Fixed-Point
Blockset

For Use with SIMULINK"

WO
User’s Guide g&gﬁ:’

Version 3

X C16)

° b

How to Contact The MathWorks:

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web

ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks .com Bug reports

doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks .com Sales, pricing, and general information

Fixed-Point Blockset User's Guide
0 COPYRIGHT 1995 - 2000 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial” computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: March 1995 First printing
April 1997 Second printing (Revised for MATLAB 5)
January 1999 Third printing (Revised for MATLAB 5.3 (Release 11))
September 2000 Fourth printing New for Version 3 (Release 12))

1|

Preface

What Is the Fixed-Point Blockset? X
Exploring the Blockset i, X
Related Products Xi
System Requirements i Xi
Associated Products xi
Using ThisGuide Xili
Expected Background Xili
Learning the Fixed-Point Blockset Xili
How This Book Is Organized Xiv
Installation Information XV
Typographical Conventions XVi
Introduction

Physical Quantities and Measurement Scales 1-2
Selecting a Measurement Scale 1-2
Example: Selecting a Measurement Scale 1-4
Why Use Fixed-Point Hardware? 1-9
Why Use the Fixed-Point Blockset? 1-10
The DevelopmentCycle 1-11

Contents

Contents

3

The Fixed-Point Blockset Library 1-13

Fixed-Point Blocks i 1-14
Compatibility with Simulink Blocks 1-17
How to Get OnlineHelp 1-19

2 |

An Overview of Blockset Features 2-2
Configuring Fixed-Point Blocks 2-2
Additional Features and Capabilities 2-8

Example: Converting from Doubles to Fixed-Point 29
Block Descriptions 29
SimulationResults 2-10

DemoOS ... 2-14
BasicDemOSt 2-14
Advanced Demos: Filtersand Systems 2-15

Data Types and Scaling

OVEIVIBW . .. 3-2
Fixed-Point Numbers 3-3
Signed Fixed-Point Numbers 3-3
Radix Point Interpretation 34
Scaling ... 35
Quantization 3-6
Range and Precision i 3-8
Example: Fixed-Point Scaling 3-10

Example: Constant Scaling for Best Precision 3-12

Floating-Point Numbers 3-15
Scientific Notation i 3-15
The lEEE Format. 3-17
Range and Precision i, 3-19
Exceptional Arithmetic 3-21

4 |

OVEIVIBW . . e 4-2
Limitationson Precision 4-3
Rounding 4-3
Padding with Trailing Zeros v, 4-8
Example: Limitations on Precision and Errors 4-9
Example: Maximizing Precision 4-10
Limitationson Range i, 4-11
Saturationand Wrapping i, 4-12
Guard Bits 4-14
Example: Limitationson Range 4-14
Recommendations for Arithmetic and Scaling 4-15
Addition 4-15
Accumulation 4-18
Multiplication 4-19
GaiN . 4-20
DiVISION 4-22
SUMMANY . 4-24
Parameter and Signal Conversions 4-25
Parameter Conversions 4-26
Signal Conversions 4-26
Rules for Arithmetic Operations 4-29

iv

Contents

Computational Units 4-29

Addition and Subtraction 4-29
Multiplication 4-34
DiviSION 4-38
Shifts . .. 4-40
Example: Conversions and Arithmetic Operations 4-45

Realization Structures

S|

OVEIVIBW . . e 5-2
Direct Form Il 5-4
SeriesCascade FOrm i, 5-7
Parallel Form 5-10

Tutorial: Feedback Controller Simulation

6|

OVEINVIEW . .o e 6-2
Simulink Model of a Feedback Design 6-3
Idealized Feedback Design 6-6
Digital Controller Realization 6-7
Simulation Results 6-9
Simulation 1: Initial Guessat Scaling 6-9
Simulation 2: Global Override 6-12
Simulation 3: Automatic Scaling 6-14

4

OVEIVIBW . o e 7-2
Realizationsand Data TypeSo oot 7-3
Realizationsand Scaling 7-3

Targeting an Embedded Processor 7-4
Size ASSUMPLIONS e 7-4
Operation Assumptions 7-4
Design Rules 7-5

Integrator Realizations 7-7
Trapezoidal Integration 7-7
Backward Integration 7-9
Forward Integration 7-10

Derivative Realizations oot 7-12
Filtered Derivative i 7-12
Derivativeo 7-14

Lead Filter or Lag Filter Realization 7-17

State-Space Realization 7-20

Function Reference

8

OVEIVIBW . . e 8-2
aUtOfIXEXP . . e 8-4
fixpthesteXp ... 8-6

FIXPLDESIPrec oo 8-7

Vi

Contents

fixpt_convert e 8-8

fixpt_convert_prep 8-13
fixpt_restore_links 8-14
float 8-15
fpupdate 8-16
Xptdlg . ..o 8-18
SEIX 8-21
Sfrac . .. 8-22
showfixptsimranges i 8-23
SINt 8-24
UFIX 8-25
UraC . 8-26
UINT . 8-27

Block Reference

9

The Block Reference Page, 9-2
TheBlock Dialog BOX i 9-3
CommonBlock Features 9-4
Block Parameters i 9-4
Block IconLabels 9-10
Port Data Type Display i, 9-10
The Fixed-Point Blockset Library 9-12
FixPt Absolute Value 9-15
FixPt Bitwise Operator, 9-16
FixPtConstant 9-21
FixPtConversion 9-23
FixPt Conversion Inherited 9-25
FixPt Data Type Propagation 9-27
FixPtDead Zone e 9-35
FixPtDotProduct iiiiinnn. 9-37
FixPt Dynamic Look-Up Table 9-39
FiIXPEtFIR . e e 9-43

FIXPtGain 9-47

FixPtGateway In e 9-51
FixPt Gateway In Inherited 9-56
FixPt Gateway Out 9-58
FixPtiIntegerDelay 9-61
FixPt Logical Operator, 9-63
FixPt Look-Up Table 9-66
FixPt Look-Up Table (2D) 9-71
FixPt Matrix Gain 9-76
FiXPtMIinMax 9-79
FixPt Multiport Switch 9-81
FixPtProduct i 9-83
FixPt Relational Operator 9-86
FixPtRelay 9-88
FixPt Saturation i 9-91
FiIXPtSign 9-92
FIXPtSUM .. 9-93
FixPtSwitch 9-96
FixPt Tapped Delay 9-98
FixPtUnary Minus 9-100
FixPtUnitDelay 9-101
FixPt Zero-OrderHold 9-103

Code Generation

Al

OVEINVIEW . .o e A-2
Code Generation SUPPOrtt A-3
LanguUages A-3
Storage Classof Variables A-3
Storage Class of Parameters A-3
Rounding Modes A-3
OverflowHandling i, A-4
BlocKs ... A-4

Scaling ... A-4

viii

Contents

Generating Pure IntegerCode A-5

Example: Generating Pure Integer Code A-5
Using the Simulink Accelerator A-10
Using External Mode or rsim Target A-11

External Mode A-11

Rapid Simulation Target A-11
Customizing Generated Code A-12

Macros Versus Functions A-12

Bit Sizes for Target C Compiler A-12

Selected Bibliography

B

Preface

What Is the Fixed-Point Blockset?
Exploring the Blockset

Related Products .
System Requirements .
Associated Products

Using This Guide .

Expected Background . Co
Learning the Fixed-Point Blockset
How This Book Is Organized .
Installation Information

Typographical Conventions .

. Xi
. Xi
. Xi

xiii
xiii
xiii
Xiv

. XV

Xvi

Preface

What Is the Fixed-Point Blockset?

The Fixed-Point Blockset includes a collection of blocks that extend the
standard Simulink® block library. With these blocks, you can create
discrete-time dynamic systems that use fixed-point arithmetic. As a result,
Simulink can simulate effects commonly encountered in fixed-point systems
for applications such as control systems and time-domain filtering. The
Fixed-Point Blockset includes these major features:
= Integer, fractional, and generalized fixed-point data types:

- Unsigned and two’s complement formats

- Word size from 1 to 128 bits
= Floating-point data types:

- IEEE-style singles and doubles

- A nonstandard IEEE-style data type, where the fraction (mantissa) can
range from 1 to 52 bits and the exponent can range from 1 to 11 bits

= Methods for overflow handling, scaling, and rounding of fixed-point data
types
=« Tools are provided to facilitate:
- The collection of minimum and maximum simulation values
- The optimization of scaling parameters
- The display of input and output signals

« With the Real-Time Workshop®, you can generate C code for execution on a
fixed-point embedded processor; the generated code uses only integer types
and automatically includes all operations, such as shifts, needed to account
for differences in fixed-point locations

Exploring the Blockset
To open the Fixed-Point Blockset library, type

fixpt

at the MATLAB® command line, or right-click on the Fixed-Point Blockset
listing in the Simulink Library Browser. Double-click on any block icon in the
library to see its parameter dialog box. Press the Help button to view the
HTML-based help for that block.

Related Products

Related Products

System Requirements

The Fixed-Point Blockset is a multiplatform product that you install on a host
computer running any of the operating systems supported by The MathWorks.
The Fixed-Point Blockset requires:

< MATLAB 6.0 (Release 12)
= Simulink 4.0 (Release 12)

In addition, if you want to modify the fixed-point blocks, you need one of the C
compilers supported by the mex utility. If you want to generate code from your
fixed-point models, you must have the Real-Time Workshop. If you want to
create an executable from the generated code, you must have the appropriate
C compiler and linker.

For the most up-to-date information about system requirements, see the
system requirements section, available in the support area of the MathWorks
Web site (http://www.mathworks.com/support).

Associated Products

The MathWorks provides several associated products that are especially
relevant to the kinds of tasks you can perform with the Fixed-Point Blockset.
For more information about any of these products, see either:

= The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

= The products section of the MathWorks Web site (http://
www . mathworks . com/products)

Note The toolboxes listed below all include functions that extend MATLAB's
capabilities. The blocksets all include blocks that extend Simulink's
capabilities.

Xi

Preface

Xii

Product

Description

Control System
Toolbox

DSP Blockset

Real-Time Workshop

Simulink
Simulink Report
Generator
Stateflow

Stateflow Coder

XPC Target

Tool for modeling, analyzing, and designing
control systems using classical and modern
techniques

Simulink block libraries for the design,
simulation, and prototyping of digital signal
processing systems

Tool that generates customizable C code from
Simulink models and automatically builds
programs that can run in real time in a variety of
environments

Interactive, graphical environment for modeling,
simulating, and prototyping dynamic systems

Tool for documenting information in Simulink and
Stateflow in multiple output formats

Tool for graphical modeling and simulation of
complex control logic

Tool for generating highly readable, efficient C
code from Stateflow diagrams

Tool for adding 1/0 blocks to Simulink block
diagrams and downloading the code generated by
Real-Time Workshop to a second PC that runs the
XPC Target real-time kernel, for rapid prototyping
and hardware-in-the-loop testing of control and
DSP systems

Using This Guide

Using This Guide

This guide describes how to use the Fixed-Point Blockset to emulate fixed-point
arithmetic when simulating discrete-time dynamic systems using Simulink. It
contains tutorial information that describes how to use the blockset features,
as well as a reference entry for each block and function in the blockset.

Expected Background

This guide assumes you are familiar with both MATLAB and Simulink. If you
are new to MATLAB, you should read Getting Started with MATLAB. If you
are new to Simulink, you should read Using Simulink.

You should also have a basic understanding of Boolean algebra and binary
word representations.

Learning the Fixed-Point Blockset

If You Are a New User

Start with Chapter 1, “Introduction,” which describes how the Fixed-Point
Blockset can help you bridge the gap between designing a dynamic system and
implementing it on fixed-point digital hardware. Then read Chapter 2,
“Getting Started,” which describes many Fixed-Point Blockset features and
provides a simple example. After reading this chapter, you should be able to
create simple fixed-point models. If you want detailed information about a
specific block, refer to Chapter 9, “Block Reference.” If you want detailed
information about a specific function, refer to Chapter 8, “Function Reference.”

If You Are an Experienced User

Start with Chapter 6, “Tutorial: Feedback Controller Simulation,” which
describes how to simulate a fixed-point digital controller design. You should
then read those parts of the guide that address the functionality that concerns
you. If you want detailed information about a specific block, refer to Chapter 9,
“Block Reference.” If you want detailed information about a specific function,
refer to Chapter 8, “Function Reference.”

Xiii

Preface

How This Book Is Organized
The organization of this guide is described below.

Xiv

Chapter Name

Description

Introduction

Getting Started

Data Types and
Scaling

Arithmetic
Operations

Realization
Structures

Tutorial: Feedback
Controller Simulation

Building Systems and
Filters

Function Reference
Block Reference

Code Generation

Selected Bibliography

Describes how the Fixed-Point Blockset can help
you bridge the gap between designing a dynamic
system and implementing it on fixed-point digital
hardware

Shows you how to use many Fixed-Point Blockset
features. After reading this chapter, you should
be able to create simple fixed-point models.

Describes fixed-point data types, floating-point
data types, and data type scaling.

Describes fixed-point arithmetic and its
limitations.

Describes how to create fixed-point realization
structures using fixed-point blocks.

Describes how to simulate a fixed-point digital
controller design.

Describes how to create and use fixed-point
systems and filters.

Describes MATLAB M-file scripts and functions
provided with the blockset.

Describes each fixed-point block in detail.

Describes the simulation features that are
available for code generation. Recommendations
for producing efficient code are provided.

Provides a selected list of references.

Installation Information

Installation Information

To determine if the Fixed-Point Blockset is installed on your system, type

ver

at the MATLAB command line. When you enter this command, MATLAB
displays information about the version of MATLAB you are running, including
a list of installed add-on products and their version numbers. Check the list to
see if the Fixed-Point Blockset appears.

For information about installing the blockset, see the MATLAB Installation
Guide for your platform.

If you experience installation difficulties and have Web access, look for the
installation and license information at the MathWorks Web site (http://
www . mathworks . com/support).

XV

Preface

XVi

Typographical Conventions

The typographical conventions used in this guide are given below.

Item

Convention to Use

Example

Example code

Function names/syntax

Keys

Literal strings (in syntax
descriptions in Reference
chapters)

Mathematical
expressions

MATLAB output

Menu names, menu items, and

controls

New terms

String variables (from a finite
list)

Monospace font

Monospace font

Boldface with an initial
capital letter

Monospace bold for
literals.

Variables in italics

Functions, operators, and

constants in standard text.

Monospace font

Boldface with an initial
capital letter

Italics

Monospace italics

To assign the value 5 to A,
enter

A=5

The cos function finds the
cosine of each array element.

Syntax line example is
MLGetVar ML_var_name

Press the Return key.

T = freqspace(n,’whole”)

This vector represents the
polynomial

p= X% +2x + 3
MATLAB responds with
A =

5

Choose the File menu.

An array is an ordered
collection of information.

sysc = d2c(sysd, 'method")

Introduction

Physical Quantities and Measurement Scales .

Selecting a Measurement Scale . .
Example: Selecting a Measurement Scale .

Why Use Fixed-Point Hardware? .
Why Use the Fixed-Point Blockset?
The Development Cycle .

The Fixed-Point Blockset Library
Fixed-Point Blocks . Coe

Compatibility with Simulink Blocks

How to Get Online Help .

1-2
1-2
1-4

1-9

. 1-10

.1-11

. 1-13
. 1-14

. 1-17

. 1-19

1 Introduction

Physical Quantities and Measurement Scales

1-2

A measurement of a physical quantity can take many numerical forms. For
example, the boiling point of water is 100 degrees Celsius, 212 degrees
Fahrenheit, 373 degrees Kelvin, or 671.4 degrees Rankine. No matter what
number is given, the physical quantity is exactly the same. The numbers are
different because four different scales are used.

Well known standard scales like Celsius are very convenient for the exchange
of information. However, there are situations where it makes sense to create

and use unique nonstandard scales. These situations usually involve making

the most of a limited resource.

For example, nonstandard scales allow map makers to get the maximum detail
on a fixed size sheet of paper. A typical road atlas of the USA will show each
state on a two-page display. The scale of inches to miles will be unique for most
states. By using a large ratio of miles to inches, all of Texas can fit on two pages.
Using the same scale for Rhode Island would make poor use of the page. Using
a much smaller ratio of miles to inches would allow Rhode Island to be shown
with the maximum possible detail.

Fitting measurements of a variable inside an embedded processor is similar to
fitting a state map on a piece of paper. The map scale should allow all the
boundaries of the state to fit on the page. Similarly, the binary scale for a
measurement should allow the maximum and minimum possible values to
“fit.” The map scale should also make the most of the paper in order to get
maximum detail. Similarly, the binary scale for a measurement should make
the most of the processor in order to get maximum precision.

Use of standard scales for measurements has definite compatibility
advantages. However, there are times when it is worthwhile to break
convention and use a unique nonstandard scale. There are also occasions when
a mix of uniqueness and compatibility makes sense.

Selecting a Measurement Scale

Suppose that measurements of liquid water are to be made, and suppose that
these measurements must be represented using 8-bit unsigned integers.
Fortunately, the temperature range of liquid water is limited. No matter what
scale is used, liquid water can only go from the freezing point to the boiling
point. Therefore, this range of temperatures must be captured using just the
256 possible 8-bit values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For
example, the units for the integers could be Celsius. Hence, the integers 0 and
100 represent water at the freezing point and at the boiling point, respectively.
On the upside, this scale gives a trivial conversion from the integers to degrees
Celsius. On the downside, the numbers 101 to 255 are unused. By using this
standard scale, more than 60% of the number range has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers 0
and 255 represent water at the freezing point and at the boiling point,
respectively. On the upside, this scale gives maximum precision since there are
254 values between freezing and boiling instead of just 99. The units are
roughly 0.3921568 degrees Celsius per bit so the conversion to Celsius requires
division by 2.55, which is a relatively expensive operation on most fixed-point
processors.

A third approach is to use a “semi-standard” scale. For example, the integers 0
and 200 could represent water at the freezing point and at the boiling point,
respectively. The units for this scale are 0.5 degrees Celsius per bit. On the
downside, this scale doesn’t use the numbers from 201 to 255, which represents
a waste of more than 21%. On the upside, this scale permits relatively easy
conversion to a standard scale. The conversion to Celsius involves division by
2, which is a very easy shift operation on most processors.

Measurement Scales: Beyond Multiplication

One of the key operations in converting from one scale to another is
multiplication. The preceding case study gave three examples of conversions
from a quantized integer value Q to a real-world Celsius value V that involved
only multiplication.

El%)(())obicés R4 Conversion 1
_ 0 100°C
£255 bits
DD 100°C
[R0O0 bits

\ m, Conversion 2

Q3 Conversion 3

Graphically, the conversion is a line with slope S, which must pass through the
origin. A line through the origin is called a purely linear conversion. Restricting

1-3

1 Introduction

1-4

yourself to a purely linear conversion can be very wasteful and it is often better
to use the general equation of a line.

V =SQ+B

By adding a bias term B, greater precision can be obtained when quantizing to
a limited number of bits.

The general equation of a line gives a very useful conversion to a quantized
scale. However, like all quantization methods, the precision is limited and
errors can be introduced by the conversion. The general equation of a line with
guantization error is given by

V =SQ+BzxError

If the quantized value Q is rounded to the nearest representable number, then

S S
——=<Error<s=
2 2
That is, the amount of quantization error is determined by both the number of
bits and by the scale. This scenario represents the best case error. For other
rounding schemes, the error can be twice as large.

Example: Selecting a Measurement Scale

On typical electronically controlled internal combustion engines, the flow of
fuel is regulated to obtain the desired ratio of air to fuel in the cylinders just
prior to combustion. Therefore, knowledge of the current air flow rate is
required. Some manufacturers use sensors that directly measure air flow while
other manufacturers calculate air flow from measurements of related signals.
The relationship of these variables is derived from the ideal gas equation. The
ideal gas equation involves division by air temperature. For proper results, an
absolute temperature scale such as Kelvin or Rankine must be used in the
equation. However, quantization directly to an absolute temperature scale
would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a
typical engine, the radiator is designed to keep the block below the boiling point
of the cooling fluid. Let's assume a maximum of 225° F (380° K). As the air flows
through the intake manifold, it can be heated up to this maximum
temperature. For a cold start in an extreme climate, the temperature can be as

low as -60° F (222° K). Therefore, using the absolute Kelvin scale, the range of
interest is 222° K to 380° K.

The air temperature needs to be quantized for processing by the embedded
control system. Assuming an unrealistic quantization to 3-bit unsigned
numbers: 0,1,2,...,7, the purely linear conversion with maximum precision is

_ 380°K

V= 7.5 bit

m

The quantized conversion and range of interest are shown below.

Visualization of Quantized Conversion
8 T T T T T T T T T

Y 7+

o

© (0]

I V =222°K

(%]

S 6F L e B

m

ey

E=4

2 5r s :

=

N

?\ 4 = eeseseesesssssesecen ~ -

(o)

(o)

©

8, < e — A

o

S 2 e— .

G

> V = 380°K

2

N 1 - ——escescesesssscscese -

X

c

©

o e - -

-1 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400

Real World Value, V (K)

Notice that there are 7.5 possible quantization values. This is because only half
of the first bit corresponds to temperatures (real-world values) greater than
ZEero.

1-5

1 Introduction

1-6

The quantization error is

—25.33°K/bit < Error < 25.33°K/bit

The range of interest of the quantized conversion and the absolute value of the

guantized error are shown below.

Visualization of Quantized Conversion

400 F T T T T T

Quantized Value, Q

N w N
=] =] o
T T

Quantization Error (°K/bit)
S
T

200k ! ! ! ! ! ! !
240 260 280 300 320 340 360 380
Real World Value, V (K)
0 | | | | | | |
240 260 280 300 320 340 360 380

Real World Value, V (K)

As an alternative to the purely linear conversion, consider the general linear

conversion with maximum precision.

_ [B80°K —222°K[J . 80°K —222°K[]
v=_g = 0w + 222 K+0.5EE3—8 &

The quantized conversion and range of interest are shown below.

Quantized Value, Q (19.75°K/bit) with Bias = 231.875°K

|
=

Visualization of Quantized Conversion

T

T

V =222°K

T

Il

Il

T

Il

T

Il

Il

50

100

The quantization error is

150

200

250

Real World Value, V CK)

—9.875°K/bit < Error £9.875°K/bit

which is approximately 2.5 times smaller than the error associated with the

purely linear conversion.

300

350

400

1-7

1 Introduction

1-8

The range of interest of the quantized conversion and the absolute value of the
guantized error are shown below.

Visualization of Quantized Conversion
400 - T T T T T

Quantized Value, Q
w w
o a
o o

N
[
o

200 & I I I I I I
240 260 280 300 320 340 360 380
Real World Value, V (K)

w S
(=} o
T T

Quantization Error (°K/bit)
N
o
T

=
o o

240 260 280 300 320 340 360 380
Real World Value, V (K)

Clearly, the general linear scale gives much better precision than the purely
linear scale over the range of interest.

Why Use Fixed-Point Hardware?

Why Use Fixed-Point Hardware?

Digital hardware is becoming the primary means in which control systems and
signal processing filters are implemented. Digital hardware can be classified as
either off-the-shelf hardware (for example, microcontrollers, microprocessors,
general purpose processors, and digital signal processors) or custom hardware.
Within these two types of hardware, there are many architecture designs.
These designs range from systems with a single instruction, single data stream
processing unit to systems with multiple instruction, multiple data stream
processing units.

Within digital hardware, numbers are represented as either fixed-point or
floating-point data types. For both these data types, word sizes are fixed at a
set number of bits. However, the dynamic range of fixed-point values is much
less than floating-point values with equivalent word sizes. Therefore, in order
to avoid overflow or unreasonable quantization errors, fixed-point values must
be scaled. Since floating-point processors can greatly simplify the real-time
implementation of a control law or digital filter, and floating-point numbers
can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support? The answer to
this question in many cases is cost and size:

=« Cost — Fixed-point hardware is more cost effective where price/cost is an
important consideration. When using digital hardware in a product,
especially mass-produced products, fixed-point hardware, costing much less
than floating-point hardware, can result in significant savings.

= Size — The logic circuits of fixed-point hardware are much less complicated
than those of floating-point hardware. This means the fixed-point chip size
is smaller with less power consumption when compared with floating-point
hardware. For example, consider a portable telephone where one of the
product design goals is to make it as portable (small and light) as possible. If
one of today’s high-end floating-point, general purpose processors is used, a
large heat sink and battery would also be needed resulting in a costly, large,
and heavy portable phone.

After making the decision to use fixed-point hardware, the next step is to
choose a method for implementing the dynamic system (for example, control
system or digital filter). Floating-point software emulation libraries are
generally ruled out because of timing or memory size constraints. Therefore,
you are left with fixed-point math where binary integer values are scaled.

1-9

1 Introduction

Why Use the Fixed-Point Blockset?

1-10

The Fixed-Point Blockset bridges the gap between designing a dynamic system
and implementing it on fixed-point digital hardware. To do this, the blockset
provides basic fixed-point Simulink building blocks that are used to design and
simulate dynamic systems using fixed-point arithmetic. With the Fixed-Point
Blockset, you can:

= Use fixed-point arithmetic to develop and simulate fixed-point Simulink
models.

= Change the fixed-point data type, scaling, rounding mode, or overflow
handling mode while the model is simulating. This allows you to explore
issues related to numerical overflow, quantization errors, and computational
noise.

= Generate fixed-point model code ready for execution on a floating-point
processor. This allows you to emulate the effects of fixed-point arithmetic in
a floating-point rapid prototyping system.

= Generate fixed-point model code ready for execution on a fixed-point
processor.

= Modify or add new fixed-point blocks. Source code is provided for all
fixed-point blocks; you will need one of the C compilers supported by the mex
utility.

The Fixed-Point Blockset addresses the issues related to using fixed-point
single instruction, single data stream processors. Extensions to multiple
instruction, multiple data stream processing units can be made. However,
hardware consisting of multiple instruction or multiple data streams generally
also has floating-point support.

The Development Cycle

The Development Cycle

The Fixed-Point Blockset provides tools that aid in the development and
testing of fixed-point dynamic systems. You directly design dynamic system
models in Simulink, which are ready for implementation on fixed-point
hardware. The development cycle is illustrated below.

Start

Model plant or >
signal source

Simulink l

Model fixed-point
: E—
controller or filter

l

Design
requirements
met?

Use the model as a
specification for
creating production
code

1-11

1 Introduction

1-12

Using MATLAB, Simulink, and the Fixed-Point Blockset, the development
cycle follows these steps:

1 Model the system (plant or signal source) within Simulink using the built-in
blocks and double precision numbers. Typically, the model will contain
nonlinear elements.

2 Design and simulate a fixed-point dynamic system (for example, a control
system or digital filter) with the Fixed-Point Blockset that meets the design,
performance, and other constraints.

3 Analyze the results and go back to 1 if needed.

When the design requirements have been met, you can use the model as a
specification for creating production code using the Real-Time Workshop.

The above steps interact strongly. In steps 1 and 2, there is a significant
amount of freedom to select different solutions. Generally, the model is
fine-tuned based upon feedback from the results of the current implementation
(step 3). There is no specific modeling approach. For example, models may be
obtained from first principles such as equations of motion, or from a frequency
response such as a sine sweep. There are many controllers that meet the same
frequency-domain or time-domain specifications. Additionally, for each
controller there are an infinite number of realizations.

The Fixed-Point Blockset helps expedite the design cycle by allowing you to
simulate the effects of various fixed-point controller/digital filter structures.

The Fixed-Point Blockset Library

The Fixed-Point Blockset Library

To display the Fixed-Point Blockset library, type fixpt at the MATLAB
prompt or select the Fixed-Point Blockset in the Simulink Library Browser.
The Fixed-Point Blockset library is shown below.

Flxed-Point Library Yerslon 3.0
Copyright () 1994 2000 The hiathia s

v v F F Refl F
In F W Comert W Rtz Cut p
F 4 F F 4 F Fop F W
FixPt FixPt FixPt FixPt FixPt FixPt
Gintewsy In Gintewsy In Conversion Conversion Cwts Type Gimtewsy Cut
Inherted Inherted Fmopagation
+ 1 4 4
o B 3 - B Delsys B z 3 3
F YA I A F F
FixPt FixPt FixPt FixPt FixPt FixPt
Constant Surmn Unit Dy Tapped Dely Integer Delay Zem-Jder
Hod
>< o 1 = K B dl‘“ll"‘h o « P ST
F F F F F F
FixPt FixPt FixPt FixPt FixPt FixPt
Fmduct Gain Ttz FIR Lot Unarny Winus
Gain Fmoduct
* —
4 b P é - wdat wf min B :\\—> —_
F F ydat F F — F — F
FixPt FixPt FixPt FixPt FixPt FixPt
Look-Up Look-Up Crynizrnic: fdin fulzce Switcch o fiFort
Table Table [2-0) Loak-Up Swith
Table
o v =
== [AMD B AMD B [X [[
F F F F | F _| F
FixPt FixPt FixPt FixPt FixPt FixPt
Relational Logizzl Eitwize Satumtion Desd Tone Sign
CrpeEmor CrpeEmor CrpeEmor
. Fitter= &
P lul F FGD:LTIt Syste rms: Dermos
Fl Fl Examples
FixPt FixPt
R sy Abs

1-13

1 Introduction

Fixed-Point Blocks

The Fixed-Point Blockset blocks are group into the following categories based
on usage. For detailed block descriptions, refer to Chapter 9, “Block Reference.”

Math Blocks

FixPt Absolute Value Output the absolute value of the input.

FixPt Constant Generate a constant value.

FixPt Dot Product Generate the dot product.

FixPt Gain Multiply the input by a constant.

FixPt Matrix Gain Multiply the input by a constant matrix.

FixPt MinMax Output the minimum or maximum input value.
FixPt Product Multiply or divide inputs.

FixPt Sign Indicate the sign of the input.

FixPt Sum Add or subtract inputs.

FixPt Unary Minus Negate the input.

Conversion Blocks

FixPt Conversion Convert from one Fixed-Point Blockset data type
to another.

FixPt Conversion Convert from one Fixed-Point Blockset data type

Inherited to another, and inherit the data type and
scaling.

FixPt Data Type Configure the data type and scaling of the

Propagation propagated signal based on information from the

reference signals.

1-14

The Fixed-Point Blockset Library

Conversion Blocks

FixPt Gateway In

FixPt Gateway In
Inherited

FixPt Gateway Out

Convert a Simulink data type to a Fixed-Point
Blockset data type.

Convert a Simulink data type to a Fixed-Point
Blockset data type, and inherit the data type
and scaling.

Convert a Fixed-Point Blockset data type to a
Simulink data type.

Look-Up Table Blocks

FixPt Dynamic
Look-Up Table

FixPt Look-Up Table

FixPt Look-Up Table
(2D)

Approximate a one-dimensional function using a
selected look-up method and a dynamically
specified table.

Approximate a one-dimensional function using a
selected look-up method.

Approximate a two-dimensional function using a
selected look-up method.

Logical and Comparison Blocks

FixPt Bitwise Operator

FixPt Dead Zone

FixPt Logical Operator

FixPt Multiport Switch

Perform the specified bitwise operation on the
inputs.

Provide a region of zero output.

Perform the specified logical operation on the
inputs.

Switch output between different inputs based on
the value of the first input.

1-15

1 Introduction

1-16

Logical and Comparison Blocks

FixPt Relational
Operator

FixPt Relay
FixPt Saturation

FixPt Switch

Perform the specified relational operation on the
inputs.

Switch output between two constants.
Bound the range of the input.

Switch output between the first input and the
third input based on the value of the second
input.

Discrete-Time Blocks

FixPt FIR

FixPt Integer Delay
FixPt Tapped Delay

FixPt Unit Delay
FixPt Zero-Order Hold

Implement a fixed-point finite impulse response
(FIR) filter.

Delay a signal N sample periods.

Delay a scalar signal multiple sample periods
and output all the delayed versions.

Delay a signal one sample period.

Implement a zero-order hold of one sample
period.

Compatibility with Simulink Blocks

Compatibility with Simulink Blocks

You can connect Simulink blocks directly to Fixed-Point Blockset blocks
provided the signals use built-in Simulink data types. The built-in data types
include uint8, uintl6, uint32, int8, intl6, int32, single, double, and
boolean. The Fixed-Point Blockset supports all built-in data types. However, a
fixed-point signal consisting of 8-, 16-, or 32-bit integers is compatible with
Simulink only when its scaling is given by a slope of 1 and a bias of 0.

Some Simulink blocks impose restrictions on the data type of the signals they
can handle. For example, some blocks accept only doubles. To incorporate these
blocks into your fixed-point model, you must configure the driving block(s) to
use doubles. Some Simulink blocks can accept signals of any data type. For
these blocks, you can input any of the built-in data types or any of the
blockset-specific data types. Examples of blockset-specific data types include
32-bit signed integers with a scaling of 28 and 18-bit unsigned integers with a
scaling of 20,

Note If you want to connect Simulink blocks to fixed-point blocks that output
blockset-specific data types, then you must use the fixed-point gateway or
data type conversion blocks to convert to a built-in data type.

Most Simulink blocks that accept any Fixed-Point Blockset data type have
these characteristics:

<« Their only function is to rearrange the signal (for example, the Selector or
Mux blocks).
= They do not perform calculations such as addition or relational operations.

= They do not have initial conditions (for example, the Unit Delay block).
However, in some cases the block may support any fixed-point data type if
the initial condition is set to zero.

1-17

1 Introduction

Some of the more useful Simulink blocks that can accept any Fixed-Point
Blockset data type are listed below.

Table 1-1: Simulink Blocks That Accept Any Fixed-Point Data Type

Block Name Description

Bus Selector Select signals from an incoming bus.

Demux Separate a vector signal into output signals.

Display Show the value of the input.

Enable Add an enabling port to a subsystem.

Merge Combine input lines into a scalar output line.

Mux Combine several input signals into a single vector or
composite output signal.

Scope Display signals generated during a simulation.

Selector Select input elements.

To Workspace Write data to the workspace.

Trigger Add a trigger port to a subsystem.

In some cases, fixed-point signals that are not built-in data types are converted
to a real-world value as it enters the block. For example, the To Workspace
block will output a 32-bit signed integer with a scaling of 28 as a double.

Refer to the Using Simulink guide for detailed information about the data
types handled by built-in blocks.

1-18

How to Get Online Help

How to Get Online Help

The Fixed-Point Blockset provides several ways to get online help:

=« Block, System, and Filter Help

Press the Help button in any block, system, or filter dialog box to view its
HTML-based documentation.

= Help Desk

Type helpdesk or doc at the MATLAB command line to load the main
MATLAB help page into the Help browser.

< Release Information

Type whatsnew Fixpoint atthe MATLAB command line to view information
related to the version of the Fixed-Point Blockset that you're using.

1-19

1 Introduction

1-20

Getting Started

An Overview of Blockset Features .
Configuring Fixed-Point Blocks .
Additional Features and Capabilities

Example: Converting from Doubles to Fixed-Point
Block Descriptions
Simulation Results .

Demos .
Basic Demos Ce e
Advanced Demos: Filters and Systems .

2-2
2-2
2-8

2-9
2-9

. 2-10

. 2-14
. 2-14
. 2-15

2 Getting Started

An Overview of Blockset Features

2-2

This section provides a brief overview of the most important Fixed-Point
Blockset features. After reading this section and “Example: Converting from
Doubles to Fixed-Point” on page 2-9, you should be able to configure simple
fixed-point models that suit your own application needs.

Configuring Fixed-Point Blocks

You configure fixed-point blocks with a parameter dialog box. Block
configuration consists of supplying values for parameters via editable text
fields, check boxes, and parameter lists. The dialog box for the FixPt Gateway
In block is shown below.

Frordi Pt (sbesey iy [raizk |
Cowrwesd rme o Sivmlnk. el -4 cdaly e b b Fiesd St Blosiasl g

e
FaaraiEl
Tl gt | 18l ot ki =
D ladn e s icadng ||y by =
Cuigd dels g sa o106 sl Bostanghs]
|.-|'r|
Cuipd scding Sepe o [SlopwBaz] = 175
PR
™ Lok outpadl moslng 72 sefoocalng tod cae changs §
Fourdipand |Foa =

M Csbamis o e o mn sden cvwrlosn oo
™ Dsrmbe gt g | vt doaibiss

F Leg rwrsmurn snd rusrears

] c=s | s | |

The parameters associated with this block are discussed below. For detailed
information about each fixed-point block, refer to Chapter 9, “Block Reference.”

Real-World Values Versus Integer Values

You can configure the fixed-point gateway blocks to treat signals as real-world
values or as stored integers with the Treat input as parameter list. The
possible values are Real World Value and Stored Integer.

In terms of the variables defined in “The General Slope/Bias Encoding Scheme”
on page 2-5, the real-world value is given by V and the stored integer value is
given by Q. You may want to treat numbers as stored integer values if you are
modeling hardware that produces integers as output.

Selecting the Output Data Type

For many fixed-point blocks, you have the option of specifying the output data
type via the block dialog box, or inheriting the output data type from another
block. You control how the output data type is selected with the Output data
type and scaling parameter list. The possible values are Specify via dialog,
Inherit via internal rule, and Inherit via back propagation. Some
blocks support only two of these values.

The Fixed-Point Blockset supports several fixed-point and floating-point data
types. Fixed-point data types are characterized by their word size in bits and

radix (binary) point. The radix point is the means by which fixed-point values
are scaled. Additionally:

= Unsigned and two’'s complement formats are supported.

= The fixed-point word size can range from 1 to 128 bits.

= The radix point is not required to be contiguous with the fixed-point word.
Floating-point data types are characterized by their sign bit, fraction

(mantissa) field, and exponent field. The Fixed-Point Blockset supports IEEE
singles, IEEE doubles, and a nonstandard IEEE-style floating-point data type.

Note You can create Fixed-Point Blockset data types directly in the
MATLAB workspace and then pass the resulting structure to a fixed-point
block, or you can specify the data type directly with the block dialog box.

Integers. You specify unsigned and signed integers with the uint and sint
functions, respectively.

For example, to specify a 16-bit unsigned integer via the block dialog box, you
configure the Output data type parameter as uint(16). To specify a 16-bit
signed integer, you configure the Output data type parameter as sint(16).

For integer data types, the default radix point is assumed to lie to the right of
all bits.

2-3

2 Getting Started

2-4

Fractional Numbers. You specify unsigned and signed fractional numbers with
the ufrac and sfrac functions, respectively.

For example, to configure the output as a 16-bit unsigned fractional number via
the block dialog box, you specify the Output data type parameter to be
ufrac(16). To configure a 16-bit signed fractional number, you specify Output
data type to be sfrac(16).

Fractional numbers are distinguished from integers by their default scaling.
Whereas signed and unsigned integer data types have a default radix point to
the right of all bits, unsigned fractional data types have a default radix point
to the left of all bits, while signed fractional data types have a default radix
point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which act
to “guard” against overflow. For example, sfrac(16,4) specifies a 16-bit signed
fractional number with 4 guard bits. The guard bits lie to the left of the default
radix point.

Generalized Fixed-Point Numbers. You specify unsigned and signed generalized
fixed-point numbers with the ufix and sfix functions. respectively.

For example, to configure the output as a 16-bit unsigned generalized
fixed-point number via the block dialog box, you specify the Output data type
parameter to be ufix(16). To configure a 16-bit signed generalized fixed-point
number, you specify Output data type to be sfix(16).

Generalized fixed-point numbers are distinguished from integers and
fractionals by the absence of a default scaling. For these data types, you must
explicitly specify the scaling with the Output scaling dialog box parameter, or
inherit the scaling from another block. Refer to “Selecting the Output Scaling”
on page 2-5 for more information.

Floating-Point Numbers. The Fixed-Point Blockset supports single-precision and
double-precision floating-point numbers as defined by the IEEE Standard
754-1985 for Binary Floating-Point Arithmetic. You specify floating-point
numbers with the float function.

For example, to configure the output as a single-precision floating-point
number via the block dialog box, you specify the Output data type parameter
to be float("single”). To configure a double-precision floating-point number,
you specify Output data type to be float(*double”).

You can also specify a nonstandard floating-point number that mimics the
IEEE style. For this data type, the fraction (mantissa) can range from 1 to 52
bits and the exponent can range from 1 to 11 bits. For example, to configure a
nonstandard floating-point number having 32 total bits and 9 exponents bits,
you specify Output data type to be float(32,9).

Note These numbers are normalized with a hidden leading 1 for all
exponents except the smallest possible exponent. However, the largest
possible exponent might not be treated as a flag for infinity or NaNs.

Selecting the Output Scaling

Most data types supported by the Fixed-Point Blockset have a default scaling
that you cannot change. However, for generalized fixed-point data types, you
have the option of specifying the output scaling via the block dialog box, or
inheriting the output scaling from another block. You control how the output
scaling is selected with the Output data type and scaling parameter list.

The Fixed-Point Blockset supports two general scaling modes: radix point-only
scaling and slope/bias scaling. In addition to these general scaling modes, the
blockset provides you with additional block-specific scaling choices for constant
vectors and constant matrices. These scaling choices are based on radix
point-only scaling and are designed to maximize precision. Refer to “Example:
Constant Scaling for Best Precision” in Chapter 3 for more information.

To help you understand the supported scaling modes, the general slope/bias
encoding scheme is presented in the next section.

The General Slope/Bias Encoding Scheme. When representing an arbitrarily precise
real-world value with a fixed-point number, it is often useful to define a general
slope/bias encoding scheme

V=V = SQ+B
where:

<« Vis the real-world value.
- V is the approximate real-world value.
=« Q is an integer that encodes V.

2-5

2 Getting Started

2-6

= B is the bias.
« S = F2F is the slope.

The slope is partitioned into two components:

-2F specifies the radix point. E is the fixed power-of-two exponent.
= F is the fractional slope. It is normalized such that 1<F<2.

Radix Point-Only Scaling. This is “powers-of-two” scaling since it involves moving
only the radix point. Radix point-only scaling does not require the radix point
to be contiguous with the data word. The advantage of this scaling mode is the
number of processor arithmetic operations is minimized.

You specify radix point-only scaling with the syntax 2~-E where E is
unrestricted. This creates a MATLAB structure with a bias B=0and a
fractional slope F = 1.0.

For example, if you specify the value 2710 for the Output scaling parameter,
then the generalized fixed-point number has a power-of-two exponent E = -10.
This value defines the radix point location to be 10 places to the left of the least
significant bit.

Slope/Bias Scaling. With this scaling mode, you can provide a slope and a bias.
The advantage of slope/bias scaling is that it typically provides more efficient
use of a finite number of bits.

You specify slope/bias scaling with the syntax [slope bias], which creates a
MATLAB structure with the given slope and bias.

For example, if you specify the value [5/9 10] for the Output scaling
parameter, then the generalized fixed-point number has a slope of 5/9 and a
bias of 10. The blockset would automatically store F as 1.1111 and E as -1 due
to the normalization condition 1<F<2.

Rounding

You specify how fixed-point numbers are rounded with the Round toward
parameter list. These rounding modes are supported:

=« Zero — This mode rounds toward zero and is equivalent to MATLAB's fix
function.

= Nearest — This mode rounds toward the nearest representable number, with
the exact midpoint rounded toward positive infinity. Rounding toward
nearest is equivalent to MATLAB's round function.

= Cei ling - This mode rounds toward positive infinity and is equivalent to
MATLAB's ceil function.

= Floor — This mode rounds toward negative infinity and is equivalent to
MATLAB's floor function.

Overflow Handling

You control how overflow conditions are handled for fixed-point operations
with the Saturate to max or min when overflows occur check box.

If checked, then overflows saturate to either the maximum or minimum value
represented by the data type. For example, an overflow associated with a
signed 8-bit integer can saturate to -128 or 127. If unchecked, then overflows
wrap to the appropriate value that is representable by the data type. For
example, the number 130 does not fit in a signed 8-bit integer, and would wrap
to -126.

Locking the Output Scaling

If the output data type is a generalized fixed-point number, then you have the
option of locking its scaling by checking the Lock output scaling so
autoscaling tool can’t change it check box.

When locked, the automatic scaling script autofixexp will not change the
output scaling. Otherwise, the autofixexp is free to adjust the scaling.

Overriding with Doubles

By checking the Override data type(s) with doubles check box, you can
override any data type with doubles. This feature is useful when debugging a
simulation. For example, if you are simulating hardware that is constrained to
output integers, you can override the constraint to determine whether the
hardware warrants modification or replacement.

Logging Simulation Values

By checking the Log minimums and maximums check box, you can save the
maximum and minimum values encountered during a simulation to the
MATLAB workspace. You can then access these values with the automatic
scaling script autofixexp.

2-7

2 Getting Started

2-8

Additional Features and Capabilities

In addition to the features described in “Configuring Fixed-Point Blocks” on
page 2-2, the Fixed-Point Blockset provides you with these features and
capabilities:

= An automatic scaling tool
=« Code generation capabilities

Automatic Scaling

You can use the autofixexp script to automatically change the scaling for each
block that has generalized fixed-point output and does not have its scaling
locked. The script uses the maximum and minimum values logged during the
last simulation run. The scaling is changed such that the simulation range is
covered and the precision is maximized.

As an alternative to (and extension of) the automatic scaling script, you can use
the Fixed-Point Blockset Interface tool. This tool allows you to easily control
the parameters associated with automatic scaling and display the simulation
results for a given model. Additionally, you can:

« Turn on or turn off logging for all blocks
= Override the output data type with doubles for all blocks
= Invoke the automatic scaling script

To learn how to use the Fixed-Point Blockset Interface tool, refer to Chapter 6,
“Tutorial: Feedback Controller Simulation.”

Code Generation

With the Real-Time Workshop, the Fixed-Point Blockset can generate C code.
The code generated from fixed-point blocks uses only integer types and
automatically includes all operations, such as shifts, needed to account for
differences in fixed-point locations.

You can use the generated code on embedded fixed-point processors or rapid
prototyping systems even if they contain a floating-point processor. The code is
structured so that key operations can be readily replaced by optimized
target-specific libraries that you supply. You can also use the Target Language
Compiler™ to customize the generated code. Refer to Appendix A for more
information about code generation using fixed-point blocks.

Example: Converting from Doubles to Fixed-Point

Example: Converting from Doubles to Fixed-Point

The purpose of this example is to show you how to simulate a continuous real-
world signal using a generalized fixed-point data type. The model used is the
simplest possible model and employs only two fixed-point blocks. Although
simple in design, the model gives you the opportunity to explore many of the
important features of the Fixed-Point Blockset including:

= Data types

= Scaling

< Rounding

=« Logging minimum and maximum simulation values to the workspace

= Overflow handling

The model used in this example is given by the fxpdemo_dbl12Ffix demo. You
can launch this demo by typing its name at the MATLAB command line.

fxpdemo_dbl2fix

The model is shown below.

oooo - - v ~ F o -
00 » J_L‘_ P In o P ut N » Mux > [
Signal Zero-Order| ppj To FixPt1 FixPt to Dbl1 s
Generator Hold Mux cope
FixPt
GUI

Block Descriptions

The Signal Generator block is configured to output a sine wave with an
amplitude defined on the interval [-5 5]. It always outputs double-precision
numbers.

The FixPt Gateway In block is used as the interface between Simulink and the
Fixed-Point Blockset. Its function is to convert the double-precision numbers
from the Signal Generator block into one of the Fixed-Point Blockset data
types. For simplicity, its output signal is limited to 5 bits in this example.

2-9

2 Getting Started

2-10

The FixPt Gateway Out block is used as the interface between the Fixed-Point
Blockset and Simulink. Its function is to convert one of the Fixed-Point
Blockset data types into a Simulink data type. In this example, it outputs
double-precision numbers.

The FixPt GUI block launches the Fixed-Point Blockset Interface tool,
fxptdlg. This tool provides convenient access to the global override and logging
parameters, the logged minimum and maximum simulation data, the
automatic scaling script, and the plot interface tool. It is not used in this
example. However, if you have many fixed-point blocks whose scaling must be
optimized, you should use this tool. Refer to Chapter 6, “Tutorial: Feedback
Controller Simulation” for more information.

Note As described in “Compatibility with Simulink Blocks” on page 1-17, you
can eliminate the gateway blocks from your fixed-point model if all signals use
built-in data types.

Simulation Results

The results of two simulation trials are given below. The first trial uses radix
point-only scaling while the second trial uses slope/bias scaling.

Trial 1: Radix Point-Only Scaling

When using radix point-only scaling, your goal is to find the optimal
power-of-two exponent E, as defined in “Selecting the Output Scaling” on
page 2-5. For this scaling mode, the fractional slope F is set to 1 and no bias is
required.

The FixPt Gateway In block is configured in this way:

« QOutput data type

The output data type is given by sfix(5). This creates a MATLAB structure
that is a 5-bit, signed generalized fixed-point number.

« Qutput scaling

The output scaling is given by 2~-2, which puts the radix point two places to
the left of the rightmost bit. This gives a maximum value of 011.11 =3.75, a
minimum value of 100.00 = -4.00, and a precision of (1/2)2 =0.25.

Example: Converting from Doubles to Fixed-Point

= Rounding

The rounding mode is given by Nearest. This rounds the fixed-point result to
the nearest representable number, with the exact midpoint rounded towards
positive infinity.

= Overflows

Fixed-point values that overflow will saturate to the maximum or minimum
value represented by the word.

The resulting real-world and fixed-point simulation results are shown below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The simulation clearly demonstrates the quantization effects of fixed-point
arithmetic. The combination of using a 5-bit word with a precision of (1/2)? =
0.25 produces a discretized output that does not span the full range of the input
signal.

If you want to span the complete range of the input signal with 5 bits using
radix point-only scaling, then your only option is to sacrifice precision. Hence,
the output scaling would be given by 2~-1, which puts the radix point one place
to the left of the rightmost bit. This scaling gives a maximum value of 0111.1 =
7.5, a minimum value of 1000.0 = -8.0, and a precision of (1/2)1 = 0.5.

2-11

2 Getting Started

2-12

Trial 2: Slope/Bias Scaling

When using slope/bias scaling, your goal is to find the optimal fractional slope
F and fixed power-of-two exponent E, as defined in “Selecting the Output
Scaling” on page 2-5. No bias is required for this example since the sine wave
is defined on the interval [-5 5]. The FixPt Gateway In block configuration is
the same as that of the previous trial except for the scaling.

To arrive at a value for the slope, you can begin by assuming a fixed power-of-
two exponent of -2. In the previous trial, this value defined the radix point-only
scaling and resulted in a precision of 0.25. To find the fractional slope, you
divide the maximum value of the sine wave by the maximum value of the scaled
5-bit number. The result is 5.00/3.75 = 1.3333. The slope (and precision) is
1.3333:(0.25) = 0.3333. You specify this value as [0.3333] for the Output
scaling parameter.

Of course, you could have specified a fixed power-of-two exponent of -1 and a
corresponding fractional slope of 0.6667. Naturally, the resulting slope is the
same since E was reduced by one bit but F was increased by one bit. In this
case, the blockset would automatically store F as 1.3332 and E as -2 due to the
normalization condition of 1<F<2.

Example: Converting from Doubles to Fixed-Point

The resulting real-world and fixed-point simulation results are shown below.

This somewhat cumbersome process used to find the slope is not really
necessary. All that is required is the range of the data you are simulating and
the size of the fixed-point word used in the simulation. In general, you can
achieve reasonable simulation results by selecting your scaling based on the
formula

(max —min)

2" -1

where:

= max is the maximum value to be simulated.

< min is the minimum value to be simulated.

< ws is the word size in bits.

= 2WS _ 1 is the largest value of a word with whose size is given by ws.

For this example, the formula produces a slope of 0.32258.

2-13

2 Getting Started

2-14

Demos

To help you learn the Fixed-Point Blockset, a collection of demos is provided.
You can explore specific blockset features by changing block parameters and
observing the effects of those changes.

The demos are divided into two groups: basic demos that illustrate the basic

functionality of the Fixed-Point Blockset, and advanced demos that illustrate
the functionality of systems and filters built with fixed-point blocks. All demos

are located in the fxpdemos directory.

You can access the demos through MATLAB'’s Demo browser. You launch the
Demo browser by opening the Demos block found in the Fixed-Point Blockset

library, or by typing

demo blockset ’Fixed Point”

at the command line. You can also type the name of a particular demo at the

command line.

Basic Demos

The basic demos are listed below.

Table 2-1: Basic Fixed-Point Blockset Demos

Demo Name

Description

Double to Fixed-Point
Conversion

Fixed-Point to Fixed-Point
Conversion

Fixed-Point to Fixed-Point
Inherited Conversion

Fixed-Point Sine

Convert a double precision value to a
fixed-point value.

Convert a fixed-point value to another
fixed-point value.

Convert a fixed-point value to an inherited
fixed-point value.

Add and multiply two fixed-point sine wave
signals.

Demos

Table 2-1: Basic Fixed-Point Blockset Demos (Continued)

Demo Name Description

Scaling a Fixed-Point Simulate a fixed-point feedback design.
Control Design

Generating Only Generate pure integer code for a fixed-point
Fixed-Point Code digital controller.

The Double to Fixed-Point Conversion demo is discussed in “Example:
Converting from Doubles to Fixed-Point” on page 2-9, while the Scaling a
Fixed-Point Control Design demo is the subject of Chapter 6, “Tutorial:
Feedback Controller Simulation.”

Advanced Demos: Filters and Systems

The filter and system demos are intended to be used as a design aid so you can
see how to build and test filters and systems suited to your particular needs.
The output of these demos is compared to the output of analogous built-in
Simulink blocks with identical input.

You can access the filter and system demos through the Filters & Systems:
Examples block, which is included with the Fixed-Point Blockset library.
Alternatively you can type

fixptsys

at the MATLAB command line. The advanced demos are listed below.

Table 2-2: Advanced Fixed-Point Blockset Demos

Demo Name Description
Fixed-Point Compare output from the FixPt Integrator:
Integrators Trapezoidal, FixPt Integrator: Backward, and FixPt

Integrator: Forward realizations to output from
Simulink’s Discrete Integrator block.

Fixed-Point Compare output from the FixPt Derivative and FixPt

Derivatives Derivative: Filtered realizations to output from the
Simulink derivatives built using the Discrete Filter
and Transfer Fcn blocks.

2-15

2 Getting Started

Table 2-2: Advanced Fixed-Point Blockset Demos (Continued)

Demo Name Description

Fixed-PointLead = Compare output from the FixPt Lead and Lag Filter
and Lag Filters realization to output from analogous Simulink filters
built using the Discrete Filter block.

Fixed-Point Compare output from the FixPt State-Space

State Space Realization realization to output from the analogous
built-in Simulink State-Space and Discrete
State-Space block.

You can invoke a filter or system demo by double-clicking the appropriate
subsystem. For example, to invoke the Fixed-Point Derivatives demo,
double-click the Demo: Derivative subsystem. For more information about
filters and systems, refer to Chapter 7, “Building Systems and Filters.”

Additional fixed-point demos exist for direct form 11, series cascade form, and
parallel form realizations. These demos and realizations are discussed in
Chapter 5, “Realization Structures.”

2-16

Data Types and Scaling

Overview

Fixed-Point Numbers .
Signed Fixed-Point Numbers .
Radix Point Interpretation .
Scaling .

Quantization

Range and Precision

Example: Fixed-Point Scallng

Example: Constant Scaling for Best PreC|S|on .

Floating-Point Numbers
Scientific Notation

The IEEE Format

Range and Precision
Exceptional Arithmetic

3-2

3-3
3-3

3-5
3-6

. 3-10
. 3-12

. 3-15
. 3-15
. 3-17
. 3-19
.3-21

3 Data Types and Scaling

Overview

In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1's and 0's). The way in which hardware
components or software functions interpret this sequence of 1's and 0’s is
described by a data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the radix
(binary) point, and whether it is signed or unsigned. The radix point is the
means by which fixed-point values are scaled. Within the Fixed-Point Blockset,
fixed-point data types can be integers, fractionals, or generalized fixed-point
numbers. The main difference between these data types is their default radix
point. Floating-point data types are characterized by a sign bit, a fraction (or
mantissa) field, and an exponent field. The blockset adheres to the IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic (referred to simply as
the IEEE Standard 754 throughout this guide) and supports singles, doubles,
and a nonstandard IEEE-style floating-point data type.

When choosing a data type, you must consider these factors:

= The numerical range of the result

= The precision required of the result

= The associated quantization error (i.e., the rounding mode)

= The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture
used, and the cost of development, among others.

With the Fixed-Point Blockset, you can explore the relationship between data
types, range, precision, and quantization error in the modeling of dynamic
digital systems. With the Real-Time Workshop, you can generate production
code based on that model.

3-2

Fixed-Point Numbers

Fixed-Point Numbers

Fixed-point numbers are stored in data types that are characterized by their
word size in bits, radix point, and whether they are signed or unsigned. The
Fixed-Point Blockset supports integers, fractionals, and generalized
fixed-point numbers. The main difference between these data types is their
default radix point.

Note Fixed-point word sizes up to 128 bits are supported.

A common representation of a binary fixed-point number (either signed or
unsigned) is shown below.

‘ bWS—l ‘ bWs—2 ‘ ’ b5’ b4 b3 ‘ bZ‘ b1 ’ b0 ’
MSB LSB
radix point
where:

= b are the binary digits (bits).
= The size of the word in bits is given by ws.

= The most significant bit (MSB) is the leftmost bit, and is represented by
location Pws-1.

= The least significant bit (LSB) is the rightmost bit, and is represented by
location by

= The radix point is shown four places to the left of the LSB.

Signed Fixed-Point Numbers

Computer hardware typically represent the negation of a binary fixed-point
number in three different ways: sign/magnitude, one’s complement, and two’s
complement. Two’s complement is the preferred representation of signed
fixed-point numbers and is supported by the Fixed-Point Blockset.

3-3

3 Data Types and Scaling

3-4

Negation using two's complement consists of a bit inversion (translation into
one’s complement) followed by the addition of a one. For example, the two’s
complement of 000101 is 111011.

Whether a fixed-point value is signed or unsigned is usually not encoded
explicitly within the binary word (i.e., there is no sign bit). Instead, the sign
information is implicitly defined within the computer architecture.

Radix Point Interpretation

The radix point is the means by which fixed-point numbers are scaled. It is
usually the software that determines the radix point. When performing basic
math functions such as addition or subtraction, the hardware uses the same
logic circuits regardless of the value of the scale factor. In essence, the logic
circuits have no knowledge of a scale factor. They are performing signed or
unsigned fixed-point binary algebra as if the radix point is to the right of by,

Within the Fixed-Point Blockset, the main difference between fixed-point data
types is the default radix point. For integers and fractionals, the radix point is
fixed at the default value. For generalized fixed-point data types, you must
explicitly specify the scaling by configuring dialog box parameters, or inherit
the scaling from another block. The supported fixed-point data types are
described below.

Integers

The default radix point for signed and unsigned integer data types is assumed
to be just to the right of the LSB. You specify unsigned and signed integers with
the uint and sint functions, respectively.

Fractionals

The default radix point for unsigned fractional data types is just to the left of
the MSB, while for signed fractionals the radix point is just to the right of the
MSB. If you specify guard bits, then they lie to the left of the radix point. You
specify unsigned and signed fractional numbers with the ufrac and sfrac
functions, respectively.

Generalized Fixed-Point Numbers

For signed and unsigned generalized fixed-point numbers, there is no default
radix point. You specify unsigned and signed generalized fixed-point numbers
with the ufix and sfix functions. respectively.

Fixed-Point Numbers

Scaling

The dynamic range of fixed-point numbers is much less than that of
floating-point numbers with equivalent word sizes. To avoid overflow
conditions and minimize quantization errors, fixed-point numbers must be
scaled.

With the Fixed-Point Blockset, you can select a fixed-point data type whose
scaling is defined by its default radix point, or you can select a generalized
fixed-point data type and choose an arbitrary linear scaling that suits your
needs. This section presents the scaling choices available for generalized
fixed-point data types.

A fixed-point number can be represented by a general slope/bias encoding
scheme

V=V = SQ+B
where:

= Vis an arbitrarily precise real-world value.
- Vis the approximate real-world value.

= Q is an integer that encodes V.

« S = F-2E s the slope.

< B is the bias.

The slope is partitioned into two components:

-2F specifies the radix point. E is the fixed power-of-two exponent.
= F is the fractional slope. It is normalized such that 1<F<2.

Note S and B are constants and do not show up in the computer hardware
directly — only the quantization value Q is stored in computer memory.

The scaling modes available to you within this encoding scheme are described
below. For detailed information about how the supported scaling modes effect
fixed-point operations, refer to “Recommendations for Arithmetic and Scaling”
on page 4-15.

3-5

3 Data Types and Scaling

3-6

Radix Point-Only Scaling

As the name implies, radix point-only (or “powers-of-two”) scaling involves
moving only the radix point within the generalized fixed-point word. The
advantage of this scaling mode is the number of processor arithmetic
operations is minimized.

With radix point-only scaling, the components of the general slope/bias formula
have these values:

-F:l
«s5=2F
«B=0

That is, the scaling of the quantized real-world number is defined only by the
slope S, which is restricted to a power of two.

Radix point-only scaling is specified with the syntax 2~-E where E is
unrestricted. This creates a MATLAB structure with a bias B=0and a
fractional slope F = 1.0. For example, the syntax 2~-10 defines a scaling such
that the radix point is at a location 10 places to the left of the least significant
bit.

Slope/Bias Scaling

When scaling by slope and bias, the slope S and bias B of the quantized
real-world number can take on any value. Scaling by slope and bias is specified
with the syntax [slope bias], which creates a MATLAB structure with the
given slope and bias. For example, a slope/bias scaling specified by [5/9 10]
defines a slope of 5/9 and a bias of 10. The slope must be a positive number.

Quantization

The quantization Q of a real-world value V is represented by a weighted sum
of bits. Within the context of the general slope/bias encoding scheme, the value
of an unsigned fixed-point quantity is given by

ws—1
V=s0) b2i|+B
i=0

while the value of a signed fixed-point quantity is given by

Fixed-Point Numbers

ws -2

2ws=14+ % b2 +B
i=0

V =S0O-b

ws—-1

where:

= b; are binary digits, with b; = 1,0.
= The word size in bits is given by ws, with ws =1,2,3,...,128.

- Sisgiven by F2E, where the scaling is unrestricted since the radix point does
not have to be contiguous with the word.

b; are called bit multipliers and 2i are called the weights.

Example: Fixed-Point Format
The formats for 8-bit signed and unsigned fixed-point values are given below.

‘0‘0‘1‘1 0‘1‘0‘1‘Unsigneddatatype

1]o|1][1]o]1]o] 1| Signeddatatype

Note that you cannot discern whether these numbers are signed or unsigned
data types merely by inspection since this information is not explicitly encoded
within the word.

The binary number 0011.0101 yields the same value for the unsigned and two'’s
complement representation since the MSB = 0. Setting B = 0 and using the
appropriate weights, bit multipliers, and scaling, the value is

v = (F2Fym =2F

1
b;2!

ws —
i=0

o’ +ol+1P 1t o3+ 122+ o 2t + 1 20

3.3125

3-7

3 Data Types and Scaling

3-8

Conversely, the binary number 1011.0101 yields different values for the
unsigned and two's complement representation since the MSB = 1.

Setting B = 0 and using the appropriate weights, bit multipliers, and scaling,
the unsigned value is

WS —

1
(F2Fym =2F b2
i=0

<
]

=2’ +orbr1P vt rod 122 v o2t 1 29

11.3125

while the two's complement value is

ws -2

V= (F25m=250-by 2%+ Y b2
i=0

g’ +obriP it rod v 12?0t 41 20)

—4.6875

Range and Precision

The range of a number gives the limits of the representation while the precision
gives the distance between successive numbers in the representation. The
range and precision of a fixed-point number depends on the length of the word
and the scaling.

Fixed-Point Numbers

Range
The range of representable numbers for an unsigned and two’s complement
fixed-point number of size ws, scaling S, and bias B is illustrated below.

? S (2" -1)+B
|
| !

positive numbers

S.(—2"s-1)+ B 0 S-(@¥-1-1)+B
| | |
|

. | - |
negative numbers positive numbers

For both the signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 25,

For example, if the fixed-point data type is an integer with scaling defined as
S =1 and B = 0, then the maximum unsigned value is 2"° — 1 since zero must
be represented. In two’s complement, negative numbers must be represented

as well as zero so the maximum value is 2"S~1— 1. Additionally, since there is
only one representation for zero, there must be an unequal number of positive
and negaltive numbers. This means there is a representation for —2"$~ 1 but not
for 2Ws— 4,

Precision

The precision (scaling) of integer and fractional data types is specified by the
default radix point. For generalized fixed-point data types, the scaling must be
explicitly defined as either slope/bias or radix point-only. In either case, the
precision is given by the slope.

3-9

3 Data Types and Scaling

3-10

Fixed-Point Data Type Parameters

The low limit, high limit, and default radix point-only scaling for the supported
fixed-point data types are given below.

Table 3-1: Fixed-Point Data Type Range and Default Scaling

Name Data Type Low Limit High Limit Default Scaling
(~Precision)

Integer uint 0 2Ws—1 1

sint —ws-1 ows—-1_1 1
Fractional ufrac 0 1—2Ws 27Ws

sfrac -1 1—2-ws=1) 2-(ws—1)
Generalized ufix N/A N/A N/A
Fixed-Point)

sfix N/A N/A N/A

Example: Fixed-Point Scaling

The precision, range of signed values, and range of unsigned values for an 8-bit
generalized fixed-point data type with radix point-only scaling are given below.
Note that the first scaling value (21) represents a radix point that is not

contiguous with the word.

Table 3-2: Range of an 8-Bit Fixed-Point Data Type — Radix Point-Only Scaling

Scaling Precision

Range of Sighed
Values (low, high)

Range of Unsigned
Values (low, high)

2 2.0
2° 1.0

2t 05

2? 0.25
2° 0.125
2! 0.0625

-256, 254
-128, 127
-64, 63.5
-32, 31.75
-16, 15.875
-8, 7.9375

0, 510

0, 255

0, 127.5
0, 63.75
0, 31.875
0, 15.9375

Fixed-Point Numbers

Table 3-2: Range of an 8-Bit Fixed-Point Data Type - Radix Point-Only Scaling

Scaling Precision Range of Signed Range of Unsigned
Values (low, high) Values (low, high)

2° 0.03125 -4, 3.96875 0, 7.96875

2° 0.015625 -2,1.984375 0, 3.984375

2’ 0.0078125 -1, 0.9921875 0, 1.9921875

2® 0.00390625 -0.5, 0.49609375 0, 0.99609375

The precision and range of signed and unsigned values for an 8-bit fixed-point
data type using slope/bias scaling are given below. The slope starts at a value
of 1.25 and the bias is 1.0 for all slopes. Note that the slope is the same as the

precision.

Table 3-3: Range of an 8-Bit Fixed-Point Data Type - Slope/Bias Scaling

Bias Slope/Precision Range of Signed Range of Unsigned
Values (low, high) Values (low, high)

1 1.25 -159, 159.75 1,319.75

1 0.625 -79, 80.375 1, 160.375

1 0.3125 -39, 40.6875 1, 80.6875

1 0.15625 -19, 20.84375 1, 40.84375

1 0.078125 -9, 10.921875 1,20.921875

1 0.0390625 -4, 5.9609375 1, 10.9609375

1 0.01953125 -1.5, 3.48046875 1, 5.98046875

1 0.009765625 -0.25, 2.240234375 1, 3.490234375

1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

3-11

3 Data Types and Scaling

3-12

Example: Constant Scaling for Best Precision

The Fixed-Point Blockset provides you with block-specific modes for scaling
constant vectors and constant matrices. These scaling modes are based on
radix point-only scaling and are described below:

= Constant Vector Scaling

Using this mode, you can scale a constant vector such that its precision is
maximized element-by-element, or a common radix point is found based on
the best precision for the largest value of the vector.

< Constant Matrix Scaling

Using this mode, you can scale a constant matrix such that its precision is

maximized element-by-element, or a common radix point is found based on
the best precision for the largest value of each row, each column, or the whole
matrix.

Constant matrix and constant vector scaling are available only for generalized
fixed-point data types. All other fixed-point data types use their default
scaling. The available constant matrix scaling modes are shown below for the
FixPt Matrix Gain block.

FitH= et I i (s [|
Tebaltey tha rpas &y & Sanriend wa | pan |

P et
B wafims b

Posnesisr dols ke &n dhaIEL i), Moo vingis|

Ll 5 prpiinat Senlere)
Dot s b o Foe i P F e d st

Dipad iosleg Flope of [Slaps Fis] e 79
[

™ Lock oulmut sz sing oo sutaresing ool can| chasga §
Hzund mrand |h-.-- ﬂ
™ Sshasts ia ram o man wshan avefloss aco

[e T Y T

= Lag rerara s]

[o | Comed | e | aoee |

Fixed-Point Numbers

To understand how you might use these scaling modes, consider a 5 by 4 matrix
of doubles, M, defined as

3.3333e-005
3.3333e-004
3.3333e-003
3.3333e-002
3.3333e-001

3.3333e-006
3.3333e-005
3.3333e-004
3.3333e-003
3.3333e-002

3.3333e-007
3.3333e-006
3.3333e-005
3.3333e-004
3.3333e-003

3.3333e-008
3.3333e-007
3.3333e-006
3.3333e-005
3.3333e-004

Now suppose M is input into the FixPt Matrix Gain block, and you want to
scale it using one of the constant matrix scaling modes. The results of using
these modes are described below:

= Use Specified Scaling

Suppose the matrix elements are converted to a signed, 10-bit generalized
fixed-point data type with radix point-only scaling of 27 (that is, the radix
point is located seven places to the left of the rightmost bit). With this data
format, M becomes

0
0
0

3.

o OO

1250e-002 O

O OO

0

3.3594e-001 3.1250e-002 O

OO OoOoo

Note that many of the matrix elements are zero, and for the nonzero entries,
the scaled values differ from the original values. This is because a double is
converted to a binary word of fixed size and limited precision for each
element. The larger and more precise the conversion data type, the more
closely the scaled values match the original values.

< Best Precision: Element-wise

If M is scaled such that the precision is maximized for each matrix element,
you obtain

3.3379e-005
3.3379e-004
3.3340e-003
3.3325e-002
3.3301e-001

3.3304e-006
3.3379e-005
3.3379e-004
3.3340e-003
3.3325e-002

3.3341e-007
3.3304e-006
3.3379e-005
3.3379e-004
3.3340e-003

3.3295e-008
3.3341e-007
3.3304e-006
3.3379e-005
3.3379e-004

3-13

3 Data Types and Scaling

= Best Precision: Row-wise
If M is scaled based on the largest value for each row, you obtain
3.3379e-005 3.3379e-006 3.5763e-007 O
3.3379e-004 3.3379e-005 2.8610e-006 O
3.3340e-003 3.3569e-004 3.0518e-005 O
3.3325e-002 3.2959e-003 3.6621e-004 O
3.3301e-001 3.3203e-002 2.9297e-003 O

= Best Precision: Column-wise
If M is scaled based on the largest value for each column, you obtain

0] 0 0 0
0 0 0 0]
2.9297e-003 3.6621e-004 3.0518e-005 2.8610e-006
3.3203e-002 3.2959e-003 3.3569e-004 3.3379e-005
3.3301e-001 3.3325e-002 3.3340e-003 3.3379e-004

= Best Precision: Matrix-wise
If M is scaled based on its largest matrix value, you obtain

0] 0 0 0
0 0 0 0
2.9297e-003 O 0] 0
3.3203e-002 2.9297e-003 O 0]
3.3301e-001 3.3203e-002 2.9297e-003 O

The disadvantage of scaling the matrix column-wise, row-wise, or matrix-wise
is reduced precision resulting from the use of a common radix point. The
advantage of using a common radix point is reduced code size and possibly
increased processor speed.

3-14

Floating-Point Numbers

Floating-Point Numbers

Fixed-point numbers are limited in that they cannot simultaneously represent
very large or very small numbers using a reasonable word size. This limitation
is overcome by using scientific notation. With scientific notation, you can
dynamically place the radix point at a convenient location and use powers of
the radix to keep track of that location. Thus, a range of very large and very
small numbers can be represented with only a few digits.

Any binary floatlng point number can be represented in scientific notation
form as + fx 2*° where f is the fraction (or mantissa); 2 is the radix or base
(binary in this case); and e is the exponent of the radix. The radix is always a
positive number while f and e can be positive or negative.

When performing arithmetic operations, floating-point hardware must take
into account that the sign, exponent, and fraction are all encoded within the
same binary word. This results in complex logic circuits when compared with
the circuits for binary fixed-point operations.

The Fixed-Point Blockset supports single-precision and double-precision
floating-point numbers as defined by the IEEE Standard 754. Additionally, a
nonstandard IEEE-style number is supported. To link the world of fixed-point
numbers with the world of floating-point numbers, the concepts behind
scientific notation are reviewed below.

Scientific Notation

A direct analogy exists between scientific notation and radix point notation.
For example, scientific notation using five decimal digits for the fraction would
take the form

+d.dddd x 10° = +ddddd.0 x 10° ~* = +0.ddddd x 10° !

where p is an integer of unrestricted range. Radix point notation using five bits
for the fraction is the same except for the number base

+b.bbbb x 2% = +bbbbb.0 x 2974 = +0.bbbbb x 29"

where q is an integer of unrestricted range. The previous equation is valid for
both fixed- and floating-point numbers. For both these data types, the fraction
can be changed at any time by the processor. However, for fixed- point numbers

3-15

3 Data Types and Scaling

3-16

the exponent never changes, while for floating-point numbers the exponent can
be changed any time by the processor.

For fixed-point numbers, the exponent is fixed but there is no reason why the
radix point must be contiguous with the fraction. For example, a word
consisting of three unsigned bits is usually represented in scientific notation in
one of these four ways.
0

bbb. = bbb. x2

bb.b = bbb. x27"

b.bb = bbb. x 27

bbb = bbb. x27°

If the exponent were greater than 0 or less than -3, then the representation
would involve lots of zeros.

bbb00000. = bbb. x 2°
bbb00. = bbb. x 22
.00bbb = bbb. x27°

.00000bbb = bbb, x 278

However, these extra zeros never change to ones so they don't show up in the
hardware. Furthermore, unlike floating-point exponents, a fixed-point
exponent never shows up in the hardware, so fixed-point exponents are not
limited by a finite number of bits.

Note The restriction of the radix point being contiguous with the fraction is
unnecessary, and the Fixed-Point Blockset allows you to extend the radix
point to any arbitrary location.

Floating-Point Numbers

The IEEE Format

The IEEE Standard 754 has been widely adopted, and is used with virtually all
floating-point processors and arithmetic coprocessors — with the notable
exception of many DSP floating-point processors.

Among other things, this standard specifies four floating-point number formats
of which singles and doubles are the most widely used. Each format contains
three components: a sign bit, a fraction field, and an exponent field. These
components, as well as the specific formats for singles and doubles, are
discussed below.

The Sign Bit

While two's complement is the preferred representation for signed fixed-point
numbers, IEEE floating-point numbers use a sign/magnitude representation,
where the sign bit is explicitly included in the word. Using this representation,
a sign bit of 0 represents a positive number and a sign bit of 1 represents a
negative number.

The Fraction Field

In general, floating-point numbers can be represented in many different ways
by shifting the number to the left or right of the radix point and decreasing or
increasing the exponent of the radix by a corresponding amount.

To simplify operations on these numbers, they are normalized in the IEEE
format. A normalized binary number has a fraction of the form 1.f where f has
a fixed size for a given data type. Since the leftmost fraction bit is always a 1,
it is unnecessary to store this bit and is therefore implicit (or hidden). Thus, an
n-bit fraction stores an n+1-bit number. The IEEE format also supports
denormalized numbers, which have a fraction of the form 0.f. Normalized and
denormalized formats are discussed in more detail in next section.

The Exponent Field

In the IEEE format, exponent representations are biased. This means a fixed
value (the bias) is subtracted from the field to get the true exponent value. For
example, if the exponent field is 8 bits, then the numbers 0 through 255 are
represented, and there is a bias of 127. Note that some values of the exponent
are reserved for flagging infinity, NaN, and denormalized numbers, so the true
exponent values range from -126 to 127.

3-17

3 Data Types and Scaling

3-18

Single Precision Format

The IEEE single-precision floating-point format is a 32-bit word divided into a
1-bit sign indicator s, an 8-bit biased exponent e, and a 23-bit fraction f. A
representation of this format is given below.

b31 b30 b22 bo

S e f

The relationship between this format and the representation of real numbers
is given by

-127

%(—1)S 02° **yq1.f) normalized, O <e <255
value = B(_l)s M2°"'%%) qo.f)y denormalized,e=0,f>0
Cexceptional value otherwise

Denormalized values are discussed in “Exceptional Arithmetic” on page 3-21.

Double Precision Format

The IEEE double-precision floating-point format is a 64-bit word divided into
a 1-bit sign indicator s, an 11-bit biased exponent e, and a 52-bit fraction f. A
representation of this format is given below.

be3 bs2 bss bo

S e f

The relationship between this format and the representation of real numbers
is given by

9—1023) (1.f) normalized, 0 <e <2047

0-1)° 2
value = %_1)5 q2°~1%%2) qo.fy denormalized,e=0,f>0
Uexceptional value otherwise

Denormalized values are discussed in “Exceptional Arithmetic” on page 3-21.

Floating-Point Numbers

Nonstandard IEEE Format

The Fixed-Point Blockset supports a nonstandard IEEE-style floating-point
data type. This data type adheres to the definitions and formulas previously
given for IEEE singles and doubles. You create nonstandard floating-point
numbers with the float function.

float(TotalBits,ExpBits)

TotalBits is the total word size and ExpBits is the size of the exponent field.
The size of the fraction field and the bias are calculated from these input
arguments. You can specify any number of exponent bits up to 11, and any
number of total bits such that the fraction field is no more than 53 bits.

When specifying a nonstandard format, you should remember that the number
of exponent bits largely determines the range of the result and the number of
fraction bits largely determines the precision of the result.

Note These numbers are normalized with a hidden leading one for all
exponents except the smallest possible exponent. However, the largest
possible exponent might not be treated as a flag for infinity or NaNs.

Range and Precision

The range of a number gives the limits of the representation while the precision
gives the distance between successive numbers in the representation. The
range and precision of an IEEE floating-point number depend on the specific
format.

Range

The range of representable numbers for an IEEE floating-point number with f
bits allocated for the fraction, e bits allocated for the exponent, and the bias of
e given by bias = 26 ~1- 1 is given below.

| - |

<—— negative numbers <—<— positive numbers ———
negative negative positive positive
overflow underflow underflow overflow

3-19

3 Data Types and Scaling

3-20

where:

< Normalized positive numbers are defined within the range 21 -bias g
(2 _ 2—f) . 2bias_

< Normalized negative numbers are defined within the range -2~ bias ¢
_(2 _ 2—f) i 2bias.

= Positive numbers greater than (2 - 2‘f)-2bias, and negative numbers greater
than —(2 — 27%)-201as are overflows.

21—bias _21—bias

= Positive numbers less than , and negative numbers less than
are either underflows or denormalized numbers.
= Zero is given by a special bit pattern, wheree =0 and f=0.

Overflows and underflows result from exceptional arithmetic conditions.
Floating-point numbers outside the defined range are always mapped to + inf.

Note You can use the MATLAB commands realmin and realmax to
determine the dynamic range of double-precision floating-point values for
your computer.

Precision

Due to a finite word size, a floating-point number is only an approximation of
the “true” value. Therefore, it is important to have an understanding of the
precision (or accuracy) of a floating-point result. In general, a value v with an
accuracy q is specified by v + q. For IEEE floating-point numbers,

v = (-1)° 0287 P q1.f) and q = 27 28 ~P1@S Thus, the precision is
associated with the number of bits in the fraction field.

Note In MATLAB, floating-point relative accuracy is given by the command
eps, which returns the distance from 1.0 to the next largest floating point
number. For a computer that supports the IEEE Standard 754, eps = 22 0r
2.2204 010716

Floating-Point Numbers

Floating-Point Data Type Parameters

The high and low limits, exponent bias, and precision for the supported
floating-point data types are given below.

Table 3-4: Floating-Point Data Type Parameters

Data Type |Low Limit] |High Limit]| Exponent Precision
Bias

single 27126 = 1038 2128 =3 11038 127 2-23 = 10-7

double 271022 = 3 710308 21024 = 2 710308 1023 2-52 ~10-16

nonstandard ~ (1-bias) (2 —27"y pPias 2¢-1_4 o

Due to the sign/magnitude representation of floating-point numbers, there are
two representations of zero, one positive and one negative. For both
representations e = 0 and 0.f = 0.0.

Exceptional Arithmetic

In addition to specifying a floating-point format, the IEEE Standard 754
specifies practices and procedures so that predictable results are produced
independent of the hardware platform. Specifically, denormalized numbers,
infinity, and NaNs are defined to deal with exceptional arithmetic (underflow
and overflow).

If an underflow or overflow is handled as infinity or NaN, then significant
processor overhead is required to deal with this exception. Although the IEEE
Standard 754 specifies practices and procedures to deal with exceptional
arithmetic conditions in a consistent manner, microprocessor manufacturers
may handle these conditions in ways that depart from the standard. Some of
the alternative approaches, such as saturation and wrapping, are discussed in
Chapter 4, “Arithmetic Operations.”

Denormalized Numbers

Denormalized numbers are used to handle cases of exponent underflow. When
the exponent of the result is too small (i.e., a negative exponent with too large
a magnitude), the result is denormalized by right-shifting the fraction and

leaving the exponent at its minimum value. The use of denormalized numbers
is also referred to as gradual underflow. Without denormalized numbers, the

3-21

3 Data Types and Scaling

3-22

gap between the smallest representable nonzero number and zero is much
wider than the gap between the smallest representable nonzero number and
the next larger number. Gradual underflow fills that gap and reduces the
impact of exponent underflow to a level comparable with round off among the
normalized numbers. Thus, denormalized numbers provide extended range for
small numbers at the expense of precision.

Infinity

Arithmetic involving infinity is treated as the limiting case of real arithmetic,
with infinite values defined as those outside the range of representable
numbers, or —» < (representable numbers) <« With the exception of the
special cases discussed below (NaNs), any arithmetic operation involving
infinity yields infinity. Infinity is represented by the largest biased exponent
allowed by the format and a fraction of zero.

NaNs

A NaN (not-a-number) is a symbolic entity encoded in floating-point format.
There are two types of NaNs: signaling and quiet. A signaling NaN signals an
invalid operation exception. A quiet NaN propagates through almost every
arithmetic operation without signaling an exception. NaNs are produced by
these operations: co —o, —c0 + 00, 0 X 00, 0/0, and oo/ 0.

Both types of NaNs are represented by the largest biased exponent allowed by
the format and a fraction that is nonzero. The bit pattern for a quiet NaN is
given by 0.f where the most significant number in f must be a one, while the
bit pattern for a signaling NaN is given by 0.f where the most significant
number in f must be zero and at least one of the remaining numbers must be
nonzero.

Arithmetic Operations

Overview

Limitations on Precision

Rounding .

Padding with Tralllng Zeros

Example: Limitations on Precision and Errors
Example: Maximizing Precision .

Limitations on Range .
Saturation and Wrapping
Guard Bits

Example: leltatlons on Range

Recommendations for Arithmetic and Scaling
Addition

Accumulation

Multiplication .

Gain .

Division

Summary .

Parameter and Signal Conversions
Parameter Conversions
Signal Conversions .

Rules for Arithmetic Operations .
Computational Units

Addition and Subtraction
Multiplication .

Division

Shifts

Example: Conversions and Arithmetic Operations .

. 4-10

.4-11
.4-12
.4-14
.4-14

. 4-15
. 4-15
. 4-18
. 4-19
. 4-20
. 4-22
.4-24

. 4-25
. 4-26
. 4-26

. 4-29
. 4-29
. 4-29
.4-34
. 4-38
. 4-40

. 4-45

4 arithmetic Operations

Overview

When developing a dynamic system using floating-point arithmetic, you
generally don’t have to worry about numerical limitations since floating-point
data types have high precision and range. Conversely, when working with
fixed-point arithmetic, you must consider these factors when developing
dynamic systems:

< Overflow

Adding two sufficiently large negative or positive values can produce a result
that does not fit into the representation. This will have an adverse effect on
the control system.

= Quantization

Fixed-point values are rounded. Therefore, the output signal to the plant and
the input signal to the control system do not have the same characteristics
as the ideal discrete-time signal.

= Computational noise

The accumulated errors that result from the rounding of individual terms
within the realization introduces noise into the control signal.

< Limit cycles
In the ideal system, the output of a stable transfer function (digital filter)

approaches some constant for a constant input. With quantization, limit
cycles occur where the output oscillates between two values in steady state.

This chapter describes the limitations involved when arithmetic operations
are performed using encoded fixed-point variables. It also provides
recommendations for encoding fixed-point variables such that simulations and
generated code are reasonably efficient.

4-2

Limitations on Precision

Limitations on Precision

Computer words consist of a finite numbers of bits. This means that the binary
encoding of variables is only an approximation of an arbitrarily precise
real-world value. Therefore, the limitations of the binary representation
automatically introduce limitations on the precision of the value.

The precision of a fixed-point word depends on the word size and radix point
location. Extending the precision of a word can always be accomplished with
more bits although you face practical limitations with this approach. Instead,
you must carefully select the data type, word size, and scaling such that
numbers are accurately represented. Rounding and padding with trailing zeros
are typical methods implemented on processors to deal with the precision of
binary words.

Rounding

The result of any operation on a fixed-point number is typically stored in a
register that is longer than the number’s original format. When the result is
put back into the original format, the extra bits must be disposed of. That is,
the result must be rounded. Rounding involves going from high precision to
lower precision and produces quantization errors and computational noise.

The blockset provides four rounding modes, which are shown below.

Frons: Prand 1 sty | razk

Cowest oo b Sim il ol s ke b b Fesd S Bloci s oms
e

Maaail
Trnd wpust i || FHand vl Wk =
D choda s] caling | Seme by =]
Duid dala g e k10wl Bost{enegs]
JewinE]
Oulped ool Siope o Clopw Bar] = 275
i
™ Leooe compa oolrg 13 serecabrg el cart chargm @
Foundipasd | Tz =]

M Eshamin i ,::_;'q
[D o] sk
F Log rarmnure snd e sra

4-3

4 arithmetic Operations

The Fixed-Point Blockset rounding modes are discussed below. The data is
generated using Simulink’s Signal Generator block and doubles are converted
to signed 8-bit numbers with radix point-only scaling of 2-2.

Round Toward Zero

The computationally simplest rounding mode is to drop all digits beyond the
number required. This mode is referred to as rounding toward zero, and it
results in a number whose magnitude is always less than or equal to the more
precise original value. In MATLAB, you can round to zero using the fix
function.

Rounding toward zero introduces a cumulative downward bias in the result for
positive numbers and a cumulative upward bias in the result for negative
numbers. That is, all positive numbers are rounded to smaller positive
numbers, while all negative numbers are rounded to smaller negative
numbers. Rounding toward zero is shown below.

Round Toward Zero

1 T T T T
05 |
Positive numbers are rounded
to smaller positive numbers
0 |
Negative numbers are rounded
to smaller negative numbers
-0.5F E
-1 L L L L
0 0.2 0.4 0.6 0.8 1

Time

Limitations on Precision

An example comparing rounding to zero and truncation for unsigned and two'’s
complement numbers is given in “Example: Rounding to Zero Versus
Truncation” on page 4-8.

Round Toward Nearest

When rounding toward nearest, the number is rounded to the nearest
representable value. This mode has the smallest errors associated with it and
these errors are symmetric. As a result, rounding toward nearest is the most
useful approach for most applications.

In MATLAB, you can round to nearest using the round function. Rounding
toward nearest is shown below.

Round Toward Nearest
1 T T T T

All numbers are rounded:to the
nearest representable number

Time

4-5

4 arithmetic Operations

4-6

Round Toward Ceiling

When rounding toward ceiling, both positive and negative numbers are
rounded toward positive infinity. As a result, a positive cumulative bias is
introduced in the number.

In MATLAB, you can round to ceiling using the ceil function. Rounding
toward ceiling is shown below.

Round Toward Ceiling

1 T T
0.5 — E
All numbers are rounded
toward positive infinity
o i
-0.5+ B
-1 | | | |
0 0.2 0.4 0.6 0.8 1

Time

Limitations on Precision

Round Toward Floor

When rounding toward floor, both positive and negative numbers are rounded
to negative infinity. As a result, a negative cumulative bias is introduced in the
number.

In MATLAB, you can round to floor using the floor function. Rounding toward
floor is shown below.

Round Toward Floor

1 T T T T
05+ i
All numbers: are rounded
toward negative infinity
oF i
-0.51 B
-1 L L L L
0 0.2 0.4 0.6 0.8 1

Time

Rounding toward ceiling and rounding toward floor are sometimes useful for
diagnostic purposes. For example, after a series of arithmetic operations, you
may not know the exact answer because of word-size limitations, which
introduce rounding. If every operation in the series is performed twice, once
rounding to positive infinity and once rounding to negative infinity, you obtain
an upper limit and a lower limit on the correct answer. You can then decide if
the result is sufficiently accurate or if additional analysis is required.

4-7

4 arithmetic Operations

4-8

Example: Rounding to Zero Versus Truncation

Rounding to zero and truncation or chopping are sometimes thought to mean
the same thing. However, the results produced by rounding to zero and
truncation are different for unsigned and two’s complement numbers.

To illustrate this point, consider rounding a 5-bit unsigned number to zero by
dropping (truncating) the two least significant bits. For example, the unsigned
number 100.01 = 4.25 is truncated to 100 = 4. Therefore, truncating an
unsigned number is equivalent to rounding to zero or rounding to floor.

Now consider rounding a 5-bit two’s complement number by dropping the two
least significant bits. At first glance, you may think truncating a two’s
complement number is the same as rounding to zero. For example, dropping
the last two digits of -3.75 yields -3.00. However, digital hardware performing
two’s complement arithmetic yields a different result. Specifically, the number
100.01 = -3.75 truncates to 100 = -4, which is rounding to floor.

As you can see, rounding to zero for a two’s complement number is not the same
as truncation when the original value is negative. For this reason, the
ambiguous term “truncation” is not used in this guide, and four explicit
rounding modes are used instead.

Padding with Trailing Zeros

Padding with trailing zeros involves extending the least significant bit (LSB)
of a number with extra bits. This method involves going from low precision to
higher precision.

For example, suppose two humbers are subtracted from each other. First, the
exponents must be aligned, which typically involves a right shift of the number
with the smaller value. In performing this shift, significant digits can “fall off”
to the right. However, when the appropriate number of extra bits is appended,
the precision of the result is maximized. Consider two 8-bit fixed-point
numbers that are close in value and subtracted from each other

1.0000000 29 -1.1111111 %71

where q is an integer. To perform this operation, the exponents must be equal.

Limitations on Precision

1.0000000 29
~0.1111111 2%
0.0000001 24

If the top number is padded by two zeros and the bottom number is padded with
one zero, then the above equation becomes

1.000000000 24
—0.111111110 24
0.000000010 24

which produces a more precise result. An example of padding with trailing
zeros using the Fixed-Point Blockset is illustrated in “Digital Controller
Realization” on page 6-7.

Example: Limitations on Precision and Errors

Fixed-point variables have a limited precision because digital systems
represent numbers with a finite number of bits. For example, suppose you must
represent the real-world number 35.375 with a fixed-point number. Using the
encoding scheme described in “Scaling” on page 3-5, the representation is

V=27Q0+32

The two closest approximations to the real-world value are Q = 13 and Q = 14.

\Y

\Y

27%(13) +32 = 35.25

27%(14) + 32

35.50

In either case, the absolute error is the same.

E
V-Vv| = 0125 = F2-
2
For fixed-point values within the limited range, this represents the worst-case
error if round-to-nearest is used. If other rounding modes are used, the
worst-case error can be twice as large.

4-9

4 arithmetic Operations

V-v|<F2F

Example: Maximizing Precision

Precision is limited by slope. To achieve maximum precision, the slope should
be made as small as possible while keeping the range adequately large. The
bias will be adjusted in coordination with the slope.

Assume the maximum and minimum real-world value is given by max(V) and
min(V), respectively. These limits may be known based on physical principles
or engineering considerations. To maximize the precision, you must decide
upon a rounding scheme and whether overflows saturate or wrap. To simplify
matters, this example assumes the minimum real-world value corresponds to
the minimum encoded value, and the maximum real-world value corresponds
to the maximum encoded value. Using the encoding scheme described in
“Scaling” on page 3-5, these values are given by

max(V) = F2E(max(Q))+B
min(V) = F25(min(Q))+ B
Solving for the slope, you get

FoF - max(V)-min(V) _ max(V)-min(V)
max(Q)-min(Q) WS _q

This formula is independent of rounding and overflow issues, and depends only
on the word size, ws.

4-10

Limitations on Range

Limitations on Range

Limitations on the range of a fixed-point word occur for the same reason as
limitations on its precision. Namely, fixed-point words have limited size.

In binary arithmetic, a processor may need to take an n-bit fixed-point number
and store it in m bits, where m # n. If m < n, the range of the number has been
reduced and an operation can produce an overflow condition. Some processors
identify this condition as infinity or NaN. For other processors, especially
digital signal processors (DSP’s), the value saturates or wraps. If m > n, the
range of the number has been extended. Extending the range of a word
requires the inclusion of guard bits, which act to “guard” against potential
overflow. In both cases, the range depends on the word’s size and scaling.

The Fixed-Point Blockset supports saturation and wrapping for all fixed-point
data types, while guard bits are supported only for fractional data types. As
shown below, you can select saturation or wrapping with the Saturate to max
or min when overflows occur check box, and you can specify guard bits with
the Output data type parameter.

[Blcck Pargaratoss Fot Gabsgin ________________HI
Frord Prant. (i sy in [raink |
Tiowvese buce e Swilnd bl s bpe b i Fisd ot Gloci ied g
o

Famarai
Towil vt e || Fand] ki =]

i dais s snd walng [‘:u_-i:--:j-}.-.. '|

Dudped deds e #a 116 wrifll] Bostlanghs]

36-hit signed fractional data type with 4

[| [E— . o .
pRey guard bits. The total word size is 40 bits.
I
=
Found ipagd | “on =
F Esbamin w0 min s periosn oo — 1 Saturate overflows.

T Desmde gyt bppahi | vt doubis

F Leg rurerurn snd musrears

[ToE] Comcd | 4o

4-11

4 arithmetic Operations

4-12

Saturation and Wrapping

Saturation and wrapping describe a particular way that some processors deal
with overflow conditions. For example, Analog Device's ADSP-2100 family of
processors supports either of these modes. If a register has a saturation mode
of operation, then an overflow condition is set to the maximum positive or
negative value allowed. Conversely, if a register has a wrapping mode of
operation, an overflow condition is set to the appropriate value within the
range of the representation.

Example: Saturation and Wrapping

Consider an 8-bit unsigned word with radix point-only scaling of 2°°. Suppose
this data type must represent a sine wave that ranges from -4 to 4. For values
between 0 and 4, the word can represent these numbers without regard to
overflow. This is not the case with negative numbers. If overflows saturate, all
negative values are set to zero, which is the smallest number representable by
the data type. The saturation of overflows is shown below.

Overflows Saturate
8 T T T T

Negative values Negative values
saturate to zero saturate to zero
2+ -
0 L | L |
0 0.4 0.8 1.2 1.6 2
Time

Limitations on Range

If overflows wrap, all negative values are set to the appropriate positive value.
The wrapping of overflows is shown below.

Overflows Wrap
8 T T T T

2+ -

Negative values Negative values
wrap to positive wrap to positive
values values
0 L L L L
0 0.4 0.8 1.2 1.6 2
Time

Note For most control applications, saturation is the safer way of dealing
with fixed-point overflow. However, some processor architectures allow
automatic saturation by hardware. If hardware saturation is not available,
then extra software is required resulting in larger, slower programs. This cost
is justified in some designs — perhaps for safety reasons. Other designs accept
wrapping to obtain the smallest, fastest software.

4-13

4 arithmetic Operations

4-14

Guard Bits

You can eliminate the possibility of overflow by appending the appropriate
number of guard bits to a binary word.

For a two's complement signed value, the guard bits are filled with either 0’s or
1's depending on the value of the most significant bit (MSB). This is called sign
extension. For example, consider a 4-bit two’s complement number with value
1011. If this number is extended in range to 7 bits with sign extension, then the
number becomes 1111101 and the value remains the same.

Guard bits are supported only for fractional data types. For both signed and
unsigned fractionals, the guard bits lie to the left of the default radix point.

Example: Limitations on Range

Fixed-point variables have a limited range for the same reason they have
limited precision — because digital systems represent numbers with a finite
number of bits. As a general example, consider the case where an integer is
represented as a fixed-point word of size ws. The range for signed and unsigned
words is given by max(Q) —-min(Q) where

) 0 unsigned
min =
@ E_zws_l signed
w1 unsigned
max(Q) = 0 1
Ws~*_1 signed

Using the general slope/bias encoding scheme described in “Scaling” on page
3-5, the approximate real-world value has the range max(V) —min(V) where

~ OB unsigned
min(V) = 0 .
-F252" Y +B signed
E ,ws .
~ OF2- (27" -1)+B unsigned
max(V) = O () g

OFofe"* 1 1)+B signed

If the real-world value exceeds the limited range of the approximate value,
then the accuracy of the representation can become significantly worse.

Recommendations for Arithmetic and Scaling

Recommendations for Arithmetic and Scaling

This section describes the relationship between arithmetic operations and
fixed-point scaling, and some basic recommendations that may be appropriate
for your fixed-point design. For each arithmetic operation:

= The general slope/bias encoding scheme described in “Scaling” on page 3-5 is
used.

= The scaling of the result is automatically selected based on the scaling of the
two inputs. In other words, the scaling is inherited.

= Scaling choices are based on:
- Minimizing the number of arithmetic operations of the result.
- Maximizing the precision of the result.

Additionally, radix point-only scaling is presented as a special case of the
general encoding scheme.

In embedded systems, the scaling of variables at the hardware interface (the
ADC or DAC) is fixed. However for most other variables, the scaling is
something you can choose to give the best design. When scaling fixed-point
variables, it is important to remember that:

= Your scaling choices depend on the particular design you are simulating.

= There is no best scaling approach. All choices have associated advantages
and disadvantages. It is the goal of this section to expose these advantages
and disadvantages to you.

Addition

Consider the addition of two real-world values.
Vo = Vp+V,

These values are represented by the general slope/bias encoding scheme
described in “Scaling” on page 3-5.

Vv, = F;25Q, +B,

In a fixed-point system, the addition of values results in finding the variable

Qa-

4-15

4 arithmetic Operations

4-16

Ep—E, Fe _E-E Bp,+B.-B, __-E,

B A

Tll'l'l
o

Qa:

W)
W)
W)

This formula shows:

= In general, Q, is not computed through a simple addition of Q, and Q.

=« In general, there are two multiplies of a constant and a variable, two
additions, and some additional bit shifting.

Inherited Scaling for Speed

In the process of finding the scaling of the sum, one reasonable goal is to
simplify the calculations. Simplifying the calculations should reduce the
number of operations thereby increasing execution speed. The following
choices can help to minimize the number of arithmetic operations:

= Set B, = By, + B.. This eliminates one addition.

= Set F, = F,or F, = F.. Either choice eliminates one of the two constant times
variable multiplies.

The resulting formula is

_ JE-E. . Fc E-E.
Qa - 2 ’ Qb+_a|I QC
or

E,—E,
b Ec_Ea
Qa = |:_a|:2 Qb"'2 Qc

These equations appear to be equivalent. However, your choice of rounding and
precision may make one choice stand out over the other. To further simplify
matters, you could choose E, = E; or E, = E,. This will eliminate some bit
shifting.

Inherited Scaling for Maximum Precision

In the process of finding the scaling of the sum, one reasonable goal is
maximum precision. The maximum precision scaling can be determined if the
range of the variable is known. As shown in “Example: Maximizing Precision”
on page 4-10, the range of a fixed-point operation can be determined from
max(Vg) and min(Vy). For a summation, the range can be determined from

Recommendations for Arithmetic and Scaling

min(\7a) = min(\~/b)+min(\~/c)
max(V,) = max(Vp) + max(V,)

The maximum precision slope can now be derived.

E 2Ea _ max(Vy) —min(Vy)
-1

a WS,
ws,

2

E E., . ws,
_ Fy2 "7 -1)+F 272 "-1)

ws,

2 -1

In most cases the input and output word sizes are much greater than one, and
the slope becomes

Ey, +ws, —ws, E.+ws,—ws,

+F 2

c

Ea_
Fa2 "=Fp2

which depends only on the size of the input and output words. The
corresponding bias is

B, = min(V,)-F,2% Imin(Q,)

a

The value of the bias depends on whether the inputs and output are signed or
unsigned numbers.

If the inputs and output are all unsigned, then the minimum value for these
variables are all zero and the bias reduces to a particularly simple form.

B, = B, +B,
If the inputs and the output are all signed, then the bias becomes

1 1 ws.—1

B :Bb+BC+Fb2Eb(_2WSh— +2W5h_1)+F02EC(—2WSC_ +2

a

)
B,=By+B,

a

Radix Point-Only Scaling
For radix point-only scaling, finding Q, results in this simple expression.

4-17

4 arithmetic Operations

4-18

Eb - Ea Ea

Q, = 277, + 277 g,

This scaling choice results in only one addition and some bit shifting. The
avoidance of any multiplications is a big advantage of radix point-only scaling.

Note The subtraction of values produces results that are analogous to those
produced by the addition of values.

Accumulation
The accumulation of values is closely associated with addition.

\Y =V

a_new a_old

+Vb

Finding Q4 new involves one multiply of a constant and a variable, two
additions, and some bit shifting.

Fp E.-E. By _-E,

Qa_new = Qa_old+|:_ (2 Ql:\-"|:_ 2

a a
The important difference for fixed-point implementations is that the scaling of
the output is identical to the scaling of the first input.

Radix Point-Only Scaling
For radix point-only scaling, finding Q, ney results in this simple expression.

- Eb_Ea
Qa_new - Qa_old+2 Qb

This scaling option only involves one addition and some bit shifting.

Note The negative accumulation of values produces results that are
analogous to those produced by the accumulation of values.

Recommendations for Arithmetic and Scaling

Multiplication
Consider the multiplication of two real-world values.

V, =V, xV,

These values are represented by the general slope/bias encoding scheme
described in “Scaling” on page 3-5.

E,
V, = F;2'Q; +B,

In a fixed-point system, the multiplication of values results in finding the
variable Q,.

FoFc _E,+E.-E FoBe E,-E FBy, E-E
a: It:J Cm e = aQbQC+ It; ClI b aQb+ 'C: b‘] c aQC
a a a
. BbBFC— By ,-E.

This formula shows:

= In general, Q is not computed through a simple multiplication of Qy and Q.

= In general, there is one multiply of a constant and two variables, two
multiplies of a constant and a variable, three additions, and some additional
bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

= Set B, = B,B,. This eliminates one addition operation.

= Set F, = F,F.. This simplifies the triple multiplication — certainly the most
difficult part of the equation to implement.

= Set E, = E,, + E... This eliminates some of the bit-shifting.

The resulting formula is

B -E, Bb _E
Qa:Qch"'l:_CDZ Qb-"|:_|:IZ ch
c b

4-19

4 arithmetic Operations

4-20

Inherited Scaling for Maximum Precision

The maximum precision scaling can be determined if the range of the variable

is known. As shown in “Example: Maximizing Precision” on page 4-10, the
range of a fixed-point operation can be determined from max(V,) and
min(Vy,).

For multiplication, the range can be determined from

min(V,) = min(V .,V 4 Vyau Var)

max(Va) max(Vy ., Vi Var: Van)

where

V| = min(V,) min(V,)
Vig = min(f/b) Emax(\N/C)
VgL = max(\7b) Emin(\~/c)
Vg = max(\?b) Dnax(\?c)

Radix Point-Only Scaling
For radix point-only scaling, finding Q, results in this simple expression.

Eb+Ec_Ea

Qa =2 Qch

Gain
Consider the multiplication of a constant and a variable

V, = KDV,

where K is a constant called the gain. Since V, results from the multiplication
of a constant and a variable, finding Q, is a simplified version of the general

fixed-point multiply formula.

Recommendations for Arithmetic and Scaling

E

HKFy2H [KB,—B,0

Q, = p ¥ O———0

a [E, O 0 Ea [
OF,2 " 0O F,2

Note that the terms in the parentheses can be calculated offline. Therefore,
there is only one multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated
form, the constants need to be encoded using a radix point-only format. For
each of these constants, the range is the trivial case of only one value. Despite
the trivial range, the radix point formulas for maximum precision are still
valid. The maximum precision representations are the most useful choices
unless there is an overriding need to avoid any shifting. The encoding of the
constants is

Eo[]
KFo2 5 2Q
0_ _E O X
OoF,2 " 0O
[KB,—-B_O E
b . a|:|: 2 YQY
OfF2—™ U

resulting in the formula
E E
Qa =2 QxQg+2 'Qy
Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

= Set B, = KBy, This eliminates one constant term.
= Set F, = KFy, and E, = E;,. This sets the other constant term to unity.

The resulting formula is simply
Qa = Qb

If the number of bits is different, then either handling potential overflows or
performing sign extensions is the only possible operations involved.

4-21

4 arithmetic Operations

4-22

Inherited Scaling for Maximum Precision

The scaling for maximum precision does not need to be different than the
scaling for speed unless the output has fewer bits than the input. If this is the
case, then saturation should be avoided by dividing the slope by 2 for each lost
bit. This will prevent saturation but will cause rounding to occur.

Division
Division of values is an operation that should be avoided in fixed-point

embedded systems, but it can occur in places. Therefore, consider the division
of two real-world values.

V, = Vp/V,
These values are represented by the general slope/bias encoding scheme
described in “Scaling” on page 3-5.
Ei
In a fixed-point system, the division of values results in finding the variable Q.
Es
Fp2 Qp+By Ba _-E.

Qa =
FF2™"F

c a

E
aQC + BcFa ‘I : a
This formula shows:

= In general, Q, is not computed through a simple division of Q, by Q..

= In general, there are two multiplies of a constant and a variable, two
additions, one division of a variable by a variable, one division of a constant
by a variable, and some additional bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

= Set B, = 0. This eliminates one addition operation.

= If B; = 0, then set the fractional slope F, = Fp/F.. This eliminates one
constant times variable multiplication.

Recommendations for Arithmetic and Scaling

The resulting formula is

_E B,./F _E
:%DZE" E, Ea+(b b)DZ E.-E,
QC QC

If B,#0, then no clear recommendation can be made.

Qa

Inherited Scaling for Maximum Precision

The maximum precision scaling can be determined if the range of the variable
is known. As shown in “Example: Maximizing Precision” on page 4-10, the
range of a fixed-point operation can be determined from max(V,) and
min(Vy) . For division, the range can be determined from

min(V,) = min(V_ , Vi 4 Vuu Vaw)
max(V,) = max(V |, Vi Vo Van)

where for nonzero denominators

VL = min(V,)/min(V,)
Vig = min(\?b)/max(flc)
Vi = max(Vp)/min(V,)

Vau = max(\N/b)/max(\N/C)

Radix Point-Only Scaling
For radix point-only scaling, finding Q, results in this simple expression.

:%)
Q¢

Eb_Ec_Ea

Qa (2

Note For the last two formulas involving Q, a divide by zero, and zero
divided by zero are possible. In these cases, the hardware will give some
default behavior but you must make sure that these default responses give
meaningful results for the embedded system.

4-23

4 arithmetic Operations

4-24

Summary

From the previous analysis of fixed-point variables scaled within the general

slope/bias encoding scheme, you can conclude:

= Addition, subtraction, multiplication, and division can be very involved
unless certain choices are made for the biases and slopes.

= Radix point-only scaling guarantees simpler math, but generally sacrifices
some precision.

= It is important to note that the previous formulas don’t show that:
- Constants and variables are represented with a finite number of bits.
- Variables are either signed or unsigned.

- The rounding and overflow handling schemes. These decisions must be
made before an actual fixed-point realization is achieved.

Parameter and Signal Conversions

Parameter and Signal Conversions

The previous sections of this chapter, together with Chapter 3, “Data Types
and Scaling,” describe how data types, scaling, rounding, overflow handling,
and arithmetic operations are incorporated into the Fixed-Point Blockset. With
this knowledge, you can define the output of a fixed-point model by configuring
fixed-point blocks to suit your particular application.

However, to completely understand the results generated by the Fixed-Point
Blockset, you must be aware of these three issues:

= When numerical block parameters are converted from a double to a
Fixed-Point Blockset data type

= When input signals are converted from one Fixed-Point Blockset data type
to another (if at all)

= When arithmetic operations on input signals and parameters are performed

For example, suppose a fixed-point block performs an arithmetic operation on
its input signal and a parameter, and then generates output having
characteristics that are specified by the block. The following diagram
illustrates how these issues are related.

Fixed-Point Block

‘ Parameter Value ‘

Input > Operation ‘

N

Output Data Type
Output Scaling
Rounding
Overflow Handling

Output

Parameter conversions and signal conversions are discussed below. Arithmetic
operations are discussed in “Rules for Arithmetic Operations” on page 4-29.

4-25

4 arithmetic Operations

4-26

Parameter Conversions

Block parameters that accept numerical values are always converted from a
double to a Fixed-Point Blockset data type. Parameters can be converted to the
input data type, the output data type, or to a data type explicitly specified by
the block. For example, the FixPt FIR block converts the Initial condition
parameter to the input data type, and converts the FIR coefficients parameter
to a data type you explicitly specify via the block dialog box.

Parameters are always converted before any arithmetic operations are
performed. Additionally, parameters are always converted offline using
round-to-nearest and saturation. Offline conversions are discussed below.

For information about parameter conversions for a specific block, refer to
Chapter 9, “Block Reference.”

Offline Conversions

An offline conversion is a conversion performed by your development platform
(for example, the processor on your PC), and not by the fixed-point processor
you are targeting. For example, suppose you are using a PC to develop a
program to run on a fixed-point processor, and you need the fixed-point
processor to compute

over and over again. If a, b, and ¢ are constant parameters, it is inefficient for
the fixed-point processor to compute ab/c every time. Instead, the PC'’s
processor should compute ab/c offline one time, and the fixed-point processor
computes only C [u. This eliminates two costly fixed-point arithmetic
operations.

Signal Conversions
Consider the conversion of a real-world value from one Fixed-Point Blockset
data type to another. Ideally, the values before and after the conversion are
equal

V, =V,

a

Parameter and Signal Conversions

where Vy, is the input value and V, is the output value. To see how the
conversion is implemented, the two ideal values are replaced by the general
slope/bias encoding scheme described in “Scaling” on page 3-5.

Ei

Solving for the output data type’s stored integer value, Q,

F B,-B
b E_Ea b _Ea
Qa=pg2 " "Qp+—r—2

a a

E,-E,
= Fs2 ’ Qb'l'Bnet

where Fq is the adjusted fractional slope and B, is the net bias. The offline
conversions and online conversions and operations are discussed below.

Offline Conversions

Both Fg and B,,; are computed offline using round-to-nearest and saturation.
Bpet is then stored using the output data type and Fq is stored using an
automatically selected data type.

Online Conversions and Operations

The remaining conversions and operations are performed online by the
fixed-point processor, and depend on the slopes and biases for the input and
output data types. The conversions and operations are given by these steps:

1 The initial value for Q, is given by the net bias, B,.
Qa = Bnet

2 The input integer value, Qy, is multiplied by the adjusted slope, F;.
QRaWProduct = l:sz

3 The result of step 2 is converted to the modified output data type where the
slope is one and bias is zero.

4-27

4 arithmetic Operations

4-28

QTemp = COI’lvert(QRaWProduct)

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed.

Qa = QTemp + Qa
This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code

Note that the maximum number of conversions and operations is performed
when the slopes and biases of the input signal and output signal differ (are
mismatched). If the scaling of these signals is identical (matched), the number
of operations is reduced from the worst (most inefficient) case. For example,
when an input has the same fractional slope and bias as the output, only step
3 is required.

Q, = convert(Qy)

Exclusive use of radix point-only scaling for both input signals and output
signals is a common way to eliminate the occurrence of mismatched slopes and
biases, and results in the most efficient simulations and generated code.

Rules for Arithmetic Operations

Rules for Arithmetic Operations

Fixed-point arithmetic refers to how signed or unsigned binary words are
operated on. The simplicity of fixed-point arithmetic functions such as addition
and subtraction allows for cost-effective hardware implementations.

This section describes the blockset-specific rules that are followed when
arithmetic operations are performed on inputs and parameters. These rules
are organized into four groups based on the operations involved: addition and
subtraction, multiplication, division, and shifts. For each of these four groups,
the rules for performing the specified operation are presented followed by an
example using the rules.

Computational Units

The core architecture of many processors contains several computational units
including arithmetic logic units (ALU's), multiply and accumulate units
(MAC's), and shifters. These computational units process the binary data
directly and provide support for arithmetic computations of varying precision.
The ALU performs a standard set of arithmetic and logic operations as well as
division. The MAC performs multiply, multiply/add, and multiply/subtract
operations. The shifter performs logical and arithmetic shifts, normalization,
denormalization, and other operations.

Addition and Subtraction

Addition is the most common arithmetic operation a processor performs. When
two n-bit numbers are added together, it is always possible to produce a result
with n + 1 nonzero digits due to a carry from the leftmost digit. For two's
complement addition of two numbers, there are three cases to consider:

= If both numbers are positive and the result of their addition has a sign bit of
1, then overflow has occurred; otherwise the result is correct.

= If both numbers are negative and the sign of the result is 0, then overflow
has occurred; otherwise the result is correct.

= |f the numbers are of unlike sign, overflow cannot occur and the result is
always correct.

4-29

4 arithmetic Operations

4-30

Fixed-Point Blockset Summation Process

Consider the summation of two numbers. Ideally, the real-world values obey
the equation

where V,, and V. are the input values and V, is the output value. To see how
the summation is actually implemented, the three ideal values should be
replaced by the general slope/bias encoding scheme described in “Scaling” on
page 3-5.

E
V, = F.27'Q; +B;

The solution of the resulting equation for the stored integer, Q,, is given by the
equation in “Addition” on page 4-15. Using shorthand notation, that equation
becomes

Ec_Ea

Qa =t Fsb2 Qc+ Bnet

where F¢, and Fg; are the adjusted fractional slopes and B, is the net bias.
The offline conversions, and online conversions and operations are discussed
below.

Offline Conversions. Fgy, Fg., and B are computed offline using
round-to-nearest and saturation. Furthermore, B, is stored using the output
data type.

Online Conversions and Operations. The remaining operations are performed
online by the fixed-point processor, and depend on the slopes and biases for the
input and output data types. The worst (most inefficient) case occurs when the
slopes and biases are mismatched. The worst-case conversions and operations
are given by these steps:

1 The initial value for Q, is given by the net bias, B,e.
Qa = Bnet
2 The first input integer value, Qy, is multiplied by the adjusted slope, Fgy,.

QRaWProduct = I:stb

Rules for Arithmetic Operations

3 The previous product is converted to the modified output data type where
the slope is one and the bias is zero.

QTemp = COI’lvert(QRaWProduct)

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed.

Qa = iQa+ QTemp
This summation includes any necessary overflow handling.

5 Steps 2 to 4 are repeated for every number to be summed.

It is important to note that bit shifting, rounding, and overflow handling are
applied to the intermediate steps (3 and 4) and not to the overall sum.

Streamlining Simulations and Generated Code

If the scaling of the input and output signals is matched, the number of
summation operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope as the output, step 2
reduces to multiplication by one and can be eliminated. Trivial steps in the
summation process are eliminated for both simulation and code generation.
Exclusive use of radix point-only scaling for both input signals and output
signals is a common way to eliminate the occurrence of mismatched slopes and
biases, and results in the most efficient simulations and generated code.

Example: The Summation Process

Suppose you want to sum three numbers. Each of these numbers is represented
by an 8-bit word, and each has a different radix point-only scaling.
Additionally, the output is restricted to an 8-bit word with radix point-only
scaling of 23,

4-31

4 arithmetic Operations

4-32

The summation is shown below for the input values 19.875, 5.4375, and
4.84375.

ufix8 En3

19.875

FixPt
Constant

Qb P+ Qa
54375/ Ufix8 End QC ufix8 _En3 :Fom double I 30]

F Qd \'A

FixPt P+ F FixPt Display
Constantl Gateway Out

\ 4
-

4.8427 ufix8 En5

[
FixPt
Constant2

Applying the rules from the previous section, the sum follows these steps:

1 Since the biases are matched, the initial value of Q, is trivial.
Q, = 00000.000
2 The first number to be summed (19.875) has a fractional slope that matches

the output fractional slope. Furthermore, the radix points and storage types
are identical so the conversion is trivial.

Q, = 10011.111
QTemp = Qb

3 The summation operation is performed.

Qa = Qu+ Qpemp = 10011.111

4 The second number to be summed (5.4375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed. The
storage data types also match but the difference in radix points requires that
both the bits and the radix point be shifted one place to the right.

Rules for Arithmetic Operations

Q, = 0101.0111

QTemp = convert(Q,)

00101.011

QTemp

Note that a loss in precision of one bit occurs, with the resulting value of
Qtemp determined by the rounding mode. For this example, round-to-floor is
used. Overflow cannot occur in this case since the bits and radix point are
both shifted to the right.

The summation operation is performed
Qa = Qa + QTemp

10011.111
+00101.011
11001.010 = 25.250

Note that overflow did not occur, but it is possible for this operation.

6 The third number to be summed (4.84375) has a fractional slope that

matches the output fractional slope, so a slope adjustment is not needed. The
storage data types also match but the difference in radix points requires that
both the bits and the radix point be shifted two places to the right.

Qg = 100.11011

QTemp = convert(Q,)

00100.110

QTemp

Note that a loss in precision of two bit occurs, with the resulting value of
Qtemp determined by the rounding mode. For this example, round-to-floor is
used. Overflow cannot occur in this case since the bits and radix point are
both shifted to the right.

7 The summation operation is performed.

4-33

4 arithmetic Operations

4-34

Qa Qa + QTemp
11001.010
+00100.110
11110.000 = 30.000

Note that overflow did not occur, but it is possible for this operation.

As shown below, the result of step 7 differs from the ideal sum.

10011.111
0101.0111
+ 100.11011
11110.001 = 30.125

Blocks that perform addition and subtraction include the FixPt Sum, FixPt
Matrix Gain, and FixPt FIR blocks.

Multiplication

The multiplication of an n-bit binary number with an m-bit binary number
results in a product that is up to m + n bits in length for both signed and
unsigned words. Most processors perform n-bit by n-bit multiplication and
produce a 2n-bit result (double bits) assuming there is no overflow condition.

For example, the Texas Instruments TMS320C2x family of processors
performs two’s complement 16-bit by 16-bit multiplication and produces a
32-bit (double bit) result.

Fixed-Point Blockset Multiplication Process

Consider the multiplication of two numbers. Ideally, the real-world values obey
the equation

V, = VXV,

where V|, and V. are the input values and V, is the output value. To see how
the multiplication is actually implemented, the three ideal values should be
replaced by the general slope/bias encoding scheme described in “Scaling” on
page 3-5.

Rules for Arithmetic Operations

Ei

The solution of the resulting equation for the output stored integer, Q,, is given
below.

F.F F.B F.B
b E +Ec_Ea b E _Ea b Ec_Ea
Qa — = C EE b QbQC+ = C EQ b Qb+ C EQ QC
a a a
B,B.—B _
+bc a E.
F

The worst-case implementation of this equation occurs when the slopes and
biases of the input and output signals are mismatched. This worst-case
implementation is permitted in simulation but is not always permitted for code
generation since it often requires more resources than is considered practical
for an embedded system. For code generation and bit-true simulations, the
biases must be zero and the fractional slopes must match for most blocks.
When these requirements are met, the implementation reduces to

E,+E.—E,

Qa =2 QbQC

The bit-true implementation of this equation is discussed below.

Offline Conversions. As shown in the previous section, no offline conversions are
performed.

Online Conversions and Operations. The online conversions and operations for
matched slopes and biases of zero are given by these steps:

1 The integer values, Qp and Q,, are multiplied together.

QRawProduct = Qch

To maintain the full precision of the product, the radix point of Qrawproduct
is given by the sum of the radix points of Q, and Q..

2 The previous product is converted to the output data type.

4-35

4 arithmetic Operations

Qa = CorWert(QRawProduct)

This conversion includes any necessary bit shifting, rounding, or overflow
handling. Conversions are discussed in “Signal Conversions” on page 4-26.

3 Steps 1 and 2 are repeated for each additional number to be multiplied.

Example: The Multiplication Process

Suppose you want to multiply three numbers. Each of these numbers is
represented by a 5-bit word, and each has a different radix point-only scaling.
Additionally, the output is restricted to a 10-bit word with radix point-only
scaling of 274. The multiplication is shown below for the input values 5.75,
2.375, and 1.8125.

575 ufix5 En2

F
FixPt
Constant

Qb
Qa
ufixs En3 Q¢ >< ufix10_En4 ;F double | 24.6875]

\ 4

2.375 Out
F v
d
FixPt Qd, F FixPt Display

Constantl L Gateway Out
FixPt

Product

A

A

ufix5 En4

1.8125

F
FixPt

Constant2

Applying the rules from the previous section, the multiplication follows these
steps:

1 The first two numbers (5.75 and 2.375) are multiplied.

4-36

Rules for Arithmetic Operations

QRaWProduct = 101.11
x 10.011

101.11 2
101.11 272

+101.11 2t
01101.10101 = 13.65625

Note that the radix point of the product is given by the sum of the radix
points of the multiplied numbers.

2 The result of step 1 is converted to the output data type.
QTemp = convert(QRawProduct)
= 001101.1010 = 13.6250
Conversions are discussed in “Signal Conversions” on page 4-26. Note that
a loss in precision of one bit occurs, with the resulting value of Qtemp

determined by the rounding mode. For this example, round-to-floor is used.
Furthermore, overflow did not occur but is possible for this operation.

3 The result of step 2 and the third number (1.8125) are multiplied.

QrawProduct = 01101.1010
x1.1101

1101.1010 2~
1101.1010 (272
1101.1010 2%

+1101.1010 2°
0011000.10110010 = 24.6953125

Note that the radix point of the product is given by the sum of the radix
points of the multiplied numbers.

4 The product is converted to the output data type.

4-37

4 arithmetic Operations

4-38

Qa

ConVert(QRaWProduct)

011000.1011 = 24.6875

Conversions are discussed in “Signal Conversions” on page 4-26. Note that
a loss in precision of four bits occurred, with the resulting value of Qremp
determined by the rounding mode. For this example, round-to-floor is used.
Furthermore, overflow did not occur but is possible for this operation.

Blocks that perform multiplication include the FixPt Product, FixPt FIR, FixPt
Gain, and FixPt Matrix Gain blocks.

Division

As with multiplication, division with mismatched scaling is complicated.
Mismatched division is permitted for simulation only. For code generation and
bit-true simulation, the signals must all have zero biases and matched
fractional slopes.

Fixed-Point Blockset Division Process

Consider the division of two numbers. Ideally, the real-world values obey the
equation

V, = V,/V,

where V|, and V. are the input values and V, is the output value. To see how
the division is actually implemented, the three ideal values should be replaced
by the general slope/bias encoding scheme described in “Scaling” on page 3-5.

E
V, = F.27'Q; +B;

For the case where the slopes are one and the biases are zero for all signals, the
solution of the resulting equation for the output stored integer, Q,, is given
below.

E

Q, = 27 5 75(Q,/Qy

This equation involves an integer division and some bit shifts. If E, 2 E, -E_,
then any bit shifts are to the right and the implementation is simple. However,
if E, <E,—E_, then the bit shifts are to the left and the implementation can

Rules for Arithmetic Operations

be more complicated. The essential issue is the output has more precision than
the integer division provides. To get full precision, a fractional division is
needed. The C programming language provides access to integer division only
for fixed-point data types. Depending on the size of the numerator, some of the
fractional bits may be obtained by performing a shift prior to the integer
division. In the worst case, it may be necessary to resort to repeated
subtractions in software.

In general, division of values is an operation that should be avoided in
fixed-point embedded systems. Division where the output has more precision
than the integer division (i.e., E, <E, —E_) should be used with even greater
reluctance. Division of signals with nonzero biases or mismatched slopes is not
supported.

Example: The Division Process

Suppose you want to divide two numbers. Each of these numbers is
represented by an 8-bit word, and each has a radix point-only scaling of 24,
Additionally, the output is restricted to an 8-bit word with radix point-only
scaling of 274,

The division of 9.1875 by 1.5000 is shown below.

9.1875 ufix8 En4
F ob
FixPt
P X Qa
Constant ufix8 En4 JT double [6.105]
> ut P
QC n v
/ .
F FixPt Display
15 |ufix8 End T FxPL Gateway Out
' Productl
[
FixPt
Constantl

For this example,

Q. = 27" ™)

2%(Q,/Q,)

4-39

4 arithmetic Operations

4-40

Assuming a large data type was available, this could be implemented as

_2'Qy)
a Qc

where the numerator uses the larger date type. If a larger data type was not
available, integer division combined with four repeated subtractions would be
used. Both approaches produce the same result, with the former being more
efficient.

Shifts

Nearly all microprocessors and digital signal processors support well-defined
bit-shift (or simply shift) operations for integers. For example, consider the
8-bit unsigned integer 00110101. The results of a 2-bit shift to the left and a
2-bit shift to the right are shown below.

Shift Operation Binary Value Decimal Value
No shift (original number) 00110101 53

Shift left by 2 bits 11010100 212

Shift right by 2 bits 00001101 13

You can perform a shift with the Fixed-Point Blockset using either the FixPt
Conversion block or the FixPt Gain block. The FixPt Conversion block shifts
both the bits and radix point while the FixPt Gain block shifts the bits but not
the radix point. These two modes of shifting as well as shifting to the right are
discussed below.

Note Performing a “plain” or “raw” machine-level shift such as those given in
the example above with the Fixed-Point Blockset is complicated by the
available scaling options. Therefore, a single “FixPt Shift” block is not
provided. For more information about scaling, refer to “Scaling” on page 3-5.

Rules for Arithmetic Operations

Shifting to the Right

Shifts to the right can be classified as a logical shift right or an arithmetic shift
right. For a logical shift right, a 0 is incorporated into the most significant bit
for each bit shift. For an arithmetic shift right, the most significant bit is
recycled for each bit shift. With the Fixed-Point Blockset, shifting to the right
follows these rules:

= For signed numbers, an arithmetic shift right is performed. Therefore, the
most significant bit is recycled for each bit shift. For example, given the
signed fixed-point number 10110.101, a bit shift two places to the right with
the radix point unmoved yields the number 11101.101.

=« For unsigned numbers, a logical shift right is performed. Therefore, the most
significant bit is a O for each bit shift. For example, given the unsigned
fixed-point number 10110.101, a bit shift two places to the right with the
radix point unmoved yields the number 00101.101.

Shifting Bits and the Radix Point

With the FixPt Conversion block, you can perform a shift operation on the
input by specifying the appropriate radix point-only scaling for the output. This
block shifts both the bits and the radix point.

In most cases, you will perform a “plain” or “raw” shift. To perform such a shift
using the FixPt Conversion block, you must configure the block’s dialog box
this way:

= The output data type is identical to the input data type.

< The rounding mode is set to Floor. Therefore, bits simply fall off the left or
fall off the right when a shift occurs.

<« Overflows wrap.
= The output scaling is specified to reflect the required shift.

For example, suppose you start with the fixed-point number 00110.101 (a
decimal value of 6.625), which is characterized by the blockset as an 8-bit
unsigned, generalized fixed-point number with radix point-only scaling of 23,
To shift the bits and radix point two places to the right, the input scaling of 23
is multiplied by 22, which yields a scaling of 21, To shift the bits and radix point

4-41

4 arithmetic Operations

4-42

two places to the left, the input scaling of 22 is multiplied by 272, which yields
as scaling of 2. This situation is shown below.

Shift Operation Scaling Binary Value Decimal Value
No shift (original number) 23 00110.101 6.625

Shift right by 2 bits 21 0000110.1 6.5

Shift left by 2 bits 2 110.10100 6.625

The figure below shows the fixed-point model used to generate the above data.

F ufix8 Enl F double > 6.5

Convert Out
E v
FixPt FixPt Display
Conversion Gateway Out
6.625 B ENS 3 L iic and radi point
E two places to the right
FixPt
Constant
Eonvert ufix8 En5 FOut double» 6.625
F v
FixPt FixPt Displayl
Conversionl Gateway Outl

Shift bits and radix point
two places to the left

Refer to Chapter 9, “Block Reference” for more information about the FixPt
Conversion block.

Shifting Bits but Not the Radix Point

With the FixPt Gain block, you can perform a shift operation on the input by
specifying the gain as a power of two. This block shifts only the bits and not the
radix point.

Rules for Arithmetic Operations

In most cases, you will perform a plain or raw shift. To perform such a shift
using the FixPt Gain block, you must configure the block’s dialog box this way:

= The output data type is identical to the input data type.

= The rounding mode is set to Floor. Therefore, bits simply fall off the left or
fall off the right when a shift occurs.

=« Overflows wrap.

= The gain is specified as the appropriate power of 2 to reflect the required
shift.

For example, suppose you start with the same fixed-point number, 00110.101,
defined above. To shift the bits two places to the left, a gain of 4 is specified,
and to shift the bits two places to the right, a gain of 0.25 is specified. This
situation is shown below.

Shift Operation Gain Value Binary Value Decimal Value
N/A (original number) 273 00110.101 6.625

Shift left by 2 bits 4 11010.100 26.5

Shift right by 2 bits 0.25 00001.101 1.625

4-43

4 arithmetic Operations

The figure below shows the fixed-point model used to generate the above data.

| F
4’9 ufixg Ens |Fo , |double |
E v

FixPt FixPt Display
Gain Gateway Out
~ Shift bits two places to
6.625 [Ulix8 En3 the left but leave radix
F point unchanged
FixPt
Constant
% ufixg Ens o, |double 1.625
F v ,
FixPt FixPt Display1
Gainl Gateway Outl

Shift bits two places to
the right but leave radix
point unchanged

Refer to Chapter 9, “Block Reference” for more information about the FixPt
Gain block.

4-44

Example: Conversions and Arithmetic Operations

Example: Conversions and Arithmetic Operations

This example uses the FixPt FIR block to illustrate when parameters are
converted from a double to a fixed-point number, when the input data type is
converted to the output data type, and when the rules for addition and
subtraction, and multiplication are applied. For details about conversions and
operations, refer to “Parameter and Signal Conversions” on page 4-25 and
“Rules for Arithmetic Operations” on page 4-29.

Note If a block can perform all four arithmetic operations, such as the FixPt
FIR block, then the rules for multiplication and division are applied first.

Suppose you configure the FixPt FIR block for two outputs (SIMO mode) where
the first output is given by

y,(k) = 13 u(k) +11 u(k-1) -7 Cu(k-2)
and the second output is given by
yo(k) = 6 (k) -5 Cu(k-1)
Additionally, the initial values of u(k—1) and u(k —2) are given by 0.8 and

1.1, respectively and all inputs, parameters, and outputs have radix point-only
scaling.

4-45

4 arithmetic Operations

4-46

To configure the FixPt FIR block for this situation, you must specify the FIR
coefficient parameter as [13 11 -7; 6 -5 0] and the Initial condition
parameter as [0.8 1.1] as shown below in the dialog box below.

ket Prswarwnc ot HJ
FsHFoand FIA g |
irplerand & breie erpuns upors P e

Py s B
PR cxmifwaria.
|_|3|| FESl
Iyl poeaiian
EERD

4 aargin b
A

Fagwin dan i1
ded 12 |

Falyimsla i) IIh:I Fremee Msrcas

=
=

Diciped dat lypw anacaing. | 5imtdr =2 deaie]
i dut fppac . o] urdE] Aeafonga]

w114

o [Seme Fin] o 53
i. 10

T Roouol, st i o Sk i omod v s

A sowmnt |Ficoe |
I Siasie i wa oo vl sawe arveaomet 00

™ Chvsma chads et} sl s bl

ey _cwed | us | o |

Parameter conversions and block operations are given below in the order in
which they are carried out by the FixPt FIR block.

1 The FIR coefficients parameter is converted from doubles to the
Parameter data type offline using round-to-nearest and saturation.

The Initial condition parameter is converted from doubles to the input data
type offline using round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step
for both outputs. For y;(0), the operations 13 [Li(0), 11 0.8, and —7 .1

Example: Conversions and Arithmetic Operations

are performed, while for y,(0), the operations 6 [Li(0) and -5 [D.8 are
performed.

The results of these operations are then converted to the Output data type
using the specified rounding and overflow modes.

3 The sum is carried out for y;(0) and y,(0). Note that the rules for addition
and subtraction are satisfied since the coefficients and inputs are already
converted to the Output data type.

4 Steps 2 and 3 are repeated for subsequent time steps.

4-47

4 arithmetic Operations

4-48

Realization Structures

Overview s e s 5-2
Direct FormlIl 5-4
Series Cascade Form 5-7

Parallel Form 5-10

5 Realization Structures

5-2

Overview

This chapter investigates how you can realize digital filters using the
Fixed-Point Blockset.

The Fixed-Point Blockset addresses the needs of the control system and signal
processing fields, and other fields where algorithms are implemented on
fixed-point hardware. In signal processing, a digital filter is a computational
algorithm that converts a sequence of input numbers to a sequence of output
numbers. The algorithm is designed such that the output signal meets
frequency-domain or time-domain constraints (desirable frequency
components are passed, undesirable components are rejected). In general
terms, a discrete transfer function controller is a form of a digital filter.
However, a digital controller may contain nonlinear functions such as look-up
tables in addition to a discrete transfer function. In this guide, the term “digital
filter” is used when referring to discrete transfer functions.

The Fixed-Point Blockset does not attempt to standardize on one particular
fixed-point digital filter design method. For example, a design can be done in
continuous time and an “equivalent” discrete-time digital filter can be obtained
using one of many transformation methods. Alternatively, digital filters can be
directly designed in discrete time. After the digital filter is obtained, it can be
realized for fixed-point hardware using any number of canonical forms. Typical
canonical forms are the direct form, series form, and parallel form, all of which
are outlined in this chapter.

For a given digital filter, the canonical forms describe a set of fundamental
operations for the processor. Since there are an infinite number of ways to
realize a given digital filter, the best realization must be made on a per-system
basis. The canonical forms presented in this chapter optimize the
implementation with respect to some factor, such as minimum number of delay
elements. In general, when choosing a realization method, you must take these
factors into consideration:

= Cost
The cost of the realization might rely on minimal code and data size.
= Timing constraints

Real-time systems must complete their compute cycle within a fixed amount
of time. Some realizations might yield faster execution speed on different
processors.

= QOutput signal quality
The limited range and precision of the binary words used to represent

real-world numbers will introduce errors. Some realizations are more
sensitive to these errors than others.

The Fixed-Point Blockset allows you to evaluate various digital filter
realization methods in a simulation environment. Following the development
cycle outlined in “The Development Cycle” in Chapter 1, you can fine tune the
realizations with the goal of reducing the cost (code and data size) or increasing
signal quality. After the desired performance has been achieved, you can use
the Real-Time Workshop to generate rapid prototyping C code and evaluate its
performance with respect to your system'’s real-time timing constraints. You
can then modify the model based upon feedback from the rapid prototyping
system.

The presentation of the various realization structures takes into account that
a summing junction is a fundamental operator; thus you may find that the
structures presented here look different from those in the fixed-point filter
design literature. For each realization form, an example is provided using the
transfer function shown below.

o (z) = 1+2227+18572+405778
ex 1-0.5z"1+0.84272+0.09z73
(1+05z Y (1+1.7z71+272)
© (1+0.1z71)(1-0.62"1+0.922)
3.4639 , —1.0916 +3.00867°1
1+0.1z1 1-0.6z1+0.922

= 5.5556 —

5-3

5 Realization Structures

Direct Form Il

5-4

In general, a direct form realization refers to a structure where the coefficients
of the transfer function appear directly as gain blocks. The direct form 11
realization method is presented as using the minimal number of delay
elements, which is equal to n, the order of the transfer function denominator.

The canonical direct form Il is presented as “Standard Programming” in
Discrete-Time Control Systems by Ogata. It is known as the “Control Canonical
Form” in Digital Control of Dynamic Systems by Franklin, Powell, and
Workman.

You can derive the canonical direct form Il realization by writing the
discrete-time transfer function with input e(z) and output u(z) as

u(z) _ u() h(z)
e(z) h(z) E2(2)
1

-1)
l+a,z +a,z +..+a,z"
OoOO0O00000000 OO0Loodoo000&oo

u(z) h(z)
h(z) e(2)

The block diagram for u(z)/h(z) is shown below.

(bg+byz7t+. .. +b,zM)

TH AT s

Direct Form |l

The block diagrams for h(z)/e(z) is shown below.

&) @) =

REIN

%

h(z) _ 1

- -1 -2
e(z) 1+alz +a,z " +..+a,z

-n

Combining these two block diagrams yields the direct form Il diagram shown
below. Notice that the feedforward part (top of block diagram) contains the
numerator coefficients and the feedback part (bottom of block diagram)
contains the denominator coefficients.

-]

e(2) h(z)
) -1 -1 B _
’ 2 >

5-5

5 Realization Structures

The direct form Il example transfer function is given by

1+22z1+18522+0.5z3
1-0.5z"1+0.84272+0.09273

Hex(2) =

The realization of Hgy(z) using the Fixed-Point Blockset is shown below. You
can display this model by typing
fxpdemo_direct_form2

at the MATLAB command line.

b0

‘% 2.2
F
FixPtGain4
bl
F

FixPtGain5

o

) n
ot 1 1 T Output
Input To EixPt = = = S From FixPt Mux3 Comparison
+ z z z F .
+ FixPtUnit FixPtUnit FixPtUnit FixPtGain FixPtSum1l
FixPtSum Delay Delayl Delay2 b3
-«
3|
FixPtGain3
al
<0.84 (¢
FixPtGain2
a2

@JH

FixPtGainl
a3

5-6

Series Cascade Form

Series Cascade Form

In the canonical series cascade form, the transfer function H(z) is written as a
product of first-order and second-order transfer functions.

Hi(z) = ‘;g)) = H1(2) TH,(2) (Ha(2)... H,(2)

This equation yields the canonical series cascade form shown below.

e(z) u(z)

— SH,(2) H,(2) H,(2) — — > H,@——

Factoring H(z) into H;(z) where i = 1,2,3,...,p can be done in a number of ways.
Using the poles and zeros of H(z), you can obtain H;(z) by grouping pairs of
conjugate complex poles and pairs of conjugate complex zeros to produce
second-order transfer functions, or by grouping real poles and real zeros to
produce either first-order or second-order transfer functions. You could also
group two real zeros with a pair of conjugate complex poles or vice versa. Since
there are many ways to obtain H;(z), it is desirable to compare the various
groupings to see which produces the best results for the transfer function under
consideration.

For example, one factorization of H(z) might be

H(z) = H (z)H (z)...Hp(z)
p
B 1+b;z7t 1+ez7t+fz72
|_| 1+a;z7t 1+c;z7t+d;z™2
i=1 i=j+1

You must also take into consideration that the ordering of the individual H;(z)'s
will lead to systems with different numerical characteristics. You may want to
try various orderings for a given set of H;(z)'s to determine which gives the best
numerical characteristics.

5-7

5 Realization Structures

The first order diagram for H(z) is given below.

l

x(z) @\; = \,Ti| @ y(2)

X(z2) 1+az7t

The second order diagram for H(z) is given below.

X@ : 5 - X y@)

E z ' D

Series Cascade Form

0000
00

Input

The series cascade form example transfer function is given by

(1+05z7) (1+1.7271+272)

Hex(2) =

(1+0.1z71)(1-0.6271+0.9272)

The realization of Hg,(z) using the Fixed-Point Blockset is shown below. You

can display this model by typing
fxpdemo_series_cascade_form

at the MATLAB command line.

To FixPt

FixPtSum

L>+ FixPtGain4]
—>t 1 1
i ji t > z ‘**
FixPtUnit FixPtGainl >t z Z F
Delay b 4 FixPtUnit FixPtUnit FixPtGain5 F
LS| Delayl Delay2 FixPtSum2
FixPtSum1
4——
3| . .
FixPtGain FixPtGain2
c
a

o

0.9

FixPtGain3
d

=

Output

From FixPt Mux3 Comparison

5-9

5 Realization Structures

Parallel Form

5-10

In the canonical parallel form, the transfer function H(z) is expanded into
partial fractions. H(z) is then realized as a sum of a constant, first-order, and
second-order transfer functions as shown below.

Hi(2) = % = K+ Hy(2) + Hy(2) + .. + Hy(2)

This expansion, where K is a constant and the H;(z) are the first and
second-order transfer functions, is shown below.

H(2)

e(z) HL) u(2)

(+

H(2)

As in the series canonical form, there is no unique description for the first-order
and second-order transfer function. Due to the nature of the FixPt Sum block,
the ordering of the individual filters doesn't matter. However, because of the
constant K, the first-order and second-order transfer functions can be chosen
such that their forms are simpler than those for the series cascade form
described in the preceding section. This is done by expanding H(z) as

Parallel Form

i p
H(z) = K+ Y Hi(@+ 5 Hi@)
i=1 i=j+1
i
i e;+fizt
=K+ 4 _—
K z 1+a;z7t z 1+c;z7t+d;z™2
i=1 i=j+1

The first order diagram for H(z) is shown below.

y(2)

X(Z) /_i_\ -1

y(2) b;

x(z2) 1+az?

The second order diagram for H(z) is shown below.

&
@ o | y@
-Ci e

X(2) 1+czl+diz?

5-11

5 Realization Structures

The parallel form example transfer function is given by

Hey(2z) = 5.5556 —

3.4639

+-1.0916 + 3.0086z1

1+0.1z71

1-0.6z271+0.922

The realization of Hgy(z) using the Fixed-Point Blockset is shown below. You
can display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.

oooo
0o

Input

5-12

> In

Fl
To FixPt

:{%
F

L,

FixPtSum

FixPtGain2 + r
> -3.46 <l » Out
v
F — P+ . l
FixPtGainl FixPSumL FixPt to Dbl
b
|1
» -
Z F
FixPtUnit
Delay

»
” 4+

FixPtGain5 >y/—" =
e . F FixPtSum3
FixPtGain6
f
o o 1 o 1
+ = Z F Z F
. FixPtUnit FixPtUnit
FixPtSum2 Delayl Delay2
<—
3
FixPtGain3

C

%4—

FixPtGain4

d

Output
Mux3 Comparison

Tutorial: Feedback
Controller Simulation

Overviewo 6-2
Simulink Model of a Feedback Design 6-3
Idealized Feedback Design 6-6
Digital Controller Realization 6-7
SimulationResults 6-9
Simulation 1: Initial Guessat Scaling 6-9
Simulation 2: Global Override 6-12
Simulation 3: Automatic Scaling 6-14

Simulation 4: Individual Override 6-17

6 Tutorial: Feedback Controller Simulation

6-2

Overview

The purpose of this tutorial is to show you how to use fixed-point blocks to
simulate a fixed-point feedback design using the Fixed-Point Blockset
Interface tool. In doing so, many of the essential blockset features are
demonstrated. These include:

= Output data type selection

= Qutput scaling

<« Logging maximum and minimum simulation results

< The automatic scaling tool

= Overriding the output data type override for an entire model or an individual
block

Simulink Model of a Feedback Design

Simulink Model of a Feedback Design

oooo
00

p|1

RefSignal

Reference

A 4
+

\ 4

You can run the Simulink model of the feedback design by launching the
MATLAB Demo browser and selecting the Scaling a Fixed-Point Control
Design demo. You can launch the browser by typing

demo blockset ’Fixed Point”

at the command line, or by opening the Demos block found in the Fixed-Point
Blockset library. Alternatively, you can access the model directly by typing its
name at the command line.

fxpdemo_feedback

The MDL-file automatically runs the M-file preload_feedback, which
populates the workspace with the required parameter values. The feedback
design model is shown below.

»|
Plant Input
v F
num(s,
Jhfb—» pin1 Outl out p POME) pL]
E v pden(s)
ZOH Plant Output
A2D D2A Analog Plant
Analog to Digital Controller Digital to Analog
Interface Interface
- FixPt
Digital Controller GUI
Software on
Fixed Point
Processor

The model consists of these blocks:

= Reference
Simulink’s Signal Generator block generates a continuous-time reference
signal. It is configured to output a square wave.

6-3

6 Tutorial: Feedback Controller Simulation

6-4

- ZOH
Simulink’s Zero-Order Hold block samples and holds the continuous signal.
This block is configured so that it quantizes the signal in time by an amount
tsamp = 0.01 second.

= Analog to Digital Interface

The analog to digital (A/D) interface consists of a FixPt Gateway In block
that converts a Simulink double to a Fixed-Point Blockset data type. It
represents any hardware that digitizes the amplitude of the analog input
signal. In the real world, its characteristics are fixed.

« Digital Controller
The digital controller is a subsystem that represents the software running on
the hardware target. It is discussed in detail in “Digital Controller
Realization” on page 6-7.

= Digital to Analog Interface
The digital to analog (D/A) interface consists of a FixPt Gateway Out block
that converts a Fixed-Point Blockset data type into a Simulink double. It
represents any hardware that converts a digitized signal into an analog
signal. In the real world, its characteristics are fixed.

< Analog Plant
The analog plant is described by a transfer function, and is the object
controlled by the digital controller. In the real world, its characteristics are
fixed.

Simulation Setup
Setting up the fixed-point feedback controller simulation involves these steps:

1 ldentify all design components

In the real world, there are design components with fixed characteristics
(the hardware) and design components with characteristics that you can
change (the software). The main components modeled in this feedback
design are the A/D hardware, the digital controller, the D/A hardware, and
the analog plant.

Simulink Model of a Feedback Design

2 Develop a theoretical model of the plant and controller

For the feedback design used in this tutorial, the plant is characterized by a
transfer function. The characteristics of the plant are unimportant for this
tutorial, and are not discussed.

The digital controller model used in this tutorial is described by a z-domain
transfer function and is implemented using a direct form realization.

3 Evaluate the behavior of the plant and controller

This is accomplished with a Bode plot. The evaluation is idealized since all
numbers, operations, and states are double precision.

4 Simulate the system

The feedback controller design is simulated using Simulink and the
Fixed-Point Blockset. Of course, in a simulation environment, you can treat
all components (software and hardware) as though their characteristics are
not fixed.

6-5

6 Tutorial: Feedback Controller Simulation

Idealized Feedback Design

Open loop (controller and plant) and plant-only Bode plots for the Scaling a
Fixed-Point Control Design demo are shown below. The open loop Bode plot
results from a digital controller described in the idealized world of continuous
time, and double precision coefficients, storage of states, and math operations.

The plant and controller design criteria are not important for the purposes of
this tutorial. The Bode plots were created using the workspace variables
produced by the preload_feedback M-file.

Bode Plots: Plant Only (dashed) and Open Loop (solid)

I I I
210’
3
£
(o))
[0
s
10’5 | | I
10" 10° 10" 10° 10°
Freq (rad/sec)
0_~‘*,,\‘1‘\“ T -
-100F S -
N
o \
% AN
8 00 S -
a8 ~ -
-300} -
-400 ‘ ! w
10" 10° 10" 10° 10°
Freq (rad/sec)

6-6

Digital Controller Realization

Digital Controller Realization

The digital controller is implemented using a fixed-point direct form
realization. The target is a 16-bit processor. Variables and coefficients are
generally represented using 16 bits, especially if these quantities are stored in
ROM or global RAM. Use of 32-bit numbers is limited to temporary variables
that exist briefly in CPU registers or in a stack. The realization is shown below.

F
Convert »
In1 F F
Up Cast Numerator Terms
Convert from Multiply and accumulate L)outl
A2D Type most recent inputs and S F A
to BaseType numerator coefficients Convert
in the accumulator - E
Combine Terms Down Cast
Combine numerator Reduce output from
1 and denominator accumulator size to
P - P> contributions to TF base memory size
g [in accumulator
Prev Out Denominator Terms
Store most Multiply and accumulate
recent output most recent outputs and
in memory for denominator coefficients
one sample time in accumulator

The realization consists of these blocks:

< FixPt Conversion

The Up Cast block connects the A/D hardware with the digital controller. It
pads the output word of the A/D hardware with trailing zeros to a 16-bit
number (the base data type). The Down Cast block represents taking the
number from the CPU and storing it in RAM. The word size and precision
are reduced to half that of the accumulator when converted back to the base
data type.

= FixPt FIR

These blocks represent a weighted sum carried out in the CPU target. The
word size and precision used in the calculations reflect those of the
accumulator. The Numerator Terms block multiplies and accumulates the

6-7

6 Tutorial: Feedback Controller Simulation

6-8

most recent inputs with the FIR numerator coefficients. The Denominator
Terms block multiples and accumulates the most recent delayed inputs with
the FIR denominator coefficients. The coefficients are stored in ROM using
the base data type. The most recent inputs are stored in global RAM using
the base data type.

= FixPt Sum
The Combine Terms block represents the accumulator in the CPU. Its word
size and precision are twice that of the RAM (double bits).

= FixPt Unit Delay

The Prev Out block delays the feedback signal in memory by one sample
period. The signals are stored in global RAM using the base data type.

Direct Form Realization
The controller directly implements this equation

N N

y(k) = ¥ buk-1)= ¥ ay(k-1)

i=0 i=1
where:

=« u(k — 1) represents the input from the previous time step.

= y(K) represents the current output, and y(k — 1) represents the output from
the previous time step.

= b; represents the FIR numerator coefficients.
= a; represents the FIR denominator coefficients.

The first summation in y(k) represents multiplication and accumulation of the
most recent inputs and numerator coefficients in the accumulator. The second
summation in y(k) represents multiplication and accumulation of the most
recent inputs and denominator coefficients in the accumulator. Since the FIR
coefficients, inputs, and outputs are all represented by 16-bit numbers (the
base data type), any multiplication involving these numbers produces a 32-bit
output (the accumulator data type).

Simulation Results

Simulation Results

Using Simulink and the Fixed-Point Blockset, you can easily transition from a
digital controller described in the ideal world of double precision numbers to
one realized in the world of fixed-point numbers. The simulation approach used
in this tutorial follows these steps:

1 Take an initial guess at the scaling. For this tutorial, an initial “proof of
concept” simulation using a reasonable guess at the fixed-point word size
and scaling is the first step in simulating the digital controller. This step is
included only to illustrate how difficult it is to guess the best scaling.

2 Perform a global override of the fixed-point data types and scaling using
double precision numbers. The maximum and minimum simulation values
for each digital controller block are logged to the workspace.

3 Use the automatic scaling procedure. This procedure uses the doubles
simulation values previously logged to the MATLAB workspace, and
changes the scaling for each block that does not have its scaling fixed.

4 Perform a simulation on the “fixed” hardware block by overriding the data
type with doubles. This simulation determines whether the A/D hardware
warrants modification or replacement.

The feedback controller simulation is performed with the Fixed-Point Blockset
Interface tool. You launch the Interface tool by selecting the FixPt GUI block
within the fxpdemo_feedback model, by selecting Fixed-Point from the Tools
menu in the model window, or by typing

fxptdlg(” fxpdemo_feedback?)

at the command line. The four simulation trials are described in the following
sections. The quality of the simulation results is determined by examining the
input and output of the analog plant.

Simulation 1: Initial Guess at Scaling

The first simulation uses guesses for the scaling. In general, you won't need to
perform this step, and this simulation is included to illustrate the difficulty of
guessing at scaling.

6-9

6 Tutorial: Feedback Controller Simulation

6-10

After you launch the Interface tool, press the Run button to run the simulation.
When the simulation is finished, the interface displays the block name, the
maximum and minimum simulation results, the data type, and the scaling for
each block. You can then easily plot the results by pressing the Plot button,
which launches the Plot System interface. The procedure for this simulation,
and the simulation results are shown below.

d Fimod-Point Dlockset Inlodace - Bopdesa fsndbiack

Lag Min, s |—_|._.“m.,"._. = m“""’""la—'

1L Mgl |r_\._,_."-..|,:.:| --l T [wivmche ||_ = bk Doy ri
Block Fams HIH EiX Paks Gosling

Im Casr SATIRETIOH oocuryysd 11 simsig)
Huneratar Tesws 1 2 Sl6 Telwld™=1d
[emrainstor Tarms -1 8% 2.BE 512 Velmd"-12
Cembins TETEE -1 079 4.1 B12 Feiml™-137
Down, Cmnt 7. §3% 1 EE% 517 Wafm3c-17
1 _dBR 0.E583 Sla Te=Om2"=C
L. H

|El-u-:-l-m | Fepioine, Frwdbach |

B | Bm | ueces | A4 | wwm | Gaw |

(@D Run the simulation (2) Launch the Plot System interface

The display shows that the Up Cast block saturated 23 times, indicating a poor
guess for the scaling. Refer to “Logging Simulation Results” on page 9-9 to
learn about logging overflow information to the workspace.

The Plot System interface is shown below. This interface displays all MATLAB
variable names that contain Scope block data for the current model. You
configure the variable name with the Scope block’s Properties dialog box,
which you launch by choosing the Properties toolbar button.

Simulation Results

To plot the simulation results, select one or more variable names, and then
select the appropriate plot button. This simulation plots the fixed-point signals
for the plant input and the plant output.

(@ Select hoth the plant

Pt ayulnm: lrpdamo_inedbck

input signal and the
T | ' o
Pl arapetigns]
i |
Flos Signels | FPlot Doubles | Flot Both | Cancel |

@ Plot both signals

The plant input signal and plant output signals are shown below. These signals
reflect the initial guess at scaling.

¥ Ploting hpsdomo_loesdbasch oefpets

£
1
X
X flxed-90|ntplant L SR T
input signal J."
-4 b (R RPN .-"J"-'F"--" ot
+ Fixed-point plant
output signal
3
4 1 L
] s i 1.5 2 25] a5 i

6-11

6 Tutorial: Feedback Controller Simulation

6-12

The Bode plot design sought to produce a well behaved linear response for the
closed loop system. Clearly, the response is nonlinear. The nonlinear features
are due to significant quantization effects. An important part of fixed-point

design is finding scalings that reduce quantization effects to acceptable levels.

Simulation 2: Global Override

Prior to using the automatic scaling tool, a global override with doubles of the
fixed-point data type is performed for every block. Using this feature, you can
obtain ideal simulation limits. Additionally, you must log maximum and
minimum simulation values for all blocks that are to be scaled. This is
accomplished by checking the Log minimums and maximums check box for
the relevant blocks, and accepting the Log Min, Max default value Use block
params.

Global override with doubles is accomplished by configuring Doubles
Override to All, and then running the simulation by selecting the Run button.
The ideal and fixed-point plant output signals are then compared using the
Plot System interface. The procedure for this simulation, and the simulation
results are shown below.

o Lol B [Ty — SR . ok @ Configure all blocks to
L | Dunibies Memnde: [5) - output doubles
Block Fass HIH Eil
= —T— G C—
P : . :
Humeratar Tesws 5.6T7 5. TEL FLLE®
[e=cainstcr Tarma -4 517 5. ¥ ¥
Combinm TeaTER -k . AL 4,3
Doy, Coemi -3 1 4 23
S H
|“""5'|'|:"5"" | Ipiewe_rpedhach
| S | Aumess | M2 | e | Gawm |
@ Run the simulation @ Launch the Plot System interface

Simulation Results

The Plot System interface is shown below. This simulation plots both the
fixed-point and ideal (double precision) signals for the plant output.

| Pl aymlem: lrpdinmio_inedbhmck

@ select the plant output
signal

|I'-l.'|||ni;|. I

Palereiaslansl

L |
Floa Signsls | Plot Doubles | Plet Bath | Csncel |

@ Plot both the ideal and fixed-point signals

The ideal and fixed-point plant output signals are shown below. The ideal
signal is produced by overriding the block output scaling.

i Ploting hpdomo_lesdbasch oefgiets

3
3
1 1l
Ideal plant output [1
o signal |
1 |:
=i | ——— Fixed-point plant
L { output signal
g : B {
at |
4 1 L
] 0s 1 1.5 2 25] a5 i

6-13

6 Tutorial: Feedback Controller Simulation

6-14

Simulation 3: Automatic Scaling

Using the automatic scaling procedure, you can easily maximize the precision
of the output data type while spanning the full simulation range. For a complex
model, the absence of such a procedure can make achieving this goal tedious
and time consuming.

Automatic scaling is performed for the Controller block. This block is a
subsystem representing software running on the target, and requires
optimization. Automatic scaling consists of these steps:

1 Configure Autoscale % Safety Margin to 20. This sets scaling so that the
largest simulation value seen is at least 20% smaller than the maximum
value allowed.

The Autoscale % Safety Margin parameter value multiplies the “raw”
simulation values by a factor of 1.2. Configuring this parameter to a value
greater than 1 guarantees the simulation covers the largest possible range,
although it does not necessarily mean the resolution improves. Since there
is always some uncertainty when representing a real-world value with a
fixed-point number with only a few simulations, using this parameter is
recommended.

2 Run the autofixexp M-file script by selecting the Autoscale button. This
script automatically changes the scaling on all fixed-point blocks that do not
have their scaling locked, and that have their output data type specified as
a generalized fixed-point number. It uses the minimum and maximum data
logged from the previous simulation. The scaling changes such that the
precision is maximized while the full range of simulation values are spanned
for each block.

3 Turn off the global override with doubles by configuring Doubles Override
to Use block params.

4 Run the simulation by selecting the Run button. The automatic scaling
results generated by step 2 are captured from the MATLAB workspace and
applied to the simulation.

5 Launch the Plot System interface and plot the plant output signal.

Simulation Results

The procedure and results for this simulation are shown below.

(@ specify an additional

"o d-Poim Dlock st Inlodace - Bopdesss dsodback | simulation range Of
Lt S [Py —— hatcde X Salmpbegn [T @ at least 20%
Laboe ey 2 Doubken D [[15z piock pavowe 7 Turn off global
override

Hlrck Tamm HTH L1k Pats Goslung @

Ip Cast -1 4 Sla Tepal -11

Humeratar Tesws 5. BTT 5. T 532 Te(mi =i

[emrainstcr Tarss -4 524 gt S12 Talm2 -I7

Combans TaTER - AL 4, JIL 213 Weim2o_T0

Ticwn, Tt -1 47 I 311 516 Velmri-17

L. |
|m.m [Frpabaim fomlach |
i | Sm | duene | ma | ww | Gow |

| | | @ Launch the Plot System interface
@ Run the simulation @ Run the automatic scaling script

Each block is scaled based on its own maximum and minimum values obtained
from the previous simulation using double-precision numbers. As shown above,
the interface displays the new scaling for each block that had its scaling
changed. This scaling is based on the raw simulation values multiplied by 1.2.
Note that no saturations or overflows are reported.

6-15

6 Tutorial: Feedback Controller Simulation

6-16

A close-up of the plant output signal is shown below. Note that a steady-state
has been achieved, but a small limit cycle is present in the steady state due to
poor A/D design.

Hpthng kepdemn_ ieedbsck nuipuss

eat |

Limitcycles produced
by the A2D block

EE. 29 a& 28] BE A4 am a8 i

As shown below, the scaling of the A2D did not change because it was locked.

FintctPiosrd [testy bn a1 fink |
Corved bprw g Sarniink insll v gt by 5 2 Fomed Pt Bl pei sty
et

Peweriar
¥ vl opud I-n'\ﬂ-'\-'ll.!'\..ﬂr

[hsizwd e ipa @ 1o I“wl!ﬂam |
Doz st mn ofmf1EL wrtlEl. Teatiurpi)

| ki

Dot woley, S on [epeBim| wm I8

K

¥ Lock st scalng m suioncslng ool ca: change i Scaling is unchanged by
fiord isat [Vrm=r =] the autoscaling script
Fel Gnhawe i o nen shes ceRfion ConE
I Dlrie e g sy caities

IF Log swwrnrry oel pygempn

o o | o

Simulation Results

Simulation 4: Individual Override

The previous simulation optimized results for the fixed-point digital controller.
In this simulation, the A2D block is configured so that it feeds the digital
controller with doubles. This represents overriding the A/D hardware
constraints, and is accomplished by checking the Override with doubles check
box as shown below as shown below.

Frard Prant (G sbesemy in (maazk | k]

sl v i m ik Bl e 1t b b 0 P} St B kv jed g

e
Falareia

Trwid rnt i || Pl o] inkis

)

Dt chala s mnd scsling | Sy bk
Cudped dalsgger #a k16 wrifll] BastTanogks]

=

|..|r|
Dk pogbng Sope o [Clopw Bar] = 278

F

F Lok outpal poslng 72 sefoocalng fodl cae' changm @

Foandivand | Momen
F Lata N men pwriosn pona

=

' Dk ot bpehi| vtk doaibied

F Log ramsoren snd rassre srs

L] cmd | tw

Override the output data
type with doubles

Note You can display the A2D dialog box by double-clicking on the A2D entry

in the interface.

6-17

6 Tutorial: Feedback Controller Simulation

The procedure and results for this simulation are shown below.

d Fimod-Point Dlockset Inlodace - Bopdesa fsndbiack
Lag bin, Wm0 b paare ™ mtmumlf
1L Mgl ||:|_.¢“:|,.|,:.:| -l 'I:uthu-umh_,.t.,,w_,, rI
(@) Select the A2D block,
Block Naws HTH 1% | Osts Gosling and override the output
e - data type with doubles
Up Cast -1 4.0 Sle Fegmy -1i
Huneratar Tesws 5. BB9 5. T3 532 TVe(wi™=Cd
cainstor Tarns -4 512 L | S12 Valm2"-3I7
Cembins TETEE -4 473 4, 13% 212 FeipmlT-_T0
Diown. ot -1 414 L. 15 Ele Palwi-17
L H
]mm | Fapdeare; Feedbach |
B | Bm | ueces | A4 | wwm | Gaw |
(2) Run the simulation (3) Launch the Plot System interface

A close-up of the plant output signal is shown below. The limit cycle is no longer
present in the steady state — confirmation of a poor A/D design. This means you

6-18

Simulation Results

should replace the hardware, amplify the signal, or do some digital processing
to better condition the signal.

PloHing hpdomo_leedbsach el

' Limit cycles removed

TE & 28 28 a a2 34 48 L8 4

6-19

6 Tutorial: Feedback Controller Simulation

6-20

Building Systems and
Filters

Overview T2
Realizationsand Data Types 7-3
Realizations and Scaling 73
Targeting an Embedded Processor 74
Size Assumptions 714
Operation Assumptions 74
DesignRules75
Integrator Realizations 77
Trapezoidal Integration 77
Backward Integration. 79
Forward Integration7-10
Derivative Realizations712
Filtered Derivative712
Derivative714
Lead Filter or Lag Filter Realization7-17

State-Space Realization7-20

/ Building Systems and Filters

7-2

Overview

The Fixed-Point Blockset provides several fixed-point filter and system
realizations. These realizations are intended to be used as design templates so
you can easily see how to build filters and systems that suit your particular
application needs. Realizations are provided for state-space, integrator,
derivative, and lead or lag systems. For more information about realization
structures, refer to Chapter 5, “Realization Structures” or the references
included in Appendix B.

To display the filters and systems, type
Fixptsys

at the MATLAB command line. Alternatively, you can access the realizations
through the Filters & Systems: Examples block, which is available through
Fixed-Point Blockset library. The filters and systems are shown below.

Examples of Higher Level Systems
Realized Using Fixed—Point Blocks

Demo: Demo:
State Space Derivatives
y(n)=Cx(n)+Du(n) an(z-1) (z-1)
x(n+1)=Ax(n)+Bu(n) Ts(z-p) Ts(z)
FixPt FixPt FixPt
State—Space Realization Filtered Derivative Derivative
Demo: Demo:
Lead & Lag Integrators
K((1-p)(z-a) Ts(z+1) Ts(z) Ts
————————— >
(1-a)(z-p) 2(z-1) (z-1) (z-1)
FixPt FixPt FixPt FixPt
Lead or Lag Filter Integrator: Integrator: Integrator:
Trapezoidal Backward Forward

For each filter or system realization, you can:

= Run the demo. Fixed-point results are compared to results obtained from
Simulink built-in blocks with identical input.

= Modify the realization. The realizations can be configured or modified to suit
your particular design needs.

This chapter presents a few realizations out of many possibilities. These
realizations illustrate several important design rules that you should be aware
of when modeling dynamic systems with fixed-point math.

Realizations and Data Types

In an ideal world where numbers, calculations, and storage of states have
infinite precision and range, there are virtually an infinite number of
realizations for the same system. In theory, these realizations are all identical
to each other.

In the more realistic world of double-precision numbers, calculations, and
storage of states, small nonlinearities are introduced due to the finite precision
and range of floating-point data types. Therefore, each realization of a given
system will produce different results. In most cases however, these differences
are small.

In the world of fixed-point numbers where precision and range are limited, the
differences in the realization results can be very large. Therefore, you must
carefully select the data type, word size, and scaling for each realization
element such that results are accurately represented. To assist you with this
selection, design rules for modeling dynamic systems with fixed-point math are
provided in “Targeting an Embedded Processor” on page 7-4.

Realizations and Scaling
As with all Fixed-Point Blockset models, you must select a scaling that gives

the best precision, range, and performance for your specific fixed-point design.

The scaling for each filter and system demo is based on the default parameters.
If these parameters are changed (for example, the magnitude of the input
signal is increased), or if you are creating a new realization, you must define an
appropriate scaling. For each system or filter, you can adjust the scaling
manually with the dialog box, or automatically as illustrated in “Simulation
Results” on page 6-9.

7-3

/ Building Systems and Filters

7-4

Targeting an Embedded Processor

This section describes issues that often arise when targeting a fixed-point
design for use on an embedded processor. Rather than describe a specific
microprocessor (micro) or digital signal processor (DSP), this section describes
some general assumptions about integer sizes and operations available on
embedded processors. These assumptions lead to design issues and design
rules that may be useful for your specific fixed-point design.

Size Assumptions

Embedded processors are typically characterized by a particular bit size. For
example, the terms “8-bit micro,” “32-bit micro,” or “16-bit DSP” are common.
It is generally safe to assume that the processor is predominantly geared to
processing integers of the specified bit size. Integers of the specified bit size are
referred to as the base data type. Additionally, the processor typically provides
some support for integers that are twice as wide as the base data type. Integers
consisting of double bits are referred to as the accumulator data type. For
example a 16-bit micro has a 16-bit base data type and a 32-bit accumulator
data type.

Although other data types may be supported by the embedded processor, this
section describes only the base and accumulator data types.

Operation Assumptions

The embedded processor operations discussed in this section are limited to the
needs of a basic simulation diagram. Basic simulations use multiplication,
addition, subtraction, and delays. Fixed-point models also need shifts to do
scaling conversions. For all these operations, the embedded processor should
have native instructions that allow the base data type as inputs. For
accumulator-type inputs, the processor typically supports addition,
subtraction, and delay (storage/retrieval from memory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs due to
complexity and size issues. A difficulty with multiplication is that the output
needs to be twice as big as the inputs for full precision. For example,
multiplying two 16-bit numbers requires a 32-bit output for full precision. The
need to handle the outputs from a multiply operation is one of the reasons
embedded processors include accumulator-type support. However, if
multiplication of accumulator-type inputs is also supported, then there is a

Targeting an Embedded Processor

need to support a data type that is twice as big as the accumulator type. To
restrict this additional complexity, multiplication is typically not supported for
inputs of the accumulator type.

Design Rules

The important design rules that you should be aware of when modeling
dynamic systems with fixed-point math are given below.

Design Rule 1: Only Multiply Base Data Types

It is best to multiply only inputs of the base data type. Embedded processors
typically provide an instruction for the multiplication of base-type inputs but
not for the multiplication of accumulator-type inputs. If necessary, a
multiplication of accumulator-type inputs could be handled by combining
several instructions. However, this can lead to large, slow embedded code.

Blocks to convert inputs from the accumulator-type to the base-type can be
inserted prior to multiply or gain blocks if needed.

Design Rule 2: Delays Should Use the Base Data Type

There are two general reasons why a unit delay should use only base-type
numbers. First, the unit delay essentially stores a variable’s value to RAM, and
one time step later, retrieves that value from RAM. Because the value must be
in memory from one time step to the next, the RAM must be exclusively
dedicated to the variable and can’t be shared or used for another purpose.
Using accumulator-type numbers instead of the base data type doubles the
RAM requirements, which can significantly increase the cost of the embedded
system. The second reason is that the unit delay typically feeds into a gain
block. The multiplication design rule requires that the input (the unit delay
signal) use the base data type.

Design Rule 3: Temporary Variables Can Use the Accumulator Data Type

Except for unit delay signals, most signals are not needed from one time step
to the next. This means that the signal values can be temporarily stored in
memory that is shared and reused. This shared and reused memory can be
RAM or it can simply be registers in the CPU. In either case, storing the value
as an accumulator data type is not much more costly than storing it as a base
data type.

7-5

/ Building Systems and Filters

7-6

Design Rule 4: Summation Can Use the Accumulator Data Type

Addition and subtraction can use the accumulator data type if there is
justification. The typical justification is reducing the buildup of errors due to
round-off or overflow. For example, a common filter operation is a weighted
sum of several variables. Multiplying a variable by a weight will naturally
produce a product of the accumulator type. Before summing, each product
could be converted back to the base data type. This approach introduces
round-off error into each part of the sum. Alternatively, the products can be
summed using the accumulator data type, and the final sum can be converted
to the base data type. Round-off error is introduced in just one point and the
precision will generally be better. The cost of doing an addition or subtraction
using accumulator-type numbers is slightly more expensive, but if there is
justification, it is usually worth the cost.

Integrator Realizations

Integrator Realizations

This section presents realizations for trapezoidal, backward, and forward
integration. For each realization, the transfer function and difference equation,
block parameters, and model design are discussed.

Trapezoidal Integration

The FixPt Integrator: Trapezoidal realization is a masked subsystem that
performs discrete-time integration using the Trapezoidal method. For this
method, integration is approximated by the z-domain transfer function

Ts(z+1)
2(z-1)

where Ts is the sampling period. The realization is shown below.

Ul of 99 (Ts/2) Uk)

UK 4| 1

&,

Input(s)

ZF
FixPt
Unit Delay

Delay input
in memory

[
FixPt
Gain

Multiply current input
by Ts/2 in CPU

L/, Y(k-1) +(Ts/2) (UK) [|
U(k-1 w T2 Uk-1))} +U(k=1)) > Convert— Y 5T
F —»* = F Output(s)
FixPt FixPt FixPt
Gainl Sum Conversion
Multiply previous input Output Y(K
- Add t put Y (k)
by Ts/2in CPU in C?;rLTS Reduce size from
accumulator to memory
Y(k) o 1 [Y(k-1)
Ll
ZF
FixPt
Unit Delayl
Delay output
in memory

As shown in the figure, the transfer function yields the difference equation

y(k) = y(k=1)+ %(U(k) +u(k-1))

7-7

/ Building Systems and Filters

7-8

where K is the current time step, k — 1 is the previous time step, y(k) is the
current output, y(k — 1) is the output from the previous time step, u(k) is the
current input, and u(k — 1) is the input from the previous time step.

Parameters and Dialog Box

The dialog box and parameter descriptions for the trapezoidal integrator
realization are given below.

[Fhoc b Parssrswar. Pl lntngrsior P _________1H|
F P it Trspe ol e |
& cermpis ins adpesd selesen of @ resges o baisd o rapareasl
Fa il ol

Toa warnsnlly codunl o 1eflrey ruch o scaleg ook, e P wark i el @
wdeoual koo Sosbng can ahis ba e ureg e 3zslrey
[, T

Peersien
- e
]
Brlt-:I-HE
#ml 161
ot il s g
I.-|]

[| [il -]

Sample time
The time interval, Ts, between samples

Base data type
The processor’s base data type

Accumulator data type
The processor’s accumulator data type

Model Design Review

A brief review of the model design is given below. The design criteria reflect the
rules presented in “Design Rules” on page 7-5.

= The gains involve multiplications which are a size-growing operation. In
most cases, it is desirable for gains and inputs to use the word size given by
the Base data type or smaller. The output can be left at the Accumulator
data type for extra precision in subsequent operations. Alternatively, if the

Integrator Realizations

output were stored in RAM, or used by a size-growing operation, it could be
reduced to the Base data type.

= The FixPt Sum block converts inputs to the output data type before
performing the actual addition. Given this order of operation, using the
Accumulator data type often gives better precision.

= The FixPt Conversion block forces the output to the Base data type before
storage in RAM (i.e., before input to the unit delay). Casting the output in
the feedforward part of the realization prevents subsequent operations from
being burdened with a large data type.

Backward Integration

The FixPt Integrator: Backward realization is a masked subsystem that
performs discrete-time integration using the Backward Euler method. The
Backward Euler method is also known as the Backward Rectangular method
or right-hand approximation. For this method, integration is approximated by
the z-domain transfer function

Ts(z)
(z-1)

where Ts is the sampling period. The realization is shown below.

—M i
Input(s) E

FixPt
Gain
—> Y(k=1) + Ts U(K) 5, Eonven Y(K) NGD)
Multiply current input —P+ v -
by Ts in CPU E F Qutput(s)
FixPt FixPt
Sum Conversion
vi o 1 [y !
Ll
LB Add terms Output Y (k)
FixPt in CPU Reduce size from
Unit Delay accumulator to memory
Delay output
in memory

As shown in the figure, the transfer function yields the difference equation

y(k) = y(k—-1)+Ts (k)

7-9

/ Building Systems and Filters

where K is the current time step, k — 1 is the previous time step, y(k) is the
current output, y(k — 1) is the output from the previous time step, and u(k) is
the current input.

Parameters and Dialog Box

The parameters and dialog box for the backward integrator realization are the
same as those for the trapezoidal integrator realization, and are given in
“Parameters and Dialog Box” on page 7-8.

Model Design Review

The model design issues are the same as those for the trapezoidal integrator as
described in “Model Design Review” on page 7-8.

Forward Integration

The FixPt Integrator: Forward realization is a masked subsystem that
performs discrete-time integration using the Forward Euler method. The
Forward Euler method is also known as the Forward Rectangular method or
left-hand approximation. For this method, integration is approximated by the
z-domain transfer function

Ts
(z-1)

where Ts is the sampling period. The realization is shown below.

UK 1| Uk-1 h» Ts U(k—1
Input(s) ZF E
FixPt FixPt
Unit Delay Gain
- vien s tsugeny [E | vig o
. . . . Conver »(1)
Delay input ~ Multiply previous input —> E e
in memory by Ts in CPU - . utput(s)
FixPt EixPt
Sum Conversion
Y | 1 | Y(k-1)
Add terms Output Y(k
z ¢ put Y (k)
FiXpI[: in CPU Reduce size from
Unit Delay1 accumulator to memory
Delay ouput
in memory

7-10

Integrator Realizations

As shown in the figure, the transfer function yields the difference equation
y(k) = y(k—=21)+Tsu(k-1)

where k is the current time step, k — 1 is the previous time step, y(k) is the
current output, y(k — 1) is the output from the previous time step, and u(k — 1)
is the input from the previous time step.

Parameters and Dialog Box

The parameters and dialog box for the forward integrator realization are the
same as those for the trapezoidal integrator realization, and are given in
“Parameters and Dialog Box” on page 7-8.

Model Design Review

The model design issues are the same as those for the trapezoidal integrator as
described in “Model Design Review” on page 7-8.

7-11

/ Building Systems and Filters

7-12

Derivative Realizations

@ U(k)

This section presents realizations for a derivative and a filtered derivative. For
each realization, the transfer function and difference equation, block
parameters, and model design are discussed.

Filtered Derivative

The FixPt Filtered Derivative realization is a masked subsystem that performs
discrete-time filtered differentiation. For this method, differentiation is
approximated by the z-domain transfer function

(1-p)(z-1)
Ts(z-p)

where Ts is the sampling period and p is a pole on the unit circle. The
realization is shown below.

L" U)-Uk=1 »
F

1 Uk-1)

Input(s)

»
P

E _FE
FixPt Fixpt FixPt
Unit Delay Sum Gain
. Get difference Multiply input
Delay input between current difference by
In memory and previous inputs (1-p)/Tsin CPU PY(k-1) + (1-p)(U(K) = U(k=1) }/Ts
E
* LYk
YK of 1 [Y(k-1 0.65 Sl Convert] »(1)
T ozp . d F F Output(s)
FixPt Fi PF FixPt FixPt
ixPt :
Unit Delay1 Gainl Suml Conversion
ltil : Combine terms of Output Y(k)
Delay output Multiply previous difference equation Reducs size from
in memory OUtF;ﬁtggd’Ole in CPU accumulator to memory

As shown in the figure, the transfer function yields the difference equation

y(k) = pEy(k—l)+.|Tlé(1—p)(u(k)—u(k—1))

Derivative Realizations

where K is the current time step, k — 1 is the previous time step, y(k) is the
current output, y(k — 1) is the output from the previous time step, u(k) is the
current input, and u(k — 1) is the input from the previous time step.

Parameters and Dialog Box

The dialog box and parameter descriptions for the filtered derivative
realization are given below.

Wi Parrsrva; Pl Filsnd D ______________H|
FathFownd (ussegtivg: Fillpedd [wggd |
& dezidin ires heoperd waleson of @ B ewd dars ey

Tam;aﬁm-am-umhumuﬂdunmnngﬂu

Py el Esi

ioﬂ-i_u“

Faby of il i und camie|
k]

) Owed | i | s |

Sample time
The time interval, Ts, between samples

Pole of filter
The pole, p, is defined in the z plane so poles inside the unit circle are stable

Base data type
The processor’s base data type

Accumulator data type
The processor’s accumulator data type

Model Design Review

A brief review of the model design is given below. The design criteria reflect the
rules presented in “Design Rules” on page 7-5.

=« Using the Accumulator data type for the first FixPt Sum block would rarely
be advantageous. Both inputs are given by the Base data type with identical

7-13

/ Building Systems and Filters

7-14

scaling so using the same data type for the output makes sense. Also, the
subsequent block is a gain, and its input should be the Base data type or
smaller. The input values to this block should be close so the subtraction can
be safely carried out using the Base data type.

= The gains involve multiplication which is a size-growing operation. In most
cases, it is desirable for gains and inputs to use the word size given by the
Base data type or smaller. The output can be left at the Accumulator data
type for extra precision in subsequent operations. Alternatively, if the
output were stored in RAM, or used by a size-growing operation, it could be
reduced to the Base data type.

= The second FixPt Sum block converts inputs to the output data type before
performing the actual addition. Given this order of operation, using
Accumulator data type often gives better precision.

= The FixPt Conversion block forces the output to the Base data type before
storage in RAM (before input to the unit delay). Converting the output in the
feed forward part of the realization prevents subsequent operations from
being burdened with a large data type.

Derivative

The FixPt Derivative realization is a masked subsystem that performs
discrete-time differentiation. For the this method, differentiation is
approximated by the z-domain transfer function

(z-1)
Ts(z)

where Ts is the sampling period. The realization is shown below.

L" UK) - U(k=1 (U(k)—U(k—l))/Ts'F Y(K
E

Convert
i F E Output(s)
Uk 1 |uk-y| FixPt FixPt FixPt
1) > - Sum Gain Conversion
Input(s) ZF
FixPt Get difference Multiply input difference Output Y(k)
Unit Delay between current and by 1/Ts in CPU Reduce size from
) previous inputs accumulator to memory
Delay input
in memory

Derivative Realizations

As shown in the figure, the transfer function yields the difference equation
_ 1
y(k) = = (u(k)-u(k-1))

where Kk is the current time step, k — 1 is the previous time step, y(k) is the
current output, u(k) is the current input, and u(k — 1) is the input from the
previous time step.

Parameters and Dialog Box

The dialog box and parameter descriptions for the derivative realization are
given below.

T R - |
FthFond Qs glive: fank |
& deryen bres bemd peand mslesien of an nls e desvalnes

Taumln-d-uam-umhhmm-mmmnngﬂu
ok Sy con sl br et ures e palrale aoabey

Sample time
The time interval, Ts, between samples

Base data type
The processor’s base data type

Accumulator data type
The processor’s accumulator data type

Model Design Review

A brief review of the model design is given below. The design criteria reflect the
rules presented in “Design Rules” on page 7-5.

=« Using the Accumulator data type for the FixPt Sum block would rarely be
advantageous. Both inputs are given by the Base data type with identical

7-15

/ Building Systems and Filters

scaling so using the same data type for the output makes sense. Also, the
subsequent block is a gain; and its input should be the Base data type or
smaller. The input values to this block should be close so the subtraction can
be safely carried out using the Base data type.

= The gain involves multiplication which is a size-growing operation. In most
cases, it is desirable for gains and inputs to use the word size given by the
Base data type or smaller. The output can be left at the Accumulator data
type for extra precision in subsequent operations. Alternatively, if the
output were stored in RAM, or used by a size-growing operation, it could be
reduced to the Base data type.

= The FixPt Conversion casts the output to the Base data type before storage
in RAM (before input to the unit delay).

7-16

Lead Filter or Lag Filter Realization

Lead Filter or Lag Filter Realization

This section presents the realization for a lead filter or lag filter. The transfer
function and difference equation, block parameters, and model design are

The FixPt Lead or Lag Filter is approximated by the z-domain transfer

discussed.
function
K(1-p)(z—-a)
(1-a)(z-p)

where K is the DC gain, a is a zero on the unit circle, and p is a pole on the unit
circle. The realization is shown below.

U(k) =| 0.75>_a UK

F
FixPt
Gainl

Multiply current input by
modified gain in CPU

) I p Y(k-1) + g UK) — E
@ Uk) » I Uk-1 gauk-1) »- aU(k-1 onver—Y.(K)
Input(s) ZF F p~ F F
FixPt FixPt FixPt FixPt
Unit Delay Gain Sum Conversion
Delay input Multiply previous input by Combine terms of Output Y(k)
in memory modified gain times filter difference equation Reduce size from
zero in CPU in CPU accumulator to memory
YR | 1| Yt » Y(k-1
Z B E
FixPt FixPt
Unit Delayl Gain2
Delay output Multiply previous output by
in memory filter pole in CPU

»(1)

Output(s)

As shown in the figure, the transfer function yields the difference equation
y(k) = py(k-1)+g(u(k)-alu(k-1))

where k is the current time step, k — 1 is the previous time step, g = K(1 - p) is
the modified gain, y(k) is the current output, y(k — 1) is the output from the

7-17

4 Building Systems and Filters

7-18

previous time step, u(k) is the current input, and u(k — 1) is the input from the
previous time step.

Parameters and Dialog Box

The dialog box and parameter descriptions for the lead or lag filter realization
are given below.

FHFoand Lol o Lag Fller [waak |

& cergis ires bmopeard sk son of @ e ik ore 0 PO WrE era
vaal paan Wicks Bl & fot o ST 41 i Hha T-pliess weras sans sl
o il Sl B s i s s o e s+
Ty B Fillen prewr Lo mcboe. B B iy m iz e Vg o by et
i tha b peur lesd scion.

T il o] faih o L ok ey By Wil
m Ezhmhahuu-q LEF TR ST -:-:ﬁwl-
(== . T -4

1]
S ey lirr
I,I:II
Pl o filles [Tboatind
|TE]

Zawiol lw

16

[N sl b el o s il 0l

a
L}

oo dals oo
iw I |
oo |__te |

Sample time
The time interval, Ts, between samples

Pole of filter
The pole, p, defined in the z-plane. A pole at +1 represents integral action

Zero of filter

The zero, a, defined in the z-plane. A zero at +1 represents derivative action
DC gain

The constant gain, K

Base data type
The processor’s base data type

Lead Filter or Lag Filter Realization

Accumulator data type
The processor’'s accumulator data type

Model Design Review

A brief review of the model design is given below. The design criteria reflect the
rules presented in “Design Rules” on page 7-5.

= The gains involve multiplications which are a size-growing operation. In
most cases, it is desirable for gains and inputs to use the word size given by
the Base data type or smaller. The output can be left at the Accumulator
data type for extra precision in subsequent operations. Alternatively, if the
output were stored in RAM, or used by a size-growing operation, it could be
reduced to the Base data type.

= The FixPt Sum block converts inputs to the output data type before
performing the actual addition. Given this order of operation, using
Accumulator data type often gives better precision.

= The FixPt Conversion block forces the output to the Base data type before
storage in RAM (before input to the unit delay). Converting the output in the
feed forward part of the realization prevents subsequent operations from
being burdened with a large data type.

7-19

/ Building Systems and Filters

State-Space Realization

This section presents a fixed-point state-space realization. The difference
equation, block parameters, and model design are discussed.

The FixPt State-Space Realization block is a masked subsystem that

implements

x(k+1)
y(k)

the system described by

Ax(k) + Bu(k)
Cx(k) + Du(k)

where Kk is the current time step, k + 1 is the next time step, u(k) is the current
input, x(K) is the current state, x(k + 1) is the state from the next time step, y(k)
is the current output, and A, B, C, and D are all coefficient matrices. The

realization is shown below.

UK) o DU(K) I E |
> K |+ F
E X CX(+DUK)_pfconyert—YK
FixPt » K > F E Output(s)
Matrix E - FixPt
Gain FixPt FixPt Conversion
Direct link matrix D Matrix Sum
IFeCt link matrix Gainl Output equation Output Y(K)
Multiply in CPU) Add in CPU Reduce size from
Output matrix C accumulator to memory
Multiply in CPU
U(k) > BU(K) > E |
1 > K >+ F
moput(s) E AX(K+BUK) pleoverd Xktl) g 1| X(K)
FixPt AX(K)_y (s E E zF
Matrix - FixPt FixPt
Gain2 FixPt Conversionl Unit Delay
Input matrix B sumt
nput matrix
Multiply in CPU State equation Next state X(k+1) State X(k)
Add in CPU Reduce size from in memory
accumulator to memory
K |leXK
- F State matrix A
FixPt in accumulator
Matrix
Gain3

7-20

State-Space Realization

Parameters and Dialog Box

The dialog box and parameter descriptions for the state-space realization are

given below.

FtHFowd §Lae-Spume Fealosman frusk|
& dezydin ires heoperd walesen o § 3@ pacs e

T it gk, il T Wl |
dﬂmﬂﬁﬂbm o O i W

dmocky JEmhesy cor b e ol g U

&

Ji2 D2 2 23 BETTE: 1 DO)

B
]

TR T

¥
ﬁ.‘ 35

Laabuad (o achecond

o
1 e

1

Hare dala
I:ri 16|

Apurmdaios dals
|--|:|:|

i N

A

An n-by-n matrix where n is the number of states

B

An n-by-m matrix where m is the number of inputs

C

An r-by-n matrix where r is the number of outputs

D
An r-by-m matrix

Initial conditions

The initial values for all times preceding the current time

7-21

/ Building Systems and Filters

7-22

Sample time
The time interval, Ts, between samples

Base data type
The processor’s base data type

Accumulator data type
The processor’s accumulator data type

The advantage of using the state-space realization is that you can build high
order systems quickly. The disadvantage is that you can't individually scale the
elements on vector signal lines. For example, even if the i-th state, x;, is large
and the j-th state, x;, is small, you must use the same scaling for both. Matrix
gain coefficients can be individually scaled but this may not suffice.

The solution to this problem is to use a new realization with more blocks and
fewer elements on each signal line. For maximum control of scaling, you should
use a diagram that has only scalars on each line.

Model Design Review

A brief review of the model design is given below. The design criteria reflect the
rules presented in “Design Rules” on page 7-5.

= The matrix gains involve a multiplication which is a size-growing operation.
In most cases, it is desirable for gains and inputs to use the word size given
by the Base data type or smaller. The output can be left at the Accumulator
data type for extra precision in subsequent operations. Alternatively, if the
output were stored in RAM, or used by a size-growing operation, it could be
reduced to the Base data type.

= The FixPt Sum blocks converts inputs to the output data type before
performing the actual addition. Given this order of operation, using the
Accumulator data type often gives better precision.

= The FixPt Conversion blocks force the output to the Base data type before
storage in RAM (before input to the unit delay). Converting the output in the
feed forward part of the realization prevents subsequent operations from
being burdened with a large data type.

Function Reference

Overview s e s 8-2

8 Function Reference

8-2

Overview

This chapter contains reference pages for the Fixed-Point Blockset M-file
functions. In some cases, you will not call these functions from the MATLAB
command line. Instead, they are automatically called when you specify certain
parameter values via block dialog boxes or via the Fixed-Point Blockset
Interface tool. The functions are listed below.

Table 8-1: Fixed-Point Blockset Functions

Function Description

autofixexp Automatically change the scaling for each fixed-
point block that does not have its scaling locked.

fixptbestexp Determine the exponent that gives the best
precision fixed-point representation of a value.

fixptbestprec Determine the maximum precision available for

fixpt_convert

Fixpt_convert_prep

fixpt_restore_links

float

fpupdate

fxptdlg

the fixed-point representation of a value.

Convert Simulink models and subsystems to
fixed-point equivalents.

Prepare a Simulink model for more complete
conversion to fixed point.

Restore links for fixed-point blocks.

Create a MATLAB structure describing a
floating-point data type.

Update obsolete fixed-point blocks from previous
Fixed-Point Blockset releases to current
fixed-point blocks.

Launch the Fixed-Point Blockset Interface tool.

Create a MATLAB structure describing a signed
generalized fixed-point data type.

Create a MATLAB structure describing a signed
fractional data type.

Table 8-1: Fixed-Point Blockset Functions (Continued)

Function Description

showfixptsimranges Display the logged maximum and minimum
values from the last simulation.

sint Create a MATLAB structure describing a signed
integer data type.

ufix Create a MATLAB structure describing an
unsigned generalized fixed-point data type.

ufrac Create a MATLAB structure describing an
unsigned fractional data type.

uint Create a MATLAB structure describing an

unsigned integer data type.

8-3

autofixexp

Purpose

Syntax

Description

8-4

Automatically change the scaling for each fixed-point block that does not have
its scaling locked

autofixexp

The autofixexp script automatically changes the scaling for each block that
does not have its scaling locked. This script uses the maximum and minimum
data obtained from the last simulation run to log data to the workspace. The
scaling is changed such that the simulation range is covered and the precision
is maximized. The script follows these steps:

1 The global variable FixPtTempGlobal is created to “steal” parameters (such
as data type) from variables not known in the base workspace. For example,
assume the FixPt Sum block has its output data type specified as
DerivedVar. DerivedVar is derived in the mask initialization based on mask
parameters and the block is under a mask.

The value of the parameter DerivedVvar is retrieved by temporarily
replacing DerivedVar with stealparameter(DerivedVar) in the block
dialog. A model update is then forced. When stealparameter(DerivedVar)
is evaluated, it returns the value of DerivedVar without modification and
stores the value in FixPtTempGlobal. The stolen value is immediately used
by this procedure and is not needed again. Therefore, the procedure can
move from one block to the next using the same global variable.

2 The RangeFactor variable allows you to specify a range differing from that
defined by the maximum and minimum values logged in FixPtSimRanges.
For example, a RangeFactor value of 1.55 specifies that a range at least 55
percent larger is desired. A value of 0.85 specifies that a range up to 15
percent smaller is acceptable.

You should be aware that the scaling is not exact for the radix point-only
case since the range is given (approximately) by a power of two. The lower
limit is exact, but the upper limit is always one bit below a power of two.

For example, if the maximum logged value is 5 and the minimum logged
value is -0.5, then any RangeFactor from 4/5 to slightly under 8/5 would
produce the same radix point since these limits are less than a factor of two
from each other. The radix point selected will produce a range from -8 to +8
(minus a bit).

autofixexp

See Also

3 The global variable FixPtSimRanges is retrieved from the workspace. This
is the variable that holds the maximum and minimum simulation values.

4 Theworkspace is searched for the variables SlopeBits and BiasBits, which
specify the number of bits to use in representing slopes and biases. If these
variables are not found, then they are automatically created with default
values of 7 and 8, respectively.

5 All blocks that logged maximum and minimum simulation data are
processed.

6 All blocks that do not have their scaling locked are automatically scaled. If
the data type class is FIX, then radix point-only scaling is performed. If the
data type class is INT, then slope/bias scaling is performed. To find out a
data type’s class, refer to its reference page in this chapter.

fxptdlg, showfixptsimranges

8-5

fixptbestexp

Purpose

Syntax

Description

Example

See Also

8-6

Determine the exponent that gives the best precision fixed-point
representation of a value

Ffixptbestexp(RealWorldVvalue,TotalBits, IsSigned)
Fixptbestexp(RealWorldValue,FixPtDataType)

out
out

out = Ffixptbestexp(RealWorldvalue,TotalBits, IsSigned) determinesthe
exponent that gives the best precision for the fixed-point representation of the
real world value specified by RealWorldvalue. You specify the number of bits
for the fixed-point number with TotalBits, and you specify whether the
fixed-point number is signed with IsSigned. If IsSigned is 1, the number is
signed. If 1sSigned is 0, the number is not signed. The exponent is returned to
out.

out = Ffixptbestexp(RealWorldValue,FixPtDataType) determines the
exponent that gives the best precision based on the data type specified by
FixPtDataType.

The following command returns the exponent that gives the best precision for
the real world value 4/3 using a signed, 16-bit number.

fixptbestexp(4/3,16,1)

out
out =
-14

Alternatively, you can specify the fixed-point data type.

out = fixptbestexp(4/3,sfix(16))
out =
-14

This value means that the maximum precision representation of 4/3 is obtained
by placing 14 bits to the right of the binary point.

01.01010101010101
You would specify the precision of this representation in fixed-point blocks by
setting the scaling to 2~-14 or 2~fixptbestexp(4/3,16,1).

fixptbestprec, sfix, ufix

fixptbestprec

Purpose

Syntax

Description

Example

See Also

Determine the maximum precision available for the fixed-point representation
of a value

Ffixptbestprec(RealWorldvalue,TotalBits, IsSigned)
Fixptbestprec(RealWorldvalue,FixPtDataType)

out
out

out = Ffixptbestprec(RealWorldvalue,TotalBits, IsSigned) determines
the maximum precision for the fixed-point representation of the real world
value specified by RealWorldvalue. You specify the number of bits for the fixed-
point number with TotalBits, and you specify whether the fixed-point number
is signed with 1sSigned. If IsSigned is 1, the number is signed. If I1sSigned is
0, the number is not signed. The maximum precision is returned to out.

out = Ffixptbestprec(RealWorldvalue,FixPtDataType) determines the
maximum precision based on the data type specified by FixPtDataType.

The following command returns the maximum precision available for the real
world value 4/3 using a signed, 8-bit number.

fixptbestprec(4/3,8,1)

out
out =
0.015625

Alternatively, you can specify the fixed-point data type.

out
out =
0.015625

Fixptbestprec(4/3,stix(8))

This value means that the maximum precision available for 4/3 is obtained by
placing six bits to the right of the binary point since 26 equals 0.015625.

01.010101

You can use the maximum precision as the scaling parameter in fixed-point
blocks.

Fixptbestexp, sfix, ufix

8-7

fixpt_convert

Purpose

Syntax

Description

8-8

Convert Simulink models and subsystems to fixed-point equivalents

res = Fixpt_convert

res = Fixpt_convert(’SystemName”)

res = Fixpt_convert(’SystemName’, ’Display’)

res = Fixpt_convert(’SystemName”,’Display”’, >AutoSave”)

res = fixpt_convert converts the Simulink model or subsystem specified by
bdroot. res is a structure that contains lists of blocks handled during
conversion. The fields of this structure are given below.

Output Field Description

replaced Blocks that are replaced with fixed-point equivalents or
with other blocks from a user-specified replacement list.

skipped Blocks that are skipped because they are fixed-point
compatible. Some of these blocks can cause errors if used
in certain ways. For example, the Mux block can create
lines that give different data types at down stream input
ports.

encapsulated Structure containing lists of blocks grouped by type that
are encapsulated between fixed-point gateway blocks. The
encapsulated versions are not truly fixed point, but they
will function within a fixed-point model.

res = Fixpt_convert(’SystemName”) converts the Simulink model or
subsystem specified by SystemName.

res = Fixpt_convert(’SystemName”, Display”) returns information
associated with the conversion according to the method specified by Display.
The Display methods are given below.

Display Method Description
on Display detailed block information.
outline Display the conversion process outline.

fixpt_convert

Remarks

Display Method Description

off Do not display block information.

filename Write detailed block information to the specified file.
on+filename Display detailed block information, and write

detailed block information to the specified file.

outline+filename Display the conversion process outline, and write
detailed block information to the specified file.

res = fixpt_convert(’SystemName”,’Display”,”AutoSave”) determines
the state of the converted model or subsystem. If AutoSave is on, then the
converted model or subsystem is saved and closed. If AutoSave is off, then the
converted model or subsystem is unsaved and left open.

If your Simulink model references blocks from a custom Simulink library, then
these blocks are encapsulated upon conversion. A block is encapsulated when
it cannot be converted to an equivalent fixed-point block. Encapsulation
involves associating a FixPt Gateway In or a FixPt Gateway Out block with the
Simulink block. To reduce the number of blocks that are encapsulated, you
should convert the entire library by passing the library name to
fixpt_convert, and then convert the model.

To create a custom list of blocks to convert, you should use the
fixpt_convert_userpairs script. To learn how to use this script, read the
comments included in the M-file.

The data types for fixed-point outputs taking Boolean values are specified by
the variable LogicType. The data types of all other fixed-point outputs and
parameters are specified by the variable BaseType. You can change these
variables to any data type. For example, in the MATLAB workspace you can
type

BaseType = sfix(16)

LogicType = uint(8)

The converted model will not work if these variables are not defined.

Best precision mode is used when available. Otherwise, the precision is set to
20 which means that the binary point is to the right of all bits.To automatically

8-9

fixpt_convert

Example

8-10

set the scaling, run a simulation with doubles override on and then invoke the
automatic scaling script, autofixexp. You can run autofixexp directly, or in
conjunction with the Fixed-Point Blockset Interface, fxptdlg.

This example uses fixpoint_convert to convert a Simulink model of a direct
form 11 realization to its fixed-point equivalent. This realization is discussed in
“Direct Form 11” on page 5-4. The simulink model shown below,
fxpdemo_preconvet, is included as a demo with the blockset.

Gain
bl .

Gainl
b2

.

oooo +

)

Input - zero-Order 1 1 E t
Hold z z z

+ Unit Delay Unit Delayl Unit Delay2 Gain2
b3

Gain5
al

Output
Comparison

-0.84]

Gain4
a2

—0.09

Gain3
a3

The following command converts this model to its fixed-point equivalent,
suppresses the display of detailed block information, and does not save the
model after conversion.

res = fixpt_convert(’fxpdemo_preconvert’,’off”,”off”)

The built-in blocks that are replaced by fixed-point equivalent blocks are given
by the replaced field.

res.replaced
ans =
UnitDelay: {3x1 cell}
ZeroOrderHold: {[1x40 char]}
Gain: {6x1 cell}

fixpt_convert

Sum: {2x1 cell}

The built-in blocks that are skipped since they are compatible with the
Fixed-Point Blockset are given by the skipped field.

res.skipped
ans =
Mux: {”fxpdemo_preconvert_fixpt/Mux’}

The built-in blocks that are encapsulated by fixed-point gateway blocks so that
they are made compatible with the Fixed-Point Blockset are given by the
encapsulated field.

res.encapsulated
ans =
Scope: {[1x42 char]}
SignalGenerator: {fxpdemo_preconvert_fixpt/Input’}

Note that the initial class of the base data type is double.

BaseType =
Class: ’DOUBLE~

You can now run the simulation for the converted model.

sim fxpdemo_preconvert_fixpt

8-11

fixpt_convert

See Also

8-12

The output from the simulation is shown below. You should compare this
output to the output produced by the fixed-point direct from 11 model,
fxpdemo_direct_form2.

10

8l 4

-6 H 4

-8 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Next, define a fixed-point base data type.
BaseType = sfix(16)

Follow the automatic scaling procedure described in the autofixexp reference
pages with 20% safety margin, and then run the simulation.

sim fxpdemo_preconvert_fixpt

The simulation now produces an error. This is because the vector signal leading
into the scope is not homogeneous with regard to data type and scaling.

In general, solving the problem of nonhomogenous signals requires that you
analyze how the signal is being used. If the distinct scaling and data type
properties are important, then you must fully or partially unvectorize the
relevant part of the model. Alternatively, you can force the signals to be
homogenous using the FixPt Gateway Out block. Since this example plots real
world values in the Scope, inserting gateway blocks on the signals leading into
the Scope is an adequate solution.

autofixexp, Fixpt_convert_prep, fxptdlg

fixpt_convert_prep

Purpose
Syntax

Description

See Also

Prepare a Simulink model for more complete conversion to fixed point
Fixpt_convert_prep(’SystemName”)

fixpt_convert_prep(”SystemName”) prepares the Simulink model or
subsystem specified by SystemName for more complete conversion (less
encapsulation) to fixed point using the fixpt_convert function. It does so by
replacing this select set of blocks:

< Old style Latch blocks

Old style Latch blocks are replaced with a version contained in the
fixpt_convert_lib library. The old style Latch block contains a Transport
Delay block, which is a very inefficient implementation for both floating
point and fixed point.

= Function blocks acting like selectors

Function blocks acting like selectors are replaced with the Selector block.
Function blocks acting like selectors require that you specify the width of the
input. To get this information, the model must be put into compile mode,
which is inefficient.

« A select set of additional function blocks

You can replace function blocks that have replacements in the
fixpt_convert_liblibrary. Alternatively, you can use fixpt_convert_prep
as a prototype for creating a customized list of function blocks to be replaced.
To do this, copy the function and the library to another directory, and then
customize the library to include function blocks that you commonly
encounter when converting models from floating point to fixed point.

Note This function is meant to be a starting point for customizing the
Simulink to Fixed-Point Blockset conversion process.

Ffixpt_convert

8-13

fixpt_restore_links

Purpose

Syntax

Description

Remarks

8-14

Restore links for fixed-point blocks

res = Fixpt_restore_links
res = Fixpt_restore_links(’SystemName?)
res = Fixpt_restore_links(’SystemName”, >AutoSave”)

res = fixpt_restore_links restores broken links for the fixed-point blocks
contained in the model or subsystem specified by bdroot. By default, the
models and libraries containing restored block links are left open and unsaved.
res contains the names of the blocks that had broken links restored.

res = fixpt_restore_links(”SystemName”) restores links for the fixed-point
blocks contained in the model or subsystem specified by SystemName.

res = FTixpt_restore_links(’SystemName~,”’AutoSave”) determines the
state of the models or subsystems containing restored block links. If AutoSave
is on, the models or subsystems are saved and closed. If AutoSave is off, the
models or subsystems are unsaved and left open.

Breaking library links to fixed-point blocks will almost certainly produce an
error when you attempt to run the model. If broken links exist, you will likely
uncover them when upgrading to the latest release of the Fixed Point Blockset.

float

Purpose

Syntax

Description

Example

See Also

Create a MATLAB structure describing a floating-point data type

a = float(’single”)
a = float(’double”)
a = float(TotalBits, ExpBits)

float("single”) returns a MATLAB structure that describes the data type of
an IEEE single (32 total bits, 8 exponent bits).

float("double™) returns a MATLAB structure that describes the data type of
an |IEEE double (64 total bits, 11 exponent bits).

float(TotalBits, ExpBits) returns a MATLAB structure that describes a
nonstandard floating-point data type that mimics the IEEE style. That is, the
numbers are normalized with a hidden leading one for all exponents except the
smallest possible exponent. However, the largest possible exponent might not
be treated as a flag for Inf's and NaN'’s.

float is automatically called when a floating point number is specified in a
block dialog box.

Note Unlike fixed-point numbers, floating point numbers are not subject to
any specified scaling.

Define a nonstandard, IEEE-style, floating-point data type with 31 total bits
(excluding the hidden leading one) and 9 exponent bits.

float(31,9)

a
a =
Class: “FLOAT”
MantBits: 21
ExpBits: 9

sfix, sfrac, sint, ufix, ufrac, uint

8-15

fpupdate

Purpose

Syntax

Description

8-16

Update obsolete fixed-point blocks from previous Fixed-Point Blockset releases
to current fixed-point blocks

fpupdate(*model ”)

fpupdate(’model” ,blkprompt)

fpupdate(”model” ,blkprompt,varprompt)

fpupdate(”model” ,blkprompt,varprompt, muxprompt)
fpupdate("model” ,blkprompt,varprompt, muxprompt,message)

fpupdate("model *) replaces all obsolete fixed-point blocks contained in model
with current fixed-point blocks. The model must be opened prior to calling
fpupdate.

fpupdate("model” ,blkprompt) prompts you for replacement of obsolete
blocks. If blkprompt is O (the default), you will not be prompted. If blkprompt
is 1, you will have these three options:

= y (default) replaces the block.
= n does not replace the block.
= a replaces all blocks without further prompting.

fpupdate("model” ,blkprompt,varprompt) gives you the option of updating
variables which appear in each block’s dialog box with their actual numerical
values. Note that such an update is possible only if the variables can be
evaluated in the MATLAB workspace. If varprompt is 1 (the default), you are
prompted for each variable found in the block diagram. If varprompt is 0, all
variables are automatically updated without prompting.

fpupdate("model” ,blkprompt,varprompt, muxprompt) allows you to update
the input size parameters of the Mux and Demux blocks found in model. The
input sizes of these blocks may need to be updated to account for the mismatch
between the old and new fixed-point data representations. In the old
representation, each number had a width of 2. In the new representation, each
number has a width of 1. To update Mux and Demux blocks that have only
fixed-point inputs, the vector that specifies the input size should be divided by
2. If muxprompt is 1 (the default), each Mux and Demux block found in model is
updated. If muxprompt is 0, the Mux and Demux blocks are automatically
updated without prompting.

fpupdate
|

fpupdate("model” ,blkprompt,varprompt,muxprompt,message) allows you to
show or suppress any warning or update messages generated during the
update process. If message is 1 (the default), all messages are displayed. If
message is 0, all messages are suppressed.

fpupdate calls addterms to terminate any unconnected input or output ports
by attaching Ground or Terminator blocks, respectively.

Example To see how fpupdate works, convert the obsolete model fixpoint/obsolete/
fpexl.mdl.

fpexl
fpupdate(” fpexl”)

8-17

fxptdig

Purpose
Syntax

Description

Parameters
and Dialog Box

8-18

Launch the Fixed-Point Blockset Interface tool
fxptdlg(’model *)

fxptdlg(’model *) launches the Fixed-Point Blockset Interface tool for the
fixed-point MDL-file model. The interface provides convenient access to the
global overrides and min/max logging settings, the logged min/max data, the
automatic scaling script, and the plot interface tool. You can launch the
Interface tool for as many different MDL-files as you want, and the tool
controls only the specified model. You can also invoke the Interface tool from
the Tools menu in the model window, or with the Fixed-Point GUI block, which
is included with all blockset demos.

For each block in the model that logs data, the Interface tool displays the block
names, the minimum simulation value, the maximum simulation value, the
data type, and the scaling. Additionally, if a signal saturates or overflows, then
a message is displayed for the associated block indicating how many times
saturation or overflow occurred. You can display a block’s dialog box by
double-clicking on the appropriate entry.

¥ Fixed-Point Blockset Interface - fxpdemo_feedback =] E3
Log Min, Max, ... W Autoscale % S afety Margin: IT
Log Mode: W Dioubles Oweride: W
Bloch Hame: HIH MK Data Sealing
Typ=
- -
[[
Black path: |
Run | Stop | Autozcale Plat... Help Cloze |

fxptdlg

The Log Min/Max
This menu controls which blocks log data. Al'l logs min/max data for all

blocks, None doesn’t log any min/max data, and Use block params logs min/

max data for all blocks that have the Log minimums and maximums
check box checked.

Log Mode
This menu controls how the log file is updated when multiple simulations
are run. Override log updates all logged values for each simulation run.
Merge log keeps the highest and lowest logged values across multiple
simulations.

Autoscale % Safety Margin
This parameter multiplies the simulation values by the specified factor,
and allows you to specify a range differing from that defined by the
maximum and minimum values logged to the workspace. For example, a
value of 55 specifies that a range at least 55 percent larger is desired. A
value of -15 specifies that a range up to 15 percent smaller is acceptable.

The Autoscale % Safety Margin parameter is used as part of the
automatic scaling procedure. Before automatic scaling is performed, you
must run the simulation to collect min/max data.

Doubles Override

This menu controls whether the output data type is overridden with
doubles. All overrides the output data type for all blocks, None doesn't
override the output data type for any block, and Use block params
overrides the output data type for blocks that have the Override data
type(s) with doubles check box checked.

Block path
Displays the path for each selected block. The block path is described in
terms of the blockset model name and, if required, the subsystem names.

The Fixed-Point Blockset Interface tool contains six buttons: Run, Stop,
Autoscale, Plot, Help, and Close. The Run button runs the model and updates
the display with the latest simulation information. The Stop button stops the
simulation from running. The Autoscale button invokes the automatic scaling
script autofixexp. The Plot button invokes the Plot System interface, which
displays any To Workspace, Outport, or Scope blocks found in the model. The

8-19

fxptdig

Example

See Also

8-20

Help button displays the HTML-based help. The Close button closes the
Interface tool.

The Plot System interface is shown below. It is displaying Scope block output
from the fxpdemo_feedback demo.

#|Plot system: fxpdemo_feedback = E3

FPlantInput
FlantOutput
ReferenceSignal

|

Flot Signals | Flot Doubles | Flot Both | Cancel |

To plot the simulation results, select one or more variable names, and then
select the appropriate plot button. You plot the raw signal data with the Plot
Signals button. Raw signal data is generated when the global override switch
is off. You plot doubles with the Plot Doubles button. Doubles are generated
when the global override switch is on. You can plot both raw signal data and
doubles with the Plot Both button. Note that the doubles override does not
overwrite the raw data.

To learn how to use the Fixed-Point Blockset Interface tool, refer to
“Simulation Results” on page 6-9.

autofixexp, showfFixptsimranges

sfix

Purpose

Syntax

Description

Example

See Also

Create a MATLAB structure describing a signed generalized fixed-point data
type

a = sfix(TotalBits)

sfix(TotalBits) returns a MATLAB structure that describes the data type of

a signed generalized fixed-point number with a word size given by TotalBits.

sTix is automatically called when a signed generalized fixed-point data type is
specified in a block dialog box.

Note A default radix point is not included in this data type description.
Instead, the scaling must be explicitly defined in the block dialog box.

Define a 16-bit signed generalized fixed-point data type.

a = sfix(16)
a:
Class: °FIX?
IsSigned: 1
MantBits: 16

float, sfrac, sint, ufix, ufrac, uint

8-21

sfrac

Purpose

Syntax

Description

Example

See Also

8-22

Create a MATLAB structure describing a signed fractional data type

a = sfrac(TotalBits)
a = sfrac(TotalBits, GuardBits)

sfrac(TotalBits) returns a MATLAB structure that describes the data type
of a signed fractional number with a word size given by TotalBits.

sfrac(TotalBits, GuardBits) returns a MATLAB structure that describes
the data type of a signed fractional number. The total word size is given by
TotalBits with GuardBits bits located to the left of the sign bit.

sfrac is automatically called when a signed fractional data type is specified in
a block dialog box.

The default radix point for this data type is assumed to lie immediately to the
right of the sign bit. If guard bits are specified, they lie to the left of the radix
point in addition to the sign bit.

Define an 8-bit signed fractional data type with 4 guard bits. Note that the
range of this number is -2 = -16 to (1 — 21 - 8)).24 = 15.875.

a = sfrac(8,4)

a =
Class: “FRAC’
IsSigned: 1
MantBits: 8

GuardBits: 4

float, sfix, sint, ufix, ufrac, uint

showfixptsimranges

Purpose Display the logged maximum and minimum values from the last fixed-point
simulation.
Description The showFixptsimranges script displays the logged maximum and minimum

values from the last fixed-point simulation. Data is logged only from blocks
where the Log minimums and maximums check box is checked.

The logged data is stored in the FixPtSimRanges cell array, which can be
accessed by the autofixexp automatic scaling script.

See Also autoFixexp, fxptdlg

8-23

sint

Purpose
Syntax

Description

Example

See Also

8-24

Create a MATLAB structure describing a signed integer data type
a = sint(TotalBits)
sint(TotalBits) returns a MATLAB structure that describes the data type of

a signed integer with a word size given by TotalBits.

sintis automatically called when a signed integer is specified in a block dialog
box.

The default radix point for this data type is assumed to lie to the right of all
bits.

Define a 16-bit signed integer data type.

a
a

sint(16)

Class: ’INT”
IsSigned: 1
MantBits: 16

float, sfix, sfrac, ufix, ufrac, uint

ufix

Purpose

Syntax

Description

Example

See Also

Create a MATLAB structure describing an unsigned generalized fixed-point
data type

a = ufix(TotalBits)

ufix(TotalBits) returns a MATLAB structure that describes the data type of
an unsigned generalized fixed-point data type with a word size given by
TotalBits.

ufix is automatically called when an unsigned generalized fixed-point data
type is specified in a block dialog box.

Note The default radix point is not included in this data type description.
Instead, the scaling must be explicitly defined in the block dialog box.

Define a 16-bit unsigned generalized fixed-point data type.
a = ufix(16)
Class: °FIX”
IsSigned: 0O
MantBits: 16

float, sfix, sfrac, sint, ufrac, uint

8-25

ufrac

Purpose

Syntax

Description

Example

See Also

8-26

Create a MATLAB structure describing an unsigned fractional data type

a = ufrac(TotalBits)
a ufrac(TotalBits, GuardBits)

ufrac(TotalBits) returns a MATLAB structure that describes the data type
of an unsigned fractional number with a word size given by TotalBits.

ufrac(TotalBits, GuardBits) returns a MATLAB structure that describes
the data type of an unsigned fractional number. The total word size is given by
TotalBits with GuardBits bits located to the left of the radix point.

ufrac is automatically called when an unsigned fractional data type is
specified in a block dialog box.

The default radix point for this data type is assumed to lie immediately to the
left of all bits. If guard bits are specified, then they lie to the left the default
radix point.

Define an 8-bit unsigned fractional data type with 4 guard bits. Note that the
range of this number is from 0 to (1 — 2°8).2% = 15.9375.

a = ufrac(8,4)

a =
Class: “FRAC’
IsSigned: O
MantBits: 8

GuardBits: 4

float, sfix, sfrac, sint, ufix, uint

uint

Purpose
Syntax

Description

Example

See Also

Create a MATLAB structure describing an unsigned integer data type
a = uint(TotalBits)
uint(TotalBits) returns a MATLAB structure that describes the data type of

an unsigned integer with a word size given by TotalBits.

uint is automatically called when an unsigned integer is specified in a block
dialog box.

The default radix point for this data type is assumed to lie to the right of all
bits.

Define a 16-bit unsigned integer.

a
a

uint(16)

Class: ”INT”
IsSigned: O
MantBits: 16

float, sfix, sfrac, sint, ufix, ufrac

8-27

uint

8-28

Block Reference

The Block Reference Page .
The Block Dialog Box .
Common Block Features
Block Parameters

Block Icon Labels

Port Data Type Display .

The Fixed-Point Blockset Library

9-2

9-3

9-4

. 9-10
. 9-10

. 9-12

9 Block Reference

The Block Reference Page

Fixed-Point Blockset blocks appear in alphabetical order and contain some or
all of this information:

< The block name and icon

= The purpose of the block

= A description of the block

= Additional remarks about block usage

= The block parameters and dialog box including a brief description of each
parameter

< The rules for some or all of these topics, as they apply to the block:

- Converting block parameters from double precision numbers to
Fixed-Point Blockset data types

- Converting the input data type(s) to the output data type
- Performing block operations between inputs and parameters
= An example using the block

<« The block characteristics, including some or all of these, as they apply to the
block:

- Input Port(s) — the data type(s) accepted by the block and whether the
inputs can be a scalar or vector

- Output Port — the data type(s) produced by the block and whether the
outputs can be a scalar or vector

- Direct Feedthrough — whether the block or any of its ports has direct
feedthrough

- Sample Time — how the block’s sample time is determined, whether by the
block itself or inherited from the block that drives it or is driven by it

- Scalar Expansion — whether or not scalars are expanded to vectors
- States — the number of discrete states

- Vectorized — whether or not the block accepts and/or generates vector
signals

9-2

The Block Dialog Box

The Block Dialog Box

You configure Fixed-Point Blockset blocks with a parameter dialog box. The
parameter dialog box provides you with:

= The name and block type at the top of the dialog box
= A brief description of the block’s behavior below the title

=« Zero or more editable parameter fields, check boxes, or parameter lists below
the description. You specify the parameter values using valid MATLAB
expressions.

= A row of four buttons labeled OK, Cancel, Help, and Apply at the bottom of
the dialog box. The OK button sets the current parameter values and closes
the dialog box. The Cancel button reverts all the parameter values back to
their values at the time the dialog box was opened, losing any changes you
made. The Help button displays the HTML-based reference information.
The Apply button sets the current parameter values and but does not close
the dialog box.

Simulink stores the strings entered in these fields and passes them to
MATLAB for evaluation when a simulation is started. If MATLAB variables
are used, the simulation uses the values that exist in the workspace at the start
of the simulation. These variables are not necessarily the same as when the
variables are entered into the dialog box fields. If a simulation is running when
a parameter is changed, MATLAB evaluates the parameter as soon as you
press the OK or Apply button.

9-3

9 Block Reference

Common Block Features

For convenience, all the common block features are described in this section.
These common features include:

<« Block parameters

« Block icon labels

= Port data type display

Block Parameters

Many Fixed-Point Blockset blocks use the same parameters, which you
configure through the block dialog box. The common block parameters are
associated with these blockset features:

< Parameter and output data type selection

= Parameter and output scaling selection

= Rounding

< Overflow handling

= QOverriding the output data type with doubles

=< Logging simulation results

Block-specific parameters are described in the block reference pages.

Selecting the Data Type

For many fixed-point blocks, you need to associate data type information with
numerical parameters and the output. You can associate data type information
in these ways:

= Parameters

The numerical parameter values of some fixed-point blocks inherit the data
type of an input signal or the output signal. Other blocks require that you
specify the parameter data type explicitly with the Parameter data type
parameter.

= Qutput

The output of some fixed-point blocks inherits the data type of the input
signal. Other blocks require that you specify the output data type with the
Output data type parameter. Still other blocks provide you with the option

9-4

Common Block Features

of inheriting the output data type (and scaling) information from a driving
block, or specifying the data type.

For the latter case, you control how the output data type (and scaling) is
specified with the Output data type and scaling parameter list. This list
supports three choices: Specify via dialog, Inherit via internal rule,
and Inherit via back propagation. The parameter choices involving data
type inheritance are designed to minimize specification burden. Note that
some fixed-point blocks support only two of the three choices.

If you select Specify via dialog, you must explicitly specify the output data
type with the Output data type parameter.

If you select Inherit via internal rule, the output data type is inherited
from the input(s). The goal of the inheritance rule is to select the “natural”
data type and scaling for the output. The specific rule that is used depends
on the block operation. For example, if you are multiplying two signed 16-bit
signals, the FixPt Product block produces the natural output of a signed
32-bit data type. An “unnatural” output is produced if the inputs have
different signs and different sizes. In this case, some trial and error may be
required to achieve satisfactory results. If you are adding signals, two
natural choices for the output data type and scaling are possible: to preserve
the precision or to prevent overflow. However, blocks only support one rule.
For example, the FixPt Sum block preserves precision. If your goal is to
prevent overflow, then you should manually configure the data type and
scaling.

If you select Inherit via back propagation, the output data type is
inherited by back propagation. In many cases, you will find that the FixPt
Data Type Propagation block provides you with the most flexibility when
back propagating the data type.

9-5

9 Block Reference

The supported data types and default scaling are shown below.

Table 9-1: Output Data Types and Default Scaling

Data Type Description Default Scaling
float Floating-point number None
ufix Unsigned generalized fixed-point None
number
sTix Signed generalized fixed-point number None
uint Unsigned integer Right of the least

significant bit

sint Signed integer Right of the least
significant bit

ufrac Unsigned fractional number Left of the most
significant bit

sfrac Signed fractional number Right of the sign bit

The word size (in bits) of fixed-point data types is given as an argument to the
data type. For example, sfix(16) specifies a 16-bit signed generalized
fixed-point number. Word sizes from 1 to 128 bits are supported.

Floating-point data types are IEEE-style and are specified as
float("single”) for single-precision numbers and float(*double™) for
double-precision numbers. Nonstandard IEEE-style numbers are specified as
float(TotalBits,ExpBits) where TotalBits is the total number of physical
bits and ExpBits is the number of exponent bits.

Note A default radix point is not included with the generalized fixed-point
data type. Instead, the scaling must be explicitly specified as described below.

For more information about supported data types and their default scaling,
refer to Chapter 3, “Data Types and Scaling.”

9-6

Common Block Features

Selecting the Scaling
For generalized fixed-point data types, you need to associate scaling

information with numerical parameters and the output. You can associate
scaling information in these ways:

= Parameters

The numerical parameter values of some fixed-point blocks inherit the
scaling of an input signal or the output signal. Other blocks require that you
specify the parameter scaling explicitly with the Parameter scaling
parameter.

= Output

The output of some fixed-point blocks inherits the scaling of the input signal.
Other blocks require that you specify the output scaling with the Output
scaling parameter. Still other blocks provide you with the option of
inheriting the output scaling (and data type) information from a driving
block, or specifying the scaling.

For the latter case, you control how the output scaling (and data type) is
specified with the Output data type and scaling parameter list. This list
supports three choices: Specify via dialog, Inherit via internal rule,
and Inherit via back propagation. Note that some fixed-point blocks
support only two of the three choices.

If you select Specify via dialog, you must explicitly specify the output
scaling with the Output scaling parameter. If you select Inherit via
internal rule, the output scaling is inherited from the input(s). If you select
Inherit via back propagation, the output scaling is inherited by back
propagation; typically from the FixPt Data Type Propagation block. For
information about the inheritance rules, refer to the description in “Selecting
the Data Type” on page 9-4.

9-7

9 Block Reference

The supported scaling modes for generalized fixed-point data types are given
below. Default scaling is used for all other fixed-point data types.

Table 9-2: Scaling Modes for Generalized Fixed-Point Data Types

Scaling mode Description

Radix point-only Specify radix point-only (powers-of-two) scaling. For
example, a scaling of 2~-10 (or pow2(-10)) places the
radix point at a location 10 places to the left of the least
significant bit.

Slope/bias Specify slope/bias scaling. For example, a scaling of
[5/9 10] specifies a slope of 5/9 and a bias of 10. When
using this mode, you must specify a positive slope.

Note that some blocks provide a form of radix point-only scaling for constant
vectors and constant matrices. Refer to “Example: Constant Scaling for Best
Precision” on page 3-12 for more information.

Locking the Output Scaling

If the Lock output scaling so autoscaling tool can’'t change it check box is
checked, then the automatic scaling tool autofixexp will not change the
Output scaling parameter value. Otherwise, the automatic scaling tool is free
to adjust the scaling. You can run autofixexp directly from the command line,
or through the Fixed-Point Blockset Interface tool, fxptdlg.

Rounding
You can choose the rounding mode for the block operation with the Round

toward parameter list. The available rounding modes are shown below.

Table 9-3: Rounding Modes

Rounding Mode Description
Zero Round the output towards zero.
Nearest Round the output towards the nearest representable

number, with the exact midpoint rounded towards
positive infinity.

9-8

Common Block Features

Table 9-3: Rounding Modes (Continued)

Rounding Mode Description
Ceiling Round the output towards positive infinity.
Floor Round the output towards negative infinity.

Handling Overflows

Overflow handling for fixed-point numbers is specified with the Saturate to
max or min when overflows occur check box. If checked, fixed-point overflow
results saturate. Otherwise, overflow results wrap. Whenever a result
saturates, a warning is displayed.

Overriding with Doubles

If the Override data type(s) with doubles check box is checked, then the
Parameter data type and Output data type parameter values are ignored.
Instead, parameters and outputs are represented using double-precision
floating-point numbers. Also, any calculations are performed using
floating-point arithmetic.

An exception to this rule is when parameters or outputs contain a bias. In this
case, the bias is not ignored in subsequent fixed-point operations.

If the parameter and output data types are both floating-point, the check box
is not available.

Logging Simulation Results

The minimum and maximum values produced by the simulation are logged if
the Log minimums and maximums check box is checked. The logged values
are stored in the FixPtSimRanges global cell array in the MATLAB workspace.
You can access these values with the showfixptsimranges script or with the

Fixed-Point Blockset Interface tool, fxptdlg.

In addition to logging the minimum and maximum simulation values, overflow
information is also logged. If an overflow occurs, then a warning, an error, or
nothing occurs depending on how the Data Overflow parameter of Simulink’s
Simulation Parameters dialog box is configured.

9-9

9 Block Reference

9-10

Block Icon Labels

Many blockset icons look like those of built-in Simulink blocks. For this reason,
all fixed-point icons have an “F” (for “Fixed-Point”) associated with them. An
“F” in the lower right (upper left) corner of the icon means the block output
(input) is a Fixed-Point Blockset data type.

The FixPt Gateway In, FixPt Gateway In Inherited, and FixPt Gateway Out
blocks have additional labels, which reflect how the input and output signals
are treated. If the block input or output is treated as a real-world value, then a
“V" appears by the relevant port. If the block input or output is treated as a
stored integer, then an “I” appears by the relevant port.

Many blocks have additional labels that indicate logical operations, arithmetic
operations, numerical values, and so on. These labels will help you to quickly
understand the behavior of fixed-point models without examining individual
block dialog boxes.

Port Data Type Display

To display the data types of ports in your model, select Port Data Types from
Simulink's Format menu.

The port display for fixed-point signals consists of three parts: the data type,
the number of bits, and the scaling. The data type and number of bits reflect
the block’'s Output data type parameter value or the data type that is
inherited from the driving block. The scaling reflects the block’s Output
scaling parameter value or the scaling that is inherited from the driving block.
For example, the data type displays for the Fixed-Point Sine demo are shown
below.

double v In sfix16_Sp2 B10 E
1 sfix16_En2 out | -double
Sine Wave F >+ E v summed signal
2 rad/sec To FixPtl
FixPt Sum From FixPtl
—»]
\'}
) n~ Scope
double in |sfixi6 Ene > >< <fix16 Eng ‘FOUt double
Sine Wave E > E ~ v muliplied signal
1 rad/sec To FixPt2

FixPt Product From FixPt2

Common Block Features

The data type display associated with the To FixPtl block indicates that the
output data type is sTix(16) (a signed 16-bit generalized fixed-point number)
with slope/bias scaling of [1/5, 10]. Note that this scaling is not the block’s
default scaling. The data type display associated with the To FixPt2 block
indicates that the output data type is sFix(16) with radix point-only scaling of
27-6.

9-11

9 Block Reference

9-12

The Fixed-Point Blockset Library

The Fixed-Point Blockset blocks are grouped into the following categories
based on usage.

Math Blocks

FixPt Absolute Value

FixPt Constant
FixPt Dot Product
FixPt Gain

FixPt Matrix Gain
FixPt MinMax
FixPt Product
FixPt Sign

FixPt Sum

FixPt Unary Minus

Output the absolute value of the input.
Generate a constant value.

Generate the dot product.

Multiply the input by a constant.

Multiply the input by a constant matrix.
Output the minimum or maximum input value.
Multiply or divide inputs.

Indicate the sign of the input.

Add or subtract inputs.

Negate the input.

Conversion Blocks

FixPt Conversion

FixPt Conversion
Inherited

FixPt Data Type
Propagation

Convert from one Fixed-Point Blockset data type
to another.

Convert from one Fixed-Point Blockset data type
to another, and inherit the data type and
scaling.

Configure the data type and scaling of the
propagated signal based on information from the
reference signals.

The Fixed-Point Blockset Library

Conversion Blocks

FixPt Gateway In

FixPt Gateway In
Inherited

FixPt Gateway Out

Convert a Simulink data type to a Fixed-Point
Blockset data type.

Convert a Simulink data type to a Fixed-Point
Blockset data type, and inherit the data type
and scaling.

Convert a Fixed-Point Blockset data type to a
Simulink data type.

Look-Up Table Blocks

FixPt Dynamic
Look-Up Table

FixPt Look-Up Table

FixPt Look-Up Table
(2D)

Approximate a one-dimensional function using a
selected look-up method and a dynamically
specified table.

Approximate a one-dimensional function using a
selected look-up method.

Approximate a two-dimensional function using a
selected look-up method.

Logical and Comparison Blocks

FixPt Bitwise Operator

FixPt Dead Zone

FixPt Logical Operator

FixPt Multiport Switch

Perform the specified bitwise operation on the
inputs.

Provide a region of zero output.

Perform the specified logical operation on the
inputs.

Switch output between different inputs based on
the value of the first input.

9-13

9 Block Reference

9-14

Logical and Comparison Blocks

FixPt Relational
Operator

FixPt Relay
FixPt Saturation

FixPt Switch

Perform the specified relational operation on the
inputs.

Switch output between two constants.
Bound the range of the input.

Switch output between the first input and the
third input based on the value of the second
input.

Discrete-Time Blocks

FixPt FIR

FixPt Integer Delay
FixPt Tapped Delay

FixPt Unit Delay
FixPt Zero-Order Hold

Implement a fixed-point finite impulse response
(FIR) filter.

Delay a signal N sample periods.

Delay a scalar signal multiple sample periods,
and output all the delayed versions.

Delay a signal one sample period.

Implement a zero-order hold of one sample
period.

FixPt Absolute Value

Purpose

Description

4 lul p

E

FixPt
Abs

Parameters
and Dialog Box

Characteristics

Output the absolute value of the input

The FixPt Absolute Value block is a masked S-function that outputs the
absolute value of the input.

For signed data types, the absolute value of the most negative value is
problematic since it is not representable by the data type. In this case, the
behavior of the block is controlled by the Saturate to max or min when
overflows occur check box. If checked, the absolute value of the data type
saturates to the most positive value. If not checked, the absolute value of the
most negative value has no effect.

For example, suppose the block input is an 8-bit signed integer. The range of
this data type is from -128 to 127, and the absolute value of -128 is not
representable. If the Saturate to max or min when overflows occur check
box is checked, then the absolute value of -128 is 127. If it is not checked, then
the absolute value of -128 remains at -128.

Frows Prand drengin Ve ek
A b ki o 1y FimtcHPoind Bl

Paluradi
[T tosbamis oo rass oo mn wdan cewrbess coed

] oo |t | |

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Input Port Any data type supported by the blockset
Output Port Same as the input
Direct Feedthrough Yes

Sample Time Inherited from driving block
Scalar Expansion N/A

States 0

Vectorized Yes

9-15

FixPt Bitwise Operator

Purpose

Description

Bitwiza
A aND
E

w

FixPt
Bitwisa
Operator

9-16

Perform the specified bitwise operation on the inputs

The FixPt Bitwise Operator block is a masked S-function that performs the
specified bitwise operation on its operands.

Unlike the logic operations performed by the FixPt Logical Operator block,
bitwise operations treat the operands as a vector of bits rather than a single
number. You select the bitwise Boolean operation with the Operator
parameter list. The supported operations are given below.

Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is TRUE
NAND TRUE if at least one of the corresponding bits is FALSE
NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are TRUE
NOT TRUE if the input is FALSE (available only for single input)

Unlike Simulink’s Bitwise Logical Operator block, the FixPt Bitwise Operator
block does not support shift operations. Refer to “Shifts” on page 4-40 to learn
how to perform shift operations with the Fixed-Point Blockset.

The size of the output depends on the number of inputs, their vector size, and
the selected operator:

= The NOT operator accepts only one input, which can be a scalar or a vector.
If the input is a vector, the output is a vector of the same size containing the
bitwise logical complements of the input vector elements.

= For a single vector input, the block applies the operation (except the NOT
operator) to all elements of the vector. If a bit mask is not specified, then the
output is a scalar. If a bit mask is specified, then the output is a vector.

=« For two or more inputs, the block performs the operation between all of the
inputs. If the inputs are vectors, the operation is performed between
corresponding elements of the vectors to produce a vector output.

FixPt Bitwise Operator

Remarks

When configured as a multi-input XOR gate, this block performs an addition-

modulo-two operation as mandated by the IEEE Standard for Logic Elements.

If the Use bit mask check box is not checked, then the block can accept multiple
inputs. You select the number of input ports with the Number of input ports
parameter. The input data types must be identical.

If the Use bit mask check box is checked, then a single input is associated with
the bit mask you specify with the Bit mask parameter. You specify the bit
mask using any valid MATLAB expression. For example, you can specify the
bit mask 00100101 as 275+272+270. Alternatively, you can use strings to
specify a hexadecimal bit mask such as {FE73’12AC’}. If the bit mask is larger
than the input signal data type, then it is ignored.

Note The output data type, which is inherited from the driving block, should
represent zero exactly. Data types that satisfy this condition include signed
and unsigned integers and any floating-point data type.

The Treat mask as parameter list controls how the mask is treated. The
possible values are Real World Value and Stored Integer. In terms of the
general encoding scheme described in “Scaling” on page 3-5, Real World Value
treats the mask as V = SQ + B where S is the slope and B is the bias. Stored
Integer treats the mask as a stored integer, Q. For more information about
this parameter list, refer to the FixPt Gateway In block.

You can use the bit mask to perform a bit set or a bit clear on the input. To
perform a bit set, you configure the Operator parameter list to OR and create a
bit mask with a 1 for each corresponding input bit that you want tosetto 1. To
perform a bit clear, you configure the Operator parameter list to AND and
create a bit mask with a 0 for each corresponding input bit that you want to set
to 0.

For example, suppose you want to perform a bit set on the fourth bit of an 8-bit
input vector. The bit mask would be 00010000, which you can specify as 274 in
the Bit mask parameter. To perform a bit clear, the bit mask would be
11101111, which you can specify as 2/27+2726+2/5+2/3+272+271+270 in the Bit
mask parameter.

9-17

FixPt Bitwise Operator

Parameters
and Dialog Box

Conversions

9-18

[kt P T ras e ___________0O
Froe Prand Fatwer Opansior ik |
Prenan e e ll] Dlnsat o0 Wion on (T it The caipedl dacy
o il e rend ow Eearte
FEaraiE
o B E
B 1 i ek
|
B P ke
e 2
Trmad mark wr | 1nes bingm ﬂ
I ..ﬂf_.:'l Camcd | e | |
Operator

The bitwise logical operator associated with the specified operands.

Use bit mask
Specify if the bit mask is used (single input only).

Number of input ports
The number of inputs.

Bit mask
The bit mask to associate with a single input.

Treat mask as
Treat the mask as a real-world value or as an integer.

The Bit mask parameter is converted from a double to the input data type
offline using round-to-nearest and saturation. Refer to “Parameter
Conversions” on page 4-26 for more information about parameter conversions.

FixPt Bitwise Operator

Example To help you understand the FixPt Bitwise Operator block logic operations,
consider the fixed-point model shown below.
105
01101001
F
FixPt
Constant
> Bitwise F
183 | p{AND [—p| ou | — P
F —»__F v :
FixPt FixPt FixPt Display
Constantl Bitwise Gateway Out
Operator
45
00101101
E
FixPt
Constant2

The Fixpt Constant blocks are configured to output an 8-bit unsigned integer
(uint(8)). The results for all logic operations are shown below.

Operation Binary Value Decimal Value
AND 00101000 40
OR 11111101 253
NAND 11010111 215
NOR 00000010 2
XOR 11111000 248
NOT N/A N/A
Characteristics Input Port Any data type supported by the blockset
Output Port Same as the input

Direct Feedthrough No

9-19

FixPt Bitwise Operator

Sample Time Inherited by driving block
Scalar Expansion Of inputs

States 0

Vectorized Yes

9-20

FixPt Constant

Purpose

Description

o p
F

FixPt
Constant

Parameters
and Dialog Box

e Cwe | s | s |

Generate a constant value

The FixPt Constant block is a masked S-function that generates a constant
value.

You specify constants with the Constant value parameter. A constant can be
a scalar or a vector.

You specify the output scaling with the Output scaling parameter. Note that
there are two dialog box parameters that control the output scaling: one
associated with an edit field, and one associated with a parameter list. If
Output data type is a generalized fixed-point number such as sfix(16), the
Output scaling parameter list provides you with these scaling modes:

= Use Specified Scaling — This mode uses the slope/bias or radix point-only
scaling specified for the editable Output scaling parameter (for example,
27-10).

= Best Precision: Vector-wise — This mode produces a common radix point

for each element of the Constant value vector based on the best precision for
the largest value of the vector.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

Framd Prant Cormfiand lirech
Lt LR RS TS T T

Pasratar
Laruiend vlal

T
Chuipest claks s and soaling | o by i bl 3
Ouipd cladagps s ed10 wetfl] Basifangis]

TS e S e

Curd nogbey II:I-':Fl—'.'.. YRoTd-Ail R =|
™ Osmnds datn bpal| wth deadss

9-21

FixPt Constant

Conversions

Characteristics

9-22

Constant value

Constant value output by the block. It can be a scalar or vector. All
members of the output vector must be the same data type.

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling via back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Radix point-only or slope/bias scaling. Additionally, if Constant value is
specified as a vector, it can be scaled using the constant vector scaling
modes for maximizing precision. These scaling modes are available only for
generalized fixed-point data types.

Override data type(s) with doubles
If checked, Output data type is overridden with doubles.

The Constant value parameter is converted from a double to the specified
output data type offline using round-to-nearest and saturation. Refer to
“Parameter Conversions” on page 4-26 for more information about parameter
conversions.

Output Port Any data type supported by the blockset

Direct Feedthrough No

Sample Time Inherited

Scalar Expansion No — the output is always the same size as Constant
value

States 0

Vectorized Yes

FixPt Conversion

Purpose

Description
[=

AConvert pr
F

FixFt
Conmversion

Parameters
and Dialog Box

Convert from one Fixed-Point Blockset data type to another

The FixPt Conversion block is a masked S-function that converts from one
Fixed-Point Blockset data type to another.

This block requires that you specify the data type and scaling for the
conversion. If you want to inherit this information from an input signal, you
should use the FixPt Conversion Inherited block.

For a detailed description of all block parameters, refer to “Block Parameters”
on page 9-4. For more information about converting from one Fixed-Point
Blockset data type to another, refer to “Signal Conversions” on page 4-26.

FrawdPoant 1 Frond Pont Carrvmrmaon fmank
Tiovesss! lrons. 1o Fisechrent B 00 b 500 [ppe 10 it
Farmimr

et bk s] icalingy [S s o =

Duked s en Hf1EL Tl Bosifngie]
| w1E]

Cuip seslrg Sops o [Hops Das| s 79
o
I Liock poped sosling se sefoecaling ieel coaelh chunge i
Fiardimagd | Fiwn =
I Esbasis W P Cermrie Dona

[Oiwarachs dish pasfa] wal losibies

F Lo mdranars; snd rossneare

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling via back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling

Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

9-23

FixPt Conversion

Characteristics

9-24

Lock output scaling so autoscaling tool can’'t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums
If checked, minimum and maximum simulation values are logged to the

workspace.
Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion N/A
States 0
Vectorized Yes

FixPt Conversion Inherited

Purpose

Description
oF
vp

TR —
FixPt

Conversion
Inherited

Remarks

Parameters
and Dialog Box

Convert from one Fixed-Point Blockset data type to another, and inherit the
data type and scaling

The FixPt Conversion Inherited block is a masked S-function that forces
dissimilar data types to be the same. The first (top) input is used as the
reference signal and the second (bottom) input is converted to the reference
type by inheriting the data type and scaling information. Either input will be
scalar expanded such that the output has the same width as the widest input.

If you want to specify the data type and scaling when converting from one
Fixed-Point Blockset data type to another, you should use the FixPt
Conversion block.

For a detailed description of all block parameters, refer to “Block Parameters”
on page 9-4. For more information about converting from one Fixed-Point
Blockset data type to another, refer to “Signal Conversions” on page 4-26.

Inheriting the data type and scaling provides these advantages:

= It makes reusing existing models easier.

= It allows you to create new fixed-point models with less effort since you can
avoid the detail of specifying the associated parameters.

Frans Prand 1 FemF ond | v dord C ey oo | rak |
Tioroesel Wit tret kot et P -Poand Pl ot clds dpes o il o
Plalsiradi
Poundizamd | T =
[Ebarbt o et (4 W dbery Dmvsrlies (00
[T Dewsda daia bpsj| vt doaka

I7 Lig e gl roomrm e

[] twed | e |

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

9-25

FixPt Conversion Inherited

Characteristics

9-26

Override data type(s) with doubles
If checked, the inherited data type is overridden with doubles.

Log minimums and maximums
If checked, minimum and maximum simulation values are logged to the

workspace.
Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion Yes
States 0

FixPt Data Type Propagation

Purpose

Description

A Refd

A Ret2

q Prop F
Fi Pt

Data Type
Fropagation

Configure the data type and scaling of the propagated signal based on
information from the reference signals

The FixPt Data Type Propagation block allows you to control the data type and
scaling of signals in your model. You can use this block in conjunction with
fixed-point blocks that have their Specify data type and scaling parameter
configured to Inherit via back propagation.

The block has three inputs: Refl and Ref2 are the reference inputs, while the
Prop input back propagates the data type and scaling information gathered
from the reference inputs. This information is then passed on to other
fixed-point blocks.

The block provides you with many choices for propagating data type and
scaling information. For example, you can:

=« Use the number of bits from the Refl reference signal, or use the number of
bits from widest reference signal.

= Use the range from the Ref2 reference signal, or use the range of the
reference signal with the greatest range.

= Use a hias of zero, regardless of the biases used by the reference signals.
= Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the Propagated
data type parameter list. If the parameter list is configured as Specify via
dialog, then you manually specify the data type via the Propagated data type
edit field. Refer to “Selecting the Data Type” on page 9-4 to learn how to specify
the data type. If the parameter list is configured as Inherit via propagation
rule, then you must use the parameters described in “Inheriting Data Type
Information” on page 9-30.

You specify how scaling information is propagated with the Propagated
scaling parameter list. If the parameter list is configured as Specify via
dialog, then you manually specify the scaling via the Propagated scaling edit
field. Refer to “Selecting the Scaling” on page 9-7 to learn how to specify the
scaling. If the parameter list is configured as Inherit via propagation rule,
then you must use the parameters described in “Inheriting Scaling
Information” on page 9-32.

9-27

FixPt Data Type Propagation

Remarks

9-28

After you use the information from the reference signals, you can apply a
second level of adjustments to the data type and scaling by using individual
multiplicative and additive adjustments. This flexibility has a variety of uses.
For example, if you are targeting a DSP, then you can configure the block so
that the number of bits associated with a MAC (multiply and accumulate)
operation is twice as wide as the input signal, and has a certain number of
guard bits added to it.

The FixPt Data Type Propagation block also provides a mechanism to force the
computed number of bits to a useful value. For example, if you are targeting a
16-bit micro, then the target C compiler is likely to support sizes of only 8 bits,
16 bits, and 32 bits. The block will force these three choices to be used. For
example, suppose the block computes a data type size of 24 bits. Since 24 bits
is not directly usable by the target chip, the signal is forced up to 32 bits, which
is natively supported.

There is also a method for dealing with floating-point reference signals. This
makes it easier to create designs that are easily retargeted from fixed-point
chips to floating-point chips or visa versa.

The FixPt Data Type Propagation block allows you to set up libraries of useful
subsystems that will be properly configured based on the connected signals.
Without this data type propagation process, a subsystem that you use from a
library will almost certainly not work as desired with most integer or
fixed-point signals, and manual intervention to configure the data type and
scaling would be required. This block can eliminate the manual intervention in
many situations.

Precedence Rules

The precedence of the dialog box parameters decreases from top to bottom.
Additionally:

= Double-precision reference inputs have precedence over all other data types.

= Single-precision reference inputs have precedence over integer and
fixed-point data types.

= Multiplicative adjustments are carried out before additive adjustments.

= The number of bits is determined before the precision or positive range is
inherited from the reference inputs.

FixPt Data Type Propagation

Parameters & Prearaimai: PPt Dwid =
and Dialog Box Imﬁﬂf:wd o
ﬁmmn?-.m:m*. it o

Maler

T jlierm cieam i da ize ol e diskeg b haghas resip ' ecedares

I‘iiﬂ-rhh-ﬁ e ﬁm ﬂm.

!I bﬁkﬁ.ﬂ!ﬂﬂ- il bk e
befren wekddeen sharinemic

ﬂﬂ.ﬂ-—i\.h] _-'dh- T G PCEnh - g

inbwried Fan e ilpasra e gt
TIF el e o et bt Pt Bty o il i iy [l o Ll
:rr:d < H Fuiz o3 e craikai o shils
s i s greaed s o aopisl I reore el), e s
Faarwiar
1. Pregagsied eyt |5 reaiy an oang =
1T Pupapmed das ks fa il 6L endTL sl iemgs
[l
2 Propagaind oslng. |Spechy-as dukg e |
21, Puopaganed seing. S o o Bl 6w 278
o

™ Dwiiecks s Bppadi| vl dhonibie

[)| ces | e | |

Propagated data type

Use the parameter list to propagate the data type via the dialog box, or
inherit the data type from the reference signals. Use the edit field to specify
the data type via the dialog box.

Propagated scaling
Use the parameter list to propagate the scaling via the dialog box, or
inherit the scaling from the reference signals. Use the edit field to specify
the scaling via the dialog box.

Override data type(s) with doubles
If checked, the data type is overridden with doubles.

Note The dialog box shown above does not reflect the default state of the
block.

9-29

FixPt Data Type Propagation

Inheriting Data Type Information

If the Propagated data type parameter is Inherit via propagation rule,
then these dialog box parameters are available to you.

1.2 11 ey ifeacrals irpmil i sl Gmil el i | aregie %

13 lefSigras §HInped] olvagre]l j
107 Mursbest-obBiyc B | resiBiokin i) =]
10 Mrahes-h E Wiy iy el

i
F:unnt-du: Bakbirvd nduiran

1. bk ol fitr: Aliwssti il wahes

| TREE]

The If any reference input is single output is parameter list can be single
or double. This parameter makes it easier to create designs that are easily
retargeted from fixed-point chips to floating-point chips or visa versa.

The Is-Signed parameter list specifies the sign of Prop. The parameter values
are described below.

Parameter Description

Value

IsSignedl Prop is a signed data type if Refl is a signed data type.

IsSigned2 Prop is a signed data type if Ref2 is a signed data type.

IsSignedl or Prop is a signed data type if either Refl or Ref2 are signed

IsSigned2 data types.

TRUE Refl and Ref2 are ignored, and Prop is always a signed
data type.

FALSE Refl and Ref2 are ignored, and Prop is always an

unsigned data type.

For example, if the Refl signal is ufix(16), the Ref2 signal is sfix(16), and
the Is-Signed parameter is IsSignedl or IsSigned2, then Prop is forced to be
a signed data type.

9-30

FixPt Data Type Propagation

The Number of bits: base parameter list specifies the number of bits used by
Prop for the base data type. The parameter values are described below.

Parameter Value Description

NumBitsl The number of bits for Prop is given by the number
of bits for Refl.

NumBits2 The number of bits for Prop is given by the number
of bits for Ref2.

max([NumBitsl The number of bits for Prop is given by the

NumBits2]) reference signal with largest number of bits.

min([NumBitsl The number of bits for Prop is given by the

NumBits2]) reference signal with smallest number of bits.

NumBitsl+NumBits2 The number of bits for Prop is given by the sum of
the reference signal bits.

Refer to “Targeting an Embedded Processor” in Chapter 7 for more information
about the base data type.

The Number of bits: Multiplicative adjustment parameter allows you to
adjust the number of bits used by Prop by including a multiplicative
adjustment. For example, suppose you want to guarantee that the number of
bits associated with a multiply and accumulate (MAC) operation is twice as

wide as the input signal. To do this, you configure this parameter to the value 2.

The Number of bits: Additive adjustment parameter allows you to adjust the
number of bits used by Prop by including an additive adjustment. For example,
if you are performing multiple additions during a MAC operation, the result
may overflow. To prevent overflow, you can associate guard bits with the
propagated data type. To associate four guard bits, you specify the value 4.

The Number of bits: Allowable final values parameter allows you to force the
computed number of bits used by Prop to a useful value. For example, if you are
targeting a processor that supports only 8, 16, and 32 bits, then you configure
this parameter to [8,16,32]. The block always propagates the smallest
specified value that fits. If you want to allow all fixed-point data types, you
would specify the value 1:128.

9-31

FixPt Data Type Propagation

9-32

Inheriting Scaling Information

If the Propagated scaling parameter is Inherit via propagation rule, then
these dialog box parameters are available to you.

201 Blope Jems Il‘\-‘-lul.'\ﬂ-l Slopal]
21.2 Slope Mgl sl sl e

-

21 3 Tps Addies sdptimen

227 N Bue I.'-:'l

237 W Eulipicsiss aolainesni

223 Bum dddiben acherireent

o

The Slope: Base parameter list specifies the slope used by Prop for the base
data type. The parameter values are described below.

Parameter Value

Description

Slopel
Slope2

max([Slopel
Slope2])

min([Slopel
Slope2])

Slopel*Slope2

Slopel/Slope2

PosRangel
PosRange2

max([PosRangel
PosRangeZ?])

The slope of Prop is given by the slope of Refl.
The slope of Prop is given by the slope of Ref2.

The slope of Prop is given by the maximum slope
of the reference signals.

The slope of Prop is given by the minimum slope
of the reference signals.

The slope of Prop is given by the product of the
reference signal slopes.

The slope of Prop is given by the ratio of the Refl
slope to the Ref2 slope.

The range of Prop is given by the range of Refl.
The range of Prop is given by the range of Ref2.

The range of Prop is given by the maximum
range of the reference signals.

FixPt Data Type Propagation

Parameter Value Description
min([PosRangel The range of Prop is given by the minimum range
PosRange2]) of the reference signals.

PosRangel*PosRange2 The range of Prop is given by the product of the
reference signal ranges.

PosRangel/PosRange2 The range of Prop is given by the ratio of the Refl
range to the Ref2 range.

You control the precision of Prop with Slopel and Slope2, and you control the
range of Prop with PosRangel and PosRange2. Additionally, PosRangel and
PosRange2 are one bit higher than the maximum positive range of the
associated reference signal.

The Slope: Multiplicative adjustment parameter allows you to adjust the
slope used by Prop by including a multiplicative adjustment. For example, if
you want 3 bits of additional precision (with a corresponding decrease in
range), the multiplicative adjustment is 2/-3.

The Slope: Additive adjustment parameter allows you to adjust the slope
used by Prop by including an additive adjustment. An additive slope
adjustment is often not needed. The most likely use is to set the multiplicative
adjustment to 0, and set the additive adjustment to force the final slope to a
specified value.

The Bias: Base parameter list specifies the bias used by Prop for the base data
type. The parameter values are described below.

Parameter Value Description
Biasl The bias of Prop is given by the bias of Ref1l.
Bias2 The bias of Prop is given by the bias of Ref2.

max([Biasl Bias2]) The bias of Prop is given by the maximum bias of
the reference signals.

min([Biasl Bias2]) The bias of Prop is given by the minimum bias of
the reference signals.

9-33

FixPt Data Type Propagation

Characteristics

9-34

Parameter Value Description

Biasl*Bias2 The bias of Prop is given by the product of the
reference signal biases.

Biasl/Bias2 The bias of Prop is given by the ratio of the Refl
bias to the Ref2 bias.

Biasl+Bias2 The bias of Prop is given by the sum of the
reference biases.

Biasl-Bias2 The bias of Prop is given by the difference of the
reference biases.

The Bias: Multiplicative adjustment parameter allows you to adjust the bias
used by Prop by including a multiplicative adjustment.

The Bias: Additive adjustment parameter allows you to adjust the bias used
by Prop by including an additive adjustment.

If you want to guarantee that the bias associated with Prop is zero, you should
configure both the multiplicative adjustment and the additive adjustment to 0.

Input Ports Any data type supported by the blockset
Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion Yes

States 0

FixPt Dead Zone

Purpose
Description

>7-|—£>
F

FixPt
Dezd Zonz

Parameters
and Dialog Box

Example

Provide a region of zero output

The FixPt Dead Zone block is a masked S-function that generates zero output
within a specified region, called its dead zone. The lower limit of the dead zone
is specified with the Start of dead zone parameter, while the upper limit of the
dead zone is specified with the End of dead zone parameter. The block output
depends on the input and dead zone:

= If the input is within the dead zone (greater than the lower limit and less
than the upper limit), the output is zero.

= If the input is greater than or equal to the upper limit, the output is the input
minus the upper limit.

= If the input is less than or equal to the lower limit, the output is the input
minus the lower limit.

Froard Prand 0w Zores [renk |
Thilpan 700 Fod iguis ity ceascpore: (Wt el Jgra by ediless g
St E v itk ndies inimida of the desdne:

Foapratai
St of chowed! sor

I.
Esd ol e pore
I

[Eeiiaiinhes) i 0 et il e im0

| . l:-ml| _H-:| |

Start of dead zone
The lower limit of the dead zone

End of dead zone
The upper limit of the dead zone

Saturate to max or min when overflows occur

If checked, fixed-point overflows saturate. Otherwise, they wrap.

Consider the model shown below, which compares a fixed-point signal and the
output generated by the FixPt Dead Zone block. The signal source is a sine
wave with unit amplitude.

9-35

FixPt Dead Zone

The Start of dead zone parameter is configured to -0.5 and the End of dead
zone parameter is configured to 0.5.

ar

Characteristics

9-36

FixPt
Dead Zone F
\' Out [—P]
\V/ P In V|
‘ F] FixPt Scope
Sine Wave FixPt Gateway Out
Gateway In

The resulting output is shown below.

Original fixed-point signal

FixPt Dead Zone signal

Input Ports

Output Port

Direct Feedthrough
Sample Time
Scalar Expansion
States

Vectorized

Any data type supported by the blockset
Any data type supported by the blockset
Yes

Inherited

Yes, of parameters

0

Yes

FixPt Dot Product

Purpose

Description

A

3 =
FizPt
Dot
Froduct

Parameters
and Dialog Box

Generate the dot product

The FixPt Dot Product block is a masked S-function that generates the dot
product of its two input vectors. The scalar output, y, is equal to the MATLAB

operation
y = sum(conj(ul).* u2)

where ul and u2 represent the inputs. If both inputs are vectors, they must be
the same length.

For a detailed description of all block parameters, refer to “Block Parameters
on page 9-4. For more information about converting from one Fixed-Point
Blockset data type to another, refer to “Signal Conversions” on page 4-26.

FschFant Quod Priogis [nask |

I [dat] preches
¥ = s onu| Nl

Fuwrsien
Duirad daniyre e soaing. |ipecip =a dwog =]

w S WENEL LanlE] sl gk
(LS

DOuipad readng: Slopa oo |Gl Bis| & 14

I.' 1L

I Leach. ouenat yomlre v pabirreaing ool can'1 changa @
Fiourmd wvamd. [Pl =
I detasts ko wam o rn vebem aveiflowes acou

17 e chady s 1) el dcn bl

= Log rereresrs wsd mucarsn

|ur.|-:.m-|uq.| |

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

9-37

FixPt Dot Product

Characteristics

9-38

Lock output scaling so autoscaling tool can’'t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums
If checked, minimum and maximum simulation values are logged to the

workspace.
Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion Yes
States 0
Vectorized Yes

FixPt Dynamic Look-Up Table

Purpose

Description

7
A
7

A

wdat vy
ydat =

FixPt
Oynamic
Look-Up

Tabla

Approximate a one-dimensional function using a selected look-up method and
a dynamically specified table

The FixPt Dynamic Look-Up Table block is a masked S-function that computes
an approximation to some function y=F(x) given x, y data vectors. The look-up
method can use interpolation, extrapolation, or the original values of the input.

The x data vector must be strictly monotonically increasing after conversion to
the input’s fixed-point data type. Note that due to quantization, the x data
vector may be strictly monotonic in doubles format, but not so after conversion
to a fixed-point data type.

Note Unlike the Fixpt Look-Up Table block, the FixPt Dynamic Look-Up
Table block allows you to change the table data without stopping the
simulation. For example, you may want to automatically incorporate new
table data if the physical system you are simulating changes.

You define the look-up table by inputting the x and y table data to the block as
1-by-n vectors. To help reduce the ROM used by the code generated for this
block, you can use different data types for the x table data and the y table data.
However, these restrictions apply:

= The y table data and the output vector must have the same sign, the same
bias, and the same fractional slope.

= The x table data and the x data vector must have the same sign, the same
bias, and the same fractional slope. Additionally, the precision and range for
the x data vector must greater than or equal to the precision and range for
the x table data.

The block generates output based on the input values using one of these
methods selected from the Look-up method parameter list:

= Interpolation-Extrapolation — This is the default method; it performs
linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding
element in the output vector.

9-39

FixPt Dynamic Look-Up Table

9-40

- If no value matches the block’s input, then the block performs linear
interpolation between the two appropriate elements of the table to
determine an output value. If the block input is less than the first or
greater than the last input vector element, then the block extrapolates
using the first two or last two points.

< Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the end
points of the input vector. Instead, the end-point values are used.

= Use Input Nearest — This method does not interpolate or extrapolate.
Instead, the element in x nearest the current input is found. The
corresponding element in y is then used as the output.

= Use Input Below— This method does not interpolate or extrapolate. Instead,
the element in x nearest and below the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x below the current input, then the nearest element is found.

= Use Input Above — This method does not interpolate or extrapolate. Instead,
the element in x nearest and above the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x above the current input, then the nearest element is found.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

FixPt Dynamic Look-Up Table

Parameters e T - |

and Dlalog Box FomdPoand Lo U p T ok Dbramese: sk §
Appacmna e & e Fmotioe g 4 sk ook -0

Famarekl
Lok UpMathint | srodannnd iss Frd'vadas) =]
Dt chada s mnd cslingy | Somm dy bk =

Duped clals fges #a 1kf16] wrwfll] Rastlrepis]
]

Ouiped soging Siope o [Slopw Bas] = 378

T

M Lok outpal ooslng 12 sefoocalng todl cae' changm §
Frardimayd | "=z =
[T Ecsbarmin o reas om0 wéen cvarboss cooar

T Dby sy bppada] vt dosibies

F Leg rurerurn snd musrears

|;T;| I:-ndl lisip

Look-up method
Look-up method.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling

Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

9-41

FixPt Dynamic Look-Up Table

Conversions

Example

Characteristics

9-42

Override with data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The table data is converted from doubles to the x data type. This conversion is
performed offline using round-to-nearest and saturation. Refer to “Parameter
Conversions” on page 4-26 for more information about parameter conversions.

For an example that illustrates the look-up methods supported by this block,
see the example included in the FixPt Look-Up Table block reference pages.
Input Port(s) Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion No

States 0

Vectorized Yes

FixPt FIR

Purpose

Description

3 il b
E

FixFt
FIR

Implement a fixed-point finite impulse response (FIR) filter

The FixPt FIR block is a masked S-function that samples and holds the N most
recent inputs, multiplies each input by a specified value (its FIR coefficient),
and stacks them in a vector. This block supports both single-input/
single-output (SISO) and single-input/multi-output (SIMO) modes.

For the SISO mode, the FIR coefficients parameter is specified as a row
vector. For the SIMO mode, the FIR coefficients are specified as a matrix
where each row corresponds to a separate output.

The Initial condition parameter provides the initial values for all times
preceding the start time in the FIR realization. You specify the time interval
between samples with the Sample time parameter.

You specify the scaling for the FIR coefficients with the Parameter scaling
parameter. Note that there are two dialog box parameters that control the FIR
coefficient scaling: one associated with an edit field, and one associated with a
parameter list. If Parameter data type is a generalized fixed-point number
such as sfix(16), the Parameter scaling list provides you with these scaling
modes:

= Use Specified Scaling — This mode uses the slope/bias or radix point-only
scaling specified for the editable Parameter scaling parameter (for
example, 27°-10).

= Best Precision: Element-wise — This mode produces radix points such
that the precision is maximized for each element of the FIR coefficients
parameter.

= Best Precision: Row-wise — This mode produces a common radix point for
each element of the FIR coefficients row based on the best precision for the
largest value of that row.

= Best Precision: Column-wise — This mode produces a common radix point
for each element of the FIR coefficients column based on the best precision
for the largest value of that column.

= Best Precision: Matrix-wise — This mode produces a common radix point
for each element of the FIR coefficients matrix based on the best precision
for the largest value of the matrix.

9-43

FixPt FIR

If the FIR coefficients are specified as a row vector, then scaling element-wise
and column-wise produce the same result, while scaling matrix-wise and
row-wise produce the same result.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

Parameters
and Dialog BoX e P ik
Funplecasd S Firdee inepn s e FTR | Ml

Faaraber
FIFl coaflcenii-

jaTotioraTong

Il cnnciiecnny

o

Sl e

g

Faramrate caba lppr e i 16 LondfE), Boal'argie]
femi 16)

B
Fatanind g II.-I-.'I':-unm Hits s ﬂ
O ks s sl |5 kb = |
Cuped dala e mn tied1E]. wrefl] Baetfangie]

Jeminti

Duigest ooy Sl & [Elops Bnt| em. 780

i

™ Loeh infpdl icsilings v dnioecabng bsal ceel changed
Rewrdizamd | s =
T bl i a4 o i el prow

7 Dwwncs datm iy it doutis,

F Log reweurn ared missrs es

FIR coefficients
FIR coefficients. One row per output.

Initial condition
Initial values for all times preceding the start time.

Sample time
Sample time.

9-44

FixPt FIR

Conversions
and Operations

Parameter data type
Any data type supported by the Fixed-Point Blockset.

Parameter scaling

Radix point-only or slope/bias scaling. Additionally, the FIR coefficients
vector or matrix can be scaled using the constant vector or constant matrix
scaling modes for maximizing precision. These scaling modes are available
only for generalized fixed-point data types.

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling

Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’'t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The FIR coefficients parameter is converted from doubles to the specified data

type offline using round-to-nearest and saturation.The Initial condition
parameter is converted from doubles to the input data type offline using

9-45

FixPt FIR

round-to-nearest and saturation. Refer to “Parameter Conversions” on page
4-26 for more information about parameter conversions.

The FixPt FIR block first multiplies its inputs by the FIR coefficients
parameter, converts those results to the output data type using the specified
rounding and overflow modes, and then carries out the summation. Refer to
“Rules for Arithmetic Operations” on page 4-29 for more information about the
rules this block adheres to when performing operations.

Example Suppose you want to configure this block for two outputs (SIMO mode) where
the first output is given by

yi(k) = a; Cu(k) + by Cu(k=1) + ¢, Cu(k-2)
the second output is given by
yo(K) = a, [u(k) + b, Cu(k-1)

and the initial values of u(k — 1) and u(k — 2) are given by icl and ic2,
respectively. To configure the FixPt FIR block for this situation, you must
specify the FIR coefficient parameter as [al bl cl; a2 b2 c2] wherec2 =
0, and the Initial condition parameter as [icl ic2].

Characteristics Input Ports Any data type supported by the blockset — it must be
a scalar
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Specified as a parameter
Scalar Expansion Of initial conditions
States One less than the columns in the FIR coefficients

vector or matrix

Vectorized No

9-46

FixPt Gain

Purpose

Description
v

1 In p

E

FixPt
Gateway In

Multiply the input by a constant

The FixPt Gain block is a masked S-function that multiplies the input by a
constant value (referred to as the gain). To multiply the input by a constant
matrix, use the FixPt Matrix Gain block.

You specify the gain with the Gain value parameter. The gain can be a scalar
or a vector. You specify the scaling for the gain with the Parameter scaling
parameter. Note that there are two dialog box parameters that control the gain
scaling: one associated with an edit field, and one associated with a parameter
list. If Parameter data type is a generalized fixed-point number such as
sTix(16), the Parameter scaling list provides you with these scaling modes:

= Use Specified Scaling — This mode uses the slope/bias or radix point-only
scaling specified for the editable Parameter scaling parameter (for
example, 2°-10).

< Best Precision: Element-wise — This mode produces radix points such
that the precision is maximized for each element of the Gain value vector.

= Best Precision: Vector-wise — This mode produces a common radix point
for each element of the Gain value vector based on the best precision for the
largest value of the vector.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

9-47

FixPt Gain

Parameters
and Dialog Box

9-48

FlasHPodd G ik |
Phulteyfha g S & zariand faan)

Py piid B
Ban wukm

[io
Pawests daly how em aleTEL i MoaTringe]

Paisesis 1o g Iﬁr'lp\"-':-\.r W v pme

= |
Datpuil s bppe il fislng. | sy = chaag =

Diatpn ol g . i BEL LllFL Al varie'|
uiedi G

Iﬂ:&j&ﬁ!hl = T3
10

T Lok sl rz g to sz resing ool zan changa @
e e =l
T Ssbhaste iz wam o man v arestioss aco

I Chvm ke shala e o) malhy diniie

I |y e] W

o e SR R

Gain value
Specify as a vector or scalar.

Parameter data type
Any data type supported by the Fixed-Point Blockset.

Parameter scaling
Radix point-only or slope/bias scaling. Additionally, if Gain value is
specified as a vector, it can be scaled using the constant vector scaling
modes for maximizing precision. These scaling modes are available only for
generalized fixed-point data types.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

FixPt Gain

Conversions
and Operations

Characteristics

Output scaling

Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’'t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles

If checked, the Parameter data type and Output data type values are
overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The Gain value parameter is converted from doubles to the specified data type
offline using round-to-nearest and saturation. Refer to “Parameter
Conversions” on page 4-26 for more information about parameter conversions.

The FixPt Gain block first multiples its inputs by the Gain value parameter,
and then converts those results to the output data type using the specified
rounding and overflow modes. Refer to “Rules for Arithmetic Operations” on
page 4-29 for more information about the rules this block adheres to when
performing operations.

Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion Of inputs and gain

9-49

FixPt Gain

States 0

Vectorized Yes

9-50

FixPt Gateway In

Purpose

Description
v

a In p

E

FixFt
Gataway In

Parameters
and Dialog Box

Convert a Simulink data type to a Fixed-Point Blockset data type

The FixPt Gateway In block is a masked S-function that converts a built-in
Simulink data type to a Fixed-Point Blockset data type.

The Treat input as parameter list controls how the input is processed. The
possible values are Real World Value and Stored Integer. In terms of the
general encoding scheme described in “Scaling” on page 3-5, Real World Value
treats the input as V = SQ + B where S is the slope and B is the bias. V is used
to produce Q = (V - B)/S, which is stored in the output. Stored Integer treats
the input as a stored integer, Q. The value of Q is directly used to produce the
output. In this mode, the input and output are identical except that the input
is a raw integer lacking proper scaling information. In both modes, the output
data type includes the scaling information needed to correctly interpret the

signal as a real-world value.

For a detailed description of all other block parameters, refer to “Block

Parameters” on page 9-4.

Frord Prant. (i sy in [raink |

Tioarwesed ot i i i ol o0l s b B Fiesd et Blocd ied o
e

Faaret
Traid gt e || FHen v ki =|
i dais s snd walng [‘:w_i_.--:im—j
Duped clals fges #a 1kf16] wrwfll] Rastlrepis]
BTyl
Qs pogbrg Shope o [Slopw Bae| e 3789
T
M Lok outpal ooslng 12 sefoocalng todl cae' changm §
Fourd kg | Fio =
[T Ecsbarmin o reas om0 wéen cvarboss cooar
T Dby sy bppada] vt dosibies

F Leg rurerurn snd musrears

|: [T :| c-.:u| lisip

Treat input as

Treat the input as a real-world value or as an integer.

9-51

FixPt Gateway In

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’'t change it
If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, Output data type is overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

9-52

FixPt Gateway In

Example

This example uses the FixPt Gateway In block to help you understand the
difference between a real-world value and a stored integer. Consider the two
fixed-point models shown below.

15 |double > v In sfix8_En2 }FOut double >
F v _
Constant FixPt FixPt Display
Gateway In Gateway Out
F doubl
L pf out |double
o .
FixPt Displayl
Gateway Out3
15 double > I In sfix8 _En2 }FOut double > 3.75
Constant2 F v i
onstan FixPt FixPt Display6
Gateway In2 Gateway Out6
(=
L 3 our |doupe)]
X .
FixPt Display7
Gateway Out7

In the top model, the FixPt Gateway In block treats the input as a real-world
value, and maps that value to an 8-bit signed generalized fixed-point data type
with a scaling of 272. If the value is output from the FixPt Gateway Out block
as a real-world value, then the scaling and data type information is retained
and the output value is 001111.00, or 15. If the value is output from the FixPt
Gateway Out block as a stored integer, then the scaling and data type
information is not retained and the stored integer is interpreted as 00111100,
or 60.

In the bottom model, the The FixPt Gateway In block treats the input as a
stored integer, and the data type and scaling information is not applied. If the
value is output from the FixPt Gateway Out block as a real-world value, then
the scaling and data type information is applied to the stored integer, and the
output value is 000011.11, or 3.75. If the value is output from the FixPt

9-53

FixPt Gateway In

9-54

Gateway Out block as a stored integer, then you get back the original input
value of 15.

The model shown below illustrates how a summation operation applies to
real-world values and stored integers, and how scaling information is dealt
with in generated code.

|3
| ou [double >
v .
FixPt Display9
Gateway Out2
|E doub
»| out ouble > 0.9375
v Display10
FixPt Ispiay
Gateway Out5
i+
double > 4.688
P+
Display11
I
. intl6 sfix16_En2 '
int16(15) > '”F »| sfix16_Ens ‘FOut double o 2.688
Lad Lad
Constant3 FixPL < o v -
X - - Display12
Gateway In3 FixPt FixPt
Sum Gateway Outl
_—
. I . F
int16(1s) {016 gl |y L sf6 Ene | out [double
F X -
Constantl FixPt FixPt Display13
Gateway In1 Gateway Out4

Note that the summation operation produces the correct result when the FixPt
Gateway Out block outputs a real-world value. This is because the specified
scaling information is applied to the stored integer value. However, when the
FixPt Gateway Out block outputs a stored integer value, then the summation
operation produces an unexpected result due to the absence of scaling
information.

If you generate code for the above model, then the code captures the
appropriate scaling information. The code for the FixPt Sum block is shown
below. The inputs to this block are tagged with the specified scaling

FixPt Gateway In

information so that the necessary shifts are performed for the summation
operation.

/* Fixed-Point Sum Block: <Root>/FixPt Sum

*

* y= u0 +ul

*

* InputO0 Data Type: Fixed Point S16 2n-2
* Inputl Data Type: Fixed Point S16 2n-4
* QutputO Data Type: Fixed Point S16 2n~-5
*

* Round Mode: Floor

* Saturation Mode: Wrap

*

*/

sum = ((inl) << 3);
sum += ((in2) << 1);

Characteristics Input Port Any built-in Simulink data type
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion No
States 0
Vectorized Yes

9-55

FixPt Gateway In Inherited

Purpose

Description
AV
yp

v B
FixPt

Gateway In
Inharitad

Remarks

Parameters
and Dialog Box

9-56

Convert a Simulink data type to a Fixed-Point Blockset data type, and inherit
the data type and scaling

The FixPt Gateway In Inherited block is a masked S-function that converts a
built-in Simulink data type to a Fixed-Point Blockset data type.

The block requires two inputs. The first (top) input provides the data type and
scaling information. The second (bottom) input passes through to the output,
and inherits the data type and scaling of the first input. If you want to explicitly
specify the output data type and scaling, use the FixPt Gateway In block.

The Treat input as parameter list controls how the input is processed. The
possible values are Real World Value and Stored Integer. In terms of the
general encoding scheme described in “Scaling” on page 3-5, Real World Value
treats the input as V = SQ + B where S is the slope and B is the bias. Stored
Integer treats the input as a stored integer, Q. For more information about
this parameter list, refer to the FixPt Gateway In block.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

Inheriting the data type and scaling provides these advantages:

= |t makes reusing existing models easier.

= It allows you to create new fixed-point models with less effort since you can
avoid the detail of specifying the associated parameters.

(T T T L I - |
Froaws: Prand 1 sty | nbarded rark
el Woce e Sw i Ol e cdils e ki i Flesd ot loci ied g
Fo

Maarak]
Tronill it i || el] ki =|
RMourdioand | =]

™ b By i £ v i povmeonan G0
[Dommcie dabs ippaje] weth doades

F Log reweun s messen

™) come Hee

FixPt Gateway In Inherited

Characteristics

Treat input as
Treat the input as a real-world value or as an integer.

Round toward
Rounding mode for fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the output data type is overridden with doubles.

Log minimums and maximums
If checked, minimum and maximum simulation values are logged to the

workspace.
Input Port Any built-in Simulink data type
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion No
States 0
Vectorized Yes

9-57

FixPt Gateway Out

Purpose

Description

E

Ot

v

FixF1

Catewzy Cut

Remarks

9-58

Convert a Fixed-Point Blockset data type to a Simulink data type

The FixPt Gateway Out block is a masked S-function that converts any data
type supported by the Fixed-Point Blockset to a Simulink data type.

The Treat output as parameter list controls how the output is treated. The
possible values are Real World Value and Stored Integer. In terms of the
general encoding scheme described in “Scaling” on page 3-5, Real World Value
treats the output as V = SQ + B where S is the slope and B is the bias. Stored
Integer treats the output as a stored integer, Q. Outputting numbers as
Stored Integer may be useful in these circumstances:

= If you are generating code for a fixed-point processor, the resulting code only
uses integers and does not use floating-point operations.

= |f you want to partition your model based on hardware characteristics. For
example, part of your model may involve simulating hardware that produces
integers as output.

Note If the fixed-point signal is a true integer such as sint(8) or uint(16),
then Real World Value and Stored Integer produce identical output values.

For more information about this parameter list, refer to the FixPt Gateway In
block description.

The Output data type parameter list specifies the Simulink data type to use
for the output. All built-in data types are supported as well as the boolean data
type. auto indicates the Fixed-Point Blockset data type is converted to
whatever data type Simulink back propagates.

MATLAB'’s built-in integer data types are limited to 32 bits. If you want to
output fixed-point numbers that range between 33 and 53 bits without loss of
precision or range, you should use the FixPt Gateway Out block to store the
value inside a double.

If you want to output fixed-point numbers with more than 53 bits without loss
of precision or range, then you must break the number into pieces using the
FixPt Gain block, and then output the pieces using the FixPt Gateway Out
block.

FixPt Gateway Out

For example, suppose the original signal is an unsigned 128-bit value with
default scaling. You can break this signal into four pieces using four parallel
FixPt Gain blocks configured with the gain and output settings shown below.

Output Data Type

Piece Gain
1 270

2 2n-32
3 27-64
4 27-96

uint(32) — Least significant 32 bits
uint(32)
uint(32)

uint(32) — Most significant 32 bits

For each FixPt Gain block, you must also configure the Round toward
parameter to Floor, and the Saturate to max or min when overflows occur
check box must be unchecked.

Parameters Y A - |

and Dialog Box et st G ki

ol s iy Fimtsd-Prand Bl ot (0o 1 4 Birwibec budll-n crsy

Fo
Poigradai

Torasd el a1 ||'-: ¥ il g

Duisd dada o | ki

o

Treat output as

Treat the output as a real-world value or as an integer.

Output data type

Any built-in data type supported by Simulink.

Characteristics Input Ports
Output Port

Direct Feedthrough

Sample Time

Any data type supported by the blockset
Any built-in Simulink data type

Yes

Inherited

9-59

FixPt Gateway Out

Scalar Expansion N/A
States 0
Vectorized Yes

9-60

FixPt Integer Delay

Purpose

Description

-4
I p

FixPt
Intagar Delay

Parameters
and Dialog Box

Conversions

Characteristics

Delay a signal N sample periods

The FixPt Integer Delay block delays its input by N sample periods.

The block accepts one input and generates one output, both of which can be
scalar or vector. If the input is a vector, all elements of the vector are delayed
by the same sample period.

[Block Pargersess Folt biwgm Dol _____________ 0
Frart Prand intwger Doy jraard s
Tl 5 bagredl H e pindy
Plalsiraid i
(BT LR
1]
S rmpls e
[
Foumnbar af dela
IJ.
g o | we | o |

Initial condition
The initial output of the simulation.

Sample time
Sample time.

Number of delays
The number of periods to delay the input signal.

The Initial condition parameter is converted from a double to the input data
type offline using round-to-nearest and saturation.

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Sample Time Discrete or continuous

9-61

FixPt Integer Delay

Scalar Expansion Of input or initial conditions

States As many as there are outputs multiplied by the
number of delays

Vectorized Yes

9-62

FixPt Logical Operator

P

urpose

Description

A
A

AND P
E

FixFt
Logical
Cparator

Perform the specified logical operation on the inputs

The FixPt Logical Operation block is a masked S-function that performs the
specified logical operation on its inputs. An input value is TRUE (1) if it is
nonzero and FALSE (0) if it is zero.

You select the Boolean operation connecting the inputs with the Operator
parameter list. The supported operations are given below.

Operation Description

AND TRUE if all inputs are TRUE

OR TRUE if at least one input is TRUE

NAND TRUE if at least one input is FALSE

NOR TRUE when no inputs are TRUE

XOR TRUE if an odd number of inputs are TRUE
NOT TRUE if the input is FALSE

The number of input ports is specified with the Number of input ports
parameter. The output type is specified with the Logical output data type
parameter. An output value is 1 if TRUE and 0 if FALSE.

Note The output data type should represent zero exactly. Data types that
satisfy this condition include signed and unsigned integers, and any
floating-point data type.

The size of the output depends on the number of inputs, their vector size, and
the selected operator:

= The NOT operator accepts only one input, which can be a scalar or a vector.
If the input is a vector, the output is a vector of the same size containing the
logical complements of the input vector elements.

9-63

FixPt Logical Operator

Parameters
and Dialog Box

Characteristics

9-64

= For a single vector input, the block applies the operation (except the NOT
operator) to all elements of the vector. The output is always a scalar.

= For two or more inputs, the block performs the operation between all of the
inputs. If the inputs are vectors, the operation is performed between
corresponding elements of the vectors to produce a vector output.

When configured as a multi-input XOR gate, this block performs an addition-
modulo-two operation as mandated by the IEEE Standard for Logic Elements.

FradPond Loge sl (ipersios freas |

Pednan e apecile] lngesl anermion o ihe npais, T he ouige dath
e hainikl] e e it

FmarakE
[=
Feumnibar 3 wpad pari
E
Logicsl ol dstaipes. e L] w31
frraFl

fig Cancal ts

Operator
Logical operator used to connect the inputs.

Number of input ports
Number of inputs.

Logical output data type
Output data type. You should only use data types that represent zero

exactly.
Input Port(s) Any data type supported by the blockset
Output Port Any data type supported by the blockset that can

exactly represent zero
Direct Feedthrough Yes
Sample Time Inherited

Scalar Expansion Of inputs

FixPt Logical Operator

States 0

Vectorized Yes

9-65

FixPt Look-Up Table

Purpose Approximate a one-dimensional function using a selected look-up method
Description The FixPt Look-Up Table block is a masked S-function that computes an
approximation to some function y=F(x) given x, y data vectors. The look-up
N jC S method can use interpolation, extrapolation, or the original values of the input.
E The length of the x and y data vectors provided to this block must match. Also,
] FiiF’JJ the x data vector must be strictly monotonically increasing after conversion to
ook-Up

the input’s fixed-point data type. Note that due to quantization, the x data
vector may be strictly monotonic in doubles format, but not so after conversion
to a fixed-point data type. To map two inputs to an output, use the FixPt
Look-Up Table (2D) block.

Table

You define the table by specifying the Vector of input values parameter as a
1-by-n vector and the Vector of output values parameter as a 1-by-n vector.
The block generates output based on the input values using one of these
methods selected from the Method parameter list:

= Interpolation-Extrapolation — This is the default method; it performs
linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding
element in the output vector.

- If no value matches the block’s input, then the block performs linear
interpolation between the two appropriate elements of the table to
determine an output value. If the block input is less than the first or
greater than the last input vector element, then the block extrapolates
using the first two or last two points.

< Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the end
points of the input vector. Instead, the end-point values are used.

= Use Input Nearest — This method does not interpolate or extrapolate.
Instead, the element in x nearest the current input is found. The
corresponding element in y is then used as the output.

= Use Input Below— This method does not interpolate or extrapolate. Instead,
the element in x nearest and below the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x below the current input, then the nearest element is found.

9-66

FixPt Look-Up Table

Remarks

Parameters
and Dialog Box

= Use Input Above — This method does not interpolate or extrapolate. Instead,
the element in x nearest and above the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x above the current input, then the nearest element is found.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

To avoid parameter saturation errors, the automatic scaling script autofixexp
employs a special rule for the FixPt Look-Up Table block. autofixexp modifies
the scaling by using the output look-up values in addition to the logged
minimum and maximum simulation values. This prevents the data from being
saturated to different values. The look-up values are given by the Vector of
output values parameter (the YDataPoints variable).

FowdPoand Liooi U p T bk ek
Appacmna e & el i g 4 sk ook -0
b

Faaret
Wichid af e wles
jat

Yachoe o ot v
Jranhir= k|

Lok Lo b o Iu-n-:,'\.onl o= o o= ﬂ

e clska fpes 8 scalingy | Epecihe s chadog =]
Duidgeit cdabs ey e lal1E] sl Bowifargpe]

I...::.

Cuipd azaing S o [Hopa Ban| w378

]

[T Lok ol oosbng sa ssfoscalng feal cant changs i
Fisrdipasd | 'ox =
[T Gsbarsds o e oo wien pewrbos ooor

T Demrnds dats bppoti | wib doulier

F Log minmnis and masnera

] Co | s | s |

Vector of input values

The vector of input values must be the same size as the output vector and
strictly monotonically increasing.

9-67

FixPt Look-Up Table

Conversions

9-68

Vector of output values
The vector of output values must be the same size as the input vector.

Look-up method
Look-up method.

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The Vector of input values parameter is converted from doubles to the input
data type. The Vector of output values parameter is converted from doubles
to the output data type. Both conversion are performed offline using
round-to-nearest and saturation. Refer to “Parameter Conversions” on page
4-26 for more information about parameter conversions.

FixPt Look-Up Table

Example

Characteristics

Suppose the FixPt Look-Up Table block is configured to use a vector of input
values given by [-5:5], and a vector of output values given by sinh([-5:5]).
Using the model shown below,

v F
In —p7 ——->p Out ——Pp»
Constant F F Vv -
FixPt FixPt Look-Up FixPt Display
Gateway In Table Gateway Out
Double Double
the following results were generated.

Look-Up Method Input Output Comment
Interpolation- 1.4 2.153 N/A
Extrapolation

5.2 83.59 N/A
Interpolation- 1.4 2.153 N/A
Use End Values

5.2 74.2 The value for sinh(5.0) was used.
Use Input 1.4 1.175 The value for sinh(1.0) was used.
Nearest
Use Input 1.4 1.175 The value for sinh(1.0) was used.
Below

-5.2 -74.2 The value for sinh(-5.0) was used.
Use Input 1.4 3.627 The value for sinh(2.0) was used.
Above

5.2 74.2 The value for sinh(5.0) was used.

Input Port(s)
Output Port

Direct Feedthrough
Sample Time

Scalar Expansion

Any data type supported by the blockset

Any data type supported by the blockset

Yes

Inherited

No

9-69

FixPt Look-Up Table

States 0

Vectorized Yes

9-70

FixPt Look-Up Table (2D)

Purpose

Description

A

>
A E
FixPt

Look-Up
Table (2-0v)

Approximate a two-dimensional function using a selected look-up method

The FixPt Look-Up Table (2-D) block is a masked S-function that computes an
approximation to some function z=F(x,y) given x, y, z data points. The look-up
method can use interpolation, extrapolation, or the original values of the
inputs. Also, the x and y data vectors must be strictly monotonically increasing
as described in the FixPt Look-Up Table reference pages.

The Row parameter is a 1-by-m vector of x data points, the Col parameter is a
1-by-n vector of y data points, and the Table parameter is an m-by-n matrix of
z data points. Both the row and column vectors must be strictly monotonically
increasing. The block generates output based on the input values using one of
these methods selected from the Method parameter list:

< Interpolation-Extrapolation — This is the default method; it performs
linear interpolation and extrapolation of the inputs.

- If the inputs match row and column parameter values, the output is the
value at the intersection of the row and column.

- If the inputs do not match row and column parameter values, then the
block generates output by linearly interpolating between the appropriate
row and column values. If either or both block inputs are less than the first
or greater than the last row or column values, the block extrapolates from
the first two or last two points.

= Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the end
points of the input vector. Instead, the end-point values are used.

= Use Input Nearest — This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest the current inputs are found. The
corresponding element in z is then used as the output.

=« Use Input Below— This method does not interpolate or extrapolate. Instead,
the elements in x and y nearest and below the current inputs are found. The
corresponding element in z is then used as the output.If there are no
elements in x or y below the current inputs, then the nearest elements are
found.

= Use Input Above — This method does not interpolate or extrapolate. Instead,
the elements in x and y nearest and above the current inputs are found. The
corresponding element in z is then used as the output. If there are no

9-71

FixPt Look-Up Table (2D)

Remarks

Parameters
and Dialog Box

9-72

elements in x or y above the current inputs, then the nearest elements are
found.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

To avoid parameter saturation errors, the automatic scaling script autofixexp
employs a special rule for the FixPt Look-Up Table (2D) block. autofixexp
modifies the scaling by using the output look-up values in addition to the
logged minimum and maximum simulation values. This prevents the data from
being saturated to different values. The look-up values are given by the Table
parameter (the TableDataPoints variable).

[Block Pargarsess Pt Lock dp T e 0l
Frad Pond Lozs: U p T able (2000 peart |
Ap{imrnsE & -t b g & dseced kol 1

Maaail
Fowe

]

Cat

|

T
 TEECEENIER]

Licae A bl e Ihl-p-ﬂ-ﬂ-nL:l Ered ¥ isham ﬂ

Dkt claka e wnd sl [Sy i ok =
Oupl dalapes o chd1E], wrif] Basi{angie]
r.'H-I.|

Dudgad wolrd Wit o (g Boid] 40 2700

2

T Lot oupad el v sefoncalg beal cael charge
Rowrd kmamd | Ton =]
[T Colorade fores o i s pembon oooe

[T Dsmnds dutn ippajt) itk dowbiss

F Lig rewnsn svirsessre

] cm | s | = |
Row

Input row vector. It must be strictly monotonically increasing.

FixPt Look-Up Table (2D)

Conversions

Col
Input column vector. It must be strictly monotonically increasing.
Table
Output vector. It must match the size defined by the Row and Col
parameters.

Look-up method
Look-up method.

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling

Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’'t change it.

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The Row parameter is converted from doubles to the first input’s data type.

The Column parameter is converted from doubles to the second input’s data
type. The Table parameter is converted from doubles to the output data type.

9-73

FixPt Look-Up Table (2D)

Example

9-74

All conversion are performed offline using round-to-nearest and saturation.
Refer to “Parameter Conversions” on page 4-26 for more information about
parameter conversions.

Suppose the FixPt Look-Up Table (2D) block is configured to use input row and
column vectors given by [1:3], and a look-up table given by [4 5 6; 16 19
20; 10 18 23]. Using the model shown below,

\'"/
:
Constant F
FixPt
] F
Cateney i —>{ ou
— F \'
FixPt Look-Up FixPt Display
\Y/ Table (2-D) Gateway Out
In Double
Constantl F
FixPt
Gateway Inl
Double

the following results were generated.

Look-Up Method Input[xy] Output Comment

Interpolation- [1.6 2.5] 13.9 N/A

Extrapolation
[1.6 4.0] 15.4 N/A

Interpolation- [1.6 2.5] 13.9 N/A
Use End Values

[1.6 4.0] 14.4 The value for [1.6 3] was used.
Use Input [1.6 2.3] 19 The value for [2 2] was used.
Nearest
Use Input [1.6 2.3] 5 The value for [1 2] was used.
Below

[1.6 0.5] 4 The value for [1 1] was used.

FixPt Look-Up Table (2D)

Characteristics

Look-Up Method Input[xy] Output Comment

Use Input [1.6 2.3] 20 The value for [2 3] was used.
Above
[1.6 3.5] 20 The value for [2 3] was used.
Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion Of one input if the other is a vector
States 0
Vectorized Yes

9-75

FixPt Matrix Gain

Purpose

Description

K
F

FizFt

Mztrix

9-76

3ain

Multiply the input by a constant matrix

The FixPt Matrix Gain block is a masked S-function that multiplies the input
by a constant matrix (referred to as the matrix gain). The block generates its
output by multiplying the input by a specified matrix

y = Ku

where K is the matrix gain and u is the input. If the matrix has m rows and n
columns, then the input to this block should be a vector of length n. The output
is a vector of length m.

You specify the matrix gain with the Gain matrix value parameter. You
specify the scaling for the matrix gain with the Parameter scaling parameter.
Note that there are two dialog box parameters that control the matrix gain
scaling: one associated with an edit field, and one associated with a parameter
list. If Parameter data type is a generalized fixed-point number such as
sTix(16), the Parameter scaling list provides you with these scaling modes:

= Use Specified Scaling — This mode uses the slope/bias or radix point-only
scaling specified for the editable Parameter scaling parameter (for
example, 2°-10).

= UseBest Precision: Element-wise — This mode produces radix points such
that the precision is maximized for each element of the Gain matrix value
matrix.

= Use Best Precision: Row-wise — This mode produces a common radix point
for each element of a Gain matrix value row based on the best precision for
the largest value of that row.

< Use Best Precision: Column-wise — This mode produces a common radix
point for each element of a Gain matrix value column based on the best
precision for the largest value of that column.

= Use Best Precision: Matrix-wise — This mode produces a common radix
point for each element of the Gain matrix value matrix based on the best
precision for the largest value of the matrix.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

FixPt Matrix Gain

Parameters
i Feme Peard M D frusk |
and Dialog Box et
Fowrain

Vot i vk
}r\--l.' |
Pt dals sps e k1B anfB], Rl uingis')
ol 1
I
Parswsd o 1Caleg IB‘-Hr'r_:q,l- Figies rasr j
hipat i ype i sl | 5oty o dhaicg =]

Cuipd et ypr s als16], L], Bt mngk'|

=]

e ool 5ot [Flops it & T8
I"' -0

I Lok muimy gl v simrcmns o conl charspe i
Funrd bt |1 2 =

I e b i o4 W bty creslfionsd OO0
™ Dsmrahs clais pparh| vith smubien
¥ Lag wesraand s Petira o

[T)| Ceed | bk | |

Gain matrix value
Specify as a scalar or vector.

Parameter data type
Any data type supported by the Fixed-Point Blockset.

Parameter scaling
Radix point-only or slope/bias scaling. Additionally, the gain can be scaled
using the constant matrix scaling modes for maximizing precision. These
scaling modes are available only for generalized fixed-point data types.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

9-77

FixPt Matrix Gain

Conversions
and Operations

Characteristics

9-78

Lock output scaling so autoscaling tool can’'t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data types(s) with doubles

If checked, the Parameter data type and Output data type values are
overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The Gain matrix value parameter is converted from doubles to the specified
data type offline using round-to-nearest and saturation. Refer to “Parameter
Conversions” on page 4-26 for more information about parameter conversions.

The FixPt Matrix Gain block first multiples its inputs by the Gain matrix
value parameter, converts those results to the output data type using the
specified rounding and overflow modes, and then performs the summation.
Refer to “Rules for Arithmetic Operations” on page 4-29 for more information
about the rules this block adheres to when performing operations.

Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion No

States 0

Vectorized Yes

FixPt MinMax

Purpose

Description

A mn p

F

FixPt
Minhdzs

Parameters
and Dialog Box

Output the minimum or maximum input value

The FixPt MinMax block is a masked S-function that outputs either the
minimum or the maximum element of the inputs. You can choose which
function to apply with the Function parameter list.

You specify the number of input ports with the Number of input ports
parameter. If the block has one input port, the input must be a scalar or a
vector. The block outputs a scalar equal to the minimum or maximum element
of the input vector.

If the block has multiple input ports, the non-scalar inputs must all have the
same dimensions. The block expands any scalar inputs to have the same
dimensions as the non-scalar inputs. The block outputs a signal having the
same dimensions as the input. Each output element equals the minimum or
maximum of the corresponding input elements.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

(o T - |
FiseH e Winkdm |
| et M rdiaa

Py oes e
T -
Warshe o i pc
i
[hapad Aaia iyps sl 10 s I‘S-:f:l!-'\-u'J-ll-u :l

Dhatpadl dinim bype sa ol 6L winllRl Soesl uingie]
||.|Iﬁ.

i -] Biaz] wx X
ﬁ:&ﬂ!..@!i_l _____ e

I L otz varny 1 s ol md 01 a8
R momesnd. Vi =
I Safhaite ba e o e b oo 5o

I Chwaamiche chaly et il il bl
L rerereare and waOanre

[0 | Cwed | o |

Function
The function to apply to the input.

9-79

FixPt MinMax

Characteristics

9-80

Number of input ports
The number of inputs to the block.

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling

Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’'t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding maode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums
If checked, minimum and maximum simulation values are logged to the

workspace.
Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion Yes
States 0

FixPt Multiport Switch

Purpose

Description

A
X
A
3

—

- F

FixFt
MAultiF ort
Switch

Switch output between different inputs based on the value of the first input

The FixPt Multiport Switch block is a masked S-function that passes through
the data input specified by the first (top) input. The first input is called the
control input, while the rest of the inputs are called data inputs.

If the control input is an integer value, then the specified data input is passed
through to the output. For example, if the control input is 1, then the first data
input is passed through to the output. If the control input is not an integer
value, the block truncates the value to an integer by rounding to floor. If the
truncated control inputis less than 1 or greater than the number of input ports,
an out-of-bounds error is returned.

The block inputs can be scalar or vector. You specify the number of data inputs
with the Number of input ports parameter. The block output is determined by
these rules:

= If you specify only one data input and that input is a vector, the block
behaves as an “index selector,” and not as a multi-port switch. The block
output is the vector element that corresponds to the value of the control
input.

= If you specify more than one data input, the block behaves like a multi-port
switch. The block output is the data input that corresponds to the value of
the control input. If at least one of the data inputs is a vector, the block
output is a vector. Any scalar inputs are expanded to vectors.

= If the inputs are scalar, the output is a scalar.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

Note The output data type is determined by the data input with the largest
positive range.

9-81

FixPt Multiport Switch

Parameters
and Dialog Box

Characteristics

9-82

o o= | 8% | oo |

Frows Prand 1l Pori S esich | mank |
ol o A Kttty et ik Puteit] i il O el (-

Faaraber
Fiuandar a rgad pari

f

Dipnii clads s snd sosbng Illi-r" oy il e e 3
Fird ipamd | !ox =
[T tsbamis o rass oo e pien cowrbess coed

7 Lig e gl e irs

Number of input ports
The number of data inputs to the block.

Output data type and scaling
Inherit the output data type and scaling from the driving block or by back
propagation.

Round toward

Rounding mode for the fixed-point output. This parameter does not apply
to an integer control input.

Saturate to max or min when overflows occur

If checked, fixed-point overflows saturate. Otherwise, they wrap. This
parameter does not apply to an integer control input.

Log minimums and maximums
If checked, minimum and maximum simulation values are logged to the

workspace.
Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion Yes
States 0

FixPt Product

Purpose Multiply or divide inputs
Description The FixPt Product block is a masked S-function that performs multiplication
or division of its inputs.
1 X
o You specify the operations with the Enter */ characters or the number of
3 F inputs parameter. Multiply-divide characters indicate which operations are to
FixPt be performed:
Froduct

= If there are two or more inputs, then the number of multiply-divide
characters must equal the number of inputs. For example, '*/*” requires
three inputs and configures the block to divide the first (top) input by the
second (middle) input, and then and multiply the third (bottom) input. If the
first character is '/, then the first input is inverted.

= If only multiplication of inputs is required, then a numeric parameter value
equal to the number of inputs can be supplied instead of multiply-divide
characters.

= If only one vector is input, then a single *" or '/’ will collapse the vector using
the specified operation.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

Parameters

and Dialog Box | P Fudel bk
iy o v nput:. S peofp ore of the Holovergy:
o &l mach gl
b T vty of it | Do o el s e i)
£l gl * i 1 e ool) vl

Erses = ihuiutiobed b o [il o gl

|2

Dpa S8 brpe el bl | Specip =a dacg =]
das . il P gl

i 1§

Dhatpad wadng Shops o [alnges Fisa| @ 79

[

I Lock oulsut rosing moosusizresing fool canl changs i

Fmrd fowad IFI.-\.-I :_I

I et la wax o man weher ovesfloss acou

I Crice chaba] o) moilhy dhn i

= Loy rerira e s wrn

(b] e s

9-83

FixPt Product

Operations

9-84

Enter */ characters or the number of inputs

Enter as many multiply or divide characters as there are inputs. For
multiplication only, you can enter the number of inputs since this is the
default operation.

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling

Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’'t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The FixPt Product block first performs the specified multiply or divide
operations on the inputs, and then converts the results to the output data type
using the specified rounding and overflow modes. Refer to “Rules for
Arithmetic Operations” on page 4-29 for more information about the rules this
block adheres to when performing operations.

FixPt Product

Characteristics

Input Ports

Output Port

Direct Feedthrough
Sample Time
Scalar Expansion
States

Vectorized

Any data type supported by the blockset
Any data type supported by the blockset
Yes

Inherited

Yes

0

Yes

9-85

FixPt Relational Operator

Purpose Perform the specified relational operation on the inputs
Description The FixPt Relational Operator block is a masked S-function that performs a
comparison of its two inputs. The first (top) input is converted the data type of
’ e b the second (bottom) input prior to comparison.
3 F The operator connecting the two inputs is selected with the Operator
FixPt parameter list. The supported relational operators are given below.
Ralational
Operator
Operation Description

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the second
input

>= TRUE if the first input is greater than or equal to the

second input

> TRUE if the first input is greater than the second input

The output is specified with the Logical output data type parameter. The
output equals 1 for TRUE and 0 for FALSE.

Note The output data type selected should represent zero exactly. Data types
that satisfy this condition include signed and unsigned integers and any
floating-point data type.

9-86

FixPt Relational Operator

Parameters
and Dialog Box

Conversions

Characteristics

(T T T S - |
Frooed Proand. wisieorss (1 pamako’ jmak |

e ikl e pi e

Foapratai
Crewea I 1 j
Lingaeisl vaifpa il clads bppeer Ba sl nd(30

] cmed | e | |

Operator
Relational operator used to compare the two inputs.

Logical output data type
Output data type. You should only use data types that can represent zero
exactly.

The input with the smallest positive range is converted to the data type of the
other input offline using round-to-nearest and saturation. This conversion is
performed prior to comparison. Refer to “Parameter Conversions” on page 4-26
for more information about parameter conversions.

Input Port Any data type supported by the blockset

Output Port Any data type supported by the blockset that can
exactly represent zero

Direct Feedthrough Yes

Sample Time Inherited
Scalar Expansion Of inputs
States 0
Vectorized Yes

9-87

FixPt Relay

Purpose

Description

i
E

FixFt
Relay

9-88

Switch output between two constants

The FixPt Relay block is a masked S-function that allows the output to switch
between two specified values. When the relay is on, it remains on until the
input drops below the value of the Switch off point parameter. When the relay
is off, it remains off until the input exceeds the value of the Switch on point
parameter. The block accepts one input and generates one output.

The Switch on point value must be greater than or equal to the Switch off
point. Specifying a Switch on point value greater than the Switch off point
value models hysteresis, whereas specifying equal values models a switch with
a threshold at that value.

You specify the output scaling with the Output scaling parameter. Note that
there are two dialog box parameters that control the output scaling: one
associated with an edit field, and one associated with a parameter list. If
Output data type is a generalized fixed-point number such as sfix(16), the
Output scaling parameter list provides you with these scaling modes:

= Use Specified Scaling — This mode uses the slope/bias or radix point-only
scaling specified for the editable Output scaling parameter (for example,
27-10).

= Best Precision: Vector-wise — This mode produces the best precision
based on the Output when on and Output when off parameters.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

FixPt Relay

Parameters
and Dialog Box

Frod Prand F iy {arsank |

it rhe gl oo 00 T vt b orefumneg ot gl o b
et bk The andall flate of ha ey o m Slecied by B
st b He upper o kv e

Fayrasss
Sl i [
o
% o prard
i
(ST ST e
fi
Duigeut sehs. o
o
Duigest clady s 9 scalingg | Spamy vaa chaiog |
Duipes dalsios ew b1FL sinfl Basifergie]

J=AEl

I ' - z

™ Diwsriecks ot bpedi | vl (ouibied

[O0E | Cwed | Hw | |

Switch on point
The “on” threshold for the relay.

Switch off point
The “off” threshold for the relay.

Output when on
The output when the relay is on.

Output when off
The output when the relay is off.

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the

data type and scaling by back propagation.

Output data type

Any data type supported by the Fixed-Point Blockset.

9-89

FixPt Relay

Conversions

Characteristics

9-90

Output scaling

Radix point-only or slope/bias scaling. Additionally, you can scale the
Output when on and Output when off parameters using the constant
vector scaling mode for maximizing precision.These scaling modes are
available only for generalized fixed-point data types.

Override with doubles

If checked, the Output data type is overridden with doubles.

Both the Switch on point and Switch off point parameters are converted to
the input data type offline using round-to-nearest and saturation.

Input Port Any data type supported by the blockset
Output Port Any data type supported by the blockset
Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion Yes

States 0

Vectorized Yes

FixPt Saturation

Purpose
Description

>7F>
E

FixFt
Saturation

Parameters
and Dialog Box

Conversions

Characteristics

Bound the range of the input

The FixPt Saturation block is a masked S-function that limits the input signal
to upper and lower saturation values.

You specify the upper bound of the input with the Upper limit parameter and
the lower bound of the input with the Lower limit parameter. If the input
signal is outside these limits, the output saturates to one of the bounds.

[Block Pargarsess Pt Sbusbon _______________HOI
FradPeand S.aturadean framk |
i et e of o il
Plalsiraidi
e il
T

Licovma i

Upper limit
The upper bound on the input signal.

Lower limit
The lower bound on the input signal.

Both the Upper limit and Lower limit parameters are converted to the input
data type offline using round-to-nearest and saturation.

Input Port Any data type supported by the blockset

Output Port Same as input data type

Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion Of input and limits
States 0

Vectorized Yes

9-91

FixPt Sign

Purpose
Description

>:.:>
E

FixPt
Sign

Parameters
and Dialog Box

Characteristics

9-92

Indicate the sign of the input

The FixPt Sign block is a masked S-function that indicates the sign of the
input:

= The output is 1 when the input is greater than zero.

= The output is 0 when the input is equal to zero.

= The output is -1 when the input is less than zero.

The output is a signed data type with the same number of bits as the input, and
with nominal scaling (a slope of one and a bias of zero).

Frows Prand Saguanjwank|
ThATel | Iy posilies gk, <1 Pl mgaties ingel, i [0] gl om

]
[] cmd | b | |

Input Port Any data type supported by the blockset
Output Port A signed Fixed-Point Blockset data type
Direct Feedthrough Yes
Sample Time Inherited
Scalar Expansion N/A
States 0
Vectorized Yes

FixPt Sum

Purpose

Description

A+

1~ B
FixPt
Sum

Parameters
and Dialog Box

Add or subtract inputs

The FixPt Sum block is a masked S-function that performs addition or
subtraction on its inputs.

You specify the operations with the Enter +- characters or the number of
inputs parameter. Plus-minus characters indicate the operations to be
performed on the inputs:

= If there are two or more inputs, then the number of plus-minus characters
must equal the number of inputs. For example, *+-+~ requires three inputs
and configures the block to subtract the second (middle) input from the first
(top) input, and then add the third (bottom) input.

= If only addition of inputs is required, then a numeric parameter value equal
to the number of inputs can be supplied instead of plus-minus characters.

= If only one vector is input, then a single '+ or -’ will collapse the vector using
the specified operation.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

T T N - |
FthFond e funs |
Fudd = rubd et gty pacty orw ol B folevarsg
o A+ -l aach g
b T rudiesy o Wty 3 psls ShBR0 o e
el & meghe = o i collapee @ v

[T T
Ersbs o s b) o T rwiioss o ity
|-.
[aipat gl oy sl yoging. | irecip = caog |

dalb il Pl g1
1B
Dhapad wwadng Slops o [Rmoes Fisa| @ 79
[
™ Leoack oudzub roseng o sl siesg fool can changa B
Pl vt [Fhioi - |
™ S stmstn ba wam o a vshar crvsfiow acoLe
I Orvemiche dhaba tpncd o) iy oot
= Lowg e whd woplrenei

|'_|:In | Carcal Hem

9-93

FixPt Sum

Operations

Characteristics

9-94

Enter +- characters or the number of inputs

Enter as many plus or minus characters as there are inputs. For addition
only, you can enter the number of inputs since this is the default operation.

Output data type and scaling

Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by back propagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling

Radix point-only or slope/bias scaling. These scaling modes are available
only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’'t change it

If checked, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding maode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Override data type(s) with doubles
If checked, the Output data type is overridden with doubles.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The FixPt Sum block first converts the input data type(s) to the output data
type using the specified rounding and overflow modes, and then performs the
specified operations. Refer to “Rules for Arithmetic Operations” on page 4-29
for more information about the rules this block adheres to when performing
operations.

Input Ports Any data type supported by the blockset
Output Port Any data type supported by the blockset

FixPt Sum

Direct Feedthrough
Sample Time
Scalar Expansion
States

Vectorized

Yes
Inherited
Yes

0

Yes

9-95

FixPt Switch

Purpose Switch output between the first input and the third input based on the value
of the second input

Description The FixPt Switch block is a masked S-function that passes through the first

5 (top) input or the third (bottom) input based on the value of the second (middle)

>__|\> input. The second input is called the control input.

1— F The first input is passed through when the second input is greater than or
FixFt equal to the value of the Threshold parameter. Otherwise, it passes the third
Switch

input through. The threshold value is converted to the second input’s data type.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-4.

Note The output data type is determined by the input with the largest
positive range. If the first input has a larger positive range than the third
input, then it specifies the output data type. Otherwise, the third input
specifies the output data type.

Parameters T T N - |

and Dialog Box [S e
B rlohe (u gl besdvetety il oo 0 Wl et Fasd o e iy
e e

Famarai
Threaheict
|||]

Duind clads et] gy [fwet varipradn |
Frurdimamd | oo =|
™ Featannde i s o0 Wi o pevspest crr

F Log reweorn s esresrs

B]| comod | s

Threshold
Switch threshold that determines which input is passed to the output.

Output data type and scaling

Inherit the output data type and scaling from the driving block or by back
propagation.

9-96

FixPt Switch

Conversions

Characteristics

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Log minimums and maximums

If checked, minimum and maximum simulation values are logged to the
workspace.

The Threshold parameter is converted offline to the second input’s data type
using round-to-nearest and saturation. Refer to “Parameter Conversions” on
page 4-26 for more information about parameter conversions.

Input Ports Any data type supported by the blockset

Output Port Same as input port one

Direct Feedthrough Yes

Sample Time Inherited
Scalar Expansion Yes
States 0
Vectorized Yes

9-97

FixPt Tapped Delay

Purpose

Description

4
A Dalays

E

FixPt
Tappad Dalay

v

Parameters
and Dialog Box

9-98

Delay a scalar signal multiple sample periods and output all the delayed
versions

The FixPt Tapped Delay block delays its input by the specified number of
sample periods, and outputs all the delayed versions.

This block provides a mechanism for discretizing a signal in time, or
resampling the signal at a different rate. You specify the time between samples
with the Sample time parameter. You specify the number of delays with the
Number of delays parameter. A value of -1 instructs the block to inherit the
number of delays by back propagation. Each delay is equivalent to the z%
discrete-time operator, which is represented by the FixPt Unit Delay block.

The block accepts one scalar input and generates an output for each delay. The
input must be a scalar. You specify the order of the output vector with the
Order output vector starting with parameter list. Oldest orders the output
vector starting with the oldest delay version and ending with the newest delay
version. Newest orders the output vector starting with the newest delay version
and ending with the oldest delay version

The block output for the first sampling period is specified by the Initial
condition parameter. Careful selection of this parameter can minimize
unwanted output behavior.

Fia i T o] Dalwy Line [waib]
Dimiay u cygresd Y pssngis pamceds s cofpudl all e iy v

P 4
vl coorchiion
II'I 1

Saapls

I.
Foardar ai delap:
II

Cohe vadmi vociod st rethi [l:_-.':i =l
[T] cowd | wi | |

Initial condition
The initial output of the simulation.

FixPt Tapped Delay

Conversions

Characteristics

Sample time
Sample time.

Number of delays
The number of discrete-time operators.

Order output vector starting with

Specify whether the oldest delay version is output first, or the newest delay
version is output first.

The Initial condition parameter is converted from a double to the input data
type offline using round-to-nearest and saturation.

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Sample Time Discrete or continuous

Scalar Expansion Yes — of initial conditions
States As many as there are outputs
Vectorized No

9-99

FixPt Unary Minus

Purpose

Description

-l

F

FizFt

Unary Minus

Parameters
and Dialog Box

Characteristics

9-100

Negate the input

The FixPt Unary Minus block is a masked S-function that negates the input.
The block accepts only signed data types.

For signed data types, you cannot accurately negate the most negative value
since the result is not representable by the data type. In this case, the behavior
of the block is controlled by the Saturate to max or min when overflows
occur check box. If checked, the most negative value of the data type wraps to
the most positive value. If not checked, the operation has no effect. If an
overflow occurs, then a warning is returned to the MATLAB command line.

For example, suppose the block input is an 8-bit signed integer. The range of
this data type is from -128 to 127, and the negation of -128 is not representable.
If the Saturate to max or min when overflows occur check box is checked,

then the negation of -128 is 127. If it is not checked, then the negation of -128
remains at -128.

[Block Pargersess ot Urag b _____________0OI
Frans Prand U rary bren jrek)
U B s 3 5 Poind il

Paluradi
[T tosbamis oo rass oo mn wdan cewrbess coed

] oo |t | |

Saturate to max or min when overflows occur
If checked, fixed-point overflows saturate. Otherwise, they wrap.

Input Port Any data type supported by the blockset
Output Port Same as the input (a nonzero bias is negated offline)

Direct Feedthrough No

Sample Time Discrete or continuous

Scalar Expansion Of input or initial conditions
States As many as there are outputs
Vectorized Yes

FixPt Unit Delay

Purpose

Description

1

‘F
FixPt
Unit Dealay

Remarks

Parameters
and Dialog Box

Delay a signal one sample period

The FixPt Unit Delay block is a masked S-function that delays its input by the
specified sample period. This block is equivalent to the z' discrete-time
operator. The block accepts one input and generates one output, both of which
can be scalar or vector. If the input is a vector, all elements of the vector are
delayed by the same sample period.

You specify the block output for the first sampling period with the Initial
condition parameter. Careful selection of this parameter can minimize
unwanted output behavior. The time between samples is specified with the
Sample time parameter.

Note The FixPt Unit Delay block accepts continuous sample times. When it
has a continuous sample time, the block is equivalent to the built-in Memory
block.

This block provides a mechanism for discretizing one or more signals in time,
or resampling the signal at a different rate. If your model contains multirate
transitions, then you must add FixPt Unit Delay blocks between the slow to
fast transitions. The sample rate of the FixPt Unit Delay must be set to that of
the slower block.

For fast to slow transitions, use the FixPt Zero Order Hold block. For more
information about multirate transitions, refer to Using Simulink or the
Real-Time Workshop User’s Guide.

T T R - |
Frard Poard U Dby bwam |
Teslig i dagreal P gt]
Fiptsirathedi
Jonintd oy
fos
S el e
i
| [| Carcal Hem

9-101

FixPt Unit Delay

Conversions

Characteristics

9-102

Initial condition
The initial output of the simulation.

Sample time
Sample time.

The Initial condition parameter is converted from a double to the input data
type offline using round-to-nearest and saturation.

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Sample Time Discrete or continuous

Scalar Expansion Of input or initial conditions
States As many as there are outputs
Vectorized Yes

FixPt Zero-Order Hold

Purpose

Description

Bt

FixPt
Zaro-Ordar
Hold

Remarks

Parameters
and Dialog Box

Characteristics

Implement a zero-order hold of one sample period

The FixPt Zero-Order Hold block is a masked S-function that samples and
holds its input for the specified sample period. The block accepts one input and
generates one output, both of which can be scalar or vector. If the input is a
vector, all elements of the vector are held for the same sample period.

You specify the time between samples with the Sample time parameter.

This block provides a mechanism for discretizing one or more signals in time,
or resampling the signal at a different rate. If your model contains multirate
transitions, you must add FixPt Zero-Order Hold blocks between the fast to
slow transitions. The sample rate of the FixPt Zero-Order Hold must be set to
that of the slower block.

For slow to fast transitions, use the FixPt Unit Delay block. For more
information about multirate transitions, refer to Using Simulink or the
Real-Time Workshop User’s Guide.

Frad Poant Zers-eden H ol jruist |
e e Rk O o i [

Paluradi

Sk e
||]
] oot | e |
Sample time
Sample time.
Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes
Sample Time Discrete
Scalar Expansion No

9-103

FixPt Zero-Order Hold

States 0

Vectorized Yes

9-104

Code Generation

Overview

Code Generation Support .
Languages e
Storage Class of Variables .
Storage Class of Parameters
Rounding Modes .

Overflow Handling .

Blocks

Scaling .

Generating Pure Integer Code .
Example: Generating Pure Integer Code

Using the Simulink Accelerator

Using External Mode or rsim Target .
External Mode . .
Rapid Simulation Target

Customizing Generated Code
Macros Versus Functions .
Bit Sizes for Target C Compiler .

. A2

. A3
. A3

. A3
. A3

. A4
. A4

. A5
. A5

.A-10

CA-11
CA-11
CA-11

LA-12
LA-12
LA-12

A Code Generation

A-2

Overview

With the Real-Time Workshop, the Fixed-Point Blockset can generate C code.
The code generated from fixed-point blocks uses only integer types and
automatically includes all operations, such as shifts, needed to account for
differences in fixed-point locations. You can use the generated code on
embedded fixed-point processors or rapid prototyping systems even if they
contain a floating-point processor. The code is structured so that key operations
can be readily replaced by optimized target-specific libraries that you supply.
You can also use the Target Language Compiler to customize the generated
code. For more information about code generation, refer to the Real-Time
Workshop User’s Guide and the Target Language Compiler Reference Guide.

You can also generate code for testing on a rapid prototyping system such as
XPC, the Real-Time Windows Target, or dASPACE. The target compiler and
processor may support floating-point operations in software or in hardware. In
any case, the fixed-point blocks will generate pure integer code and will not use
floating-point operations. This allows valid bit-true testing even on a
floating-point processor.

You can also generate code for non real-time testing. For example, code can be
generated to run in non real-time on computers running any supported
operating system. Even though the processors have floating-point hardware,
the code generated by fixed-point blocks is pure integer code. The Generic
Real-Time Target (GRT) and the Simulink Accelerator are examples of where
non real-time code is generated and run.

Code Generation Support

Code Generation Support

All fixed-point blocks support code generation, but not every simulation feature
is supported. The code generation support is described below.

Languages

<« C support only
= No Ada support

Storage Class of Variables

= Fixed-Point Blockset code generation handles variables that do not match
the target compiler’s sizes for char, short, int, or long. Code generation
supports any variable having a width less than or equal to a long, either
signed or unsigned. For example, the C40 compiler defines a long to be 32
bits. Therefore, the allowable sizes for variables range between 1 and 32 bits.
This capability is particularly useful if you want to:

- Prototype on one target chip, but use a different target chip for production.

- Provide bit-true simulation in a rapid prototyping environment for odd
data type sizes used by FPGA'’s, ASIC's, 24-bit DSP’s, and so on.

= No floating-point support except for the fixed-point gateway blocks.

Storage Class of Parameters

= The Real-Time Workshop external mode support requires that parameters
be 1 to 32 bits, either signed or unsigned. The parameter size must also be
compatible with the target C compiler.

= No floating-point support

Rounding Modes

< All four rounding modes are supported.
= Rounding to floor generates the most efficient code for most cases.

A-3

A Code Generation

A-4

Overflow Handling

< Saturation mode is supported.
= Wrapping mode is supported and generates the most efficient code.

= Automatic exclusion of saturation code when hardware saturation is
available is currently not supported. Wrapping must be selected for the
Real-Time Workshop to exclude saturation code.

Blocks

All blocks generate code for all operations with a few exceptions:

= The FixPt Look-Up Table, FixPt Look-Up Table (2D), and FixPt Dynamic
Look-Up Table blocks generate code for all look-up methods except
extrapolation.

= A few combinations of scaling and operations lead to highly inefficient code.
These few cases are described in the next section.

Scaling

« Radix point-only scaling is supported.

= Slope/bias scaling is supported for all blocks except when it leads to highly
inefficient code. All blocks except four support all cases of slope/bias scaling.
The FixPt Gain, FixPt Matrix Gain, and FixPt FIR blocks support matched
slope/bias scaling where the block input signals and output signals have the
same slopes and biases, but not mismatched slope/bias scaling. The FixPt
Product block supports mismatched slope, but not mismatched bias. For
more information about matched and mismatched slope/bias scaling, refer to
“Signal Conversions” on page 4-26.

It is generally recommended that signals with slope/bias scaling (such as a
sensor input) are immediately converted to radix point-only scaling. This will
typically produce more efficient code.

Generating Pure Integer Code

Generating Pure Integer Code

All blocks generate pure integer code except for the FixPt Gateway In, FixPt
Gateway In Inherited, and FixPt Gateway Out blocks. These blocks must
generate floating-point code when handling floating-point input or output.
However, if the input or output is an integer and the block is configured to treat
the input or output as a stored integer, then these blocks will also generate
pure integer code.

Example: Generating Pure Integer Code

This example outlines the steps you should take when generating pure integer
code for your Fixed-Point Blockset model. The steps follow the description in
the fxpdemo_code_only demo, which includes the model shown below.

. I)) F)
- int8 » In sfix8_En4 »!in1 outr -Sfix16_Enl2 » out int16 > -
In0 F] I Outl
Tag UnTag
Controller
Root level FixPt Gateway FixPt Gatewa Root level
Inport In Out Y Outport

Digital controller
. software on
fixed—point processor

Note This example generates code using the Embedded C Real-Time Target
(ERT), whch is available with the RTW Production Coder. If your version of
the Real-Time Workshop does not support ERT code generation, then you may
want to select the Generic Real-Time Target (GRT). Using GRT, all
Fixed-Point Blockset blocks (except the gateway blocks) will generate pure
integer code. However, the code related to the GRT infrastructure is not
generated to exclude floating-point operations. For example, GRT may decide
when to execute blocks based on a floating-point counter.

A-5

A Code Generation

1 Copy the fixed-point portion of your model to a new model.

If your original model includes blocks that represent hardware, analog
systems, and other blocks not related to embedded software, then you must
create a new model. This new model contains only the fixed-point portion,
which represents the software that will be running on the fixed-point
processor. For example, the digital controller subsystem shown above
contains the fixed-point blocks from the fxpdemo_feedback model used for

code generation.

2 Insert FixPt Gateway In blocks, as needed.

- Change the Treat input as: parameter from Real World Value to Stored
Integer. This does not change the signal’s value, but it is needed to "tag"
integers with fixed point scaling information. The FixPt Gateway In block
dialog box for this configuration is shown below.

e L
Corrvast o @ Sarasbri: buson clats tppa o @ Foed Pand Blochset deis
Lo

Fawssien
Tias pad B I'b-'\-a-l-lld risgm ll

w #n duEL (SAEL oo g
=g

Duipait rwadng: Slops oo S b e Z°3
4

A Leach. mibenst el mo ubarrming kool conl change §

I £

r
I vy caby]) wllhy bl
= Lesg nerwrasre @

|I:r.|l:.:n||u—| |

- Precede all FixPt Gateway In blocks with root level Inport blocks, and
configure the blocks to use the appropriate integer data type. For example,
the Inport block shown above is configured to use the built-in int8 data

type.

3 Insert FixPt Gateway Out Blocks, as needed.

- Change the Treat input as: parameter from Real World Value to Stored
Integer. This does not change the signal's value, but it is needed to “strip”

A-6

Generating Pure Integer Code

fixed-point scaling information from the integer. Also, configure the
Output date type: parameter to use the appropriate integer data type.
The FixPt Gateway Out block dialog box for this configuration is shown

below.

FitH= e T sy ad et ik |

Corvvast hom a FrmdFant Bodomst dets bps bz & Srebnk el dsis
L

Fawssiesi
Toasl Blpall B4 |Sirewd I rasgmy =
Dukgns dada o [o275 =
[cmed |t | |

- Follow all FixPt Gateway Out blocks with root level Outport blocks.

4 Configure the simulation parameters.
- Launch Simulink’s Simulation Parameter’s dialog box by selecting
Parameters under the Simulation menu.

- In the Solver window, configure Solver options: to Fixed-step and
discrete (no continuous states), and configure Fixed step size: to the
required value. The Solver window for this configuration is shown below.

Bimulntion Pornmulere fxpdeman_code_cndy =]] =]
T [P [T PP A ——
amrulsten e
St [00 LT e
‘i!l-bt:ﬁtﬁl
T |’r"-.'||'|'l.l 3 [-,h_.-n-.--_-_nuu_. ate| 3

Fus] deg s I-:m MolE STyl «

I = |

o | Cwewi| nee | |

- Select the Real-Time Workshop window in the Simulation Parameters
dialog box. Configure the System target file parameter to ert.tlc. The

A-7

A Code Generation

Template makefile and Make command parameters are automatically
updated. This configuration is shown below.

¢ Timulntion Pornmulere fepdema_code_onke [B

Sabven | wibamnon 40 | Tomrwntes | Adarnona| P Tire wirhaton |

m-llhpvn;-iwm :_1 (i wrarsls _hl
Corfgapiban
B Ll e I:lr: h—.l

Tevcdive rad s IH A i
M et [

P Genmade s sy Sttinten .|

o | cocul| v | oo |

Launch the System Target File Browser by selecting the Browse button in
the Configuration panel. If it is available, select Embedded-C Real-Time
Target as the system target file and hit the OK button. The System Target
File Browser for this configuration is shown below.

Byminm Torgul File Brirewar. Ixgpdemo_codn_onby
| Apsten vaeget file | D2 dp i
ca. Lo TE Cads Compapsr dosdin chrpst =]
2 ELE L 4
ct.Ele Yizual [,C4+ Prajest Eekefils only Eoc ia “etb” cacgekb
T=-2lc TI EFMSTx cacpet
2l GEratic Ranl-Tiss Target
«Ele Vimigl ©/04++ Frajecs Bakefils only for The “Qre™ CACQEC
EY_wallae, tle Bepepis Beal-Tiae Taigel ulth dfsmis woascy allasarias
. mallac. tle ¥ipunl CCé4 Fraject Bakefile only Eoc the “greo mslicc” teget
wak_lio. clz Mets) LE/D (Ly=a-Eshuddsd [STK| Raml-Tizs Target
EElE.EiE Rapid dsmilaciom Teasges
CG_adsEd, rls dlna]l Tmges for GWLT
pr_ada_slm.tle dda Tiwmlatian Target Fap QMAT
ck_mfw_taskirg.tlc dds Bulkitesking Resl-Tiss Target fox CAKT
cewin. tls Fanl-Tias Findows Terpet
FEMEESE, B S-fumctain TeEgeE
ti_fod. Lo TE Coade Compeasep ATndin Carper
ri_svmiTe. LlE TE E¥BETR tacgen
bamede. £l Tacnads |Yeacks) Feul-Time Tacges
tarpac.zic ®IC Trget X
Relegrions | vBar-taaaces AL il phely cowus i ST e tho
o | Cares | I

A-8

Generating Pure Integer Code

The Fixed-Point Blockset supports all targets except those that generate
Ada code. Note that you may not have ERT code generation capability. If
this is the case, you should select the Generic Real-Time Target.

- Toconfigure the code generation parameters, select ERT code generation
options from the Category parameter list. Select the Integer code only
check box and any other options you may require. To configure additional
code generation optimizations such as inlining, select General code
generation options from the Category parameter list. The ERT code
generation options for this configuration are shown below. If you are using
GRT, the dialog box choices are slightly different.

SBimulntion Parnmualdre fxpdemn_oode_anky =]] =]
St | s 40| Timprnts | A | P T ek
M,IIF‘-":T P, T P TR ﬂ urarsis u-hl

Ciplearni

[MaT e koging

F intugan code anly

[o il dals

™ i ancaanal 10 dete

[T Tawwngs hevion dges]

R Sarughs cmiuar i pads Auncann
™ Crnate S ek 15 Fumction)] ach

o | Cwewi| nee | |

Note that all fixed-point blocks except gateway blocks produce pure
integer code for all supported targets.

- Build the code by selecting the Generate code button.

A-9

A Code Generation

Using the Simulink Accelerator

You can use the Simulink Accelerator with your Fixed-Point Blockset model if
the model meets the code generation restrictions.

The Simulink Accelerator can drastically increase the speed of some
fixed-point models. This is especially true for models that execute at a very
large number of time steps. The time overhead to generate code for a
fixed-point model will generally be larger than the time overhead to set up a
model for simulation. As the number of time steps increases, the relative
importance of this overhead decreases.

Refer to the Using Simulink guide for more information about the Simulink
Accelerator.

A-10

Using External Mode or rsim Target

Using External Mode or rsim Target

If you are using the Real-Time Workshop external mode or rsim (rapid
simulation) target, there are situations where you may get unexpected errors
when tuning block parameters.

These errors can arise when you use blocks that support constant scaling for
best precision and you use the "best precision" scaling option. To avoid these
errors, you should use the Use Specified Scaling parameter value. Refer to
“Example: Constant Scaling for Best Precision” on page 3-12 for a description
of the constant scaling feature. Refer to Chapter 9, “Block Reference” for a
description of blocks that support this feature.

For more information about external mode or rapid simulation target, refer to
the Real-Time Workshop User’'s Guide.

External Mode

If you change a fixed-point block parameter by a sufficient amount
(approximately a factor of two), the radix point changes. If you change a
parameter such that the radix point moves during an external mode simulation
(or during graphical editing) and you reconnect to the target, a checksum error
occurs and you must rebuild the code.

For example, suppose a block has a parameter value of -2. You then build the
code and connect in external mode. While connected, you change the parameter
to -4. If the simulation is stopped and then restarted, this parameter change

causes a radix point change. In external mode, the radix point is kept fixed. If
you keep the parameter value of -4 and disconnect from the target, then when
you reconnect, a checksum error occurs and you must rebuild the code.

Rapid Simulation Target

If a parameter change is great enough, and you are using the best precision
mode for constant scaling, then you cannot use the rapid simulation target.

If you change a block parameter by a sufficient amount (approximately a factor
of two), the best precision mode changes the radix point. Any change in the
radix point requires the code to be rebuilt since the model checksum is changed.
This means that if best precision parameters are changed over a great enough
range, you cannot use the rapid simulation target and a checksum error
message occurs when you initialize the rsim executable.

A-11

A Code Generation

Customizing Generated Code

A-12

You can customize generated code by directly modifying the TLC file
fixpttarget.tlc, which is located in the fixpoint directory. The two most
important customizations are described below.

Macros Versus Functions

You can modify the TLC file to generate macros or C functions calls. With
macros, you can avoid the overhead of a function call. With function calls, you
can significantly reduce the overall code size for large routines. Additionally,
many debuggers will not allow you to single-step through macros. This is not
the case with function calls. The factory default setting is to generate macros.

Bit Sizes for Target C Compiler

You can modify the TLC file to accommodate custom target sizes by explicitly
specifying the number of bits defined for char, short, int, or long data types.

If you do not manually override these sizes, then the sizes for the MATLAB
host computer are automatically selected. For example, if you are running
MATLAB under the Windows operating system, then char, short, int, and long
default to 8, 16, 32, and 32 bits, respectively. Most other supported operating
systems use the same data type sizes. However, DEC Alpha for example,
defines a long as 64 bits.

Selected Bibliography

B selected Bibliography

B-2

Burrus, C. S., J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer,
and H.W. Schuessler, Computer-Based Exercises for Signal Processing
Using MATLAB, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition; Addison-Wesley Publishing Company, Reading,
Massachusetts, 1990.

Handbook For Digital Signal Processing, edited by S.K. Mitra and J.F.
Kaiser; John Wiley & Sons, Inc., New York, 1993.

Hanselmann, H., “Implementation of Digital Controllers — A Survey”;
Automatica, vol. 23, no. 1, pp 7-32, 1987.

Jackson, L.B., Digital Filters and Signal Processing, Second Edition;
Kluwer Academic Publishers, Seventh Printing, Norwell, Massachusetts,
1993.

Middleton, R. and G. Goodwin, Digital Control and Estimation — A Unified
Approach; Prentice Hall, Englewood Clifs, New Jersey. 1990.

Moler, C., "Floating points: IEEE Standard unifies arithmetic model",
Cleve's Corner, The MathWorks, Inc., 1996. You can find this article at
http://www.mathworks.com/company/newsletter/clevescorner/
cleve_toc.shtml

Ogata, K., Discrete-Time Control Systems, Second Edition; Prentice Hall,
Englewood Cliffs, New Jersey, 1995.

Roberts, R.A. and C.T. Mullis, Digital Signal Processing; Addison-Wesley
Publishing Company, Reading, Massachusetts, 1987.

A

absolute value 9-15
accumulation
scaling recommendations 4-18
using slope/bias encoding 4-18
accumulator data type 7-4
and feedback controller demo 6-8
addition 9-93
blockset rules 4-29
scaling recommendations 4-16
using slope/bias encoding 4-15
ALU's 4-29
arithmetic shift 4-41
autofixexp 8-4
automatic scaling
and feedback controller demo 6-14
and FixPt Look-Up Table (2D) block 9-72
and percent safety margin 8-4, 8-19
interface 8-18
script 8-4

B
back propagation
FixPt Data Type Propagation block 9-27
FixPt Gateway Out block 9-58
FixPt Tapped Delay block 9-98
backward integrator realization 7-9
base data type 7-4
and feedback controller demo 6-8
binary point 3-3
bit
clear 9-17
hidden 3-17
mask 9-17
multipliers 3-7
set 9-17

shifts 4-40

bits 3-3

bitwise operation 9-16

block configuration 2-2
selecting a data type 2-3
selecting a scaling 2-5

block icon labels 9-10

block parameters 9-4

blocks
FixPt Absolute Value 9-15
FixPt Bitwise Operator 9-16
FixPt Constant 9-21
FixPt Conversion 4-42, 9-23
FixPt Conversion Inherited 9-25
FixPt Data Type Propagation 9-27
FixPt Dead Zone 9-35
FixPt Dot Product 9-37
FixPt Dynamic Look-Up Table 9-39
FixPt FIR 4-46, 9-43
FixPt Gain 4-44, 9-47
FixPt Gateway In 2-2, 9-51
FixPt Gateway In Inherited 9-56
FixPt Gateway Out 9-58
FixPt Integer Delay 9-61
FixPt Logical Operator 9-63
FixPt Look-Up Table 9-66
FixPt Look-Up Table (2-D) 9-71
FixPt Matrix Gain 3-12, 9-76
FixPt MinMax 9-79
FixPt Multiport Switch 9-81
FixPt Product 4-36, 4-39, 9-83
FixPt Relational Operator 9-86
FixPt Relay 9-88
FixPt Saturation 9-91
FixPt Sign 9-92
FixPt Sum 4-32, 9-93

Index

1-2

FixPt Switch 9-96
FixPt Tapped Delay 9-98
FixPt Unary Minus 9-100
FixPt Unit Delay 9-101
FixPt Zero-Order Hold 9-103
blockset library 9-12
Bode plot 6-6
boolean operation
bitwise 9-16
logical 9-63
broken links 8-14
built-in data types 1-17

C
ceil 4-6
chopping 4-8
clearing bits 9-17
code generation 2-8, A-2
and multiplication 4-35
and scaling 9-54
and signal conversions 4-28
and stored integer output 9-58
and summation 4-31
computational noise 4-2
and rounding 4-3
computational units 4-29
constant scaling for best precision 3-12
limitations for code generation A-11
constant value 9-21
contiguous bits 3-16
conversions
fixed-point to fixed-point 9-23
fixed-point to fixed-point, inherited 9-25
parameter
signal 4-26
See also online conversion, offline conversion

converting old models 8-16

D
data types 2-3, 3-10
built-in 1-17
display 9-10
fractional numbers 2-4
generalized fixed-point numbers 2-4
IEEE numbers 2-4
inherited 9-5
integers 2-3
overriding with doubles 9-9
propagation 9-27
selecting 9-4
dead zone 9-35
demos 2-14
denormalized numbers 3-21
derivative realization 7-14
filtered 7-12
development cycle 1-12
dialog box parameters 9-4
data type 9-4
lock output scaling 9-8
logging min/max data 9-9
overflow handling 9-9
overriding with doubles 9-9
rounding 9-8
scaling 9-7
digital controller 6-7
digital filter 5-2
direct form realization 5-4
and feedback controller demo 6-8
division 9-83
blockset rules 4-38
scaling recommendations 4-22, 4-23
using slope/bias encoding 4-22

Index

dot product 9-37

double bits 4-34, 7-4
double-precision format 3-18
doubles override 8-19

E

Embedded-C Real-Time Target A-8

encapsulation 8-9

encoding scheme 3-5

eps 3-20

examples
constant scaling for best precision 3-12
conversions and arithmetic operations 4-45
converting a built-in model to fixed-point 8-10
converting from doubles to fixed-point 2-9
division process 4-39
fixed-point format 3-7
fixed-point scaling 3-10
FixPt Bitwise Operator 9-19
FixPt FIR 9-46
FixPt Gateway In 9-53
FixPt Look-Up Table 9-69
FixPt Look-Up Table (2D) 9-74
generating pure integer code A-5
limitations on precision and errors 4-9
limitations on range 4-14
maximizing precision 4-10
multiplication process 4-36
saturation and wrapping 4-12
selecting a measurement scale 1-4
shifting bits and the radix point 4-41
shifting bits but not the radix point 4-43
summation process 4-31

exceptional arithmetic 3-21

exponent for IEEE numbers 3-17

external mode A-11

F
feedback design 6-3
filter

digital 5-2

lead-lag 7-17
filtered derivative realization 7-12
filters and systems 7-2
FIR 9-43
fix 4-4
fixed-point interface tool 8-18

and feedback controller demo 6-9
fixed-point numbers

general format 3-3

scaling 3-5
fixpt 1-13
fixpt_convert 8-8
fixpt_convert_prep 8-13
fixptbestexp 8-6
fixptbestprec 8-7
FixPtSimRanges 9-9
float 8-14, 8-15
floating-point numbers 3-17
floor 4-7
forward integrator realization 7-10
fpupdate 8-16
fraction for IEEE numbers 3-17
fractional numbers 2-4

and guard bits 4-14
fractional slope 3-5
fxptdlg 8-18

G

gain 9-47
matrix gain 9-76
scaling recommendations 4-21, 4-22
using slope/bias encoding 4-20

Index

I-4

gateway
fixed-point to Simulink 9-58
Simulink to fixed-point 9-51
Simulink to fixed-point, inherited 9-56
generalized fixed-point numbers 2-4
Generic Real-Time Target A-5
global override with doubles 6-12
guard bits 4-14, 8-22, 8-26
GUI
block 8-18
See also fixed-point interface tool

H
help 1-19
hidden bit 3-17

icon labels 9-10
IEEE floating-point numbers
format
double precision 3-18
exponent 3-17
fraction 3-17
nonstandard 3-19
sign bit 3-17
single precision 3-18
precision 3-20
range 3-19
infinity 3-22, 4-11
inherited
data types 9-5
by back-propagation 9-27

fixed-point to fixed-point conversion 9-25

scaling 9-7
by back-propagation 9-27

Simulink to fixed-point conversion 9-56
installation xv
integer delay 9-61
integers 2-3
and code generation A-5
outputting large values 9-58
integrator realization
backward 7-9
forward 7-10
trapezoidal 7-7
interface

L
least significant bit 3-3

library 1-13, 9-12
limit cycles 4-2
and feedback controller demo 6-16
lock output scaling 9-8
and feedback controller demo 6-16
logging
large integer values 9-58
overflows 9-9
simulation results 8-19, 9-9
logical operation 9-63
logical shift 4-41
look-up table
1-D 9-66
2-D 9-71
dynamic 9-39
LSB. See least significant bit

M
MAC's 4-29

propagating data type information for 9-31

masking bits 9-17

Index

matrix gain 9-76
maximum value 9-79
logging 9-9
measurement scales 1-2
mex Xi
minimum value 9-79
logging 9-9
modeling the system 1-12
most significant bit 3-3
MSB 3-3
multiplication 9-83
blockset rules 4-34
scaling recommendations 4-19, 4-20
using slope/bias encoding 4-19
multiport switch 9-81

N
NaNs 3-22, 4-11

nonstandard IEEE format 3-19

O

offline conversion 4-26
for addition and subtraction 4-30
for multiplication 4-35
for signals 4-27

online conversion
for addition and subtraction 4-30
for multiplication 4-35
for signals 4-27

online help 1-19

overflow 3-20, 4-2, 4-11
and code generation A-4
handling by fixed-point blocks 9-9
logging 6-10, 9-9

overriding with doubles 8-19, 9-9

global override 6-12
individual override 6-17

)
padding with trailing zeros 4-8

and feedback controller demo 6-7
parallel form realization 5-10
parameter conversion 4-26

See also conversions
percent safety margin 8-19
plot system interface 8-19
port data type display 9-10
precision

best 8-6

maximum 8-7

of fixed-point numbers 3-9

of IEEE floating-point numbers 3-20
prerequisites xvi
propagation of data types 9-27

Q

guantization 4-2
and feedback controller demo 6-12
and rounding 4-3
of a real-world value 2-11, 3-6

R
radix point 3-3
radix point-only scaling 3-6
range
of fixed-point numbers 3-9
of IEEE floating-point numbers 3-19
RangeFactor 8-4
rapid simulation target A-11

Index

1-6

realizations
and data types 7-3
and scaling 7-3
derivative 7-12
design constraints 5-2
direct form 5-4
integrator 7-7
lead-lag filter 7-17
parallel form 5-10
series cascade form 5-7
state-space 7-20
Real-Time Workshop
ERT A-8
external mode A-11
GRT A-5
Production Coder A-5
rapid simulation target A-11

Target Language Compiler A-12

real-world value 3-5
as block input 9-51
relational operation 9-86
relay 9-88
release information 1-19
restoring broken links 8-14
round 4-5
rounding modes 4-3, 9-8
and code generation A-3
toward ceiling 4-6
toward floor 4-7
toward nearest 4-5
toward zero 4-4
rsim A-11
RTW Production Coder A-5

S
saturation 4-12, 9-91

and feedback controller demo 6-10
scaling 2-5, 9-7
and accumulation 4-18
and addition 4-15
and code generation A-4
and division 4-22
and gain 4-20
and multiplication 4-19
constant scaling for best precision 3-12
inherited 9-7
locking 9-8
radix point-only 2-6, 3-6
slope/bias 2-6, 3-6
scientific notation 3-15
series cascade form realization 5-7
setting bits 9-17
sfix 8-21
sfrac 8-22
shifts 4-40
using the FixPt Conversion block 4-41
using the FixPt Gain block 4-42
showfixptsimranges 8-23, 9-9
sign
extension 4-14
of input signal 9-92
sign bit for IEEE numbers 3-17
signal conversions 4-26
Simulink
built-in data types 1-17
converting built-in data types to fixed-point
9-51
converting built-in models to fixed-point 8-8
converting fixed-point data types to built-in
9-58
Simulink Accelerator A-10
single-precision format 3-18
sint 8-24

Index

slope/bias scaling 3-6
state-space realization 7-20
stored integer 2-3

as block input 9-51

as block output 9-58
subtraction 9-93

See also addition
switch 9-96

multiport 9-81

T
tapped delay 9-98

Target Language Compiler A-12
targeting an embedded processor 7-4
design rules 7-5
operation assumptions 7-4
size assumptions 7-4
TLC file A-12
trapezoidal integrator realization 7-7
truncation 4-8
two's complement 3-3
typographical conventions xvi

U

ufix 8-25

ufrac 8-26

uint 8-27

unary minus 9-100
underflow 3-20

unit delay 9-101
updating old models 8-16

W
wrapping 4-12

Z
zero order hold 9-103

Index

1-8

	Preface
	What Is the Fixed-Point Blockset?
	Exploring the Blockset

	Related Products
	System Requirements
	Associated Products

	Using This Guide
	Expected Background
	Learning the Fixed-Point Blockset
	How This Book Is Organized

	Installation Information
	Typographical Conventions

	Introduction
	Physical Quantities and Measurement Scales
	Selecting a Measurement Scale
	Example: Selecting a Measurement Scale

	Why Use Fixed-Point Hardware?
	Why Use the Fixed-Point Blockset?
	The Development Cycle
	The Fixed-Point Blockset Library
	Fixed-Point Blocks

	Compatibility with Simulink Blocks
	How to Get Online Help

	Getting Started
	An Overview of Blockset Features
	Configuring Fixed-Point Blocks
	Additional Features and Capabilities

	Example: Converting from Doubles to Fixed-Point
	Block Descriptions
	Simulation Results

	Demos
	Basic Demos
	Advanced Demos: Filters and Systems

	Data Types and Scaling
	Overview
	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Radix Point Interpretation
	Scaling
	Quantization
	Range and Precision
	Example: Fixed-Point Scaling
	Example: Constant Scaling for Best Precision

	Floating-Point Numbers
	Scientific Notation
	The IEEE Format
	Range and Precision
	Exceptional Arithmetic

	Arithmetic Operations
	Overview
	Limitations on Precision
	Rounding
	Padding with Trailing Zeros
	Example: Limitations on Precision and Errors
	Example: Maximizing Precision

	Limitations on Range
	Saturation and Wrapping
	Guard Bits
	Example: Limitations on Range

	Recommendations for Arithmetic and Scaling
	Addition
	Accumulation
	Multiplication
	Gain
	Division
	Summary

	Parameter and Signal Conversions
	Parameter Conversions
	Signal Conversions

	Rules for Arithmetic Operations
	Computational Units
	Addition and Subtraction
	Multiplication
	Division
	Shifts

	Example: Conversions and Arithmetic Operations

	Realization Structures
	Overview
	Direct Form II
	Series Cascade Form
	Parallel Form

	Tutorial: Feedback Controller Simulation
	Overview
	Simulink Model of a Feedback Design
	Idealized Feedback Design
	Digital Controller Realization
	Simulation Results
	Simulation 1: Initial Guess at Scaling
	Simulation 2: Global Override
	Simulation 3: Automatic Scaling
	Simulation 4: Individual Override

	Building Systems and Filters
	Overview
	Realizations and Data Types
	Realizations and Scaling

	Targeting an Embedded Processor
	Size Assumptions
	Operation Assumptions
	Design Rules

	Integrator Realizations
	Trapezoidal Integration
	Backward Integration
	Forward Integration

	Derivative Realizations
	Filtered Derivative
	Derivative

	Lead Filter or Lag Filter Realization
	State-Space Realization

	Function Reference
	Overview
	autofixexp
	fixptbestexp
	fixptbestprec
	fixpt_convert
	fixpt_convert_prep
	fixpt_restore_links
	float
	fpupdate
	fxptdlg
	sfix
	sfrac
	showfixptsimranges
	sint
	ufix
	ufrac
	uint

	Block Reference
	The Block Reference Page
	The Block Dialog Box
	Common Block Features
	Block Parameters
	Block Icon Labels
	Port Data Type Display

	The Fixed-Point Blockset Library
	FixPt Absolute Value
	FixPt Bitwise Operator
	FixPt Constant
	FixPt Conversion
	FixPt Conversion Inherited
	FixPt Data Type Propagation
	FixPt Dead Zone
	FixPt Dot Product
	FixPt Dynamic Look-Up Table
	FixPt FIR
	FixPt Gain
	FixPt Gateway In
	FixPt Gateway In Inherited
	FixPt Gateway Out
	FixPt Integer Delay
	FixPt Logical Operator
	FixPt Look-Up Table
	FixPt Look-Up Table (2D)
	FixPt Matrix Gain
	FixPt MinMax
	FixPt Multiport Switch
	FixPt Product
	FixPt Relational Operator
	FixPt Relay
	FixPt Saturation
	FixPt Sign
	FixPt Sum
	FixPt Switch
	FixPt Tapped Delay
	FixPt Unary Minus
	FixPt Unit Delay
	FixPt Zero-Order Hold

	Code Generation
	Overview
	Code Generation Support
	Languages
	Storage Class of Variables
	Storage Class of Parameters
	Rounding Modes
	Overflow Handling
	Blocks
	Scaling

	Generating Pure Integer Code
	Example: Generating Pure Integer Code

	Using the Simulink Accelerator
	Using External Mode or rsim Target
	External Mode
	Rapid Simulation Target

	Customizing Generated Code
	Macros Versus Functions
	Bit Sizes for Target C Compiler

	Selected Bibliography
	Index

