Financial Time Series
Toolbox

For Use with MATLAB’

Computation
—

Visualization
—

Programming
1

The
MATH

WORKS
User’'s Guide &

Version 1

X CIp)

° b

How to Contact The MathWorks:

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web

ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks .com Bug reports

doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks .com Sales, pricing, and general information

Financial Time Series Toolbox User’'s Guide
0 COPYRIGHT 1999 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial” computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’'s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: July 1999 First printing New for Version 1.0

1]

Preface

AboutthisBook Vi
Organization of the Document Vi
Typographical Conventions Vi
Related Products i viii
Required Software e X
OnlineTutorials i xi
Tutorial

Introduction e 1-2
Creating Financial Time SeriesObjects 1-3
Using the Constructor i, 1-3
Transforminga TextFile 1-10
Working with Financial Time Series Objects 1-13
Financial Time Series Object Structure 1-13
Data EXtractiont 1-13
Object to Matrix Conversion o iiuua... 1-15
Indexing a Financial Time Series Object 1-17
Operations 1-22
Data Transformation and Frequency Conversion 1-26
Technical Analysis i 1-31
Examples 1-33

Contents

Contents

Demonstration Program 1-39

LoadtheData 1-39
Create Financial Time SeriesObjects 1-40
Create Closing Prices Adjustment Series 1-41
Adjust Closing Prices and Make Them Spot Prices 1-41
Create Return Series i 1-42
Regress Return Series Against MetricData 1-42
Plotthe Results i, 1-43
Calculate the Dividend Rate 1-44

Function Reference

Functions by Category 2-2
Alphabetical List of Functions 29
adline 2-12
AOSC i 2-15
aSCH2MtS . . . e 2-17
bollinger 2-18
DOXCOX . .o e 2-20
busdays 2-22
candle 2-23
ChaikoSC ... 2-25
chaikvolat 2-28
chartfts e 2-31
chfield 2-33
CONVENTEO e 2-34
demts2fts 2-35
diff 2-36
display 2-37
BN . . e 2-38
1) 2-40
extfield 2-41
fieldnames 2-42
fillts .. 2-43
filter .. e 2-44

fpetkd ... 2-47
fregnum 2-50
fregstr ... 2-51
FES28SCHT . .. oo 2-52
TES2MEX . . 2-53
ftsbound 2-54
getfield 2-55
getnameidX 2-56
hhigh 2-57
highlow 2-59
ISt . 2-61
horzcat 2-63
iscompatible 2-65
isequal 2-66
isfield 2-67
lagts 2-68
leadts 2-69
length 2-70
oW .o 2-71
00 . 2-73
10010 ... 2-74
MACH . ..ot 2-75
AKX o e e 2-77
MNEAIN . . .t 2-78
Medprice 2-79
00T T o 2-81
MINUS . e 2-82
mrdivide 2-83
MEIMES . . 2-84
negvolidx 2-85
onbalvol 2-87
PEraVd . . 2-89
PIOt .. e 2-90
PIUS . e 2-92
posvolidX e 2-93
POV . o 2-95
PrCIOC . o 2-96
PVErend e 2-98
rdivide 2-100

iv

Contents

resamplets 2-101

rmfield 2-102
FSINAEX .. 2-103
setfield 2-105
SIZE 2-106
SMOOtNES 2-107
SOt tS .. 2-109
SPCEKA e 2-110
St L e 2-113
StOChOSC 2-114
SUDSASON . .. e 2-117
subsref .. 2-118
TIMES .. e 2-121
toannual 2-122
todaily 2-123
todecimal 2-124
tomonthly 2-125
toquarterly 2-126
toquoted 2-127
T0SEMI .. 2-128
toweekly ... 2-129
tsaccel 2-130
TSIMOM . e e e 2-132
ISMOVAVE . o e e 2-134
BYPPIFICE . 2-137
UMINUS .ttt e e et e e e e e e e 2-139
UPIUS . 2-140
VertCat . . 2-141
VOINOC . oo 2-142
WCIOSE .o 2-144
willad 2-146
willpetr ..o 2-148

Preface

About this Book

Organization of the Document

Typographical Conventions
Related Products .
Required Software

Online Tutorials

. Vi
. Vi
. Vi

viii

. Xi

Preface

About this Book

This book describes the Financial Time Series Toolbox for MATLABI, a
collection of tools for the analysis of time series data in the financial markets.
Financial engineers working with time series data, such as equity prices or
daily interest fluctuations, can use this toolbox for more intuitive data
management than with regular vectors or matrices.

Organization of the Document

Chapter Description

Chapter 1 Describes the creation, manipulation, and use of

“Tutorial” financial time series objects.

Chapter 2 Describes the functions used to create and manipulate

“Function financial time series objects. Also describes functions

Reference” that use financial time series data in various financial
indicators.

Typographical Conventions
We use some or all of these conventions in our manuals.

Item Convention to Use Example

Example code Monospace font To assign the value 5 to A,
enter
A=5

Function names/syntax Monospace font The cos function finds the

cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Keys Boldface with an initial Press the Return key.
capital letter

Vi

About this Book

Item

Convention to Use

Example

Literal string (in syntax
descriptions in Reference
chapters)

Mathematical
expressions

MATLAB output

Menu names, menu items, and
controls

New terms

String variables (from a finite
list)

Monospace bold for
literals.

Variables in italics

Functions, operators, and

constants in standard text.

Monospace font

Boldface with an initial
capital letter

Italics

Monospace italics

f = freqspace(n,’whole”)

This vector represents the
polynomial

p=x2+2x+3
MATLAB responds with
A =

5

Choose the File menu.

An array is an ordered
collection of information.

sysc = d2c(sysd, ’method”)

Vil

Preface

Related Products

The MathWorks provides several products relevant to the kinds of tasks you
can perform with Financial Time Series Toolbox.

For more information about any of these products, see either:
= The online documentation for that product if it is installed or if you are
reading the documentation from the CD

< The MathWorks Web site, at http://www_mathworks . com; see the “products”
section

Note The toolboxes listed below all include functions that extend MATLAB's
capabilities. The blocksets all include blocks that extend Simulink’s

capabilities.

Product Description

Database Toolbox Tool for connecting to, and interacting with,
most ODBC/JDBC databases from within
MATLAB

Datafeed Toolbox MATLAB functions for integrating the
numerical, computational, and graphical
capabilities of MATLAB with financial data
providers

Excel Link Tool that integrates MATLAB capabilities with
Microsoft Excel for Windows

Financial Time Series Tool for analyzing time series data in the

Toolbox financial markets

Financial Toolbox MATLAB functions for quantitative financial

modeling and analytic prototyping

viii

Related Products

Product

Description

GARCH Toolbox

MATLAB Report
Generator

MATLAB Runtime
Server

MATLAB Web Server

Optimization Toolbox

Simulink Report
Generator

Spline Toolbox

Statistics Toolbox

MATLAB functions for univariate Generalized
Autoregressive Conditional Heteroskedasticity
(GARCH) volatility modeling

Tool for documenting information in MATLAB
in multiple output formats

MATLAB environment in which you can take
an existing MATLAB application and turn it
into a stand-alone product that is easy and
cost-effective to package and distribute. Users
access only the features that you provide via
your application’s graphical user interface
(GUI) - they do not have access to your code or
the MATLAB command line.

Tool for the development and distribution of
Web-based MATLAB applications

Tool for general and large-scale optimization of
nonlinear problems, as well as for linear
programming, quadratic programming,
nonlinear least squares, and solving nonlinear
equations

Tool for documenting information in Simulink
and Stateflow in multiple output formats

Tool for the construction and use of piecewise
polynomial functions

Tool for analyzing historical data, modeling
systems, developing statistical algorithms, and
learning and teaching statistics

Preface

Required Software

The Financial Time Series Toolbox requires:

« MATLAB Release 11 or later
« Financial Toolbox Version 2.0 or later

No other products are required.

Online Tutorials

Online Tutorials

You can find a set of three M-file tutorial scripts in the directory
/toolbox/ftseries/ftstutorials on your MATLAB path. The scripts are
named intro_fints, using_fints, and tech_analysis. Working through
these tutorials can further introduce you to the Financial Time Series Toolbox.

Xi

Preface

Xii

Tutorial

Introduction .

Creating Financial Time Series Objects
Using the Constructor
Transforming a Text File

Working with Financial Time Series Objects
Financial Time Series Object Structure

Data Extraction .

Object to Matrix Conversmn

Indexing a Financial Time Series Object
Operations .
Data Transformatlon and Frequency Conversmn .

Technical Analysis
Examples .

Demonstration Program

Load the Data .

Create Financial Time Serles Objects
Create Closing Prices Adjustment Series .

Adjust Closing Prices and Make Them Spot Prlces .

Create Return Series .
Regress Return Series Agamst Metrlc Data .
Plot the Results .

Calculate the Dividend Rate

1-2

1-3
1-3

.1-10

. 1-13
. 1-13
. 1-13
. 1-15
. 1-17
. 1-22
. 1-26

.1-31
.1-33

. 1-39
. 1-39
. 1-40
.1-41
. 1-41
. 1-42
. 1-42
. 1-43
. 1-44

1 Tutorial

1-2

Introduction

The Financial Time Series Toolbox for MATLABO is a collection of tools for the
analysis of time series data in the financial markets. The toolbox contains a
financial time series object constructor and several methods that operate on
and analyze the object. Financial engineers working with time series data,
such as equity prices or daily interest fluctuations, can use this toolbox for
more intuitive data management than by using regular vectors or matrices.

This chapter discusses how to create and analyze financial time series data,
including these topics:

=« “Creating Financial Time Series Objects” on page 1-3

= “Working with Financial Time Series Objects” on page 1-13

= “Technical Analysis” on page 1-31

A “Demonstration Program” showing the use of financial time series data in a
practical application is also included.

Creating Financial Time Series Objects

Creating Financial Time Series Objects

The Financial Time Series Toolbox provides two ways to create a financial time
series object:

1 At the command line using the object constructor fints

2 From a text data file through the function ascii2fts

The structure of the object minimally consists of a description field, a frequency
indicator field, the date vector, and a data series vector. The names for the
fields are fixed for the first three fields: desc, freq, and dates. The user can
specify the name for the data series vector. If a name is not specified, it defaults
to seriesl. If the object has additional data series, the defaults are series2,
series3, etc.

Using the Constructor

The object constructor function fints has five different syntaxes. These forms
exist to simplify object construction. The syntaxes are:

1 fts = fints(dates_and_data)

In this simplest form of syntax, the input must be at least a two-column matrix.
The first column contains the dates in serial date format; the second column is
the data series. The input matrix can have more than two columns, each
additional column representing a different data series or set of observations.

If the input is a two-column matrix, the output object contains four fields: desc,
freq, dates, and seriesl. The description field, desc, defaults to blanks ~~,
and the frequency indicator field, freq, defaults to 0. The dates field, dates,
contains the serial dates from the first column of the input matrix, while the
data series field, seriesl, has the data from the second column of the input
matrix.

The first example makes two financial time series objects. The first one has
only one data series, while the other has more than one. A random vector
provides the values for the data series. The range of dates is arbitrarily chosen
using the today function.

date_series = (today:today+100)~;
data_series = exp(randn(l1, 101))7;

1-3

1 Tutorial

dates_and_data = [date_series data_series];
ftsl = fints(dates_and_data);

Display the contents of the object fts1 just created. The actual dates series you
observe will vary according to the day when you run the example (the value of
today). Also, your values in seriesl will differ from those shown, depending
upon the sequence of random numbers generated.

ftsl =

desc: (none)
freq: Unknown (0)

dates: (101)” seriesl: (101)”

712-Jul-1999” L 0.3124]
713-Jul-1999” L 3.2665]
714-Jul-1999” L 0.9847]
715-Jul-1999” L 1.7095]
716-Jul-1999” L 0.4885]
717-Jul-1999” L 0.5192]
718-Jul-1999” L 1.3694]
719-Jul-1999” L 1.1127]
720-Jul-1999” L 6.3485]
721-Jul-1999” L 0.7595]
722-Jul-1999” L 9.1390]
723-Jul-1999” L 4.5201]
724-Jul-1999” L 0.1430]
725-Jul-1999” L 0.1863]
726-Jul-1999” L 0.5635]
727-Jul-1999” L 0.8304]
728-Jul-1999” L 1.0090].- ..

The output is truncated for brevity. There are actually 101 data points in the
object.

Note that the desc field displays as (none) instead of 7, and that the contents
of the object display as cell array elements. Although the object displays as
such, it should be thought of as a MATLAB structure containing the default
field names for a single data series object: desc, freq, dates, and seriesl.

Now create an object with more than one data series in it.

1-4

Creating Financial Time Series Objects

date_series = (today:today+100)~;

data_seriesl = exp(randn(l, 101))7;

data_series2 = exp(randn(l, 101))7;

dates_and_data = [date_series data_seriesl data_series2];
fts2 = fints(dates_and_data);

Now look at the object created (again in abbreviated form).

fts2 =

desc: (nhone)
freq: Unknown (0)

dates: (101)” ’seriesl: (101)” ’series2: (101)°

»12-Jul-1999” [0.5816] [1.2816]
»13-Jul-1999” [5.1253] [0.9262]
*14-Jul-1999” [2.2824] [5.6869]
»15-Jul-1999~ [1.2596] [5.0631]
*16-Jul-1999~ [1.9574] [1.8709]
»17-Jul-1999” [0.6017] [1.0962]
>18-Jul-1999” [2.3546] [0.4459]
»19-Jul-1999~ [1.3080] [0.6304]
*20-Jul-1999” [1.8682] [0.2451]
*21-Jul-1999” [0.3509] [0.6876]
»22-Jul-1999” [4.6444] [0.6244]
»23-Jul-1999” [1.5441] [5.7621]
*24-Jul-1999” [0.1470] [2.1238]
*25-Jul-1999” [1.5999] [1.0671]
*26-Jul-1999” [3.5764] [0.7462]
*27-Jul-1999” [1.8937] [1.0863]
>28-Jul-1999” [3.9780] [2.1516]...

The second data series name defaults to series?2, as expected.

Before you can perform any operations on the object, you must set the
frequency indicator field freq to the valid frequency of the data series
contained in the object. You may leave the description field desc blank.

To set the frequency indicator field to a daily frequency, enter

fts2.freq 1, or

fts2.freq = “daily’.

1-5

1.TMOHm

See the fints function description in the “Function Reference” for a list of
frequency indicators.

2 fts = fints(dates, data)

In the second syntax the dates and data series are entered as separate vectors
to Fints, the financial time series object constructor function. The dates vector
must be a column vector, while the data series data can be a column vector (if
there is only one data series) or a column-oriented matrix (for multiple data
series). A column-oriented matrix, in this context, indicates that each column
is a set of observations. Different columns are different sets of data series.

Here is an example.

dates = (today:today+100)~;
data_seriesl = exp(randn(l, 101))’;
data_series2 = exp(randn(l, 101))’;
data = [data_seriesl data_series2];
fts = fints(dates, data)

fts =

desc: (none)
freq: Unknown (0)

dates: (101)” ’seriesl: (101)” ’series2: (101)”

»12-Jul-1999” [0.5816] [1.2816]
»13-Jul-1999~ [5.1253] [0.9262]
*14-Jul-1999” [2.2824] [5.6869]
»15-Jul-1999~ [1.2596] [5.0631]
*16-Jul-1999~ [1.9574] [1.8709]
*17-Jul-1999” [0.6017] [1.0962]
>18-Jul-1999~ [2.3546] [0.4459]
*19-Jul-1999” [1.3080] [0.6304]
*20-Jul-1999” [1.8682] [0.2451]
*21-Jul-1999” [0.3509] [0.6876]
»22-Jul-1999” [4.6444] [0.6244]
»23-Jul-1999~ [1.5441] [5.7621]
*24-Jul-1999” [0.1470] [2.1238]
*25-Jul-1999” [1.5999] [1.0671]
*26-Jul-1999” [3.5764] [0.7462]
*27-Jul-1999” [1.8937] [1.0863]

1-6

Creating Financial Time Series Objects

728-Jul-1999”

L

3.9780]

L

2.1516]. ..

The result is exactly the same as the first syntax. The only difference between
the first and second syntax is the way the inputs are entered into the

constru

3 fts =

ctor function.

fints(dates, data, datanames)

The third syntax lets you specify the names for the data series with the
argument datanames. datanames may be a MATLAB string for a single data
series. For multiple data series names, it must be a cell array of string(s).

Look at two examples, one with a single data series and a second with two. The
first example sets the data series name to the specified name First.

dates = (today:today+100)~;
data = exp(randn(1, 101))~;

ftsl

ftsl

desc: (nhone)

freq: Unknown (0)

dates: (101)”

712-Jul-1999”
713-Jul-1999”
714-Jul-1999”
715-Jul-1999”
716-Jul-1999”
717-Jul-1999”
718-Jul-1999”
719-Jul-1999”
720-Jul-1999”
721-Jul-1999”
722-Jul-1999”
723-Jul-1999”
724-Jul-1999”
725-Jul-1999”
726-Jul-1999”
727-Jul-1999”

fints(dates, data,

First:

el N e R N N R W N e N B W W B Wy

OPRPOO0OO0OFRPWFRFPOMNMONMNMOLPRDO

First”)

(101)”
.4615]
.1640]
.7140]
.6400]
.8983]
.7552]
.6217]
.0714]
.4897]
.0536]
.8598]
.7500]
.2537]
.5037]
.3933]
.3687]...

1-7

1.TMOHa

The second example provides two data series named First and Second.

dates = (today:today+100)~;

data_seriesl = exp(randn(l, 101))7;
data_series2 = exp(randn(l, 101))7;

data = [data_seriesl data_series2];

fts2 = fints(dates, data, {’First’, ”Second’})

fts2 =
desc: (none)

freq: Unknown (0)

dates: (101)” First: (101)” Second: (101)”

»12-Jul-1999~ [1.2305] [0.7396]
*13-Jul-1999~ [1.2473] [2.6038]
*14-Jul-1999” [0.3657] [0.5866]
*15-Jul-1999~ [0.6357] [0.4061]
*16-Jul-1999~ [4.0530] [0.4096]
*17-Jul-1999” [0.6300] [1.3214]
>18-Jul-1999” [1.0333] [0.4744]
*19-Jul-1999” [2.2228] [4.9702]
*20-Jul-1999” [2.4518] [1.7758]
*21-Jul-1999” [1.1479] [1.3780]
»22-Jul-1999” [0.1981] [0.8595]
»23-Jul-1999” [0.1927] [1.3713]
*24-Jul-1999” [1.5353] [3.8332]
»25-Jul-1999” [0.4784] [0.1067]
*26-Jul-1999” [1.7593] [3.6434]
*27-Jul-1999” [0.2505] [0.6849]
>28-Jul-1999” [1.5845] [1.0025]. ..

Note Data series names must be valid MATLAB variable names. The only
allowed nonalphanumeric character is the underscore (_) character.

Because freq for fts2 has not been explicitly indicated, the frequency indicator
for fts2 is set to Unknown. Set the frequency indicator field freq before you
attempt any operations on the object. You will not be able to use the object until
the frequency indicator field is set to a valid indicator.

1-8

Creating Financial Time Series Objects

4 fts = fints(dates, data, datanames, freq)

With this syntax you can set the frequency indicator field when you create the
financial time series object. The frequency indicator field freq is set as the
fourth input argument. You will not be able to use the financial time series
object until freq is set to a valid indicator. Valid frequency indicators are

UNKNOWN, Unknown, unknown, U, u,0

DAILLY, Daily, daily, D, d,1
WEEKLY, Weekly, weekly, W, w, 2

MONTHLY, Monthly, monthly, M, m,3
QUARTERLY, Quarterly, quarterly, Q, q,4
SEMIANNUAL, Semiannual, semiannual, S, s,5
ANNUAL, Annual, annual, A, a,6

The previous example contained sets of daily data. The freq field displayed as
Unknown (0) because the frequency indicator was not explicitly set. The
command

fts = fints(dates, data, {’First’, *Second’}, 1);

sets the freq indicator to Dai ly(1) when creating the financial time series
object.

fts =

desc: (nhone)
freq: Daily (1)

dates: (101)” First: (101)” >Second: (101)~”

»12-Jul-1999” [1.2305] [0.7396]
»13-Jul-1999~ [1.2473] [2.6038]
*14-Jul-1999” [0.3657] [0.5866]
»15-Jul-1999~ [0.6357] [0.4061]
*16-Jul-1999~ [4.0530] [0.4096]
»17-Jul-1999” [0.6300] [1.3214]
>18-Jul-1999~ [1.0333] [0.4744]. ..

When you create the object using this syntax, you can use the other valid
frequency indicators for a particular frequency. For a daily data set you can use
DAILLY, Daily, daily, D, or d. Similarly, with the other frequencies, you can use
the valid string indicators or their numeric counterparts.

1-9

1 Tutorial

1-10

5 fts = fints(dates, data, datanames, freq, desc)

With this syntax you can explicitly set the description field as the fifth input
argument. The description can be anything you want. It is not used in any
operations performed on the object.

This example sets the desc field to "Test TS”.

dates = (today:today+100)~;

data_seriesl = exp(randn(l, 101))7;

data_series2 = exp(randn(l, 101))7;

data = [data_seriesl data_series2];

fts = fints(dates, data, {’First’, “Second’}, 1, *Test TS”)

fts =
desc: Test TS
freq: Daily (1)

dates: (101)” First: (101)” Second: (101)”

*12-Jul-1999" [0.5428] [1.2491]
*13-Jul-1999" [0.6649] [6.4969]
*14-Jul-1999" [0.2428] [1.1163]
*15-Jul-1999" [1.2550] [0.6628]
*16-Jul-1999" [1.2312] [1.6674]
*17-Jul-1999" [0.4869] [0.3015]
*18-Jul-1999" [2.1335] [0.9081]...

Now the description field is filled with the specified string *Test TS~ when the
constructor is called.

Transforming a Text File

The function ascii2fts creates a financial time series object from a text
(ASCII) data file provided that the data file conforms to a general format.The
general format of the text data file is:

= May contain header text lines

< May contain column header information. The column header information
must immediately precede the data series columns.

= Leftmost column must be the date column.
< Dates must be in a valid date string format:

Creating Financial Time Series Objects

ddmmmyy” or *ddmmmyyyy”
*mm/dd/yy” or mm/dd/yyyy’
>dd-mmm-yy~ or *dd-mmm-yyyy”

= Each column must be separated either by spaces or a tab.

Several example text data files are included with the toolbox. These files are in
the ftsdata subdirectory within the Financial Time Series Toolbox directory
<matlab>/toolbox/ftseries.

The syntax of the function

fts = ascii2fts(filename, descrow, colheadrow, skiprows);

takes in the data filename (fi lename), the row number where the text for the
description field is (descrow), the row number of the column header
information (colheadrow), and the row numbers of contiguous rows to be
skipped (skiprows).

For example,
disfts = ascii2fts(’disney.dat’, 1, 3, 2)
uses disney.dat to create time series object disfts. This example:
« Reads the text data file disney.dat
=« Uses the first line in the file as the content of the description field
= Skips the second line
= Parses the third line in the file for column header (or data series names)
= Parses the rest of the file for the date vector as well as the data series values
Look at the object at this point.
disfts =

desc: Walt Disney Company (DIS)
freq: Unknown (0)

*dates: (782)7 OPEN: (782)° “HIGH: (782)° ’LOW: (782)°

*29-Mar-1999~ [33.0625] [33.1880] [32.7500]
*26-Mar-1999~ [33.3125] [33.3750] [32.7500]
*25-Mar-1999~ [33.5000] [33.6250] [32.8750]
*24-Mar-1999~ [33.0625] [33.2500] [32.6250]

1-11

1.TMOHm

1-12

*23-Mar-1999~
*22-Mar-1999~
*19-Mar-1999~
*18-Mar-1999~
?17-Mar-1999”
*16-Mar-1999~
?15-Mar-1999”
*12-Mar-1999~
?11-Mar-1999”
*10-Mar-1999~
*09-Mar-1999~
”08-Mar-1999~
”05-Mar-1999~

O e

34.
34.
35.
34.
35.
35.
36.
35.
34.
.6875]
35.
35.

34

35

1250]
9375]
7500]
8125]
2500]
7500]
1250]
6250]
1250]

7500]
9375]

.8125]

(o B W e W o W W W o W W T R

™

34.

35.
35.
35.
36.
36.
36.
34.
.0630]
35.
36.

35

1880]

35]
8130]
6880]
5630]
4380]
5630]
4380]
9380]

8130]
6880]
36]

el N el e e N e R N e R W |

32.
34.
34.
34.
34.
35.
35.
35.
34.
34.
34.
35.
35.

8130]
2500]
8750]
6880]
5000]
0630]
1250]
6250]
1250]
3750]
3130]
9380]
5630]

There are 782 data points in this object. Only the first few lines are shown here.
Also, this object has two other data series, the CLOSE and VOLUME data series,
which are not shown here.

The frequency indicator field, freq, is set to 0 for Unknown frequency. You can
manually reset it to the appropriate frequency using structure syntax,
disfts.freq = 1 for Daily frequency.

Working with Financial Time Series Objects

Working with Financial Time Series Objects

A financial time series object is designed to be used as if it were a MATLAB
structure. (See the MATLAB documentation for a description of MATLAB
structures or how to use MATLAB in general.)

This part of the tutorial assumes that you know how to use MATLAB and are
familiar with MATLAB structures. The terminology is similar to that of a
MATLAB structure. The financial time series object term component is
interchangeable with the MATLAB structure term field.

Financial Time Series Object Structure

A financial time series object always contains three component names: desc
(description field), freq (frequency indicator field), and dates (date vector). If
you build the object using the constructor fints, the default value for the
description field is a blank string (* 7). If you build the object from a text data
file using ascii2fts, the default is the name of the text data file. The default
for the frequency indicator field is 0 (Unknown frequency). Objects created from
operations may default the setting to 0; for example, if you decide to selectively
pick out values from an object, the frequency of the new object may not be the
same as that of object from which it came.

The date vector dates does not have a default set of values. When you create
an object, you have to supply the date vector. You can change the date vector
afterwards but, at object creation time, you must provide a set of dates.

The final component of a financial time series object is one or more data series
vectors. If you do not supply a name for the data series, the default name is
seriesl. If you have multiple data series in an object and do not supply the
names, the default is the name series followed by a number, for example,
seriesl, series2, and series3.

Data Extraction

Here is an exercise on how to extract data from a financial time series object.
As mentioned before, you can think of the object as a MATLAB structure. Cut
and paste each line in the exercise to the MATLAB command window and press
Enter to execute it.

To begin create a financial time series object called myfts.

1-13

1.TMOﬂm

1-14

dates = (datenum(”05/11/997):datenum(’05/11/99”)+100)";
data_seriesl = exp(randn(l, 101))7;
data_series2 = exp(randn(l, 101))7;
data = [data_seriesl data_series2];

myfts = fints(dates, data);

The myfts object looks like

myfts =

desc: (none)
freq: Unknown (0)

dates: (101)”
’11-May-1999°
>12-May-1999~
?13-May-1999~
>14-May-1999~
>15-May-1999~
>16-May-1999~
>17-May-1999~
>18-May-1999~
>19-May-1999~
?20-May-1999~
’21-May-1999”
?22-May-1999~
?23-May-1999~
?24-May-1999°
>25-May-1999~

’seriesl:

e N e R W N N B N N W W W B |

srs2 = myfts.series2

Srs2

desc: (none)
freq: Unknown (0)

dates: (101)” ’series2:

WWPFRPROOONDMNOWREROOON

(101)”
.8108]
.2454]
.3568]
.5255]
.1862]
.8376]
.9329]
.0987]
.2524]
.8669]
.9050]
.4493]
.6376]
.4472]
.6545]

(101)”

’series2:

el N e R N N R B N N B W W B |

Now create another object with only the values for series2.

OPRPOURFRPPFPWONOOUWERODO

(101)”
.9323]
.5608]
.5989]
.6682]
.1284]
.4952]
.2417]
.3579]
.6492]
.0150]
.2445]
.5466]
.1251]
.1195]
.3374]...

There are more dates in the object; only the first few lines are shown here.

Working with Financial Time Series Objects

*11-May-1999° [0.9323]
> 12-May-1999° [0.5608]
> 13-May-1999° [1.5989]
> 14-May-1999° [3.6682]
> 15-May-1999° [5.1284]
> 16-May-1999° [0.4952]
>17-May-1999° [2.2417]
> 18-May-1999° [0.3579]
> 19-May-1999° [3.6492]
*20-May-1999° [1.0150]
*21-May-1999° [1.2445]
»22-May-1999° [5.5466]
>23-May-1999° [0.1251]
*24-May-1999° [1.1195]
> 25-May-1999° [0.3374]...

The new object srs2 contains all the dates in myfts, but the data series is only
series2. The name of the data series retains its name from the original object,
myfts.

Note The output from referencing a data series field or indexing a financial
time series object is always another financial time series object. The
exceptions are referencing the description, frequency indicator, and dates
fields, and indexing into the dates field.

Object to Matrix Conversion

The function fts2mtx extracts the dates and/or the data series values from an
object and places them into a vector or a matrix. The default behavior extracts
just the values into a vector or a matrix. Look at the next example.

srs2_vec = fts2mtx(myfts.series2)

srs2_vec
0.9323

0.5608
1.5989

1-15

1 Tutorial

3.6682
5.1284
0.4952
2.2417
0.3579
3.6492
1.0150
1.2445
5.5466
0.1251
1.1195
0.3374...

If you want to include the serial date vector, provide a second input argument
and set it to 1. This results in a matrix whose first column is the serial date
vector.

format long g

srs2_mtx = fts2mtx(myfts.series2, 1)

Srs2_mtx =
730251 0.932251754559576
730252 0.560845677519876
730253 1.59888712183914
730254 3.6681500883527
730255 5.12842215360269
730256 0.49519254119977
730257 2.24174134286213
730258 0.357918065917634
730259 3.64915665824198
730260 1.01504236943148
730261 1.24446420606078
730262 5.54661849025711
730263 0.12507959735904
730264 1.11953883096805
730265 0.337398214166607

The vector srs2_vec contains just series2 values. The matrix srs2_mtx
contains dates in the first column and the values of the series2 data series in

1-16

Working with Financial Time Series Objects

the second. Dates in the first column are in serial date format. Serial date
format is a representation of the date string format (for example, serial date =
1 is equivalent to 01-Jan-0000). The long g display format displays the
numbers without exponentiation. (To revert to the default display format, use
format short. See the format command in the MATLAB documentation for a
description of MATLAB display formats.) Remember that both the vector and
the matrix have 101 rows of data as in the original object myfts but are shown
truncated here.

Indexing a Financial Time Series Object

You can also index into the object as with any other MATLAB variable or
structure. A financial time series object lets you use a date string, a cell array
of date strings, a date string range, or normal integer indexing. You cannot,
however, index into the object using serial dates. If you have serial dates, you
must first use the MATLAB datestr command to convert them into date
strings.

When indexing by date string note that:

= Each date string must contain the day, month, and year. Valid formats are:
- mm/dd/yy” or mm/dd/yyyy’
- dd-mmm-yy~ or *dd-mmm-yyyy~
- ’mmm dd, yy” or >mmm dd, yyyy’

= All data falls at the end of indicated time period, that is, weekly data falls on
Fridays, monthly data falls on the end of each month, etc., whenever the data
has gone through a frequency conversion.

Indexing with Date Strings

With date string indexing you get the values in a financial time series object
for a specific date using a date string as the index into the object. Similarly, if
you want values for multiple dates in the object, you can put those date strings
into a cell array and use the cell array as the index to the object. Here are some
examples.

This example extracts all values for May 11, 1999 from myfts.

format short
myfts(*05/11/997)

1-17

1.TMOHm

ans =

desc: (none)
freq: Unknown (0)

dates: (1)’ seriesl: (1)’ series2: (1)’
*11-May-1999° L 2.8108] L 0.9323]

The next example extracts only series2 values for May 11, 1999 from myfts.

myfts.series2(’05/11/99”)
ans =

desc: (none)
freq: Unknown (0)

dates: (1)’ ’series2: (1)’
’11-May-1999~ L 0.9323]

The third example extracts all values for three different dates.

myFts({”05/11/997, *05/21/99”, *05/31/99°})

ans =

desc: (none)
freq: Unknown (0)

dates: (3)’ seriesl: (3)” series2: (3)’

*11-May-1999° [2.8108] [0.9323]
*21-May-1999° [0.9050] [1.2445]
*31-May-1999° [1.4266] [0.6470]

The next extracts only series2 values for the same three dates.

myfts.series2({705/11/99”, *05/21/99°, *05/31/99°})

ans =

desc: (none)
freq: Unknown (0)

1-18

Working with Financial Time Series Objects

Indexing with Date String Range

A financial time series is unique because it allows you to index the object using
a date string range. A date string range consists of two date strings separated
by two colons (::). In MATLAB this separator is called the double-colon
operator. An example of a MATLAB date string range is *05/11/99::05/31/
99”°. The operator gives you all data points available between those dates,
including the start and end dates.

dates: (3)’
*11-May-1999~
*21-May-1999~
*31-May-1999~

series2: (3)’

L
L
L

0.9323]
1.2445]
0.6470]

Here are some date string range examples.

myfts (705/11/99::05/15/997)

ans

desc: (nhone)

freq: Unknown (0)

dates: (5)’
*11-May-1999~
*12-May-1999~
*13-May-1999~
*14-May-1999”
*15-May-1999~

seriesl: (5)’

e

2.8108]
0.2454]
0.3568]
0.5255]
1.1862]

myfts._series2(’05/11/99::05/15/99”)

ans

desc: (nhone)

freq: Unknown (0)

dates: (5)”
’11-May-1999~
>12-May-1999~

’series2: (5)’

L
L

0.9323]
0.5608]

’series2: (56)”

-

0.9323]
0.5608]
1.5989]
3.6682]
5.1284]

1-19

1 Tutorial

1-20

> 13-May-1999° [1.5989]
> 14-May-1999° [3.6682]
> 15-May-1999° [5.1284]

As with any other MATLAB variable or structure, you can assign the output to
another object variable.

nfts = myfts.series2(’05/11/99::05/20/99%);

nfts is the same as ans in the second example.

If one of the dates does not exist in the object, an error message indicates that
one or both date indexes are out of the range of the available dates in the object.
You can either display the contents of the object or use the command ftsbound
to determine the first and last dates in the object.

Indexing with Integers

Integer indexing is the normal form of indexing in MATLAB. Indexing starts
at 1 (not 0); index = 1 corresponds to the first element, index = 2 to the second
element, index = 3 to the third element, and so on. Here are some examples
with and without data series reference.

Get the first item in series?2.

myfts.series2(l)
ans =

desc: (none)
freq: Unknown (0)

dates: (1)’ series2: (1)’
*11-May-1999° L 0.9323]

Get the first, third, and fifth items in series2.
myfts.series2([1, 3, 5])

ans =

desc: (none)
freq: Unknown (0)

Working with Financial Time Series Objects

Get items 16 through 20 in series2.
myfts.series2(16:20)

ans

dates: (3)’
*11-May-1999~
*13-May-1999~
*15-May-1999~

desc: (nhone)

series2: (3)’

L
L
L

freq: Unknown (0)

dates: (5)”
?26-May-1999”
?27-May-1999”
?28-May-1999~
?29-May-1999~
?30-May-1999~

0.9323]
1.5989]
5.1284]

’series2: (5)’

M=

0.2105]
1.8916]
0.6673]
0.6681]
1.0877]

Get items 16 through 20 in the financial time series object myfts.

myfts(16:20)

ans

Get the last item in myfts.

desc: (nhone)
freq: Unknown

dates: (5)’
*26-May-1999~
*27-May-1999°
*28-May-1999~
*29-May-1999~
*30-May-1999~

myfts(end)

ans

©

seriesl: (5)’

e

0.7571]
1.2425]
1.8790]
0.5778]
1.2581]

’series2: (56)”

-

0.2105]
1.8916]
0.6673]
0.6681]
1.0877]

1-21

1 Tutorial

1-22

desc: (none)
freq: Unknown (0)

dates: (1)’ seriesl: (1)’ series2: (1)’
*19-Aug-1999° L 1.4692] L 3.4238]

The last example uses the MATLAB special variable end, which points to the
last element of the object when used as an index. The example returns an object
whose contents are the values in the object myfts on the last date entry.

Operations

Several MATLAB functions have been overloaded to work with financial time
series objects. The overloaded functions include basic arithmetic functions such
as addition, subtraction, multiplication, and division as well as other functions
such as arithmetic average, filter, and difference. Also, specific methods have
been designed to work with the financial time series object. For a list of
functions grouped by type, refer to the “Functions by Category” or enter

help ftseries

at the MATLAB command prompt.

Basic Arithmetic

Financial time series objects permit you to do addition, subtraction,
multiplication, and division, either on the entire object or on specific object
fields. This is a feature that MATLAB structures do not allow. You cannot do
arithmetic operations on entire MATLAB structures, only on specific fields of
a structure.

You can perform arithmetic operations on two financial time series objects as
long as they are compatible (all contents are the same except for the description
and the values associated with the data series.)

Note Compatible time series are not the same as equal time series. Two time
series objects are equal when everything but the description fields are the
same.

Working with Financial Time Series Objects

Here are some examples of arithmetic operations on financial time series
objects.

Load a MAT-file that contains some sample financial time series objects.

load dji30short

One of the objects in dji30short is called myftsi.
myftsl =

desc: DJI30MAR94_dat
freq: Daily (1)

dates: (20)> ’Open: (20)” ’High: (20)” ’Low: (20)* °Close:
(20)~

*04-Mar-1994° [3830.90] [3868.04] [3800.50] [3832.30]
*07-Mar-1994° [3851.72] [3882.40] [3824.71] [3856.22]
*08-Mar-1994° [3858.48] [3881.55] [3822.45] [3851.72]
*09-Mar-1994° [3853.97] [3874.52] [3817.95] [3853.41]
*10-Mar-1994° [3852.57] [3865.51] [3801.63] [
3830.62]...

Create another financial time series object that is identical to myfts1.

newfts = Ffints(myftsl.dates, fts2mtx(myftsl)/100,...
{’Open”,”High”,”Low”, *Close’}, 1, *New FTS?)

newfts =

desc: New FTS
freq: Daily (1)

dates: (20)> ’Open: (20)” “High: (20)” ’Low: (20)* ’Close:
(20)~

04-Mar-1994 [38.31] [38.68] [38.01] [38.32]
*07-Mar-1994° [38.52] [38.82] [38.25] [38.56]
*08-Mar-1994 [38.58] [38.82] [38.22] [38.52]
*09-Mar-1994° [38.54] [38.75] [38.18] [38.53]
*10-Mar-1994° [38.53] [38.66] [38.02] [38.31].

Perform an addition operation on both time series objects.

1-23

1.TMOHm

addup myftsl + newfts

addup

DJI30MAR94 . dat
Daily (1)

desc:
freq:

dates: (20)”
(20)~

Open: (20)” “High: (20)” ’Low: (20)° ~’Close:

*04-Mar-1994° [3869.21] [3906.72] [3838.51] [3870.62]
*07-Mar-1994° [3890.24] [3921.22] [3862.96] [3894.78]
08-Mar-1994° [3897.06] [3920.37] [3860.67] [3890.24]
*09-Mar-1994° [3892.51] [3913.27] [3856.13] [3891.94]
*10-Mar-1994° [3891.10] [3904.17] [3839.65] [

3868.93]...

subout = myftsl - newfts

Now, perform a subtraction operation on both time series objects.

subout =
desc: DJI30MAR94.dat
freq: Daily (1)

dates: (20)° ’Open: (20)” ’High: (20)” “Low: (20)” °Close:

(20)~

04-Mar-1994” [3792.59] [3829.36] [3762.49] [3793.98]
’07-Mar-1994” [3813.20] [3843.58] [3786.46] [3817.66]
08-Mar-1994° [3819.90] [3842.73] [3784.23] [3813.20]
’09-Mar-1994” [3815.43] [3835.77] [3779.77]1 [3814.88]
710-Mar-1994” [3814.04] [3826.85] [3763.61]1 [

3792.31]...

Operations with Objects and Matrices

You can also perform operations involving a financial time series object and a
matrix or scalar.

addscalar = myftsl + 10000

addscalar =

1-24

Working with Financial Time Series Objects

desc: DJI30OMAR94.dat
freq: Daily (1)

dates: (20)°
(20)”
?04-Mar-1994~
?07-Mar-1994~
*08-Mar-1994~
”09-Mar-1994~
?10-Mar-1994~
13862.70]. ..

Open: (20)” High: (20)” “Low: (20)”

[13830.90]
[13851.72]
[13858.48]
[13853.97]
[13852.57]

[13868.04]
[13882.40]
[13881.55]
[13874.52]
[13865.51]

[13800.50]
[13824.71]
[13822.45]
[13817.95]

*Close

[13832.30]
[13856.22]
[13851.72]
[13853.41]
[13801.63] [

For operations with both an object and a matrix, the size of the matrix must
match the size of the object. For example, a matrix to be subtracted from
myftsl must be 20-by-4, since myfts1 has 20 dates and four data series.

submtx = myftsl - randn(20, 4)

submtx =

desc: DJI30MAR94_dat
freq: Daily (1)

dates: (20)”
(20)”
’04-Mar-1994~
’07-Mar-1994~
”08-Mar-1994~
709-Mar-1994~
”10-Mar-1994~
3831.17].- ..

”Open:

[3831.
[3853.
[3858.
[3853.
[3853.

(20)” ’High: (20)” ’Low: (20)” ’Close:

33]
39]
35]
68]
72]

[3867.75]
[3883.74]
[3880.84]
[3872.90]
[3866.20]

[3802.10]
[3824.45]
[3823.51]
[3816.53]
[3802.44]

Arithmetic Operations with Differing Data Series Names

Arithmetic operations on two objects that have the same size but contain
different data series names require the function fts2mtx. This function
extracts the values in an object and puts them into a matrix or vector,
whichever is appropriate.

[3832
[3857
[3851
[3851

L

.63]
.06]
.22]
.92]

To see an example, create another financial time series object the same size as
myftsl but with different values and data series names.

1-25

1 Tutorial

1-26

newfts2 = fints(myftsl.dates, fts2mtx(myftsl)/10000), ...
{’Ratl’,’Rat2”, ’*Rat3”,’Rat4’}, 1, ’New FTS?)

If you attempt to add (or subtract, etc.) this new object to myfts1, an error
indicates that the objects are not identical. Although they contain the same
dates, number of dates, number of data series, and frequency, the two time
series objects do not have the same data series names. Use fts2mtx to bypass
this problem.

addother = myftsl + fts2mtx(newfts2);

This operation adds the matrix that contains the contents of the data series in
the object newfts2 to myfts1l. You should carefully consider the effects on your
data before deciding to combine financial time series objects in this manner.

Other Arithmetic Operations

In addition to the basic arithmetic operations, several other mathematical
functions operate directly on financial time series objects. These functions
include exponential (exp), natural logarithm (1og), common logarithm (1og10),
and many more. See the “Function Reference” chapter for more details.

Data Transformation and Frequency Conversion

The data transformation and the frequency conversion functions convert a data
series into a different format.

Table 1-1: Data Transformation Functions

Function Purpose

boxcox Box-Cox transformation
diff Differencing

fillts Fill missing values
filter Filter

lagts Lag time series object
leadts Lead time series object
peravg Periodic average

Working with Financial Time Series Objects

Table 1-1: Data Transformation Functions

Function Purpose
smoothts Smooth data
tsmovavg Moving average

Table 1-2: Frequency Conversion Functions

Function New Frequency
convertto As specified
resamplets As specified
toannual Annual
todaily Daily
tomonthly Monthly
toquarterly Quarterly
tosemi Semiannually
toweekly Weekly

As an example look at boxcox, the Box-Cox transformation function. This
function transforms the data series contained in a financial time series object
into another set of data series with relatively normal distributions.

First create a financial time series object from the supplied whirlpool .dat
data file.

whrl = ascii2ftsCwhirlpool.dat’, 1, 2, [D:

Fill any missing values denoted with NaN's in whr 1 with values calculated using
the linear method.

f_whrl = fillts(whrl);

Transform the nonnormally distributed filled data series ¥_whrl into a
normally distributed one using Box-Cox transformation.

bc_whrl = boxcox(f_whrl);

1-27

1 Tutorial

Compare the result of the Close data series with a normal (Gaussian)
probability distribution function as well as the nonnormally distributed
f_whrl.

subplot(2, 1, 1);

hist(f_whrl.Close);

grid; title(CNon-normally Distributed Data’);
subplot(2, 1, 2);

hist(bc_whrl.Close);

grid; title(CBox-Cox Transformed Data’”);

Non-normally Distributed Data
300 T

45 50 55 60 65 70 75

Box-Cox Transformed Data
350 T

0.5966 0.5968 0.597 0.5972 0.5974

Figure 1-1: Box-Cox Transformation

In Figure 1-1, Box-Cox Transformation the bar chart on the top represents the
probability distribution function of the filled data series, £ whrl, which is the
original data series whrl with the missing values interpolated using the linear
method. The distribution is skewed towards the left (not normally distributed).
The bar chart on the bottom is less skewed to the left. If you plot a Gaussian
probability distribution function (PDF) with similar mean and standard
deviation, the distribution of the transformed data is very close to normal
(Gaussian).

1-28

Working with Financial Time Series Objects

When you examine the contents of the resulting object bc_whrl, you find an
identical object to the original object whrl but the contents are the transformed
data series. If you have the Statistics Toolbox, you can generate a Gaussian
PDF with mean and standard deviation equal to those of the transformed data
series and plot it as an overlay to the second bar chart. You can see that it is an
approximately normal distribution (Figure 1-2, Overlay of Gaussian PDF).

Box-Cox Transformed Data & Gaussian PDF
350 T T T

300 -~ ----------- -------
250 -~ -noo o -----------
200 - --------

150 - -------- -----------

100 f----------- ----------

11| SRR beeeee

0 d |
0.5964 0.5966 0.5968 0.597 0.5972 0.5974 0.5976

Figure 1-2: Overlay of Gaussian PDF

The next example uses the smoothts function to smooth a time series.

To begin, transform 1bm9599.dat, a supplied data file, into a financial time
series object.

ibm = ascii2fts(Cibm9599._dat’, 1, 3, 2);

Fill the holidays missing data with data interpolated using the fi l I'ts function
and the Spline fill method.

f_ibm = Ffillts(ibm, *Spline”);

Smooth the filled data series using the default Box (rectangular window)
method.

sm_ibm = smoothts(f_ibm);
Now, plot the original and smoothed closing price series for IBM.

plot(f_ibm.CLOSE(*11/01/97::02/28/98%), *r”)

1-29

1 Tutorial

1-30

datetick(’x”, “mmmyy”)

hold on

plot(sm_ibm.CLOSE(”11/01/97::02/28/98"), ’b”)

hold off

datetick(’x”, “mmmyy”)

legend(CFilled”, ”Smoothed”)

title(CFilled IBM CLOSE Price vs. Smoothed Series”)

Filled IBM CLOSE Price ws. Stnoothed Seties
114 T T I
: : — Filled

—— Smoothed ||

06 I I I
Nowd7 Decd7 Jandg Fends Dards

Figure 1-3: Smoothed Data Series

These examples give you an idea of what you can do with a financial time series
object. The toolbox provides some MATLAB functions that have been
overloaded to work directly with the these objects. The overloaded functions
are those most commonly needed to work with time series data.

Technical Analysis

Technical Analysis

Technical analysis (or charting) is used by some investment managers to help
manage portfolios. Technical analysis relies heavily on the availability of
historical data. Investment managers calculate different indicators from
available data and plot them as charts. Observations of price, direction, and
volume on the charts assist managers in making decisions on their investment
portfolios.

The technical analysis functions in this toolbox are tools to help analyze your
investments. The functions in themselves will not make any suggestions or
perform any qualitative analysis of your investment.

Table 1-3: Technical Analysis: Oscillators

Function Type

adosc Accumulation/distribution oscillator
chaikosc Chaikin oscillator

macd Moving Average Convergence/Divergence
stochosc Stochastic oscillator

tsaccel Acceleration

tsmom Momentum

Table 1-4: Technical Analysis: Stochastics

Function Type

chaikvolat Chaikin volatility
fpctkd Fast stochastics
spctkd Slow stochastics
willpctr William’s %R

1-31

1 Tutorial

Table 1-5: Technical Analysis: Indexes

Function Type

negvolidx Negative volume index
posvolidx Positive volume index
rsindex Relative strength index

Table 1-6: Technical Analysis: Indicators

Function Type

adline Accumulation/distribution line
bollinger Bollinger band

hhigh Highest high

1low Lowest low

medprice Median price

onbalvol On balance volume

prcroc Price rate of change

pvtrend Price-volume trend

typprice Typical price

volroc Volume rate of change

wclose Weighted close

willad William’s accumulation/distribution

1-32

Technical Analysis

Examples

To illustrate some the technical analysis functions, we will make use of the
IBM stock price data contained in the supplied file ibm9599.dat. First create a
financial time series object from the data using ascii2fts.

ibm = ascii2fts(Cibm9599.dat”, 1, 3, 2);

The time series data contains the open, close, high, and low prices, as well as
the volume traded on each day. The time series dates start on January 3, 1995
and end on April 1, 1999 with some values missing for weekday holidays;
weekend dates are not included.

Moving Average Convergence/Divergence (MACD)

Moving Average Convergence/Divergence (MACD) is an oscillator function
used by technical analysts to spot overbought and oversold conditions. Look at
the portion of the time series covering the three-month period between October
1, 1995 to December 31, 1995. At the same time fill any missing values due to
holidays within the time period specified.

part_ibm = Fillts(ibm(>10/01/95::12/31/95%));

Now calculate the MACD, which when plotted produces two lines; the first line
is the MACD line itself and the second is the nine-period moving average line.

macd_ibm = macd(part_ibm);

Note When you call macd without giving it a second input argument to
specify a particular data series name, it searches for a closing price series
named Close (in all combinations of letter cases). For more detail on the macd
function, see macd in the “Function Reference”.

Plot the MACD lines and the High-Low plot of the IBM stock prices in two
separate plots in one window.

subplot(2, 1, 1);

plot(macd_ibm);

title(CMACD of IBM Close Stock Prices, 10/01/95-12/31/95%);
datetick(’x”, mm/dd/yy’);

subplot(2, 1, 2);

1-33

1 Tutorial

highlow(part_ibm);
title(C"IBM Stock Prices, 10/01/95-12/31/95%);
datetick(’x”, mm/dd/yy”)

Figure 1-4, MACD and IBM Stock Prices shows the result.

MACD of IBM Close Stock Prices, 10/01/95-12/31/95

— MACDLine

-1 H H
10/01/95 11/01795 12/01/95 01/01/96
[BM Stock Prices, 10/01/95-12/31/95
52 T T
1] P [it{ e i
: 1 :

____________ I I T PR
B iy J]’ | J gk UJ-H } fid H1}
46 [-----1 T s S R S—

i | Y

4| fremeene e bereeenenes b -
42 5 5
L0701/95 11/01/95 12/01/95 01/01/96

Figure 1-4: MACD and IBM Stock Prices

William’s %R

Williams %R is an indicator that measures overbought and oversold levels. The
function wi l Ipctr is from the stochastics category. All the technical analysis
functions can accept a different name for a required data series. If, for example,
a function needs the high, low, and closing price series but your time series
object does not have the data series names exactly as High, Low, and Close, you
can specify the correct names as follows:

wpr = willpctr(tsobj, 14, “HighName”, "Hi", "LowName®, "Lo",...
“CloseName*®, "Closing”)

The function wi l Ipctr now assumes that your high price series is named Hi,
low price series is nhamed Lo, and closing price series is named Closing.

1-34

Technical Analysis

Since the time series object part_ibm has its data series names identical to the
required names, name adjustments are not needed. The input argument to the
function is only the name of the time series object itself.

Calculate and plot the William's %R indicator for IBM along with the price
range using these commands.

wpctr_ibm = willpctr(part_ibm);

subplot(2, 1, 1);

plot(wpctr_ibm);

titleCWilliam”’s %R of IBM stock, 10/01/95-12/31/95%);
datetick(’x”, “mm/dd/yy’);

hold on;

plot(wpctr_ibm.dates, -80*ones(1, length(wpctr_ibm)), ...
>color”, [0.5 O 0], ’linewidth’, 2)
plot(wpctr_ibm.dates, -20*ones(1, length(wpctr_ibm)), ...
>color’, [0 0.5 0], ’linewidth’, 2)

subplot(2, 1, 2);

highlow(part_ibm);

title(’IBM Stock Prices, 10/01/95-12/31/95%);
datetick(’x”, “mm/dd/yy’);

Figure 1-5, William’s %R and IBM Stock Prices shows the results. The top plot
has the William's %R line plus two lines at -20% and -80%. The bottom plot is
the High-Low plot of the IBM stock price for the corresponding time period.

1-35

1 Tutorial

1-36

William's %R of IBM Stocl, 10/01/95-12/31/95

. TA N [
7Y ;

L e R R 4

-60 N\ --------------------- ----------- -

30 . Z : .

-100 I L\/ I

10/01/95 11/01/95 12/01/95 01/01/96
IBM Stock Prices, 10/01/95-12/31/95

> ! !
sgiit SR]
: 1 :
____________ I R P
T A AL AL
f :] T
e R -
43 i i
10/01,/95 11/01495 1240195 01/01/96

Figure 1-5: William’s %R and IBM Stock Prices

Relative Strength Index (RSI)

The Relative Strength Index (RSI) is a momentum indicator that measures an
equity’s price relative to itself and its past performance. The function name is
rsindex.

The rsindex function needs a series that contains the closing price of a stock.
The default period length for the RSI calculation is 14 periods. This length can
be changed by providing a second input argument to the function. Similar to
the previous commands, if your closing price series is not named Close, you can
provide the correct name.

Calculate and plot the RSI for IBM along with the price range using these
commands.

rsi_ibm = rsindex(part_ibm);

subplot(2, 1, 1);

plot(rsi_ibm);

title("RSI of IBM stock, 10/01/95-12/31/95%);
datetick(’x’, mm/dd/yy’);

hold on;

Technical Analysis

plot(rsi_ibm.dates, 30*ones(l1, length(wpctr_ibm)),...
*color”, [0.5 0 0], *linewidth”, 2)
plot(rsi_ibm.dates, 70*ones(l1, length(wpctr_ibm)),...
color”,[0 0.5 0], ’linewidth’, 2)

subplot(2, 1, 2);

highlow(part_ibm);

title(CIBM Stock Prices, 10/01/95-12/31/95%);
datetick(’x”, mm/dd/yy~);

Figure 1-6, Relative Strength Index (RSI) and IBM Stock Prices shows the
resulting figure.

RET of IBM Stoclk, 10/01/95-12/31/95

20 H H
10/01/95 11/01/95 12/01/95 01/01/96
IBM Stock Prices, 10/01/95-12/31/95
52 T T
11 I [it{ e i
: 1 :

____________ T
4B » J]’ | J gk UJ-H } fitd H1}
a4 |- -- L LS R SN S—

i | Y

A feeenean s eneeenennes b -
4 i i
10/01/95 11/01/95 12/01/95 01/01/96

Figure 1-6: Relative Strength Index (RSI) and IBM Stock Prices

On-Balance Volume (OBV)

On-Balance Volume (OBV) relates volume to price change. The function
onbalvol requires you to have the closing price (Close) series as well as the
volume traded (Volume) series.

Calculate and plot the OBV for IBM along with the price range using these
commands.

obv_ibm = onbalvol(part_ibm);

1-37

1 Tutorial

1-38

subplot(2, 1, 1);
plot(obv_ibm);

title("On-Balance Volume of IBM Stock, 10/01/95-12/31/95%);

datetick(*x”, “mm/dd/yy~);
subplot(2, 1, 2);
highlow(part_ibm);

title(C"IBM Stock Prices, 10/01/95-12/31/95%);

datetick(’x”, “mm/dd/yy’);

Figure 1-7, On-Balance Volume (OBV) and IBM Stock Prices shows the result.

x ID? On-Balance Volume of IBM Stock, 10/01/25-12/31/95

! : :

— OnBalVol

-2 H H
10/01/95 11/01/95 12/01/95 01/0
IBM Stock Prices, 10/01/95-12/31/95
52 T T
1] T 2 i
ol L
ag b | S SIS |t I - A _
Wmﬂl L
46 |-----1 T)
r T
44 __ -
42 : :
10/01/95 11/01/95 12/01/95 01/0

1/96

1/96

Figure 1-7: On-Balance Volume (OBV) and IBM Stock Prices

Demonstration Program

Demonstration Program

This example demonstrates a practical use of the Financial Time Series
Toolbox, predicting the return of a stock from a given set of data. The data is a
series of closing stock prices, a series of dividend payments from the stock, and
an explanatory series (in this case a market index). Additionally, the example
calculates the dividend rate from the stock data provided.

Note You can find a script M-file for this demonstration program in the
directory <matlab>/toolbox/ftseries/ftsdemos on your MATLAB path. The
script is named predict_ret.m.

The series of steps needed to perform these computations is:

1

2

Load the data.

Create financial time series objects from the loaded data.

Create the series from dividend payment for adjusting the closing prices.
Adjust the closing prices and make them the spot prices.

Create the return series.

Regress the return series against the metric data (e.g., a market index)
using the MATLAB \ operator.

Plot the results.

Calculate the dividend rate.

Load the Data

The data for this demonstration is found in the MAT-file
predict_ret_data.mat.

load predict_ret _data.mat

The MAT-file contains six vectors:

1-39

1 Tutorial

= Dates corresponding to the closing stock prices, sdates
= Closing stock prices, sdata

= Dividend dates, divdates

<« Dividend paid, divdata

= Dates corresponding to the metric data, expdates

« Metric data, expdata

Use the whos command to see the variables in your MATLAB workspace.

Create Financial Time Series Objects

It is advantageous to work with financial time series objects rather than with
the vectors now in the workspace. By using objects, you can easily keep track
of the dates. Also, you can easily manipulate the data series based on dates
because the object keeps track of the administration of time series for you.

Use the object constructor fints to construct three financial time series

objects.
t0 = fints(sdates, sdata, {’Close’}, d’, ’Inc’);
d0 = fints(divdates, divdata, {’Dividends’}, “u’, “Inc’);
x0 = fints(expdates, expdata, {’Metric’}, ’w’, “Index”);

The variables t0, dO, and x0, are financial time series objects containing the
stock closing prices, dividend payments, and the explanatory data,
respectively. To see the contents of an object, type its name at the MATLAB
command prompt and press Enter. For example:

do

do =
“desc:”’ *Inc’
*freq:”’ Unknown (0)’

dates: (4)’ Dividends: (4)’

704/15/99” ”0.2000”
706/30/99” ”0.3500”
710/02/99” ”0.2000”
712/30/99” ”0.1500”

1-40

Demonstration Program

Create Closing Prices Adjustment Series

The price of a stock price is affected by the dividend payment. On the day before
the dividend payment date, the stock price reflects the amount of dividend to
be paid the next day. On the dividend payment date, the stock price is
decreased by the amount of dividend paid. It is necessary to create a time series
that reflects this adjustment factor.

dadj1 = do;
dadjl.dates = dadjl.dates-1;

Now create the series that adjust the prices at the day of dividend payment;
this is an adjustment of 0. You also need to add the previous dividend payment
date since the stock price data reflect the period subsequent to that day; the
previous dividend date was December 31, 1998.

dadj?2 = dO;
dadj2._Dividends = 0;
dadj?2 = Fillts(dadj2,’linear”,”12/31/98%);
dadj2(’12/31/98%) = 0;

Combining the two objects above gives us the data that we need to adjust the
prices. However, since the stock price data is daily data and the effect of the
dividend is linearly divided during the period, use the fil I'ts function to make
a daily time series from the adjustment data. Use the dates from the stock price
data to make the dates of the adjustment the same.

dadj3 = [dadjl; dadj2];
dadj3 = fillts(dadj3, *linear’, tO.dates);

Adjust Closing Prices and Make Them Spot Prices

The stock price recorded already reflects the dividend effect. To obtain the
“correct” price, subtract the dividend amount from the closing prices. Put the
result inside the same object t0 with the data series name Spot.

To make sure that adjustments correspond, index into the adjustment series
using the dates from the stock price series t0. Use the datestr command
because t0.dates returns the dates in serial date format. Also, since the data
series name in the adjustment series dadj3 does not match the one in t0, use
the function fts2mtx.

t0.Spot = tO0.Close - fts2mtx(dadj3(datestr(tO.dates)));

1-41

1 Tutorial

1-42

Create Return Series

Now calculate the return series from the stock price data. A stock return is
calculated by dividing the difference between the current closing price and the
previous closing price by the previous closing price.

tret (t0.Spot - lagts(tO0.Spot, 1)) ./ lagts(t0.Spot, 1);
tret = chfield(tret, “Spot”’, “Return’);

Ignore any warnings you receive during this sequence. Since the operation on
the first line above preserves the data series name Spot, it has to be changed
with the chfield command to reflect the contents correctly.

Regress Return Series Against Metric Data

The explanatory (metric) data set is a weekly data set while the stock price
data is a daily data set. The frequency needs to be the same. Use todaily to
convert the weekly series into a daily series. The constant needs to be included
here to get the constant factor from the regression.

x1 = todaily(x0);
x1.Const = 1;

Get all the dates common to the return series calculated above and the
explanatory (metric) data. Then combine the contents of the two series that
have dates in both into a new time series.

dcommon = intersect(tret.dates, x1l.dates);
regtsO = [tret(datestr(dcommon)), xl(datestr(dcommon))];

Remove the contents of the new time series that are not finite.

finite_regtsO = find(all(isfinite(fts2mtx(regts0)), 2));
regtsl = regtsO(finite_regtsO);

Now, place the data to be regressed into a matrix using the function fts2mtx.
The first column of the matrix corresponds to the values of the first data series
in the object, the second column to the second data series, and so on. In this
case, the first column is regressed against the second and third column.

DataMatrix = fts2mtx(regtsl);
XCoeff DataMatrix(:, 2:3) \ DataMatrix(:, 1);

Demonstration Program

Using the regression coefficients, calculate the predicted return from the stock
price data. Put the result into the return time series tret as the data series
PredReturn.

RetPred = DataMatrix(:,2:3) * XCoeff;
tret.PredReturn(datestr(regtsl.dates)) = RetPred;

Plot the Results

Plot the results in a single figure window. The top plot in the window has the
actual closing stock prices and the dividend-adjusted stock prices (spot prices).
The bottom plot shows the actual return of the stock and the predicted stock
return through regression.

subplot(2, 1, 1);

plot(t0);

title("Spot and Closing Prices of Stock?”);
subplot(2, 1, 2);

plot(tret);

title(CActual and Predicted Return of Stock?”);

Spot and Closing Prices of Stock

Q1-99 Q2-99 Q3-99 4-99 Q1-00
Actual and Predicted Return of Stock

Figure 1-8: Closing Prices and Returns

1-43

1 Tutorial

1-44

Calculate the Dividend Rate

The last part of the task is to calculate the dividend rate from the stock price
data. Calculate the dividend rate by dividing the dividend payments with the
corresponding closing stock prices.

First check to see if you have the stock price data on all the dividend dates.

datestr(dO.dates, 2)

ans =

04/15/99
06/30/99
10/02/99
12/30/99

tO(datestr(dO.dates))

ans =

desc:”’ *Inc” 7z
*freq:”’ *Daily (1)~ 7z

dates: (3)’ Close: (3)’ Spot: (3)”

>04/15/99” ”10.3369” 710.3369~
>06/30/99” 711.4707” 711.4707”
>12/30/99” 711.2244° 711.2244~

Note that stock price data for October 2, 1999 does not exist. The fillts
function can overcome this situation; fillts allows you to insert a date and
interpolate a value for the date from the existing values in the series. There are
a number of interpolation methods. See fillts in the “Function Reference” for
details.

Use fillts to create a new time series containing the missing date from the
original data series. Then set the frequency indicator to daily.

tl = Fillts(t0, *nearest’,d0.dates);
tl.freq = °d’;

Calculate the dividend rate.

tdr = dO./fts2mtx(tl.Close(datestr(dO.dates)))

Demonstration Program

tdr =

“desc:”’ “Inc”’
*freq:”’ Unknown (0)~

dates: (4)’ Dividends: (4)’

"04/15/99” ’0.0193”
*06/30/99" ”0.0305”
710/02/99" ’0.0166”
>12/30/99” ’0.0134”

1-45

1 Tutorial

1-46

Function Reference

2 Function Reference

Functions by Category

2-2

This chapter provides detailed descriptions of the functions in the Financial

Time Series Toolbox.

Table 2-1: Financial Time Series Object and File Construction

Function Purpose

ascii2fts Create financial time series object from ASCII data file
fints Construct financial time series object

ftsascii Write elements of time series data into an ASCII file.
Fts2mtx Convert to matrix

Table 2-2: Overloaded Methods

Function Purpose

display Display financial time series object
end Last date entry

exp Exponential values

hist Histogram

horzcat Concatenate financial time series objects horizontally
iscompatible Structural equality

isequal Multiple object equality

length Get number of dates (rows)

log Natural logarithm

logl0 Common logarithm

max Maximum value

Table 2-2: Overloaded Methods (Continued)

Function Purpose

mean Arithmetic average

min Minimum value

minus Financial time series subtraction

mrdivide Financial time series matrix division
mtimes Financial time series matrix multiplication
plus Financial time series addition

power Financial time series power

rdivide Financial time series division

size Get number of dates and data series
sortfts Sort financial time series

std Standard deviation

subsasgn Content assignment

subsref Subscripted reference

times Financial time series multiplication
uminus Unary minus of financial time series object
uplus Unary plus of financial time series object
vertcat Concatenate financial time series objects vertically

Table 2-3: Utility Functions

Function Purpose
chfield Change data series name
extfield Extract data series

2-3

2 Function Reference

2-4

Table 2-3: Utility Functions (Continued)

Function Purpose

fieldnames Get names of fields

fregnum Convert string frequency indicator to numeric
frequency indicator

freqgstr Convert numeric frequency indicator to string
representation

ftsbound Start and end dates

getfield Get content of a specific field

getnameidx Find name in list

isfield Check if a string is a field name

rmfield Remove data series

setfield Set content of a specific field

Table 2-4: Data Transformation Functions

Function Purpose

boxcox Box-Cox transformation

convertto Convert to specified frequency

demts2fts Convert demonstration time series to financial time
series object

diff Differencing

fillts Fill missing values in time series

filter Linear filtering

lagts Lag time series object

leadts Lead time series object

Table 2-4: Data Transformation Functions (Continued)

Function Purpose

peravg Periodic average

resamplets Downsample data

smoothts Smooth data

toannual Convert to annual

todaily Convert to daily

todecimal Fractional to decimal conversion
tomonthly Convert to monthly
toquarterly Convert to quarterly

toquoted Decimal to fractional conversion
tosemi Convert to semiannual
toweekly Convert to weekly

tsmovavg Moving average

Table 2-5: Indicator Functions

Function Purpose

adline Accumulation/Distribution line
adosc Accumulation/Distribution oscillator
bollinger Bollinger band

chaikosc Chaikin oscillator

chaikvolat Chaikin volatility

fpctkd Fast stochastics

hhigh Highest high

2-5

2 Function Reference

Table 2-5: Indicator Functions (Continued)

Function Purpose

1low Lowest low

macd Moving Average Convergence/Divergence (MACD)
medprice Median price

negvolidx Negative volume index

onbalvol On-Balance Volume (OBV)

posvolidx Positive volume index

prcroc Price rate of change

pvtrend Price and Volume Trend (PVT)

rsindex Relative strength index (RSI)

spctkd Slow stochastics

stochosc Stochastic oscillator

tsaccel Acceleration between periods

tsmom Momentum between periods

typprice Typical price

volroc Volume rate of change

wclose Weighted close

willad Williams Accumulation/Distribution line
willpctr Williams %R

Table 2-6: Calendar Functions

Function Purpose

busdays Business days in serial date format

2-6

Table 2-7: Plotting Functions

Function Purpose

candle Candle plot
chartfts Interactive display
highlow High-Low plot
plot Plot data series

2-7

2 Function Reference

2-8

Alphabetical List of Functions

Alphabetical List of Functions

adline ... 2-12
AAOSC . .t e 2-15
ASCH2TES . . e 2-17
bollinger e 2-18
DOXCOX o 2-20
bUSAYS e e 2-22
candle 2-23
ChaiKoSC ... o e 2-25
chaikvolat e 2-28
chartfts e 2-31
chfield 2-33
CONVEITEO . . .o e 2-34
emts2ftS .. . 2-35
Aiff . 2-36
display 2-37
BN . e 2-38
123 (o T 2-40
extfield e 2-41
fieldnames 2-42
IS . o e 2-43
filter e 2-44
INES . e 2-45
fpctkd .. 2-47
fregnNUM . e 2-50
FregStr . o e 2-51
ES2aSCil ..ot e 2-52
IS 2MtX . .. e 2-53
ftsbound e 2-54
getfield 2-55
getnamEidXo 2-56
hhigh ... 2-57
highlow . .. 2-59
ISt L 2-61
NOrZCat . .. 2-63
iscompatible e 2-65

2-9

2-10

Isequal 2-66
isfield ... 2-67
lagtS . . 2-68
leadts 2-69
length e 2-70
oW . o 2-71
00 . 2-73
10000 . . e 2-74
MAC . .. 2-75
TIAX & ittt et e 2-77
1= o 2-78
MEAPIICE .« . . e e 2-79
N L 2-81
ININUS et e e 2-82
Mrdivide 2-83
MEIMIES . . . 2-84
NegvolidX 2-85
onbalvol 2-87
PEIAVY . . ottt 2-89
PlOt o e 2-90
PIUS o 2-92
POSVOLIAX 2-93
POV L . 2-95
PrC O . . vttt e 2-96
PVErENd . . . e e 2-98
FAIVIOE . 2-100
resamplets 2-101
rmfield ... 2-102
FSINAEX .. 2-103
setfield 2-105
SIZE o 2-106
SMOOthts 2-107
SONtItS . . e 2-109
SPCEKA . . o 2-110
St . o 2-113
SEOChOSC . .. 2-114
SUDSASON . . oo e 2-117

Alphabetical List of Functions

SUDSKEf o 2-118
TIMES .. 2-121
toannual 2-122
todaily 2-123
todecimal 2-124
tomonthly 2-125
toquarterly 2-126
toquOted e 2-127
TOSEIMI . ot 2-128
toweeKly . .. 2-129
tsacCel . .. 2-130
TSmO . L 2-132
TSMOVAVT . ..o 2-134
B PPIICE .« e 2-137
UMINUS . .t et e e e e e e e e e e e e e e e e e e e 2-139
UPIUS .« o 2-140
VertCat 2-141
VOIIOC o 2-142
WCI0SE . . 2-144
willad ... 2-146
WIllpCtr e 2-148

2-11

adline

Purpose

Syntax

Arguments

Description

2-12

Accumulation/Distribution line

adln = adline(highp, lowp, closep, tvolume)
adln = adline([highp lowp closep tvolume])
adlnts = adline(tsobj)

adlnts = adline(tsobj, ParameterName, ParameterValue, ...)
highp High price (vector)
Towp Low price (vector)
closep Closing price (vector)
tvolume Volume traded (vector)
tsobj Time series object

adln = adline(highp, lowp, closep, tvolume) computes the
Accumulation/Distribution line for a set of stock price and volume traded data.
The prices required for this function are the high (highp), low (lowp), and
closing (closep) prices.

adln = adline([highp lowp closep tvolume]) accepts a four column
matrix as input. The first column contains the high prices, the second contains
the low prices, the third contains the closing prices, and the fourth contains the
volume traded.

adlnts = adline(tsobj) computesthe William’s Accumulation/Distribution
line for a set of stock price data contained in the financial time series object
tsobj. The object must contain the high, low, and closing prices plus the
volume traded. The function assumes that the series are named 'High’, 'Low?,
'‘Close”, and 'Volume'. All are required. adInts is a financial time series object
with the same dates as tsobj but with a single series named ADLine.

adlnts = adline(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are:

adline

*HighName”: high prices series name
= “LowName~: low prices series name

*CloseName”: closing prices series name

*VolumeName~”: volume traded series name

Parameter values are the strings that represent the valid parameter names.

Example Compute the Accumulation/Distribution line for Disney stock and plot the
results.

load disney.mat

dis_ADLine = adline(dis)

plot(dis_ADLine)

title(C Accumulation/Distribution Line for Disney?)

| Figure No. 1 Hi[=] &3
File Edit Tools Window Help

Deda "A A/ oo

w10 Accumulation/Distribution Line for Disney
25 T T T

5

2000

See Also adosc, willad, willpctr

2-13

adline

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 56 - 58

2-14

adosc

Purpose

Syntax

Arguments

Description

Accumulation/Distribution oscillator

ado = adosc(highp, lowp, openp, closep)
ado = adosc([highp lowp openp closep])
adots = adosc(tsobj)

adots = adosc(tsojb, ParameterName, ParameterValue, ...)
highp High price (vector)
Towp Low price (vector)
openp Opening price (vector)
closep Closing price (vector)
tsobj Time series object

ado = adosc(highp, lowp, openp, closep) returns a vector, ado, that
represents the Accumulation/Distribution (A/D) oscillator. The A/D oscillator is
calculated based on the high, low, opening, and closing prices of each period.
Each period is treated individually.

ado = adosc([highp lowp openp closep]) accepts a four column matrix as
input. The order of the columns must be high, low, opening, and closing prices.

adots = adosc(tsobj) calculates the Accumulation/Distribution (A/D)
oscillator, adots, for the set of stock price data contained in the financial time
series object tsobj. The object must contain the high, low, opening, and closing
prices. The function assumes that the series are named “High”, "Low”, *Open~,
and “Close”. All are required. adots is a financial time series object with
similar dates to tsobj and only one series named ~ADOsc”.

adots = adosc(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name- parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are:

=« “HighName~: high prices series name
< “LowName~: low prices series name

2-15

adosc

Example

See Also

2-16

= “OpenName”: opening prices series hame
= “CloseName”: closing prices series name

Parameter values are the strings that represents the valid parameter names.

Compute the Accumulation/Distribution oscillator for Disney stock and plot
the results.

load disney.mat

dis_ADOsc = adosc(dis)
plot(dis_ADOsc)

title(CA/D Oscillator for Disney?)

| Figure No. 1 Hi[=] &3
File Edit Tools ‘Window Help

Deda "A A/ oo

ASD Oscillator for Disney
250 T T T

01| S S AEEERCTTRTEREEEEY ST TTRRPERERI .
] MR TN T — 1
100 - -~ Rt R oo fommmmmee e .

A0 F---- LH- | ____________ .

0
1996 2000

adline, willad

ascli2fts

Purpose
Syntax

Arguments

Description

Example

See Also

Create financial time series object from ASCII data file

tsobj = ascii2fts(filename, descrow, colheadrow, skiprows)

filename ASCII data file

descrow (Optional) Row number in the data file that contains
the description to be used for the description field of
the financial time series object.

colheadrow (Optional) Row that has the column headers/names.

skiprows (Optional) Scalar or vector of consecutive row numbers
to be skipped in the data file.

tsobj = ascii2fts(filename, descrow, colheadrow, skiprows) createsa
financial time series object tsobj from the ASCII file named filename. The
general format of the text data file is:

< May contain header text lines

= May contain column header information. The column header information
must immediately precede the data series columns.

= Leftmost column must be the date column.
= Dates must be in a valid date string format:

ddmmmyy” or *ddmmmyyyy”
mm/dd/yy” or *mm/dd/yyyy’
dd-mmm-yy” or >dd-mmm-yyyy~

= Each column must be separated either by spaces or a tab.
dis = ascii2fts(’disney.dat’, 1, 3, 2)

fints

2-17

bollinger

Purpose Bollinger band

Syntax [mid, uppr, lowr] = bollinger(data, wsize, wts, nstd)
[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts, nstd)

Arguments data Data vector
wsize (Optional) Window size. Default = 20.
wts (Optional) Weight factor. Determines the type of
moving average used. Default = 0 (box). 1= linear.
nstd (Optional) Number of standard deviations for upper
and lower bands. Default = 2.
tsobj Financial time series object
Description [mid, uppr, lowr] = bollinger(data, wsize, wts, nstd) calculatesthe

middle, upper, and lower bands that make up the Bollinger bands from the
vector data.

mid is the vector that represents the middle band, a simple moving average
with default window size of 20. uppr and lowr are vectors that represent the
upper and lower bands. These bands are +2 times and -2 times moving
standard deviations away from the middle band.

[midfts, upprfts, lowrfts] = bollinger(tsobj, wsize, wts, nstd)
calculates the middle, upper, and lower bands that make up the Bollinger
bands from a financial time series object tsobj.

midfts is a financial time series object that represents the middle band for all
series in tsobj. upprfts and lowrfts are financial time series objects that
represent the upper and lower bands of all series, which are +2 times and -2
times moving standard deviations away from the middle band.

2-18

bollinger

Example Compute the Bollinger bands for Disney stock closing prices and plot the
results.

load disney.mat

[dis_Mid,dis_Uppr,dis_Lowr]= bollinger(dis);
dis_CloseBolling = [dis_Mid.CLOSE, dis_Uppr.CLOSE, ...
dis_Lowr.CLOSE];

plot(dis_CloseBolling)

title("Bollinger Bands for Disney Closing Prices”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help
DEeEda "AArA/s PpEo
Bollinger Bands for Disney Closing Prices
45 T T T
: ' — CLOSE ns!
: : — CLOSE ns2
) T #]-{ — CLOSE ns3 |
£ I— SO O (A1 T 1
- booooeeenoeeeas . e .
P e : 4 — B
B e .
15 | i |
1996 1997 1998 1999 2000
See Also tsmovavg
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 72 - 74

2-19

boxcox

Purpose

Syntax

Arguments

Description

2-20

Box-Cox transformation

[transdat, lambda] = boxcox(data)
[transdat, lambda] = boxcox(tsobj)
transdat = boxcox(data)
transdat = boxcox(tsobj)

data Data vector. Must be positive.
tsobj Financial time series object
boxcox transforms nonnormally distributed data to a set of data that has

approximately normal distribution. The Box-Cox transformation is a family of
power transformations

A
data -1 .
data(\) =)~ — ifA\£0
log(data) ifA=0

The logarithm is the natural logarithm (log base e). The algorithm calls for
finding the A value that maximizes the Log-Likelihood Function (LLF). The
search is conducted using fminsearch.

[transdat, lambda] = boxcox(data) transforms the data vector data using
the Box-Cox transformation method into transdat. It also calculates the
transformation parameter A.

[transdat, lambda] = boxcox(tsojb) transforms the financial time series
object tsobj using the Box-Cox transformation method into transdat.

If the input data is a vector, transdat is also a vector. If the input is a financial
time series object, transdat is likewise a financial time series object.

If the input data is a vector, lambda is a scalar. If the input is a financial time
series object, lambda is a structure with fields similar to the components of the
object, e.g., if the object contains series names Open and Close, lambda has
fields lambda.Open and lambda.Close.

boxcox

transdat = boxcox(lambda, data) and transdat = boxcox(lambda, tsobj)
transform the data using a certain specified A for the Box-Cox transformation.
This syntax does not find the optimum A that maximizes the LLF.

See Also fminsearch

2-21

busdays

Purpose

Syntax

Arguments

Description

2-22

Business days in serial date format

bdates = busdays(sdate, edate, bdmode)
bdates = busdays(sdate, edate, bdmode, holvec)

sdate Start date in string or serial date format
edate End date in string or serial date format
bdmode (Optional) Frequency of business days:

DALLY, Daily, daily, D, d, 1 (default)
WEEKLY, Weekly, weekly, W, w, 2

MONTHLY, Monthly, monthly, M, m, 3
QUARTERLY, Quarterly, quarterly, Q,q, 4
SEMIANNUAL, Semiannual, semiannual, S, s, 5
ANNUAL, Annual, annual, A, a, 6

Strings must be enclosed in single quotes.

holvec (Optional) Holiday dates vector in string or serial date
format

bdates = busdays(sdate, edate, bdmode) generates a vector of business
days, bdates, in serial date format between the start date, sdate, and end date,
edate, with frequency, bdmode. The dates are generated based on United States
holidays. If you do not supply bdmode, busdays generates a daily vector.

bdates = busdays(sdate, edate, bdmode, holvec) lets you supply avector
of holidays, holvec, used to generate business days. holvec can either be in
serial date format or date string format. If you use this syntax, you need to
supply the frequency bdmode.

The output, bdates is a column vector of business dates in serial date format.

If you want a weekday vector without the holidays, set holvec to *~ (empty
string) or [] (empty vector).

candle

Purpose

Syntax

Arguments

Description

Candle plot

candle(tsobj)
candle(tsobj, color)
candle(tsobj, color, dateform)

candle(tsobj, color, dateform, ParameterName, ParameterValue, ...)
hdcl = candle(tsobj, color, dateform, ParameterName, ParameterValue,
--)
tsobj Financial time series object
color (Optional) A three-element row vector representing

RGB or a color identifier. (See plot in the MATLAB
documentation.)

dateform (Optional) Date string format used as the x-axis tick
labels. (See datetick in the MATLAB documentation.)

candle(tsobj) generates a candle plot of the data in the financial time series
object tsobj. tsobj must contain at least four data series representing the
high, low, open, and closing prices. These series must have the names “High~,
“Low', Open~, and ~Close’ (case-insensitive).

candle(tsobj, color) additionally specifies the color of the candle box.

candle(tsobj, color, dateform) additionally specifies the date string
format used as the x-axis tick labels. See datestr in the Financial Toolbox
User’s Guide for a list of date string formats.

candle(tsobj, color, dateform, ParameterName, ParameterValue, ...)
indicates the actual name(s) of the required data series if the data series do not
have the default names. ParameterName can be:

= “HighName~: high prices series name

< “LowName~: low prices series name

= “OpenName~: open prices series name

= “CloseName”: closing prices series name

2-23

candle

Example

See Also

2-24

hdcl = candle(tsobj, color, dateform, ParameterName, ParameterValue,
--.) returns the handle to the patch objects and the line object that make up

the candle plot. hdcl is a three-element column vector representing the
handles to the two patches and one line that forms the candle plot.

Create a candle plot for Disney stock for the dates March 31, 1998 through

April 30, 1998.

load disney.mat
candle(dis(®3/31/98::4/30/98%))
title("Disney 3/31/98 to 4/30/98%)

| Figure No. 1
File Edit Tools Window Help

IS[=1 E3

DeE& KNA A/ 2D

Disney 3£31/98 to 4/30/98

43 T T T T

S e

e i & A

FIIRS N S -

R e Tl

- B LA
s Lol s

B T | e i e S
! s D 1 s s

. :ﬁii%l:?ﬁ_'_:ﬁ?ﬁﬁ:ﬁﬁ::?ﬁﬁﬁﬁﬁﬁﬁfﬁf?ﬁﬁﬁﬁﬁ:

o i i i i
03/29 0405 04112 04/19 04/26

candle in the Financial Toolbox User's Guide

datetick and plot in the MATLAB documentation

chartfts, highlow, plot

05/03

chaikosc

Purpose

Syntax

Arguments

Description

Chaikin oscillator

chosc = chaikosc(highp, lowp, closep, tvolume)
chosc = chaikosc([highp lowp closep tvolume])

choscts = chaikosc(tsobj)
choscts = chaikosc(tsobj, ParameterName, ParameterValue, ...)
highp High price (vector)
Towp Low price (vector)
closep Closing price (vector)
tvolume Volume traded (vector)
tsobj Financial time series object

The Chaikin oscillator is calculated by subtracting the 10-period exponential
moving average of the Accumulation/Distribution (A/D) line from the
three-period exponential moving average of the A/D line.

chosc = chaikosc(highp, lowp, closep, tvolume) calculates the Chaikin
oscillator (vector), chosc, for the set of stock price and volume traded data
(tvolume). The prices that must be included are the high (highp), low (lowp),
and closing (closep) prices.

chosc = chaikosc([highp lowp closep tvolume]) accepts a four-column
matrix as input.

choscts = chaikosc(tsobj) calculates the Chaikin Oscillator, choscts, from
the data contained in the financial time series object tsobj. tsobj must at
least contain data series with names “High”, “Low”, Close”, and *Volume”~.
These series must represent the high, low, and closing prices, plus the volume
traded. choscts is a financial time series object with the same dates as tsobj
but only one series named ”ChaikOsc”.

2-25

chaikosc

choscts = chaikosc(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are:

= “HighName~: high prices series hame

= “LowName~: low prices series name

= “CloseName”: closing prices series name
< *VolumeName”: volume traded series name

Parameter values are the strings that represent the valid parameter names.

Example Compute the Chaikin oscillator for Disney stock and plot the results.

load disney.mat

dis_CHAIKosc = chaikosc(dis)
plot(dis_CHAIKosc)

title(’Chaikin Oscillator for Disney”)

Figure No. 1 I[=] E3
File Edit Tools ‘Window Help

DEeEa fNAAs 2D
w10 Chaikin Oscillatar for Disney

2 T T
— ChaikOsc

Y — S ST | ——— .

0.5

Bl
1996 1997 1998 1999 2000

2-26

chaikosc

See Also adline

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 91 - 94

2-27

chaikvolat

Purpose

Syntax

Arguments

Description

2-28

Chaikin volatility

chvol = chaikvolat(highp, lowp)

chvol = chaikvolat([highp lowp])

chvol = chaikvolat(high, lowp, nperdiff, manper)

chvol = chaikvolat([high lowp], nperdiff, manper)

chvts = chaikvolat(tsobj)

chvts = chaikvolat(tsobj, nperdiff, manper, ParameterName,
ParameterValue, ...)

highp High price (vector)

Towp Low price (vector)

nperdiff Period difference (vector). Default = 10.

manper Length of exponential moving average in periods

(vector). Default = 10.

tsobj Financial time series object

chvol = chaikvolat(highp, lowp) calculates the Chaikin volatility from the
series of stock prices, highp and lowp. chvol is a vector containing the Chaikin
volatility values, calculated on a 10-period exponential moving average and
10-period period difference.

chvol = chaikvolat([highp lowp]) accepts a two-column matrix as the
input.

chvol = chaikvolat(high, lowp, nperdiff, manper) manually sets the
period difference nperdiff and the length of the exponential moving average
manper in periods.

chvol = chaikvolat([high lowp], nperdiff, manper) accepts a
two-column matrix as the first input.

chvts = chaikvolat(tsobj) calculates the Chaikin volatility from the

financial time series object tsobj. The object must contain at least two series
named High and Low, representing the high and low prices per period. chvts is
a financial time series object containing the Chaikin volatility values, based on

chaikvolat

Example

a 10-period exponential moving average and 10-period period difference. chvts
has the same dates as tsobj and a series called ChaikVol.

chvts = chaikvolat(tsobj, nperdiff, manper, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value pairs as

input. These pairs specify the name(s) for the required data series if it is
different from the expected default name(s). Valid parameter names are:
= “HighName~: high prices series name

< “LowName~: low prices series name

Parameter values are the strings that represent the valid parameter names.
nperdiff, the period difference, and manper, the length of the exponential
moving average in periods, can also be set with this form of chaikvolat.
Compute the Chaikin volatility for Disney stock and plot the results.

load disney.mat

dis_CHAIKvol = chaikvolat(dis)
plot(dis_CHAIKvol)

title("Chaikin Volatility for Disney”)

2-29

chaikvolat

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

I EREY 2R
Chaikin “alatility for Disney

00 |-----mmmmemmeeee R B R R
o SN — _
£D ---------------- 4
o AN I A 1 — |
BRI L1 — |
147 -
20 ------------ .
-40 <
£0 ' | '
1996 1997 1938 1999 2000
See Also chaikosc
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 304 - 305

2-30

chartfts

Purpose
Syntax

Description

Example

Interactive display
chartfts(tsobj)

chartfts(tsobj) produces a figure window that contains one or more plots.

You can use the mouse to observe the data at a particular time point of the plot.

Create a financial time series object from the supplied data file ibm9599.dat.
ibmfts = ascii2fts(Cibm9599.dat’, 1, 3, 2);

Chart the financial time series object ibmfts.

chartfts(ibmfts)

With the Zoom feature set off, a mouse click on the indicator line displays
object data in a pop-up box.

| Figure No. 1
File Edit Tools Window Help Zoom

International Bus poration (IBM)

w

With the Zoom feature set on, mouse clicks indicate the area of the chart to
zoom.

2-31

chartfts

Figure No. 1
File Edit Toaols Window Help [N

B

See the instructions provided by Zoom Help for details on performing the
zoom.

See Also candle, highlow, plot

2-32

chfield

Purpose
Syntax

Arguments

Description

See Also

Change data series name

newfts = chfield(oldfts, oldname, newname)

oldfts Name of an existing financial time series object

oldname Name of the existing component in oldfts. A
MATLAB string or column cell array.

newname New name for the component in oldfts. A MATLAB
string or column cell array.

newfts = chfield(oldfts, oldname, newname) changes the name of the
financial time series object component from oldname to newname.

Set newfts = oldfts to change the name of an existing component without
changing the name of the financial time series object.

To change the names of several components at once, specify the series of old
and new component names in corresponding column cell arrays.

You cannot change the names of the object components “desc”, *freq’, and
“dates”.

fieldnames, isfield, rmfield

2-33

convertto

Purpose Convert to specified frequency
Syntax newfts = convertto(oldfts, newfreq)
Arguments newfreq 1, DAILY, Daily, daily, D, d

2, WEEKLY, Weekly, weekly, W, w

3, MONTHLY, Monthly, monthly, M, m

4, QUARTERLY, Quarterly, quarterly, Q, q

5, SEMIANNUAL, Semiannual, semiannual, S, s
6, ANNUAL, Annual, annual, A, a

Description convertto converts a financial time series of any frequency to one of a specified
frequency. It makes some assumptions regarding the dates in the resulting
time series.

newfts = convertto(oldfts, newfreq) converts the object oldfts to the
new time series object newfts with the frequency newfreq.

See Also toannual, todaily, tomonthly, toquarterly, tosemi, toweekly

2-34

demts2fts

Purpose Convert demo time series to financial time series object
Syntax tsobj = demts2fts(demts)
Description tsobj = demts2fts(demts) converts a demonstration time series object into a

financial time series object. A demonstration time series object is a time series
object created using the time series capabilities of the Financial Toolbox. tsobj
has a single data series named seriesl.

See Also fints

2-35

diff

Purpose Differencing
Syntax newfts = diff(oldfts)
Description diff computes the differences of the data series in a financial time series

object. It returns another time series object containing the difference.

newfts = diff(oldfts) computes the difference of all the data in the data
series of the object oldfts and returns the result in the object newfts. newfts
is a financial time series object containing the same data series (names) as the
input oldfts.

See Also diff in the MATLAB documentation

2-36

display

Purpose Display financial time series object
Syntax display(tsobj)
Description display displays a financial time series object in the command window.

Numeric values inherit the format specified in MATLAB.

Note Although the contents of the object display as cells of a cell array, the
object itself is not a cell array.

See Also format in the MATLAB documentation

2-37

end

Purpose Last date entry
Syntax end
Description end returns the index to the last date entry in a financial time series object.
Example Consider a financial time series object called fts:
fts =

desc: DJI30MAR94._dat
freq: Daily (1)

dates: (20)’ Open: (20)”

>04-Mar-1994~ L 3830.9]
’07-Mar-1994~ L 3851.7]
>08-Mar-1994~ L 3858.5]
709-Mar-1994~ L 3854]
?10-Mar-1994~ L 3852.6]
’11-Mar-1994~ L 3832.6]
’14-Mar-1994~ L 3870.3]
’16-Mar-1994~ L 3851]
717-Mar-1994~ L 3853.6]
718-Mar-1994~ L 3865.4]
’21-Mar-1994~ L 3878.4]
?22-Mar-1994~ L 3865.7]
?23-Mar-1994~ L 3868.9]
?24-Mar-1994~ L 3849.9]
?25-Mar-1994~ L 3827.1]
?28-Mar-1994~ L 3776.5]
?29-Mar-1994~ L 3757.2]
?30-Mar-1994~ L 3688.4]
?31-Mar-1994~ L 3639.7]

2-38

end

See Also

The command fts(15:end)returns

ans =

desc: DJI30MAR94.dat
freq: Daily (1)

dates: (6)’ *Open:
?24-Mar-1994~
?25-Mar-1994~
*28-Mar-1994~
*29-Mar-1994~
>30-Mar-1994~
?31-Mar-1994~

e

subsasgn, subsref

end in the MATLAB documentation

®)"
3849.
.1]
3776.
3757.

3827

3688

9]

5]
2]

.4]
3639.

7]

2-39

exp

Purpose Exponential values
Syntax newfts = exp(tsobj)
Description newfts = exp(tsobj) calculates the natural exponential (base e) of all the

data in the data series of the financial time series object tsobj and returns the
result in the object newfts.

See Also log, 1og10

2-40

extfield

Purpose
Syntax

Arguments

Description

Example

See Also

Extract data series

ftse = extfield(tsobj, fieldnames)

tsobj Financial time series object

fieldnames Data series to be extracted. A cell array if a list of data
series names (field names) is supplied. A string if only
one is wanted.

ftse = extfield(tsobj, fieldnames) extracts from tsobj the dates and
data series specified by fieldnames into a new financial time series object ftse.
ftse has all the dates in tsobj but contains a smaller number of data series.

extfield is identical to referencing a field in the object. For example

ftse = extfield(fts, “Close”)

is the same as

ftse = fts.Close

This function is the complement of the function rmfield.

rmField

2-41

fieldnames

Purpose Get names of fields

Syntax fnames = fieldnames(tsobj)
fnames = fieldnames(tsobj, srsnameonly)

Arguments tsobj Financial time series object

srsnameonly Field names returned:
0 = all field names (default).
1 = data series names only.

Description fieldnames gets field names in a financial time series object.

fnames = fieldnames(tsobj) returns the field names associated with the
financial time series object tsobj as a cell array of strings, including the
common minimum fields: desc, freq, and dates.

fnames = fieldnames(tsobj, srsnameonly) returns fieldnames depending
upon the setting of srsnameonly. If srsnameonly is 0, all fieldnames are
returned, including the common minimum fields: desc, freq, and dates. If
srsnameonly is set to 1, only the data series name(s) are returned in fnames.

See Also chfield, getfield, isfield, rmfield, setfield

2-42

fillts

Purpose

Syntax

Arguments

Description

See Also

Fill missing values in time series

newfts = Fillts(oldfts, fill_method)
newfts = Fillts(oldfts, fill_method, newdates)
newfts = Fillts(oldfts, fill_method, newdates, sortmode)

fill_method (Optional) Values may be *linear ”(default), *cubic”,
spline’”, Or "nearest”’.

newdates (Optional) Column vector of serial dates, a date string,
or a column cell array of date strings

sortmode (Optional) Default = 0 (unsorted). 1 = sorted.

newfts = fillts(oldfts, fill_method) replaces missing values
(represented by NaN) in the financial time series object oldfts with real values,
using the interpolation process indicated by fill_method.

newfts = fillts(oldfts, fill_method, newdates) replaces all the
missing values on the specified dates newdates in the financial time series
oldfts with new values through an interpolation process using fill_method.
fill_method can be *linear”, “cubic’, spline”, or “nearest”. If any of the
dates in newdates exist in oldfts, the existing one has precedence. If newdates
contains dates outside the boundary of oldfts, the values for those dates will
be NaN's.

newfts = fillts(oldts, fillmethod, newdates, sortmode) additionally
denotes whether you want the order of the dates in the output object to stay the
same as in the input object or to be sorted chronologically.

sortmode = 0 (unsorted) appends any new dates to the end. The interpolation
process that calculates the values for the new dates works on a sorted object.
Upon completion, the existing dates are reordered as they were originally, and
the new dates are appended to the end.

sortmode = 1 sorts the output. After interpolation, no reordering of date
sequence occurs.

interpl in the MATLAB documentation

2-43

filter

Purpose
Syntax

Description

See Also

2-44

Linear filtering
newfts = Filter(B, A, oldfts)

filter filters a whole financial time series object with certain filter
specifications. The filter is specified in a transfer function expression.

newfts = Filter(B, A, oldfts) filters the data in the financial time series
object oldfts with the filter described by vectors A and B to create the new
financial time series object newfts. The filter is a “Direct Form Il Transposed”
implementation of the standard difference equation. newfts is a financial time
series object containing the same data series (names) as the input oldfts.

filter, filter2 in the MATLAB documentation

fints

Purpose

Syntax

Arguments

Construct financial time series object

tsobj = fints(dates_and_data)

tsobj
tsobj
tsobj
tsobj

dates_and_data

dates

data

datanames

freq

desc

fints(dates, data)

fints(dates, data, datanames)
fints(dates, data, datanames, freq)
fints(dates, data, datanames, freq, desc)

Column-oriented matrix containing one column of
dates and a single column for each series of data

Column vector of dates. Dates may be date strings or
serial date numbers.

Column-oriented matrix containing a column for each
series of data. The number of values in each data
series must match the number of dates. If a mismatch
occurs, MATLAB will not generate the financial time
series object, and you will receive an error message.

Cell array of data series names. Overrides the default
data series names. Default data series names are
seriesl], series?,

Frequency indicator. Allowed values are

UNKNOWN, Unknown, unknown, U, u,0

DAILY, Daily, daily, D, d,1

WEEKLY, Weekly, weekly, W, w, 2

MONTHLY, Monthly, monthly, M, m, 3
QUARTERLY, Quarterly, quarterly, Q, q,4
SEMIANNUAL, Semiannual, semiannual, S, s,5
ANNUAL, Annual, annual, A, a, 6

Default = Unknown.

String providing descriptive name for financial time
series object. Default = =~ .

2-45

fints

Description

See Also

2-46

fints constructs a financial time series object. A financial time series object is
a MATLAB object that contains a series of dates and one or more series of data.
Before you perform an operation on the data, you must set the frequency
indicator (freq). You can optionally provide a description (desc) for the time
series.

tsobj = fints(dates_and_data) creates a financial time series object
containing the dates and data from the matrix dates_and_data. The dates and
data in the input matrix must be column oriented; the dates series and each
data series is a column in the input matrix. The names of the data series
default to seriesl, ..., seriesn. The desc and freq fields are set to their
defaults.

tsobj = fints(dates, data) generates a financial time series object
containing dates from the dates column vector of dates and data from the
matrix data. The data matrix must be column oriented, that is, each column in
the matrix is a data series. The names of the series default to series1, ...,
seriesn, where n is the total number of columns in data. The desc and freq
fields are set to their defaults.

tsobj = fints(dates, data, datanames) additionally allows you to rename
the data series. The names are specified in the datanames cell array. The
number of strings in datanames must correspond to the number of columns in
data. The desc and freq fields are set to their defaults.

tsobj = fints(dates, data, datanames, freq) additionally sets the
frequency when you create the object. The desc field is set to its default *~.

tsobj = fints(dates, data, datanames, freq, desc) provides a
description string for the financial time series object.

datenum, datestr in the Financial Toolbox User’s Guide

fpctkd

Purpose

Syntax

Arguments

Description

Fast stochastics

[pctk, pctd] = fpctkd(highp, lowp, closep)

[pctk, pctd] = fpctkd([highp lowp closep])

[pctk, pctd] fpctkd(highp, lowp, closep, kperiods, dperiods,
dmamethod)

[pctk, pctd]= fpctkd([highp lowp closep], kperiods, dperiods,
dmamethod)

pkts = fpctkd(tsobj, kperiods, dperiods, dmamethod)

pkts = fpctkd(tsobj, kperiods, dperiods, dmamethod, ParameterName,
ParameterValue, ...)

highp High price (vector)

Towp Low price (vector)

closep Closing price (vector)

kperiods (Optional) %K periods. Default = 10.

dperiods (Optional) %D periods. Default = 3.

damethod (Optional) %D moving average method. Default = e~

(exponential).

tsobj Financial time series object

fpctkd calculates the stochastic oscillator.

[pctk, pctd] = fpctkd(highp, lowp, closep) calculates the Fast
PercentK (F%K) and Fast PercentD (F%D) from the stock price data, highp
(high prices), lowp (low prices), and closep (closing prices).

[pctk, pctd] = fpctkd([highp lowp closep]) accepts a three-column
matrix of high (highp), low (lowp), and closing prices (closep), in that order.

[pctk, pctd] = fpctkd(highp, lowp, closep, kperiods, dperiods,
dmamethod) calculates Fast PercentK (F%K) and Fast PercentD (F%D) from
the stock price data, highp (high prices), lowp (low prices), and closep (closing
prices). kperiods sets the %K period. dperiods sets the %D period.

2-47

fpctkd

damethod specifies the %D moving average method. Valid moving average
methods for %D are Exponential (*e”) and Triangular (*t”). See tsmovavg for
explanations of these methods.

[pctk, pctd]= fpctkd([highp lowp closep], kperiods, dperiods,
dmamethod) accepts a three-column matrix of high (highp), low (lowp), and
closing prices (closep), in that order.

pkts = fpctkd(tsobj, kperiods, dperiods, dmamethod) calculates the
Fast PercentK (F%K) and Fast PercentD (F%D) from the stock price data in the
financial time series object tsobj. tsobj must minimally contain the series
High (high prices), Low (low prices), and Close (closing prices). pkts is a
financial time series object with similar dates to tsobj and two data series
named PercentK and PercentD.

pkts = fpctkd(tsobj, kperiods, dperiods, dmamethod, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value pairs as

input. These pairs specify the name(s) for the required data series if it is
different from the expected default name(s). Valid parameter names are:

= “HighName~: high prices series hame
= “LowName~: low prices series name
= “CloseName”: closing prices series name

Parameter values are the strings that represent the valid parameter names.

2-48

fpctkd

Example Compute the stochastic oscillator for Disney stock and plot the results.

load disney.mat

dis_FastStoc = fpctkd(dis)
plot(dis_FastStoc)

title("Stochastic Oscillator for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2

Stochastic Oscillatar for Disney

100

— Percentk
—— PercentD H

80 -~ 1~ -

80 --- 1t

70f---

GO f----

1) S

40

30

0
1996 1997 1998 19599 2000

See Also spctkd, stochosc, tsmovavg

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 268 - 271

2-49

fregnum

Purpose
Syntax

Arguments

Description

See Also

2-50

Convert string frequency indicator to numeric frequency indicator

nfreq = fregnum(sfreq)

sfreq

UNKNOWN, Unknown, unknown, U, u

DAILY, Daily, daily, D, d

WEEKLY, Weekly, weekly, W, w

MONTHLY, Monthly, monthly, M, m
QUARTERLY, Quarterly, quarterly, Q, q
SEMIANNUAL, Semiannual, semiannual, S, s
ANNUAL, Annual, annual, A, a

nfreq = fregnum(sfreq) converts a string frequency indicator into a numeric

value.
String Frequency Indicator Numeric Representation
UNKNOWN, Unknown, unknown, U, u 0
DAILLY, Daily, daily, D, d 1
WEEKLY, Weekly, weekly, W, w 2
MONTHLY, Monthly, monthly, M, m 3
QUARTERLY, Quarterly, quarterly, Q, q 4

SEMIANNUAL, Semiannual, semiannual, S, s 5

ANNUAL, Annual, annual, A, a 6

freqstr

freqgstr

Purpose
Syntax

Arguments

Description

See Also

Convert numeric frequency indicator to string representation

sfreq = fregstr(nfreq)

nfreq

O, WNEO

sfreq = freqgstr(nfreq) converts a numeric frequency indicator into a string

representation.

Numeric Frequency Indicator

String Representation

o 00~ W N BB O

Unknown
Daily
Weekly
Monthly
Quarterly
Semiannual

Annual

fregnum

2-51

fts2ascii

Purpose Write elements of time series data into an ASCI|I file

Syntax stat = fts2ascii(filename, tsobj, exttext)
stat = fts2ascii(filename, dates, data, colheads, desc, exttext)

Arguments filename Name of an ASCII file
tsobj Financial time series object
dates Column vector containing dates
data Column-oriented matrix. Each column is a series.
colheads (Optional) Cell array of column headers (names); first

cell must always be the one for the dates column.
colheads will be written to the file just before the
data.

desc (Optional) Description string, which will be the first
line in the file.

exttext (Optional) Extra text. A string written after the
description line (line 2 in the file).

Description stat = fts2ascii(filename, tsobj, exttext) writes the financial time
series object tsobj into an ASCII file filename. The data in the file will be
tab-delimited.

stat = fts2ascii(filename, dates, data, colheads, desc, exttext)
writes into an ASCI I file fi lename the dates and data contained in the column
vector dates and the column-oriented matrix data. dates will be the first
column, and columns of data will be the subsequent ones. The data in the file
will be tab-delimited.

stat indicates whether file creation is successful (1) or not (0).

See Also ascii2fts

2-52

fts2mtx

Purpose

Syntax

Arguments

Description

See Also

Convert to matrix

tsmat = fts2mtx(tsobj)

tsmat = fts2mtx(tsobj, datesflag)

tsmat = fts2mtx(tsobj, seriesnames)

tsmat = fts2mtx(tsobj, datesflag, seriesnames)

tsobj Financial time series object

datesflag (Optional) Specifies inclusion of dates vector:
datesflag = 0 (default) excludes dates.
datesflag = 1 includes dates vector.

seriesnames (Optional) Specifies the data series to be included in
the matrix. May be a cell array of strings.

tsmat = fts2mtx(tsobj) takes the data series in the financial time series
object tsobj and puts them into the matrix tsmat as columns. The order of the
columns is the same as the order of the data series in the object tsobj.

tsmat = fts2mtx(tsobj, datesflag) specifies whether or not you want the
dates vector included. The dates vector will be the first column. The dates are
represented as serial date numbers.

tsmat = fts2mtx(tsobj, seriesnames) extracts the data series named
seriesnames and puts its values into tsmat.

tsmat = fts2mtx(tsobj, datesflag, seriesnames) puts into tsmat the
specific data series named in seriesnames. The datesflag argument must be
specified. If you specify an empty matrix ([]) as its value, the default behavior
is adopted.

subsref

2-53

ftsbound

Purpose Start and end dates

Syntax datesbound = ftsbound(tsobj)
datesbound = ftsbound(tsobj, dateform)

Arguments tsobj Name of a financial time series object created with
fints
dateform dateform is an integer between 1 and 18 representing

the format of a date string. See datestr for a
description of these formats.

Description ftsbound returns the start and end dates of a financial time series object.

datesbound = ftsbound(tsobj) returns the start and end dates contained in
tsobj as serial dates in the column matrix datesbound. The first row in
datesbound corresponds to the start date, and the second corresponds to the
end date.

datesbound = ftsbound(tsobj, dateform) returns the starting and ending
dates contained in the object, tsobj, as date strings in the column matrix,
datesbound. The first row in datesbound corresponds to the start date, and the
second corresponds to the end date.

See Also datestr in the Financial Toolbox User’'s Guide

2-54

getfield

Purpose

Syntax

Arguments

Description

See Also

Get content of a specific field

fieldval = getfield(tsobj, field)
fieldval = getfield(tsobj, field, {dates})

tsobj Financial time series object
field Field name within tsobj
dates Date range

getfield treats the contents of a financial times series object tsobj as fields in
a structure.

fieldval = getfield(tsobj, field) returns the contents of the specified
field. This is equivalent to the syntax fieldval = tsobj.field.

fieldval = getfield(tsobj, field, {dates}) returns the contents of the
specified field for the specified dates. dates can be individual cells of date
strings or a cell of a date string range using the : : operator such as
”03/01/99::03/31/99".

chfield, fieldnames, isfield, rmfield, setfield

2-55

getnameidx

Purpose
Syntax

Arguments

Description

Examples

See Also

2-56

Find name in list

nameidx = getnameidx(list, name)

list A cell array of name strings

name A string or cell array of name strings

nameidx = getnameidx(list, name) finds the occurrence of a name or set of
names in a list. It returns an index (order number) indicating where the
specified names are located with the list. If name is not found, nameidx returns
0.

If name is a cell array of names, getnameidx returns a vector containing the
indices (order number) of the name strings within list. If none of the names in
the name cell array is in list, it returns zero (0). If some of names in name are
not found, the indices for these names will be zeros (0’s).

getnameidx finds only the first occurrence of the name in the list of names.
This function is meant to be used on a list of unique names (strings) only. It will
not find multiple occurrences of a name or a list of names within list.

Given

poultry = {’duck”, ’chicken’}

animals = {?duck”, “cow”, ’sheep”’, “horse”, ’chicken’}
nameidx = getnameidx(animals, poultry)
ans =
1 5
Given
poultry = {?duck”, *goose’, “chicken’}
animals = {?duck”, “cow”, “sheep’, “horse”, “chicken’}
nameidx = getnameidx(animals, poultry)
ans =
1 0 5

findstr, strcmp

hhigh

Purpose

Syntax

Arguments

Description

Highest high

hhv = hhigh(data)
hhv = hhigh(data, nperiods, dim)

hhvts = hhigh(tsobj, nperiods)
hhvts = hhigh(tsobj, nperiods, ParameterName, ParameterValue)
data Data series matrix
nperiods (Optional) Number of periods. Default = 14.
dim (Optional) Dimension
tsobj Financial time series object

hhv = hhigh(data) generates a vector of highest high values the past 14
periods from the matrix data.

hhv = hhigh(data, nperiods, dim) generates a vector of highest high
values the past nperiods periods. dim indicates the direction in which the
highest high is to be searched. If you input [] for nperiods, the default is 14.

hhvts = hhigh(tsobj, nperiods) generates a vector of highest high values
from tsobj, a financial time series object. tsobj must include at least the series
High. The output hhvts is a financial time series object with the same dates as
tsobj and data series named HighestHigh. If nperiods is specified, hhigh
generates a financial time series object of highest high values for the past
nperiods periods.

hhvts = hhigh(tsobj, nperiods, ParameterName, ParameterValue)
specifies the name for the required data series when it is different from the
default name. The valid parameter name is:

< “HighName~”: high prices series name

The parameter value is a string that represents the valid parameter name.

2-57

hhigh

Example Compute the highest high prices for Disney stock and plot the results.

load disney.mat

dis_HHigh = hhigh(dis)
plot(dis_HHigh)

title(CHighest High for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2
Highest High for Disney

45 T T
— HighestHigh

15
1996 1997 1998 19599 2000

See Also 1low

2-58

highlow

Purpose

Syntax

Arguments

Description

High-Low plot

highlow(tsobj)

highlow(tsobj, color)

highlow(tsobj, color, dateform)

highlow(tsobj, color, dateform, ParameterName, ParameterValue, ...)

hhll = highlow(tsobj, color, dateform, ParameterName,
ParameterValue, ...)

tsobj Financial time series object

color (Optional) A three-element row vector representing
RGB or a color identifier. (See plot in the MATLAB
documentation.)

dateform (Optional) Date string format used as the x-axis tick
labels. (See datetick in the MATLAB documentation.)

highlow(tsobj) generates a High-Low plot of the data in the financial time
series object tsobj. tsobj must contain at least four data series representing
the high, low, open, and closing prices. These series must have the names
*High~, "Low’', "Open~, and “Close’ (case-insensitive).

highlow(tsobj, color) additionally specifies the color of the plot.

highlow(tsobj, color, dateform) additionally specifies the date string
format used as the x-axis tick labels. See datestr in the Financial Toolbox
User’s Guide for a list of date string formats.

highlow(tsobj, color, dateform, ParameterName, ParameterValue,...)
indicates the actual name(s) of the required data series if the data series do not
have the default names. ParameterName can be:

= “HighName~: high prices series name

< “LowName~: low prices series name

= “OpenName~: open prices series name

= “CloseName”: closing prices series name

2-59

highlow

hhll = candle(tsobj, color, dateform, ParameterName, ParameterValue,
-.) returns the handle to the line object that makes up the High-Low plot.

See Also highlow in the Financial Toolbox User’'s Guide
datetick and plot in the MATLAB documentation

candle

2-60

hist

Purpose

Syntax

Arguments

Description

Example

Histogram

hist(tsobj, numbins)
ftshist = hist(tsobj, numbins)
[ftshist, binpos] = hist(tsobj, numbins)

tsobj Financial time series object

numbins (Optional) Number of histogram bins. Default = 10.

hist(tsobj, numbins) calculates and displays the histogram of the data
series contained in the financial time series object tsobj.

ftshist = hist(tsobj, numbins) calculates, but does not display, the
histogram of the data series contained in the financial time series object tsobj.
ftshist is a structure with field names similar to the data series names of
tsobj.

[ftshist, binpos] = hist(tsobj, numbins) additionally returns the bin
positions binpos. The positions are the centers of each bin. binpos is a column
vector.

Create a histogram of Disney open, high, low, and close prices.

load disney.mat

dis = rmfield(dis,”VOLUME”) % remove VOLUME field
hist(dis)

title("Disney Histogram”)

2-61

hist

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2

Disney Histogram

160
140 4
120 4
100 B

il M

i) | | L
mf
ot
i : : : .
an

See Also hist in the MATLAB documentation

mean, std

2-62

horzcat

Purpose
Syntax

Description

Example

Concatenate financial time series objects horizontally
newfts = horzcat(tsobjl, tsobj2, ...)

horzcat implements horizontal concatenation of financial time series objects.
horzcat essentially merges the data columns of the financial time series
objects. All time series objects must have the exact same dates.

When multiple instances of a data series name occur, concatenation adds a
suffix to the current names of the data series. The suffix has the format
_objectname<n>, where n is a number indicating the position of the time series,
from left to right, in the concatenation command. The n part of the suffix
appears only when there is more than one instance of a particular data series
name.

The description fields will be concatenated as well. They will be separated by
/7.

Construct three financial time series each containing a data series named
DataSeries.

firstfts = fints((today:today+4)”, (1:5)7,”DataSeries’,’d”);
secondfts = fints((today:today+4)”, (11:15)7,’DataSeries”,’d”);
thirdfts = fints((today:today+4)”, (21:25)7,’DataSeries”,’d”);

Concatenate the time series horizontally into a new financial time series
newfts.

newfts = [firstfts secondfts thirdfts secondfts];

The resulting object newfts has data series names: DataSeries_firstfts,
DataSeries_secondfts2, DataSeries_thirdfts, and
DataSeries_secondfts4. Verify this with the command

Ffieldnames(hewfts)
ans =
>desc”
>freq’
>dates”’

DataSeries_firstfts’

2-63

horzcat

DataSeries_secondfts2’
DataSeries_thirdfts”’
DataSeries_secondfts4’

Use chfield to change the data series nhames.

Note If all input objects have the same frequency, the new object has that
frequency as well. However, if one of the objects concatenated has a different
frequency than the others, the frequency indicator of the resulting object is set

to Unknown (0).

See Also vertcat

2-64

iscompatible

Purpose
Syntax

Description

See Also

Structural equality
iscomp = iscompatible(tsobj_1, tsobj 2)

iscomp = iscompatible(tsobj 1, tsobj 2) returns 1 if both financial time
series objects tsobj_1 and tsobj_2 have the same dates and data series
names. It returns 0 if any component is different.

iscomp = 1 indicates that the two objects contain the same number of data
points as well as equal number of data series. However, the values contained
in the data series can be different.

Note Data series names are case-sensitive.

isequal

2-65

iIsequal

Purpose
Syntax

Arguments

Description

See Also

2-66

Multiple object equality
iseq = isequal(tsobj_1, tsobj 2, ...)
tsobj 1 ... A list of financial time series objects

iseq = isequal(tsobj 1, tsobj 2, ...) returns1ifall listed financial
time series objects have the same dates, data series names, and values
contained in the data series. It returns 0 if any of those components is different.

Note Data series names are case-sensitive.

iseq = 1 implies that each object contains the same number of dates and the
same data. Only the descriptions may differ.

iscompatible

isfield

Purpose Check if string is a field name
Syntax F = isField(tsobj, name)
Description F = isfield(tsobj, name) returnstrue (1) if name is the name of a data series

in tsobj. Otherwise, isfield returns false (0).

See Also fieldnames, getfield, setfield

2-67

lagts

Purpose

Syntax

Arguments

Description

See Also

2-68

Lag time series object

newfts = lagts(oldfts)
newfts = lagts(oldfts, lagperiod)

newfts = lagts(oldfts, lagperiod, padmode)
oldfts Financial time series object
lagperiod Number of lag periods expressed in the frequency of
the time series object
padmode Data padding value

lagts delays a financial time series object values by a specified time step.

newfts = lagts(oldfts) delays the data series in oldfts by one time series
date entry and returns the result in the object newfts. The end will be padded
with zeros, by default.

newfts = lagts(oldfts, lagperiod) shifts time series values to the right on
an increasing time scale. lagts delays the data series to happen at a later time.
lagperiod is the number of lag periods expressed in the frequency of the time
series object oldfts. For example, if oldfts is a daily time series, lagperiod is
specified in days. lagts pads the data with zeros (default).

newfts = lagts(oldfts, lagperiod, padmode) lets you pad the data with a
value, NaN, or Inf rather than zeros by setting padmode to the desired value.

leadts

leadts

Purpose

Syntax

Arguments

Description

See Also

Lead time series object

newfts = leadts(oldfts)
newfts = leadts(oldfts, leadperiod)
newfts = leadts(oldfts, leadperiod, padmode)

oldfts Financial time series object

leadperiod Number of lead periods expressed in the frequency of
the time series object

padmode Data padding value

leadts advances a financial time series object values by a specified time step.

newfts = leadts(oldfts) advances the data series in oldfts by one time
series date entry and returns the result in the object newfts. The end will be
padded with zeros, by default.

newfts = leadts(oldfts, leadperiod) shifts time series values to the left
on an increasing time scale. leadts advances the data series to happen at an
earlier time. leadperiod is the number of lead periods expressed in the
frequency of the time series object oldfts. For example, if oldfts is a daily
time series, leadperiod is specified in days. leadts pads the data with zeros
(default).

newfts = leadts(oldfts, leadperiod, padmode) letsyou pad the datawith
a value, NaN, or Inf rather than zeros by setting padmode to the desired value.

lagts

2-69

length

Purpose Get number of dates (rows)
Syntax lenfts = length(tsobj)
Description lenfts = length(tsobj) returns the number of dates (rows) in the financial
time series object tsobj. This is the same as issuing lenfts = size(tsobj, 1).
See Also length in the MATLAB documentation
size

2-70

llow

Purpose

Syntax

Arguments

Description

Lowest low

1lv = llow(data)
Ilv = llow(data, nperiods, dim)

Ilvts = llow(tsobj, nperiods)

Ilvts = llow(tsobj, nperiods, ParameterName, ParameterValue)
data Data series matrix
nperiods (Optional) Number of periods. Default = 14.
dim Dimension
tsobj Financial time series object

1lv = Ilow(data) generates a vector of lowest low values the past 14 periods
from the matrix data.

Ilv = llow(data, nperiods, dim) generates a vector of lowest low values
the past nperiods periods. dim indicates the direction in which the lowest low
is to be searched. If you input [] for nperiods, the default is 14.

Ilvts = llow(tsobj, nperiods) generates a vector of lowest low values from
tsobj, a financial time series object. tsobj must include at least the series Low.
The output Ilvts is a financial time series object with the same dates as tsobj
and data series named LowestLow. If nperiods is specified, 1 low generates a

financial time series object of lowest low values for the past nperiods periods.

Ilvts = llow(tsobj, nperiods, ParameterName, ParameterValue)
specifies the name for the required data series when it is different from the
default name. The valid parameter name is:

< LowName: low prices series hame

The parameter value is a string that represents the valid parameter name.

2-71

llow

Example Compute the lowest low prices for Disney stock and plot the results.

load disney.mat

dis_LLow = Hlow(dis)
plot(dis_LLow)

title(C’Lowest Low for Dishey”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help
DEeEda "AArA/s PpEo
Lowest Low for Disney
40 T T
s s
15 1 i 1
1956 1957 1955 1995 2000

See Also hhigh

2-72

Purpose Natural logarithm
Syntax newfts = log(tsobj)
Description newfts = log(tsobj) calculates the natural logarithm (log base e) of the data

series in a financial time series object tsobj. It returns another time series
object containing the natural logarithms.

See Also exp, log10

2-73

log10

Purpose Common logarithm
Syntax newfts = logl0(tsobj)
Description newfts = logl0(tsobj) calculates the common logarithm (base 10) of all the

data in the data series of the financial time series object tsobj and returns the
result in the object newfts.

See Also exp, log

2-74

macd

Purpose

Syntax

Arguments

Description

Moving Average Convergence/Divergence (MACD)

[macdvec, nineperma] = macd(data)
[macdvec, nineperma] = macd(data, dim)
macdts = macd(tsobj, series_name)

data Data vector

dim Dimension. Default = 2.
tsobj Financial time series object
series_name Data series name

[macdvec, nineperma] = macd(data) calculates the Moving Average
Convergence/Divergence (MACD) line, macdvec, from the data vector, data, as
well as the nine-period exponential moving average, nineperma, from the
MACD line.

When the two lines are plotted, they can give you an indication whether to buy
or sell a stock; when an overbought or oversold condition is occurring; and when
the end of a trend may occur.

The MACD is calculated by subtracting the 26-period (7.5%) exponential
moving average from the 12-period (15%) moving average. The 9-day (20%)
exponential moving average of the MACD line is used as the signal line. For
example, when the MACD and the 20% moving average line have just crossed
and the MACD line falls below the other line, it is time to sell.

[macdvec, nineperma] = macd(data, dim) lets you specify the orientation
direction for the input. If the input data is a matrix, you need to indicate
whether each row or each column is a set of observations. If orientation is not
specified, macd assumes column-orientation (dim = 2).

macdts = macd(tsobj, series_name) calculates the Moving Average
Convergence/Divergence (MACD) line from the financial time series tsobj, as
well as the nine-period exponential moving average from the MACD line. The
MACD is calculated for the closing price series in tsobj, presumed to have been
named *Close”. The result is stored in the financial time series object macdts.
macdts has the same dates as the input object tsobj and contains only two

2-75

macd

Example

See Also

2-76

series named MACDLine and NinePerMA. The first series contains the values
representing the MACD line and the latter is the nine-period exponential
moving average of the MACD line.

Compute the MACD for Disney stock and plot the results.

load disney.mat

dis_CloseMACD = macd(dis);
dis_OpenMACD = macd(dis, *OPEN?);
plot(dis_CloseMACD);
plot(dis_OpenMACD);

title(CMACD for Disney?”)

| Figure No. 1 Hi[=] &3
File Edit Tools Window Help

Deda "A A/ oo
MACD for Disney

2 T I
— MACDLine
L =7 SOOI S S —— MinePertda ||
T AN L S | R 1| .

248
1996 1997 1995 1999 2000

adline, willad

maxXx

Purpose Maximum value
Syntax tsmax = max(tsobj)
Description tsmax = max(tsobj) finds the maximum value in each data series in the

financial time series object tsobj and returns it in tsmax. tsmax is a structure
with field name(s) identical to the data series name(s).

Note tsmax returns only the values and does not return the dates associated
with the values. The maximum values are not necessarily from the same date.

See Also min

2-77

mean

Purpose Arithmetic average
Syntax tsmean = mean(tsobj)
Description tsmean = mean(tsobj) computes the arithmetic mean of all data in all series

in tsobj and returns it in tsmean. tsmean is a structure with field name(s)
identical to the data series name(s).

See Also peravg, tsmovavg

2-78

medprice

Purpose

Syntax

Arguments

Description

Median price

mprc = medprice(Chighp, lowp)
mprc = medprice([highp lowp])
mprcts = medprice(tsobj)

mprcts = medprice(tsobj, ParameterName, ParameterValue, ...)
highp High price (vector)
Towp Low price (vector)
tsobj Financial time series object

mprc = medprice(highp, lowp) calculates the median prices mprc from the
high (highp) and low (lowp) prices. The median price is the average of the high
and low price for each period.

mprc = medprice([highp lowp]) accepts a two-column matrix as the input
rather than two individual vectors. The columns of the matrix represent the
high and low prices, in that order.

mprcts = medprice(tsobj) calculates the median prices of a financial time
series object tsobj. The object must minimally contain the series High and Low.
The median price is the average of the high and low price each period. mprcts
is a financial time series object with the same dates as tsobj and the data
series MedPrice.

mprcts = medprice(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are:

=« “HighName~: high prices series name
= “LowName~: low prices series name

Parameter values are the strings that represent the valid parameter names.

2-79

medprice

Example Compute the median price for Disney stock and plot the results.

load disney.mat

dis_MedPrice = medprice(dis)
plot(dis_MedPrice)
title(’Median Price for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2
Median Price far Disney

45 T T
| s

i — UNSSPSPURSENS OOS [NSSURSON SSSSSSS— |

35

- booomenennooeach T TR oo .

-

af----NE L L .

15
1996 1997 1998 19599 2000

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 177 -178

2-80

min

Purpose Minimum value
Syntax tsmin = min(tsobj)
Description tsmin = min(tsobj) finds the minimum value in each data series in the

financial time series object tsobj and returns it in tsmin. tsmin is a structure
with field name(s) identical to the data series name(s).

Note tsmin returns only the values and does not return the dates associated
with the values. The minimum values are not necessarily from the same date.

See Also max

2-81

minus

Purpose

Syntax

Arguments

Description

See Also

2-82

Financial time series subtraction

newfts = tsobj 1 - tsobj 2
newfts = tsobj - array
newfts = array - tsobj

tsobj Financial time series object

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

minus is an element-by-element subtraction of the components.

newfts = tsobj_1 - tsobj_2 subtracts financial time series objects. If an
object is to be subtracted from another object, both objects must have the same
dates and data series names, although the order need not be the same. The
order of the data series, when one financial time series object is subtracted
from another, follows the order of the first object.

newfts = tsobj - array subtracts an array element-by-element from a
financial time series object.

newfts = array - tsobj subtracts a financial time series object
element-by-element from an array.

rdivide, plus, times

mrdivide

Purpose

Syntax

Arguments

Description

See Also

Financial time series matrix division

newfts = tsobj 1 / tsobj 2
newfts = tsobj / array
newfts = array / tsobj

tsobj Financial time series object

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

The mrdivide method divides element-by-element the components of one
financial time series object by the components of the other. You can also divide
the whole object by an array or divide a financial time series object into an
array.

If an object is to be divided by another object, both objects must have the same
dates and data series names, although the order need not be the same. The
order of the data series, when an object is divided by another object, follows the
order of the first object.

For financial time series objects, the mrdivide operation is identical to the
rdivide operation.

minus, plus, rdivide, times

2-83

mtimes

Purpose

Syntax

Arguments

Description

See Also

2-84

Financial time series matrix multiplication

newfts = tsobj 1 * tsobj 2
newfts = tsobj * array
newfts = array * tsobj

tsobj Financial time series object

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

The mtimes method multiplies element-by-element the components of one
financial time series object by the components of the other. You can also
multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have the

same dates and data series names, although the order need not be the same.
The order of the data series, when an object is multiplied by another object,

follows the order of the first object.

For financial time series objects, the mtimes operation is identical to the times
operation.

mrdivide, minus, plus, times

negvolidx

Purpose

Syntax

Arguments

Description

Negative volume index

nvi = negvolidx(closep, tvolume, initnvi)
nvi = negvolidx([closep tvolume], initnvi)
nvits = negvolidx(tsobj)
nvits = negvolidx(tsobj, initnvi, ParameterName, ParameterValue,
-)
closep Closing price (vector)
tvolume Volume traded (vector)
initnvi (Optional) Initial value for negative volume index
(Default = 100).
tsobj Financial time series object

nvi = negvolidx(closep, tvolume, initnvi) calculates the negative
volume index from a set of stock closing prices (closep) and volume traded
(tvolume) data. nvi is a vector representing the negative volume index. If
initnvi is specified, negvol idx uses that value instead of the default (100).

nvi = negvolidx([closep tvolume], #nitnvi) accepts a two-column
matrix, the first column representing the closing prices (closep) and the
second representing the volume traded (tvolume). If initnvi is specified,
negvol idx uses that value instead of the default (100).

nvits = negvolidx(tsobj) calculates the negative volume index from the
financial time series object tsobj. The object must contain, at least, the series
Close and Volume. nvits is a financial time series object with dates similar to
tsobj and a data series named NVI. The initial value for the negative volume
index is arbitrarily set to 100.

nvits = negvolidx(tsobj, initnvi, ParameterName, ParameterValue,
-..) accepts parameter name/ parameter value pairs as input. These pairs

specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are:

2-85

negvolidx

=« “CloseName”: closing prices series name
= ~VolumeName”: volume traded series name

Parameter values are the strings that represent the valid parameter names.

Example Compute the negative volume index for Disney stock and plot the results.

load disney.mat

dis_NegVol = negvolidx(dis)
plot(dis_NegVol)

title(’Negative Volume Index for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help
DEE&S NA 2/ PP
MNegative Wolume Index for Disney
115 . . T
L) S— (I S Y 1 S _
o5 - N 1N S — 1 — /
100 |--- It -Byd-- - 1ty - ohe R L .
g A 1 3 — -
1] EE— MU S— I — -
a5 | i |
1996 1997 1998 1899 2000
See Also onbalvol, posvolidx
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 193 - 194

2-86

onbalvol

Purpose

Syntax

Arguments

Description

On-Balance Volume (OBV)

obv = onbalvol(closep, tvolume)
obv = onbalvol([closep tvolume])
obvts = onbalvol (tsobj)

obvts = onbalvol(tsobj, ParameterName, ParameterValue, ...)
closep Closing price (vector)
tvolume Volume traded
tsobj Financial time series object

obv = onbalvol(closep, tvolume) calculates the On-Balance Volume (OBV)
from the stock closing price (closep) and volume traded (tvolume) data.

obv = onbalvol([closep tvolume]) accepts a two-column matrix
representing the closing price (closep) and volume traded (tvolume), in that
order.

obvts = onbalvol (tsobj) calculates the On-Balance Volume from the stock
data in the financial time series object tsobj. The object must minimally
contain series names Close and Volume. obvts is a financial time series object
with the same dates as tsobj and a series named OnBalVol.

obvts = onbalvol(tsobj, ParameterName, ParameterValue, ...)

accepts parameter name/ parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are:

= “CloseName”: closing prices series name
= ~VolumeName”: volume traded series name

Parameter values are the strings that represent the valid parameter names.

2-87

onbalvol

Example Compute the On-Balance Volume for Disney stock and plot the results.

load disney.mat

dis_OnBalVol = onbalvol(dis)
plot(dis_OnBalVol)

title(’On-Balance Volume for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2

w10 On-Balance Yolume for Disney
b i i
- e e e —
A | S Y S — -
R 10 Y I— |
A I T . oY | 1
E [-
PO O U . Ot O | |
7 S S SO | K S 4
Tooe 2000
See Also negvolidx
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 207 - 209

2-88

peravg

Purpose

Syntax

Arguments

Description

See Also

Periodic average

avgfts = peravg(tsobj, numperiod)
avgfts = peravg(tsobj, daterange)

tsobj Financial time series object

numperiod Integer specifying number of data points each periodic
average should be averaged over

daterange Time period over which the data is averaged

peravg calculates periodic averages of a financial time series object. Periodic
averages are calculated from the values per period defined. If the period
supplied is a string, it is assumed as a range of date string. If the period is
entered as numeric, the number represents the number of data points
(financial time series periods) to be included in a period for the calculation. For
example, if you enter 01/01/98::01/01/99" as the period input argument,
peravg returns the average of the time series between those dates, inclusive.
However, if you enter the number 5 as the period input, peravg returns a series
of averages from the time series data taken 5 date points (financial time series
periods) at a time.

avgfts = peravg(tsobj, numperiod) returns a structure avgfts that
contains the periodic (per numperiod periods) average of the financial time
series object. avgfts has field names identical to data series names of tsobj.

avgfts = peravg(tsobj, daterange) returns a structure avgfts that
contains the periodic (as specified by daterange) average of the financial time
series object. avgfts has field names identical to data series names of tsobj.

mean, tsmovavg

mean in the MATLAB documentation

2-89

plot

Purpose

Syntax

Arguments

Description

2-90

Plot data series

plot(tsobj)

hp = plot(tsobj)
plot(tsobj, linefmt)

hp = plot(tsobj, linefmt)

tsobj Financial time series object

linefmt (Optional) Line format

plot(tsobj) plots the data series contained in the object tsobj. Each data
series will be a line. plot automatically generates a legend as well as dates on
the x-axis. Grid is turned on by default. plot uses the default color order as if
plotting a matrix.

hp = plot(tsobj) additionally returns the handle(s) to the object(s) inside the
plot figure. If there are multiple lines in the plot, hp is a vector of multiple
handles.

plot(tsobj, linefmt) plots the data series in tsobj using format specified.
For a list of possible line formats, see plot in the MATLAB documentation. The
plot legend will not be generated, but the dates on x-axis and the plot grid will.
The specified line format is applied to all data series; that is, all data series can
have the same line type.

hp = plot(tsobj, linefmt) additionally plots the data series in tsobj using
format specified. The plot legend will not be generated, but the dates on x-axis
and the plot grid will. The specified line format is applied to all data series; that
is, all data series can have the same line type. If there are multiple lines in the
plot, hp is a vector of multiple handles.

Note To turn the legend off, enter legend off at the MATLAB command
line. Once you turned it off, the legend is essentially deleted. To turn it back
on, recreate it using the legend command as if you are creating it for the first
time. To turn the grid off, enter grid off. To turn it back on, enter grid on.

plot

See Also grid, legend, and plot in the MATLAB documentation
candle, chartfts, highlow

2-91

plus

Purpose

Syntax

Arguments

Description

See Also

2-92

Financial time series addition

newfts = tsobj 1 + tsobj 2
newfts = tsobj + array
newfts = array + tsobj

tsobj Financial time series object

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

minus is an element-by-element addition of the contents of the components.

newfts = tsobj 1 + tsobj_2 adds financial time series objects. If an object is
to be added to another object, both objects must have the same dates and data
series names, although the order need not be the same. The order of the data
series, when one financial time series object is added to another, follows the
order of the first object.

newfts = tsobj + array adds an array element-by-element to a financial
time series object.

newfts = array + tsobj adds a financial time series object
element-by-element to an array.

minus, rdivide, times

posvolidx

Purpose

Syntax

Arguments

Description

Positive volume index

pvi = posvolidx(closep, tvolume, initpvi)
pvi = posvolidx([closep tvolume], initpvi)
pvits = posvolidx(tsobj)
pvits = posvolidx(tsobj, initpvi, ParameterName, ParameterValue, ...)
closep Closing price (vector)
tvolume Volume traded (vector)
initpvi (Optional) Initial value for positive volume index
(Default = 100).
tsobj Financial time series object

pvi = posvolidx(closep, tvolume, initpvi) calculates the positive
volume index from a set of stock closing prices (closep) and volume traded
(tvolume) data. pvi is a vector representing the positive volume index. If
initpvi is specified, posvolidx uses that value instead of the default (100).

pvi = posvolidx([closep tvolume], initpvi) accepts a two-column
matrix, the first column representing the closing prices (closep) and the
second representing the volume traded (tvolume). If initpvi is specified,
posvolidx uses that value instead of the default (100).

pvits = posvolidx(tsobj) calculates the positive volume index from the
financial time series object tsobj. The object must contain, at least, the series
Close and Volume. pvits is a financial time series object with dates similar to
tsobj and a data series named PVI. The initial value for the positive volume
index is arbitrarily set to 100.

pvits = posvolidx(tsobj, initpvi, ParameterName, ParameterValue,...)
accepts parameter name/ parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are:

= “CloseName”: closing prices series name
= ~VolumeName~”: volume traded series name

2-93

posvolidx

Parameter values are the strings that represent the valid parameter names.

Example Compute the positive volume index for Disney stock and plot the results.

load disney.mat

dis_PosVol = posvolidx(dis)
plot(dis_PosVol)

title(CPositive Volume Index for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2

Pasitive “olume Index for Disney

140

130

120

110

100 -~ 4--

90

80
1996 1997 1998 1993 2000
See Also onbalvol, negvol idx
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 236 - 238

2-94

power

Purpose

Syntax

Arguments

Description

See Also

Financial time series power

newfts = tsobj .~ array
newfts = array -~t sobj
newfts = tsobj 1 .~ tsobj 2

tsobj Financial time series object

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

newfts = tsobj .~ array raises all values in the data series of the financial
time series object tsobj element-by-element to the power indicated by the
array value. The results are stored in another financial time series object
newfts. newfts contains the same data series names as tsobj.

newfts = array .~ tsobj raises the array values element-by-element to the
values contained in the data series of the financial time series object tsobj. The
results are stored in another financial time series object newfts. newfts
contains the same data series names as tsobj.

newfts = tsobj_1 .~ tsobj_2 raises the values in the object tsobj_1
element-by-element to the values in the object tsobj_2. The data series names,
the dates, and the number of data points in both series must be identical.
newfts contains the same data series names as the original time series objects.

minus, plus, rdivide, times

2-95

prcroc

Purpose

Syntax

Arguments

Description

2-96

Price rate of change

proc = prcroc(closep, nperiods)
procts = prcroc(tsobj, nperiods)
procts = prcroc(tsobj, nperiods, ParameterName, ParameterValue)

closep Closing price
nperiods (Optional) Period difference. (Default = 12.)
tsobj Financial time series object

proc = prcroc(closep, nperiods) calculates the price rate of change proc
from the closing price closep. If nperiods periods is specified, the price rate of
change is calculated between the current closing price and the closing price
nperiods ago.

procts = prcroc(tsobj, nperiods) calculates the price rate of change
procts from the financial time series object tsobj. tsobj must contain a data
series named Close. The output procts is a financial time series object with
similar dates as tsobj and a data series named PriceROC. If nperiods is
specified, the price rate of change is calculated between the current closing
price and the closing price nperiods ago.

procts = prcroc(tsobj, nperiods, ParameterName, ParameterValue)
specifies the name for the required data series when it is different from the
default name. The valid parameter name is:

= “CloseName”: closing price series name

The parameter value is a string that represents the valid parameter name.

prcroc

Compute the price rate of change for Disney stock and plot the results.

Example
load disney.mat
dis_PriceRoc = prcroc(dis)
plot(dis_PriceRoc)
title(C’Price Rate of Change for Disney”)
Figure No. 1 =[O x]
File Edit Tools ‘Window Help
DEE&S NA 2/ PP
Price Rate of Change far Disney
25 T T
— PriceROC
20 : : :
5 i i |
1995 1997 1995 1999 2000
See Also volroc
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 243 - 245

2-97

pvtrend

Purpose

Syntax

Arguments

Description

2-98

Price and Volume Trend (PVT)

pvt = pvtrend(closep, tvolume)
pvt = pvtrend([closep tvolume])
pvtts = pvtrend(tsobj)

pvtts = pvtrend(tsobj, ParameterName, ParameterValue, ...)
closep Closing price
tvolume Volume traded
tsobj Financial time series object

pvt = pvtrend(closep, tvolume) calculates the Price and Volume Trend
(PVT) from the stock closing price (closep) data and the volume traded
(tvolume) data.

pvt = pvtrend([closep tvolume]) accepts a two-column matrix in which
first column contains the closing prices (closep) and the second contains the
volume traded (tvolume).

pvtts = pvtrend(tsobj) calculates the Price and Volume Trend (PVT) from
the stock data contained in the financial time series object tsobj. tsobj must
contain the closing price series Close and the volume traded series Volume.
pvtts is a financial time series object with dates similar to tsobj and a data
series named PVT.

pvtts = pvtrend(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name/ parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are:

= “CloseName”: closing prices series name
= *VolumeName~: volume traded series name

Parameter values are the strings that represent the valid parameter names.

pvtrend

Example Compute the price and volume trend for Disney stock and plot the results.

load disney.mat

dis_PVTrend = pvtrend(dis)
plot(dis_PVTrend)

title(CCPrice and Volume Trend for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2

w10” Price and Yalume Trend for Disney

9 T T T
. . . — VT
e e e e S T —
? ___ —
o e T | L | e —
T ST .4 o R .
- bocoscosssssssaliifcccccassassssssadesaascassas||ballledesscsacossoassas -
; E
LT —— — |

2000

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 239 - 240

2-99

rdivide

Purpose

Syntax

Arguments

Description

See Also

2-100

Financial time series division

newfts = tsobj 1 ./ tsobj 2
newfts = tsobj ./ array
newfts = array ./ tsobj

tsobj Financial time series object

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

The rdivide method divides element-by-element the components of one
financial time series object by the components of the other. You can also divide
the whole object by an array or divide a financial time series object into an
array.

If an object is to be divided by another object, both objects must have the same
dates and data series names, although the order need not be the same. The
order of the data series, when an object is divided by another object, follows the
order of the first object.

For financial time series objects, the rdivide operation is identical to the
mrdivide operation.

minus, mrdivide, plus, times

resamplets

Purpose Downsample data
Syntax newfts = resamplets(oldfts, samplestep)
Description newfts = resamplets(oldfts, samplestep) downsamples the data

contained in the financial time series object oldfts every samplestep periods.
For example, to have the new financial time series object contain every other
data element from oldfts, set samplestep to 2.

newfts is a financial time series object containing the same data series (names)
as the input oldfts.

See Also filter

2-101

rmfield

Purpose
Syntax

Description

See Also

2-102

Remove data series

fts rmfield(tsobj, fieldname)

fts = rmfield(tsobj, Fieldname) removes the data series fieldname and
its contents from the financial time series object tsobj. The fieldname must be
a cell array to remove multiple data series from the object at the same time. It
can be a string array containing the data series name to remove a single series
from the object.

chfield, extfield, fieldnames, getfield, isfield

rsindex

Purpose

Syntax

Arguments

Description

Relative Strength Index (RSI)

rsi = rsindex(closep, nperiods)
rsits = rsindex(tsobj, nperiods)
rsits = rsindex(tsobj, nperiods, ParameterName, ParameterValue)

closep Vector of closing prices
nperiods (Optional) Number of periods. Default = 14.
tsobj Financial time series object

rsi = rsindex(closep, nperiods) calculates the Relative Strength Index
(RSI) from the closing price vector closep.

rsits = rsindex(tsobj, nperiods) calculatesthe RSI from the closing price
series in the financial time series object tsobj. The object tsobj must contain
at least the series "Close”, representing the closing prices. rsits is a financial
time series object whose dates are the same as tsobj and whose data series
name is “RSI1~.

rsits = rsindex(tsobj, nperiods, ParameterName, ParameterValue)
accepts a parameter name/parameter value pair as input. This pair specifies
the name for the required data series if it is different from the expected default
name. The valid parameter name is:

= “CloseName”: closing prices series name

The parameter value is the string that represents the valid parameter name.

2-103

rsindex

Example Compute the relative strength index for Disney stock and plot the results.

load disney.mat

dis_RSIl = rsindex(dis)

plot(dis_RSI)

title(CRelative Strength Index for Dishey”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help
Dsda/ A s @20
Relative Strength Index for Disney
&0
’ | '
) I I -
B0 |-~ - AR R4 - -
Con) SO | 2| LT A LU 8 L R R T R LB -
1) O SE I B \ e B S -
) — 10U S S |
20 i |
1996 1997 1998 2000
See Also negvolidx, posvolidx
Reference Murphy, John J., Technical Analysis of the Futures Market, New York Institute

of Finance, 1986, pg. 295 - 302

2-104

setfield

Purpose

Syntax

Description

Example

See Also

Set content of a specific field

newfts = setfield(tsobj, field, V)
newfts = setfield(tsobj, field, {dates}, V)

setfield treats the contents of fields in a time series object (tsobj) as fields in
a structure.

newfts = setfield(tsobj, field, V) setsthe contents of the specified field
to the value V. This is equivalent to the syntax S.field = V.

newfts = setfield(tsobj, field, {dates}, V) sets the contents of the
specified field for the specified dates. dates can be individual cells of date
strings or a cell of a date string range using the : : operator, e.g.,
”03/01/99::03/31/99".

load dji30short
oldfieldnames = fieldnames(myftsl)
myftsl = setfield(myftsl, *Dividend”, 0.025);

newfieldnames = Fieldnames(myftsl)

chfield, Fieldnames, getfield, isfield, rmfield

2-105

size

Purpose Get number of dates and data series

Syntax szFfts = size(tsobj)
szfts = size(tsobj, dim)

Arguments tsobj Financial time series object

dim Dimension:
dim = 1 returns number of dates (rows).
dim = 2 returns number of data series (columns).

Description szfts = size(tsobj) returns the number of dates (rows) and the number of
data series (columns) in the financial time series object tsobj. The result is
returned in the vector szfts, whose first element is the number of dates and
second is the number of data series.

szfts = size(tsobj, dim) specifies the dimension you want to extract.

See Also size in the MATLAB documentation

length

2-106

smoothts

Purpose

Syntax

Arguments

Description

Smooth data

output = smoothts(input)
output = smoothts(input, *b”, wsize)

output
output

input

’b’, ,g,, or

wsize

stdev

’e

smoothts(input, ’g’, wsize, stdev)
smoothts(input, e, n)

input is a financial time series object or a
row-oriented matrix. In a row-oriented matrix each
row represents an individual set of observations.

Smoothing method (essentially the type of filter used).
May be Exponential (e), Gaussian (g), or Box (b).
Default = b.

Window size (scalar). Default = 5.

Scalar that represents the standard deviation of the
Gaussian window. Default = 0.65.

For Exponential method, specifies window size or
exponential factor, depending upon value.

n > 1 (window size) or period length.

n < 1and> 0 (exponential factor: alpha)

n = 1 (either window size or alpha)

If n is not supplied, the defaults are wsize = 5 and
alpha = 0.3333.

smoothts smooths the input data using the specified method.

output = smoothts(input) smooths the input data using the default Box
method with window size, wsize, of 5.

output = smoothts(input, *b”, wsize) smooths the input data using the
Box (simple, linear) method. wsize specifies the width of the box to be used.

output = smoothts(input, *g’, wsize, stdev) smooths the input data
using the Gaussian Window method.

2-107

smoothts

See Also

2-108

output = smoothts(input, “e”, n) smooths the input data using the
Exponential method. n can represent the window size (period length) or alpha.
If n > 1, n represents the window size. If 0 < n < 1, nrepresents alpha, where

=2
wsize+1
If input is a financial time series object, output is a financial time series object

identical to input except for contents. If input is a row-oriented matrix, ouput
is a row-oriented matrix of the same length.

tsmovavg

sortfts

Purpose

Syntax

Arguments

Description

See Also

Sort financial time series

sfts = sortfts(tsobj)

sfts = sortfts(tsobj, flag)

sfts sortfts(tsobj, seriesnames, flag)
[sfts, sidx] = sortfts(...)

tsobj Financial time series object

seriesnames (Optional) String containing a data series name or cell
array containing a list of data series names

flag (Optional) Sort order:
flag = 1; increasing order (default)
flag = -1; decreasing order

sfts = sortfts(tsobj, flag) sorts the financial time series object tsobj in
increasing order based upon the *dates” vector.

sfts = sortfts(tsobj, flag) sets the order of the sort. flag = +1 increases
date order. flag = -1 decreases date order.

sfts = sortfts(tsobj, seriesnames, flag) sorts the financial time series
object tsobj based upon the data series hame(s) seriesnames. If the optional
flag is set to -1, the sort is in decreasing order.

[sfts, sidx] = sortfts(...) additionally returns the index of the original
object tsobj sorted based on “dates” or specified data series name(s).

sort and sortrows in the MATLAB documentation

2-109

spctkd

Purpose

Syntax

Arguments

Description

2-110

Slow stochastics

[spctk, spctd] = spctkd(fastpctk, fastpctd)

[spctk, spctd] = spctkd([fastpctk fastpctd])

[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod)
[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)
skdts = spctkd(tsobj)

skdts = spctkd(tsobj, dperiods, dmamethod)

skdts = spctkd(tsobj, dperiods, dmamethod, ParameterName,

ParameterValue, ...)
fastpctk Fast stochastic F%K (vector)
fastpctk Fast stochastic F%D (vector)
dperiods (Optional) %D periods. Default = 3.
dmamethod (Optional) %D moving average method. Default = e~

(exponential).

tsobj Financial time series object

[spctk, spctd] = spctkd(fastpctk, fastpctd) calculates the slow
stochastics S%K and S%D. spctk and spctd are column vectors representing
the respective slow stochastics.

[spctk, spctd] = spctkd([fastpctk fastpctd]) accepts a two-column
matrix as input. The first column contains the fast stochastic F%K values, and
the second contains the fast stochastic F%D values.

[spctk, spctd] = spctkd(fastpctk, fastpctd, dperiods, dmamethod)
calculates the slow stochastics, S%K and S%D, using the value of dperiods to
set the number of periods and dmamethod to indicate the moving average
method. The inputs fastpctk and fastpctk must contain the fast stochastics,
F%K and F%D in column orientation. spctk and spctd are column vectors
representing the respective slow stochastics.

Valid moving average methods for %D are Exponential (*e”) and Triangular
(*t”). See tsmovavg for explanations of these methods.

spctkd

[spctk, spctd] = spctkd([fastpctk fastpctd], dperiods, dmamethod)
accepts a two-column matrix rather than two separate vectors. The first
column contains the F%K values, and the second contains the F%D values.

skdts = spctkd(tsobj) calculates the slow stochastics, S%K and S%D. tsobj
must contain the fast stochastics, F%K and F%D, in data series named
PercentK and PercentD. skdts is a financial time series object with the same
dates as tsobj. Within tsobj the two series SlowPctK and SlowPctD represent
the respective slow stochastics.

skdts = spctkd(tsobj, dperiods, dmamethod) allows you to specify the
length and the method of the moving average used to calculate S%D values.

skdts = spctkd(tsobj, dperiods, dmamethod, ParameterName,
ParameterValue, ...) accepts parameter name/parameter value pairs as
input. These pairs specify the name(s) for the required data series if it is
different from the expected default name(s). Valid parameter names are:

« “KName~”: F%K series name
« “DName”: F%D series name

Parameter values are the strings that represent the valid parameter names.

2-111

spctkd

Example Compute the slow stochastics for Disney stock and plot the results.

load disney.mat

dis_FastStoch = fpctkd(dis);
dis_SlowStoch = spctkd(dis_FastStoch);
pl ot (di s_SI owSt och)

title(’Slow Stochastics for Disney”)

| Figure No. 1 Hi[=] &3
File Edit Tools ‘Window Help

DeE& KNA A/ 2D

Slow Stochastics for Disney
T

100

S0

80

700111+

B0

50 -

M-

30

fos6 1997 1398 1999 2000
See Also fpctkd, stochosc, tsmovavg
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 268 - 271

2-112

std

Purpose

Syntax

Arguments

Description

See Also

Standard deviation

tsstd = std(tsobj)
tsstd = std(tsobj, flag)

tsobj Financial time series object

flag (Optional) Normalization factor:
flag = 1 normalizes by N (number of observations).
flag = 0 normalizes by (N-1).

tsstd = std(tsobj) computes the standard deviation of each data series in
the financial time series object tsobj and returns the results in tsstd. tsstd
is a structure with field name(s) identical to the data series name(s).

tsstd = std(tsobj, flag) normalizes the data as indicated by flag.

hist, mean

2-113

stochosc

Purpose

Syntax

Arguments

Description

2-114

Stochastic oscillator

stosc = stochosc(highp, lowp, closep)

stosc = stochosc([highp lowp closep])

stosc = stochosc(highp, lowp, closep, kperiods, dperiods, dmamethod)
stosc= stochosc([highp lowp closep], kperiods, dperiods, dmamethod)
stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod)

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,

ParameterName, ParameterValue, ...)
highp High price (vector)
Towp Low price (vector)
closep Closing price (vector)
kperiods (Optional) %K periods. Default = 10.
dperiods (Optional) %D periods. Default = 3.
damethod (Optional) %D moving average method. Default = e~

(exponential).

tsobj Financial time series object

stosc = stochosc(highp, lowp, closep) calculates the Fast PercentK
(F%K) and Fast PercentD (F%D) from the stock price data, highp (high prices),
lowp (low prices), and closep (closing prices). stosc is a two-column matrix
whose first column is the F%K values and second is the F%D values.

stosc = stochosc([highp lowp closep]) accepts a three-column matrix of
high (highp), low (lowp), and closing prices (closep), in that order.

stosc = stochosc(highp, lowp, closep, kperiods, dperiods,
dmamethod) calculates Fast PercentK (F%K) and Fast PercentD (F%D) from
the stock price data, highp (high prices), lowp (low prices), and closep (closing
prices). kperiods sets the %K period. dperiods sets the %D period.

damethod specifies the %D moving average method. Valid moving average
methods for %D are Exponential (*e”) and Triangular (*t~). See tsmovavg for
explanations of these methods.

stochosc

stosc= stochosc([highp lowp closep], kperiods, dperiods, dmamethod)
accepts a three-column matrix of high (highp), low (lowp), and closing prices
(closep), in that order.

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod) calculates
the Fast PercentK (F%K) and Fast PercentD (F%D) from the stock price data
in the financial time series object tsobj. tsobj must minimally contain the
series High (high prices), Low (low prices), and Close (closing prices). stoscts
is a financial time series object with similar dates to tsobj and two data series
named SOK and SOD.

stoscts = stochosc(tsobj, kperiods, dperiods, dmamethod,
ParameterName, ParameterValue, ...) acceptsparameter name/ parameter
value pairs as input. These pairs specify the name(s) for the required data
series if it is different from the expected default name(s). Valid parameter
names are:

=« “HighName~: high prices series name
= “LowName~: low prices series name
= “CloseName”: closing prices series name

Parameter values are the strings that represent the valid parameter names.

2-115

stochosc

Example Compute the stochastic oscillator for Disney stock and plot the results.

load disney.mat

dis_StochOsc = stochosc(dis)
plot(dis_StochOsc)

title(’Stochastic Oscillator for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2

Stochastic Oscillatar for Disney

100

80 -~ 1~ -

80 --- 1t

70f---

GO f----

1) S

40

30

See Also fpctkd, spctkd

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 268 - 271

2-116

subsasgn

Purpose Content assignment

Description subasgn assigns content to a component within a financial time series object.
subasgn supports integer indexing or date string indexing into the time series
object with values assigned to the designated components. Serial dates
numbers may not be used as indices. To use date string indexing, enclose the
date string(s) in a pair of single quotes ~ ~.

You can use integer indexing on the object as in any other MATLAB matrix. It
will return the appropriate entry(ies) from the object.

You must specify the component to which you want to assign values. An
assigned value must be either a scalar or a column vector.
Example Given a time series myfts with a default data series nhame of seriesl.
myfts._seriesl(*07/01/98::07/03/98”) = [1 2 3]~;
assigns the values 1, 2, and 3 corresponding to the first three days of July, 1998.
myfts(~07/01/98::07/05/987)

ans =
desc: Data Assignment
freq: Daily (1)
dates: (5)’ seriesl: (56)”
*01-Jul-1998” [1]
*02-Jul-1998" [2]
*03-Jul-1998" [3]
*04-Jul-1998" [4561.2]
*05-Jul-1998" [5612.3]

See Also datestr in the Financial Toolbox User’s Guide, subsref

2-117

subsref

Purpose

Description

Examples

2-118

Subscripted reference

subsref implements indexing for a financial time series object. Integer
indexing or date string indexing is allowed. Serial dates numbers may not be
used as indices.

To use date string indexing, enclose the date string(s) in a pair of single quotes

You can use integer indexing on the object as in any other MATLAB matrix. It
will return the appropriate entry(ies) from the object.

Additionally, subsref lets you access the individual components of the object
using the structure syntax.
Create a time series named myfts.

myfts = Fints((datenum(”07/01/98”):datenum(”07/01/98”)+4)”,_ ..
[1234.56; 2345.61; 3456.12; 4561.23; 5612.34], [1, ’Daily’,...
’Data Reference”);

Extract the data for the single day July 1, 1998.
myfts(*07/01/98%)

ans =

desc: Data Reference
freq: Daily (1)

dates: (1)’ seriesl: (1)’
*01-Jul-1998~ L 1234.6]

subsref

Now, extract the data for the range of dates July 1, 1998 through July 5, 1998.
myfts(~07/01/98::07/03/987)

ans =

desc: Data Reference
freq: Daily (1)

dates: (3)’ ’seriesl: (3)”

*01-Jul-1998~ [1234.6]
*02-Jul-1998~ [2345.6]
*03-Jul-1998~ [3456.1]

You can use the MATLAB structure syntax to access the individual
components of a financial time series object. To get the description field of
myfts, enter

myfts.desc

at the command line, which returns

ans =
Data Reference

Similarly
myfts._seriesl
returns
ans =

desc: Data Reference
freq: Daily (1)

dates: (5)’ ’seriesl: (6)”

701-Jul-1998~ L 1234.6]
702-Jul-1998~ L 2345.6]
703-Jul-1998~ L 3456.1]
704-Jul-1998~ L 4561.2]
705-Jul-1998~ L 5612.3]

2-119

subsref

See Also datestr in the Financial Toolbox User’'s Guide.

fts2mtx, subsasgn

2-120

times

Purpose

Syntax

Arguments

Description

See Also

Financial time series multiplication

newfts = tsobj 1 .* tsobj 2
newfts = tsobj .* array
newfts = array .* tsobj

tsobj Financial time series object

array A scalar value or array with number of rows equal to
the number of dates in tsobj and number of columns
equal to the number of data series in tsobj.

The times method multiplies element-by-element the components of one
financial time series object by the components of the other. You can also
multiply the entire object by an array.

If an object is to be multiplied by another object, both objects must have the

same dates and data series names, although the order need not be the same.
The order of the data series, when an object is multiplied by another object,

follows the order of the first object.

For financial time series objects, the times operation is identical to the mtimes
operation.

minus, mtimes, plus, rdivide

2-121

toannual

Purpose Convert to annual

Syntax newfts = toannual (oldfts)

Description newfts = toannual(oldfts) converts a financial time series of any frequency
to one of an annual frequency. toannual sets the dates to the end of the year
(December 31).

See Also convertto, todaily, tomonthly, toquarterly, tosemi, toweekly

2-122

todaily

Purpose
Syntax

Description

See Also

Convert to daily

newfts = todaily(oldfts)

newfts = todaily(oldfts) converts a financial time series of any frequency
to one of a daily frequency. todaily assumes a five day business week. If
oldfts contains weekend data, todai ly removes that data when creating
newfts.

To create a daily time series from non-daily oldfts, todaily copies the periodic
value for however many days there are in the period of the input time series.
For example, if oldfts is a weekly time series, the value for each week is
replicated four additional times until the next week’s value is encountered. The
process is then repeated for the next week.

convertto, toannual, tomonthly, toquarterly, tosemi, toweekly

2-123

todecimal

Purpose
Syntax

Description

Example

See Also

2-124

Fractional to decimal conversion
usddec = todecimal(quote, fracpart)

usddec = todecimal(quote, fracpart) returns the decimal equivalent,
usddec, of a security whose price is normally quoted as a whole number and a
fraction (quote). fracpart indicates the fractional base (denominator) with
which the security is normally quoted (default = 32).

In the Wall Street Journal bond prices are quoted in fractional form based on
32nd. For example, if you see the quoted price is 100:05 it means 100 5/32. To
find the equivalent decimal value, enter

usddec = todecimal (100.05)

usddec =
1000.1563

usddec = todecimal(97.04, 16)

usddec =
97.2500

Note The convention of using . (period) as a substitute for - (colon) in the
input is adopted from Microsoft Excel.

toquoted

tomonthly

Purpose
Syntax

Description

See Also

Convert to monthly
newfts = tomonthly(oldfts)

newfts = tomonthly(oldfts) converts a financial time series of any
frequency to one of a monthly frequency. tomonthly assumes a five day
business week, when necessary.

If oldfts is a daily or weekly time series, the monthly values in newfts are the
averages of the input daily or weekly values. If oldfts is a quarterly,
semiannual, or annual time series, the input values are replicated as many
times as necessary to fill the monthly time series.

Dates are set to the end of the months.

convertto, toannual, todaily, toquarterly, tosemi, toweekly

2-125

toquarterly

Purpose
Syntax

Description

See Also

2-126

Convert to quarterly

newfts = toquarterly(oldfts)

newfts = toquarterly(oldfts) converts a financial time series of any
frequency to one of a quarterly frequency. toquarterly assumes a five day
business week, when necessary.

If oldfts is a daily, weekly, or monthly time series, the quarterly values in
newfts are the averages of the input values for the quarter. If oldfts is a
semiannual or annual time series, the input values are replicated as many
times as necessary to fill the quarterly time series.

Dates in newfts are set to the end of the quarters (March 31, June 30,
September 30, and December 31.

convertto, toannual, todaily, tomonthly, tosemi, toweekly

toguoted

Purpose
Syntax

Description

Example

See Also

Decimal to fractional conversion

quote = toquoted(usddec, fracpart)

quote = toquoted(usddec, fracpart) returns the fractional equivalent,
quote, of the decimal figure, usddec, based on the fractional base
(denominator), fracpart. The fractional bases are the ones used for quoting
equity prices in the United States (denominator 2, 4, 8, 16, or 32). If fracpart
is not entered, the denominator 32 is assumed.

A United States equity price in decimal form is 101.625. To convert this to
fractional form in eights of a dollar:

quote toquoted(101.625, 8)

quote
101.05

The answer is interpreted as 101 5/8.

Note The convention of using . (period) as a substitute for - (colon) in the
output is adopted from Microsoft Excel.

todecimal

2-127

tosemi

Purpose Convert to semiannual
Syntax newfts = tosemi(oldfts)
Description newfts = tosemi(oldfts) converts a financial time series of any frequency to

one of a semiannual frequency. tosemi sets the dates to the end of each
semiannual time period (June 30 and December 31).

See Also convertto, toannual, todaily, tomonthly, toquarterly, toweekly

2-128

toweekly

Purpose
Syntax

Description

See Also

Convert to weekly

newfts = toweekly(oldfts)

newfts = toweekly(oldfts) converts a financial time series of any frequency
to one of a weekly frequency. toweekly assumes a five day business week, when
necessary. All days in newfts are set to Fridays.

If oldfts is a daily series, newfts is a financial time series containing data for
Fridays only. If oldfts is a monthly, quarterly, semiannual, or annual time
series, the input values are replicated as many times as there are Fridays to
fill the weekly time series.

convertto, toannual, todaily, tomonthly, toquarterly, tosemi

2-129

tsaccel

Purpose

Syntax

Arguments

Description

2-130

Acceleration between periods

acc = tsaccel(data, nperiods, datatype)
accts = tsaccel(tsobj, nperiods, datatype)

data Data series
nperiods (Optional) Number of periods. Default = 12.
datatype (Optional) Indicates whether data contains the data

itself or the momentum of the data:
0 = data contains the data itself (default).
1 = data contains the momentum of the data.

tsobj Name of an existing financial time series object

acc = tsaccel(data, nperiods, datatype) calculates the acceleration of a
data series, essentially the difference of the current momentum with the
momentum some number of periods ago. If nperiods is specified, tsaccel
calculates the acceleration of a data series data with time distance of nperiods
periods.

accts = tsaccel(tsobj, nperiods, datatype) calculates the acceleration
of the data series in the financial time series object tsobj, essentially the
difference of the current momentum with the momentum some number of
periods ago. Each data series in tsobj is treated individually. accts is a
financial time series object with similar dates and data series names as tsobj.

tsaccel

Example

Compute the acceleration for Disney stock and plot the results.

load disney.mat

dis = rmfield(dis,”VOLUME”) % remove VOLUME field
dis_Accel = tsaccel(dis);

plot(dis_Accel)

title(CAcceleration for Disney”)

#|Figure No. 1 =[O x]
File Edit Tools ‘Window Help

Reference

I EREY 2R

Acceleration for Disney

-25
1996 1997 1998 19599 2000

tsmom

Kaufman, P. J., The New Commodity Trading Systems and Methods, New
York: John Wiley & Sons, 1987

2-131

tsmom

Purpose

Syntax

Arguments

Description

2-132

Momentum between periods

mom = tsmom(data, nperiods)
momts = tsmom(tsobj, nperiods)

data Data series
nperiods (Optional) Number of periods. Default = 12.
tsobj Name of an existing financial time series object

Momentum is the difference between two prices (data points) separated by a
number of periods.

mom = tsmom(data, nperiods) calculates the momentum of a data series
data. If nperiods is specified, tsmom uses that value instead of the default 12.

momts = tsmom(tsobj, nperiods) calculates the momentum of all data
series in the financial time series object tsobj. Each data series in tsobj is
treated individually. momts is a financial time series object with similar dates
and data series names as tsobj. If nperiods is specified, tsmom uses that value
instead of the default 12.

tsmom

Example Compute the momentum for Disney stock and plot the results.

load disney.mat

dis = rmfield(dis,”VOLUME”) % remove VOLUME field
dis_Mom = tsmom(dis);

plot(dis_Mom)

title("Momentum for Disney”)

#|Figure No. 1 =[O x]
File Edit Tools ‘Window Help

I EREY 2R

Mamenturmn for Disney

g

Bl
1996 1997 1998 19599 2000

See Also tsaccel

2-133

tsmovavg

Purpose

Syntax

Arguments

Description

2-134

Moving average

output = tsmovavg(tsobj, ’s’, lead, lag) (Simple)
output = tsmovavg(vector, ’s’, lead, lag, dim)

output = tsmovavg(tsobj, ’e’, timeperiod) (Exponential)
output = tsmovavg(vector, ’e’, timeperiod, dim)

output = tsmovavg(tsobj, “t’, numperiod) (Triangular)
output = tsmovavg(vector, ’t’, numperiod, dim)

output = tsmovavg(tsobj, ’w’, weights, pivot) (Weighted)
output = tsmovavg(vector, ’w’, weights, pivot, dim)

output = tsmovavg(tsobj, ’m”, numperiod) (Modified)
output = tsmovavg(vector, ’m’, numperiod, dim)

tsobj Financial time series object

lead Number of following data points

lag Number of previous data points

vector Row vector or row-oriented matrix. Each row is a set of
observations.

dim (Optional) Specifies dimension when input is a vector
or matrix. Default = 2 (row-oriented). If dim = 1, input
is assumed to be a column vector or column-oriented
matrix (each column being a set of observations.)
output is identical in format to input.

timeperiod Length of time period

numperiod Number of periods considered

weights Weights for each element in the window

pivot Point where the average should be placed

output = tsmovavg(tsobj, ’s’, lead, lag) and
output = tsmovavg(vector, ’s”, lead, lag, dim) compute the simple

moving average. lead and lag indicate the number of previous and following
data points used in conjunction with the current data point when calculating

tsmovavg

the moving average. For example, if you want to calculate a five-day moving
average, with the current data in the middle, you set both lead and lag to 2
(2+1+2=5).

output = tsmovavg(tsobj, ’e’, timeperiod) and

output = tsmovavg(vector, “e”, timeperiod, dim) compute the
exponential weighted moving average. The exponential moving average is a
weighted moving average with the assigned weights decreasing exponentially
as you go further into the past. If a is a smoothing constant, the most recent
value of the time series is weighted by a, the next most recent value is weighted
by a(1-a), the next value by a(1-a)?, and so forth. Here, a is calculated using
2/(timeperiod+1), or 2/(Windows_size+1).

output = tsmovavg(tsobj, ’t”, numperiod) and
output = tsmovavg(vector, “t”, numperiod, dim) compute the triangular

moving average. The triangular moving average double smooths the data.

tsmovavg calculates the first simple moving average with window width of
numperiod/2. If numperiod is an odd number, it rounds up (numperiod/2) and
uses it to calculate both the first and the second moving average. The second
moving average a simple moving average of the first moving average. If
numperiod is an even number, tsmovavg calculates the first moving average
using width (numperiod/2) and the second moving average using width
(numperiod/2)+1.

output = tsmovavg(tsobj, ’w’, weights, pivot) and

output = tsmovavg(vector, ’w’, weights, pivot, dim) calculate the
moving average by supplying weights for each element in the moving window.
The length of the weight vector determines the size of the window. For
example, if weights = [1 1 1 1 1] and pivot = 3, tsmovavg calculates a
simple moving average by averaging the current value with the two previous
and two following values.

output = tsmovavg(tsobj, “m”, numperiod) and
output = tsmovavg(vector, ’m”, numperiod, dim) calculate the modified

moving average. The first moving average value is calculated by averaging the
past numperiod inputs. The rest of the moving average values are calculated by
adding to the previous moving average value the current data point divided by
numperiod and subtracting the previous moving average divided by numperiod.

2-135

tsmovavg

Moving average values prior to numperiod-th value are copies of the data

values.
See Also mean, peravg
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 184-192

2-136

typprice

Purpose

Syntax

Arguments

Description

Typical price

tprc = typprice(highp, lowp, closep)
tprc = typprice([highp lowp closep])
tprcts = typprice(tsobj)

tprcts = typprice(tsobj, ParameterName, ParameterValue, ...)
highp High price (vector)
Towp Low price (vector)
closep Closing price (vector)
tsobj Financial time series object

tprc = typprice(highp, lowp, closep) calculates the typical prices tprc
from the high (highp), low (lowp), and closing (closep) prices. The typical price
is the average of the high, low, and closing prices for each period.

tprc = typprice([highp lowp closep]) accepts a three-column matrix as
the input rather than two individual vectors. The columns of the matrix
represent the high, low, and closing prices, in that order.

tprcts = typprice(tsobj) calculates the typical prices from the stock data

contained in the financial time series object tsobj. The object must contain, at
least, the High, Low, and Close data series. The typical price is the average of
the closing price plus the high and low prices. tprcts is a financial time series
object of the same dates as tsobj containing the data series TypPrice.

tprcts = typprice(tsobj, ParameterName, ParameterValue, ...)
accepts parameter name/ parameter value pairs as input. These pairs specify
the name(s) for the required data series if it is different from the expected
default name(s). Valid parameter names are:

= “HighName~: high prices series name
< “LowName~: low prices series name
= “CloseName”: closing prices series name

Parameter values are the strings that represent the valid parameter names.

2-137

typprice

Example Compute the typical price for Disney stock and plot the results.

load disney.mat

dis_Typ = typprice(dis);
plot(dis_Typ)

title(CTypical Price for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

I EREY 2R
Typical Price for Disney
45 ! : :

| — TypPrice

i — UNSRPSPURSENS OOS [NSSOSSON SSSSSSS— |

[S — i, S .

- booomenennooeeact s formnnnennees .

25

a0f----M L L .

15
1996 1997 1998 19599 2000

See Also medprice, wclose

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 291 - 292

2-138

uminus

Purpose Unary minus of financial time series object

Syntax uminus

Description uminus implements unary minus for a financial time series object.
See Also uplus

2-139

uplus

Purpose Unary plus of financial time series object

Syntax uplus

Description uplus implements unary plus for a financial time series object.
See Also uminus

2-140

vertcat

Purpose
Syntax

Description

See Also

Concatenate financial time series objects vertically
newfts = vertcat(seriesl, series2, ...)

vertcat implements vertical concatenation of financial time series objects.
vertcat essentially adds data points to a time series object. The objects to be
vertically concatenated must not have any identical dates. However, they must
have the same data series hames.

The description fields will be concatenated as well. They will be separated by
1.

horzcat

2-141

volroc

Purpose

Syntax

Arguments

Description

2-142

Volume rate of change

vroc = volroc(tvolume nperiods)
vrocts = volroc(tsobj, nperiods)
vrocts = volroc(tsobj, nperiods, ParameterName, ParameterValue)

tvolume Volume traded
nperiods (Optional) Period difference. (Default = 12.)
tsobj Financial time series object

vroc = volroc(tvolume nperiods) calculates the volume rate of change,
vroc, from the volume traded data tvolume. If nperiods periods is specified,
the volume rate of change is calculated between the current volume and the
volume nperiods ago.

vrocts = volroc(tsobj, nperiods) calculates the volume rate of change,
vrocts, from the financial time series object tsobj. vrocts is a financial time
series object with similar dates as tsobj and a data series named VolumeROC.
If nperiods periods is specified, the volume rate of change is calculated
between the current volume and the volume nperiods ago.

vrocts = volroc(tsobj, nperiods, ParameterName, ParameterValue)
specifies the name for the required data series when it is different from the
default name. The valid parameter name is:

« ~VVolumeName”: volume traded series name

The parameter value is a string that represents the valid parameter name.

volroc

Example Compute the volume rate of change for Disney stock and plot the results.

load

disney.mat

dis_VolRoc = volroc(dis)
plot(dis_VolRoc)
title("Volume Rate of Change for Disney”)

Figure No. 1

File Edit

Tools ‘Window Help

IS[=] E3

BN Y2

“olume Rate of Change for Disney

— “olumeROC

900

800

700

500

500

400

300

200

100 {---4--H--f-

See Also prcroc

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 310 - 311

2-143

wclose

Purpose

Syntax

Arguments

Description

2-144

Weighted close

wcls = wclose(highp, lowp, closep)
wcls = wclose([highp lowp closep])
wclsts = wclose(tsobj)

wclsts = wclose(tsobj, ParameterName, ParameterValue, ...)
highp High price (vector)
Towp Low price (vector)
closep Closing price (vector)
tsobj Financial time series object

The weighted close price is the average of twice the closing price plus the high
and low prices.

wcls = wclose(highp, lowp, closep) calculates the weighted close prices
wcls based on the high (highp), low (lowp), and closing (closep) prices per
period.

wcls = wclose([highp lowp closep]) accepts a three-column matrix
consisting of the high, low, and closing prices, in that order.

wclsts = wclose(tsobj) computes the weighted close prices for a set of stock
price data contained in the financial time series object tsobj. The object must
contain the high, low, and closing prices needed for this function. The function
assumes that the series are named 'High”, 'Low”, and 'Close”. All three are
required. wclsts is a financial time series object of the same dates as tsobj and
contains the data series named “WClose”.

wclsts = wclose(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are:

= “HighName~: high prices series hame
= “LowName~: low prices series name

wclose

=« “CloseName”: closing prices series name

Parameter values are the strings that represent the valid parameter names.

Example Compute the weighted closing prices for Disney stock and plot the results.

load disney.mat

dis_Wclose = wclose(dis)

plot(dis_Wclose)

title(C’Weighted Closing Prices for Disney?’)

| Figure No. 1 Hi[=] &3
File Edit Tools Window Help
Deda NA 2/ ppo
Weighted Closing Prices for Disney
45
! ! ==
O T .
S i S— 1
e e R I & Joccoessezeazeas .
| N NW* B R— |
P ML O .
15 | i |
996 1997 1998 1999 2000
See Also medprice, typprice
Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,

McGraw-Hill, 1995, pg. 312 - 313

2-145

willad

Purpose

Syntax

Arguments

Description

2-146

William’s Accumulation/Distribution line

wadl = willad(Chighp, lowp, closep)
wadl = willad([highp lowp closep])
wadlts = willad(tsobj)

wadlts = willad(tsobj, ParameterName, ParameterValue, ...)
highp High price (vector)
Towp Low price (vector)
closep Closing price (vector)
tsobj Time series object

wadl = willad(highp, lowp, closep) computes the William’'s
Accumulation/Distribution line for a set of stock price data. The prices needed
for this function are the high (highp), low (lowp), and closing (closep) prices.
All three are required.

wadl = willad([highp lowp closep]) accepts a three column matrix of
prices as input. The first column contains the high prices, the second contains
the low prices, and the third contains the closing prices.

wadlts = willad(tsobj) computesthe William’s Accumulation/Distribution
line for a set of stock price data contained in the financial time series object
tsobj. The object must contain the high, low, and closing prices needed for this
function. The function assumes that the series are named High, Low, and Close.
All three are required. wadlts is a financial time series object with the same
dates as tsobj and a single data series named “WillIAD".

wadlts = willad(tsobj, ParameterName, ParameterValue, ...) accepts
parameter name/parameter value pairs as input. These pairs specify the
name(s) for the required data series if it is different from the expected default
name(s). Valid parameter names are:

= “HighName~: high prices series hame
= “LowName~: low prices series name
=« “CloseName”: closing prices series name

willad

Parameter values are the strings that represent the valid parameter names.

Example Compute the Williams A/D line for Disney stock and plot the results.

load disney.mat

dis_Willad = willad(dis)
plot(dis_Willad)

titleC’Williams A/D Line for Disney”)

Figure No. 1 =[O x]
File Edit Tools ‘Window Help

BN Y2

Williams A/D Line for Disney
34 T T T

b [— wilaD

32

30

28

26

24

22

20
1996 1997 1998 19599 2000

See Also adline, adosc, willpctr

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 314 - 315

2-147

willpctr

Purpose William’s %R

Syntax wpctr = willpctr(Chighp, lowp, closep, nperiods)
wpctr = willpctr([highp, lowp, closep], nperiods)
wpctrts = willpctr(tsobj)
wpctrts = willpctr(tsobj, nperiods)
wpctrts = willpctr(tsobj, nperiods, ParameterName, ParameterValue,

-)
Arguments highp High price (vector)
Towp Low price (vector)
closep Closing price (vector)
nperiods Number of periods (scalar). Default = 14.
tsobj Financial time series object
Description wpctr = willpctr(highp, lowp, closep, nperiods) calculates the

William’s %R values for the given set of stock prices for a specified number of
periods nperiods. The stock prices needed are the high (highp), low (Iowp), and
closing (closep) prices. wpctr is a vector that represents the William's %R
values from the stock data.

wpctr = willpctr([highp, lowp, closep], nperiods) accepts the price
input as a three-column matrix representing the high, low, and closing prices,
in that order.

wpctrts = willpctr(tsobj) calculates the William's %R values for the
financial time series object tsobj. The object must contain at least three data
series named High (high prices), Low (low prices), and Close (closing prices).
wpctrts is a financial time series object with the same dates as tsobj and a
single data series named Wil IPctR”.

wpctrts = willpctr(tsobj, nperiods) calculates the William's %R values
for the financial time series object tsobj for nperiods periods.

2-148

willpctr

Example

wpctrts = willpctr(tsobj, nperiods, ParameterName, ParameterValue,
- ..) accepts parameter name/ parameter value pairs as input. These pairs

specify the name(s) for the required data series if it is different from the
expected default name(s). Valid parameter names are:

= “HighName~: high prices series name

< “LowName~: low prices series name
= “CloseName”: closing prices series name

Parameter values are the strings that represent the valid parameter names.

Compute the Williams %R values for Disney stock and plot the results.

load disney.mat

dis_Wpctr = willpctr(dis)
plot(dis_Wpctr)

titleCWilliams %R for Disney”)

| Figure No. 1 Hi[=] &3
File Edit Tools Window Help

DeE& KNA A/ 2D

Williams %R for Disney

l*l L — WillPctR

204---1-- 1
=0 k---{E-H

A b---- 4

| —

BOE----

F0k----

| —

o0 f----HY-- B P

-100
1996

1995 1999 2000

2-149

willpctr

See Also stochosc, willad

Reference Achelis, Steven B., Technical Analysis From A To Z, Second Printing,
McGraw-Hill, 1995, pg. 316 - 317

2-150

A
adline 2-12

adosc 2-15

analysis, technical 1-31
arithmetic 1-22
ascii2fts 1-10, 2-17

B

bollinger 2-18
boxcox 1-27, 2-20
busdays 2-22

C
candle 2-23

chaikosc 2-25

chaikvolat 2-28

chartfts 2-31

charting 1-31

chfield 2-33

compatible time series 1-22
component 1-13

convertto 2-34

D

data extraction 1-13
data series vector 1-13
data transformation 1-26
date string 1-17

indexing 1-17

range 1-19
date vector 1-13
datestr 1-17
default values 1-13

demonstration program 1-39

demonstration time series 2-35
demts2fts 2-35

description field 1-10, 1-13
diff 2-36

display 2-37

double-colon operator 1-19

E

end 1-22, 2-38

equal time series 1-22
exp 2-40

extfield 2-41
extracting data 1-13

F
fieldnames 2-42

Fillts 2-43
filter 2-44
fints 2-45
syntaxes 1-3
fpctkd 2-47
frequency
indicator field 1-13
indicators 1-9
setting 1-9
frequency conversion 1-26
fts2ascii 2-52
fts2mtx 1-15, 1-25, 2-53
ftsbound 1-20, 2-54
ftsdata subdirectory 1-11
ftstomtx 2-55

Index

1-2

G
getfield 2-55

H
hhigh 2-57
highlow 2-59
hist 2-61
horzcat 2-63

|
indexing
date range 1-19
date string 1-17
integer 1-20
iscompatible 2-65
isequal 2-66
isfield 2-67

L

lagts 2-68
leadts 2-69
length 2-70
llow 2-71
log 2-73
logl0 2-74

M
macd 2-75

MACD signal line 2-75
max 2-77

mean 2-78

medprice 2-79

min 2-81

minus 2-82

Moving Average Convergence/Divergence (MACD)

1-33
mrdivide 2-83
mtimes 2-84

N
negvolidx 2-85

O

object structure 1-3
On-Balance Volume (OBV) 1-37
onbalvol 1-37, 2-87
overloaded functions 1-22, 1-30

P

peravg 2-89
plot 2-90

plus 2-92
posvolidx 2-93
power 2-95
prcroc 2-96
pvtrend 2-98

R
rdivide 2-100

refield 2-102

Relative Strength Index (RSI) 1-36

resamplets 2-101
rsindex 1-36, 2-103

S

serial dates 1-17

Index

setfield 2-105
signal line 2-75
size 2-106
smoothts 1-29, 2-107
sortfts 2-109
spctkd 2-110
std 2-113
stochosc 2-114
structures 1-13
subsasgn 2-117
subsref 2-118

T
technical analysis 1-31

text file transformation 1-10
times 2-121

toannual 2-122

todaily 2-123

todecimal 2-124

tomonthly 2-125
toquarterly 2-126
toquoted 2-127

tosemi 2-128

toweekly 2-129

tsaccel 2-130

tsmom 2-132

tsmovavg 2-134

typprice 2-137

U
uminus 2-139

uplus 2-140

\Y
vertcat 2-141

volroc 2-142

w
wclose 2-144

willad 2-146
Williams %R 1-34
willpctr 1-34, 2-148

	Preface
	About this Book
	Organization of the Document
	Typographical Conventions

	Related Products
	Required Software
	Online Tutorials

	Tutorial
	Introduction
	Creating Financial Time Series Objects
	Using the Constructor
	Transforming a Text File

	Working with Financial Time Series Objects
	Financial Time Series Object Structure
	Data Extraction
	Object to Matrix Conversion
	Indexing a Financial Time Series Object
	Operations
	Data Transformation and Frequency Conversion

	Technical Analysis
	Examples

	Demonstration Program
	Load the Data
	Create Financial Time Series Objects
	Create Closing Prices Adjustment Series
	Adjust Closing Prices and Make Them Spot Prices
	Create Return Series
	Regress Return Series Against Metric Data
	Plot the Results
	Calculate the Dividend Rate

	Function Reference
	Functions by Category
	Alphabetical List of Functions

	Index

