
- Equation Variables and Parameter Names
- Interpreting the Specification Structure

The Comment Field

The Comment field summarizes the ARMAX and GARCH models used for the conditional mean and variance equations in the default model example. The Comment value 'Mean: ARMAX(0, 0, 0); Variance: GARCH(1, 1)' describes the default model in terms of the general ARMAX(R,M,Nx) form for the conditional mean, where R = M = Nx = 0

$$V_{t} = C + \sum_{i=1}^{R} AR_{i} y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{M} MA_{j} \varepsilon_{t-j} + \sum_{k=1}^{Nx} \beta_{k} X(t, k)$$
 (1-14)

and the general GARCH(P,Q) form with Gaussian innovations for the conditional variance, where P = Q = 1.

$$\sigma_t^2 = \kappa + \sum_{i=1}^{P} G_i \sigma_{t-i}^2 + \sum_{j=1}^{Q} A_j \varepsilon_{t-j}^2$$
 (1-15)

By default, garchfit and garchset generate the Comment field automatically Although you can set the value of the Comment field, it offers such a convenient summary that The MathWorks discourages your doing so. However, if you do specify your own comment, the GARCH Toolbox recognizes this and does not override your comment.

Equation Variables and Parameter Names

For the most part, the names of specification structure parameters that define the ARMAX/GARCH models reflect the variable names of their corresponding components in Eq. (1-14) and Eq. (1-15):

- R and Mrepresent the order of the ARMA(R,M) model.
- ullet P and Q represent the order of the GARCH(P,Q) model.
- AR represents the coefficient vector AR_{i}
- MA represents the coefficient vector MA_j.
- GARCH represents the coefficient vector G_{i} .
- ARCH represents the coefficient vector A_{i} .
- C and K represent the constants C and K, respectively.

Unlike the other components of these equations, X has no representation in the GARCH specification structure. X is an optional matrix of returns that some toolbox functions use as explanatory variables in the regression component of the conditional mean. For example, X could contain return series of a suitable market index collected over the same period as y. Toolbox functions that allow the use of a regression matrix provide a separate argument by which you can specify it. In the specification structure, Regress represents the coefficient vector of X, β_k .

Interpreting the Specification Structure

In the specification structure, coeff, for the default model example, the AR, MA, and Regress fields are empty matrices ([]). This is because the default mean equation is an ARMAX(0,0,0) model, where R = M = Nx = 0, and AR, MA, and Regress are R-, M-, and Nx-element vectors, respectively.

The GARCH and ARCH fields are both scalars set to their respective estimated values. They are scalars because the default variance equation is a GARCH(1,1) model, where P=1 lag of the past conditional variance and Q=1 lag of the past squared innovations.

C and K are the constants of the mean and variance equations, respectively. Their values were estimated by garchfit.

Valid Model Specifications

The specification structure you provide as input to all functions except garchfit must contain a complete model specification. That is, the orders of the ARMA and GARCH models must agree with the lengths of their corresponding coefficient vectors. Specifically, the value of R must be the same as the length of the vector AR, and M must be the same as the length of MA. The value of P must be the same as the length of the vector GARCH, and Q must be the same as the length of ARCH.

Only garchfit can accept as input a specification structure in which some or all of the model orders (R, M, P, or Q) are greater than 0 and the coefficient vectors are empty ([]). During the estimation process, garchfit creates appropriate coefficient vectors whose lengths correspond to the specified model orders.

Accessing Specification Structures

This section discusses:

- Using garchset to Create a Specification Structure
- Retrieving Specification Structure Values
- Accessing Fields Directly

Using garchset to Create a Specification Structure

The function garchset provides various options for creating and modifying a specification structure. Each of the following commands uses a different garchset syntax to create identical specification structures for the default model.

```
spec = garchset('R', 0, 'm', 0, 'P', 1, 'Q', 1);
spec = garchset('p', 1, 'Q', 1);
spec = garchset('R', 0, 'M', 0); spec = garchset(spec, 'P', 1, 'Q', 1);
spec = garchset;
```

The first command explicitly sets all model orders: R, M, P, and Q. This command illustrates the most basic garchset calling syntax. It specifies the structure fields as parameter/value pairs, in which the parameter name is a MATLAB character string enclosed in single quotes, followed by its corresponding value. When calling garchset, you only need to type the leading characters that uniquely identify the parameter. As illustrated here, case is ignored for parameter names.

The second command sets model orders for a GARCH(1,1) variance process only, and relies on the ARMAX(0,0,?) default for the mean. The third command creates an initial structure, and then updates the existing structure with additional parameter/value pairs. The last command, with no input arguments, creates a structure for the default model. The last command also implies that the following commands produce exactly the same estimation results.

```
[coeff, errors, LLF, innovations, sigma] = garchfit(xyz);
[coeff, errors, LLF, innovations, sigma] = garchfit(garchset, xyz);
```

Retrieving Specification Structure Values

The function garchget retrieves the values contained in specification structure fields.

Use garchget to retrieve the estimated coefficients from coeff. Then use garchset to write those coefficients to a new specification structure, spec, that is almost identical to coeff. For both garchget and garchset, you only need to type the leading characters that uniquely identify the parameter. Case is ignored for parameter names.

```
C = garchget(coeff, 'C')
                            % Use a separate garchget call to
                             % get each estimated coefficient.
C =
  4.9183e-004
K = garchget(coeff, 'K')
\mathbf{K} =
  8. 2736e-007
G = garchget(coeff, 'GARCH')
G =
    0.9628
A = garchget(coeff, 'ARCH')
A =
    0.0318
                              % Use garchset to create a new
                              % structure, spec.
spec = garchset('C', C, 'K', K, 'GARCH', G, 'ARCH', A)
spec =
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
                R: 0
                M: 0
                P: 1
                Q: 1
    Distribution: 'Gaussian'
                C: 4.9183e-004
               AR: []
               MA: []
         Regress: []
```

```
K: 8, 2736e-007
        GARCH: 0.9628
         ARCH: 0.0318
        Fi xC:
               []
       Fi xAR: []
       Fi xMA:
  Fi xRegress:
        Fi xK:
    Fi xGARCH:
     Fi xARCH: []
Optimization: [1x1 struct]
```

In this example, garchset automatically generates the first six fields (i.e., Comment, R, M, P, Q, and Distribution). Specifically, garchest infers the comment and model orders (R, M, P, Q) from the corresponding coefficient vectors (AR, MA, ARCH, GARCH). The converse is not true. If you specify only the model orders, garchset creates the coefficient vectors as empty matrices ([]). If you later call garchfit, it estimates the coefficient vectors for models of the order you specify, and updates the AR, MA, ARCH, and GARCH fields with these values.

Note The only difference between the coeff and spec structures above lies in their Comment fields. In coeff, garchfit explicitly sets the number of explanatory (i.e., regression) variables in the Comment field of coeff to 0. This is because coeff represents an actual model whose conditional mean has no regression component. On the other hand, garchset inserts a '?' because it has no knowledge when it creates spec, whether you will include a regression component when you call garchfit to estimate the model parameters.

Accessing Fields Directly

In addition to using garchset and garchget to access the values of specification structure fields, you can also manipulate the fields of a structure directly. For example, the commands

```
garchget(spec, 'P')
spec. P
```

both retrieve the order P in the structure spec. Similarly, the commands

```
spec = garchset(spec, 'P', 3)
```

spec. P = 3

both write the order P = 3.

The first command in each case uses a GARCH Toolbox function to retrieve or write the value of a field. In this case the toolbox performs error checking (e.g., to ensure compatibility between inputs and guarantee that ARMA models are stationary/invertible). You also have the convenience of partial field names and case insensitivity.

In each case, the second command manipulates the structure directly. Although this approach does not support partial field names and case insensitivity, it can be convenient when you work interactively at the MATLAB command line. However, it does *not* provide error checking. For this reason, you should avoid manipulating a specification structure directly when writing code.

Note that the call to garchset above fails in your example workspace because the corresponding coefficient vector, GARCH, has only one element. Setting spec. P = 3 directly succeeds but leaves you with an inconsistent specification structure.

Using the Specification Structure for Estimation, Simulation, and Forecasting

The three functions, garchfit, garchpred, and garchsim, comprise the core analysis and modeling routines of the GARCH Toolbox. These three functions operate on the GARCH specification structure. Table 1-1, GARCH Specification Structure Use describes each function's use of the GARCH specification structure.

Table 1-1: GARCH Specification Structure Use

Function	Description	Use of GARCH Specification Structure
garchfit	Estimates the parameters of a conditional mean specification of ARMAX form and a conditional variance specification of GARCH form.	Input Optionally accepts a GARCH specification structure as input. If the structure contains the model orders but no coefficient vectors (C, AR, MA, Regress, K, ARCH, GARCH), garchfit uses maximum likelihood to estimate the coefficients for an ARMAX/GARCH model of the specified orders. If the structure contains coefficient vectors, garchfit uses them as initial estimates for further refinement. If you provide no specification structure, garchfit assumes, and returns, a specification structure for the default model. Output Returns a specification structure that contains a fully specified ARMAX/GARCH model.
garchpred	Provides minimum-mean-square-error (MMSE) forecasts of the conditional mean and standard deviation of a return series, for a specified number of periods into the future.	Input Requires a GARCH specification structure that contains the coefficient vectors for the model for which garchpred is to forecast the conditional mean and standard deviation. Output garchpred does not modify or return the specification structure.
garchsi m	Uses Monte Carlo methods to simulates sample paths for return series, innovations, and conditional standard deviation processes.	Input Requires a GARCH specification structure that contains the coefficient vectors for the model for which garchsi m is to simulate sample paths. Output garchsi m does not modify or return the specification structure.

Simulation

This section shows you how to:

- Simulate sample paths, using the simulation function garchsi m, for return series, innovations, and conditional standard deviation processes
- · Examine transient effects in the simulation process

It also provides a general simulation example.

Simulating Sample Paths

The section "Analysis and Estimation Example Using the Default Model" on page 1-16 models the equity series of a hypothetical company, the XYZ Corporation, using the default model. This section uses the resulting model

```
y_t = 0.00049183 + \varepsilon_t
\sigma_t^2 = 8.2736e-007 + 0.96283\sigma_{t-1}^2 + 0.03178\varepsilon_{t-1}^2
```

to simulate sample paths, using the simulation function garchsi m, for return series, innovations, and conditional standard deviation processes. You can think of garchsi m as a filter that you can use to generate a (possibly) correlated return series $\{y_t\}$ from a white noise input series $\{\mathcal{E}_t\}$.

Use the following commands to restore your workspace if necessary. This example omits the estimation output to save space.

```
MA: []
Regress: []
K: 8.2736e-007
GARCH: 0.9628
ARCH: 0.0318
FixC: []
FixAR: []
FixMA: []
FixRegress: []
FixK: []
FixGARCH: []
FixARCH: []
Optimization: [1x1 struct]
```

Using Default Inputs

Now call garchsi m to simulate sample paths using the model in coeff. This command accepts garchsi m defaults for:

- The number of sample paths (i.e. realizations) to generate: 1
- The number of observations to generate for each path: 100
- The random number generator seed: 0

[e, s, y] = garchsim(coeff);

```
whoses y
  Name
               Si ze
                                       Class
                               Bytes
            100x1
                                  800
  \mathbf{e}
                                        double array
            100x1
                                  800
  \mathbf{s}
                                        double array
            100x1
                                  800
                                        double array
  y
```

Grand total is 300 elements using 2400 bytes

The result is a single realization (i.e., one sample path) of 100 observations each for the innovations $\{\varepsilon_{i}\}$, conditional standard deviations $\{\sigma_{i}\}$, and returns $\{y_{i}\}$ processes. These processes are designated by the output variables e, s, and y, respectively.

Simulating a Much Longer Path

However, accurate GARCH modeling typically requires a few years worth of data. If there are 250 trading days per year, 1000 observations would be a more useful sample.

```
[e, s, y] =
            garchsim(coeff, 1000);
whoses y
                             Bytes Class
  Name
              Si ze
          1000x1
                              8000
  \mathbf{e}
                                     double array
          1000x1
                              8000
                                     double array
  \mathbf{s}
          1000x1
                              8000
                                     double array
  У
```

Grand total is 3000 elements using 24000 bytes

The result is a single realization of 1000 observations (roughly four years of data) for each of $\{\mathcal{E}_{i}\}$, $\{\sigma_{i}\}$, and $\{y_{i}\}$. Plot the garchsi moutput data to see what it looks like.

```
garchplot(e, s, y)
```

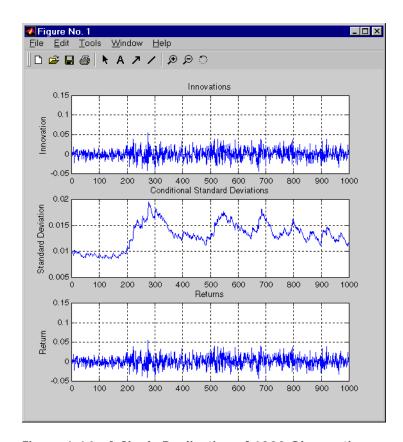


Figure 1-14: A Single Realization of 1000 Observations

Simulating Multiple Paths

However, Monte Carlo simulation requires multiple independent paths. Use the same model to simulate 1000 paths of 200 observations each.

[e, s, y]	= garchsim(c	coeff, 200,	1000);		
whose sy					
Name	Si ze	Bytes	Class		
e	200x1000	1600000	doubl e	array	
s	200x1000	1600000	doubl e	array	
У	200x1000	1600000	doubl e	array	

Grand total is 600000 elements using 4800000 bytes

In this example, $\{\mathcal{E}_{i}\}$, $\{\sigma_{i}\}$, and $\{y_{i}\}$ are 200-by-1000 element matrices. These are relatively large arrays, and demand large chunks of memory. In fact, because of the way the GARCH Toolbox manages transients, simulating this data requires more memory than the 4800000 bytes indicated above.

Transients in the Simulation Process

Automatic Minimization of Transient Effects

The function garchsi m generates stable output processes in (approximately) steady-state by attempting to eliminate transients in the data it simulates. garchsi m first estimates the number of observations needed for the transients to decay to some arbitrarily small value, and then generates a number of observations equal to the sum of this estimated value and the number you request. garchsi m then ignores the estimated number of initial samples needed for the transients to decay sufficiently and returns only the requested number of later observations.

To do this, garchsi m interprets the simulated GARCH(P,Q) conditional variance process as an ARMA(max(P,Q),P) model for the squared innovations (see, for example, Bollerslev [4], p.310). It then interprets this ARMA(max(P,Q),P) model as the correlated output of a linear filter and estimates its impulse response by finding the magnitude of the largest eigenvalue of its auto-regressive polynomial. Based on this eigenvalue, garchsi m estimates the number of observations needed for the magnitude of the impulse response (which begins at 1) to decay below 0. 01 (i.e., 1 percent). If the conditional mean has an ARMA(R,M) component, then garchsi m also estimates its impulse response.

Depending on the values of the parameters in the simulated conditional mean and variance models, you may need long pre-sample periods for the transients

to die out. Although the simulation outputs may be relatively small matrices, the initial computation of these transients can result in a large memory burden and seriously impact performance. In the previous example, which simulates three 200-by-1000 element arrays, intermediate storage is required for far more than 200 observations.

Further Minimization of Transient Effects

If you suspect transients persist in the simulated data garchsim returns, you can oversample and delete observations from the beginning of each series. For example, suppose you would like to simulate 10 independent paths of 1000 observations each for $\{\mathcal{E}_t\}$, $\{\sigma_t\}$, and $\{y_t\}$ starting from a known scalar random number seed (12345). Start by generating 1200 observations, then further minimize the effect of transients by retaining only the last 1000 observations of interest.

```
garchsim(coeff, 1200, 10, 12345);
[e, s, y] =
whosesy
  Name
             Si ze
                            Bytes
                                   Class
          1200x10
                            96000
                                    double array
  \mathbf{e}
          1200x10
                            96000
  \mathbf{s}
                                    double array
          1200x10
                            96000
                                    double array
  y
Grand total is 36000 elements using 288000 bytes
e = e(end-999:end, :);
s = s(end-999:end, :);
y = y(end-999: end, :);
whosesy
  Name
                                    Class
             Si ze
                            Bytes
          1000x10
                            80000
  e
                                    double array
  \mathbf{s}
          1000x10
                            80000
                                    double array
          1000x10
                            80000
                                    double array
  У
```

Grand total is 30000 elements using 240000 bytes

Note The example above also illustrates how to specify a random number generator seed. If you do not specify a seed, as in the example in "Simulating Multiple Paths" on page 1-44, the default seed is 0 (the MATLAB initial state).

Understanding Transient Effects

The example in this section builds on the example in the section "Further Minimization of Transient Effects" on page 1-46. The previous example simulated 10 independent paths of 1000 observations each for $\{\epsilon_{i}\}$, $\{\sigma_{i}\}$, and $\{y_{i}\}$ and returned its outputs in the variables e, s, and y respectively. This example uses the GARCH Toolbox inference function garchinfer to infer $\{\epsilon_{i}\}$ and $\{\sigma_{i}\}$ from the simulated return series y. It then compares the steady-state simulated innovations and conditional standard deviation processes with the inferred innovations and conditional standard deviation processes.

Essentially, garchsi m uses an ARMA model as a linear filter to transform an uncorrelated input innovations process $\{\mathcal{E}_{i}\}$ into a correlated output returns process $\{y_{i}\}$. Use the function garchi nfer to reverse this process by inferring innovations $\{\mathcal{E}_{i}\}$ and standard deviation $\{\sigma_{i}\}$ processes from the observations in $\{y_{i}\}$

```
[eInferred, sInferred] = garchinfer(coeff, y);
```

where eInferred and sInferred are the inferred innovations and conditional standard deviations, respectively. Notice that when you query the workspace, eInferred and sInferred are the same size as the simulated returns matrix y

sInferred y			
Si ze	Bytes	Class	
1000x10	80000	double a	rray
1000x10	80000	double a	rray
1000x10	80000	double a	rray
	Si ze 1000x10 1000x10	Si ze Bytes 1000x10 80000 1000x10 80000	Si ze Bytes Cl ass 1000x10 80000 double and doubl

Grand total is 30000 elements using 240000 bytes

Now compare the steady-state, simulated processes with their inferred counterparts by examining the third trial (i.e., the third column of each matrix). Note that there is nothing special about the third column, and the following comparisons hold for all columns.

First, create two matrices, eData and sData, to store the row numbers, the simulated and inferred series, and the difference between the two.

Grand total is 8000 elements using 64000 bytes

Now, print the first 10 rows of eData and sData, using the fprintf command to format the printed output, and examine the observations.

Note Depending on your platform, the innovations (e, eInferred) and standard deviations (s, sInferred) may differ in value from those shown below. This has little effect on the calculated differences, which continue to demonstrate the convergence shown in the last column.

```
fprintf('%4d %12.8f %12.8f %12.8f\n', eData(1:10,:)')
                                  0.00000000
      -0.00111887
                   -0.00111887
     -0.01022535
                   -0.01022535
                                  0.00000000
   3
     -0.01391679
                  -0.01391679
                                  0.0000000
   4
       0.00769383
                    0.00769383
                                  0.00000000
   5
       0.00284161
                    0.00284161
                                  0.00000000
       0.00837156
                    0.00837156
                                  0.00000000
      - 0. 01022153
                   -0.01022153
                                  0.00000000
   8
      -0.00064348
                   -0.00064348
                                  0.00000000
  9
       0.00769471
                    0.00769471
                                  0.00000000
  10
     -0.00011629
                   -0.00011629
                                 -0.0000000
fprintf('%4d %12.8f %12.8f %12.8f\n', sData(1:10,:)')
                                 -0.00356213
   1
       0.01176309
                    0.01532522
   2
       0.01157993
                                 -0.00348661
                    0.01506653
   3
       0.01154388
                    0.01492360
                                 -0.00337972
   4
       0.01163145
                    0.01488014
                                 -0.00324869
   5
       0.01153130
                    0.01469346
                                -0.00316216
```

```
6
     0.01136278
                  0.01445537
                               -0.00309258
7
     0.01128578
                  0.01429146
                               -0.00300569
8
     0.01125978
                  0.01417048
                               -0.00291070
9
     0.01108652
                  0.01393485
                               -0.00284832
10
     0.01100236
                  0.01377214
                               -0.00276979
```

Notice that the difference between the simulated and inferred innovations is effectively zero immediately, whereas the standard deviations appear to converge slowly. If you examine every 25th observation of the standard deviations, through the 400th observation, the convergence is more obvious.

```
fprintf('%4d %12.8f %12.8f %12.8f\n', sData(25:25:400,:)')
  25
       0.01060556
                     0.01230273
                                 -0.00169717
  50
       0.01167755
                     0.01230644
                                 -0.00062889
                     0.01312981
  75
       0.01290505
                                 -0.00022476
 100
       0.01228385
                     0.01237591
                                 -0.00009206
 125
       0.01256986
                     0.01260484
                                 -0.00003498
 150
       0.01292421
                     0.01293742
                                 -0.00001321
 175
       0.01212655
                     0.01213201
                                 -0.0000546
 200
       0.01155697
                     0. 01155919
                                 -0.00000222
 225
       0.01409612
                     0.01409683
                                 -0.00000071
 250
       0.01468410
                     0.01468437
                                 -0.00000026
 275
       0.01336617
                     0.01336628
                                 -0.00000011
 300
       0.01138117
                     0. 01138123
                                 - 0. 00000005
 325
       0.01414220
                     0.01414222
                                 -0.0000002
 350
       0.01312882
                     0.01312883
                                 -0.0000001
 375
       0.01494447
                     0.01494447
                                 -0.00000000
 400
       0.01704352
                     0.01704352
                                 -0.00000000
```

The innovations processes of the default model converge immediately because the default model assumes a simple constant in the conditional mean equation (i.e., there is no correlation in the conditional mean). However, the GARCH(1,1) default conditional variance equation is highly persistent (recall that the GARCH and ARCH parameter estimates are 0.9628 and 0.0318, respectively).

Note The fprintf function lets you control the specific formatting of printed data. This example uses it to print the first 10 rows of eData and sData. It prints each innovation and difference value in fixed point notation, in a field of at least 12 digits, with 8 digits of precision. (See fprintf in the online MATLAB Function Reference.)

A General Simulation Example

This simulation example is more general than the previous one that used the default model, GARCH(1,1). It uses an ARMA(2,1) model to express correlation in the conditional mean. The example:

- 1 Defines an ARMA(2,1)/GARCH(1,1) model
- 2 Uses the model to simulate 2000 observations for return series, innovations, and conditional standard deviation processes
- 3 Infers the innovations and standard deviations for the simulated return series
- 4 Compares the simulated and inferred innovations for the first 20 observations

Create the Model

Start by creating an ARMA(2,1)/GARCH(1,1) composite model with repeated calls to garchset.

```
C: 0
AR: [0.6000 0.2000]
MA: 0.4000
Regress: []
K: 1.0000e-005
GARCH: 0.8000
ARCH: 0.1000
FixC: []
FixAR: []
FixMA: []
FixRegress: []
FixK: []
FixGARCH: []
FixARCH: []
Optimization: [1x1 struct]
```

If you substitute the coefficient vectors from this specification structure in Eq. (1-8) and Eq. (1-9) you get the following ARMA(2,1) and GARCH(1,1) models. These are the models this example simulates.

$$y_{t} = 0 + 0.6 y_{t-1} + 0.2 y_{t-2} + \varepsilon_{t} + 0.4 \varepsilon_{t-1}$$

$$\sigma_{t}^{2} = 0.00001 + 0.8 \sigma_{t-1}^{2} + 0.1 \varepsilon_{t-1}^{2}$$

Simulate and Infer the Innovations

Use this model to simulate 2000 observations in a return series, and their corresponding innovations and standard deviations. Then use garchi nfer to infer innovations and standard deviations from the simulated return series.

```
[e, s, y] = garchsim(spec, 2000);
[eInferred, sInferred] = garchinfer(spec, y);
```

You can think of the simulation engine garchsi m as a filter that generates a (possibly) correlated return series $\{y_i\}$ from a white noise input series $\{\mathcal{E}_i\}$. garchi nfer reverses this process by inferring innovations $\{\mathcal{E}_i\}$ and standard deviation $\{\sigma_i\}$ processes from the observations in $\{y_i\}$.

However, garchi nfer is a convenience function that only provides a user-friendly interface to the log-likelihood objective function, garchl l fn. So, in fact, garchl l fn is the inverse (i.e., whitening) filter associated with the

simulation engine, because it infers the white noise process from the observed return series. (See the section "Understanding Transient Effects" on page 1-47.)

Note garchfit also calls the log-likelihood objective function, garchllfn, to infer the innovations and standard deviations.

Compare Simulated and Inferred Innovations

Now compare the simulated and inferred innovations for the first 20 observations. Notice that, after a few observations, the difference between the simulated and inferred innovations is insignificant.

```
eData = [[1:length(e)]'
                         e eInferred [e-eInferred]];
fprintf('%4d %12.8f %12.8f %12.8f\n', eData(1:20,:)')
      -0.00836573
                    0.0000000
                                 -0.00836573
      -0.01976087
                    0.0000000
                                 -0.01976087
     -0.00063568
                   -0.00854003
                                  0.00790435
   4
      -0.01022288
                   -0.00706114
                                 -0.00316174
   5
       0.00621509
                    0.00495039
                                  0.00126470
   6
       0.00496725
                    0.00547313
                                 -0.00050588
   7
       0.01596937
                    0.01576702
                                  0.00020235
   8
       0.00610852
                    0.00618946
                                 -0.00008094
      -0.00640740
                   -0.00643977
                                  0.00003238
  10
       0.00367566
                    0.00368861
                                 -0.00001295
  11
      -0.00936189
                   -0.00936707
                                  0.00000518
  12
      -0.00018263
                   -0.00018056
                                 -0.0000207
  13
      -0.00043157
                   -0.00043240
                                  0.0000083
  14
       0.0000037
                    0.0000070
                                 -0.0000033
  15
      -0.00264566
                   -0.00264579
                                  0.0000013
  16
       0.00890411
                    0.00890416
                                 -0.0000005
  17
      -0.01577120
                   -0.01577122
                                  0.0000002
  18
       0.00409658
                    0.00409659
                                 -0.0000001
  19
       0.00825279
                    0.00825278
                                  0.00000000
  20
       0.00672859
                    0.00672859
                                 -0.0000000
```

In the example above, the difference between the simulated and inferred innovations (e - eInferred) illustrates the transient effects introduced by the inference. When garchsi m generates data, it generates sufficient initial data,

which it then discards, to allow transients to decay to some arbitrarily small value (see "Automatic Minimization of Transient Effects" on page 1-45). However, the inference function garchinfer (an interface to the log-likelihood objective function, garchllfn) must infer the innovations and conditional standard deviations directly from the observed returns. This can introduce transient effects.

That the first R=2 rows of the inferred innovations are 0, illustrates the link between simulation, inference, and estimation in the GARCH Toolbox. This fact is also directly related to the manner in which maximum likelihood estimation is performed.

Maximum Likelihood Estimation

Forming the log-likelihood objective function involves a two-step process:

1 garchl l f n uses the conditional mean specification of ARMAX form shown in Eq. (1-16) to infer the innovations from the observed returns. This equation is derived from Eq. (1-8) by solving for ε_t .

$$\mathcal{E}_{t} = -C + y_{t} - \sum_{i=1}^{R} A R_{i} y_{t-i} - \sum_{j=1}^{M} M A_{j} \mathcal{E}_{t-j} - \sum_{k=1}^{Nx} \beta_{k} X(t, k)$$
 (1-16)

To infer the innovations, garchllfn uses the Box and Jenkins conditional approach, which conditions the recursion on the initial R observations of y_t , setting the initial values of ε_t to 0 (see Hamilton [10], page 132, or Box, Jenkins, and Reinsel [7], page 237). Note that for the default model, R = M = 0, and no transients are induced due to this initialization.

2 garchllfn must then infer the conditional variances from the squared innovations as illustrated in Eq. (1-9), which is replicated here.

$$\sigma_t^2 = \kappa + \sum_{i=1}^{P} G_i \sigma_{t-i}^2 + \sum_{j=1}^{Q} A_j \varepsilon_{t-j}^2$$

This step initializes the recursion by setting the first max(P,Q) observations of both σ_t^2 and ε_t^2 to the sample variance of the innovations inferred from the first step (see Hamilton [10], pages 666-667, or Bollerslev [4], page 316).

Forecasting

This section uses the estimated default model and the XYZ Corporation, from the section "Simulation" on page 1-41, to demonstrate the use of the forecasting function garchpred.

$$y_t = 0.00049183 + \varepsilon_t$$

$$\sigma_t^2 = 8.2736e-007 + 0.96283\sigma_{t-1}^2 + 0.03178\varepsilon_{t-1}^2$$

garchpred computes minimum-mean-square-error (MMSE) forecasts of the conditional mean and conditional standard deviation of the returns $\{y_t\}$ in each period over a user-specified forecast horizon.

Specifically, this section discusses:

- · Computing a Forecast
- Computing Root Mean Square Errors (RMSE)
- Asymptotic Behavior for Long-Range Forecast Horizons

Note Example results in this section are printed in **Short** E numeric format for readability. Select **File** > **Preferences...** > **General** > **Short** E before starting the example to duplicate these printed results.

Computing a Forecast

This section discusses:

- Using Default Inputs
- Forecasting Over a Longer Horizon
- Long-Range Forecasting
- Forecasting Returns Over Multiple Periods

If the variables for the estimated model no longer exist in your workspace, then use the following commands to load the data and regenerate the estimation results of the default model. This example omits the estimation output to save space.

```
load xyz
xyz = price2ret(prices);
[coeff, errors, LLF, innovations, sigma] = garchfit(xyz);
```

Using Default Inputs

Now call garchpred to compute the conditional mean and standard deviation return forecasts for the XYZ Corporation using the default model parameter estimates. Provide the specification structure coeff (the output of garchfit) and the XYZ Corporation return series xyz, as input. Accept the garchpred default (1) for the number of forecast periods.

```
[sFcast, yFcast] = garchpred(coeff, xyz);
[sFcast, yFcast]
ans =
1.1670e-002  4.9183e-004
```

The result consists of the MMSE forecasts of the conditional standard deviations and the conditional mean of the return series xyz for a one-period default horizon.

Note garchpred allows the use of a time series regression matrix and an associated time series matrix of forecasted explanatory data. If you specify no regression matrix, the conditional mean has no regression component. See the section "Conditional Mean Models with Regression Components" on page 1-62 for information about using regression models.

Forecasting Over a Longer Horizon

To obtain information about asymptotic behavior, you need to forecast for more more than a single period. Use the following command to forecast the conditional mean and standard deviation in each period of a 10-period forecast horizon.

```
[sFcast, yFcast] = garchpred(coeff, xyz, 10);
[sFcast, yFcast]
ans =
   1.1670e-002   4.9183e-004
```

The results show that the default model forecast of the conditional mean is always C = 0.00049183. This is true for any forecast horizon because the expected value of any innovation, ε_h is 0.

In contrast, the conditional standard deviation forecast changes from period to period and approaches the unconditional standard deviation of $\{\mathcal{E}_{i}\}$, given by the square root of Eq. (1-7).

$$\sigma = \sqrt{\frac{\kappa}{1 - \sum_{i=1}^{P} G_i - \sum_{j=1}^{Q} A_j}}$$
 (1-17)

For this example, you can calculate the unconditional standard deviation of $\{\epsilon_t\}$ as

```
s0 = sqrt(coeff.K/(1 - sum([coeff.GARCH(:) ; coeff.ARCH(:)])))
s0 =
1.2393e-002
```

Plot the conditional standard deviations, si gma, derived from the fitted returns. The plot reveals that the most recent values of σ_t fall below this long-run, asymptotic value.

```
plot(sigma)
title('Fitted Conditional Standard Deviations: XYZ Corporation')
```

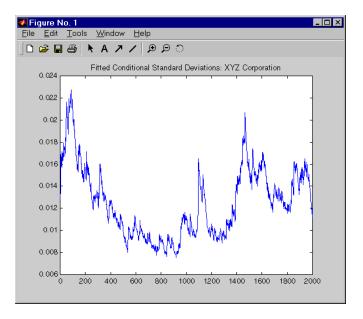


Figure 1-15: Fitted Conditional Standard Deviations

Long-Range Forecasting

That the most recent values of σ_t fall below 1. 2393e-002 indicates that the long-range forecast of σ_t approaches this value from below. Confirm this by forecasting the standard deviations out 1000 periods, then plotting the forecasts (blue, dashed) and asymptotic value (red, solid) on the same graph.

```
sFcast = garchpred(coeff, xyz, 1000);
plot(sFcast, 'blue--')
hold('on')
plot([0 length(sFcast)], [s0 s0], 'red')
title('Standard Deviation Forecasts and Asymptotic Value: XYZ Corporation')
```



Figure 1-16: Standard Deviation Forecasts and Asymptotic Value

You can see from Figure 1-16, Standard Deviation Forecasts and Asymptotic Value that it takes a very long time for the forecast to reach its steady-state value. This is consistent with the high degree of persistence in the volatility process for the XYZ Corporation (see Figure 1-9, ACF of the Squared Returns).

Forecasting Returns Over Multiple Periods

In addition to computing conditional mean and volatility forecasts on a per-period basis, garchpred also computes volatility forecasts of returns for assets held for multiple periods. For example, to forecast the standard deviation of the return you would obtain if you purchased XYZ stock today and sold it 10 days from now,

```
[sFcast, yFcast, sTotal] = garchpred(coeff, xyz, 10);
[sFcast, sTotal]
ans =
    1.1670e-002    1.1670e-002
    1.1674e-002    1.6506e-002
    1.1678e-002    2.0220e-002
    1.1682e-002    2.3352e-002
```

```
1. 1686e-002 2. 6112e-002
1. 1690e-002 2. 8609e-002
1. 1694e-002 3. 0907e-002
1. 1697e-002 3. 3047e-002
1. 1701e-002 3. 5057e-002
1. 1705e-002 3. 6959e-002
```

The vector sTotal (the second column above) represents the standard deviation forecasts of returns when the asset is held for multiple periods. The first element contains the standard deviation of the return expected if XYZ stock were held for one period, the second element contains the standard deviation of the return expected if XYZ stock were held for two periods, and so on. The last element contains the volatility forecast of the expected return if XYZ were purchased today and held for 10 periods.

If you convert the standard deviations sFcast and sTotal to variances by squaring each element, you can see an interesting relationship between the cumulative sum of sFcast. ^2 and sTotal. ^2.

```
[cumsum(sFcast.^2) sTotal.^2]
ans =
  1. 3618e-004
                1. 3618e-004
  2. 7246e-004
               2.7246e-004
  4. 0883e-004
               4. 0883e-004
  5. 4530e-004
               5. 4530e-004
  6.8185e-004
               6.8185e-004
  8. 1850e-004
               8. 1850e-004
  9. 5524e-004
              9. 5524e-004
  1. 0921e-003
               1.0921e-003
  1. 2290e-003
                1.2290e-003
  1. 3660e-003
                1.3660e-003
```

Although not exactly equivalent, this relationship in the presence of heteroskedasticity is similar to the familiar square-root-of-time rule for converting constant variances of uncorrelated returns expressed on a per-period basis to a variance over multiple periods. This relationship between sFcast and sTotal holds for the default conditional mean model only (i.e., the relationship is valid for uncorrelated returns).

Note that the calculation of sTotal is strictly correct for continuously compounded returns only, and is an approximation for periodically compounded returns.

Note The sTotal output of garchpred is not available for conditional mean models with regression components.

Computing Root Mean Square Errors (RMSE)

You can also use garchpred to calculate the root mean square errors (RMSE) associated with the conditional mean forecasts in yFcast.

```
[sFcast, yFcast, sTotal, yRMSE] = garchpred(coeff, xyz, 10);
[yFcast, yRMSE]
ans =
  4.9183e-004
                1.1670e-002
  4. 9183e-004
                1. 1674e-002
  4. 9183e-004
                1. 1678e-002
  4. 9183e-004
                1.1682e-002
  4. 9183e-004
                1. 1686e-002
  4. 9183e-004
                1. 1690e-002
  4. 9183e-004
                1. 1694e-002
  4. 9183e-004
                1.1697e-002
  4. 9183e-004
                1.1701e-002
  4. 9183e-004
                1. 1705e-002
```

The first column above contains the minimum mean square error (MMSE) forecasts of the conditional mean of the returns in each of the first 10 periods (from the section "Forecasting Over a Longer Horizon" on page 1-55). The second column contains the standard error of the corresponding forecast (see Baillie & Bollerslev [1], equation 19, page 96). You can use these results to construct approximate confidence intervals for conditional mean forecasts, with the approximation becoming more accurate during periods of relatively stable volatility (see Baillie & Bollerslev [1], and Bollerslev, Engle, and Nelson [6]). As heteroskedasticity in returns disappears (i.e., as the returns approach the homoskedastic, or constant variance, limit), the approximation is exact and you can apply the Box & Jenkins confidence bounds (see Box, Jenkins, and Reinsel [7], pages 133-145).

Note The yRMSE output of garchpred is not available for conditional mean models with regression components.

Asymptotic Behavior for Long-Range Forecast Horizons

If you are working with long-range forecast horizons, the following asymptotic behaviors hold for the outputs of garchpred:

- As mentioned earlier in this section, the conditional standard deviation forecast (i.e., the first garchpred output, sFcast) approaches the unconditional standard deviation of {ε_t} given by the square root of Eq. (1-7).
- GARCH effects do not affect the MMSE forecast of the conditional mean (i.e., the second garchpred output, yFcast). The forecast approaches the unconditional mean of {y_t} as in the constant variance case. That is, the presence of GARCH effects introduces dependence in the variance process, and only affects the uncertainty of the mean forecast, leaving the mean forecast itself unchanged.
- The mean-square-error of the conditional mean (i.e., the square of the fourth garchpred output, yRMSE.^2) approaches the unconditional variance of $\{y_i\}$.

Conditional Mean Models with Regression Components

The GARCH Toolbox allows conditional mean models with regression components, i.e., of general ARMAX(R,M,Nx) form.

$$V_{t} = C + \sum_{i=1}^{R} AR_{i}y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{M} MA_{j}\varepsilon_{t-j} + \sum_{k=1}^{Nx} \beta_{k}X(t, k)$$

Conditional mean models with a regression component introduce additional complexity in the sense that the GARCH Toolbox has no way of knowing what the explanatory data represents or how it was generated. This is in contrast to ARMA models, which have an explicit forecasting mechanism and well-defined stationarity/invertibility requirements.

All the primary functions in the GARCH Toolbox (i.e., garchfit, garchinfer, garchpred, and garchsim) accept an optional regression matrix X, which represents X in the equation above. You must ensure that the regression matrix you provide is valid and you must:

- Collect and format the past history of explanatory data you include in X
- As needed, forecast X into the future to form XF

This section discusses:

- Incorporating a Regression Model in an Estimation
- Simulation and Inference Using a Regression Component
- Forecasting Using a Regression Component
- Regression in a Monte Carlo Framework

Incorporating a Regression Model in an Estimation

This section uses the asymptotic equivalence of auto-regressive models and linear regression models to illustrate the use of a regression component in the GARCH Toolbox. The example is presented in two parts:

- Fitting an AR/GARCH Model to a Simulated Return Series
- Fitting a Regression Model to the Same Return Series

Fitting an AR/GARCH Model to a Simulated Return Series

This section defines a specification structure for an AR/GARCH model, and then uses that model to fit a simulated return series to the defined model.

Define the AR/GARCH Model. Start by creating a specification structure for an AR(2)/GARCH(1,1) composite model with successive calls to garchset. Set the Di spl ay flag to **off** to suppress the optimization details that garchfit normally prints to the screen.

```
spec = garchset('K', 0.005, 'GARCH', 0.7, 'ARCH', 0.1);
spec = garchset(spec, 'C', 0);
spec = garchset(spec, 'R', 2, 'AR', [0.5 - 0.8]);
spec = garchset(spec, 'Regress', [0.5 -0.8])
spec = garchset(spec, 'Display', 'off');
spec =
         Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,1)'
               R: 2
               M: 0
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 0
              AR: [0.5000 - 0.8000]
              MA: []
         Regress: [0.5000 - 0.8000]
               K: 0.0050
           GARCH: 0.7000
            ARCH: 0.1000
            Fi xC: []
           Fi xAR: []
           Fi xMA: []
      FixRegress: []
            Fi xK: []
        Fi xGARCH: []
         Fi xARCH: []
    Optimization: [1x1 struct]
```

Notice that in this specification structure, spec:

- The model order fields R, M, P, and Q are consistent with the number of coefficients in the AR, MA, GARCH, and ARCH vectors, respectively.
- Although the Regress field indicates two regression coefficients, the Comment field still contains a question mark as a placeholder for the number of explanatory variables.
- There is no model order field for the Regress vector, analogous to the R, M, P, and Q orders of an ARMA(R,M)/GARCH(P,Q) model.

Fit the Model to a Simulated Return Series. Simulate 2000 observations of the innovations, conditional standard deviations, and returns for the AR(2)/GARCH(1,1) process defined in spec. Use the model defined in spec to estimate the parameters of the simulated return series and then compare the parameter estimates to the original coefficients in spec.

```
[e, s, y] = garchsim(spec, 2000);
[coeff, errors] = garchfit(spec, y);
garchdisp(coeff, errors)
```

Number of Parameters Estimated: 6

Parameter	Val ue	Standard Error	T Statistic
С	- 0. 00045653	0. 0034627	- 0. 1318
AR(1)	0. 50256	0. 013926	36. 0875
AR(2)	- 0. 80022	0. 013987	- 57. 2134
K	0.0049947	0. 0019528	2. 5577
GARCH(1)	0. 71232	0. 094514	7. 5366
ARCH(1)	0. 082964	0. 022582	3. 6740

The estimated parameters, shown in the Value column, are quite close to the original coefficients in spec.

Because you specified no explanatory regression matrix as input to garchsi m and garchfit, these functions ignore the regression coefficients (Regress). Display the Comment field of the resulting garchfit output structure. It shows a 0 for the order of the regression component.

```
comment = garchget(coeff, 'Comment')
comment =
```

```
Mean: ARMAX(2, 0, 0); Variance: GARCH(1, 1)
```

Fitting a Regression Model to the Same Return Series

To illustrate the use of a regression matrix, fit the return series y, an AR(2) process in the mean, to a regression model with two explanatory variables. The regression matrix consists of the first- and second-order lags of the simulated return series y.

Remove AR Component. First, remove the AR component from the specification structure.

```
spec = garchset(spec, 'R', 0, 'AR', [])
spec =
         Comment: 'Mean: ARMAX(0, 0, ?); Variance: GARCH(1, 1)'
                R: 0
                M: 0
                P: 1
                Q: 1
    Distribution: 'Gaussian'
                C: 0
               AR: []
               MA: []
         Regress: [0.5000 - 0.8000]
                K: 0.0050
            GARCH: 0, 7000
             ARCH: 0.1000
            Fi xC: []
            Fi xAR: []
            Fi xMA: []
      FixRegress: []
            Fi xK: []
        Fi xGARCH: []
         Fi xARCH: []
    Optimization: [1x1 struct]
```

Create the Regression Matrix. Create a regression matrix of first- and second-order lags using the simulated returns vector \mathbf{y} as input. Examine the first 10 rows of \mathbf{y} and the corresponding rows of the lags.

```
X = lagmatrix(y, [1 2]);
[y(1:10) X(1:10,:)]
```

```
ans =
    0.0562
                  NaN
                             NaN
    0.0183
               0.0562
                             NaN
   -0.0024
               0.0183
                          0.0562
   -0.1506
              -0.0024
                          0.0183
   -0.3937
             -0.1506
                         -0.0024
   -0.0867
             -0.3937
                         -0.1506
    0.1075
             -0.0867
                         -0.3937
    0. 2225
               0.1075
                         -0.0867
    0.1044
               0. 2225
                          0.1075
    0.1288
               0.1044
                          0.2225
```

A NaN (an IEEE arithmetic standard for Not-a-Number) in the resulting matrix X indicates the presence of a missing observation. If you use X to fit a regression model to y, garchfit produces an error.

```
[coeff, errors] = garchfit(spec, y, X);
??? Error using ==> garchfit
Regression matrix 'X' has insufficient number of observations.
```

The error occurs because there are fewer valid rows (i.e., those rows without a NaN) in the regression matrix X than there are observations in y. The returns vector y has 2000 observations but the most recent number of valid observations in X is only 1998.

You can do one of two things to enable you to proceed. For a return series of this size it makes little difference which option you choose:

- Strip off the first two observations in y
- Replace all NaNs in X with some reasonable value

This example continues by replacing all NaNs with the sample mean of y. Use the MATLAB function i snan to identify NaNs and the function mean to compute the mean of y.

```
X(i snan(X)) = mean(y);

[y(1:10), X(1:10,:)]

ans =

0.0562 0.0004 0.0004

0.0183 0.0562 0.0004

-0.0024 0.0183 0.0562

-0.1506 -0.0024 0.0183
```

- 0. 3937	- 0. 1506	- 0. 0024
- 0. 0867	- 0. 3937	- 0. 1506
0. 1075	- 0. 0867	- 0. 3937
0. 2225	0. 1075	- 0. 0867
0. 1044	0. 2225	0. 1075
0. 1288	0. 1044	0. 2225

Note If the number of valid rows in X exceeds the number of observations in y, then garchfit includes in the estimation only the most recent rows of X, equal to the number of observations in y.

Fit the Regression Model. Now that the explanatory regression matrix X is compatible with the return series vector y, use garchfit to estimate the model coefficients for the return series using the regression matrix and display the results.

```
[coeffX, errorsX] = garchfit(spec, y, X);
garchdisp (coeffX, errorsX)
```

Number of Parameters Estimated: 6

Parameter	Val ue	Standard Error	T Statistic
С	- 0. 00044818	0. 0034618	- 0. 1295
Regress(1)	0. 50257	0. 0034018	36. 1049
Regress(2)	- 0. 8002	0. 013981	- 57. 2344
K	0.0050529	0. 0019709	2. 5637
GARCH(1)	0. 70955	0. 095315	7. 4443
ARCH(1)	0. 083293	0. 022664	3. 6751

These estimation results are similar to those shown for the AR model in the section "Fitting an AR/GARCH Model to a Simulated Return Series" on page 1-63. This similarity illustrates the asymptotic equivalence of auto-regressive models and linear regression models.

By illustrating the extra steps involved in formatting the explanatory matrix, this part of the example also highlights the additional complexity involved in modeling conditional means with regression components.

Simulation and Inference Using a Regression Component

Including a regression component with garchsim and garchinfer is similar to including one with garchfit.

For example, the following command simulates a single realization of 2000 observations of the innovations, conditional standard deviations, and returns. It uses the initial MATLAB default state as a random number generator seed, and incorporates the regression matrix X.

```
[e, s, y] = \text{garchsim}(\text{spec}, 2000, 1, [], X);
```

You can also use the same regression matrix X to infer the innovations and conditional standard deviations from the returns.

```
[eInfer, sInfer] = garchinfer(spec, y, X);
```

Forecasting Using a Regression Component

Inclusion of a regression component in forecasting is also similar to including one in an estimation. However, in addition to the explanatory data, you must consider the use of forecasted explanatory data.

This section discusses:

- Forecasted Explanatory Data
- Generating the Forecasted Explanatory Data
- Ordinary Least Squares Regression

Forecasted Explanatory Data

If you want to forecast the conditional mean of a return series y in each period of a 10-period forecast horizon, the correct calling syntax for garchpred is

```
[sFcast, yFcast] = garchpred(spec, y, 10, X, XF);
```

where X is the same regression matrix shown above, and XF is a regression matrix of forecasted explanatory data. In fact, XF represents a projection into the future of the same explanatory data found in X. Note that the command above produces an error if you execute it in your current workspace because XF is missing.

XF must have the same number of columns as X. In each column of XF, the first row contains the one-period-ahead forecast, the second row the two-period-ahead forecast, and so on. If you specify XF, the number of rows (forecasts) in each column of must equal or exceed the forecast horizon. When the number of forecasts in XF exceeds the 10-period forecast horizon, garchpred uses only the first 10 forecasts. If XF is empty ([]) or missing, the conditional mean forecast has no regression component.

You should use the same regression matrix X when calling garchpred that you used for simulation and/or estimation. This is because garchpred requires a complete conditional mean specification to correctly infer the innovations $\{\mathcal{E}_t\}$ from the observed return series $\{y_t\}$.

Forecasting the Conditional Standard Deviation. If you only need to forecast the conditional standard deviation (i.e., sFcast), XF is unnecessary. This is true even if you included the matrix X in the simulation and/or estimation process.

For example, you would use the following syntax to forecast only the conditional standard deviation of the return series y over a 10-period forecast horizon

```
sFcast = garchpred(spec, y, 10, X);
```

Forecasting the Conditional Mean. If you specify X, you must also specify XF to forecast the conditional mean (i.e., yFcast).

For example, to forecast the conditional mean of the return series y over a 10-period forecast horizon,

```
[sFcast yFcast] = garchpred(spec, y, 10, X, XF);
```

The forecasted explanatory data, XF, does not affect the standard deviation forecast. Note that this command produces an error if you execute it in your current workspace because XF is missing.

Generating the Forecasted Explanatory Data

Typically, the regression matrix X contains the observed returns of a suitable market index, collected over the same time interval as the observed data of interest. In this case, X is most likely a vector, corresponding to a single explanatory variable, and you must devise some way of generating the forecast of X (i.e., XF).

One approach, using the GARCH Toolbox, is to first use garchfit to fit a suitable ARMA(R,M) model to the returns in X, then use garchpred to forecast the market index returns into the future. Specifically, since you're not interested in fitting the volatility of X, you can simplify the estimation process by assuming a constant conditional variance model, i.e. ARMA(R,M)/GARCH(0,0).

Ordinary Least Squares Regression

The following example illustrates an ordinary least squares regression by simulating a return series that scales the returns of the XYZ Corporation. It also provides an example of a constant conditional variance model. A model like this might, for example, represent a leveraged position in the common stock of the XYZ Corporation.

First, create a specification structure. Set the Di spl ay flag to **off** to suppress the optimization details that garchfit normally prints to the screen.

```
spec = garchset('Display', 'off');
spec = garchset(spec, 'P', 0, 'Q', 0);
spec = garchset(spec, 'C', 0, 'Regress', 1.2, 'K', 0.00015)
spec =
         Comment: 'Mean: ARMAX(0, 0, ?); Variance: GARCH(0, 0)'
                R: 0
                M: 0
                P: 0
                0: 0
    Distribution: 'Gaussian'
                C: 0
               AR: []
              MA: []
         Regress: 1. 2000
                K: 1.5000e-004
           GARCH: []
            ARCH: []
            Fi xC: []
           Fi xAR: []
           Fi xMA: []
      FixRegress: []
            Fi xK: []
        Fi xGARCH: []
```

```
Fi xARCH: []
Optimi zation: [1x1 struct]
```

Now, simulate a single realization of 2000 observations, fit the model, and examine the results

```
[e, s, y] = garchsim(spec, 2000, 1, [], xyz);
[coeff, errors] = garchfit(spec, y, xyz);
garchdisp(coeff, errors)
```

Number of Parameters Estimated: 3

		Standard	T
Parameter	Val ue	Error	Statistic
C	- 5. 5043e- 006	0. 0002711	- 0. 0203
Regress(1)	1. 2402	0. 020454	60. 6304
K	0. 0001464	4. 6871e-006	31. 2345

These estimation results are just the ordinary least squares (OLS) regression results. In fact, in the absence of GARCH effects and assuming Gaussian innovations, maximum likelihood estimation and least squares regression are the same thing.

Note This example is shown purely for illustration purposes. Although you can use the GARCH Toolbox to perform OLS, it is computationally inefficient and is not recommended.

Regression in a Monte Carlo Framework

In the general case, the functions garchsi m, garchi nfer, and garchpred process multiple realizations (i.e., sample paths) of univariate time series. That is, the outputs of garchsi m, as well as the observed return series input to garchpred and garchi nfer, can be matrices in which each column represents an independent realization. garchfit is different, in that the input observed return series of interest must be a vector (i.e., a single realization).

When simulating, inferring, and forecasting multiple realizations, the appropriate toolbox function applies a given regression matrix X to each

realization of a univariate time series. For example, in the following command, garchsi m applies a given X matrix to all 10 columns of the output series $\{\mathcal{E}_{i}\}$, $\{\sigma_{i}\}$, and $\{y_{i}\}$.

```
[e, s, y] = garchsim(spec, 100, 10, [], X);
```

In a true Monte Carlo simulation of the above process, including a regression component, you would call garchsi minside a loop 10 times, once for each path. Each iteration would pass in a unique realization of X and produce single-column outputs.

Model Selection and Analysis

The GARCH Toolbox offers a number of model selection tools.

The section "Analysis and Estimation Example Using the Default Model" on page 1-16 illustrates the use of the autocorrelation (autocorr) and partial autocorrelation (parcorr) functions as qualitative guides in the process of model selection and assessment. It also introduces the archtest and l bqtest hypothesis testing functions.

This section discusses:

- Likelihood Ratio Tests (l rati otest)
- Akaike and Bayesian Information Criteria (ai cbi c)
- Equality Constraints and Parameter Significance
- Equality Constraints and Initial Parameter Estimates

The examples that follow again rely on the daily returns of the XYZ Corporation. If the variables no longer exist in your MATLAB workspace, you can recreate them with the commands,

```
load xyz
xyz = price2ret(prices);
```

Likelihood Ratio Tests

The section "Analysis and Estimation Example Using the Default Model" on page 1-16 demonstrates that the default GARCH(1,1) model explains most of the variability of the returns of the XYZ Corporation. This example uses the function l rati otest to determine if evidence exists to support the use of a GARCH(2,1) model.

The example first fits the return series of the XYZ Corporation to the default GARCH(1,1) model. It then overfits the same series using the following, more elaborate, GARCH(2,1) model.

$$y_t = C + \varepsilon_t$$

 $\sigma_t^2 = \kappa + G_1 \sigma_{t-1}^2 + G_2 \sigma_{t-2}^2 + A_1 \varepsilon_{t-1}^2$

The example is presented in two parts:

- Estimate Parameters for the GARCH(1,1) and GARCH(2,1) Models
- · Perform the Likelihood Ratio Test

Estimate Parameters for the GARCH(1,1) and GARCH(2,1) Models

The GARCH(1,1) Model. First, create a GARCH(1,1) default model with the Di spl ay flag set to off. Then, estimate the model and display the results, including the maximized log-likelihood function value.

```
spec11 = garchset('Display', 'off', 'P', 1, 'Q', 1);
[coeff11, errors11, LLF11, innovations11, sigma11, summary11] = garchfit(spec11, xyz);
garchdi sp(coeff11, errors11)
```

Number of Parameters Estimated: 4

		Standard	T
Parameter	Val ue	Error	Statistic
C	0. 00049183	0. 00025585	1. 9223
K	8. 2736e-007	2. 7446e-007	3. 0145
GARCH(1)	0. 96283	0. 0051557	186. 7500
ARCH(1)	0. 03178	0. 004416	7. 1965

```
LLF11
LLF11 =
  5.9746e+003
```

Note that a more accurate value of LLF11 is 5974. 6025.

The GARCH(2,1) Model. Create a GARCH(2,1) specification structure. Again, set the Di spl ay flag to off.

```
spec21 = garchset('Display', 'off', 'P', 2, 'Q', 1)
spec21 =
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(2,1)'
               R: 0
               M: 0
               P: 2
               0: 1
```

```
Distribution: 'Gaussian'
            C: []
           AR: []
           MA: []
     Regress: []
            K: []
       GARCH: []
        ARCH: []
        Fi xC: []
       Fi xAR: []
       Fi xMA: []
  FixRegress: []
        Fi xK: []
    Fi xGARCH: []
     Fi xARCH: []
Optimization: [1x1 struct]
```

Now estimate the GARCH(2,1) model and display the results, including the maximized log-likelihood function value.

[coeff21, errors21, LLF21, i nnovati ons21, si gma21, summary21] = garchfit(spec21, xyz);
garchdisp(coeff21, errors21)

Number of Parameters Estimated: 5

		Standard	T
Parameter	Val ue	Error	Statistic
C	0.00049584	0. 000256	1. 9369
K	1. 3645e-006	4. 6186e-007	2. 9545
GARCH(1)	0. 0358	0. 028327	1. 2638
GARCH(2)	0. 90149	0. 029642	30. 4131
ARCH(1)	0. 05379	0. 0073393	7. 3291

LLF21 LLF21 =

5.9759e+003

A more accurate value of LLF21 is 5975. 8927.

Perform the Likelihood Ratio Test

Of the two models associated with the same return series:

- The default GARCH(1,1) model is a restricted model. That is, you can interpret a GARCH(1,1) model as a GARCH(2,1) model with the restriction that $G_2 = 0$.
- The more elaborate GARCH(2,1) model is an unrestricted model.

Since garchfit enforces no boundary constraints during either of the two estimations, you can apply a likelihood ratio test (LRT) (see Hamilton [10], pages 142-144).

In this context, the unrestricted GARCH(2,1) model serves as the alternative hypothesis (i.e., the hypothesis the example gathers evidence to support), while the restricted GARCH(1,1) model serves as the null hypothesis (i.e., the hypothesis the example assumes is true, lacking any evidence to support the alternative).

The LRT statistic is asymptotically Chi-Square distributed with degrees-of-freedom equal to the number of restrictions imposed. Since the GARCH(1,1) model imposes one restriction, specify one degrees-of-freedom in your call to 1 rati otest. Test the models at the 0.05 significance level.

```
[H, pValue, Stat, Critical Value] = 1 ratiotest(LLF21, LLF11, 1, 0.05);
[H pValue Stat Critical Value]
ans =
              0.1082
                        2.5806
                                   3.8415
```

H = 0 indicates that there is insufficient statistical evidence in support of the GARCH(2,1) model. The conclusion is that the default GARCH(1,1) model adequately explains the variability in the return series when compared to a more elaborate GARCH(2,1) model.

Akaike and Bayesian Information Criteria

You can also use Akaike (AIC) and Bayesian (BIC) information criteria to compare alternative models. Since information criteria penalize models with additional parameters, the AIC and BIC model-order-selection criteria are based on parsimony (see Box, Jenkins, and Reinsel [7], pages 200-201).

The following example uses the default GARCH(1,1) and GARCH(2,1) models developed in the previous section, "Likelihood Ratio Tests" on page 1-73. It is presented in two parts:

- Counting Estimated Parameters
- Computing the AIC and BIC Criteria

Counting Estimated Parameters

For both AIC and BIC, you need to provide the number of parameters estimated in the model. For the relatively simple models in the previous example, you can just count the number of parameters. The GARCH(2,1) model estimated five parameters (C, K, G_1 , G_2 , and A_1), and GARCH(1,1) model estimated four parameters (C, K, G_1 , and A_1).

Use the function garchcount for more elaborate models. garchcount accepts the output specification structure created by garchfit and returns the number of parameters in the model defined in that structure.

Computing the AIC and BIC Criteria

Now use the function ai cbi c to compute the AIC and BIC statistics for the GARCH(2,1) model and the GARCH(1,1) model. Note that for the BIC statistic, you must also specify the number of observations in the return series.

```
[AIC, BIC] = ai cbi c(LLF21, n21, 2000);

[AIC BIC]

ans =

1. 0e+004 *

-1. 1942 -1. 1914
```

More accurate values are AIC = -11941. 7855 and BIC = -11913. 7810.

```
[AIC, BIC] = ai cbi c(LLF11, n11, 2000);

[AIC BIC]

ans =

1.0e+004 *

-1.1941 -1.1919
```

More accurate values are AIC = -11941, 2049 and BIC = -11918, 8013

You can use the relative values of the AIC and BIC statistics as guides in the model selection process. In this example, the AIC criterion favors the

GARCH(2,1) model, while the BIC criterion favors the GARCH(1,1) default model with fewer parameters. Notice that since BIC imposes a greater penalty for additional parameters than does AIC, BIC always provides a model with a number of parameters no greater than that chosen by AIC.

Equality Constraints and Parameter Significance

The GARCH Toolbox lets you set and constrain model parameters as a way of assessing the parameters' significance.

This section:

- Shows you how to use the specification structure to fix individual parameters.
- Provides an example that demonstrates the use of equality constraints.

The Specification Structure Fix Fields

Each of the coefficient fields C, AR, MA, Regress, K, GARCH, and ARCH, in the specification structure, has a corresponding Boolean field that lets you hold any individual parameter fixed. These fix fields are Fi xC, Fi xAR, Fi xMA, Fi xRegress, Fi xK, Fi xGARCH, and Fi xARCH. For example, look at the output structure from the GARCH(2,1) estimation in the section "Likelihood Ratio Tests" on page 1-73.

```
coeff21
coeff21 =
         Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(2,1)'
                R: 0
                M: 0
                P: 2
                0: 1
    Distribution: 'Gaussian'
                C: 4. 9584e-004
               AR: []
              MA: []
         Regress: []
                K: 1.3645e-006
           GARCH: [0. 0358 0. 9015]
            ARCH: 0.0538
            FixC: []
           Fi xAR: []
```

FixMA: []
FixRegress: []
FixK: []
FixGARCH: []
FixARCH: []
Optimization: [1x1 struct]

Each fix field, when not empty ([]), is the same size as the corresponding coefficient field. A 0 in a particular element of a fix field indicates that the corresponding element of its companion value field is an initial parameter guess that garchfit refines during the estimation process. A 1 indicates that garchfit holds the corresponding element of its value field fixed during the estimation process (i.e., an equality constraint).

The GARCH(2,1) Model as an Example

This example uses the GARCH(2,1) model above to demonstrate the use of equality constraints. First, display the estimation results for the model.

garchdi sp(coeff21, errors21)

Number of Parameters Estimated: 5

Parameter	Val ue	Standard Error	T Statistic
C	0. 00049584	0.000256	1. 9369
K	1. 3645e-006	4. 6186e-007	2. 9545
GARCH(1)	0. 0358	0. 028327	1. 2638
GARCH(2)	0. 90149	0. 029642	30. 4131
ARCH(1)	0. 05379	0. 0073393	7. 3291

The T-statistic column is the parameter value divided by the standard error, and is normally distributed for large samples. The T-statistic measures the number of standard deviations the parameter estimate is away from zero, and as a general rule, a T-statistic greater than 2 in magnitude corresponds to approximately a 95 percent confidence interval. The T-statistics in the table above imply that the conditional mean constant (C) is on the edge of significance. They also imply that the GARCH(1) parameter adds little if any explanatory power to the model.

The GARCH(1) Parameter. Constrain the GARCH(1) parameter at 0 to assess its significance.

```
specG1 = garchset(coeff21, 'GARCH', [0 0.9], 'FixGARCH', [1 0])
specG1 =
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(2,1)'
                R: 0
                M: 0
                P: 2
                Q: 1
    Distribution: 'Gaussian'
                C: 4. 9584e-004
               AR: []
               MA: []
         Regress: []
                K: 1.3645e-006
           GARCH: [0 0.9000]
            ARCH: 0.0538
            Fi xC: []
           Fi xAR: []
           Fi xMA: []
      FixRegress: []
            Fi xK: []
        Fi xGARCH: [1 0]
         Fi xARCH: []
    Optimization: [1x1 struct]
```

The specG1 structure field Fi xGARCH indicates that garchfit holds GARCH(1) fixed at 0, and refines GARCH(2) from an initial value of 0. 9 during the estimation process. In other words, the specG1 specification structure tests the composite model,

$$y_t = C + \varepsilon_t$$

$$\sigma_t^2 = \kappa + G_2 \sigma_{t-2}^2 + A_1 \varepsilon_{t-1}^2$$

Now estimate the model subject to the equality constraint and display the results.

```
[coeffG1, errorsG1, LLFG1, i nnovati onsG1, si gmaG1] = garchfit(specG1, xyz);
garchdi sp(coeffG1, errorsG1)
```

Number of Parameters Estimated: 4

Parameter	Val ue	Standard Error	T Statistic
С	0. 00052356	0. 00025499	2. 0532
K	1. 6865e-006	4. 6547e-007	3. 6231
GARCH(1)	0	Fi xed	Fi xed
GARCH(2)	0. 93442	0.0085294	109. 5531
ARCH(1)	0. 054718	0.0072265	7. 5719
LLFG1			
LLFG1 =			
5. 9738e+003			

A more accurate value of LLFG1 is 5973. 7872.

Notice that the standard error and T-statistic columns for the first GARCH parameter indicate that garchfit held the GARCH(1) parameter fixed. The number of estimated parameters also decreased from 5 in the original, unrestricted GARCH(2,1) model to 4 in this restricted GARCH(2,1) model.

Apply the likelihood ratio test as before.

```
[H, pValue, Stat, CriticalValue] = lratiotest(LLF21, LLFG1, 1, 0.05);
[H pValue Stat CriticalValue]
ans =
    1.0000    0.0402    4.2112    3.8415
```

The results support rejection of the simpler, restricted model at the 0.05 significance level, but just barely. The P-value indicates that had you tested at a significance level of 0.04 or less, the restricted model would have been accepted.

The GARCH(2) Parameter. As a second example, assess the significance of the GARCH(2) parameter by setting it to 0.

```
C: 4.9584e-004

AR: []

MA: []

Regress: []

K: 1.3645e-006

GARCH: [0.9000 0]

ARCH: 0.0538

FixC: []

FixAR: []

FixMA: []

FixRegress: []

FixCARCH: [0 1]

FixARCH: []

Optimization: [1x1 struct]
```

The specG2 structure field Fi xGARCH indicates that garchfit holds GARCH(2) fixed at 0, and refines GARCH(1) from an initial value of 0. 9 during the estimation process. In other words, the specG2 specification structure tests the composite model,

$$y_t = C + \varepsilon_t$$

$$\sigma_t^2 = \kappa + G_1 \sigma_{t-1}^2 + A_1 \varepsilon_{t-1}^2$$

which is really the GARCH(1,1) default model.

Now, estimate the model subject to the equality constraint and display the results.

[coeffG2, errorsG2, LLFG2, i nnovationsG2, sigmaG2] = garchfit(specG2, xyz); garchdisp(coeffG2, errorsG2)

Number of Parameters Estimated: 4

Parameter	Val ue	Standard Error	T Statistic
С	0.00048996	0.00025618	1. 9126
K	7. 9828e-007	2. 6908e-007	2.9667
GARCH(1)	0. 9636	0.0050784	189. 7460
GARCH(2)	0	Fi xed	Fi xed
ARCH(1)	0. 031239	0.0043564	7. 1709

```
LLFG2
LLFG2 = 5. 9746e+003
```

Note that a more accurate value of LLFG2 is 5974, 6058.

Finally, apply the likelihood ratio test again,

In this case, the results support acceptance of the restricted model at the 0.05 significance level. In fact, the P-value indicates that the test would support acceptance at the 0.10 significance level as well. This result again emphasizes that the default GARCH(1,1) model adequately explains the variation in the observed returns. A close examination reveals that the log-likelihood function values of the two models are nearly identical (i.e., LLFG2 = 5974.6058, LLF11 = 5974.6025).

Equality Constraints and Initial Parameter Estimates

This section highlights some important points regarding equality constraints and initial parameter estimates in the GARCH Toolbox. It discusses:

- Complete Model Specification
- Empty Fix Fields
- Number of Equality Constraints

Complete Model Specification

To set equality constraints during estimation, you must provide a complete model specification. The only flexibility in this regard is that you can decouple the model specification for the conditional mean from the model specification for the conditional variance.

The following example demonstrates an attempt to set equality constraints for an incomplete conditional mean model and a complete variance model. Create an ARMA(1,1)/GARCH(1,1) specification structure for conditional mean and variance models, respectively.

```
spec = garchset('R', 1, 'M', 1, 'P', 1, 'Q', 1);
spec = garchset(spec, 'C', 0, 'AR', 0.5, 'FixAR', 1);
```

```
spec = garchset(spec, 'K', 0.0005, 'GARCH', 0.8, 'ARCH', 0.1, 'FixGARCH', 1)
spec =
         Comment: 'Mean: ARMAX(1, 1, ?); Variance: GARCH(1, 1)'
                R: 1
                M: 1
                P: 1
                0:
                  1
    Distribution: 'Gaussian'
                C: 0
               AR: 0.5000
               MA: []
         Regress: []
                K: 5.0000e-004
            GARCH: 0.8000
             ARCH: 0.1000
            FixC: []
            Fi xAR: 1
            Fi xMA: []
      FixRegress: []
             Fi xK: []
        Fi xGARCH: 1
         Fi xARCH: []
    Optimization: [1x1 struct]
```

The conditional mean model is incomplete because the MA field is still empty. Since the requested ARMA(1,1) model is an incomplete conditional mean specification, garchfit ignores the C, AR, and FixAR fields, computes initial parameter estimates, and overwrites any existing parameters in the incomplete conditional mean specification. It also estimates all conditional mean parameters (i.e., C, AR, and MA) and ignores the request to constrain the AR parameter.

However, since the structure explicitly sets all fields in the conditional variance model, garchfit uses the specified values of K and ARCH as initial estimates subject to further refinement, and holds the GARCH parameter at 0.8 throughout the optimization process.

Empty Fix Fields

Any fix field that you leave empty ([]), is equivalent to a vector of zeros of compatible length. That is, when garchfit encounters an empty fix field, it automatically estimates the corresponding parameter. For example, the following specification structures produce the same GARCH(1,1) estimation results.

```
spec1 = garchset('K', 0.005, 'GARCH', 0.8, 'ARCH', 0.1, 'FixGARCH', 0, 'FixARCH', 0)
```

spec2 = garchset('K', 0.005, 'GARCH', 0.8, 'ARCH', 0.1)

Number of Equality Constraints

Avoid setting several equality constraints simultaneously. Although the ability to set equality constraints is both convenient and useful, equality constraints complicate the estimation process. For example, if you really want to estimate a GARCH(1,1) model, then specify a GARCH(1,1) model instead of a more elaborate model with numerous constraints.

Recommendations and Suggestions

This final section of the tutorial highlights some general recommendations to make it easier for you to use the GARCH Toolbox. It discusses:

- Simplicity/Parsimony
- Convergence Issues
- Initial Parameter Estimates
- Boundary Constraints and Statistical Inferences
- Data Size and Quality

Simplicity/Parsimony

Specify the smallest, most simplistic models that adequately describe your data. This is especially relevant for estimation. Simple models are easier to estimate, easier to forecast, and easier to analyze. In fact, certain model selection criteria, such as the AIC/BIC discussed in the section "Model Selection and Analysis" on page 1-73, penalize models for their complexity.

The section "Analysis and Estimation Example Using the Default Model" on page 1-16, examines the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the XYZ Corporation. The results support the use of a simple constant for the conditional mean model as adequate to describe the data.

The following example illustrates an unnecessarily complicated model specification. It uses an ARMA(1,1)/GARCH(1,1) composite model, rather than a simple constant with GARCH(1,1) innovations, to estimate the model parameters for the returns of the XYZ Corporation.

Create a specification structure for an ARMA(1,1)/GARCH(1,1) model. Set the Di spl ay flag to off to suppress the optimization details that garchfit normally prints to the screen.

```
spec = garchset;
spec = garchset(spec, 'Display', 'off', 'R', 1, 'M', 1)
spec =
         Comment: 'Mean: ARMAX(1, 1, ?); Variance: GARCH(1, 1)'
               R: 1
               M: 1
               P: 1
```

```
Q: 1
Distribution: 'Gaussian'
            C: []
           AR: []
          MA: []
     Regress: []
            K: []
       GARCH: []
        ARCH: []
        Fi xC: []
       Fi xAR: []
       Fi xMA: []
  FixRegress: []
        Fi xK: []
    Fi xGARCH: []
     Fi xARCH: []
Optimization: [1x1 struct]
```

Now, estimate the model and examine the results.

[coeff, errors, LLF, i nnovations, sigma, summary] = garchfit(spec, xyz);
garchdisp(coeff, errors)

Number of Parameters Estimated: 6

Parameter	Val ue	Standard Error	T Statistic
С	0. 00088504	0. 00046465	1. 9048
AR(1)	- 0. 76595	0. 098721	- 7. 7587
MA(1)	0. 80041	0. 09305	8. 6020
K	7. 9417e-007	2. 7078e-007	2. 9329
GARCH(1)	0. 96313	0. 0051048	188. 6716
ARCH(1)	0. 031735	0.0043606	7. 2775

These results imply that the ARMA(1,1)/GARCH(1,1) composite model that best fits the observed data is

$$y_t = 0.00088504 - 0.76595 y_{t-1} + \varepsilon_t + 0.80041 \varepsilon_{t-1}$$

$$\sigma_t^2 = 7.9417e - 007 + 0.96313\sigma_{t-1}^2 + 0.031735\varepsilon_{t-1}^2$$

However, close examination of the conditional mean equation reveals that the AR(1) and MA(1) parameters are almost identical. In fact, rewriting the mean equation in backshift (i.e., lag) operator notation, where $By_t = y_{t-1}$,

$$(1 + 0.76595B)y_t = 0.00088504 + (1 + 0.80041B)\varepsilon_t$$

the auto-regressive and moving-average polynomials come close to canceling each other (see Box, Jenkins, Reinsel [7], pages 263-267). This is an example of parameter redundancy, or pole-zero cancellation. It implies that you can use the default model simple white noise process to approximate the conditional mean model.

In fact, from the section "Analysis and Estimation Example Using the Default Model" on page 1-16, the default model that best fits the observed data is

$$y_t = 0.00049183 + \varepsilon_t$$

$$\sigma_t^2 = 8.2736e - 007 + 0.96283\sigma_{t-1}^2 + 0.03178\varepsilon_{t-1}^2$$

Note that the long-run (i.e., unconditional) mean and variance forecasts of each model are in very close agreement.

However, notice that the AR(1) and MA(1) T-statistics provide a misleading impression, implying that the parameters are highly significant. In fact, the more elaborate ARMA(1,1) model only complicates the analysis by requiring the estimation of two additional parameters. If you evaluate the information criteria, both AIC and BIC favor the default model (BIC is more decisive), and the LRT with two degrees-of-freedom fails to reject the default model.

Convergence Issues

When estimating the parameters of a composite conditional mean/variance model, you may occasionally encounter convergence problems. For example, the estimation may appear to stall, showing little or no progress. It may terminate prematurely prior to convergence. Or, it may converge to an unexpected, suboptimal solution.

You can avoid many of these difficulties by performing a sound, pre-fit analysis as outlined in the section "Analysis and Estimation Example Using the Default

Model" on page 1-16. That section discusses graphical techniques (plotting the return series, examining the ACF and PACF), as well as some preliminary tests, including Engle's ARCH test and the Q-test. In addition, the section "GARCH Limitations" on page 1-3 mentions some of the limitations of GARCH models. In particular, it notes that GARCH techniques do not easily capture wild, spurious swings in a return series.

The most effective way of avoiding convergence problems is to select the most simplistic model that adequately describes your data. In fact, extreme difficulty in convergence is an indication that the model you chose does not describe your data well.

Specification Structure Fields That Affect Convergence

If you believe that your model is appropriate, and you still experience convergence problems during estimation, there are several fields in the specification structure that you can modify. The specification structure fields that affect convergence for the estimation function are MaxI ter, MaxFunEval s, Tol Con, Tol Fun, and Tol X.

MaxIter and MaxFunEvals. MaxIter is the maximum number of iterations allowed in the estimation process. Each iteration involves an optimization phase in which garchfit suitably modifies calculations such as line search, gradient, and step size. The default value of MaxIter is 400. Although an estimation rarely exceeds MaxIter, you can increase the value if you suspect the estimation terminated prematurely.

MaxFunEval s, a field closely related to MaxI ter, specifies the maximum number of log-likelihood objective function evaluations. The default value is 100 times the number of parameters estimated in the model. For example, the default model has four parameters, and so the default value of MaxFunEval s is 400. When the estimation process terminates prematurely, it is usually because MaxFunEval s, rather than MaxI ter, is exceeded. You can increase MaxFunEval s if you suspect the estimation terminated prematurely.

TolCon, TolFun, and TolX. The fields Tol Con, Tol Fun, and Tol X are tolerance-related parameters that directly influence how and when convergence is achieved.

Tol Con is the termination tolerance placed on violations of the stationarity and positivity constraints, and represents the maximum value by which parameter estimates can violate a constraint and still allow successful convergence. See

Eq. (1-6) in the section "Homoskedasticity of the Unconditional Variance" on page 1-8 for information about these constraints.

Tol Fun is the termination tolerance placed on the log-likelihood objective function. Successful convergence occurs when the log-likelihood function value changes by less than Tol Fun.

Tol X is the termination tolerance placed on the estimated parameter values. Similar to Tol Fun, successful convergence occurs when the parameter values change by less than Tol X.

Tol Con, Tol Fun, and Tol X have the same default value, 1e-006. If you experience extreme difficulty in convergence (e.g., the estimation shows little or no progress, or shows progress but stops early), then increasing one or more of these parameter values (e.g., from 1e-006 to 1e-004) may allow the estimation to converge. If the estimation appears to converge to a suboptimal solution, then decreasing one or more of these parameter values (e.g., from 1e-006 to 1e-007) may provide more accurate parameter estimates.

Determining Convergence Status

There are two ways to determine whether an estimation achieves convergence. The first, and easiest, is to examine the optimization details of the estimation. By default, garchfit displays this information in the MATLAB command window. The second way to determine convergence status is to request the garchfit optional summary output.

To illustrate these methods, revisit the default model for the XYZ Corporation.

```
[coeff, errors, LLF, innovations, sigma, summary] = garchfit(xyz);
Diagnostic Information
Number of variables: 4
Functions
                                   garchl l fn
Objective:
Gradi ent:
                                   finite-differencing
Hessi an:
                                   finite-differencing (or Quasi-Newton)
Nonlinear constraints:
                                   garchnl c
Gradient of nonlinear constraints:
                                   fi ni te-di fferenci ng
Constraints
Number of nonlinear inequality constraints: 0
Number of nonlinear equality constraints:
```

```
Number of linear inequality constraints: 1
Number of linear equality constraints: 0
Number of lower bound constraints: 4
Number of upper bound constraints: 0
```

Algorithm selected medium-scale

End diagnostic information

			max		Di recti onal	
Iter	F- count	f(x)	constrai n	t Step-size	deri vati ve	Procedure
1	5	- 5921. 94	- 1. 684e- 005	1	-7. 92e+004	
2	34	- 5921. 94	- 1. 684e- 005	1. 19e-007	- 553	
3	43	- 5924. 42	- 1. 474e- 005	0. 125	- 31. 2	
4	49	- 5936. 16	- 6. 996e- 021	1	- 288	
5	57	- 5960. 62	0	0. 25	- 649	
6	68	- 5961. 45	- 4. 723e- 006	0. 0313	- 17. 3	
7	75	- 5963. 18	-2. 361e-006	0. 5	- 28. 6	
8	81	- 5968. 24	0	1	- 55	
9	90	- 5970. 54	- 6. 016e- 007	0. 125	- 196	
10	103	- 5970. 84	- 1. 244e- 006	0. 00781	- 16. 1	
11	110	- 5972. 77	- 9. 096e- 007	0. 5	- 34. 4	
12	126	- 5972. 77	- 9. 354e- 007	0. 000977	- 24. 5	
13	134	- 5973. 29	- 1. 05e- 006	0. 25	- 4. 97	
14	141	- 5973. 95	- 6. 234e- 007	0. 5	- 1. 99	
15	147	- 5974. 21	- 1. 002e- 006	1	- 0. 641	
16	153	- 5974. 57	- 9. 028e- 007	1	- 0. 0803	
17	159	- 5974. 59	-8. 054e-007	1	- 0. 0293	
18	165	- 5974. 6	- 8. 305e- 007	1	- 0. 0039	
19	172	- 5974. 6	- 8. 355e- 007	0. 5	- 0. 000964	
20	192	- 5974. 6	- 8. 355e- 007	-6. 1e-005	- 0. 000646	
21	212	- 5974. 6	- 8. 355e- 007	- 6. 1e- 005	- 0. 000996	Hessian modified twice
22	219	- 5974. 6	-8. 361e-007	0. 5	- 0. 000184	
23	239	- 5974. 6	- 8. 361e- 007	- 6. 1e- 005	- 0. 00441	Hessian modified twice

Optimization terminated successfully:

Search direction less than 2*options. TolX and

maximum constraint violation is less than options. TolCon

No Active Constraints

Notice that the optimization details indicate successful termination. Now, examine the summary output structure.

```
summary
summary =
warning: 'No Warnings'
```

converge: 'Function Converged to a Solution'

covMatrix: [4x4 double]

iterations: 23 functionCalls: 241

constraints: 'No Boundary Constraints'

The converge field indicates successful convergence. If the estimation failed to converge, the converge field would contain the message, 'Function Did NOT Converge'. If the number of iterations or function evaluations exceeded its specified limits, the converge field would contain the message, 'Maxi mum Function Evaluations or Iterations Reached'. The summary structure also contains fields that indicate the number of iterations (iterations) and log-likelihood function evaluations (functionCalls).

These are generic suggestions. The default values of MaxIter, MaxFunEvals, Tol Con, Tol Fun, and Tol X typically provide acceptable estimation results. For additional details, see the Optimization Toolbox User's Guide and, in particular, the reference section for the function fmi ncon.

Initial Parameter Estimates

Although garchfit computes initial parameter estimates if you provide none, at times it may be helpful to compute and specify your own initial guesses to avoid convergence problems.

Note If you specify initial estimates, you must provide complete conditional mean and/or variance model specifications. See the section "Equality Constraints and Initial Parameter Estimates" on page 1-83 for more information.

Partial Estimation

An important property of a conditionally Gaussian innovations process is that the parameters of the conditional mean and the conditional variance are asymptotically uncorrelated (see Bollerslev [4], pages 315-317, Engle [8], pages 994-997, and Gourieroux, [9], pages 43-51). You can estimate initial parameter estimates of the mean separately from those of the variance, breaking the composite estimation process into two parts.

For example, if the conditional mean is an ARMAX model, you can first estimate the ARMAX parameters assuming a constant variance innovations process (i.e., a GARCH(0,0) conditional variance model). The sample variance of the estimated residuals is then an approximation of the unconditional variance of the innovations process $\{\epsilon_{ij}\}$. Finally, based on reasonable parameter values of the GARCH and ARCH parameters of the conditional variance model, you can apply Eq. (1-7) to estimate the conditional variance constant κ .

For the common GARCH(1,1) model with Gaussian innovations,

$$\sigma_t^2 = \kappa + G_1 \sigma_{t-1}^2 + A_1 \varepsilon_{t-1}^2$$

it often turns out that you can obtain reasonable initial estimates by assuming G_1 is approximately 0.8 to 0.9, and A_1 is approximately 0.05 to 0.10.

Iterative Estimation

Another approach is to estimate the complete model, examine the results, then modify the parameter estimates as initial guesses for another round of estimation. For example, suppose you have already estimated a composite ARMA(1,1)/GARCH(1,1) model.

```
coeff
coeff =
         Comment: 'Mean: ARMAX(1, 1, 0); Variance: GARCH(1, 1)'
                R: 1
                M: 1
                P: 1
                0: 1
    Distribution: 'Gaussian'
                C: 1.0000e-004
               AR: 0.5000
               MA: 0.4000
         Regress: []
                K: 5.0000e-006
            GARCH: 0.4000
             ARCH: 0.5000
            FixC: []
            Fi xAR: []
            Fi xMA: []
```

```
FixRegress: []
         Fi xK: []
    Fi xGARCH: []
     Fi xARCH: []
Optimization: [1x1 struct]
```

As you examine the above coeff structure (i.e., the first output of garchfit), you may feel that the parameters of the ARMA(1,1) model appear reasonable. However, you suspect the GARCH(1,1) results may be stuck at a local maximum. You can modify the conditional variance parameters.

```
coeff = garchset(coeff, 'K', 6.25e-6, 'GARCH', 0.85, 'ARCH', 0.05)
coeff =
         Comment: 'Mean: ARMAX(1, 1, ?); Variance: GARCH(1, 1)'
                R: 1
                M: 1
                P: 1
                0: 1
    Distribution: 'Gaussian'
                C: 1.0000e-004
              AR: 0.5000
              MA: 0.4000
         Regress: []
                K: 6. 2500e-006
           GARCH: 0.8500
            ARCH: 0.0500
            Fi xC: []
           Fi xAR: []
           Fi xMA: []
      FixRegress: []
            Fi xK: []
        Fi xGARCH: []
         Fi xARCH: []
    Optimization: [1x1 struct]
```

You can then use this updated coeff specification structure as input to another round of optimization.

```
[coeff, errors, LLF, innovations, sigma, summary] = garchfit(coeff, xyz);
```

Compare the log-likelihood function values (i.e., LLF) to assess the various alternatives. This example illustrates the convenience of the shared specification structure.

Boundary Constraints and Statistical Inferences

The estimation process places stationarity and positivity constraints on the parameters (see Eq. (1-6) in the section "Homoskedasticity of the Unconditional Variance" on page 1-8).

Whenever garchfit actively imposes parameter constraints (other than user-specified equality constraints) during the estimation process, the statistical results based on the maximum likelihood parameter estimates are invalid (see Hamilton [10], page 142). This is because statistical inference relies on the log-likelihood function being approximately quadratic in the neighborhood of the maximum likelihood parameter estimates. This cannot be the case when the estimates fail to fall in the interior of the parameter space.

As an example of an actively imposed parameter constraint, fit a GARCH(1,2) model to the returns of the XYZ Corporation. This model is intentionally misspecified and estimations for such models often have difficulty converging. You can increase the likelihood of convergence by making the requirement for convergence less stringent. To do this increase the termination tolerance parameter Tol Con from 1e-6 (the default) to 1e-5.

```
spec = garchset('P', 1, 'Q', 2, 'TolCon', 1e-5);
[coeff, errors, LLF, innovations, sigma, summary] = garchfit(spec, xyz);
Diagnostic Information
Number of variables: 5
Functions
                                    garchl l fn
Objective:
Gradi ent:
                                    fi ni te-di fferenci ng
Hessi an:
                                    finite-differencing (or Quasi-Newton)
                                    garchnl c
Nonlinear constraints:
Gradient of nonlinear constraints:
                                   fi ni te-di fferenci ng
Constraints
Number of nonlinear inequality constraints: 0
Number of nonlinear equality constraints:
```

```
Number of linear inequality constraints:
                                            1
Number of linear equality constraints:
                                            0
                                            5
Number of lower bound constraints:
Number of upper bound constraints:
                                            0
```

Algorithm selected medium-scale

End diagnostic information

			max		Di recti onal	
Iter	F- count	f(x)	constra	int Step-size	e derivative	Procedure
1	6	- 5922. 27	- 1. 684e- 005	1	-3.34e+004	
2	36	- 5922. 27	- 1. 684e- 005	1. 19e-007	- 578	
3	46	- 5926. 29	- 1. 474e- 005	0. 125	- 60	
4	60	- 5926. 45	- 1. 558e- 005	0. 00781	- 51. 6	
5	68	- 5952. 6	- 7. 79e-006	0. 5	- 27. 5	
6	76	- 5964. 39	- 3. 895e- 006	0. 5	- 12. 4	
7	84	- 5964. 42	- 1. 947e- 006	0. 5	- 95. 4	
8	98	- 5964. 43	-2. 084e-006	0. 00781	- 27. 4	
9	106	- 5971. 69	- 1. 552e- 006	0. 5	- 7. 6	
10	114	- 5974. 09	- 7. 762e- 007	0. 5	- 97. 8	
11	129	- 5974. 17	-9. 254e-007	0. 00391	- 0. 556	
12	136	- 5974. 59	4. 337e-019	1	- 0. 0767	
13	145	- 5974. 6	5. 421e-019	0. 25	- 0. 0075	
14	152	- 5974. 6	1. 084e-018	1	- 0. 00322	
15	159	- 5974. 6	2. 168e-018	1	- 0. 00152	
16	166	- 5974. 6	4. 337e-018	1	- 0. 00084	
17	173	- 5974. 6	8. 674e-018	1	- 0. 000282	
18	183	- 5974. 6	9. 758e-018	0. 125	- 6. 16e-005	
19	191	- 5974. 6	1. 464e-017	0. 5	- 0. 000145 H	Messian modified twice
20	205	- 5974. 6	1. 475e-017	0. 00781	- 1. 94e- 006	
_		_				

Optimization terminated successfully:

Search direction less than 2*options. TolX and

maximum constraint violation is less than options. TolCon

Active Constraints:

Warning: Boundary Constraints Active; Standard Errors may be Inaccurate.

The warning message explicitly states that garchfit has imposed constraints. If you choose to suppress the estimations details (i.e., set the specification structure field Di spl ay to off), the same information is available from the constraints field of the summary output structure.

Examine the estimation results to see exactly what happened.

```
garchdi sp(coeff, errors)
```

Number of Parameters Estimated: 5

Parameter	Val ue	Standard Error	T Statistic
C	0. 00048993	0.00025674	1. 9083
K	8. 1018e-007	2. 9827e-007	2. 7163
GARCH(1)	0. 96327	0.0062937	153. 0524
ARCH(1)	0. 031503	0. 016075	1. 9597
ARCH(2)	0	0. 018615	0.0000

The 0 value of ARCH(2) reveals that garchfit has enforced the variance positivity constraint of the second ARCH parameter. It indicates that the estimated GARCH(1,2) model is in fact a GARCH(1,1) model, and further emphasizes that the default model is well suited for the returns of the XYZ Corporation.

Furthermore, since a parameter constraint has been actively imposed during the estimation process, the statistical results based on the maximum likelihood parameter estimates are invalid. These statistical results include the standard errors shown in column two, as well as any likelihood ratio tests based on the l rati otest function.

Data Size and Quality

The size and quality of your return series affect the validity of your results. Because of this, The MathWorks recommends that you carefully examine your data prior to estimation. In particular, you should consider altering any missing or anomalous data points. For example, you can fill in missing data

points, and remove or smooth anomalous ones. (See the section "GARCH Limitations" on page 1-3.)

In addition, GARCH volatility modeling typically requires at least a few hundred observations. Assuming daily data, one year's worth of data requires about 250 data points.

Function Reference

Functions by Category								2-3

This section gives you access to the GARCH function reference pages:

- By category
- Alphabetically

Functions by Category

This section lists the GARCH Toolbox functions according to their purpose.

Univariate GARCH Modeling

Function	Purpose
garchfit	Univariate GARCH process parameter estimation.
garchpred	Univariate GARCH process forecasting.
garchsi m	Univariate GARCH process simulation.

Univariate GARCH Innovations Inference

Function	Purpose
garchi nfer	Inverse filter to infer GARCH innovations and conditional
	standard deviations from an observed return series.

Log-Likelihood Objective Functions

Function	Purpose
garchl l fn	Univariate GARCH process objective function (Gaussian
	innovations).

Statistics and Tests

Function	Purpose
ai cbi c	Akaike and Bayesian information criteria for model order
	selection.
archtest	Engle's hypothesis test for the presence of ARCH/GARCH effects.
autocorr	Plot or return computed sample auto-correlation function.
crosscorr	Plot or return computed sample cross-correlation function.
lbqtest	Ljung-Box Q-statistic lack-of-fit hypothesis test.
lratiotest	Likelihood ratio hypothesis test.
parcorr	Plot or return computed sample partial auto-correlation function.

GARCH Specification Structure Interface Functions

Function	Purpose
garchget	Retrieve a GARCH specification structure parameter.
garchset	Create or modify a GARCH specification structure.

Helpers and Utilities

Function	Purpose
garchar	Convert finite-order ARMA models to infinite-order AR models.
garchcount	Count GARCH estimation coefficients.
garchdi sp	Display GARCH process estimation results.
garchma	Convert finite-order ARMA models to infinite-order MA models.
lagmatrix	Create a lagged time series matrix.
pri ce2ret	Convert price series to a return series.
ret2pri ce	Convert return series to a price series.

Graphics

Function	Purpose
garchpl ot	Plot matched univariate innovations, volatility, and return
	series.

Purpose

Akaike (AIC) and Bayesian (BIC) information criteria for model order selection

Syntax

AIC = ai cbi c(LogLi kel i hood, NumParams)

[AIC, BIC] = aicbic(LogLikelihood, NumParams, NumObs)

Arguments

LogLi kel i hood Vector of optimized log-likelihood objective function (LLF)

values associated with parameter estimates of the models to be tested. ai cbi c assumes you obtained the LLF values from the estimation function garchfit, or the inference

function garchi nfer.

NumParams Number of estimated parameters associated with each

LLF value in LogLi kel i hood. NumParams can be a scalar applied to all values in LogLi kel i hood, or a vector the same length as LogLi kel i hood. All elements of NumParams must be positive integers. Use garchcount to compute

NumParams values.

NumObs Sample size of the observed return series you associate

with each value of LogLi kel i hood. NumObs can be a scalar applied to all values in LogLi kel i hood, or a vector the same length as LogLi kel i hood. It is required to compute BIC. All elements of NumObs must be positive integers.

Description

ai cbi c computes the Akaike and Bayesian information criteria, using optimized log-likelihood objective function (LLF) values as input. You can obtain the LLF values by fitting models of the conditional mean and variance to a univariate return series.

AIC = ai cbi c(LogLi kel i hood, NumParams) computes only the Akaike (AIC) information criteria.

[AIC, BIC] = ai cbi $c(LogLi \ kel \ i \ hood, \ NumParams, \ NumObs)$ computes both the Akaike (AIC) and Bayesian (BIC) information criteria.

Since information criteria penalize models with additional parameters, parsimony is the basis of the AIC and BIC model order selection criteria.

aicbic

ALC Vector of AIC statistics associated witin this "Arguments" sectionh each LogLi kel i hood objective function value. The AIC statistic is defined as:

 $AIC = (-2 \times LogLikelihood) + (2 \times NumParams)$

BIC Vector of BIC statistics associated with each LogLi kel i hood objective function value. The BIC statistic is defined as:

$$BIC = (-2 \times LogLikelihood) + (NumParams \times Log(NumObs))$$

See Also garchdi sp, garchfit, garchi nfer

Reference Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and Control*, third edition, Prentice Hall, 1994.

Purpose

Engle's hypothesis test for the presence of ARCH/GARCH effects

Syntax

[H, pValue, ARCHstat, Critical Value] = archtest(Residuals, Lags, Alpha)

Arguments

Residuals Time series vector of sample residuals obtained from a curve

fit, which archtest examines for the presence of ARCH effects. The last element contains the most recent observation.

Lags (optional) Vector of positive integers indicating the lags of the

squared sample residuals included in the ARCH test statistic. If specified, each lag should be significantly less than the length of Resi dual s. If Lags = [] or is not specified, the

default is 1 lag (i.e., first order ARCH).

Al pha (optional) Significance level(s) of the hypothesis test. Al pha

can be a scalar applied to all lags in Lags, or a vector of significance levels the same length as Lags. If Al pha = [] or is not specified, the default is 0. 05. For all elements, α , of Al pha,

 $0 < \alpha < 1$.

Description

[H, pValue, ARCHstat, Critical Value] = archtest (Residual s, Lags, Al pha) tests the null hypothesis that a time series of sample residuals consists of independent identically distributed (i.i.d.) Gaussian disturbances, i.e., no ARCH effects exist.

Given sample residuals obtained from a curve fit (e.g., a regression model), archtest tests for the presence of Mth order ARCH effects by regressing the squared residuals on a constant and the lagged values of the previous M squared residuals. Under the null hypothesis, the asymptotic test statistic, $T(R^2)$, where T is the number of squared residuals included in the regression and R^2 is the sample multiple correlation coefficient, is asymptotically Chi-Square distributed with M degrees of freedom. When testing for ARCH effects, a GARCH(P,Q) process is locally equivalent to an ARCH(P+Q) process.

H Boolean decision vector. 0 indicates acceptance of the null

hypothesis that no ARCH effects exist, i.e., there is

homoskedasticity at the corresponding element of Lags. 1 indicates rejection of the null hypothesis. The length of H is

the same as the length of Lags.

pValue Vector of P-values (significance levels) at which archtest

rejects the null hypothesis of no ARCH effects at each lag in

Lags.

ARCHstat Vector of ARCH test statistics for each lag in Lags.

Cri ti cal Val ue Vector of critical values of the Chi-Square distribution for

comparison with the corresponding element of ARCHstat.

Example

Create a vector of 100 (synthetic) residuals, then test for the 1st, 2nd, and 4th order ARCH effects at the 10 percent significance level.

ans =

0	0. 3925	0. 7312	2. 7055
0	0. 5061	1. 3621	4. 6052
0	0. 7895	1. 7065	7, 7794

See Also

lbqtest

References

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and Control*, third edition, Prentice Hall, 1994.

Engle, Robert, "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, Vol. 50, pp. 987-1007, 1982.

archtest

Gourieroux, C., $ARCH\ Models\ and\ Financial\ Applications$, Springer-Verlag, 1997.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

autocorr

Purpose

Plot or return computed sample auto-correlation function

Syntax

autocorr(Series, nLags, M, nSTDs)

[ACF, Lags, Bounds] = autocorr(Series, nLags, M, nSTDs)

Arguments

Seri es Vector of observations of a univariate time series for which

autocorr computes or plots the sample auto-correlation function (ACF). The last element of Seri es contains the most recent

observation of the stochastic sequence.

nLags (optional) Positive, scalar integer indicating the number of lags of

the ACF to compute. If nLags = [] or is not specified, the default is to compute the ACF at lags 0, 1, 2, ..., T, where T = min([20,]

length(Series) - 1]).

M (optional) Nonnegative integer scalar indicating the number of

lags beyond which the theoretical ACF is effectively 0. autocorr assumes the underlying Seri es is an MA(M) process, and uses Bartlett's approximation to compute the large-lag standard error for lags > M. If M = [] or is not specified, the default is 0, and autocorr assumes that Seri es is Gaussian white noise. If Seri es is a Gaussian white noise process of length N, the standard error

is approximately $1/\sqrt{N}$. M must be < nLags.

nSTDs (optional) Positive scalar indicating the number of standard

deviations of the sample ACF estimation error to compute. autocorr assumes the theoretical ACF of Seri es is 0 beyond lag M When M = 0 and Seri es is a Gaussian white noise process of length N, specifying nSTDs results in confidence bounds at (nSTDs $/\sqrt{N}$). If nSTDs = [] or is not specified, the default is 2

(i.e., approximate 95 percent confidence interval).

Description

autocorr(Seri es, nLags, M, nSTDs) computes and plots the sample ACF of a univariate, stochastic time series with confidence bounds. To plot the ACF sequence without the confidence bounds, set nSTDs = 0.

[ACF, Lags, Bounds] = autocorr(Series, nLags, M, nSTDs) computes and returns the ACF sequence.

ACF	Sample auto-correlation function of Seri es. ACF is a vector of
	length nLags+1 corresponding to lags 0, 1, 2,, nLags. The first
	element of ACF is unity, that is, $ACF(1) = 1 = lag \ 0$ correlation.
Lags	Vector of lags corresponding to ACF(0, 1, 2,, nLags). Since an ACF is symmetric about 0 lag, autocorr ignores negative lags.

Bounds Two element vector indicating the approximate upper and lower confidence bounds, assuming that Seri es is an MA(M) process.

Values of ACF beyond lag M that are effectively 0 lie within these bounds. Note that autocorr computes Bounds only for lags > M.

Example

Create an MA(2) process from a sequence of 1000 Gaussian deviates, and assess whether the ACF is effectively zero for lags > 2.

```
randn('state', 0)
                                % Start from a known state.
x = randn(1000, 1);
                                % 1000 Gaussian deviates \sim N(0, 1).
y = filter([1 -1 1], 1, x);
                                % Create an MA(2) process.
[ACF, Lags, Bounds] = autocorr(y, [], 2);
                                             % Compute the ACF
                                              % with 95 percent
                                             % confidence.
[Lags, ACF]
ans =
         0
              1.0000
    1.0000
             -0.6487
    2.0000
              0.3001
    3.0000
              0.0229
    4.0000
              0.0196
    5.0000
             -0.0489
    6.0000
              0.0452
    7.0000
              0.0012
    8.0000
             -0.0214
    9.0000
              0.0235
   10.0000
              0.0340
   11.0000
             -0.0392
   12.0000
              0.0188
   13.0000
              0.0504
```

 14. 0000
 - 0. 0600

 15. 0000
 0. 0251

 16. 0000
 0. 0441

 17. 0000
 - 0. 0732

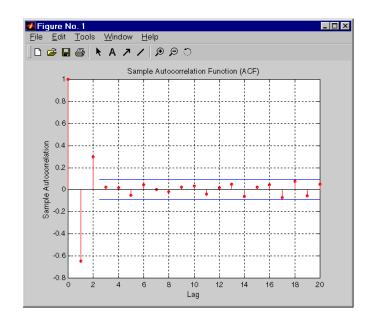
 18. 0000
 0. 0755

 19. 0000
 - 0. 0571

 20. 0000
 0. 0485

Bounds =

- 0.0899
- -0.0899
- autocorr(y, [], 2) % Use the same example, but plot the ACF % sequence with confidence bounds.



See Also crosscorr, parcorr

filter (in the online MATLAB Function Reference)

Reference Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and*

Control, third edition, Prentice Hall, 1994.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Purpose

Plot or return computed sample cross-correlation function

Syntax

crosscorr(Series1, Series2, nLags, nSTDs)
[XCF, Lags, Bounds] = crosscorr(Series1, Series2, nLags, nSTDs)

Arguments

Seri es1 Vector of observations of the first univariate time series for which crosscorr computes or plots the sample cross-correlation function (XCF). The last element of Seri es1 contains the most recent observation.

Seri es2 Vector of observations of the second univariate time series for which crosscorr computes or plots the sample XCF. The last element of Seri es2 contains the most recent observation.

nLags (optional) Positive, scalar integer indicating the number of lags of the XCF to compute. If nLags = [] or is not specified, crosscorr computes the XCF at lags 0, 1, 2, ...,T, where $T = \min n([20, \min n([l ength(Series1), l ength(Series2)]) - 1])$.

nSTDs (optional) Positive scalar indicating the number of standard deviations of the sample XCF estimation error to compute, if Seri es1 and Seri es2 are uncorrelated. If nSTDs = [] or is not specified, the default is 2 (i.e., approximate 95 percent confidence interval).

Description

crosscorr(Seri es1, Seri es2, nLags, nSTDs) computes and plots the sample cross-correlation function (XCF) between two univariate, stochastic time series. To plot the XCF sequence without the confidence bounds, set nSTDs = 0.

[XCF, Lags, Bounds] = crosscorr(Series1, Series2, nLags, nSTDs) computes and returns the XCF sequence.

XCF	Sample cross-correlation function between Seri es1 and Seri es2.
	XCF is a vector of length $2(nLags) + 1$ corresponding to lags $0, 1, 1$
	2,,nLags. The center element of XCF contains the 0th lag
	cross correlation. XCF is a row (column) vector if Seri es1 is a row
	(column) vector.

Lags Vector of lags corresponding to XCF(-nLags, ..., +nLags).

Bounds Two-element vector indicating the approximate upper and lower

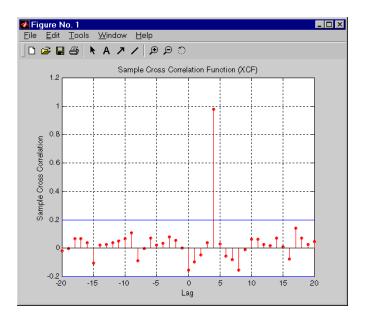
confidence bounds assuming Seri es1 and Seri es2 are completely uncorrelated.

Example

Create a random sequence of 100 Gaussian deviates, and a delayed version lagged by four samples. Compute the XCF, and then plot it to see the XCF peak at the fourth lag.

```
randn('state', 100)
                                   % Start from a known state.
             = randn(100, 1);
                                   \% 100 Gaussi an deviates, N(0, 1).
X
             = lagmatrix(x, 4);
                                   % Delay it by 4 samples.
y
y(i snan(y)) = 0;
                                   % Replace NaNs with zeros.
[XCF, Lags, Bounds] = crosscorr(x, y);
                                           % Compute the XCF with
                                           % 95 percent confidence.
[Lags, XCF]
ans =
  - 20. 0000
              -0.0210
  - 19. 0000
              -0.0041
  - 18. 0000
               0.0661
  - 17. 0000
               0.0668
  - 16. 0000
               0.0380
  - 15. 0000
              -0.1060
  - 14. 0000
               0.0235
  - 13. 0000
               0.0240
  - 12. 0000
               0.0366
  - 11. 0000
               0.0505
  - 10. 0000
               0.0661
   - 9. 0000
               0.1072
   - 8. 0000
              -0.0893
```

```
- 7. 0000
              -0.0018
   - 6. 0000
               0.0730
   - 5. 0000
               0.0204
   - 4. 0000
               0.0352
   - 3. 0000
               0.0792
               0.0550
   - 2. 0000
   - 1.0000
               0.0004
              -0.1556
         0
    1.0000
              -0.0959
    2.0000
              -0.0479
    3.0000
               0.0361
    4.0000
               0.9802
    5.0000
               0.0304
    6.0000
              -0.0566
    7.0000
              -0.0793
    8.0000
              -0.1557
    9.0000
              -0.0128
   10.0000
               0.0623
   11.0000
               0.0625
   12.0000
               0.0268
               0.0158
   13.0000
   14.0000
               0.0709
   15.0000
               0.0102
   16.0000
              -0.0769
   17.0000
               0.1410
   18.0000
               0.0714
   19.0000
               0.0272
   20.0000
               0.0473
Bounds =
    0.2000
   -0.2000
                         % Use the same example, but plot the XCF
crosscorr(x, y)
                         % sequence. Note the peak at the 4th lag.
```



See Also

autocorr, parcorr

filter (in the online MATLAB Function Reference)

garchar

Purpose

Convert finite-order ARMA models to infinite-order auto-regressive (AR)

models

Syntax

InfiniteAR = garchar(AR, MA, NumLags)

Arguments

AR R-element vector of auto-regressive coefficients associated

> with the lagged observations of a univariate return series modeled as a finite order, stationary, invertible ARMA(R,M)

model.

MΑ M-element vector of moving-average coefficients associated

with the lagged innovations of a finite-order, stationary,

invertible univariate ARMA(R.M) model.

NumLags (optional) Number of lagged AR coefficients that garchar

> includes in the approximation of the infinite-order AR representation. NumLags is an integer scalar and determines

the length of the infinite-order AR output vector. If NumLags = [] or is not specified, the default is 10.

Description

InfiniteAR = garchar(AR, MA, NumLags) computes the coefficients of an infinite-order AR model, using the coefficients of the equivalent univariate, stationary, invertible, finite-order ARMA(R,M) model as input. garchar truncates the infinite-order AR coefficients to accommodate a user-specified number of lagged AR coefficients.

InfiniteAR

Vector of coefficients of the infinite-order AR representation associated with the finite-order ARMA model specified by the AR and MA input vectors. InfiniteAR is a vector of length NumLags. The ith element of InfiniteAR is the coefficient of the *i*th lag of the input series in an infinite-order AR representation. Note that Box, Jenkins, and Reinsel refer to

the infinite-order AR coefficients as " π weights."

In the following ARMA(R,M) model, $\{y_i\}$ is the return series of interest and $\{\mathcal{E}_i\}$ the innovations noise process.

$$y_t = \sum_{i=1}^{R} AR_i y_{t-i} + \varepsilon_t + \sum_{j=1}^{M} MA_j \varepsilon_{t-j}$$

If you write this model equation as

$$y_t = AR_1y_{t-1} + \dots + AR_Ry_{t-R} + \varepsilon_t + MA_1\varepsilon_{t-1} + \dots + MA_M\varepsilon_{t-M}$$

you can specify the garchar input coefficient vectors, AR and MA, exactly as you read them from the model. In general, the *j*th elements of AR and MA are the coefficients of the *j*th lag of the return series and innovations processes y_{t-j} and ε_{t-j} , respectively. garchar assumes that the current-time-index coefficients of y_t and ε_t are 1 and are *not* part of AR and MA.

In theory, you can use the π weights returned in InfiniteAR, to approximate y_t as a pure AR process.

$$y_t = \sum_{i=1}^{\infty} \pi_i y_{t-i} + \varepsilon_t$$

Consistently, the *j*th element of the truncated infinite-order auto-regressive output vector, π_j or I nfi ni teAR(j), is the coefficient of the *j*th lag of the observed return series, y_{t-j} , in this equation. See Box, Jenkins, and Reinsel [7], Section 4.2.3, pages 106-109.

Given the above discussion, the AR and MA vectors differ from the corresponding AR and MA polynomials formally presented in time series references such as Box, Jenkins, and Reinsel. The conversion from GARCH Toolbox vectors to the corresponding GARCH Toolbox polynomials is:

AR polynomial tested for stationarity = [1 ; -AR]MA polynomial tested for invertibility = [1 ; MA]

Example

For the following ARMA(2,2) model, use garchar to obtain the first 20 weights of the infinite order AR approximation.

$$y_t = 0.5 y_{t-1} - 0.8 y_{t-2} + \varepsilon_t - 0.6 \varepsilon_{t-1} + 0.08 \varepsilon_{t-2}$$

From this model.

$$AR = [0.5 - 0.8]$$

```
MA = [-0.6 \ 0.08]
```

Since the current-time-index coefficients of y_t and ε_t are defined to be 1, the example omits them from AR and MA. This saves time and effort when you specify parameters using the garchset and garchget interfaces.

```
PI = garchar([0.5 - 0.8], [-0.6 \ 0.08], 20);
PI'
ans =
   -0.1000
   -0.7800
   -0.4600
   -0.2136
   -0.0914
   -0.0377
   - 0. 0153
   -0.0062
   -0.0025
   -0.0010
   -0.0004
   -0.0002
   -0.0001
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000
```

See Also

garchfit, garchma, garchpred

Reference

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and Control*, third edition, Prentice Hall, 1994.

Purpose Count GARCH estimation coefficients

Syntax NumParams = garchcount(Coeff)

Arguments

Coeff GARCH specification structure containing the estimated

coefficients and equality constraints. Coeff is an output of the

estimation function garchfit.

Description NumParams = garchcount (Coeff) counts and returns the number of estimated

coefficients from a GARCH specification structure containing coefficient estimates and equality constraint information. garchcount is a helper utility designed to support the GARCH Toolbox model selection function ai cbi c.

NumParams Number of estimated parameters (i.e., coefficients) included in

the conditional mean and variance specifications, less any parameters held constant, as equality constraints, during the estimation. The ai cbi c function needs NumParams to calculate

the Akaike (AIC) and Bayesian (BIC) statistics.

See Also ai cbi c, garchdi sp, garchfi t

garchdisp

Purpose Display GARCH process estimation results

Syntax garchdi sp(Coeff, Errors)

Arguments

Coeff GARCH specification structure containing estimated coefficients

and equality constraint information. Coeff is an output of the

estimation function garchfit.

Errors Structure containing the estimation errors (i.e., the standard

errors) of the coefficients in Coeff. Errors is also an output of the

estimation function garchfit.

Description

garchdi sp(Coeff, Errors) displays coefficient estimates, standard errors, and T-statistics from a GARCH specification structure that was output by the estimation function garchfit.

This function displays matched GARCH Toolbox estimation results, and returns no output arguments. The tabular display includes parameter estimates, standard errors, and T-statistics for each parameter in the conditional mean and variance models. Parameters held fixed during the estimation process have the word 'Fi xed' printed in the standard error and T-statistic columns, indicating that the parameter was set as an equality constraint.

See Also

garchcount, garchfit

Purpose

Univariate GARCH process parameter estimation

Syntax

```
[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Series)
[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec, Series)
[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec, Series, X)
garchfit(...)
```

Arguments

Seri es

Vector of observations of the underlying univariate return series for which garchfit estimates the parameters of the conditional mean and variance models. The last element of Seri es holds the most recent observation.

Spec

(optional) GARCH specification structure that contains the conditional mean and variance models, and optimization parameters. You create the fields in this structure by calling the function garchset, or you can use the Coeff output structure from a previous call to garchfit.

X

(optional) Time series regression matrix of observed explanatory data. Typically, X is a matrix of asset returns (e.g., the return series of an equity index), and represents the past history of the explanatory data. Each column of X is an individual time series used as an explanatory variable in the regression component of the conditional mean. In each column, the first row contains the oldest observation and the last row the most recent.

The number of valid (non-NaN) most recent observations in each column of X must equal or exceed the number of valid most recent observations in Seri es. If the number of valid observations in a column of X exceeds that of Seri es, garchfit uses only the most recent observations of X. If X = [] or is not specified, the conditional mean has no regression component.

Description

garchfit estimates the parameters of a conditional mean specification of ARMAX form and a conditional variance specification of GARCH form. If the Di spl ay flag (see the function garchset) in the specification structure is set to on (the default), it also displays diagnostic and iterative optimization information in the MATLAB command window (see the function fmi ncon in the Optimization Toolbox).

[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit (Series) models an observed univariate return series as a constant, C, plus GARCH(1,1) conditionally Gaussian innovations. For models beyond this simplistic (yet common) model, you must provide model parameters in the specification structure, Spec. The C + GARCH(1,1) model is the default model of the GARCH Toolbox.

[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec, Series) infers the innovations from the return series and fits the model specification, contained in Spec, to the return series by maximum likelihood.

[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec, Series, X) provides a regression component for the conditional mean.

garchfit(...) (with input arguments as shown above but with no output arguments) prints the final parameter estimates and standard errors to the MATLAB command window. It also produces a tiered plot of the original return series, the inferred innovations (i.e., residuals), and the corresponding conditional standard deviations.

Coeff GARCH specification structure containing the estimated

coefficients. Coeff is of the same form as the Spec input structure. This allows other GARCH Toolbox functions, such as garchset, garchget, garchsim, garchinfer, and

garchpred, to accept either Spec or Coeff seamlessly.

Errors Structure containing the estimation errors (i.e., the standard

errors) of the coefficients. The fields of Errors correspond to the coefficient fields (C, AR, MA, Regress, K, GARCH, ARCH) found

in Coeff or Spec.

LLF Optimized log-likelihood objective function value associated

with the parameter estimates found in Coeff. garchfit performs the optimization using the fmi ncon function of the

Optimization Toolbox.

Innovations Innovations vector inferred from Series. The size of

Innovations is the same as the size of Series.

Si gma Conditional standard deviation vector corresponding to

Innovations. The size of Sigma is the same as the size of

Series.

Summary Structure of summary information about the optimization

process. The fields and their possible values are

warning One of the following strings:

'No Warnings'

'ARMA Model Is Not Stationary/Invertible'

converge One of the following strings:

'Function Converged to a Solution'

'Function Did NOT Converge'

'Maximum Function Evaluations or Iterations

Reached'

covMatrix Covariance matrix of the parameter estimates

iterations Number of iterations

functionCalls Number of function evaluations

constraints One of the following strings:

'No Boundary Constraints'

'Boundary Constraints Active; Errors May Be

Inaccurate'

Note garchfit calculates the error covariance matrix of the parameter estimates, Summary. covMatrix, and the corresponding standard errors found in the Errors output structure, using finite difference approximation. In particular, it calculates the standard errors using the outer-product method (see Hamilton [10], section 5.8, bottom of page 143).

garchfit

See Also garchllfn, garchpred, garchset, garchsim,

fmi ncon (in the Optimization Toolbox)

References Bollerslev, T., "Generalized Autoregressive Conditional Heteroskedasticity,"

Journal of Econometrics, Vol. 31, pp. 307-327, 1986.

 $Box, G.E.P., G.M.\ Jenkins, G.C.\ Reinsel,\ \textit{Time Series Analysis: Forecasting and}$

Control, third edition, Prentice Hall, 1994.

Engle, Robert, "Autoregressive Conditional Heteroskedasticity with Estimates

of the Variance of United Kingdom Inflation," Econometrica, vol. 50, pp.

987-1007, 1982.

Hamilton, J.D., *Time Series Analysis*, Princeton University Press, 1994.

Purpose

Retrieve a GARCH specification structure parameter

Syntax

ParameterValue = garchget(Spec, 'ParameterName')

Arguments

Spec GARCH specification structure containing the orders, and

coefficients, as well as the optimization constraints of the conditional mean and variance specifications of a GARCH model. You can create a GARCH specification structure as the output (Spec) of the companion function garchset, or the output (Coeff) of the estimation function garchfit.

ParameterName String indicating the name of the parameter whose value

garchget extracts from Spec. You can specify only sufficient leading characters to uniquely identify the parameter. See garchset for a list of valid parameter

names. ParameterName is case insensitive.

Description

ParameterVal ue = garchget(Spec, 'ParameterName') provides the preferred user-interface for retrieveing a model parameter from a GARCH specification structure.

Parameter Value

Value of the named parameter, ParameterName, extracted from the structure Spec. ParameterValue = [] if the parameter has no value.

Example

```
\label{eq:Spec} \begin{array}{lll} Spec = garchset(\mbox{'P'}, \mbox{1, 'Q'}, \mbox{1}) & \% \mbox{ Create a GARCH(P=1, Q=1) model.} \\ Spec = & \end{array}
```

```
Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
R: 0
M: 0
P: 1
Q: 1
Distribution: 'Gaussian'
C: []
AR: []
```

garchget

```
MA: []
         Regress: []
               K: []
           GARCH: []
            ARCH: []
            Fi xC: []
           Fi xAR: []
           Fi xMA: []
      FixRegress: []
            Fi xK: []
        Fi xGARCH: []
         Fi xARCH: []
    Optimization: [1x1 struct]
P = garchget(Spec, 'P')
                       % Extract the order P.
P =
     1
```

See Also

garchfit, garchpred, garchset, garchsim optimget, optimset (in the online MATLAB Function Reference)

Purpose

Inverse filter to infer GARCH innovations and conditional standard deviations from an observed return series

Syntax

[Innovations, Sigma, LogLikelihood] = garchinfer(Spec, Series, X)

Arguments

Spec GARCH specification structure that contains the conditional

mean and variance specifications, as well as the optimization parameters of a GARCH model. You can create Spec by calling the function garchset or the estimation function garchit.

Seri es

Matrix of observations of the underlying univariate return series of interest for which garchinfer infers the innovations and corresponding conditional standard deviations.

Each column of Seri es is an independent realization (i.e., path). The last row of Seri es holds the most recent observation of each

realization.

X

(optional) Time series regression matrix of observed explanatory data. Typically, X is a matrix of asset returns (e.g., the return series of an equity index), and represents the past history of the explanatory data. Each column of X is an individual time series used as an explanatory variable in the regression component of the conditional mean. In each column, the first row contains the oldest observation and the last row the most recent.

The number of valid (non-NaN) most recent observations in each column of X must equal or exceed the number of valid most recent observations in Seri es. If the number of valid observations in a column of X exceeds that of Seri es, garchi nfer uses only the most recent observations of X. If X = [] or is not specified, the conditional mean has no regression component.

Description

[Innovations, Sigma, LogLikelihood] = garchinfer(Spec, Series, X) acts as an inverse, or whitening, filter to infer the innovations and conditional standard deviations from an observed return series, using a conditional mean specification of ARMAX form and a conditional variance specification of GARCH form as input. Since garchinfer provides an interface to the

garchinfer

appropriate log-likelihood objective function, it also computes the log-likelihood value as a convenience.

Innovations Innovations matrix inferred from the input Seri es

matrix. The size of I nnovati ons is the same as the size of Seri es, and its organization is the same as Seri es.

Si gma Conditional standard deviation matrix corresponding to

Innovations. The size of Sigma is the same as the size of

Seri es.

LogLi kel i hood Vector of log-likelihood objective function values for each

realization of Seri es. The length of LogLi kel i hood is the

same as the number of columns in Seri es.

See Also garchfit, garchllfn, garchpred, garchset, garchsim

fmi ncon (in the Optimization Toolbox)

References Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and*

Control, third edition, Prentice Hall, 1994.

Hamilton, J.D., *Time Series Analysis*, Princeton University Press, 1994.

Purpose

Univariate GARCH process objective function (Gaussian innovations)

Syntax

[LogLikelihood, G, H, Innovations, Sigma] = garchllfn(Parameters, Series, R. M. P. Q. X)

Arguments

Parameters

Column vector of process parameters associated with fitting conditional mean and variance specifications to the observed return series. Seri es. The conditional mean contributes the first (1 + R + M + Nx) parameters, where Nx is the number of explanatory variables you include in the regression component of the conditional mean (the number of columns in X). The conditional variance contributes the remaining (1 + P + Q)parameters. The resultant length of Parameters is (2 + R + M + Nx + P + Q). (See the "Formatting the Input

Coefficient Vector" section below.)

Series

Matrix of observations of the underlying univariate return series of interest for which garchllfn estimates the parameters of the conditional mean and variance models. Seri es can have several columns, where each column is an independent realization (i.e., path). The last row of Seri es holds the most recent observation of each realization.

R

Nonnegative, scalar integer representing the AR-process

order.

M

Nonnegative, scalar integer representing the MA-process

order.

P

Nonnegative, scalar integer representing the number of lags of the conditional variance included in the GARCH process.

garchllfn

- Q Nonnegative, scalar integer representing the number of lags of the squared innovations included in the GARCH process.
- X (optional) Time series regression matrix of observed explanatory data. Typically, X is a matrix of asset returns (e.g., the return series of an equity index), and represents the past history of the explanatory data. Each column of X is an individual time series used as an explanatory variable in the regression component of the conditional mean. In each column, the first row contains the oldest observation and the last row the most recent. X must have the same number of rows as Seri es.

Description

[LogLi kel i hood, G, H, Innovations, Sigma] = garchllfn(Parameters, Series, R, M, P, Q, X) computes the log-likelihood objective function value suitable for maximum likelihood estimation (MLE).

For Gaussian innovations, garchfit uses garchllfn as the objective function to be optimized by fmincon. When garchinfer calls garchllfn, the primary outputs of garchllfn are the innovations and conditional standard deviations inferred from the input data. In either case, garchllfn must infer an uncorrelated white noise innovation process. In this sense, garchllfn is an inverse, or whitening, filter.

The use of garchl l fn is specific to Di stri buti on = 'Gaussi an' in the GARCH specification structure.

Note Because garchllfn is performance sensitive and because fmincon calls it iteratively as the objective function, garchllfn performs no argument checking. Although you can call garchllfn directly, it is better to call it via garchinfer.

LogLi kel i hood	Vector of log-likelihood objective function values
------------------	--

evaluated at the values in Parameters. The length of LogLi kel i hood is the same as the number of columns in

Seri es. Because the fmi ncon function (of the Optimization Toolbox), which is used to optimize garchllfn, is a minimization routine, LogLi keli hood is the negative of what is formally presented in most

econometrics references

G Reserved for future use. G = [].

H Reserved for future use. H = [].

Innovations Innovations matrix inferred from the input Seri es

matrix.

Si gma Conditional standard deviation matrix corresponding to

Innovations.

Formatting the Input Coefficient Vector

Format the input coefficient vector Parameters exactly as you would read the coefficients from the recursive difference equations when solving for the current values of the y_t and σ_t^2 time series. Specifically, if:

- y_t = return series of interest (assumed stationary)
- ε_t = innovations of the model noise process (assumed invertible)
- σ_t^2 = conditional variance of the innovations process ε_t

then the following equations represent the general ARMAX(R,M,Nx)/GARCH(P,Q) model.

$$V_{t} = C + \sum_{i=1}^{R} AR_{i}y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{M} MA_{j}\varepsilon_{t-j} + \sum_{k=1}^{Nx} \beta_{k}X(t, k)$$

$$\sigma_t^2 = \kappa + \sum_{i=1}^{P} G_i \sigma_{t-i}^2 + \sum_{j=1}^{Q} A_j \varepsilon_{t-j}^2$$

You can also write these equations as

$$\begin{aligned} v_t &= C + AR_1 y_{t-1} + ... + AR_R y_{t-R} + \varepsilon_t \\ &+ MA_1 \varepsilon_{t-1} + ... + MA_M \varepsilon_{t-M} \\ &+ \beta_1 X(t, 1) + ... + \beta_{NX} X(t, NX) \end{aligned}$$

$$\sigma_{t}^{2} = K + G_{1}\sigma_{t-1}^{2} + \dots + G_{p}\sigma_{t-P}^{2} + A_{1}\varepsilon_{t-1}^{2} + \dots + A_{Q}\varepsilon_{t-Q}^{2}$$

Using this form, the following equations represent the conditional mean and variance of a specific ARMAX(R=2, M=2, Nx=1) / GARCH(P=2, Q=2) composite model.

$$y_{t} = 1.3 + 0.5y_{t-1} - 0.8y_{t-2} + \varepsilon_{t}$$
$$- 0.6\varepsilon_{t-1} + 0.08\varepsilon_{t-2}$$
$$+ 1.2X(t)$$

$$\sigma_t^2 = 0.5 + 0.2\sigma_{t-1}^2 + 0.1\sigma_{t-2}^2 + 0.3\varepsilon_{t-1}^2 + 0.2\varepsilon_{t-2}^2$$

In the MATLAB notation, and using specification structure parameter names, the coefficient vector, Parameters, that represents this model is

Note that the coefficient of ε_t in the conditional mean equation is 1. Since garchfit does not estimate the coefficient of ε_t the coefficient vector does *not* include it.

Inferring the Innovations

garchllfn uses the following conditional mean specification of ARMAX form to infer the innovations, and then fits the conditional variance of the innovations to a GARCH model. It assumes Gaussian innovations.

$$E_{t} = -C + y_{t} - \sum_{i=1}^{R} AR_{i}y_{t-i} - \sum_{j=1}^{M} MA_{j}E_{t-j} - \sum_{k=1}^{Nx} \beta_{k}X(t, k)$$

You can derive this equation from the general conditional mean equation given above for y_t by solving it for ε_t . Its coefficient vector, which garchllfn uses to infer the innovations, is the negation of Parameters with the insertion of the y_t coefficient.

See "Maximum Likelihood Estimation" in the "Tutorial" chapter for more information.

See Also

garchfit, garchinfer, garchpred, garchsim

References

Bollerslev, T. (1986), "Generalized Autoregressive Conditional Heteroskedasticity," *Journal of Econometrics*, Vol. 31, pp. 307-327.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and Control*, third edition, Prentice Hall, 1994.

Engle, Robert (1982), "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, Vol. 50, pp. 987-1007.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

garchma

Purpose

Convert finite-order ARMA models to infinite-order moving average (MA)

models

Syntax

InfiniteMA = garchma(AR, MA, NumLags)

Arguments

AR R-element vector of auto-regressive coefficients associated

with the lagged observations of a univariate return series modeled as a finite order, stationary, invertible ARMA(R,M)

model.

M M-element vector of moving-average coefficients associated

with the lagged innovations of a finite-order, stationary,

invertible univariate ARMA(R,M) model.

NumLags (optional) Number of lagged MA coefficients that garchma

includes in the approximation of the infinite-order MA representation. NumLags is an integer scalar and determines

the length of the infinite-order MA output vector. If NumLags = [] or is not specified, the default is 10.

Description

InfiniteMA = garchma(AR, MA, NumLags) computes the coefficients of an infinite-order MA model, using the coefficients of the equivalent univariate, stationary, invertible finite-order ARMA(R,M) model as input. garchma truncates the infinite-order MA coefficients to accommodate the number of lagged MA coefficients you specify in NumLags.

This function is particularly useful for calculating the standard errors of minimum mean square error forecasts of univariate ARMA models.

InfiniteMA

Vector of coefficients of the infinite-order MA representation associated with the finite-order ARMA model specified by AR and MA. InfiniteMA is a vector of length NumLags. The *j*th element of InfiniteMA is the coefficient of the *j*th lag of the innovations noise sequence in an infinite-order MA representation. Note that Box, Jenkins, and Reinsel refer to

the infinite-order MA coefficients as the " ψ weights."

In the following ARMA(R,M) model, $\{y_t\}$ is the return series of interest and $\{\varepsilon_t\}$ the innovations noise process.

$$y_{t} = \sum_{i=1}^{R} AR_{i}y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{M} MA_{j}\varepsilon_{t-j}$$

If you write this model equation as

$$y_t = AR_1y_{t-1} + \dots + AR_Ry_{t-R} + \varepsilon_t + MA_1\varepsilon_{t-1} + \dots + MA_M\varepsilon_{t-M}$$

you can specify the garchar input coefficient vectors, AR and MA, exactly as you read them from the model. In general, the *j*th elements of AR and MA are the coefficients of the *j*th lag of the return series and innovations processes y_{t-j} and ε_{t-j} , respectively. garchma assumes that the current-time-index coefficients of y_t and ε_t are 1 and are not part of AR and MA.

In theory, you can use the ψ weights returned in InfiniteMA to approximate y_t as a pure MA process.

$$y_t = \varepsilon_t + \sum_{i=1}^{\infty} \psi_i \varepsilon_{t-i}$$

Consistently, the *j*th element of the truncated infinite-order moving-average output vector, ψ_j or I nfi ni teMA(j), is the coefficient of the *j*th lag of the innovations process, ϵ_{t-j} , in this equation. See Box, Jenkins, and Reinsel [7], Section 5.2.2, pages 139-141.

Given the above discussion, the AR and MA vectors differ from the corresponding AR and MA polynomials formally presented in time series references such as Box, Jenkins, and Reinsel. The conversion from GARCH Toolbox vectors to the corresponding GARCH Toolbox polynomials is as follows:

- AR polynomial tested for stationarity = [1; -AR]
- MA polynomial tested for invertibility = [1; MA]

Example

Suppose you want a forecast horizon of 10 periods for the following ARMA(2,2) model.

$$y_t = 0.5 y_{t-1} - 0.8 y_{t-2} + \varepsilon_t - 0.6 \varepsilon_{t-1} + 0.08 \varepsilon_{t-2}$$

To obtain probability limits for these forecasts, use garchma to compute the first 9 (i.e., 10 - 1) weights of the infinite order MA approximation.

From the model, AR = [0.5 - 0.8] and MA = [-0.6 0.08].

Since the current-time-index coefficients of y_t and ε_t are 1, the example omits them from AR and MA. This saves time and effort when you specify parameters via the garchset and garchget user interfaces.

```
PSI = garchma([0.5 -0.8], [-0.6 0.08], 9);

PSI'

ans =

-0.1000
-0.7700
-0.3050
0.4635
0.4758
-0.1329
-0.4471
-0.1172
0.2991
```

See Also

garchar, garchpred

Reference

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and Control*, third edition, Prentice Hall, 1994.

Purpose

Plot matched univariate innovations, volatility, and return series

Syntax

garchplot(Innovations, Sigma, Series)

Arguments

Innovations

Vector or matrix of innovations. As a vector, I nnovations represents a single realization of a univariate time series in which the first element contains the oldest observation and the last element the most recent. As a matrix, each column of I nnovations represents a single realization of a univariate time series in which the first row contains the oldest observation of each realization and the last row the most recent. If I nnovations = [], then I nnovations is not displayed.

Si gma

Vector or matrix of conditional standard deviations. In general, I nnovati ons and Si gma are the same size, and form a matching pair of arrays. If Si gma = [], then Si gma is not displayed.

Seri es

Vector or matrix of asset returns. In general, Seri es is the same size as I nnovati ons and Si gma, and is organized in exactly the same manner. If Seri es = [] or is not specified, then Seri es is not displayed.

Description

garchpl ot lets you visually compare matched innovations, conditional standard deviations, and returns. It provides a convenient way to compare innovations series, simulated using garchsim or estimated using garchfit, with companion conditional standard deviations, and/or returns series. You can also use garchpl ot to plot forecasts, computed using garchpred, of conditional standard deviations and returns.

In general, garchpl ot produces a tiered plot of matched time series. garchplot does not display an empty or missing input array, i.e., garchpl ot allocates no space in the tiered figure window to the array. garchpl ot displays valid (nonempty) I nnovati ons, Si gma, and Seri es arrays in the top, center, and bottom plots, respectively. Since garchpl ot assigns a title and label to each plot according to its position in the argument list, you can ensure correct plot annotation by using empty matrices ([]) as placeholders.

garchplot

You can plot several realizations of each array simultaneously because garchpl ot color codes corresponding realizations of each input array. However, the plots may become cluttered if you try to display more than a few realizations of each input at one time.

Examples

Assume Innovations, Sigma, and Series are not empty.

See Also

garchfit, garchpred, garchsim

Purpose

Univariate GARCH process forecasting

Syntax

SigmaForecast = garchpred(Spec, Series, NumPeriods, X)

[SigmaForecast, MeanForecast] = garchpred(Spec, Series, NumPeriods,

X, XF)

[SigmaForecast, MeanForecast, SigmaTotal, MeanRMSE] =

garchpred(Spec, Series, NumPeriods)

Arguments

Spec GARCH specification structure for the conditional mean and

variance models. You can create Spec by calling the function

garchset or the estimation function garchfit.

Seri es Matrix of observations of the underlying univariate return

series of interest for which garchpred generates forecasts. Each column of Seri es is an independent realization (i.e.,

path). The last row of Seri es holds the most recent observation of each realization. garchpred assumes that Seri es is a stationary stochastic process. It also assumes that

the ARMA component of the conditional mean model (if any) is

stationary and invertible.

NumPeri ods (optional) Positive, scalar integer representing the forecast

horizon of interest. The value you specify should be compatible with the sampling frequency of Seri es. If NumPeri ods = [] or

is not specified, the default is 1.

X

(optional) Time series regression matrix of observed explanatory data. Typically, X is a matrix of asset returns (e.g., the return series of an equity index), and represents the past history of the explanatory data. Each column of X is an individual time series used as an explanatory variable in the regression component of the conditional mean. In each column, the first row contains the oldest observation and the last row the most recent.

The number of valid (non-NaN) most recent observations in each column of X must equal or exceed the number of valid most recent observations in Seri es. If the number of valid observations in a column of X exceeds that of Seri es, garchpred uses only the most recent observations of X.

If X = [] or is not specified, the conditional mean (MeanForecast) has no regression component.

XF

(optional) Time series matrix of forecasted explanatory data. XF represents the evolution into the future of the same explanatory data found in X. Because of this, XF and X must have the same number of columns. In each column of XF, the first row contains the one-period-ahead forecast, the second row the two-period-ahead forecast, and so on.

The number of rows (forecasts) in each column (time series) of XF must equal or exceed the forecast horizon NumPeri ods. When the number of forecasts in XF exceeds NumPeri ods, garchpred uses only the first NumPeri ods forecasts.

If XF = [] or is not specified, the conditional mean (MeanForecast) has no regression component.

Description

garchpred forecasts the conditional mean and standard deviation of the univariate return series NumPeri ods into the future, using specifications for the conditional mean and variance of an observed univariate return series as input. The conditional mean and variance can be of general ARMAX and GARCH form, respectively.

Si gmaForecast = garchpred(Spec, Seri es, NumPeri ods, X) forecasts only the standard deviation of the univariate return series, Seri es. The regression matrix X is optional. If you specify XF, garchpred ignores it.

[SigmaForecast, MeanForecast] = garchpred(Spec, Series, NumPeriods, X, XF) forecasts both the conditional mean and standard deviation of the univariate return series, Series. X and XF are optional. However, for MeanForecast, if you specify X, you must also specify XF. For SigmaForecast, garchpred ignores XF.

[Si gmaForecast, MeanForecast, Si gmaTotal, MeanRMSE] = garchpred(Spec, Seri es, NumPeri ods) in addition to forecasting the conditional mean and standard deviation of the univariate return series, computes the volatility forecasts of asset returns over multiperiod holding intervals, and the standard errors of conditional mean forecasts. If you compute Si gmaTotal or MeanRMSE, Si gmaForecast and MeanForecast can have no regression component. If you compute Si gmaTotal or MeanRMSE, Si gmaForecast and MeanForecast can have no regression component.

garchpred requires a complete conditional mean specification to correctly infer the innovations process that drives the forecasts. Because of this, you would typically use the same regression matrix of observed returns (X), if any, that you used for simulation (using garchsim) and/or estimation (using garchfit). XF, however, is just the forecast of X, and you *only* need it to forecast the conditional mean (MeanForecast). If you want to forecast only the conditional variance (SigmaForecast), XF is unnecessary.

garchpred

Si gmaForecast

Matrix of minimum mean square error (MSE) forecasts of the conditional standard deviations of Seri es on a per period basis. Si gmaForecast has NumPeri ods rows and the same number of columns as Seri es. The first row contains the one-period-ahead forecast for each realization of Seri es, the second row contains the two-period-ahead forecast, and so on. If a forecast horizon is > 1 (i.e., NumPeri ods > 1), garchpred returns the per-period forecasts of all intermediate horizons, as well as the forecast at the specified horizon which is in the last row.

MeanForecast

Matrix of minimum MSE forecasts of the conditional mean of Seri es on a per-period basis. MeanForecast is the same size as SigmaForecast. The first row contains the forecast in the first period for each realization of Seri es, the second row contains the forecast in the second period, and so on.

Both X and XF must be non-empty for MeanForecast to have a regression component. If X and XF are empty ([]) or not specified, MeanForecast is based on the ARMA model. If you specify X and XF, MeanForecast is based on the full ARMAX model.

Si gmaTotal

Matrix of minimum mean square error (MSE) volatility forecasts of Seri es over multiperiod holding intervals. Si gmaTotal is the same size as Si gmaForecast. The first row contains the standard deviation of returns expected for assets held for one period for each realization of Seri es, the second row contains the standard deviation of returns expected for assets held for two periods, and so on. The last row contains the volatility forecast of the cumulative return obtained if an asset was held for the entire NumPeri ods forecast horizon.

garchpred computes the elements of Si gmaTotal $\,$ by taking the square root of

$$var_{t}\left[\sum_{i=1}^{s} y_{t+i}\right] = \sum_{i=1}^{s} \left[\left[1 + \sum_{j=1}^{s-i} \psi_{j}\right]^{2} E_{t}(\sigma_{t+i}^{2})\right]$$

where s is the forecast horizon of interest (NumPeri ods), and ψ_j is the coefficient of the jth lag of the innovations process in an infinite-order MA representation of the conditional mean model (see the function garchma).

In the special case of the default model for the conditional mean, $y_t = C + \varepsilon_t$, this reduces to

$$var_t \left[\sum_{i=1}^{s} y_{t+i} \right] = \sum_{i=1}^{s} E_t(\sigma_{t+i}^2)$$

The Si gmaTotal forecasts are correct for continuously compounded returns, and approximate for periodically compounded returns. Si gmaTotal is the same size as Si gmaForecast if the conditional mean is modeled as a stationary invertible ARMA process.

If you specify X and/or XF, Si gmaTotal = [].

garchpred

MeanRMSE

Matrix of root mean square errors (RMSE) associated with MeanForecast. That is, MeanRMSE is the conditional standard deviation of the forecast errors (i.e., the standard error of the forecast) of the corresponding MeanForecast matrix. MeanRMSE is the same size as MeanForecast and garchpred organizes it in exactly the same manner, provided the conditional mean is modeled as a stationary/invertible ARMA process.

If you specify X and/or XF, MeanRMSE = [].

Note garchpred calls the function garchi nfer to access the past history of innovations and conditional standard deviations inferred from Seri es. If you need the innovations and conditional standard deviations, call garchi nfer directly.

See Also

garchfit, garchinfer, garchma, garchset, garchsim

References

Baillie, R.T., T. Bollerslev (1992), "Prediction in Dynamic Models with Time-Dependent Conditional Variances," *Journal of Econometrics*, Vol. 52, pp. 91-113.

Bollerslev, T. (1986), "Generalized Autoregressive Conditional Heteroskedasticity," *Journal of Econometrics*, Vol. 31, pp. 307-327.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and Control*, third edition, Prentice Hall, 1994.

Engle, Robert (1982), "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, Vol. 50, pp. 987-1007.

Hamilton, J.D., *Time Series Analysis*, Princeton University Press, 1994.

Purpose

Create or modify GARCH specification structure

Syntax

```
garchset
```

Spec = garchset

Spec = garchset('Parameter1', Value1, 'Parameter2', Value2, ...)

Spec = garchset(0ldSpec, 'Parameter1', Value1, ...)

Arguments

Parameter 1, Parameter 2, output specification structure Spec. Table 2-1, GARCH Specification Parameters below lists the valid parameters. The GARCH Toolbox ignores case for parameter names.

Value 1, Value assigned to the corresponding Parameter.

Value2, ...

01 dSpec (optional) Existing GARCH specification structure. Fields of

the structure were previously generated by calling garchset

or garchfit.

Description

garchset provides the main user interface for specifying a GARCH model, and is the preferred method for creating and modifying GARCH specification structures. Use garchget to retrieve the values of specification structure parameters.

garchset (with no input arguments and no output arguments) displays all parameter names and the default values where appropriate.

Spec = garchset creates a GARCH specification structure Spec with all fields set to their default settings. This default GARCH specification structure models an observed univariate return series as a constant, C, plus GARCH(1,1) conditionally Gaussian innovations. The C + GARCH(1,1) model is the default model of the GARCH Toolbox. You can use this Spec as input to garchfit, but it is invalid as input to garchpred or garchsim.

 $Spec = garchset ('Parameter1', Value1, 'Parameter2', Value2, \dots) \\ creates a GARCH specification structure Spec using the parameter/value pairs \\ specified in the input argument list. The Parameter part of the pair must be a \\ valid GARCH specification structure field. \\ garchset assigns the Value part of \\ \\$

the pair to its paired Parameter field. If you specify coefficient vectors (AR, MA, GARCH, ARCH) but not their corresponding model orders (R, M, P, Q), garchset infers the values of the model orders from the lengths of the coefficient vectors. In all other cases, garchset sets all parameters you do not specify to their respective defaults. A parameter name needs to include only sufficient leading characters to uniquely identify the parameter.

Spec = garchset (0l dSpec, 'Parameter1', Val ue1, ...) modifies an existing GARCH specification structure, 0l dSpec, by changing the named parameters to the specified values.

Spec

GARCH specification structure. This structure contains the orders and coefficients (if specified) of the conditional mean and variance specifications of a GARCH model. It also contains the parameters associated with the function fmi ncon in the MATLAB Optimization Toolbox.

A GARCH specification structure includes the parameters shown in Table 2-1, GARCH Specification Parameters.

Table 2-1: GARCH Specification Parameters

Parameter	Description	Possible Values
Comment	User-defined summary comment	String. The default lists expressions for the mean and variance models derived from the current values of R, M, P, and Q. For example, 'Mean: ARMAX(0, 0, ?); Variance: GARCH(1, 1)'. If you explicitly specify a comment, the toolbox does not overwrite it.
R	Auto-regressive component of the conditional mean model order of an ARMA(R,M) model	Nonnegative integer scalar. Default = 0.
M	Moving average component of the conditional mean model order of an ARMA(R,M) model	Nonnegative integer scalar. Default = 0.

Table 2-1: GARCH Specification Parameters (Continued)

Parameter	Description	Possible Values
P	GARCH component of the conditional variance model order of an GARCH(P,Q) model	Nonnegative integer scalar. P must be 0 if Q is 0. Default = 0.
Q	ARCH component of the conditional variance model order of an GARCH(P,Q) model	Nonnegative integer scalar. Default = 0.
Distribution	Conditional distribution of innovations	String. The only valid value is 'Gaussi an'.
С	Conditional mean constant	Scalar coefficient. Default = [].
AR	Conditional mean auto-regressive coefficients	Vector of R coefficients of lagged returns. Default = [].
MA	Conditional mean moving average coefficients	Vector of M coefficients of lagged innovations. Default = [].
Regress	Conditional mean regression coefficients	Vector of coefficients. Default = [].
K	Conditional variance constant	Positive scalar coefficient. Default = [].
GARCH	Conditional variance coefficients for lagged variances	Vector of P nonnegative coefficients. Default = [].
ARCH	Conditional variance coefficients for lagged squared residuals	Vector of Q nonnegative coefficients. Default = [].
Fi xC	Equality constraint indicator for C coefficient of the conditional mean	Boolean scalar. Default = 0.
Fi xAR	Equality constraint indicator for AR coefficients of the conditional mean	Boolean vector. Default = $[0, 0, \ldots, 0]$.
Fi xMA	Equality constraint indicator for MA coefficients of the conditional mean	Boolean vector. Default = $[0, 0, \ldots, 0]$.

garchset

Table 2-1: GARCH Specification Parameters (Continued)

Parameter	Description	Possible Values
FixRegress	Equality constraint indicator for the REGRESS coefficients of the conditional mean	Boolean vector. Default = $[0, 0, \dots, 0]$.
Fi xK	Equality constraint indicator for the K coefficient of the conditional variance	Boolean scalar. Default = 0.
Fi xGARCH	Equality constraint indicator for the GARCH coefficients of the conditional variance	Boolean vector. Default = $[0, 0, \ldots, 0]$.
Fi xARCH	Equality constraint indicator for the ARCH coefficients of the conditional variance	Boolean vector. Default = $[0, 0, \dots, 0]$.
Di spl ay	Display flag for iterative optimization information	String. Valid values are on (default) and off .
MaxFunEvals	Maximum number of log-likelihood objective function evaluations allowed in the estimation process	Positive integer. Default = $(100 * number of parameters in the model)$. For a Gaussian distribution, this is $100 * (2 + R + M + Nx + P + Q)$ where Nx is the number of explanatory variables in the regression component of the conditional mean.
MaxIter	Maximum number of iterations allowed in the estimation process	Positive integer. Default = 400.
Tol Con	Termination tolerance on constraint violation	Positive scalar. Default = 1e-006.
Tol Fun	Termination tolerance on the objective function value	Positive scalar. Default = 1e-006.
Tol X	Termination tolerance on parameter estimates	Positive scalar. Default = 1e-006.

Example

This example creates a GARCH(1,1) model and prints the specification structure. The nested <code>Optimization</code> structure, shown in the printed specification structure, contains the <code>Display</code>, <code>MaxFunEvals</code>, <code>MaxIter</code>, <code>TolCon</code>, <code>TolFun</code>, and <code>TolX</code> parameters. Use <code>garchget</code> to retrieve the values of these parameters.

```
spec = garchset('P', 1, 'Q', 1)
                                 % Create a GARCH(P=1, Q=1) model.
spec =
          Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
                R: 0
                M: 0
                P: 1
                Q: 1
    Distribution: 'Gaussian'
                C: []
               AR: []
               MA: []
          Regress: []
                K: []
           GARCH: []
             ARCH: []
             Fi xC: []
            Fi xAR: []
           Fi xMA: []
      FixRegress: []
             Fi xK: []
        Fi xGARCH: []
         Fi xARCH: []
    Optimization: [1x1 struct]
spec = garchset(spec, 'Q', 2)
                                 % Change it to a GARCH(P=1, Q=2)
                                 % model.
spec =
          Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,2)'
                R: 0
                M: 0
                P: 1
```

garchset

```
Q: 2
Distribution: 'Gaussian'
           C: []
          AR: []
          MA: []
     Regress: []
            K: []
       GARCH: []
        ARCH: []
        Fi xC: []
       Fi xAR: []
       Fi xMA: []
 FixRegress: []
        Fi xK: []
    Fi xGARCH: []
     Fi xARCH: []
Optimization: [1x1 struct]
```

See Also

garchfit, garchget, garchpred, garchsim optimset (in the online MATLAB Function Reference)

Purpose Univariate GARCH process simulation

Syntax [Innovations, Sigma, Series] = garchsim(Spec, NumSamples, NumPaths,

Seed, X)

Arguments

Spec GARCH specification structure for the conditional mean and

variance models. You create Spec by calling the function garchset or the estimation function garchfit. The conditional mean can be of general ARMAX form and

conditional variance of general GARCH form.

NumSamples (optional) Positive integer indicating the number of samples

garchsi m generates for each path of the I nnovations, Sigma, and Series outputs. If NumSamples = [] or is not specified,

the default is 100.

NumPaths (optional) Positive integer indicating the number of sample

paths (realizations) garchsi m generates for the Innovations,

Si gma, and Seri es outputs. If NumPaths = [] or is not

specified, the default is 1, i.e. Innovations, Sigma and Series

are column vectors.

Seed

(optional) Scalar random number generator seed. If Seed = [] or is not specified, the default is 0 (the MATLAB initial state).

X

(optional) Time series regression matrix of observed explanatory data. Typically, X is a matrix of asset returns (e.g., the return series of an equity index), and represents the past history of the explanatory data. Each column of X is an individual time series used as an explanatory variable in the regression component of the conditional mean. In each column, the first row contains the oldest observation and the last row the most recent.

If $X = [\]$ or is not specified, the conditional mean has no regression component. If specified, then at least the most recent NumSampl es observations of each return series must be valid (i.e., non-NaN). When the number of valid observations in each series exceeds NumSampl es, garchsi m uses only the most recent NumSampl es observations of X.

Description

[Innovations, Sigma, Series] = garchsim(Spec, NumSamples, NumPaths, Seed, X) simulates sample paths for return series, innovations, and conditional standard deviation processes, using specifications for the conditional mean and variance of a univariate time series as input. garchsim samples each of NumPaths sample paths at NumSamples observations.

Innovations

NumSampl es by NumPaths matrix of innovations, representing a mean zero, discrete-time stochastic process. The I nnovati ons time series follows the conditional variance (GARCH) specification defined in Spec. Rows are sequential times samples, columns are independent realizations.

Sigma NumSamples by NumPaths matrix of conditional standard

deviations of the corresponding I nnovati ons matrix. I nnovati ons and Si gma are the same size. Rows are sequential times samples. Columns are independent

realizations.

Series NumSamples by NumPaths matrix of the return series of

interest. Seri es is the dependent stochastic process and follows the conditional mean specification of general ARMAX form defined in Spec. Rows are sequential times samples.

Columns are independent realizations.

See Also garchfit, garchget, garchpred, garchset

References Bollerslev, T. (1986), "Generalized Autoregressive Conditional Heteroskedasticity," *Journal of Econometrics*, Vol. 31, pp. 307-327.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and Control*, third edition, Prentice Hall, 1994.

Engle, Robert (1982), "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, Vol. 50, pp. 987-1007.

Hamilton, J.D., *Time Series Analysis*, Princeton University Press, 1994.

lagmatrix

Purpose Create a lagged time series matrix

Syntax XLAG = lagmatrix(X, Lags)

Arguments

X Time series of explanatory data. X can be a vector or a matrix. As a vector (row or column), X represents a univariate time series whose first element contains the oldest observation and whose last element contains the most recent observation. As a matrix, X represents a multivariate time series whose rows correspond to time indices in which the first row contains the oldest observations and the last row contains the most recent observations. lagmatrix assumes that observations across any given row occur at the same time. Each column is an individual time series.

Lags Vector of integer lags. I agmatrix applies the first lag to every series in X, then applies the second lag to every series in X, and so forth. To include a time series as is, include a 0 lag. Positive lags correspond to delays, and shift a series back in time. Negative lags correspond to leads, and shift a series forward in time.

Description

XLAG = lagmatrix(X, Lags) creates a lagged (i.e., shifted) version of a time series matrix. The lagmatrix function is useful for creating a regression matrix of explanatory variables for fitting the conditional mean of a return series.

XLAG Lagged transform of the time series X. To create XLAG, lagmatrix shifts each time series in X by the first lag, then shifts each time series in X by the second lag, and so forth. Since XLAG represents an explanatory regression matrix, each column is an individual time series. XLAG has the same number of rows as there are observations in X, but its column dimension is equal to the product of the number of columns in X and the length of Lags. lagmatrix uses a NaN (Not-a-Number) to indicate an undefined observation.

Example

The following example creates a bivariate time series matrix X with five observations each, then creates a lagged matrix XLAG composed of X and the first two lags of X. The result, XLAG, is a 5-by-6 matrix.

```
X = [1 -1; 2 -2; 3 -3; 4 -4; 5 -5] % Create a simple bivariate
                                       % series.
X =
     1
          - 1
     2
          - 2
     3
          - 3
     4
           - 4
     5
           - 5
XLAG = lagmatrix(X, [0 1 2])
                                 % Create the lagged matrix.
XLAG =
     1
           - 1
                NaN
                       NaN
                             NaN
                                    NaN
     2
           - 2
                        - 1
                  1
                             NaN
                                    NaN
     3
           - 3
                       - 2
                               1
                                     - 1
     4
           - 4
                  3
                        - 3
                               2
                                     - 2
     5
           - 5
                               3
                                     - 3
                        - 4
```

See Also

filter, i snan, and nan (in the online MATLAB Function Reference)

Ibqtest

Purpose

Ljung-Box Q-statistic lack-of-fit hypothesis test

Syntax

[H, pValue, Qstat, CriticalValue] = lbqtest(Series, Lags, Alpha, DoF)

Arguments

Series Vector of observations of a univariate time series for which l bqtest

computes the sample Q-statistic. The last row of Seri es contains the most recent observation of the stochastic sequence. Typically, Seri es is either the sample residuals derived from fitting a model to an observed time series, or the standardized residuals obtained by dividing the sample residuals by the conditional standard

deviations.

Lags (optional) Vector of positive integers indicating the lags of the

sample autocorrelation function included in the Q-statistic. If specified, each lag must be less than the length of Seri es. If

Lags = [] or is not specified, the default is Lags = min([20, length(Series)-1]).

Al pha (optional) Significance level(s). Al pha can be a scalar applied to all

lags, or a vector the same length as Lags. If Al pha = [] or is not specified, the default is 0. 05. For all elements, α , of Al pha,

 $0 < \alpha < 1$.

DoF (optional) Degree(s) of freedom. DoF can be a scalar applied to all

lags, or a vector the same length as Lags. If specified, all elements of DoF must be positive integers less than the corresponding element of Lags. If DoF = [] or is not specified, the elements of Lags serve as the default degrees of freedom for the Chi-Square

distribution.

Description

[H, pValue, Qstat, Critical Value] = lbqtest(Series, Lags, Alpha, DoF) performs the Ljung-Box lack-of-fit hypothesis test for model misspecification, which is based on the Q-statistic

$$Q = N(N+2) \sum_{k=1}^{L} \frac{r_k^2}{(N-k)}$$

where N= sample size, L= number of autocorrelation lags included in the statistic, and r_k^2 is the squared sample autocorrelation at lag k. Once you fit a univariate model to an observed time series, you can use the Q-statistic as a lack-of-fit test for a departure from randomness. Under the null hypothesis that the model fit is adequate, the test statistic is asymptotically Chi-Square distributed.

H Boolean decision vector. 0 indicates accept	ance of the null
---	------------------

hypothesis that the model fit is adequate (no serial correlation at the corresponding element of Lags).

1 indicates rejection of the null hypothesis. H is the same

size as Lags.

pValue Vector of P-values (significance levels) at which l bqtest

rejects the null hypothesis of no serial correlation at each

lag in Lags.

Qstat Vector of Q-statistics for each lag in Lags.

Cri ti cal Val ue Vector of critical values of the Chi-Square distribution for

comparison with the corresponding element of Qstat.

Example

Create a vector of 100 Gaussian random numbers, then compute the Q-statistic for autocorrelation lags 20 and 25 at the 10 percent significance level.

```
randn('state', 100)
                                    % Start from a known state.
Seri es
                = randn(100, 1);
                                    % 100 Gaussian deviates \sim N(0, 1)
[H, P, Qstat, CV] = lbqtest(Series, [20 25]', 0.10);
[H, P, Qstat, CV]
ans =
          0
               0.9615
                         10.3416
                                     28.4120
          0
               0.9857
                         12. 1015
                                     34.3816
```

See Also

archtest, autocorr

Ibqtest

Reference

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and Control*, third edition, Prentice Hall, 1994.

Gourieroux, C., $ARCH \, Models \, and \, Financial \, Applications$, Springer-Verlag, 1997.

Purpose

Likelihood ratio hypothesis test

Syntax

[H, pValue, Ratio, Critical Value] = lratiotest(BaseLLF, NullLLF, DoF, Alpha)

Arguments

BaseLLF Scalar value of the optimized log-likelihood objective

function of the baseline, unrestricted estimate. l ratiotest assumes BaseLLF is the output of the estimation function

garchfit, or the inference function garchinfer.

Nul l LLF Vector of optimized log-likelihood objective function values

of the restricted estimates. I ratiotest assumes you obtained the NullLLF values using garchfit or

garchi nfer.

DoF Degrees of freedom (i.e, the number of parameter

restrictions) associated with each value in Nul l LLF. DoF can be a scalar applied to all values in Nul l LLF, or a vector the same length as Nul l LLF. All elements of DoF must be

positive integers.

Al pha (optional) Significance levels of the hypothesis test. Al pha

can be a scalar applied to all values in NullLLF, or a vector the same length as NullLLF. If Alpha = [] or is not

specified, the default is 0. 05. For all elements, α , of Al pha,

 $0 < \alpha < 1$.

Description

[H, pValue, Ratio, Critical Value] = lratiotest(BaseLLF, NullLLF, DoF, Alpha) performs the likelihood ratio hypothesis test. lratiotest uses as input the optimized log-likelihood objective function (LLF) value associated with an unrestricted maximum likelihood parameter estimate, and the LLF values associated with restricted parameter estimates.

The unrestricted LLF is the baseline case used to fit conditional mean and variance specifications to an observed univariate return series. The restricted models determine the null hypotheses of each test, and the number of restrictions they impose determines the degrees of freedom of the resulting Chi-Square distribution.

Iratiotest

BaseLLF is usually the LLF of a larger estimated model and serves as the alternative hypothesis. Elements of Nul 1 LLF are then the LLFs associated with smaller, restricted specifications. BaseLLF should exceed the values in Nul 1 LLF, and the asymptotic distribution of the test statistic is Chi-Square distributed with degrees of freedom equal to the number of restrictions.

H Vector of Boolean decisions the same size as Nul 1 LLF.

A 0 indicates acceptance of the restricted model under the null hypothesis. 1 indicates rejection of the restricted, null hypothesis model relative to the unrestricted alternative

associated with BaseLLF.

pValue Vector of P-values (significance levels) at which

I ratiotest rejects the null hypothesis of each restricted

model. pValue is the same size as NullLLF.

Ratio Vector of likelihood ratio test statistics the same size as

Nul l LLF. The test statistic is

Ratio = 2(BaseLLF - NullLLF)

Cri ti cal Val ue Vector of critical values of the Chi-Square distribution.

Critical Value is the same size as NullLLF.

See Also garchfit, garchinfer

Reference Hamilton, J.D., *Time Series Analysis*, Princeton University Press, 1994.

Purpose

Plot or return computed sample partial auto-correlation function

Syntax

[Partial ACF, Lags, Bounds] = parcorr(Series, nLags, R, nSTDs)

Arguments

Seri es

Vector of observations of a univariate time series for which parcorr returns or plots the sample partial auto-correlation function (partial ACF). The last element of Seri es contains the most recent observation of the stochastic sequence.

nLags

(optional) Positive, scalar integer indicating the number of lags of the partial ACF to compute. If nLags = [] or is not specified, parcorr computes the partial ACF sequence at lags 0, 1, 2, ..., T, where $T = \min ([20, length(Series)-1])$.

R

(optional) Nonnegative integer scalar indicating the number of lags beyond which parcorr assumes the theoretical partial ACF is zero. Assuming that Seri es is an AR(R) process, the estimated partial ACF coefficients at lags > R are approximately zero-mean, independently distributed Gaussian variates. In this case, the standard error of the estimated partial ACF coefficients of a fitted Seri es with N observations is approximately $1/\sqrt{N}$ for lags > R. If R = [] or is not specified, the default is 0. The value of R must be < nLags.

nSTDs

(optional) Positive scalar indicating the number of standard deviations of the sample partial ACF estimation error to display, assuming that Series is an AR(R) process. If the Rth regression coefficient (i.e., the last ordinary least squares (OLS) regression coefficient of Seri es regressed on a constant and R of its lags) includes N observations, specifying nSTDs results in confidence bounds at $(nSTDs/\sqrt{N})$. If nSTDs = [] or is not specified, the default is 2 (i.e., approximate 95 percent confidence interval).

Description

parcorr(Seri es, nLags, R, nSTDs) computes and plots the sample partial auto-correlation function (partial ACF) of a univariate, stochastic time series. parcorr computes the partial ACF by fitting successive autoregressive models of orders 1, 2, ... by ordinary least squares, retaining the last coefficient of each

regression. To plot the partial ACF sequence without the confidence bounds, set nSTDs = 0.

[Partial ACF, Lags, Bounds] = parcorr(Series, nLags, R, nSTDs) computes and returns the partial ACF sequence.

Partial ACF Sample partial ACF of Series. Partial ACF is a vector of length nLags + 1 corresponding to lags 0, 1, 2, ..., nLags. The

first element of Parti al ACF is unity,

i.e., Parti al ACF(1) = 1 = OLS regression coefficient of Seri es regressed upon itself. parcorr includes this element as a reference.

Lags Vector of lags corresponding to Parti al ACF(0, 1, 2, ..., nLags).

Bounds Two-element vector indicating the approximate upper and lower confidence bounds, assuming that Seri es is an AR(R) process. Note that Bounds is approximate for lags > R only.

Example

Create a stationary AR(2) process from a sequence of 1000 Gaussian deviates, and then visually assess whether the partial ACF is zero for lags > 2.

```
randn('state', 0)
                                  % Start from a known state.
x = randn(1000, 1);
                                  % 1000 Gaussian deviates \sim N(0, 1).
y = filter(1, [1 - 0.6 0.08], x);
                                 % Create a stationary AR(2)
                                  % process.
[Partial ACF, Lags, Bounds] = parcorr(y, [], 2); % Compute the
                                  % partial ACF with 95 percent
                                  % confidence.
[Lags, Partial ACF]
ans =
         0
              1.0000
    1.0000
              0.5570
    2.0000
             -0.0931
    3.0000
              0.0249
    4.0000
             -0.0180
    5,0000
             -0.0099
    6.0000
              0.0483
    7.0000
              0.0058
    8.0000
              0.0354
```

```
9.0000
           0.0623
10.0000
           0.0052
11.0000
          -0.0109
12.0000
           0.0421
13.0000
          -0.0086
14.0000
          -0.0324
15.0000
           0.0482
16.0000
           0.0008
17.0000
          -0.0192
18.0000
           0.0348
19.0000
          -0.0320
20.0000
           0.0062
```

Bounds

Bounds =

0.0633

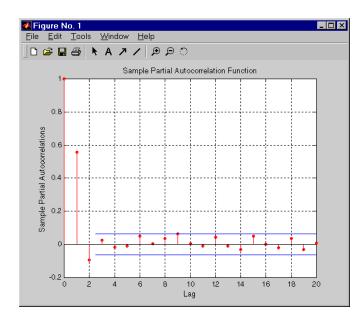
-0.0633

parcorr(y , [] , 2)

% Use the same example, but plot

% the partial ACF sequence with

% confidence bounds.



parcorr

See Also autocorr, crosscorr

filter (in the online MATLAB Function Reference)

References Box, G.E.P., G.M. Jenkins, G.C. Reinsel, *Time Series Analysis: Forecasting and*

Control, third edition, Prentice Hall, 1994.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Purpose

Convert a price series to a return series

Syntax

[RetSeries, RetIntervals] = price2ret(TickSeries, TickTimes,
Method)

Arguments

Ti ckSeri es

Time series of price data. Ti ckSeri es can be a vector (row or column) or a matrix:

- As a vector, Ti ckSeri es represents a univariate price series.
 The length of the vector is the number of observations
 (NUMOBS). The first element contains the oldest observation,
 and the last element the most recent.
- As a matrix, Ti ckSeri es represents a NUMOBS-by-number of assets (NUMASSETS) matrix of asset prices. Rows correspond to time indices. The first row contains the oldest observations and the last row the most recent. pri ce2ret assumes the observations across a given row occur at the same time for all columns, and each column is a price series of an individual asset.

TickTimes

(optional) A NUMOBS element vector of monotonically increasing observation times. Times are numeric and taken either as serial date numbers (day units), or as decimal numbers in arbitrary units (e.g., yearly). If Ti ckTi mes = [] or is not specified, then pri ce2ret assumes sequential observation times from 1, 2, ..., NUMOBS.

Method

(optional) Character string indicating the compounding method to compute asset returns. If Method = 'Conti nuous', = [], or is not specified, then pri ce2ret computes continuously compounded returns. If Method = 'Peri odi c', then pri ce2ret assumes simple periodic returns. Method is case insensitive.

Description

[RetSeries, RetIntervals] = price2ret(TickSeries, TickTimes,
Method) computes asset returns for NUMOBS price observations of NUMASSETS
assets.

RetSeries

Array of asset returns:

- When Ti ckSeri es is a NUMOBS element row (column) vector, RetSeri es is a NUMOBS-1 row (column) vector.
- When Ti ckSeri es is a NUMOBS-by-NUMASSETS matrix, RetSeri es is a (NUMOBS-1)-by-NUMASSETS matrix. pri ce2ret quotes the ith return of an asset for the period Ti ckTi mes(i) to Ti ckTi mes(i+1) and normalizes it by the time interval between successive price observations.

Assuming that

$$RetIntervals(i) = TickTimes(i+1) - TickTimes(i)$$

then if Method = 'Continuous', = [], or is not specified, price2ret computes the continuously-compounded *i*th return of an asset as

$$RetSeries(i) = \frac{log\Big[\frac{TickSeries(i+1)}{TickSeries(i)}\Big]}{RetIntervals(i)}$$

If Method = 'Peri odi c', then pri ce2ret computes the *i*th simple return as

$$RetSeries(i) = \frac{\left[\frac{TickSeries(i+1)}{TickSeries(i)}\right] - 1}{RetIntervals(i)}$$

RetIntervals

NUMOBS-1 element vector of interval times between observations. If Ti ckTi mes = [] or is not specified, pri ce2ret assumes that all intervals are 1.

Example

Create a stock price process continuously compounded at 10 percent, then convert the price series to a 10 percent return series.

```
S = 100*exp(0.10 * [0:19]'); % Create the stock price series R = price2ret(S); % Convert the price series to a % 10 percent returns series
```

[S [R; NaN]]

% Pad the return series so vectors % are of same length. price2ret % computes the *i*th return from % the *i*th and *i+1*th prices.

ans =

0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
0. 1000
NaN

See Also ret2price

ret2price

Purpose

Convert a return series to a price series

Syntax

[TickSeries, TickTimes] = ret2price(RetSeries, StartPrice, RetIntervals, StartTime, Method)

Arguments

RetSeries

Time series array of returns. RetSeri es can be a vector (row or column) or a matrix:

- As a vector, Ret Seri es represents a univariate series of returns of a single asset. The length of the vector is the number of observations (NUMOBS). The first element contains the oldest observation, and the last element the most recent.
- As a matrix, RetSeri es represents a NUMOBS-by-number of assets (NUMASSETS) matrix of asset returns. Rows correspond to time indices. The first row contains the oldest observations and the last row the most recent. ret2pri ce assumes the observations across a given row occur at the same time for all columns, and each column is a return series of an individual asset.

StartPri ce

(optional) A NUMASSETS element vector of initial prices for each asset, or a single scalar initial price applied to all assets. If StartPri ce = [] or is not specified, all asset prices start at 1.

RetIntervals

(optional) A NUMOBS element vector of time intervals between return observations, or a single scalar interval applied to all observations. If RetIntervals = [] or is not specified, ret2pri ce assumes all intervals have length 1.

StartTime

(optional) Scalar starting time for the first observation, applied to the price series of all assets. The default is 0.

Met.hod

(optional) Character string indicating the compounding method used to compute asset returns. If

Method = 'Continuous', = [], or is not specified, then ret2price computes continuously compounded returns. If

Method = 'Periodic' then ret2price computes simple periodic returns. Method is case insensitive.

Description

[TickSeries, TickTimes] = ret2price(RetSeries, StartPrice, RetIntervals, StartTime, Method) generates a price series for each of NUMASSETS assets, given the asset starting prices and NUMOBS return observations for each asset.

Ti ckSeri es

Array of asset prices:

- When Ret Seri es is a NUMOBS element row (column) vector, Ti ckSeri es is a NUMOBS+1 row (column) vector. The first element contains the starting price of the asset, and the last element the most recent price.
- When Ret Seri es is a NUMOBS-by-NUMASSETS matrix, then Ret Seri es is a (NUMOBS+1)-by-NUMASSETS matrix. The first row contains the starting price of the assets, and the last row contains the most recent prices.

TickTimes

A NUMOBS+1 element vector of price observation times. The initial time is zero unless specified in StartTi me.

Example

Create a stock price process continuously compounded at 10 percent. Compute 10 percent returns for reference, then convert the resulting return series to the original price series and compare results.

```
S = 100*exp(0.10 * [0:19]'); % Create the stock price series \\ R = price2ret(S); % Convert the price series to a \\ % 10 percent returns series \\ P = ret2price(R, 100); % Convert to the original price \\ % series \\
```

ret2price

[S P] ans = 100.0000 100.0000 110.5171 110. 5171 122.1403 122. 1403 134. 9859 134. 9859 149. 1825 149. 1825 164.8721 164.8721 182. 2119 182. 2119 201. 3753 201.3753 222. 5541 222.5541 245.9603 245.9603 271.8282271.8282300.4166 300.4166 332.0117 332.0117 366. 9297 366. 9297 405.5200 405. 5200 448.1689448. 1689 495. 3032 495. 3032 547. 3947 547. 3947 604.9647 604.9647 668. 5894 668. 5894

% Compare the original and

% computed price series

See Also

pri ce2ret

Glossary

Akaike information criteria (AIC) - A model order selection criteria based on parsimony. More complicated models are penalized for the inclusion of additional parameters. See also Bayesian information criteria (BIC).

AR - Auto-Regressive. AR models include past observations of the dependent variable in the forecast of future observations.

ARCH - Auto-Regressive Conditional Heteroskedasticity. A time series technique in which past observations of the variance are used to forecast future variances. See also GARCH

ARMA - Auto-Regressive Moving Average. A time series model that includes both AR and MA components. See also AR and MA.

auto-correlation function (ACF) - Correlation sequence of a random time series with itself. See also cross-correlation function (XCF).

auto-regressive - See AR.

Bayesian information criteria (BIC) - A model order selection criteria based on parsimony. More complicated models are penalized for the inclusion of additional parameters. Since BIC imposes a greater penalty for additional parameters than AIC, BIC always provides a model with a number of parameters no greater than that chosen by AIC. See also Akaike information criteria (AIC).

conditional - Time series technique with explicit dependence on the past sequence of observations.

conditional mean - Time series model for forecasting the expected value of the return series itself.

conditional variance - Time series model for forecasting the expected value of the variance of the return series.

cross-correlation function (XCF) - Correlation sequence between two random time series. See also auto-correlation function (ACF).

equality constraint - A constraint, imposed during parameter estimation, by which a parameter is held fixed at a user-specified value.

excess kurtosis - A characteristic, relative to a standard normal probability distribution, whereby an area under the probability density function is reallocated from the center of the distribution to the tails (fat tails). Samples obtained from distributions with excess kurtosis have a higher probability of containing outliers than samples drawn from a normal (Gaussian) density. Time series that exhibit a fat tail distribution are often referred to as leptokurtic.

explanatory variables - Time series used to explain the behavior of another observed series of interest. Explanatory variables are typically incorporated into a regression framework.

fat tails - See excess kurtosis.

relative to a standard normal probability distribution

GARCH - Generalized Auto-Regressive Conditional Heteroskedasticity. A time series technique in which past observations of the variance and variance forecast are used to forecast future variances. See also ARCH.

heteroskedasticity - Time-varying, or time-dependent, variance.

homoskedasticity - Time-independent variance. The GARCH Toolbox also refers to homoskedasticity as constant conditional variance.

i.i.d. - Independent, identically distributed.

innovations - A sequence of unanticipated shocks, or disturbances. The GARCH Toolbox uses innovations and residuals interchangeably.

leptokurtic - See excess kurtosis.

MA - Moving average. MA models include past observations of the innovations noise process in the forecast of future observations of the dependent variable of interest.

MMSE - Minimum mean square error. An technique designed to minimize the variance of the estimation or forecast error. See also RMSE.

moving average - See MA

objective function - The function to be numerically optimized. In the GARCH Toolbox, the objective function is the log-likelihood function of a random process.

partial auto-correlation function (PACF) - Correlation sequence estimated by fitting successive order auto-regressive models to a random

time series by least squares. The PACF is useful for identifying the order of an auto-regressive model.

path - A random trial of a time series process.

P-value - The lowest level of significance at which a test statistic is significant.

realization - See path.

residuals - See innovations.

RMSE - Root mean square error. The square root of the mean square error. See also MMSE.

standardized innovations - The innovations divided by the corresponding conditional standard deviation.

stationarity constraint - Constraint imposed during estimation such that the sum of the GARCH model conditional variance parameters is less than unity.

time series - Discrete-time sequence of observations of a random process. The type of time series of interest in the GARCH Toolbox is typically a series of returns, or relative changes of some underlying price series.

transient - A response, or behavior, of a time series that is heavily dependent on the initial conditions chosen to begin a recursive calculation. The transient response is typically undesirable, and initially masks the true steady-state behavior of the process of interest.

unconditional - Time series technique in which explicit dependence on the past sequence of observations is ignored. Equivalently, the time stamp associated with any observation is ignored.

volatility - The risk, or uncertainty, measure associated with a financial time series. The GARCH Toolbox associates volatility with standard deviation.

Bibliography

- [1] Baillie, R.T., T, Bollersley, "Prediction in Dynamic Models with Time-Dependent Conditional Variances," *Journal of Econometrics*, Vol. 52, pp. 91-113, 1992.
- [2] Bera, A.K., H.L. Higgins, "A Survey of ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Vol. 7 no. 4, 1993.
- [3] Bollerslev, T., "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," Review of Economics and Statistics, Vol. 69, pp. 542-547, 1987.
- [4] Bollerslev, T., "Generalized Autoregressive Conditional Heteroskedasticity," Journal of Econometrics, Vol. 31, pp. 307-327, 1986.
- [5] Bollerslev, T., R.Y. Chou, K.F. Kroner, "ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence," *Journal of Econometrics*, Vol. 52, pp. 5-59, 1992.
- [6] Bollerslev, T., R.F. Engle, D.B. Nelson, Handbook of Econometrics: Volume IV (Chapter 49, ARCH Models), pp. 2959-3038, Elsevier Science B.V., 1994.
- [7] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and Control, third edition, Prentice Hall, 1994.
- [8] Engle, Robert, "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, Vol. 50, pp. 987-1007, 1982.
- [9] Gourieroux, C., ARCH Models and Financial Applications, Springer-Verlag, 1997.
- [10] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

A	
ACF 2-10	constant 1-70
AIC 2-5	of the innovations process 1-6
using for model selection 1-76	constraints
ai cbi c 2-5	boundary 1-8, 1-95
Akaike information criteria. See AIC	equality 1-78
AR model	fixing model parameters 1-78
converting from ARMA model 2-18	stationarity and positivity 1-8
ARCH/GARCH effects	conventions in GARCH Toolbox xii, 1-11
hypothesis test 2-7	convergence
archtest 2-7	considerations 1-88
ARMA model	determining status 1-90
converting to AR model 2-18	crosscorr 2-14
converting to MA model 2-18	cross-correlation function. See XCF
asymptotic behavior	
for long-range forecast horizons 1-61	
autocorr 2-10	D
auto-correlation function. See ACF	default model 1-14
auto-regressive model. See AR model	estimation example 1-16
-	forecasting example 1-54
	defining a model
В	using a GARCH specification structure 1-32
Bayesian information criteria. See BIC	documentation conventions xiii
BIC 2-5	
using for model selection 1-76	_
	E
_	estimating initial parameters 1-92
C	estimation
compounding	count of coefficients 1-77, 2-21
continuous and periodic 1-12	incorporating a regression model 1-62
conditional mean models	of GARCH process parameters 2-23
with regression components 1-62	summary information 2-25
conditional standard deviations	estimation example
inferred from observed return series 2-29	estimating the model parameters 1-23
of forecast errors 2-41	post-estimation analysis 1-27
simulating 2-53	pre-estimation analysis 1-16
conditional variances	using the default model 1-16

F	contents 1-33
fixing model parameters 1-78	creating and modifying parameters 1-36, 2-47
forecast	definition of fields 2-48
how to compute 1-54	fixing model parameters 1-78
forecast errors	parameters that affect convergence 1-89
conditional standard deviations 1-60, 2-41	retrieving parameters 2-27
forecasted explanatory data 1-68	use of parameters in simulation 1-41
forecasting	using as function input and output 1-39
asymptotic behavior 1-61	using to define a model 1-32
computing RMSE 1-60	GARCH Toolbox
conditional mean 2-41	conventions and clarifications 1-11
conditional standard deviation 2-41	array definitions 1-11
incorporating a regression model 1-68	compounding 1-12
minimum mean square error volatility. See	precision of calculations 1-12
MMSE volatility	row and column conventions 1-11
MMSE volatility 1-58, 2-41	stationarity 1-13
plotting results 2-39	overview 1-10
using the default model 1-54	recommendations and suggestions 1-86
	garchar 2-18
	garchcount 2-21
G	garchdi sp 2-22
GARCH	garchfit 2-23
limitations 1-3	garchget 2-27
overview 1-3	garchi nfer 2-29
uses for 1-2	garchllfn 2-31
GARCH model	garchma 2-36
default 1-14	garchpl ot 2-39
GARCH process	garchpred 2-41
forecasting 2-41	garchset 2-47
inferring innovations 2-29	garchsi m 2-53
objective function 2-31	
parameter estimation 2-23	
count of coefficients 2-21	H
displaying results 2-22	homoskedasticity
plotting results 2-39	unconditional variance 1-8
simulation 2-53	hypothesis tests
GARCH specification structure	ARCH/GARCH effects 2-7

likelihood ratio 2-61 Ljung-Box lack-of-fit 2-58 linference using a regression model 1-68 inferring conditional standard deviations 2-29 GARCH innovations 2-29 innovations distribution 1-7	maximum likelihood estimation 1-53 model parameters boundary constraints 1-95 equality constraints 1-78 estimating 1-23 initial estimates 1-92 model selection and analysis 1-73 using AIC and BIC 1-76 using likelihood ratio tests 1-73 Monte Carlo simulation 1-71 moving average model. See MA model
inferring from observed return series 2-29 serial dependence 1-7 simulating 2-53	P PACF 2-63 parameter estimation of GARCH process 2-23
L lack-of-fit hypothesis test 2-58 lagged time series matrix 2-56 lagmatrix 2-56 lbqtest 2-58 likelihood ratio hypothesis test 2-61 likelihood ratio tests using for model selection 1-73 Ljung-Box lack-of-fit hypothesis test 2-58 log-likelihood objective function computing values 2-31 gradient values 2-31 maximization 1-53 optimized value 2-23 lratiotest 2-61	displaying results 2-22 parcorr 2-63 parsimonious parameterization 1-7, 1-86 partial auto-correlation function See PACF plotting auto-correlation function 2-10 cross-correlation function 2-14 forecasting results 2-39 parameter estimation results 2-39 partial auto-correlation function 2-63 simulation results 2-39 prerequisites ix price series converting from return series 2-70 converting to return series 2-67 pri ce2ret 2-67
M MA model converting from ARMA model 2-18	R regression in a Monte Carlo framework 1-71

regression components	stationary and nonstationary 1-13
in estimation 1-62	time series matrix
in forecasting 1-68	lagged or shifted 2-56
in inference 1-68	transient effects
in simulation 1-68	minimizing 1-45
of conditional mean models 1-62	overview 1-47
ret2pri ce 2-70	transients
return series	in the simulation process 1-45
converting from price series 2-67	
converting to price series 2-70	
data size and quality 1-97	U
simulating 2-53	unconditional variances
RMSE	of the innovations process 1-6
computing for forecasted data 1-60	
root mean square error. See RMSE	
	V .
	variances
\$	conditional and unconditional 1-6
selecting a model 1-73	volatility clustering 1-7
shifted time series matrix 2-56	
simulating sample paths 1-41	X
simulation	XCF 2-14
of GARCH process 2-53	ACI 2-14
plotting results 2-39	
using a regression model 1-68	
using ordinary least squares regression 1-70	
simulation example	
using a higher order model 1-50	
using the default model 1-41	
specification structure. See GARCH specification	
structure	
stationary and nonstationary time series 1-13	
T	
time series	
correlation of observations 1-5	